2. Filling Data Gaps, Data validation & Descriptive Statistics

Dr. Prasad Modak

Environmental Management Centre, Mumbai

Background

- Data collected from field may suffer from these problems
 - Data may contain gaps (= no readings during this period)
 - Data may exhibit "suspect" values
- Addressing these deficiencies is essential before processing/ analyzing the data

How to fill in data gaps

- Identify data gaps
- Use any of the following techniques:
 - Use the average of the distribution to fill in data gaps
 - Taking mean of adjacent values
 - Linear interpolation
 - Using a "Regression Model"
- Remember that there is no substitute to real value
- Filling missing values creates a "bias" and "distortion" in the data when it comes to interpretation

Techniques for Filling Missing Values

 Suppose x_a and x_c are two values with value of x_b missing, then:

$$x_b = \frac{x_a + x_c}{2}$$

 Linear interpolation. Suppose x_a and x_b are the two adjacent values to n missing values. Then the kth missing value (from x_a) will have the value:

$$x_k = x_a + k \frac{x_b - x_a}{n}$$

• If there m data points missing out of n and m << n, then assign to m, average value of the series.

Outliers

- What are outliers?
- How does the outliers affect analysis of data?
- How to find outliers
 - Dixon's 4 sigma (σ) test
 - Outliers are those values that lie beyond the mean ± 4 standard deviations
 - Box and whisker diagram
 - Use water quality standards (IS 10500:1991)

Date & Time		Hardness
	3/26/2004 13:00	122.3
	3/26/2004 14:00	178.6
	3/26/2004 15:00	347.4
	3/26/2004 18:00	368.3
	3/26/2004 19:00	67942
	3/26/2004 20:00	22175.7
	3/26/2004 21:00	5875.2
	3/26/2004 22:00	1840.4
	3/26/2004 23:00	840.6
	3/27/2004 0:00	643
	3/27/2004 1:00	464.8
	3/27/2004 2:00	275.2
	3/27/2004 3:00	194.6
	3/27/2004 4:00	168.2
	3/27/2004 5:00	162.1
	3/27/2004 6:00	162
	3/27/2004 7:00	172.4
	3/27/2004 8:00	298.8
	3/27/2004 9:00	334
	3/27/2004 10:00	398.3
	3/27/2004 11:00	394.8
	3/27/2004 12:00	480.9
μ		4719.98
σ		14893.7
μ+4σ		64294.8
μ-4σ		-54855
Q1		182.6
Q3	Divono tost	602.475
Max L Min	Dixons test	67942
		122.3

		Locations	
Time	Α	В	С
t	313	202	245
t+1	356	220	123
t+2	298	312	332
t+3	1200	111	321
t+4	200	20	234
t+5	398	450	234
t+6	512	367	567

as per IS 10500: 1991

Control Chart Lower Lower day Hq limit limit 6.92 10-Feb-09 6.5 8.5 10.00 8.5 6.89 6.5 11-Feb-09 5.21 6.5 12-Feb-09 8.5 9.00 13-Feb-09 6.34 6.5 8.5 8.00 8.5 14-Feb-09 6.40 6.5 7.11 6.5 8.5 15-Feb-09 7.00 16-Feb-09 6.90 6.5 8.5 6.00 7.21 6.5 8.5 17-Feb-09 6.98 6.5 18-Feb-09 8.5 5.00 8.10 6.5 8.5 19-Feb-09 Lower limit 4.00 8.5 20-Feb-09 6.23 6.5 Lower limit 8.11 6.5 8.5 21-Feb-09 3.00 6.5 8.5 22-Feb-09 6.54 2.00 6.5 8.5 23-Feb-09 6.66 24-Feb-09 7.32 6.5 8.5 1.00 25-Feb-09 7.90 6.5 8.5 0.00 8.5 26-Feb-09 7.21 6.5 6-Feb-09 11-Feb-09 16-Feb-09 21-Feb-09 26-Feb-09 3-Mar-09 8-Mar-09 13-Mar-09 6.09 6.5 8.5 27-Feb-09 6.5 8.5 28-Feb-09 7.54 1-Mar-09 5.00 6.5 8.5 2-Mar-09 9.21 6.5 8.5 3-Mar-09 7.81 6.5 8.5 4-Mar-09 8.20 6.5 8.5

5-Mar-09

6-Mar-09

7-Mar-09

8-Mar-09

9-Mar-09

1.20

6.87

7.24

7.91

8.19

6.5

6.5

6.5

6.5

6.5

8.5

8.5

8.5

8.5

8.5

Descriptive statistics

- No. of observations (n)
- No. of missing values
- Minimum
- Maximum
- Range
- 1st Quartile
- Median
- 3rd Quartile
- Sum (If relevant)
- Mean (µ)
- Standard error (σ^2)
- Standard deviation (σ)
- Variance (v)
- Skewness
- Kurtosis (k)

Arithmetical mean

- Mean is the arithmetic mean or the average of the data. It is calculated using the following formula:
- Mean = (Sum of data / Total number of observations)
- Mean is important, why?
 - Mean is the most used measure of a distribution
 - Other measures of dispersion (SE. SD, CV) are calculated based on mean
- Mean might not be always a very good measure of data, why?
 - Two distributions with same mean could have widely different ranges
 - Mean might not reflect the right attributes of the distribution (in case of highly tilted distributions)

Median, quartiles and percentiles

- a quartile is any of the three values which divide the sorted data set into four equal parts, so that each part represents one fourth of the "sampled population"
 - Q1 = first quartile (25% data points are under this value),
 - Q2 = second quartile (or median) (50% data points in sample is below this value)
 - Q3 = third quartile (75% data points in sample are below this value)
- Median is a real value located in the sample
- Sample mean and median could be different
- Similarly, percentiles divide the "population" into 100 equal unit
- So, median = 2nd Quartile = 50th Percentile

Median

- Median
 - For even number of value (arranged in ascending order)

$$x_{med} = \frac{n}{2}$$
 Where n is the number of values in the sample population

- For odd number of values (arranged in ascending order)

$$x_{med} = \frac{n+1}{2}$$

Standard Error and Standard Deviation

- A Standard Error (SE) is the estimate of variation of a statistics
- The SE of the mean tell about the spread of sample observations (x) about the mean (μ).
- The Standard Deviation (SD) is a widely used measure of the variability or dispersion along the mean
- It shows how much variation there is from the average or measuring how far the data values lie from the mean
- Chebyshev's rule: for any distribution, and for any positive k, the proportion of the data that lies within k nos. SD of the mean is at least:

$$p = 1 - \frac{1}{k^2}$$

How to calculate SE & SD

Sample standard deviation

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Sample standard error of the mean

$$SE = \frac{\sigma}{\sqrt{n}}$$

day	рΗ	x-µ	(x-µ) ²		
10-Feb-09	6.92	0.02	0.00		
11-Feb-09	6.89	-0.01	0.00	count (n)	28
12-Feb-09	5.21	-1.69	2.87	` '	
13-Feb-09	6.34	-0.56	0.32	Max	9.21
14-Feb-09	6.40	-0.50	0.25	Min	1.2
15-Feb-09	7.11	0.21	0.04	IVIIII	1.4
16-Feb-09	6.90	0.00	0.00	Range	1.2-9.21
17-Feb-09	7.21	0.31	0.09		0.00
18-Feb-09	6.98	0.08	0.01	Mean	6.90
19-Feb-09	8.10	1.20	1.43	Q1	6.51
20-Feb-09	6.23	-0.67	0.45	QΙ	
21-Feb-09	8.11	1.21	1.46	Median	7.05
22-Feb-09	6.54	-0.36	0.13		
23-Feb-09	6.66	-0.24	0.06	Q3	7.83
24-Feb-09	7.32	0.42	0.17	Mariana	2.00
25-Feb-09	7.90	1.00	0.99	Variance	2.08
26-Feb-09	7.21	0.31	0.09	Std. error	0.27
27-Feb-09	6.09	-0.81	0.66	Otal on o	0.2.
28-Feb-09	7.54	0.64	0.41	Ctd dov	1 11
1-Mar-09	5.00	-1.90	3.62	Std. dev	1.44
2-Mar-09	9.21	2.31	5.32		
3-Mar-09	7.81	0.91	0.82		
4-Mar-09	8.20	1.30	1.68		
5-Mar-09	1.20	-5.70	32.53		
6-Mar-09	6.87	-0.03	0.00		
7-Mar-09	7.24	0.34	0.11		
8-Mar-09	7.91	1.01	1.01		
9-Mar-09	8.19	1.29	1.66		
			56.20		
n = 28		Var	2.08		
		SD	1.442732		
		SE	0.272651		

Example

Discussion Points

- Mean, SE and Compliance with Standards
- Annual average DO concentration at a station was found to be 4.5 mg/l with SE of 1.0. Is the station "compliant"?
- SE and Number of Samples (Sampling Frequency)
- Sampling frequency was increased to weekly. What will happen now to annual average and SE?
- Coefficient of Variation (CV) = SD / Mean
- What will CV signify? What inferences could we draw?