Executive Summary of Environmental Impact Assessment

(Draft EIA) Report

for

Proposed Establishment of Sugar Unit of 7000 TCD, Along with Establishment of 300 KLPD Syrup Based Distillery/ 300 KLPD B-Molasses Based Distillery/ 300 KLPD Grain Based Distillery to Produce RS/ Ethanol & Co-Generation Power Plant of 30 MW

By

M/s. Saipro Biofuels Private Limited (SBPL)

Here

Gat No. 163/2, 164 & 165 Kadlas village, Taluka Sangola, District Solapur, Maharashtra

Environment Consultant

Mantras Innovation and Solutions Pvt. Ltd.

EXECUTIVE SUMMARY

1.0 Introduction

The proposed activity for establishing sugar cane crushing, syrup/ molasses/ grain based distillery along with cogen activity is being promoted by M/s. Saipro Biofuels Private Limited Kadlas village, Taluka Sangola, District Solapur, Maharashtra is registered under the companies act, 1956 (No.1 of 1956) vide Registration No. U40106PN2021PTC202428 dated 7th July 2021. The company's registered office is located at Plot No. 38, Sr. No 23/1B, Dharamveer Nagar, Lane No 7 Baner, Pune, Maharashtra, India 411045.

The industry proposes to install a new sugarcane crushing unit of 7000 TCD capacity along with 300 KLPD Syrup Based Distillery / 300 KLPD B-Molasses Based Distillery/ 300 KLPD Grain Based Distillery along with 30 MW Biomass based Co-gen plant to fulfil power requirement of the plant.

2.0 **Project Location**

The proposed sugarcane crushing unit and establishment of distillery and co-gen plant will be done within the company's project premises, i.e. at Gat No. 163/2, 164 & 165 Kadlas village, Taluka Sangola, District Solapur, Maharashtra, India.

As per geographical co-ordinates of the project site, the proposed activity is covered under SOI Toposheet No. 47O/3, while the study area of the project (10 km radius) is falling under SOI toposheet No: 47O/7. The project is located at elevation of 558 meters above mean sea level (AMSL).

3.0 **Project Description**

The command area of the factory has excellent cane potential and the sugarcane grown in this area is rich in sucrose content. Therefore, the industry proposes to install sugarcane crushing unit of 7000 TCD capacity along with 300 KLPD Syrup Based /B-Molasses/Grain Based Distillery to produce Rectified Spirit/ Ethanol, Co-Generation Power Plant of 30 MW is also proposed utilizing bagasse generated from sugar cane mill.

During cane crushing season i.e., 150 days distillery will be operated with a production rate of 300 KLPD using sugarcane syrup as main raw material; while during off-season i.e. 180 days distillery will be under operation with a production rate of 300 KLPD (90 days) using B molasses and 300 KLPD (90 days) using Grain as a raw material.

Also, to fulfil the power requirement of the factory company proposed to install an additional Co-gen unit of 30 MW capacity.

As per Environmental Impact Assessment Notification published by MoEF&CC vide S.O. 1533(E) dated 14^{th} September, 2006 and its amendments till date, the proposed activity of the company requires prior Environmental Clearance as proposed activity is falling under schedule 5(g), 5(j) & 1(d) of the EIA notification; the project is to be appraised by EAC as Category A project for grant of Environmental Clearance.

As the distillery will be operated>100 KLPD Capacity.

The salient features of the proposed project are presented in **Table No. 1**.

Sr. No.	Con	nponent		Details	
	Nomo	Pr Address	M/s. Saipro	Biofuels Private	Limited (SBPL).
1	of Company		Gat No. 163/2, 164 & 165 of Kadlas village, Taluka Sangola, District		
of Company Gat No. 163/2, 164 & 165 of Kadlas villa Solapur, Maharas Proposed Establishment of Sugar Unit				shtra.	
			Proposed Establishm	ent of Sugar Unit	of 7000 TCD, Along with
2 Product Type			Establishment of 300 l	KLPD Syrup Base	ed /B-Molasses/Grain Based
			Distillery to Produce RS/ Ethanol & Co-Generation Power Plant of 30		
			Green Field project to	produce sugar a	nd RS/Ethanol with Co-gen
3	Proj	ect Type		plant.	
	Sched	lule of the			
4	project	as per EIA		5(g), 5(j) & 1	(d)
	Notific	ation, 2006			
5	Cate	Category of 'A' Category Project			oject
	Tiojeet				
6	Plot Area Details				
0	Par	ticulars	Area in Sq.	. m.	% of Total Plot Area
	Total	l Built-up	48,346.63		32.80 %
1	Area	(Ground			
2	Co	verage)	54.028.2		26.65.0/
2	Park	ing Area	23 140 2	3	15 70 %
5	Are	a Under	23,140.2.	5	13.70 70
4	Intern	nal Roads	15,937		10.80 %
5	Ope	en Space	5,977.84		4.05 %
	Total	Plot Area	1,47,440.0	0	100%
7		NT	Producti	on Details	
		INa	me of Product Main	Product	Proposed
	1		Sugar	2	91 7455 TPD
		Rectif	Tied Snirit/ Ethanol		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2	(Syru	p Based-150 days)		300 KLPD
	3	Rectif	ied Spirit/ Ethanol		300 KI PD
	5	(B-M	Iolasses -90 days)	300 KLPD	

		_		_
Table 1:	Salient	Features	of Pi	roject

	4	Rectif	ied Spirit/ Ethanol	300 KLPD		
		(Grai	n Based-90 days)			
	5 (Co gap		Power eration Power Plant)	30 MW		
		(co gen	Bv-p	roduct		
	6		Fusel Oil	148.5 TPD (330 Days)		
	7		CO_2 Gas	75150 TPD (330 Days)		
	8	Spent Was based pr	h Powder during Syrup roduction (150 Days)	2965.5 TPD (150 Days)		
	9	Spent Wa Molasses	ash Powder during B based production (90 Days)	4338 TPD (90 Days)		
	10		Bagasse	294000 TPD (150 Days)		
	11		Biogas	17941650 Nm3/A (240 Days)		
	12 Press Mud		Press Mud	36750 TPD (150 Days)		
	13	3 DDGS (During off season)		20250 TPD (90 Days)		
0	[
8	D '		Budgetary	Estimation		
а	Proj (Ind	ian Rs.)		Rs. 350 Cr.		
h	EMP C	Cost (Indian	Cap	Capital Cost – Rs. 66.2051 Cr		
U		Rs.)	Recu	urring Cost – Rs. 14.11 Cr.		
9			Power Re	auirement		
,	Propos	sed Power				
а	requ	iirement		30 MW		
				30 MW TG set		
b	S	ource	Self	-Consumption: 16.69 MW		
	F			rt to MSLDCL: 13.31 MW		
10	Fuel Requirement					
-			During Sea	son (Syrup)		
а		Bag	asse	257.76 TPD (For 50 TPH Boiler)		
b		Bag	asse	960 TPD (For 120 TPH Boiler)		
с		Bio	gas	60565 NM ³ /D		
			During Off-Seas	son (B-molasses)		
а		Bag	asse	222.912 TPD		
b		Bio	gas	98410 NM ³ /D		

During Off-Season (Grain)

a	Bagasse		399.98 TPD	
	Γ			
11		Diesel Gene	erator (D.G.) Details	
	Capacity & No.	2 x 1250 KVA		
12		Roilor Dotoils		
14		D	1 x 120 TPH	
a	Steam Boiler	1 x 120 TTH 1 x 50 TPH		
13		Stack Details		
a	Boiler Stack (from ground level)	Common stack of 75 meter height for 120 TPH & 50 TPH Boiler {APCD: ESP with 99.5% Efficiency}		
b	D.G	2 x 1250 kVA- 7.5 meters above roof (for each D.G)		
14	Man Power	Construction Phase -100 Nos. & Operation Phase- Skilled: 180 No Unskilled: 100 No		
		Total: 280 Nos.		
15		Wate	r Requirement	
10	Particular	··· utc	Ouantity (m ³ /day)	
	Water requirement	 The company w For Sugar man water consum will be 8038.7 the Sugar uni generation uni due to available & Greenbelt During "Syrup consumption of during 2nd Cyce During "B" Marate for the diss will be 1192.6 During "Grain for the distiller be 1161.2 KLI 	 ill categorize the total water requirement of the project based on activity. nufacturing including power generation: 1st Cycle ption rate for the sugar unit and 30 MW Cogen 7 KLD; Due to excess condensate available from t, the fresh water requirement for sugar and co-it from the second cycle will be NIL. However, lity surplus condensate it will be used in Distillery b" based production (300 KLD): 1st Cycle Water rate for the distillery unit will be 4010.75 KLD; be: It will be 0 KLD (0 KL/KL) colasses (300 KLD): 1st Cycle Water consumption tillery unit will be 4702 KLD; during 2nd Cycle: It 8 KLD (3.97 KL/KL) " (300 KLD): 1st Cycle Water consumption rate cy unit will be 4932 KLD; during 2nd Cycle: It will D (3.87 KL/KL) 	
16		Effluer	nt Load on CPU	
	Particulars		Quantity (m [°] /day)	

	Effluent generation rate	Effluent from Sugar Process: 379.1 KLD Effluent from Syrup Based Distillery: 1813.1 KLD Effluent from B Molasses Based Distillery: 2518.18 KLD Effluent from Grain Based Distillery: 2165 KLD				
18						
17				apacity		
	The capacity of			Sugar ETP: 450	I KLD	
a	ETP, MEE &		D1s	tillery CPU: 32	200 KLD	
	CPU		MEE & S	Spent wash Dry	rer: 2200 KLD	
18		Deta	ils of Haza	rdous Wastes	1	
Sr. No	Particulars	Category*	UOM	Quantity	Method of Disposal/Management	
a	Used/Spent Oil	5.1	KL/A	1.0	Disposal through SPCB- authorized recycler	
*Sc	hedule I of The Haza	rdous and Other	r Wastes (N Rules, 20	Aanagement an 16.	d Trans boundary Movement)	
19		Details of	Non-Haza	rdous Solid W	astes	
Sr. No	Particulars	Category	UOM	Quantity	Method of Disposal/Management	
a	Boiler Ash	-	TPA	3578.7	For in-house brick manufacturing	
b	Sludge generation from distillery CPU	-	TPA	303	It will be used/sold as manure	
с	Sludge generation from sugar ETP & CPU	-	TPA	225	It will be used/sold as manure	

4.0 Description of the Environment

Primary baseline environmental monitoring studies in a 10-km radius were conducted through a NABL-approved laboratory – Shreeji Aqua Laboratories, from March 2023 - May 2023.

4.1 Topography, Land Use & its Classification

The elevation of the region varies from 409 m to 519 m. The physical setting of study area shows a relatively planar pattern with certain patches that has both higher and lower elevations. Patches in the Northern region, Western region and Southern tip shows a relatively higher elevation feature. A patch in the North Eastern region shows a relatively lower elevation region. This elevation pattern also affects the drainage pattern of the region. The region is occupied by Rivers and Nallas. The area shows a variation of approximately 9 m- 92 m from North East to South West and approximately 14 m-59 m from North West to South East. Overall, there is no major variation with respect to relief features.

4.2 Soil Environment

The soil samples were derived from 8 different locations within the study area of the project. Analysis results of the same, revealed that the pH values of soil samples were varying in range of 7.4 to 7.64; which indicated slightly alkaline nature of soil samples. The organic matter content in soils was varying between the range from 1.48-2.54 percent. The values for Nitrogen at all locations varied between 198.6 to 312.4 mg/Kg. & maximum concentration of Nitrogen was observed at location S2. Concentrations of Phosphate were found to be in the range of 53.4 to 88.6 mg/kg. Whereas highest concentration was observed at location S2, while the lowest concentration was observed at location S4. Concentration of potassium amongst all locations was found to be ranging between 65.5 to 98.6 mg/Kg. Heavy metals viz. As, Cr, Hg & Pb were below detection limit.

4.3 Air Environment

Ambient Air Quality for criteria pollutants viz. PM10, PM2.5, NOx, SO_2 and CO were monitored at eight (8) locations in the study area, whereas additional parameters viz. NH₃, C6H6, BaP, O₃, Pb and Ni, and criteria pollutants were monitored at the proposed project location.

Particulate Matter (PM₁₀)

The study reveals that maximum concentration was observed to be in the range of 46.9 to 57.7 μ g/m³. The minimum concentration was observed to be in the range of 36.7 to 46.4 μ g/m³ the highest 24-hourly concentration was recorded at sampling location A3. At the same time minimum concentration was observed at location A8. The average concentration of PM₁₀ can be said to be ranged between 40.56 to 50.92 μ g/m³. The high average concentration of particulate matter recorded at project site (A3), due to vehicular movement on nearby roads. It should be noted that the concentration of PM₁₀ was not observed to be exceeding the standards prescribed by the CPCB on any occasion.

Particulate Matter (PM_{2.5})

The major source of $PM_{2.5}$ is said to be the combustion of fuels, fire wood and industrial emissions etc., present within study area. The maximum of $PM_{2.5}$ (35.9 µg/m³) during the study period was recorded at location A3, whereas the minimum value (17.6 µg/m³) concentration was recorded at A8 location. The average concentration of $PM_{2.5}$ during the study period was computed to be in the range of 20.99 to 29.18 µg/m³.

Sulphur Dioxide (SO_X)

High level of SO_X in ambient air indicates the presence of combustion of fossil fuel in the vicinity. The ambient air monitoring results indicate that the highest concentration of SO_X is experienced at A1. The burning of fuel in boiler is main source of emission for SO_X . The average concentration of SO_X recorded during the study period ranged between 13.65 to 22.30 µg/m3 respectively. It was noted that maximum average concentration was recorded at location A3 while the lowest was observed at location A8.

Oxides of Nitrogen (NOx)

The various forms of Nitrogen in NO, NO₂ and N₂O are collectively called as Oxides of Nitrogen. The highest value of NO_X during the monitoring period was observed at location A3 while the minimum average was recorded at A8. The average concentrations were in the range of 17.99 to 27.26 μ g/m³. The maximum 24 hourly value of NO_X was recorded at the monitoring location A3 (30.9 μ g/m³) whereas the minimum concentration of NOx was recorded at location A8 (14.1 μ g/m³).

Carbon Monoxide (CO)

The anthropogenic source of CO is due to incomplete combustion of fuel majorly in absence of air. The maximum concentration of CO estimated at all locations during the study period can be observed is 0.07 to 0.7 mg/m³.

All the parameters were found to be within the desired limits specified by NAAQ Standard.

Additional Parameters

The Ozone, Lead, Ammonia, Benzene, Benzo (a) pyrene, Arsenic, Nickel and VOC's were below detection limit.

Thus it is concluded that the concentration of additional parameters at project was also within the prescribed NAAQS, 2009.

4.4 Noise Environment

Ambient noise levels were monitored at eight (8) locations in the study area during the study period.

Industrial Zone

The day time noise level at the project premises was observed to be 51.63 dB (A) while during night time the noise level was recorded to be 41.50 dB (A). It was observed that the noise levels during the day time as well as night time were estimated to be under the prescribed standards by CPCB.

Residential Zone

The minimum noise level recorded during the daytime was observed at location N5, whereas the maximum noise levels can be observed at location N3 during the daytime.

The maximum noise level recorded during the Night-time was observed at location N4, whereas the minimum noise levels can be observed at location N6 during. It was observed that the permissible limits for noise did not exceed at any of the locations selected for sampling.

4.5 Ground Water Environment

The ground water testing results revealed that values/ concentrations of various parameters amongst all the samples were in the range of pH - 7.34 to 7.62, TDS - 409.6 to 466.5 mg/l, Sulphates - 60.2 to 73.4 mg/l, Phosphates - 1.72 to 2.42 mg/l, Total Hardness - 148.6 to 186.9 mg/l, Nitrate - 13.5 to 21.4 mg/l, Bicarbonate - 21.3 to 34.3 mg/l, Calcium - 38.4 to 46.4 mg/l, Sodium - 47.4 to 72.1 mg/l, Potassium 18.9 to 41.3 mg/l, Magnesium - 14.1 to 20.3 mg/l, COD

- <5.00 mg/l, BOD - <1.00 mg/l, whereas concentrations of Arsenic, Lead were <0.01 mg/l and Cadmium - <0.001 mg/l, Iron 0.12 to 0.13 mg/l, Chromium- <0.05 mg/l, Mercury- <0.001 mg/l, Nickel- <0.01 mg/l & Zinc- <0.05 mg/l. Total Coliforms & E. Coli were <2 No/100ml in all samples.

4.6 Surface Water Environment

The quality assurance for collected data has been done. The values were checked and found to be in co-relation as per Ionic balancing done for the each sample report.

Surface water samples were derived from 4 locations in different surface water bodies within study area, analysis results of the same revealed that pH values amongst all samples varied in the range of 7.14 to 7.54, Total Hardness concentration varied in the range of 121.4 mg/l to 148.9 mg/l & maximum concentration was recorded at SW2, TDS concentration varied in the range of 302.4 to 412.6 mg/l whereas maximum concentration 412.6 mg/l was recorded at SW2 & minimum concentration 302.4 mg/l at SW4. Electrical Conductivity was found to be ranging in between 464.3 to 634.5 μ S/cm. The concentrations of Dissolved Oxygen, BOD & COD were found to be varying in the range of 3.7 to 6.1 mg/l, 1.0 to 8.0 mg/l & 4.0 to 24.0 mg/l respectively whereas the concentrations of Phosphates, Nitrate & Ammonical Nitrogen varied in the range of 2.14 to 3.64 mg/l, 10.3 to 20.4 mg/l & <0.01 mg/l respectively.

Concentrations of elements such as Calcium, Sodium & Potassium were found to be in the range of 33.6 to 41.1 mg/l, 40.3 to 53.6 mg/l & 8.98 to 12.6 mg/l respectively.

Heavy metals viz. Lead, Chromium, Mercury, Cadmium, Arsenic & Nickel were found to be in <0.01 mg/l, <0.05 mg/l, <0.001 mg/l, <0.001 mg/l, <0.01 mg/l, <0.01 mg/l.

To ascertain the best suited use of sampled surface water bodies, the analysis results were compared with the Designated Best Use Water Quality Criteria & the analysis revealed that sampled surface water bodies in study area be suited for Class "E" Water i.e., Irrigation, Industrial Cooling, Controlled waste disposal.

4.7 Biotic Environment

The scrub forest, wetland and grassland of study area support several ecological important plant species which plays crucial role for the conservation of birds, insects, and mammals. Total 114 plant species were reported during survey of which, 35 are tree species, 15 shrubs, 57 herbs and 7 were climbers. In faunal diversity, 9 odonates, 21 butterflies were also found during field visit, which shows a greater diversity. Species composition of insects is very peculiar of study area; total 22 insects were recorded of which beetles and bugs were more divers among all insect groups. 54 bird species were recorded in the study area, most of them around the water bodies and grassland. Mammals observed during field survey were 8 species which are mostly common, no threatened taxa have been reported from proposed project site. Reptiles and amphibian's diversity were also noteworthy in study area, 4 reptiles and 4 frog species were documented from study area.

4.8 Socio-Economic Environment

The 10 km study area includes 1 Taluka of Solapur District. There are total of 18 villages in the study area. The study area is essentially rural. The socio-economics of the study area is studied through primary and secondary surveys. The socio-economic aspects of the study area are summarized in the table below.

Tuble 10 Summary of Socio Electromie (Especies			
Demographic Parameters	Details		
No. of States	1		
No. of District	1		
No. of Tehsil	1		
No. of Villages	18		
Total No. of Households	12,762		
Total Population	61,351		
Child Population	7960		
Scheduled Castes	7654		
Scheduled Tribes	505		
Literacy	72.41 % (Average)		

 Table 2: Summary of Socio-Economic Aspects

Source: Primary Census Abstract 2011, Solapur District, State Maharashtra

5.0 Anticipated Environmental Impacts and Mitigation Measures

Sr. No	Environmental Parameters	Aspect Attributes	Anticipated Impacts	Proposed Mitigation Measures			
	Construction Phase						
1.	Air Quality	Dust during handling of	The estimated generation would be	Proper loading and unloading of			
		cement/concrete/stone aggregates	around 1692.13 tons of the	the materials to ensure minimum			
		& other construction materials.	activity.	dust. Managing & covering the			
			Exposure of construction workers	stockpiles. Regular sprinkling of			
			to such dusts may lead to short	water on the working site,			
			term respiratory problems,	Installing wind barriers around			
			whereas, prolonged & continuous	working site & all around the plot			
			exposure may lead to	boundary for containing the dust.			
			malfunctioning of lungs.				
			The anticipated construction				
			period will be 8 months after grant				
			of all Environmental Clearance,				
			Consent To Establish & all other				
			Statutory Permissions.				
2.	Noise Levels	Noise generated from construction	It is anticipated that the cumulative	PPEs viz. Ear Plugs/Muffs will be			
		machineries like Poclain, Lift	noise levels by all construction	provided to workers, Construction			
		Crane, Jack Hammer Drill, Digger,	machineries, equipment &	activities will be limited from			
		Compactor, Roller etc. & by use of	activities at propagating at plant	9.00 AM to 5.00 PM, Installation			
		construction equipment like Jack	boundary will be within a range.	of noise barriers around project			
		Hammer, Cutter, Drill Concrete	Significant impacts outside plant	plot will further minimize the			
		vibrator etc. and by arrival &	premises are not anticipated.	intensity of propagating noise.			
		depart of transport vehicles.					
3.	Water Quality	Surface runoff generated Water	If such runoff water & sanitation	The surface runoff generated			
		used for construction activities	waste water finds way to	during construction activities will			
		mainly for concrete mixing,	surrounding soils & water body,	be properly filtered and utilised			
		sprinkling etc. Sanitation waste	may lead to contamination of	for gardening or sprinkling &			
		water by construction workers.	surrounding soils & increased	Mobile sanitation facilities will be			

Table 3: Summary of Anticipated Impacts and its Mitigation Measures

			turbidity & contamination in water	provided to workers which will
			body.	be periodically cleaned through
				night soil tankers.
4.	Construction &	Proposed project being a green	Haphazard handling of such	Excavated/ dug soil/earth will be
	Demolition Wastes	field project demolition waste will	wastes may lead to advent of	stored appropriately in dedicated
	Management	not occur however inert	Rodents, Reptiles within project	space within project plot & will
		construction wastes such as:	plot, thereby causing dangers to	be used for green belt
		Cardboards, Wooden Boxes,	workers working on site.	development activity along with
		Wooden planks, Metal rods,		mix of new soil.
		HDPE bags, Felled Concrete,	Disposal of such wastes on land	
		Stones, Aggregates & debris will	will lead to degradation of soils.	Inert construction wastes viz.
		are anticipated to be generated.		Cardboards, Wooden Boxes,
				Wooden planks, Metal rods,
		Excavated/Dug soil/earth will be		HDPE bags will be stored in
		generated during site preparation		dedicated space & sold to
		activities.		recyclers.
				Felled Concrete Stones
				Aggregates & debris will be used
				as filling material for internal
				roads in consonance with
				Construction & Demolition
				Wastes Management Rules 2016.
		Operatio	onal Phase	
1.	Air Quality	Utilities stack emissions viz.	The anticipated maximum	1. ESP is attached to Common
		Particulate Matter, SO ₂ , NOx &	incremental concentration due to	stack of 75 meter height for
		CO from boiler & D.G operations	steam boiler operation for criteria	120 TPH & 50 TPH Boiler
		& Process emissions viz. CO ₂ &	parameter will be	Capacity will be provided
		VOC's.	$PM_{10} - 1.02 \ \mu g/m^3$,	Common ESP with 00 5%
			$SO_2 - 3.41 \ \mu g/m^3$	officiency will be provide to
		VOC emission generated due to	$NOx - 4.35 \mu g/m^3$	enciency will be provide to
		the handling and storage of the	$CO - 0.0635 \ \mu g/m^3$	control PM emission.
		Ethanol.	Anticipated health effects: People	

		in downwind localities if prone to	2. D.G will be provided with a
		continuous & prolonged emissions	stack of 7.5 m above roof as per
		may be susceptible to adverse	CPCB guidelines for proper
	Fugitive emissions from material	health impacts related to	dispersion of emissions.
	transport vehicles.	respiratory & pulmonary due to	_
	-	particulate matter. Carbon	3. CO2 Bottling plant is proposed
		monoxide decreases the oxygen	for recovery of process emission.
		carrying capacity of the blood by	
		reducing the haemoglobin.	4. Provision of closed feeding
		The anticipated process	system for solvents.
		generations are CO2- 75150 TPA	
		Which will be sent to CO2	5. The roads within the premises
		recovery plant.	will be paved to avoid the dust
			generation from vehicular
		The health effects related to	activity.
		VOC's are eye, nose and throat	
		irritation headaches.	6. It will be ensured that all the
			transportation vehicles have a
		Environmental effects:	valid PUC (Pollution under
			Control) Certificate.
		The air emissions in long course of	
		time may affect the immediate	7. Regular sweeping of all the
		surrounding vegetation stature	roads & floors will be done to
		physically (leaf senescence,	avoid fugitive dust.
		hampered growth etc.) &	
		biologically thus may affect the	8. The proposed thick green belt
		overall surrounding ecology.	of 10 m width along the plant
			periphery will help to capture the
			fugitive emissions.
			9. Industry to ensure that at no
			point of time the air emission
			concentrations exceed the

	1			
				prescribed CPCB/Consented
				standards.
2.	Noise Quality	Operation of Steam Boilers,	It is anticipated that the cumulative	1. Acoustic enclosures will be
		Cooling Towers, Pumps, Blowers	noise levels by all machineries,	provided to high noise generating
		& material transport vehicles.	equipment & operation activities at	equipment for attenuation of
			propagating at plant boundary will be within a limit	noise level during operation.
			Impacts of exposure to continuous	2. Steam boilers will be placed in
			& prolonged noise would be	a confined space viz. boiler house
			Temporary/Permanent hearing	where the surrounding walls will
			loss,	acts as a barrier for propagating
			Mental disturbances	noise.
			Increase in heart rate	
			Reduced workers performance due	3. PPE's viz. Ear muffs/plugs will
			to psychiatric disorder	be provided to workers working
			and Tinnitus in case of high level	near noise generating equipment.
			of noise exposure on regular basis.	
				4. The proposed thick green belt
			The intensity of propagating noise	of 10 m width along the plant
			at a distance of 100 m from plot	periphery will help to further
			boundary will be almost nil, thus	minimise the intensity of
			significant impacts outside plant	propagating noise out of plant
			premises are not anticipated.	premises.
3.	Water Quality	1. Effluent from process,	The anticipated treated effluent	
		washings, Backwashes.	characteristics area: pH - 7.5 to	Effluent and excess condensate
		2. Boiler & Cooling Tower blow-	8.0, TSS < 100 mg/lit., BOD < 100	from sugar unit will be treated in
		downs.	mg/lit., COD < 250 mg/lit., TDS <	ETP and Sugar CPU respectively.
		3. Domestic wastewater.	2100 mg/lit. and Oil & Grease <	
			10 mg/lit.	Spent wash from syrup/molasses
				based production unit will be sent
			Accidental/Deliberate release of	to biomethanation and after that
			treated/un-treated effluents in	treated in MEE followed by Spent
			surface water bodies may lead to	wash dryer; The condensate from

			contamination/ eutrophication/	MEE unit will be collected and it
			acidification/ toxification of the	will be further treated in CPU
			subjected water bodies and in of	along with other effluent streams
			case land may lead to complete	like Spent Lees, Blow downs
			degradation of subjected land	from Boiler and Cooling Towers,
			affecting, also may contaminate	Sealing water, WTP reject and
			the ground water by way of	Washing effluent.
			percolation.	
			_	The CPU will be consist of
			Such affected soils, Surface water	Primary, Secondary and Tertiary
			& ground water sources cannot be	unit.
			used for any purpose & depending	
			terrestrial & aquatic ecology will	The Decanter will be recycle to
			be completely affected.	MEE.
				Domestic effluent load will be
				connected and treated in
				secondary treatment facility.
				y .
4.	Solid Waste	1. Hazardous waste i.e. Spent oil	Unscientific handling & disposal	1. Spent oil generated from
	Management -	generated from DG and	may lead to contamination of	project activities will be handled,
	Hazardous	maintenance of the plant.	surrounding soils, water sources &	stored and disposed as per
		2. Hazardous waste generated	there by affecting the ecology &	Hazardous Waste Management
		from maintenance operations.	health of the workers coming in	Rule, 2016 and its amendments
			direct contact with the hazardous	till date.
			waste like skin	
			allergies/rashes/burns etc.	Mainly it will be sold to MPCB
				authorised vendor.
5.	Solid Waste	1. Scrap Metal	Hap-hazard handling & storage	1. Designated area for Scrap
	Management	2. Scrap Plastic	may lead to inadequate open space	materials (Metal, Plastic, Wooden
	(Non Hazardous Inert	3. Office Waste	in plant premises & it may lead to	Pallets, office Waste) storage will
	Waste)	4.Canteen Waste	rodent breeding thereby affecting	be provided in the plant.
		5. Wooden Pallets	the occupational health &	

	6. Boiler Ash 7. CPU Sludge 8. ETP Sludge	environment.	2. Scrap materials will be recycled through scrap vendors.
	9. DDGS		3. Daily housekeeping waste and canteen waste will be disposed through vermin composting facility (off-site).
			4. Boiler ash – 3578.7 TPA will be used in brick manufacturing unit.
			5. CPU Sludge- 303 TPA will be used/sold as Manure.
			6. ETP & CPU Sludge from sugar- 225 TPA will be used/sold as Manure.
			7. DDGS-225 TPD will be used/sold as Manure.

6.0 Quantitative Risk Assessment and Mitigation Measures

Quantitative Risks for the proposed project have been assessed based on ALOHA for tank storage.

Based on the unsafe distances plotted in ALOHA software output, the MCLS (Maximum Credible Loss Scenario) for the proposed factory is identified for Ethanol & the anticipated effect distance is 94 m. from the Ethanol PESO area in the factory premises.

The scenario considered for assessing the impact by quantitative risk assessment was taken from Thermal radiation from pool fire.

7.0 Disaster Management Plan

The Disaster Management Plan will be implemented in consultation with the District Administration to ensure health and safety during untoward incidents.

In view of handling of processes in the industry, On-site Emergency Plans are essential and hence has been prepared for the industry. Additionally, recommendations for and Off-site shall be provided to the District Administration. During the operational phase, the surrounding population shall be made aware of safety precautions to be taken in case of any emergency due to the overall project activity.

8.0 Occupational Safety & Health Management

The Project Proponent shall continue to strictly adhere to the rules of the Factories Act 1948 & the Maharashtra Factories Rules, 1963 regarding the occupational health facilities to be provided to the company's workers.

- The industry will provide decontamination facilities for the workers. The health records of the workers will be maintained.
- For continuous development, the company will continue to train & educate the operators and workers on the environment, health & safety rules & regulations, procedures and measures.
- Periodic medical check-ups will be carried out to ensure the health status of all workers.
- Job rotation will be done.

9.0 Post-Project Environmental Monitoring Plan

Post-project environmental status will be evaluated as per the Environmental Monitoring Plan framed in EIA along with additional parameters suggested if any Statutory Clearances/Permissions and frequency of environmental attributes, including monitoring locations, will be as per the guidelines provided by MoEF&CC/CPCB/MPCB. Monitoring shall be carried out by third-party laboratories that NABL and/or MoEF&CC accredits.

10.0 Environmental Management Plan

Conduction of Environmental monitoring program as per plan, periodic reviews & audits will be carried out for effective environmental management. Project Management and the EHS department will ensure the overall effective implementation of the management plan.

Systems will be in place to ensure compliance of all environmental statutory requirements & obligations and it will be ensured.

All recommendations given in the EIA report, including occupational health, risk mitigation and safety, shall be complied. In addition, the company have allocated Indian Rs.66.2051 Cr for environmental pollution control measures & environment management plan activities, which is ~18.91 % of the total project cost.

11.0 Project Benefits

The following benefits are expected from the proposed project:

- This project will have locale specific positive social and economic benefits.
- Some of these would be direct benefits of long term nature.
- The project will generate revenue for the State Government.
- The project will create additional direct/indirect employment at various downstream & upstream ends and largely for local people.
- Local people will be preferred for employment during the construction and operation stage.

12.0 Corporate Environment Responsibility (CER) Action Plan

Ideally, CER planning is envisioned from the perspective of need-based assistance in health, education, sustainable lifestyles, social mobilization, infrastructure, water harvesting, agriculture and environmental protection, considering locale-specific scenarios around the project area.

Company will carry out its duties under Corporate Environment Responsibility (CER) as per the MoEF&CC Office Memorandum - F.No.22-65/2017-IA.III dtd. 30th September 2020, by virtue of which the CER activities will be implemented as part of Environment Management Plan.

CER cost of 1.5 % of proposed project cost viz. 5.25 Cr is allocated for implementation of need based CER activities in project area.