# **EXECUTIVE SUMMARY**



# ESTABLISHMENT OF 120 KLPD ETHANOL PLANT TO PRODUCE 120 KLPD RECTIFIED SPIRIT/ETHANOL BASED ON SUGARCANE JUICE/SYRUP/"B" HEAVY MOLASSES AS RAW MATERIAL

AT

# VILLAGE: DAHITANE, TQ.: AKKALKOT, DIST.: SOLAPUR, MAHARASHTRA STATE,

BY

# SWAMI SAMARTH SAHAKARI SAKHAR KARKHANALIMITED. (SSSSKL) PROPOSAL FOR

**ENVIRONMENT CLEARANCE** 

(Industry falls under 5(g) 'A' Category as per the EIA Notification, 2006 and amendments thereof

**Area: 34.973147 Ha. Project Cost: Rs. 98.00 Cr. Tors Granted:** F. No. J-11011/157/2023-IA-II(I) dated 10<sup>th</sup> April 2023

Report Prepared By:

M/s SD Engineering Services Pvt. Ltd. QCI-NABET Accredited EIA Consultant Organization Certificate No: NABET/EIA/2023/SA 0166

Accredited By: NABET- Quality Council of India



# **TABLE OF CONTENTS**

| 1. 0 INTRODUCTION                                                 |
|-------------------------------------------------------------------|
| 1.1 PROJECT LOCATION                                              |
| 2.0 PROJECT DESCRIPTION                                           |
| 2.1 RESOURCE REQUIREMENT AND INFRASTRUCTURE FACILITIES            |
| 3. 0 BASELINE ENVIRONMENTAL STATUS                                |
| 3.1 AIR ENVIRONMENT                                               |
| 3.2 WATER ENVIRONMENT                                             |
| 3.3 SOIL ENVIRONMENT                                              |
| 3.4 NOISE ENVIRONMENT                                             |
| 3.5 LAND USE/LAND COVER OF THE STUDY AREA                         |
| 4.0 IDENTIFICATION, PREDICTION AND MITIGATION MEASURES            |
| 5.0 ANALYSIS OF ALTERNATIVE (TECHNOLOGY AND SITE)                 |
| 6.0 ENVIRONMENT MONITORING PROGRAMME                              |
| 7.0 ADDITIONAL STUDIES                                            |
| 7.1: RISK ASSESSMENT                                              |
| 8.0 BUDGETARY PROVISIONS TOWARDS ENVIRONMENTAL MANAGEMENT PLAN 28 |
| 9.0 GREENBELT DEVELOPMENT PLAN                                    |
| 10.0 CORPORATE ENVIRONMENT RESPONSIBILITY PLAN                    |
| 11.0 RAINWATER AND STORMWATER HARVESTING PLAN                     |
| 12.0 CONCLUSIONS                                                  |

# LIST OF TABLES

| Table 1 Salient features of the project site                                                | 1  |
|---------------------------------------------------------------------------------------------|----|
| Table 2 Existing and Proposed Products manufacturing quantities                             | 2  |
| Table 3 Raw material requirement and its source                                             | 2  |
| Table 4 Landuse breakup                                                                     | 3  |
| Table 5 Water Consumption Details                                                           | 4  |
| Table 6 Total Input Water                                                                   | 3  |
| Table 7 Total Output Water                                                                  | 3  |
| Table 8 Loss During Continious Operation                                                    | 3  |
| Table 9 Recycling Stream                                                                    | 4  |
| Table 10 Water balance calculation                                                          | 4  |
| Table 11 Details of CPU inlet and Outlet quantity                                           | 4  |
| Table 12 Details of boilers and its APC equipment for existing as well as proposed          | 5  |
| Table 13 Details of non-hazardous waste generated and its disposal                          | 6  |
| Table 14 Details of hazardous waste generated and its disposal                              | 6  |
| Table 15 Receptor summary                                                                   | 8  |
| Table 16 Ambient air quality monitoring results                                             | 9  |
| Table 17 Details of the incremental concentrations due to proposed expansion                | 10 |
| Table 18 Details of the ground water quality monitoring sampling locations                  | 12 |
| Table 19 Groundwater analysis report within 10 km radius of the study area                  | 14 |
| Table 20 Details of surface water quality monitoring locations                              | 16 |
| Table 21 Surface water analysis report within 10 km radius of the study area                | 17 |
| Table 22 Water Analysis Results                                                             | 19 |
| Table 23 Details of the soil sampling locations                                             | 19 |
| Table 24 Soil Analysis report within 10 km radius of the study area                         | 21 |
| Table 25 Details of noise quality monitoring locations                                      | 22 |
| Table 26 Noise levels of the study area                                                     | 23 |
| Table 27 Land use/ Land cover areas in km <sup>2</sup> around 10 km radius for project site | 24 |
| Table 28 Environment management programme                                                   | 26 |
| Table 29 EMP Budget                                                                         | 28 |
| Table 30 Rain water harvesting quantity                                                     | 29 |
| Table 31 Quantity of Storm water per annum                                                  | 29 |

# LIST OF FIGURES

| Figure 1 Material balance flow sheet for B Heavy Molasses as raw material                 | 1  |
|-------------------------------------------------------------------------------------------|----|
| Figure 2 Material balance flow sheet for Sugarcane Juice or Syrup as raw material         | 2  |
| Figure 3 Windrose diagram for the study area (blowing from)                               | 7  |
| Figure 4 10 km. radius study area map indicating Ambient air quality monitoring locations | 8  |
| Figure 5 10 km. radius study area map indicating groundwater sampling location            | 13 |
| Figure 6 10 km. radius study area map indicating surface water sampling location          | 16 |
| Figure 7 10 km. radius study area map indicating soil sampling location                   | 20 |
| Figure 8 10 km. radius study area map indicating noise quality sampling location          | 23 |
| Figure 9 Pie chart of LULC classes around 10 km radius of Project site                    | 24 |

# **EXECUTIVE SUMMARY**

# **1.0 INTRODUCTION**

M/s. Swami Samarth Sahakari Sakhar Karkhana Ltd., (SSSSKL). is registered as Co-operative Sugar unit bearing Reg. No. SUR/ AKT/PRG/ (A) 33/5/1990 467date 16 May 1990. The society was started with 2500 TCD (tonnes crushed per day) with first crushing season in year 1999-2000. The cane operational area is from villages of Tahsil of Akkalkot. The total villages are 132 with total shareholders as 20561.

SSSSKL is a Co-operative Limited Company. The registered office and factory site address of SSSSKL is at Village Dahitane, Taluka Akkalkot, Distillery Solapur, Pin code 413216 Maharashtra State.

The sugar factory is not working since 2013-14. The SSSSKL now proposes to set up 120 KLPD Ethanol plant to produce 120 KLPD RS/Ethanol to consume the available molasses from its own existing sugar unit and utilize sugarcane juice/syrup for the production of Rectified Spirit/Ethanol.

The proposed project will produce RS/Ethanol from sugarcane juice/syrup/'B' heavy molasses as raw materials depending on the market demand and availability of raw materials. The steam and power requirement for the proposed distillery plant will be made available from the proposed 30 TPH boiler & 3.0 MW back pressure TG set. The configuration of product after proposed establishment is as below.

# **1.1 PROJECT LOCATION**

The salient features of the project site are

| Sr. No. | Features              | Description                          | Direction wrt site |
|---------|-----------------------|--------------------------------------|--------------------|
| 1.      | Elevation above MSL   | 505 meters                           |                    |
| 2       | Neerost City/Town     | Akkalkot ~ 5.0 Km                    | S                  |
| ۷.      | Nearest City/Town     | Solapur ~ 33 Km                      | NW                 |
|         |                       | Dahitane ~ 1.5 Km                    | N                  |
| 2       | Neerest Villege       | Kalegaon~ 4.6 Km                     | SE                 |
| 5.      | Nearest V mage        | Akkalkot ~ 5.0 Km                    | S                  |
|         |                       | Karjal ~ 8.7 Km                      | W                  |
| 4.      | Road                  | NH-150E (Solapur-Kalaburgi) ~ 3.8 km | S                  |
| 5       | Neonast water body    | Karnur Dam ~ 5.4 Km                  | NNE                |
| 5.      | inearest water body   | Bori River ~ 3.7 Km                  | E                  |
| 6.      | Railway Station       | Akkalkot Road ~ 14.7 Km              | SSW                |
| 7.      | Airport               | Solapur Airport ~ 28.7 Km            | NWW                |
| 8.      | Protected Area        | None within 10 Km                    |                    |
| 9.      | Reserved Forests      | None within 10 Km                    |                    |
| 10.     | Wildlife Sanctuary    | None within 10 Km                    |                    |
| 11.     | ESZ Boundary          | None within 10 Km                    |                    |
| 12.     | Archeological site    | None within 10 km                    |                    |
| 13.     | State boundary        | None within 10 km                    |                    |
| 14.     | Defense installations | None within 10 km                    |                    |

# Table 1 Salient features of the project site

| Sr. No. | Features                       | Description | Direction wrt site |
|---------|--------------------------------|-------------|--------------------|
| 15.     | Average Rainfall (2008 - 2017) | 527.8 mm    |                    |
| 16.     | Seismicity                     | III         |                    |

# **2.0 PROJECT DESCRIPTION**

The details about the maufacturing capacity of existing unit as well as after the proposed expansion are given in table below

| Sr.<br>No. | Description         | Unit  | Existing<br>Capacity | Proposed<br>Capacity | Total<br>Capacity | Remark                                     |
|------------|---------------------|-------|----------------------|----------------------|-------------------|--------------------------------------------|
| 1          | Sugarcane           | TCD   | 2500                 | 00                   | 2500              | Existing 2*32 TPH boilers                  |
| 1          | Crushing            | 100   | 2300                 | 00                   |                   | for existing sugar and                     |
| 2          | Power Plant         | MW    | 2.5                  | 00                   | 2.5               | power plant.                               |
| 3          | Distillery Unit     | KLPD  | 00                   | 120                  | 120               |                                            |
|            | Rectified Spirit or |       | 00                   | 120                  | 120               | Only one product at a time                 |
|            | Ethanol             | KLF D | 00                   | 120                  | 120               | Only one product at a time                 |
| 4          | Power Plant         | MW    | 00                   | 3.0                  | 3.0               | TG Set Connected to proposed 30 TPH Boiler |

Table 2 Existing and Proposed Products manufacturing quantities

# 2.1 RESOURCE REQUIREMENT AND INFRASTRUCTURE FACILITIES

#### A) Raw material requirement

The details of the raw material requirement for distillery unit and its source are given in table below. The raw materials and other chemicals are transported to the site through designated vehicles by Pakka Roads.

| Sr. No                                                  | Item                                | Quantity | Unit                                          | Remarks/Source                                |  |  |  |
|---------------------------------------------------------|-------------------------------------|----------|-----------------------------------------------|-----------------------------------------------|--|--|--|
| A - Sugar Plant: 2500 TCD (Existing)                    |                                     |          |                                               |                                               |  |  |  |
| 1                                                       | Sugarcane                           | 2500     | TCD                                           | Local Area (Farmers)                          |  |  |  |
| 2                                                       | Lime                                | 3.97     | MT/day                                        | Open market                                   |  |  |  |
| 3                                                       | Sulphur                             | 1.11     | MT/day                                        | Open market                                   |  |  |  |
| 4                                                       | Phosphoric Acid                     | 0.09     | MT/day                                        | Open market                                   |  |  |  |
| 5                                                       | Steam                               | 40 - 45  | TPH                                           | Existing 2*32 TPH Sugar Division Boiler       |  |  |  |
| 6                                                       | Power                               | 2.5      | MW                                            | Existing own 2.5 MW sugar Power Plant         |  |  |  |
|                                                         | Manpower 100                        |          |                                               | -                                             |  |  |  |
| 7                                                       | Permanent                           | 100      | Total mannower for sugar and nower plant unit |                                               |  |  |  |
| /                                                       | Manpower                            | 150      | 150 -                                         | Total manpower for sugar and power plant unit |  |  |  |
|                                                         | Seasonal                            | 150      |                                               |                                               |  |  |  |
| B – Sugar Power Plant: 2.5 MW (Existing)                |                                     |          |                                               |                                               |  |  |  |
| 1                                                       | 1 Bagasse 698 MT/day Own Sugar Unit |          |                                               |                                               |  |  |  |
| C – RS/Ethanol Plant: 120 KLPD (Proposed Establishment) |                                     |          |                                               |                                               |  |  |  |

Table 3 Raw material requirement and its source

| Sr. No    |          | Item                | Quantity | Unit    | Remarks/Source                                                                                                                                |  |
|-----------|----------|---------------------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 a       | B Heav   | vy molasses<br>OR   | 370      | MT/day  | Distillery unit will run for 150 days (During off<br>season) on 'B' heavy molasses available from own<br>sugar unit and nearby sugar units    |  |
| 2         | Equiv    | alent Sugar<br>cane | 1440     | MT/day  | Distillery unit will be run for 180 days (During crushing season) on sugar cane juice/syrup                                                   |  |
| Consum    | nable Ch | emicals             |          |         |                                                                                                                                               |  |
| 1         |          | Urea                | 93.75    | Kg/day  |                                                                                                                                               |  |
| 2         |          | DAP                 | 62.50    | Kg/day  | Stored in Fermentation house                                                                                                                  |  |
| 3         | Sulpl    | nuric Acid          | 31.25    | Ltr/day | Source: Open Market                                                                                                                           |  |
| 4         | Ant      | ifoam oil           | 31.25    | Ltr/day |                                                                                                                                               |  |
| Utilities |          |                     |          |         |                                                                                                                                               |  |
| 1         | Steam    |                     | 20 - 25  | TPH     | Proposed 1*30 TPH boiler                                                                                                                      |  |
| 2         | Power    |                     | 3.0      | MW      | 3 MW TG Set                                                                                                                                   |  |
| 3         | Water    | Domestic            | 5        | CMD     | Domestic – 5 CMD<br>Industrial – 718 CMD when 'B' heavy Molasses used<br><b>OR</b> 539 CMD when sugarcane juice/syrup used as raw<br>material |  |
| Г         |          | Industrial          | 718      |         | <b>Source:</b> - Bori River jack well. The industry is in process for obtaining water withdrawal permission from competent authority.         |  |
|           | Man po   | ower                | 90       | Nos     | Local                                                                                                                                         |  |

#### **B)** Land use Breakup Details-

Details of existing and proposed land utilization pattern within the project site is given in table below

| Sr. No. | Description          | Area in Sq. m | % Area |
|---------|----------------------|---------------|--------|
| 1       | Built-up Area        |               |        |
| a       | Existing             | 27928.15      | 7.99   |
| b       | Proposed             | 17308.5       | 4.95   |
| 2       | Area under utilities |               |        |
| a       | Existing             | 10002.12      | 2.86   |
| b       | Proposed             | 7657.5        | 2.19   |
| 3       | Internal roads       | 42218.99      | 12.07  |
| 4       | Greenbelt area       | 119819.7      | 34.26  |
| 5       | Parking Area         | 61450.26      | 17.57  |
| 6       | Vacant land          | 63346.26      | 18.11  |
|         | Total                | 349731.47     | 100.00 |

# **C)** Power Requirement

The power requirement of the existing sugar unit is 2.5 MW. The power requirement for existing sugar unit is met from existing 2.5 MW Power Plant.

The power requirement of the proposed distillery unit will be 2.5 MW. It is proposed to have a new turbo alternator of about 3.0 MW capacity. The steam produced in the proposed 1\*30 TPH multi-fired boiler shall be used for generating power. The exhaust steam of turbine shall have a pressure of about 3.5 kg/cm2, which will be used for distillery operations.

#### **D) Steam Requirement**

The steam requirement of the existing sugar and power unit are met from existing 2\*32 TPH boiler.

The steam requirement of the proposed distillery depending on the final product to be produced will be 20 to 25 TPH (for TG set, Multi – pressure distillation and Multiple Effect Evaporation and drying). An independent boiler of 1\*30 TPH boiler @ 45 kg/cm2 will be installed for distillery operations as well as spentwash treatment (Multiple Effect Evaporation and drying).

3000 KWH turbo alternator, Exhaust steam of the turbo alternator at the pressure of 3.5 kg/cm2 will make available to the distillery unit. Necessary arrangement for reducing the pressure & de-superheating of steam shall be made in the distillery. The boiler shall be able to use either biogas or coal or bagasse as a fuel.

#### **E) Water Consumption Details**

The water is sourced from Bori River jack well. The necessary Application for seeking the permission shall be Submitted to Irrigation Authority..

| Description Quantity |                                                                        | Remarks                                        |  |
|----------------------|------------------------------------------------------------------------|------------------------------------------------|--|
| Domestic use         | omestic use 5 CMD For Sugar division 90 CMD and for Distillery divisio |                                                |  |
| Distillory Unit      | 718 CMD OR                                                             | When B Heavy Molasses used as raw material     |  |
| Distillery Onit      | 539 CMD                                                                | When Juice/syrup Molasses used as raw material |  |

#### Table 5 Water Consumption Details

#### Sugar and Cogeneration power plant Division

The detailed water budget is given in below tables.

#### Water Budget for Distillery unit

#### For "B" Heavy molasses as raw material



Figure 1 Material balance flow sheet for B Heavy Molasses as raw material

# For Sugarcane juice/Syrup as raw material



Figure 2 Material balance flow sheet for Sugarcane Juice or Syrup as raw material

# **Distillery Division**

# **Table 6 Total Input Water**

|         |                                     | Water Quantity (m3/day)  |                               |  |
|---------|-------------------------------------|--------------------------|-------------------------------|--|
| Sr. No. | Section                             | when B Heavy<br>Molasses | when Sugarcane<br>Juice Syrup |  |
| 1       | Water in Molasses / Syrup           | 62                       | 156                           |  |
| 2       | Process Water for Fermentation      | 892                      | 781                           |  |
| 3       | Process water for Process           | 53                       | 49                            |  |
| 4       | DM water for RS dilution            | 0                        | 0                             |  |
| 5       | DM water for Boiler & DS            | 627                      | 565                           |  |
| 6       | Soft water for Cooling Tower        | 670                      | 635                           |  |
| 7       | Soft water for vacuum pump & Blower | 216                      | 216                           |  |
| 8       | Washing water for WTP               | 76                       | 61                            |  |
|         | Total Water Input                   | 2596                     | 2463                          |  |

# Table 7 Total Output Water

|         |                                  | Water Quantity (m3/day) |                               |  |
|---------|----------------------------------|-------------------------|-------------------------------|--|
| Sr. No. | Section                          | when B Heavy Molasses   | when Sugarcane Juice<br>Syrup |  |
| 1       | Spent Lees                       | 167                     | 167                           |  |
| 2       | Water in Spent Wash              | 774                     | 774                           |  |
| 3       | Water in sludge after decanter   | 28                      | 0                             |  |
| 4       | Vacuum pump & Blower             | 208                     | 208                           |  |
| 5       | Water in Product                 | 1.0                     | 1                             |  |
| 6       | Washing Water                    | 10                      | 10                            |  |
| 7       | Blow Down Water & Reject Streams | 342                     | 285                           |  |
| 8       | Steam Generation                 | 586                     | 528                           |  |
|         | Total Water Output               | 2116                    | 1973                          |  |

# **Table 8 Loss During Continious Operation**

|         |                                | Water Quantity (m3/day) |                      |  |
|---------|--------------------------------|-------------------------|----------------------|--|
| Sr. No. | Section                        | when B Heavy            | when Sugarcane Juice |  |
|         |                                | Molasses                | Syrup                |  |
| 1       | Vacuum Pump loss               | 8                       | 8                    |  |
| 2       | CT Evaporation & Drift Losses, | 472                     | 481                  |  |
|         | Total Losses                   | 480                     | 489                  |  |

| Table 9 | Recycling | Stream |
|---------|-----------|--------|
|---------|-----------|--------|

|         |                                    | Water Quantity (m3/day)  |                               |  |  |
|---------|------------------------------------|--------------------------|-------------------------------|--|--|
| Sr. No. | Section                            | when B Heavy<br>Molasses | when Sugarcane Juice<br>Syrup |  |  |
| 1       | Spent Lees Recycle for RS Dilution | 0                        | 0                             |  |  |
| 2       | Vacuum Pump Recycle                | 208                      | 208                           |  |  |
| 3       | Spent Wash Recycle                 | 136                      | 340                           |  |  |
| 4       | Steam Condensate                   | 481                      | 433                           |  |  |
| 5       | Treated Effluent                   | 990                      | 787                           |  |  |
|         | Total Recycle                      | 1815                     | 1768                          |  |  |

#### Table 10 Water balance calculation

|         |                                                | Water Quantity (m3/day) |                |  |  |
|---------|------------------------------------------------|-------------------------|----------------|--|--|
| Sr. No. | Section                                        | when B Heavy            | when Sugarcane |  |  |
|         |                                                | Molasses                | Juice Syrup    |  |  |
| 1       | Total Water Requirement Without Recycle        | 2533 m3/day             | 2307 m3/day    |  |  |
| 2       | Total Treated Water & Internal Streams Recycle | 1815 m3/day             | 1768 m3/day    |  |  |
| 3       | Total Fresh Water Requirement for Distillery   | 718 m3/day              | 539 m3/day     |  |  |
|         | KL of water per KL of Ethanol Production       | 5.99                    | 4.49           |  |  |

#### Table 11 Details of CPU inlet and Outlet quantity

|           | CPU     |                                 |                         |                |  |  |
|-----------|---------|---------------------------------|-------------------------|----------------|--|--|
| S.        |         |                                 | Water Quantity (m3/day) |                |  |  |
| Sr.<br>No |         | Details of CPU inlet and Outlet | when B Heavy            | when Sugarcane |  |  |
| INO.      |         |                                 | Molasses                | Juice Syrup    |  |  |
| 1         |         | Process Condensate              | 853 m3/day              | 620 m3/day     |  |  |
| 2         |         | Spent Lees                      | 167 m3/day              | 167 m3/day     |  |  |
| 3         | ılet    | Cooling Tower Blow Down         | 84 m3/day               | 80 m3/day      |  |  |
| 4         | Ir      | Other Blow down                 | 62 m3/day               | 60 m3/day      |  |  |
| 5         |         | TOTAL                           | 1166 m3/day             | 927 m3/day     |  |  |
| 6         | et      | Treated Effluent Recycle        | 990 m3/day              | 787 m3/day     |  |  |
| 7         | utly    | Sludge                          | 1 m3/day                | 1 m3/day       |  |  |
| 8         | $\circ$ | Reject                          | 175 m3/day              | 139 m3/day     |  |  |

#### E) Wastewater generation and its treatment technology

#### **Distillery unit**

**I. Industrial** – The industry shall adopt Zero Liquid Discharge System for the treatment of wastewater generated from the proposed distillery unit. The effluent streams are separated into strong stream (Spent wash) and weak stream (Spent lees, Utilities process condensates etc.). The raw spent wash is treated in anaerobic digester followed by concentration in MEE followed by dryer to obtained potash rich dry powder to achieve Zero Liquid Discharge (ZLD). Dry powder shall be sold as potash rich manure to farmers.

### A) "B" Heavy Molasses as raw material:

The raw spent wash [907 MT/D (14.06% Solids) out of which 136 MT/D shall be recycle and remaining 771 MT/D] shall be fed to anaerobic digester (771 MT/D i.e., 5.10 % Solids) followed by concentration in MEE (175 MT/D RO reject combined with 771 MT/D digester outlet (946 MT/D and 4.45 % Solid after combination) shall be feed to MEE and it concentrated up to 93 MT/D i.e. 45% Solids) followed by dryer

(47 MT/D i. e. 90 % Solids). The process condensate of 853 MT/D, shall be treated in proposed condensate polishing unit based on primary, secondary and tertiary treatment along with Spentlees-167 MT/D, Cooling tower blow down of 84 MT/D and other blow down of 62 MT/D, totaling to 1166 MT/D, out of which 990 MT/D is recycled back as process water, 1 MT/D of sludge generation and 175 MT/D of RO reject which shall be given to MEE along with digester outlet.

## B) Sugarcane Juice/ Syrup as raw material:

The raw spent wash [850 MT/D (8.97% Solids) out of which 340 MT/D shall be recycle and remaining 510 MT/D] shall be fed to anaerobic digester (510 MT/D i.e. 2 % Solids) followed by concentration in MEE (139 MT/D RO reject combined with 510 MT/D digester outlet (649 MT/D and 2 % Solid after combination) shall be feed to MEE and it concentrated up to 29 MT/D i.e. 45% Solids) followed by dryer (14 MT/D i. e. 90 % Solids). The process condensate of 620 MT/D, shall be treated in proposed condensate polishing unit based on primary, secondary and tertiary treatment along with Spentlees-167 MT/D, Cooling tower blow down of 80 MT/D and other blow down of 60 MT/D, totaling to 927 MT/D, out of which 787 MT/D is recycled back as process water, 1 MT/D of sludge generation and 139 MT/D of RO reject which shall be given to MEE along with digester outlet.

#### ii. Domestic –

From existing sugar unit - 50 KLD and from proposed distillery unit - 4 KLD

Domestic effluent shall be treated in proposed 60 KLD Sewage Treatment Plant after proposed establishment and used for gardening.

| <b>F</b> ) . | Air | Emission | Management |
|--------------|-----|----------|------------|
|--------------|-----|----------|------------|

| Sr.<br>No. | Stack Attached to                                                                                 | Type of<br>Fuel    | Minimum requirement<br>of stack height based<br>on SO2 Emission | APC Equipment                                                                                           |
|------------|---------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1          | Existing sugar division<br>boilers of 2*32 TPH                                                    | Bagasse            | 38.48*m                                                         | Cyclone dust collector<br>for both boilers and a<br>stack of 60 meters<br>height is already<br>provided |
| 2          | Proposed 1*30 TPH<br>Conventional boiler for<br>Distillery                                        | Bagasse OR<br>Coal | 47.09*m                                                         | Bag-filter and a stack of<br>60 meters height shall<br>be provided                                      |
| 3          | Existinng 1*320 KVA DG<br>Set for Suagr division<br>Proposed 2*500KVA for<br>Distillery division) | HSD                | 6 m above roof level<br>each                                    |                                                                                                         |

#### Table 12 Details of boilers and its APC equipment for existing as well as proposed

# G) Solid waste Management

a) Non-Hazardous solid wastes details

# Table 13 Details of non-hazardous waste generated and its disposal

| Sr. No.  | Description of waste                        | Quantity (MT/D) | Mode of Collection and Disposal               |  |  |
|----------|---------------------------------------------|-----------------|-----------------------------------------------|--|--|
|          | Boiler Ash (MT/D)                           |                 |                                               |  |  |
|          | Existing Sugar Division boilers of 2*32 TPH |                 |                                               |  |  |
| 1        | Bagasse as fuel                             | 10.47           | Sale to brick manufacturers                   |  |  |
| 1.       | Proposed Distillery Boile                   | r of 30 TPH     |                                               |  |  |
|          | Bagasse as fuel Or                          | 4.48            | Mixed with pressmud and CPU sludge and sold   |  |  |
|          | Coal as fuel                                | 17.10           | as manure or Sale to brick manufacturers      |  |  |
| 2        | CPU Sludge ( $MT/\Lambda$ )                 | 160             | Mixed with boiler ash along with pressmud and |  |  |
| ۷.       | Cr U Sludge (M17A)                          | 100             | sold as manure                                |  |  |
| Other Se | olid Wastes                                 |                 |                                               |  |  |
| Sr. No.  | Description of waste                        | Quantity (Kg/M) | Mode of Collection and Disposal               |  |  |
| 1        | Dapar weste                                 | 30              | Manually collected and stored in a designated |  |  |
| 1.       | r aper waste                                | 50              | area and sold to scrap vendors                |  |  |
| 3.       | Municipal Solid waste                       |                 |                                               |  |  |
|          | Non-Biodegradable                           | 150             | Manually collected and sold to scrap vendors  |  |  |
|          | Bio-degradable                              | 1500            | Used in Composting                            |  |  |

#### **b. Hazardous Waste**

# Table 14 Details of hazardous waste generated and its disposal

| Sr. No.             | Category | Description | Quantity in KLA         | Disposal                                                                     |  |
|---------------------|----------|-------------|-------------------------|------------------------------------------------------------------------------|--|
| From existing sugar |          |             |                         |                                                                              |  |
| 1                   | 5.1      | Used Oil    | 3.0                     | Used as lubricant oil for bullock carts                                      |  |
|                     |          | Fro         | m Proposed Distillery U | Unit                                                                         |  |
| 1                   | 5.1      | Used Oil    | 00                      | There is no hazardous waste generation due to the proposed distillery plant. |  |

# **3. 0 BASELINE ENVIRONMENTAL STATUS 3.1 AIR ENVIRONMENT**

#### **3.1.1 METEOROLOGICAL CHARACTERISTICS OF THE STUDY AREA**



Figure 3 Windrose diagram for the study area (blowing from)

From **Figure 3** it can be seen that the average wind speed of the study period is 2.56 m/s. and the predominant wind direction is from South-east to North-west direction. This has been used in selecting the receptors.

| Sr.<br>No. | Station<br>ID | Location                           | Latitude      | Longitude     | <b>Distance</b><br><b>from site</b><br>(In meters) | Direction<br>(In<br>degrees) |
|------------|---------------|------------------------------------|---------------|---------------|----------------------------------------------------|------------------------------|
| 1          | AAQ 1         | Near Entry Gate of<br>Project Site | 17°34'15.29"N | 76°11'40.11"E | 261.44                                             | 227.97                       |
| 2          | AAQ 2         | Within Project Site                | 17°34'16.05"N | 76°12'3.99"E  | 531.83                                             | 106.55                       |
| 3          | AAQ 3         | Near Motyal                        | 17°36'13.87"N | 76°13'32.30"E | 4663.93                                            | 41.71                        |
| 4          | AAQ 4         | Near Kolekarwadi                   | 17°34'40.12"N | 76°12'53.16"E | 2047.41                                            | 73.17                        |
| 5          | AAQ 5         | Near Nimgaon                       | 17°31'28.86"N | 76°14'52.88"E | 7626.63                                            | 134.10                       |
| 6          | AAQ 6         | Near Dodyal                        | 17°30'18.04"N | 76° 9'29.16"E | 8498.50                                            | 208.37                       |
| 7          | AAQ 7         | Near Halhalli                      | 17°34'50.16"N | 76° 6'45.52"E | 8926.79                                            | 275.82                       |
| 8          | AAQ 8         | Near Hasapur                       | 17°32'55.13"N | 76° 9'32.77"E | 4749.73                                            | 236.10                       |
| 9          | AAQ 9         | Near Chapalgaon                    | 17°36'8.08"N  | 76°10'8.23"E  | 4391.01                                            | 318.79                       |

# Table 15 Receptor summary



Figure 4 10 km. radius study area map indicating Ambient air quality monitoring locations

|         | Ambient Air Quality Monitoring Results Summary |                          |                                                |                    |                              |               |  |
|---------|------------------------------------------------|--------------------------|------------------------------------------------|--------------------|------------------------------|---------------|--|
|         | <u> </u>                                       | Juration of Monito       | oring: 05 December 2                           | 2022 to 28 Februa  | ary 2023                     |               |  |
|         | <u>'ollutant</u>                               | $PM_{10} (\mu g/m^3)$    | $\frac{PM_{2.5} (\mu g/m^3)}{(1 - \mu g/m^3)}$ | $SO_2 (\mu g/m^3)$ | NOx $(\mu g/m^3)$            | $CO (mg/m^3)$ |  |
| NAA     | Q Standard                                     | 100 (μg/m <sup>3</sup> ) | <u>60 (μg/m<sup>3</sup>)</u>                   | $80 (\mu g/m^3)$   | <b>80 (μg/m<sup>3</sup>)</b> | 04 (1 hr)     |  |
| AAQ1    | Maximum                                        | 56.80                    | 38.00                                          | 13.20              | 18.40                        | 1.40          |  |
|         | Minimum                                        | 47.10                    | 29.30                                          | 8.00               | 11.80                        | 0.50          |  |
|         | Average                                        | 51.36                    | 33.32                                          | 9.94               | 14.83                        | 0.92          |  |
|         | 98 Percentile                                  | 55.98                    | 37.33                                          | 12.53              | 17.97                        | 1.40          |  |
|         | Maximum                                        | 57.90                    | 38.20                                          | 13.70              | 18.20                        | 1.50          |  |
| AAO2    | Mınımum                                        | 47.70                    | 29.30                                          | 8.90               | 12.60                        | 0.70          |  |
|         | Average                                        | 52.10                    | 33.58                                          | 10.77              | 14.90                        | 1.04          |  |
|         | 98 Percentile                                  | 56.51                    | 37.43                                          | 13.27              | 17.53                        | 1.40          |  |
|         | Maximum                                        | 54.70                    | 36.30                                          | 13.20              | 16.40                        | 1.10          |  |
| AA03    | Minimum                                        | 46.80                    | 28.80                                          | 8.80               | 11.90                        | 0.40          |  |
| 111Q3   | Average                                        | 50.56                    | 32.40                                          | 10.24              | 15.02                        | 0.72          |  |
|         | 98 Percentile                                  | 54.32                    | 35.48                                          | 12.53              | 16.35                        | 1.10          |  |
|         | Maximum                                        | 48.20                    | 29.30                                          | 9.61               | 15.20                        | 0.80          |  |
| 1101    | Minimum                                        | 42.50                    | 26.30                                          | 7.10               | 11.80                        | 0.20          |  |
| AAQ4    | Average                                        | 44.82                    | 27.52                                          | 8.26               | 13.79                        | 0.48          |  |
|         | 98 Percentile                                  | 47.91                    | 29.06                                          | 9.44               | 15.20                        | 0.80          |  |
|         | Maximum                                        | 55.20                    | 35.20                                          | 14.20              | 16.80                        | 1.30          |  |
| 1 1 05  | Minimum                                        | 46.10                    | 30.60                                          | 9.10               | 11.30                        | 0.50          |  |
| AAQS    | Average                                        | 49.41                    | 32.69                                          | 11.07              | 14.25                        | 0.84          |  |
|         | 98 Percentile                                  | 54.82                    | 35.01                                          | 13.72              | 16.61                        | 1.25          |  |
|         | Maximum                                        | 53.20                    | 34.80                                          | 12.61              | 16.10                        | 1.00          |  |
| 1100    | Minimum                                        | 45.80                    | 29.20                                          | 8.80               | 12.90                        | 0.30          |  |
| AAQo    | Average                                        | 49.24                    | 31.82                                          | 10.72              | 14.54                        | 0.62          |  |
|         | 98 Percentile                                  | 52.86                    | 34.37                                          | 12.24              | 16.10                        | 1.00          |  |
|         | Maximum                                        | 58.40                    | 36.90                                          | 14.90              | 16.20                        | 1.10          |  |
| 1 1 0 7 | Minimum                                        | 49.70                    | 31.00                                          | 8.90               | 11.50                        | 0.50          |  |
| AAQ/    | Average                                        | 53.86                    | 34.30                                          | 11.07              | 14.19                        | 0.86          |  |
|         | 98 Percentile                                  | 57.54                    | 36.61                                          | 14.08              | 16.01                        | 1.10          |  |
|         | Maximum                                        | 47.30                    | 26.60                                          | 11.20              | 14.80                        | 0.60          |  |
| 1 1 0 0 | Minimum                                        | 40.20                    | 22.90                                          | 7.94               | 9.20                         | 0.10          |  |
| AAQ8    | Average                                        | 42.82                    | 24.15                                          | 8.95               | 12.05                        | 0.31          |  |
|         | 98 Percentile                                  | 47.20                    | 26.60                                          | 10.67              | 14.80                        | 0.60          |  |
|         | Maximum                                        | 45.50                    | 25.50                                          | 10.60              | 13.90                        | 0.60          |  |
|         | Minimum                                        | 37.80                    | 21.60                                          | 7.40               | 8.20                         | 0.10          |  |
| AAQ9    | Average                                        | 40.80                    | 22.87                                          | 8.53               | 10.93                        | 0.25          |  |
|         | 98 Percentile                                  | 45.36                    | 25.26                                          | 10.15              | 13.71                        | 0.55          |  |

|  | Table | 16 | Ambient | air | quality | monitoring | results |
|--|-------|----|---------|-----|---------|------------|---------|
|--|-------|----|---------|-----|---------|------------|---------|

# **3.1.1 IMPACT ON AIR QUALITY DUE TO PROPOSED ACTIVITY**

|      |           |        | [10- 24-h | our    | PM2                   | 2.5- 24-l | nour                  | S     | D <sub>2</sub> - 24-ho | our                   | NO    | )x- 24-h | our     | CO - 1 | CO - 1-hour concentration |         |  |
|------|-----------|--------|-----------|--------|-----------------------|-----------|-----------------------|-------|------------------------|-----------------------|-------|----------|---------|--------|---------------------------|---------|--|
| Sr   | Recento   | concen | tration ( | μg/m3) | concentration (µg/m3) |           | concentration (µg/m3) |       |                        | concentration (µg/m3) |       |          | (µg/m3) |        |                           |         |  |
| No   | r/Village | Back   | Incre     |        | Backa                 | Incr      |                       | Back  | Incre                  |                       | Back  | Incr     |         | Back   | Increm                    |         |  |
| 110. | 17 v mage | groun  | ment      | Total  | round                 | eme       | Total                 | groun | ment                   | Total                 | groun | eme      | Total   | grou   | ental                     | Total   |  |
|      |           | d      | al        |        | Touna                 | ntal      |                       | d     | al                     |                       | d     | ntal     |         | nd     | ciitai                    |         |  |
| 1    | AAQ 1     | 56.80  | 0.06      | 56.86  | 38.00                 | 0.04      | 38.04                 | 13.20 | 0.00                   | 13.2                  | 18.40 | 0.06     | 18.46   | 1400   | 35.80                     | 1435.8  |  |
| 2    | AAQ 2     | 57.90  | 0.04      | 57.94  | 38.20                 | 0.03      | 38.23                 | 13.70 | 0.00                   | 13.7                  | 18.20 | 0.03     | 18.23   | 1500   | 42.73                     | 1542.73 |  |
| 3    | AAQ 3     | 54.70  | 0.00      | 54.7   | 36.30                 | 0.00      | 36.3                  | 13.20 | 0.00                   | 13.2                  | 16.40 | 0.00     | 16.4    | 1100   | 1.24                      | 1101.24 |  |
| 4    | AAQ 4     | 48.20  | 0.01      | 48.21  | 29.30                 | 0.01      | 29.31                 | 9.61  | 0.00                   | 9.61                  | 15.20 | 0.01     | 15.21   | 800    | 11.25                     | 811.25  |  |
| 5    | AAQ 5     | 55.20  | 0.00      | 55.2   | 35.20                 | 0.00      | 35.2                  | 14.20 | 0.00                   | 14.2                  | 16.80 | 0.00     | 16.8    | 1300   | 0.07                      | 1300.07 |  |
| 6    | AAQ 6     | 53.20  | 0.19      | 53.39  | 34.80                 | 0.13      | 34.93                 | 12.61 | 0.39                   | 13                    | 16.10 | 0.36     | 16.46   | 1000   | 0.56                      | 1000.56 |  |
| 7    | AAQ 7     | 58.40  | 0.09      | 58.49  | 36.90                 | 0.06      | 36.96                 | 14.90 | 0.18                   | 15.08                 | 16.20 | 0.17     | 16.37   | 1100   | 0.74                      | 1100.74 |  |
| 8    | AAQ 8     | 47.30  | 0.37      | 47.67  | 26.60                 | 0.25      | 26.85                 | 11.20 | 0.77                   | 11.97                 | 14.80 | 0.73     | 15.53   | 600    | 2.70                      | 602.7   |  |
| 9    | AAQ 9     | 45.50  | 0.14      | 45.64  | 25.50                 | 0.09      | 25.59                 | 10.60 | 0.31                   | 10.91                 | 13.90 | 0.30     | 14.2    | 600    | 2.03                      | 602.03  |  |

#### Table 17 Details of the incremental concentrations due to proposed expansion

#### **Conclusions:**

Air quality predictions are done considering the biogas, bagasse or coal as a fuel. Considered the existing and proposed boilers working at full load conditions to estimate the GLC of PM10, PM2.5, SO2, NOx and CO due to the proposed establishment of the distillery industry under the prevailing conditions of meteorology and emission data set, air quality modeling is performed for Swami Samarth Sahakari Sakhar Karkhana Ltd. Incremental concentrations are worked out for 9 receptor locations, at which ambient air quality monitoring were carried out. Total concentrations are computed considering background (Ambient Air Monitoring) concentrations and incremental concentrations (AERMOD) due to the proposed establishment. Results are compared with the Ambient Air Quality Standards (AAQS).

From the results, it can be concluded that,

At the selected 9 receptor locations, surrounded in 10 km radius around Swami Samarth Sahakari Sakhar Karkhana, Akkalkot, Solapur, Maharashtra State. GLCs are well within the limits of AAQ Standards.

• Under the working conditions of existing 2\*32 TPH boiler, proposed 1\*30 TPH boiler and considering vehicular emissions, PM10GLCs at all the 9 receptor locations are in the range of 45.64 µg/m3 to 58.49 µg/m3 which are within the limits of AAQS.

- Similarly, PM2.5 GLCs for those receptors are in the range of 25.59 µg/m3 to 38.23 µg/m3 which is within the limits of AAQS.
- For SO2, GLCs are in the range of 9.61  $\mu$ g/m3 to 15.08  $\mu$ g/m3 which is within the limits of AAQS.
- NOx GLCs are in the range of 14.2  $\mu$ g/m3 to 18.46  $\mu$ g/m3 which is within the limits of AAQS.
- CO GLCs are in the range of  $602.03 \mu g/m3$  to  $1542.73 \mu g/m3$  which is within the limits of AAQS.

It can be inferred that there shall not be any adverse effect on Ambient Air Quality due to the proposed establishment.

# **3.2 WATER ENVIRONMENT**

The unit is located at Dahitane Village, Taluka Akkalkot, District Solapur, Maharashtra. Majority of the study area (10 km around site) is under agriculture land use. The industry is lifting fresh water from Bori River Jack-well which is 4.0 km away from the industry. The industry is in process for obtaining water withdrawal permission from competent authority.

Bori River and Karnur Dam are main source of water for agriculture use. Bori River is flowing at 3.5 km towards East from the project site Groundwater is used as an alternate source in surrounding villages for domestic and drinking purposes. Therefore, it is important to assess the existing baseline status of both ground water quality and surface water quality within the study area.

# **3.2.1 GROUND WATER**

| Sr.<br>No. | Symbol | Location        | Latitude       | Longitude     | <b>Distance</b><br><b>from site</b><br>(In meters) | Direction<br>from site<br>(In degrees) |
|------------|--------|-----------------|----------------|---------------|----------------------------------------------------|----------------------------------------|
| 1          | GW 1   | Near Badole Bk  | 17°37'45.34"N  | 76°15'50.02"E | 9738.37                                            | 48.56                                  |
| 2          | GW 2   | Near Kolibet    | 17°33'30.18"N  | 76°14'4.04"E  | 4431.46                                            | 108.82                                 |
| 3          | GW 3   | Near Akkalkot   | 17°30'54.45"N  | 76°13'35.91"E | 7064.66                                            | 151.67                                 |
| 4          | GW 4   | Near Chapalgaon | 17°36'28.61''N | 76°10'20.12"E | 4721.92                                            | 329.53                                 |
| 5          | GW 5   | Near Hasapur    | 17°33'18.37"N  | 76°10'36.69"E | 2620.18                                            | 226.87                                 |
| 6          | GW 6   | Near Burhanpur  | 17°36'31.53"N  | 76°12'17.95"E | 4288.27                                            | 14.34                                  |
| 7          | GW 7   | Near Matanhalli | 17°29'46.31"N  | 76°11'37.18"E | 8305.99                                            | 180.92                                 |
| 8          | GW 8   | Near Halhalli   | 17°35'10.59"N  | 76° 6'59.25"E | 8493.91                                            | 281.38                                 |

Table 18 Details of the ground water quality monitoring sampling locations



Figure 5 10 km. radius study area map indicating groundwater sampling location

| Sr. | Donomotors                                        | Unit Results Desirable P |         |         |         |         |         | Permissible |             |             |            |               |
|-----|---------------------------------------------------|--------------------------|---------|---------|---------|---------|---------|-------------|-------------|-------------|------------|---------------|
| No. | rarameters                                        | Umt                      | GW-1    | GW-2    | GW-3    | GW-4    | GW-5    | GW-6        | <b>GW-7</b> | <b>GW-8</b> | IS 10500:2 | 012 Standards |
| 01  | pН                                                |                          | 7.80    | 6.97    | 7.43    | 8.06    | 7.10    | 8.17        | 7.50        | 7.05        | 6.5-8.5    | No Relaxation |
| 02  | Temperature                                       | °C                       | 27      | 26.5    | 26.5    | 28.2    | 27.6    | 26          | 28.1        | 26.3        | Not S      | Specified     |
| 03  | Turbidity                                         | NTU                      | 0.57    | 0.55    | 0.62    | 0.68    | 0.75    | 0.63        | 0.74        | 0.66        | 1          | 5             |
| 04  | Total Suspended<br>Solids                         | mg/lit                   | 5       | 7       | 4       | 5       | 3       | 3           | 4           | 6           | Not S      | Specified     |
| 05  | Total Dissolved<br>Solids                         | mg/lit                   | 378.2   | 424.5   | 520.2   | 368.6   | 403.3   | 471.7       | 355         | 429.5       | 500        | 2000          |
| 06  | Electric Conductivity                             | mS/cm                    | 0.581   | 0.646   | 0.788   | 0.566   | 0.619   | 0.717       | 0.545       | 0.652       | Not S      | Specified     |
| 07  | Total Hardness<br>CaCO <sub>3</sub>               | mg/lit                   | 257     | 313     | 307     | 197     | 350     | 217         | 237         | 303         | 200        | 600           |
| 08  | Total Alkalinity as<br>CaCO <sub>3</sub>          | mg/lit                   | 241     | 223     | 282     | 169     | 208     | 253         | 176         | 207         | 200        | 600           |
| 09  | Salinity                                          | ppt                      | 1.4     | 1.9     | 2.6     | 1.5     | 1.8     | 1.6         | 1.3         | 1.4         | Not S      | Specified     |
| 10  | Chemical Oxygen<br>Demand                         | mg/lit                   | 8       | 10      | 7       | 6       | 8       | 7           | 9           | 10          | Not S      | Specified     |
| 11  | Biochemical Oxygen<br>Demand @ 27°C for 3<br>days | mg/lit                   | 2.4     | 3       | 2.6     | 2.2     | 2.3     | 2.2         | 2.9         | 2.8         | Not S      | Specified     |
| 12  | Chlorides as Cl                                   | mg/lit                   | 85      | 107     | 149     | 100     | 82      | 138         | 108         | 125         | 250        | 1000          |
| 13  | Sulphate as SO <sub>4</sub>                       | mg/lit                   | 51      | 68      | 104     | 117     | 48      | 72          | 65          | 88          | 200        | 400           |
| 14  | Nitrate as NO <sub>3</sub> -N                     | mg/lit                   | 1.60    | 1.05    | 1.00    | 1.14    | 1.40    | 1.80        | 1.45        | 1.30        | 45         | No relaxation |
| 15  | Nitrite as NO <sub>2</sub>                        | mg/lit                   | 0.20    | 0.10    | 0.08    | 0.06    | 0.12    | 0.10        | 0.18        | 0.12        | Not S      | Specified     |
| 16  | Total Ammonia as N                                | mg/lit                   | 0.09    | 0.11    | 0.15    | 0.08    | 0.05    | 0.06        | 0.10        | 0.07        | 0.5        | No relaxation |
| 17  | Total Phosphate as PO <sub>4</sub>                | mg/lit                   | 0.30    | 0.25    | 0.18    | 0.10    | 0.10    | 0.20        | 0.26        | 0.36        | Not S      | Specified     |
| 18  | Fluoride as F-                                    | mg/lit                   | 0.62    | 0.54    | 0.45    | 0.39    | 0.55    | 0.42        | 0.62        | 0.48        | 1          | 1.5           |
| 19  | Calcium as Ca                                     | mg/lit                   | 61      | 70      | 61      | 42      | 73      | 55          | 43          | 78          | 75         | 200           |
| 20  | Sodium as Na                                      | mg/lit                   | 18      | 16      | 21      | 27      | 17      | 29          | 12          | 17          | Not S      | Specified     |
| 21  | Cadmium as Cd                                     | mg/lit                   | < 0.003 | < 0.003 | < 0.003 | < 0.003 | < 0.003 | < 0.003     | < 0.003     | < 0.003     | No re      | elaxation     |

# Table 19 Groundwater analysis report within 10 km radius of the study area

Page | 14

| 22 | Total Chromium as<br>Cr | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | No r  | elaxation     |
|----|-------------------------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|-------|---------------|
| 23 | Chromium as Cr+6        | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | No r  | elaxation     |
| 24 | Copper as Cu            | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | 0.05  | 1.5           |
| 25 | Iron as Fe              | mg/lit        | 0.12    | 0.14    | 0.08    | 0.15    | 0.09    | 0.08    | 0.18    | 0.10    | 0.3   | No relaxation |
| 26 | Magnesium as Mg         | mg/lit        | 25      | 33      | 37      | 22      | 40      | 19      | 31      | 26      | 30    | 100           |
| 27 | Lead as Pb              | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | 0.01  | No relaxation |
| 28 | Nickel as Ni            | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | 0.02  | No relaxation |
| 29 | Zinc as Zn              | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | 5     | 15            |
| 30 | Mercury as Hg           | mg/lit        | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | 0.001 | No relaxation |
| 31 | Arsenic as As           | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | 0.01  | 0.05          |
| 32 | Cyanide as Cn           | mg/lit        | < 0.02  | < 0.02  | < 0.02  | < 0.02  | < 0.02  | < 0.02  | < 0.02  | < 0.02  | 0.05  | No relaxation |
| 33 | Total Coliform          | MPN/<br>100ml | NIL     | No r  | elaxation     |
| 34 | Fecal Coliform          | Org/<br>100ml | Absent  | No r  | elaxation     |

## Note:

Ground water samples collected from eight locations within 10 km radius from the plant site & analyzed as per standard methods of water and wastewater analysis (APHA). The water quality of the study area is found to be below the acceptable limit of IS: 10500: 2012. Groundwater quality is found to be good, which can be directly used for irrigation purpose. However, ground water used for drinking purpose after the appropriate treatment as presence of coliform is observed.

# **3.2.2 SURFACE WATER**

| Sr.<br>No. | Symbol | Location                        | Latitude      | Longitude     | Distance<br>from site (In<br>meters) | <b>Direction</b> (In degrees) |
|------------|--------|---------------------------------|---------------|---------------|--------------------------------------|-------------------------------|
| 1          | SW 1   | Bori River – Near<br>Kurnur Dam | 17°37'9.66"N  | 76°12'40.39"E | 5601.92                              | 17.87                         |
| 2          | SW 2   | Bori River – Near<br>Sangvi     | 17°33'59.24"N | 76°14'41.78"E | 5336.15                              | 95.71                         |
| 3          | SW 3   | Lake in Akkalkot                | 17°31'10.38"N | 76°12'0.44"E  | 5746.47                              | 174.53                        |
| 4          | SW 4   | Lake near Hingani               | 17°33'38.99"N | 76°11'34.99"E | 1168.41                              | 189.75                        |
| 5          | SW 5   | Lake near Chapalgaon            | 17°36'15.85"N | 76°10'5.28"E  | 4644.70                              | 322.41                        |
| 6          | SW 6   | Halchincholi Talav              | 17°33'25.92"N | 76° 6'14.44"E | 9777.40                              | 260.82                        |
| 7          | SW 7   | Lake near Dahitane              | 17°34'46.10"N | 76°10'12.87"E | 2775.26                              | 289.30                        |
| 8          | SW8    | Lake near Konhali               | 17°32'6.36"N  | 76° 6'52.36"E | 9423.17                              | 244.80                        |

# Table 20 Details of surface water quality monitoring locations



Figure 6 10 km. radius study area map indicating surface water sampling location

| Sr  |                                                   |        |        | -      | -      | Resu   | ilts   | -      | -      |        | LIMITS IS: 2296                        |
|-----|---------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------------------------------|
| No. | Parameters                                        | Unit   | SW-1   | SW-2   | SW-3   | SW-4   | SW-5   | SW-6   | SW-7   | SW-8   | for Surface Water<br>Quality (Class E) |
| 01  | рН                                                |        | 7.21   | 8.10   | 7.42   | 7.20   | 7.63   | 6.97   | 7.35   | 8.40   | <8.5                                   |
| 02  | Temperature                                       | °C     | 27     | 27.5   | 28.4   | 26.8   | 26.90  | 27.00  | 26.00  | 26.30  | Not Specified                          |
| 03  | Turbidity                                         | NTU    | 1.8    | 1.5    | 2.3    | 1.6    | 1.9    | 1.7    | 2.0    | 1.3    | Not Specified                          |
| 04  | TotalSuspendedSolids                              | mg/lit | 14     | 14     | 11     | 9      | 13     | 8      | 12     | 15     | Not Specified                          |
| 05  | Total Dissolved Solids                            | mg/lit | 308.5  | 318.7  | 388.1  | 340.8  | 328    | 384.9  | 402.6  | 387.5  | <2100.00                               |
| 06  | Electric Conductivity                             | mS/cm  | 0.474  | 0.485  | 0.588  | 0.524  | 0.503  | 0.585  | 0.618  | 0.588  | < 2250.00                              |
| 07  | Total Hardness CaCO <sub>3</sub>                  | mg/lit | 143    | 180    | 211    | 183    | 148    | 173    | 222    | 185    | Not Specified                          |
| 08  | Total Alkalinity as<br>CaCO <sub>3</sub>          | mg/lit | 124    | 161    | 146    | 127    | 109    | 128    | 140    | 163    | Not Specified                          |
| 09  | Salinity                                          | ppt    | 2.2    | 2.4    | 3.6    | 2.9    | 3.6    | 2.7    | 3.6    | 4.3    | Not Specified                          |
| 10  | Dissolved Oxygen                                  | mg/lit | 7.1    | 7.4    | 5.8    | 6.5    | 6.1    | 6.8    | 5.9    | 6      | Not Specified                          |
| 11  | Chemical Oxygen<br>Demand                         | mg/lit | 9      | 11     | 14     | 10     | 12     | 14     | 8      | 11     | Not Specified                          |
| 12  | Biochemical Oxygen<br>Demand @ 27°C for 3<br>days | mg/lit | 2.8    | 3.6    | 4.2    | 3.1    | 4      | 3.8    | 2.8    | 4.1    | Not Specified                          |
| 13  | Chlorides as Cl                                   | mg/lit | 85     | 89     | 104    | 102    | 90     | 112    | 117    | 98     | <600.00                                |
| 14  | Sulphate as SO <sub>4</sub>                       | mg/lit | 57     | 59     | 73     | 42     | 65     | 61     | 78     | 86     | <1000.00                               |
| 15  | Nitrate as NO <sub>3</sub> -N                     | mg/lit | 3.5    | 2.9    | 5.1    | 4.3    | 3.8    | 4.3    | 3.7    | 3.9    | Not Specified                          |
| 16  | Nitrite as NO <sub>2</sub>                        | mg/lit | 0.2    | 0.16   | 0.32   | 0.09   | 0.14   | 0.13   | 0.34   | 0.30   | Not Specified                          |
| 17  | Total Ammonia as N                                | mg/lit | 0.23   | 0.27   | 0.32   | 0.25   | 0.28   | 0.31   | 0.26   | 0.22   | Not Specified                          |
| 18  | Total Phosphate as PO <sub>4</sub>                | mg/lit | 0.18   | 0.15   | 0.22   | 0.19   | 0.10   | 0.09   | 0.20   | 0.15   | Not Specified                          |
| 19  | Fluoride as F <sup>-</sup>                        | mg/lit | 0.64   | 0.68   | 0.48   | 0.52   | 0.74   | 0.69   | 0.41   | 0.38   | Not Specified                          |
| 20  | Calcium as Ca                                     | mg/lit | 29     | 32     | 39     | 43     | 26     | 34     | 42     | 47     | Not Specified                          |
| 21  | Sodium as Na                                      | mg/lit | 19     | 21     | 28     | 16     | 25     | 26     | 31     | 30     | Not Specified                          |
| 22  | Cadmium as Cd                                     | mg/lit | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | Not Specified                          |
| 23  | Total Chromium as Cr                              | mg/lit | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | Not Specified                          |

| Table 21 Surface wat | er analysis repor | t within 10 km | radius of the | e study area |
|----------------------|-------------------|----------------|---------------|--------------|
|----------------------|-------------------|----------------|---------------|--------------|

Page | 17

| 24 | Chromium as Cr+6 | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | Not Specified |
|----|------------------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------------|
| 25 | Copper as Cu     | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | Not Specified |
| 26 | Iron as Fe       | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | Not Specified |
| 27 | Magnesium as Mg  | mg/lit        | 17      | 24      | 27      | 18      | 20      | 21      | 28      | 16      | Not Specified |
| 28 | Lead as Pb       | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | Not Specified |
| 29 | Nickel as Ni     | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | Not Specified |
| 30 | Zinc as Zn       | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | Not Specified |
| 31 | Mercury as Hg    | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | Not Specified |
| 32 | Arsenic as As    | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | Not Specified |
| 33 | Cyanide as Cn    | mg/lit        | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | Not Specified |
| 34 | Total Coliform   | MPN/<br>100ml | 90      | 70      | 34      | 220     | 70      | 26      | 40      | 23      | Not Specified |
| 35 | Fecal Coliform   | Org/<br>100ml | Present | Not Specified |

## Note:

All samples of surface water are of Class E as per Central Pollution Control Board Water Quality criteria. Accordingly the surface water can be directly used for, Irrigation, Industrial Cooling, Controlled Waste disposal.

# Summary of the groundwater and surface water quality monitoring results

| Sr No | Daramatars                    | Groun                                                                                                                                                                                                                                                                                          | d water | Surface water |       |  |
|-------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|-------|--|
| 51.10 | 1 al ametel s                 | Min         Max         Min         N           6.97         8.17         6.97         8           355         520.2         308.5         40           197         350         143         2           82         149         85         1           0.39         0.62         0.38         0 | Max     |               |       |  |
| 1.    | pH                            | 6.97                                                                                                                                                                                                                                                                                           | 8.17    | 6.97          | 8.40  |  |
| 2.    | Total Dissolved Solids (mg/l) | 355                                                                                                                                                                                                                                                                                            | 520.2   | 308.5         | 402.6 |  |
| 3.    | Total Hardness (mg/l)         | 197                                                                                                                                                                                                                                                                                            | 350     | 143           | 222   |  |
| 4.    | Chlorides (mg/l)              | 82                                                                                                                                                                                                                                                                                             | 149     | 85            | 117   |  |
| 5.    | Fluoride (mg/l)               | 0.39                                                                                                                                                                                                                                                                                           | 0.62    | 0.38          | 0.74  |  |
| 6.    | Sulphates (mg/l)              | 51                                                                                                                                                                                                                                                                                             | 117     | 42            | 86    |  |

# **Table 22 Water Analysis Results**

# **3.3 SOIL ENVIRONMENT**

| Sr.  | Symbol     | Location        | Latitude       | Longitude     | Distance<br>from site | Directio<br>n (In |
|------|------------|-----------------|----------------|---------------|-----------------------|-------------------|
| 110. |            |                 |                |               | (In meters)           | degrees)          |
| 1    | <b>S</b> 1 | Near Badole Bk  | 17°37'44.42"N  | 76°15'49.93"E | 9718.43               | 48.67             |
| 2    | S 2        | Near Kolibet    | 17°33'28.67"N  | 76°14'3.97"E  | 4444.04               | 109.39            |
| 3    | S 3        | Near Akkalkot   | 17°30'53.83"N  | 76°13'35.85"E | 7079.33               | 151.76            |
| 4    | S 4        | Near Chapalgaon | 17°36'27.72''N | 76°10'20.01"E | 4700.99               | 329.32            |
| 5    | S 5        | Near Hasapur    | 17°33'17.58"N  | 76°10'36.62"E | 2637.75               | 226.53            |
| 6    | S 6        | Near Burhanpur  | 17°36'31.44"N  | 76°12'18.89"E | 4293.48               | 14.70             |
| 7    | S 7        | Near Matanhalli | 17°29'45.27"N  | 76°11'36.93"E | 8336.92               | 180.97            |
| 8    | S 8        | Near Halhalli   | 17°35'9.42"N   | 76° 6'58.92"E | 8496.76               | 281.14            |



Figure 7 10 km. radius study area map indicating soil sampling location

| Sr. | Description                         | TIm:4     | RESULT |       |            |           |       |       |        |       | As per Ministry of |
|-----|-------------------------------------|-----------|--------|-------|------------|-----------|-------|-------|--------|-------|--------------------|
| No. | Description                         | Umt       | S-1    | S-2   | <b>S-3</b> | S-4       | S-5   | S-6   | S-7    | S-8   | Agriculture 2011   |
| 1.  | рН @ 25 °С                          |           | 8.20   | 7.98  | 8.14       | 7.63      | 7.54  | 8.44  | 7.98   | 8.18  | < 8.5              |
| 2.  | Electric Conductance                | mS/cm     | 0.60   | 0.62  | 0.58       | 0.59      | 0.60  | 0.58  | 0.64   | 0.62  | 0.15 - 0.65        |
| 3.  | Colour                              |           | Brown  | Brown | Black      | Black     | Brown | Brown | Brown  | Black | Not Specified      |
| 4.  | Grain Size Distribution             |           |        |       |            |           |       |       |        |       |                    |
|     | Clay                                | %         | 32     | 38    | 40         | 30        | 42    | 40    | 34     | 38    | Not Specified      |
|     | Sand                                | %         | 24     | 26    | 32         | 38        | 34    | 28    | 22     | 32    | Not Specified      |
|     | Silt                                | %         | 44     | 36    | 28         | 32        | 24    | 32    | 44     | 30    | Not Specified      |
| 5.  | Texture Class                       |           | Clay   | Loam  | Clay       | Clay Loam | Clay  | Clay  | Clay I | Loam  | Not Specified      |
| 6.  | Organic Matter                      | %         | 0.70   | 0.69  | 0.60       | 0.59      | 0.74  | 0.58  | 0.72   | 0.59  | 0.5 - 0.75         |
| 7.  | Organic Carbon                      | %         | 0.40   | 0.40  | 0.35       | 0.34      | 0.43  | 0.33  | 0.42   | 0.34  | 0.3 - 0.55         |
| 8.  | Bulk Density                        | gm/cc     | 1.25   | 1.20  | 1.16       | 1.18      | 1.26  | 1.14  | 1.15   | 1.27  | Not Specified      |
| 9.  | Porosity                            | %         | 42     | 38    | 31         | 39        | 28    | 29    | 36     | 37    | Not Specified      |
| 10. | Permeability                        | Cm/hr     | 0.8    | 1.0   | 0.2        | 0.7       | 0.3   | 0.2   | 0.7    | 0.6   | Not Specified      |
| 11. | Water Holding Capacity              | %         | 42     | 46    | 51         | 45        | 55    | 52    | 38     | 41    | Not Specified      |
| 12. | Sodium Adsorption Ratio (SAR)       |           | 14.30  | 11.40 | 16.50      | 12.30     | 14.74 | 11.30 | 10.30  | 12.50 | 10-18              |
| 13. | Total Nitrogen Content              | kg/ha     | 296    | 340   | 295        | 295       | 389   | 299   | 325    | 303   | 280 - 560          |
| 14. | Available Potassium K <sup>++</sup> | kg/ha     | 160    | 110   | 158        | 110       | 189   | 178   | 167    | 198   | Not Specified      |
| 15. | Available Sodium as Na              | mg/kg     | 74     | 58    | 75         | 65        | 95    | 95    | 89     | 79    | Not Specified      |
| 16. | Available Phosphorus as P           | kg/ha     | 15.80  | 12.90 | 20.20      | 17.56     | 22.10 | 18.36 | 14.16  | 20.50 | 10-24.60           |
| 17. | Cation Exchange Capacity            | meq/100gm | 0.95   | 1.10  | 0.85       | 0.68      | 1.20  | 0.96  | 1.05   | 0.68  | Not Specified      |
| 18. | Iron as Fe                          | mg/kg     | 6.40   | 5.16  | 4.25       | 4.63      | 7.13  | 6.38  | 4.63   | 6.14  | Not Specified      |
| 19. | Nickel as Ni                        | mg/kg     | 1.18   | 1.88  | 1.10       | 0.98      | 1.85  | 0.85  | 0.88   | 0.45  | Not Specified      |
| 20. | Zinc as Zn                          | mg/kg     | 3.45   | 2.35  | 1.95       | 1.85      | 3.47  | 3.17  | 1.19   | 3.18  | Not Specified      |
| 21  | Copper as Cu                        | mg/kg     | 4.32   | 3.12  | 2.56       | 2.96      | 4.19  | 4.63  | 2.93   | 4.47  | Not Specified      |

# Table 24 Soil Analysis report within 10 km radius of the study area

#### **Summary of the results**

The soil samples were collected at total eight locations within the study area.

- The finding of the study reveals that pH of soil in the area ranged between 7.54 to 8.44 which is an indicative of the neutral to moderate alkaline soil.
- The values for Nitrogen were found to be better to more than sufficient at all locations ranging between 295 to 389 kg/ha, which is an indicative of Better to sufficient nitrogen content in soils.
- The concentration of Phosphorous was found to be very less to less at all the locations ranging between 12.9 to 22.1 kg/ha, which is an indicative of less phosphorous in soil.
- The concentration of organic carbon was found to be less to medium at all the locations ranging between 0.33 to 0.43%, which is an indicative of less organic carbon in soil.
- It is important to note that the concentration of potassium was found to be very less to medium at all locations ranging between 110 to 198 kg/ha. which is an indicative of less to medium potash content in soil. This indicates it is required to use potash rich fertilizers for agriculture purposes.

Based on the above findings it can be concluded that the soil samples can be classified as per soil classification given by Tondon H.L.S. (2005). The samples fall under medium low fertile soils.

# **3.4 NOISE ENVIRONMENT**

| Sr.  |      |     | Location         | Latitude      | Longitude     | Distance<br>from site | Direction<br>from site |
|------|------|-----|------------------|---------------|---------------|-----------------------|------------------------|
| 110. |      |     |                  |               |               | (In meters)           | (In degrees)           |
| 1    |      | N 1 | Within Industry  | 17°34'17.52"N | 76°11'45.29"E |                       |                        |
| 2    |      | N 2 | Near Motyal      | 17°36'13.87"N | 76°13'32.30"E | 4663.93               | 41.71                  |
| 3    | stry | N 3 | Near Kolekarwadi | 17°34'40.12"N | 76°12'53.16"E | 2047.41               | 73.17                  |
| 4    | subi | N 4 | Near Nimgaon     | 17°31'28.86"N | 76°14'52.88"E | 7626.63               | 134.10                 |
| 5    | e In | N 5 | Near Dodyal      | 17°30'18.04"N | 76° 9'29.16"E | 8498.50               | 208.37                 |
| 6    | tsid | N 6 | Near Halhalli    | 17°34'50.16"N | 76° 6'45.52"E | 8926.79               | 275.82                 |
| 7    | Oui  | N 7 | Near Hasapur     | 17°32'55.13"N | 76° 9'32.77"E | 4749.73               | 236.10                 |
| 8    |      | N 8 | Near Chapalgaon  | 17°36'8.08"N  | 76°10'8.23"E  | 4391.01               | 318.79                 |

#### Table 25 Details of noise quality monitoring locations



Figure 8 10 km. radius study area map indicating noise quality sampling location

| Sr  | T 4°             |                  | (Leq dB(A | A)) Average | CPCB limit (Leq dB(A)) |            |  |
|-----|------------------|------------------|-----------|-------------|------------------------|------------|--|
| No. | Location         | Category Of Area | Day time  | Night time  | Day time               | Night time |  |
| 1   | Within Industry  | Industrial Area  | 54.7      | 46.9        | 75                     | 70         |  |
| 2   | Near Motyal      | Residential Area | 53.8      | 45.5        | 55                     | 45         |  |
| 3   | Near Kolekarwadi | Residential Area | 52.7      | 45.8        | 55                     | 45         |  |
| 4   | Near Nimgaon     | Residential Area | 45.7      | 39.4        | 55                     | 45         |  |
| 5   | Near Dodyal      | Residential Area | 51.1      | 43.9        | 55                     | 45         |  |
| 6   | Near Halhalli    | Residential Area | 44.9      | 38          | 55                     | 45         |  |
| 7   | Near Hasapur     | Residential Area | 47.2      | 42.1        | 55                     | 45         |  |
| 8   | Near Chapalgaon  | Residential Area | 44.8      | 38.3        | 55                     | 45         |  |

# Table 26 Noise levels of the study area

#### Summary of the results

#### Daytime Noise Levels (Leq)day

**Industrial Zone:** The day time noise level at the Project site was found as 54.7 dB (A), which is well below the permissible limit of 75 dB (A).

**Residential Zone:** The daytime noise levels in all the residential locations were observed to be in the range of 44.8 (A) to 53.8 dB (A).

## Night time Noise Levels (Leq)night

**Industrial Zone:** The night time noise level in the Project site was observed 46.9 dB (A), which is well below the permissible limit of 70 dB (A).

**Residential Zone:** The night time noise levels in all the residential locations were observed to be in the range of 38.0 dB (A)to 45.5 dB (A).

The industry is making all efforts to control the noise levels within the limits by providing acoustic measures and silencer pads etc. all the employees in these work places shall be provided with ear plugs / muffs.

# 3.5 LAND USE/LAND COVER OF THE STUDY AREA

| Sr No. | LULC Class    | Area in Ha | Area in km <sup>2</sup> | Percentage |
|--------|---------------|------------|-------------------------|------------|
| 1      | Scrub Land    | 4830.44    | 48.30                   | 15.45      |
| 2      | Open Land     | 10992.1275 | 109.92                  | 35.15      |
| 3      | Agriculture   | 7292.7     | 72.93                   | 23.32      |
| 4      | Fallow Land   | 7298.19    | 72.98                   | 23.34      |
| 5      | Settlement    | 450.41     | 4.50                    | 1.44       |
| 6      | Reservoir/Dam | 319.86     | 3.20                    | 1.02       |
| 7      | Waterbody     | 88.90      | 0.89                    | 0.28       |
|        | Total Area    | 31272.62   | 312.73                  | 100.00     |

 Table 27 Land use/ Land cover areas in km<sup>2</sup> around 10 km radius for project site



Figure 9 Pie chart of LULC classes around 10 km radius of Project site

# 4.0 IDENTIFICATION, PREDICTION AND MITIGATION MEASURES

The anticipated impacts during construction and operational phase due to the proposed activity on air, water, soil, noise, ecology and biodiversity, and socio-economic environment are assessed and mitigation measures to minimize the impacts on the same are suggested in Chapter 4 in this report.

# 5.0 ANALYSIS OF ALTERNATIVE (TECHNOLOGY AND SITE)

The technologies for the treatment and safe disposal of spent wash- most polluting element from distilleries and the site selection criteria are discussed in this chapter. This is to understand the available technology options and the option selected by the project proponent. Molasses based distilleries are among the most polluting industries. Therefore, it is important to use state of the art technologies to achieve the Zero Liquid Discharge. The whole process is based on proven technology i.e., Anaerobic digester followed by Multi Effect Evaporation and Dryer.

- The final spent wash converted to Dry powder.
- Useful as agricultural feed. The final output (i.e., Potash rich Powder) is not a waste but a nutrient rich by-product.
- This technology will help in meeting the potash requirement of the soil.
- Zero Liquid Discharge Technology.

This Industry has decided to undertake an "Alternative Analysis (AA)" for this project. The various alternatives are (1) Product (2) Raw materials, (3) Technology, Engineering & Hardware, (4) Site, and (5) Project.

- Availability of raw material/fuel.
- Proximity of molasses as a raw material and cost-effective transportation logistics.
- Availability of water supply.
- The availability of water from the source is adequate to meet the requirement of the proposed distillery establishment. For proposed project water will be sourced from Bori River Jack Well.
- Availability of infrastructural facility.

Industrial infrastructural facilities such as roads, transport, security, water, power, administration etc. are available with existing factory. Community facilities such as quarters, medical services and training facility etc. are also available at site.

# 6.0 ENVIRONMENT MONITORING PROGRAMME

| Sr.<br>No. | Item                                                                                                                                        | Parameters                                                                                                                                                                                                        | Frequency of<br>Monitoring                 | Location                                                                                                                  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 1.         | Ambient Air<br>quality at<br>appropriate<br>location for PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , SO <sub>2</sub> , and<br>NO <sub>x</sub> | $PM_{10}$ , $PM_{2.5}$ , $SO_{2}$ , and $NO_{x}$                                                                                                                                                                  | 24 hourly,<br>Quarterly                    | 4 Locations<br>1 @ Upwind and 2@<br>downwind directions<br>from stack @ 120 <sup>0</sup> to<br>each other<br>1 Near entry |
| 2.         | Stationary<br>Emission from<br>Stack<br>PM, SO <sub>2</sub> , NOx                                                                           | PM, SO <sub>2</sub> , NOx                                                                                                                                                                                         | Monthly                                    | 1 DG set Stack,<br>1 Boiler Stack                                                                                         |
|            | Water                                                                                                                                       | Water quality parameters as per 10500:2012                                                                                                                                                                        | Monthly                                    | Drinking water locations                                                                                                  |
| 3.         | Waste water<br>quality (treated and<br>Untreated)                                                                                           | pH, BOD, COD, TSS,<br>Flow, TDS etc.                                                                                                                                                                              | Monthly STP inlet and our CPU inlet and Ou |                                                                                                                           |
| 4.         | Noise                                                                                                                                       | Day and Night levels<br>Equivalent noise level -<br>dB (A)                                                                                                                                                        | Quarterly or as often as required          | 5 Locations<br>Upwind and downwind<br>directions<br>Near boilers and near<br>main gate and CPU                            |
| 5.         | Soil (Qualitative<br>and quantitative<br>testing/analysis to<br>check the soil<br>fertility                                                 | pH, Cation Exchange<br>Capacity, Total Nitrogen,<br>Phosphorous, Potassium,<br>moisture, Permeability,<br>Conductivity, Texture &<br>structure, Organic carbon                                                    | Quarterly or as often as required          | 1 near Greenbelt<br>1 near CPU<br>Composite sample shall<br>be taken at each location                                     |
| 6.         | Solid waste<br>generation<br>monitoring /<br>Record Keeping                                                                                 | Manual record keeping                                                                                                                                                                                             | To be updated<br>daily                     |                                                                                                                           |
| 7          | Greenbelt and<br>plantation<br>monitoring                                                                                                   | Type of species shall be<br>decided based on soil<br>&climatic conditions. The<br>number of trees would be<br>2500 per hectare,<br>however; the number of<br>trees would vary<br>depending on the type of<br>soil | Six Monthly                                |                                                                                                                           |

# Table 28 Environment management programme

# 7.0 ADDITIONAL STUDIES 7.1: RISK ASSESSMENT

Hazard analysis involves the identification and quantification of the various hazards (unsafe condition) that exist in the plant during both construction and operation phases. On the other hand, risk analysis deals with the identification and quantification of the risk, the plant equipment and Personnel exposed to accidents resulting from the hazards present in the plant. Risk analysis involves the identification and assessment of risks to the population, which is likely to be exposed to as a result of hazards incidence.

This requires an assessment of failure probability, credible accident scenario, vulnerability of population, etc. Much of this information is difficult to get or generate consequently, the risk analysis in present case is confined to worst case and maximum credible accident studies and safety and risk aspect related to sulphitation process, alcohol storage and plant operations. Detailed Quantitative Risk Assessment (QRA) on potentially more hazardous and risky situations have been carried out in details and presented in the chapter 7 in the EIA report.

# 8.0 BUDGETARY PROVISIONS TOWARDS ENVIRONMENTAL MANAGEMENT PLAN

| Sr.<br>No. | Component                                   | Particulars                                                                                                                                                                | Capital investment<br>in Lakhs | Recurring<br>Cost in<br>Lakhs |
|------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| 1          | Air                                         | Construction of new stack for boiler, Bag-filter and OCEMS                                                                                                                 | 510                            | 18                            |
| 2          | Water                                       | <ul> <li>STP</li> <li>Distillery CPU.</li> <li>Anaerobic Digester, MEE &amp; dryer for Distillery Spent wash treatment</li> <li>OCMS</li> </ul>                            | 1220                           | 80                            |
| 3          | Noise                                       | Acoustic enclosures, Silencer pads, ear plugs etc.                                                                                                                         | 20                             | 2                             |
| 4          | Environment<br>monitoring and<br>Management | MonthlyEnvironmentMonitoring (Per Ver)AmbientairPM10, PM2.5,monitoringSO2, NOXBoiler & DG SetTPM, SO2,MonitoringNOXEffluentpH, COD,(DistilleryBOD, TSS,CPU) (TreatedGrease | 0                              | 5                             |
| 5          | Occupational<br>Health                      | Glares, Breathing Masks,<br>Gloves, Boots, Helmets, Ear<br>Plugs etc. & annual health-<br>medical check-up of workers,<br>Occupational Health (training,<br>OH centre)     | 45                             | 7                             |
| 6          | Greenbelt                                   | Green belt development activity                                                                                                                                            | 50                             | 12                            |
| 7          | Solid Waste<br>Management                   | Solid Waste Management                                                                                                                                                     | 18                             | 3                             |
| 8          | Rain water harvesting                       | Rain water harvesting                                                                                                                                                      | 25                             | 4                             |
| 9          | Storm water<br>drainage                     | Storm water drainage design and construction                                                                                                                               | 50                             | 7                             |
| 10         | Solar Power &<br>Energy<br>Conservation     | Street lights installation with Solar Systems                                                                                                                              | 35                             | 5                             |
| 11         | Fire and Safety                             | Fire and Safety Management                                                                                                                                                 | 75                             | 5                             |
| 12         | Laboratory                                  | Testing and Analysis                                                                                                                                                       | 40                             | 5                             |
|            | <u> </u>                                    | Cost (In Lakhs)                                                                                                                                                            | 2088                           | 153                           |

# Table 29 EMP Budget

# 9.0 GREENBELT DEVELOPMENT PLAN

Greenbelt development is undertaken in the area provided separately. As per suggestion given earlier by EAC for similar kind of proposal 2500 trees should be available per hectare of land for Greenbelt development t. Total 11.98 Ha. of land is reserved for greenbelt development; hence there should be minimum 29955 no. of trees. At present there are 1356 number of trees at site, remaining 28599 number of trees will be planted within three years after the receipt of environment clearance. The list of the saplings which industry is going to plant in their area is given in table below.

# **10.0 CORPORATE ENVIRONMENT RESPONSIBILITY PLAN**

The estimated time of completion of project will be two years after the receipt of Environmental Clearance from the respective authority. The industry has reserved Rs.1.47 Crores (1.5 % of the total cost of the project (98 crores) as per Office Memorandum Vide F. No. 22-65/2017-IA.III Dated 01.05.2018) which will be spent on the activities like sanitation and health, education, and educational facilities as a cost towards corporate environment responsibility (CER).

# **11.0 RAINWATER AND STORMWATER HARVESTING PLAN**

The industry is making efforts to conserve natural resources by adopting green technologies and as such industry proposes to adopt rain water harvesting system. With the annual rainfall of 527.8 mm there is good potential to harvest rainwater. The rainwater harvesting system will be installed at various buildings and about 44159.2 Sq.m of area.18645.8 m3 per year water is harvested. The harvested water is stored in tank and utilized for greenbelt/fire-fighting purpose.

Stormwater management system shall be also adopted by the industry. Separate drains of minimum 0.6 m \* 1.0 m will be provided for the collection and disposal of stormwater from the industry premises.

| Sr.<br>No. | Location      | Area in m2                                               | Average Run-<br>off Factor | Rainfall<br>in mm | The quantity of rainwater per year m <sup>3</sup> |
|------------|---------------|----------------------------------------------------------|----------------------------|-------------------|---------------------------------------------------|
| 1          | Built-up area | Only 44159.20 m2 area<br>use for rainwater<br>harvesting | 0.80                       | 527.8             | 18645.80                                          |

Table 30 Rain water harvesting quantity

#### Storm water harvesting

#### Table 31 Quantity of Storm water per annum

| Sr.<br>No | Location                              | Area m2     | Average Run-<br>off Factor | Rainfall in<br>mm | The quantity of rainwater per year m <sup>3</sup> |
|-----------|---------------------------------------|-------------|----------------------------|-------------------|---------------------------------------------------|
| 1         | Total factory area<br>- Built-up area | 349731.47 - |                            |                   |                                                   |
|           |                                       | 44159.2=    | 0.40                       | 527.8             | 64512.4176                                        |
|           |                                       | 305572.27   |                            |                   |                                                   |

# **12.0 CONCLUSIONS**

As the industry has provided all the necessary pollution control measures for water, Air and Solid and hazardous waste disposal, the negative impacts on the environment would be minimal/ negligible. The establishment programme would help to produce good quality of RS/Alcohol and has a great potential for export. Ethanol produced will mainly utilized in blending with petrol (additives).