# **EXECUTIVE SUMMARY**



EXPANSION OF SUGARCANE CRUSHING CAPACITY FROM 1200 TCD TO 4700 TCD, ESTABLISHMENT OF COGENERATION POWER PLANT CAPACITY OF 20 MW, AND MULTIFEED (C MOLASSES/B-HEAVY MOLASSES/CANE JUICE/SYRUP) BASED 150 KLPD DISTILLERY

# AT CHANDAPURI, TALUKA MALSHIRAS, DISTRICT SOLAPUR, MAHARASHTRA STATE

BY ONKAR SAKHAR KARKHANA PRIVATE LIMITED (OSKPL)

AREA:16.20 HECTARES
COST OF THE EXPANSION: Rs. 313.99 CR.
TORS GRANTED: F. No. J-11011/321/2022-IA-II(I) dated 23th August 2022

# **TABLE OF CONTENTS**

| 1. 0 INTRODUCTION                                              | 1  |
|----------------------------------------------------------------|----|
| 1.1 PROJECT LOCATION                                           | 1  |
| 2.0 PROJECT DESCRIPTION                                        | 2  |
| 2.1 RESOURCE REQUIREMENT AND INFRASTRUCTURE FACILITIES         | 2  |
| Water Budget for Distillery unit                               | 2  |
| 3. 0 BASELINE ENVIRONMENTAL STATUS                             | 9  |
| 3.1 AIR ENVIRONMENT                                            | 9  |
| 3.2 WATER ENVIRONMENT                                          | 14 |
| 3.3 SOIL ENVIRONMENT                                           | 20 |
| 3.4 NOISE ENVIRONMENT                                          | 22 |
| 3.5 LAND USE/LAND COVER OF THE STUDY AREA                      | 24 |
| 4.0 IDENTIFICATION, PREDICTION AND MITIGATION MEASURES         | 26 |
| 5.0 ANALYSIS OF ALTERNATIVE (TECHNOLOGY AND SITE)              | 26 |
| 6.0 ENVIRONMENT MONITORING PROGRAMME                           | 27 |
| 7.0 ADDITIONAL STUDIES                                         | 28 |
| 7.1: RISK ASSESSMENT                                           | 28 |
| 8.0 BUDGETARY PROVISIONS TOWARDS ENVIRONMENTAL MANAGEMENT PLAN | 29 |
| 9.0 GREENBELT DEVELOPMENT PLAN                                 | 30 |
| 10.0 CORPORATE ENVIRONMENT RESPONSIBILITY PLAN                 | 30 |
| 11.0 RAINWATER AND STORMWATER HARVESTING PLAN                  | 30 |
| 12.0 CONCLUSIONS                                               | 31 |

# LIST OF TABLES

| Table 1 Salient features of the project site                                                          | I   |
|-------------------------------------------------------------------------------------------------------|-----|
| Table 2 Existing and Proposed Products manufacturing quantities                                       | 2   |
| Table 3 Raw material requirement and its source for sugar unit                                        | 3   |
| Table 4 Raw material requirement and its source for distillery unit                                   | 3   |
| Table 5 Landuse breakup                                                                               | 4   |
| Table 6 Details of the power requirement                                                              |     |
| Table 7 Water Consumption Details                                                                     | 5   |
| Table 8 Water Budget -Sugar and Co-generation Power Plant                                             | 1   |
| Table 9 Water consumption details for various raw materials                                           | 5   |
| Table 10 Wastewater generation details for various raw materials                                      | 5   |
| Table 11 Treated effluent recycled from ZLD System for various raw materials                          | 5   |
| Table 12 Net freshwater requirement for various raw materials for industrial purpose                  | 6   |
| Table 13 Details of effluent generation, treatment scheme and disposal arrangement for sugar unit and | co- |
| generation power plant                                                                                | 6   |
| Table 14 Details of boilers and its APC equipment for existing as well as proposed                    | 7   |
| Table 15 Details of non-hazardous waste generated and its disposal                                    | 8   |
| Table 16 Details of hazardous waste generated and its disposal                                        | 8   |
| Table 17 Receptor summary                                                                             | 10  |
| Table 18 Ambient air quality monitoring results                                                       | 11  |
| Table 19 Details of the incremental concentrations due to proposed expansion                          | 12  |
| Table 20 Details of the ground water quality monitoring sampling locations                            | 14  |
| Table 21 Groundwater analysis report within 10 km radius of the study area                            | 15  |
| Table 22 Details of surface water quality monitoring locations                                        |     |
| Table 23 Surface water analysis report within 10 km radius of the study area                          |     |
| Table 24 Water Analysis Results                                                                       |     |
| Table 25 Details of the soil sampling locations                                                       | 20  |
| Table 26 Soil Analysis report within 10 km radius of the study area                                   | 21  |
| Table 27 Details of noise quality monitoring locations                                                | 22  |
| Table 28 Noise levels of the study area                                                               | 23  |
| Table 29 Land use/ Land cover areas in km <sup>2</sup> around 10 km radius for project site           | 24  |
| Table 30 Environment management programme                                                             |     |
| Table 31 EMP Budget                                                                                   |     |
| Table 32 Rain water harvesting quantity                                                               |     |
| Table 33 Quantity of Storm water per annum                                                            | 30  |

# LIST OF FIGURES

| Figure 1 Material balance flow sheet for C Molasses as raw material                       | 2  |
|-------------------------------------------------------------------------------------------|----|
| Figure 2 Material balance flow sheet for B Heavy Molasses as raw material                 | 3  |
| Figure 3 Material balance flow sheet for Sugarcane Juice or Syrup as raw material         | 4  |
| Figure 4 Windrose diagram for the study area (blowing from)                               | 9  |
| Figure 5 10 km. radius study area map indicating Ambient air quality monitoring locations | 10 |
| Figure 6 10 km. radius study area map indicating groundwater sampling location            | 14 |
| Figure 7 10 km. radius study area map indicating surface water sampling location          | 17 |
| Figure 8 10 km. radius study area map indicating soil sampling location                   | 20 |
| Figure 9 10 km. radius study area map indicating noise quality sampling location          | 23 |
| Figure 10 Pie chart of LULC classes around 10 km radius of Project site                   | 25 |

#### **EXECUTIVE SUMMARY**

#### 1. 0 INTRODUCTION

M/s. Onkar Sakhar Karkhana Private Limited (OSKPL) is a private limited company and is located Post Chandapuri, Taluka: Malshiras, District: Solapur. The industry is registered under the State of Maharashtra under the Companies Act, 2013 bearing certificate of incorporation CIN number U74999PN2017PTC168931 dated February 15, 2007. The industry started its first crushing operation in the year 2013 with the installed capacity of 2500 TCD. The industry proposes to expands sugarcane crushing capacity from 1200 TCD to 4700 TCD, establishment of Co-generation power plant capacity of 20 MW and establishment of 150 KLPD distillery unit to produce 150 KLPD RS/ENA/Ethanol based on C Molasses/B Heavy Molasses/sugarcane juice/syrup as raw material.

The command area is rich in sugarcane cultivation and has excellent irrigation facilities. Considering the Sugarcane cultivation potential and the availability of sugarcane in the command area the industry proposes to expand its sugarcane crushing capacity from 1200 TCD to 4700 TCD and Co-generation power plant capacity of 20 MW in order to utilized additional bagasse generated after the proposed expansion of sugar unit. The industry also proposes to establish 150 KLPD distillery to consume the available molasses from its own sugar unit and utilize sugarcane juice/syrup for the production of RS/ENA/Ethanol.

#### 1.1 PROJECT LOCATION

The salient features of the project site are

Table 1 Salient features of the project site

| Sr.<br>No. | Features                                                                         | Description                                | Direction wrt site           |   |
|------------|----------------------------------------------------------------------------------|--------------------------------------------|------------------------------|---|
| 1.         | latitude                                                                         | 17°44'31.25"N                              |                              |   |
| 2.         | Longitude                                                                        | 74°56'42.19"E.                             |                              |   |
| 3.         | Elevation above MSL                                                              | 534 meters                                 |                              |   |
| 4.         | Nearest City/Town                                                                | Malshiras~18 Km                            | NNE                          |   |
| -          | N                                                                                | Chandapuri~1.3Km                           | SE                           |   |
| 5.         | Nearest Village                                                                  | Nimgaon~5 Km                               | NE                           |   |
| 6          | Dood                                                                             | National Highway No 548E ~, 1.7 Km         | S                            |   |
| 0.         | 6. Road                                                                          | State Highway No 15                        | State Highway No 153 ~3.9 Km | Е |
|            |                                                                                  | Nimgaon Lake~2.0Km                         | Е                            |   |
| 7.         | Nearest water body                                                               | Neera River right canal~ 0.03Km            | Е                            |   |
|            |                                                                                  | Bhima River~30Km                           | Е                            |   |
| 8.         | Railway Station                                                                  | Pandharpur, 50 Km                          | Е                            |   |
| 9.         | Airport                                                                          | Solapur Airport, 130 Km                    | EES                          |   |
| 10.        | Protected Area for reserved forest Protected forest near Tarangfal village ~ 3Km |                                            | NNW                          |   |
|            |                                                                                  | Rreserved forest 1 ~ 3 Km near Tarangfal   | N                            |   |
| 11.        | Reserved Forests                                                                 | Reserved forest 2 ~near garvad village~3Km | W                            |   |
|            |                                                                                  | Reserved forest 3 near Ladevasti ~2.59Km   | SW                           |   |

| Sr.<br>No. | Features                                | Description                                 | Direction wrt site |  |  |  |
|------------|-----------------------------------------|---------------------------------------------|--------------------|--|--|--|
|            |                                         | Reserved forest 4 near Nimgaon Lake~3.91 Km | Е                  |  |  |  |
| 12.        | Wildlife Sanctuary                      | fe Sanctuary None within 10 Km              |                    |  |  |  |
| 13.        | Archeological site                      | None within 10 km                           |                    |  |  |  |
| 14.        | State boundary                          | None within 10 km                           |                    |  |  |  |
| 15.        | Defense installations None within 10 km |                                             |                    |  |  |  |
| 16.        | Average Rainfall                        | 524.9 mm                                    |                    |  |  |  |
| 17.        | Seismicity                              | III                                         |                    |  |  |  |

#### 2.0 PROJECT DESCRIPTION

The details about the maufacturing capacity of existing unit as well as after the proposed expansion are given in table below

**Table 2 Existing and Proposed Products manufacturing quantities** 

| Sr.<br>No. | Description              | Unit | Existing Capacity | Proposed<br>Capacity | Total | Remark                                                                                                     |
|------------|--------------------------|------|-------------------|----------------------|-------|------------------------------------------------------------------------------------------------------------|
| 1.         | Sugar Unit               | TCD  | 1200              | 3500                 | 4700  | Steam and Power                                                                                            |
| 2          | Co-generation Power      | MW   | 00                | 20                   | 20    | will be taken from                                                                                         |
| 3.         | Distillery Unit          | KLPD | 00                | 150                  | 150   | proposed 110 TPH Boiler and 20 MW TG Set. Existing 1*35 TPH boiler will be kept as Standby after expansion |
|            | Rectified Spirit or      |      | 00                | 150                  | 150   | 0.1                                                                                                        |
| a          | Extra Neutral Alcohol or | KLPD | 00                | 150                  | 150   | Only one product at a time                                                                                 |
|            | Ethanol                  |      | 00                | 150                  | 150   | time                                                                                                       |
| b          | Power from TG Set        | MW   | 00                | 3.0                  | 3.0   | TG Set Connected to proposed 30 TPH incineration Boiler                                                    |

# 2.1 RESOURCE REQUIREMENT AND INFRASTRUCTURE FACILITIES

#### A) Raw material requirement

The details of the raw material requirement for sugar and distillery unit and its source are given in table below. The sugarcane is transported in bullock cart, Truck, Tractors etc and other chemicals are transported to the site through designated vehicles by Pakka Roads. The other raw materials like bagasse and Molasses are produced from its own sugar unit. In case of shortage of molasses, it shall be purchased from nearby sugar industries.

#### Sugar and Cogeneration power plant division

Table 3 Raw material requirement and its source for sugar unit

| Sr. |                         | Item Quantity U    |          | T I-a:4  | Commo    |        |                                                                                                                                           |
|-----|-------------------------|--------------------|----------|----------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|
| No. | _ I                     | tem                | Existing | Proposed | Total    | Unit   | Source                                                                                                                                    |
| 1   | Sugar Cane              |                    | 1200     | 3500     | 4700     | MT/day | Farmers within command area                                                                                                               |
|     |                         |                    |          | Consumab | le Chemi | cals   |                                                                                                                                           |
| 1   | S                       | ulfur              | 667      | 1925     | 2592     | Kg/Day |                                                                                                                                           |
| 2   | I                       | Lime               | 1800     | 5250     | 7050     | Kg/Day | Open Market                                                                                                                               |
| 3   | _                       | phosphoric<br>Acid | 84       | 245      | 329      | Kg/Day | Open Warket                                                                                                                               |
|     |                         |                    |          | Uti      | ilities  | •      |                                                                                                                                           |
| 1   | Total Steam Requirement |                    | 24       | 80       | 104      | ТРН    | 110 TPH New Boiler (Existing 35 TPH boiler will be kept as standby after expansion)                                                       |
| 2   | Fuel                    | Bagasse            | 15.9     | 34.10    | 50       | TPH    | Sugar unit                                                                                                                                |
|     |                         | Domestic           | 90       | 0        | 90       |        | Zero water requirement for industrial purpose due to all                                                                                  |
| 3   | Water                   | Industrial         | 00       | 00       | 00       | CMD    | the condensate will be recycled after treatment, in fact 210 CMD water saved and used for distillery usages.  90 CMD for Domestic purpose |
| 4   | 4 Power                 |                    | 1.36     | 5.36     | 6.72     | MW     | Own Co-generation power plant                                                                                                             |
| 5   | Mai                     | npower             | 250      | 120      | 370      | Nos    | Local                                                                                                                                     |

Table 4 Raw material requirement and its source for distillery unit

| Sr.<br>No.          | Item                        | Quantity | Unit   | Remarks/Source                                                       |  |  |
|---------------------|-----------------------------|----------|--------|----------------------------------------------------------------------|--|--|
| 150 KLPD Distillery |                             |          |        |                                                                      |  |  |
| 1 a                 | B Heavy molasses OR         | 470      | MT/day | Distillery unit will run for 150 days (During off season) on B heavy |  |  |
| 1 b                 | C Molasses                  | 580      | MT/day | molasses available from our existing unit                            |  |  |
|                     | Sugar cane juice OR         | 2000     |        | Distillery unit will be run for 180 days                             |  |  |
| 2                   | Sugar cane Syrup            | 1000     | MT/day | During crushing season (Equivalent sugarcane 200 TCD)                |  |  |
| Consu               | mable Chemicals             |          |        |                                                                      |  |  |
| 1                   | Sodium Meta bi-<br>sulphate | 75       | Kg/Day | Stored in Fermentation house                                         |  |  |
| 2                   | De-foam agent               | 150      | Kg/Day | Source: Market Mumbai, Pune, Solapur                                 |  |  |

| Sr.<br>No. | Item                           |                         | Quantity | Unit   | Remarks/Source                                                                                                                           |
|------------|--------------------------------|-------------------------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------|
| 3          | Nutrients<br>(Fertilizers DAP) |                         | 130      | Kg/Day |                                                                                                                                          |
| 4          |                                | Enzymes                 | 40       | Kg/Day |                                                                                                                                          |
| Utiliti    | es                             |                         |          |        |                                                                                                                                          |
| 1          | Total                          | requirement of<br>Steam | 28.125   | ТРН    | Proposed 30 TPH Incinerator boiler                                                                                                       |
| 2          |                                | Conc. Spent wash        | 361      | MT/Day | Source: Conc. Spent wash & bagasse – Own sugar unit.                                                                                     |
| 3          |                                | Bagasse OR              | 154      | MT/Day | Coal – Open Market                                                                                                                       |
| 4          | Fuel                           | Coal                    | 79       | MT/day | Remark: In case of shortage of bagasse coal shall be used as fuel.  Fuel - [(Conc. Spent wash + Bagasse)  OR  (Conc. Spent wash + Coal)] |
| _          | ***                            | Domestic use            | 5 CMD    |        | Source: -<br>Nira River Right Canal                                                                                                      |
| 5          | Water                          | Distillery Unit         | 539 CMD  | CMD    | Process condensate and dilute effluent recycled after treatment                                                                          |
| 6          | Power                          |                         | 2.5      | MW     | Proposed 3 MW TG Set connected to Incinerator boiler.                                                                                    |
| 7          | - I                            | Man power               | 90       | No.    | Local                                                                                                                                    |

#### B) Land use Details

Details of existing and proposed land utilization pattern within the project site is given in table below

Table 5 Landuse breakup

| Sr. No. | Description            | Area in  | Sq. Mt.  | % Of To | tal Area |  |
|---------|------------------------|----------|----------|---------|----------|--|
| 1       | Built-up Area          |          |          |         |          |  |
|         | Existing -             | 8251.176 | 20491.38 | 5.09    | 12.58    |  |
|         | Proposed -             | 12140.2  | 20491.36 | 7.49    | 12.36    |  |
| 2       | Area Under Utility     |          |          |         |          |  |
|         | Existing -             | 8329.224 | 13718.04 | 5.14    | 8.47     |  |
|         | Proposed -             | 5388.818 | 13/16.04 | 3.33    | 0.47     |  |
| 3       | Parking Area           | 21546.63 |          | 13.     | 30       |  |
| 4       | 4 Area Under Road      |          | 18346.81 |         | 33       |  |
| 5       | Green Belt Development | 54134.09 |          | 33.     | 42       |  |
| 6       | 6 Open Space           |          | 33863.03 |         | 90       |  |
|         | Total                  | 162      | 000      | 10      | 0        |  |

#### C) Power Requirement

At present, the power requirement is 1.36 MW. Additional 7.86 MW of power will be required after the proposed expansion/establishment. Thus, the total power requirement after the proposed expansion will be 9.22 MW. The details of which are given in table below.

Table 6 Details of the power requirement

| Sr.<br>No | Unit                                    | Existing (MW) | Proposed (MW) | Total<br>(MW) | Source                                                |
|-----------|-----------------------------------------|---------------|---------------|---------------|-------------------------------------------------------|
| 1.        | Sugar Unit and cogeneration power plant | 1.36          | 5.36          | 6.72          | Proposed own 20 MW Cogeneration power plant.          |
| 2.        | Distillery Unit                         | 00            | 2.5           | 2.5           | Proposed 3 MW TG Set connected to Incinerator boiler. |
|           | Total                                   | 1.36          | 7.86          | 9.22          |                                                       |

#### **D) Water Consumption Details**

Source of water is Nira Right Bank Canal, which is adjacent to the project site. The necessary Application for seeking the permission is Submitted to Irrigation Authority and it is under process

**Table 7 Water Consumption Details** 

| Description                                | Quantity   | Remarks                                                                                                                |  |
|--------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------|--|
| Domestic use                               | 95 CMD     | For Sugar division 90 CMD and for Distillery division 5 CMD                                                            |  |
| Sugar and Co-<br>generation Power<br>Plant | 0 CMD      | Due to excess condensate available from Sugar unit, there s not be any water requirement for sugar and co-generation u |  |
|                                            | 585 CMD OR | When C Molasses used as raw material                                                                                   |  |
| Distillery Unit                            | 533 CMD OR | When B Heavy Molasses used as raw material                                                                             |  |
|                                            | 408 CMD    | When Juice/syrup Molasses used as raw material                                                                         |  |

#### **Sugar and Cogeneration power plant Division**

The detailed water budget for sugar, cogeneration unit and distillery unit are as under.

**Table 8 Water Budget -Sugar and Co-generation Power Plant** 

| Sr.<br>No. | Details                           |     | Require<br>(KLD) | ement | Consu  | mption/I | Losses | Reus | se / Reco<br>(KLD) | very | Wast | e Gener<br>(KLD) | ation | Remark                                                 |  |
|------------|-----------------------------------|-----|------------------|-------|--------|----------|--------|------|--------------------|------|------|------------------|-------|--------------------------------------------------------|--|
| 110.       |                                   | E   | P                | T     | Е      | P        | T      | E    | P                  | T    | E    | P                | Т     |                                                        |  |
|            |                                   |     |                  |       | Domest | ic Purpo | se     |      |                    |      | •    | •                |       |                                                        |  |
| 1          | Domestic                          | 60  | 30               | 90    | 20     | 10       | 30     | 0    | 0                  | 0    | 40   | 20               | 60    | Used for gardening                                     |  |
|            | Industrial Purpose                |     |                  |       |        |          |        |      |                    |      |      |                  |       |                                                        |  |
| 1          | Boiler 110 TPH                    | 00  | 2410             | 2410  | 00     | 155      | 155    | 00   | 2200               | 2200 | 00   | 55               | 55    | 625 KLD of                                             |  |
| 2          | DM Plant                          | 00  | 230              | 230   | 00     | 210      | 210    | 0    | 0                  | 0    | 00   | 20               | 20    | treated effluent                                       |  |
| 3          | Process water                     | 35  | 100              | 135   | 7      | 18       | 25     | 0    | 0                  | 0    | 28   | 82               | 110   | shall be recycled                                      |  |
| 4          | Washing of equipment              | 10  | 30               | 40    | 0      | 0        | 0      | 0    | 0                  | 0    | 10   | 30               | 40    | after RO treatment. [RO                                |  |
| 5          | Condenser Water                   | 0   | 0                | 0     | 0      | 0        | 0      | 180  | 525                | 705  | 0    | 0                | 0     | permeate 405                                           |  |
| 6          | Spray pond<br>blowdown            | 180 | 525              | 705   | 90     | 265      | 355    | 0    | 0                  | 0    | 90   | 260              | 350   | KLD, RO reject<br>200 KLD and 20                       |  |
| 7          | Cooling tower                     | 00  | 360              | 360   | 00     | 310      | 310    | 0    | 0                  | 0    | 00   | 50               | 50    | KLD Loss (i.e.,                                        |  |
| 8          | Recycling of<br>Excess Condensate | 0   | 0                | 0     | 0      | 0        | 0      | 180  | 525                | 705  | 0    | 0                | 0     | 200 KLD shall<br>be used for<br>greenbelt<br>purpose)] |  |
| 9          | Recycle of treated effluent       | 0   | 0                | 0     | 0      | 0        | 0      | 40   | 365                | 405  | 0    | 0                | 0     |                                                        |  |
|            | Total                             | 225 | 3655             | 3880  | 97     | 958      | 1055   | 400  | 3615               | 4015 | 128  | 497              | 625   |                                                        |  |

#### Net Water saving would be:

**Industrial Purpose:** 3880 - 4015 = -135 KLD. (**135 KLD** of water shall be saved)

Due to excess condensate available from Sugar unit, there shall not be any water requirement for sugar and co-generation unit.

#### **Domestic Purpose:**

At present water requirement is 60 KLD and additionally 30 KLD after the proposed expansion i.e., total of 90 KLD.]

#### Water Budget for Distillery unit

#### For "C" molasses as raw material

#### Daily Water Requirement - 585 MT/D Fresh water + 1340 MT/D Treated water (1925 MT/D & 5 MT/D Domestic)

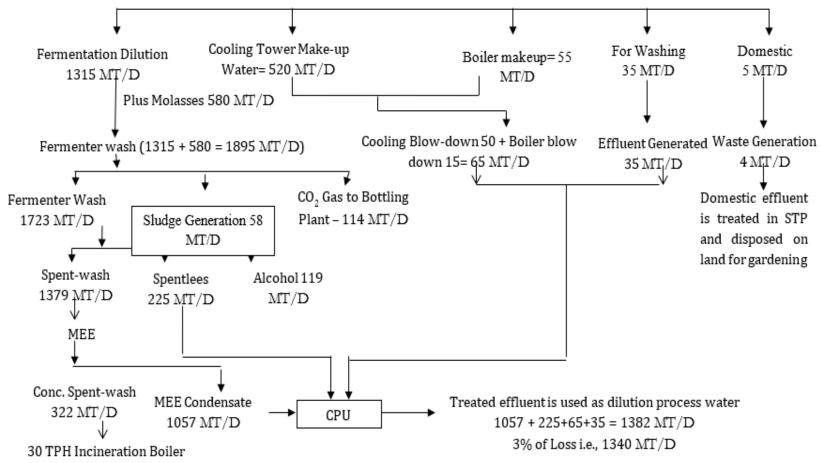



Figure 1 Material balance flow sheet for  $\boldsymbol{C}$  Molasses as raw material

#### For "B" Heavy molasses as raw material

#### Daily Water Requirement - 533 MT/D Fresh water + 1097 MT/D Treated water (1630 MT/D & 5 MT/D Domestic)

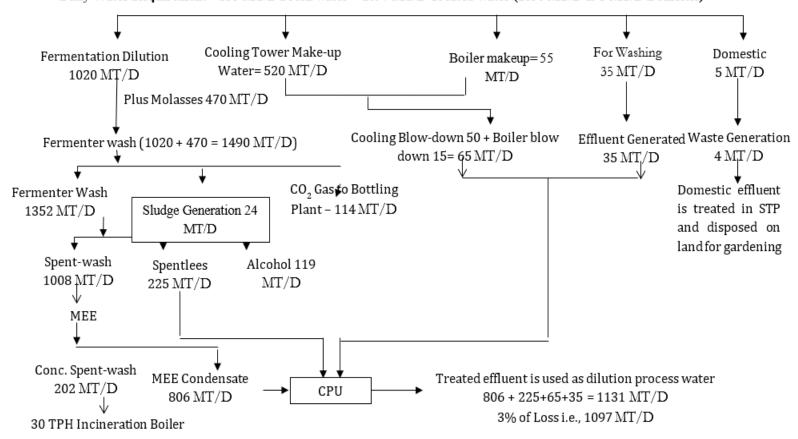
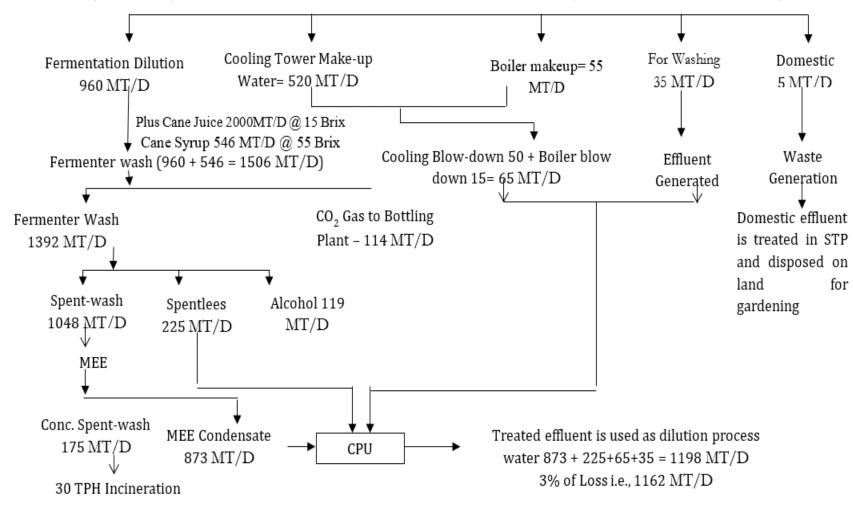




Figure 2 Material balance flow sheet for B Heavy Molasses as raw material

#### For Sugarcane juice/Syrup as raw material

#### Daily Water Requirement - 372 MT/D Fresh water + 1198 MT/D Treated water (1570 MT/D & 5 MT/D Domestic)



 $Figure\ 3\ Material\ balance\ flow\ sheet\ for\ Sugarcane\ Juice\ or\ Syrup\ \ as\ raw\ material$ 

### **Distillery Division**

Table 9 Water consumption details for various raw materials

| Sr. |                      |                             | Water consumption (MT/D) |                           |  |  |  |  |  |  |  |  |
|-----|----------------------|-----------------------------|--------------------------|---------------------------|--|--|--|--|--|--|--|--|
| No. | Propose              | C Molasses B heavy molasses |                          | Sugarcane juice/<br>syrup |  |  |  |  |  |  |  |  |
|     | Domestic             |                             |                          |                           |  |  |  |  |  |  |  |  |
| 1   | Domestic             | 5                           | 5                        | 5                         |  |  |  |  |  |  |  |  |
|     |                      | Industr                     | ial                      |                           |  |  |  |  |  |  |  |  |
| 1   | Process              | 1315                        | 1020                     | 960                       |  |  |  |  |  |  |  |  |
| 2   | Boiler make up       | 55                          | 55                       | 55                        |  |  |  |  |  |  |  |  |
| 3   | Cooling tower makeup | 520                         | 520                      | 520                       |  |  |  |  |  |  |  |  |
| 4   | Washings             | 35                          | 35                       | 35                        |  |  |  |  |  |  |  |  |
|     | Total                | 1925                        | 1630                     | 1570                      |  |  |  |  |  |  |  |  |

Table 10 Wastewater generation details for various raw materials

| Sr.  |                         | Wastewat   | er Generatio | on (MT/D)                 |                                                 |
|------|-------------------------|------------|--------------|---------------------------|-------------------------------------------------|
| No.  | Propose                 | C Molasses |              | Sugarcane<br>juice/ syrup | Remarks                                         |
| Dom  | estic                   |            |              |                           |                                                 |
| 1    | Domestic                | 4          | 4            | 4                         | To proposed STP                                 |
| Indu | strial                  |            |              |                           |                                                 |
| 1    | Process                 |            |              |                           |                                                 |
| a    | Conc. Spentwash         | 322*       | 202*         | 175*                      | Burnt in to Proposed 30 TPH incineration boiler |
| b    | Spentlees               | 225        | 225          | 225                       |                                                 |
| С    | MEE Condensates         | 1057       | 806          | 873                       | To CDII and marvaled                            |
| 2    | Boiler blow down        | 15         | 15           | 15                        | To CPU and recycled                             |
| 3    | Cooling tower blow down | 50         | 50           | 50                        | back as process water                           |
| 4    | Washings                | 35         | 35           | 35                        |                                                 |
|      | Total                   | 1382       | 1131         | 1198                      |                                                 |

Table 11 Treated effluent recycled from ZLD System for various raw materials

| Sr. |                   | Wast     | ewater Gen               | eration (CMD) |                         |  |
|-----|-------------------|----------|--------------------------|---------------|-------------------------|--|
| No. | Propose           | С        | B heavy Sugarcane juice/ |               | Remarks                 |  |
|     |                   | Molasses | molasses                 | syrup         |                         |  |
| 1   | Treated effluent  | 1340     | 1097                     | 1162          | After treatment in CPU  |  |
|     | recycled from CPU | 1540     | 1097                     | 1102          | (Considering 3% Losses) |  |

Table 12 Net freshwater requirement for various raw materials for industrial purpose

| Sr.        |                                            | Wastewater Generation (CMD) |          |                  |  |  |  |  |  |  |  |
|------------|--------------------------------------------|-----------------------------|----------|------------------|--|--|--|--|--|--|--|
| No.        | Propose                                    | C                           | B heavy  | Sugarcane juice/ |  |  |  |  |  |  |  |
|            |                                            | Molasses                    | molasses | syrup            |  |  |  |  |  |  |  |
| Industrial |                                            |                             |          |                  |  |  |  |  |  |  |  |
| 1          | Total water consumption including domestic | 1925                        | 1630     | 1570             |  |  |  |  |  |  |  |
| 2          | Treated effluent recycled from CPU         | 1340                        | 1097     | 1162             |  |  |  |  |  |  |  |
|            | Net fresh water requirement                | 585                         | 533      | 408              |  |  |  |  |  |  |  |
|            | KL/KL of Alcohol                           | 3.90                        | 3.55     | 2.72             |  |  |  |  |  |  |  |

#### E) Wastewater generation and its treatment technology

#### Sugar and Co-generation power plant

Table 13 Details of effluent generation, treatment scheme and disposal arrangement for sugar unit and co-generation power plant

| Sr.<br>No. | Description                        | Quantity<br>CMD | Treatment technology and disposal                                                                                                               |  |  |  |  |  |
|------------|------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1          | Sugar factory trade effluent 150   |                 | All wastewater generated shall be treated in existing ETP                                                                                       |  |  |  |  |  |
| 2          | Co-generation Power plant effluent | 125             | after up-gradation followed by RO and recycled back in<br>to process and RO reject of 200 KLD shall be used for<br>greenbelt/gardening purpose. |  |  |  |  |  |
| 4          | Spray pond overflow                | 350             | greenben/gardening purpose.                                                                                                                     |  |  |  |  |  |
|            | Excess Condensates                 | 705             | Treated in condensate polishing unit based on primary, secondary and tertiary treatment and reused as process water or utilities.               |  |  |  |  |  |
| 5          | Domestic effluent                  | 60              | Treated in STP and disposed on land for gardening.                                                                                              |  |  |  |  |  |

#### **Distillery unit**

The industry shall adopt Zero Liquid Discharge System for the treatment of wastewater generated from the proposed distillery unit. The effluent streams are separated into strong stream (Spent wash) and weak stream (Spent lees, Utilities process condensates etc). The raw spent wash is treated based on Concentration and Incineration principles.

#### A) C Molasses as raw material: -

The raw spent wash (1379 MT/D) shall be concentrated in MEE [322 MT/D]. The evaporator condensates (1057 MT/D) shall be treated in proposed condensate polishing unit based on primary, secondary and tertiary treatment along with other dilute effluent streams (Spentlees-225 MT/D, Boiler blow down of 15 MT/D, Cooling tower blow down of 50 MT/D, and Fermenter washings of 35 MT/D totaling to 325 MT/D). Total effluent going to CPU shall be 1382 MT/D out of which 3% losses and remaining 1340 CMD shall be recycled back as process water or make up water for cooling tower and boiler.

#### B) B' Heavy Molasses as raw material:

The raw spent wash (1008 MT/D) shall be concentrated in MEE [202 MT]. The evaporator condensates (806 CMD) shall be treated in proposed condensate polishing unit based on primary, secondary and tertiary

treatment along with other dilute effluent streams (Spentlees-225 MT/D, Boiler blow down of 15 MT/D, Cooling tower blow down of 50 MT/D, and Fermenter washings of 35 MT/D totaling to 325 MT/D). Total effluent going to CPU shall be 1131 MT/D out of which 3% losses and remaining 1097 MT/D shall be recycled back as process water or make up water for cooling tower and boiler.

#### C) Sugarcane Juice/ Syrup as raw material:

The raw spent wash (1048 MT/D) shall be concentrated in MEE (175 MT). The evaporator condensates (873 MT/D) shall be treated in proposed condensate polishing unit based on primary, secondary and tertiary treatment along with other dilute effluent streams (Spentlees-225 MT/D, Boiler blow down of 15 MT/D, Cooling tower blow down of 50 MT/D, and Fermenter washings of 35 MT/D totaling to 325 CMD). Total effluent going to CPU shall be 1198 MT/D out of which 3% losses and remaining 1162 MT/D shall be recycled back as process water or make up water for cooling tower and boiler.

#### F) Air Emission Management

Table 14 Details of boilers and its APC equipment for existing as well as proposed

| Sr.<br>No. | Stack Attached to                                                | Type of Fuel           | Minimum<br>Stack<br>Required in<br>meter | Stack Height in meter Based on SO2 Emission                                      | APC Equipment                                                                                      |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------------|------------------------|------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Boiler     | Boiler and its APC Equipment's and Stack Height Details          |                        |                                          |                                                                                  |                                                                                                    |  |  |  |  |  |  |  |
| 1          | Existing 35 TPH & Proposed 110 TPH                               | I Bagasse I            |                                          | 60 (Existing Stack is Adequate for existing 35 TPH and proposed 110 TPH boilers) | Multi-cyclone Dust Collector for existing 35 TPH boiler and Bag-Filter for proposed 110 TPH boiler |  |  |  |  |  |  |  |
| 2          | 1*30 TPH                                                         | Conc SW + Bagasse      | 68.10                                    | 72                                                                               | ESP                                                                                                |  |  |  |  |  |  |  |
|            | Incineration Boiler                                              | Conc SW + Coal         | 69.91                                    | 12                                                                               | LSI                                                                                                |  |  |  |  |  |  |  |
| TG Se      | et and its APC Equipm                                            | ent's and Stack Height | Details                                  |                                                                                  |                                                                                                    |  |  |  |  |  |  |  |
| 3          | Existing - DG Set<br>2*320 KVA<br>Proposed - DG Set<br>1*750 KVA | HSD                    | -                                        | 6.0 meter above roof level                                                       | -                                                                                                  |  |  |  |  |  |  |  |

#### **G)** Solid waste Management

#### a) Non-Hazardous solid wastes details

Table 15 Details of non-hazardous waste generated and its disposal

| Sr.<br>No. | Description   | of waste                                                  |            | Quantity                                                             | Mode of Collection and<br>Disposal                                |  |  |  |
|------------|---------------|-----------------------------------------------------------|------------|----------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| 1.         | 110 TPH       | from Existing 35 TPl<br>5 TPH boiler shall be<br>pansion] |            | Existing 35 TPH Boiler – 5.73 MT/D Proposed 110 TPH Boiler - 18 MT/D | All the solid wastes are mixed with Press mud/ETP sludge and sold |  |  |  |
| 2.         | ETP Sludge    |                                                           |            | 131 MT/A                                                             | as manure.                                                        |  |  |  |
| 3.         | Press mud     |                                                           |            | 188 MT/D                                                             |                                                                   |  |  |  |
|            |               | C Molasses Conc.                                          | Bagasse OR | 53.125 MT/D                                                          |                                                                   |  |  |  |
|            |               | SW                                                        | Coal       | 61.52 MT/D                                                           |                                                                   |  |  |  |
| 4.         | Incinerator   | B Heavy Molasses                                          | Bagasse OR | 34.87 MT/D                                                           | Sold as potash rich                                               |  |  |  |
| 4.         | boiler Ash    | Conc. SW                                                  | Coal       | 48.32 MT/D                                                           | manure to farmers.                                                |  |  |  |
|            |               | Cane Syrup/Juice                                          | Bagasse OR | 30.87 MT/D                                                           |                                                                   |  |  |  |
|            |               | Conc. SW                                                  | Coal       | 51.60 MT/D                                                           |                                                                   |  |  |  |
| Othe       | er Solid Wast | tes                                                       |            |                                                                      |                                                                   |  |  |  |
| 1.         | Paper waste   |                                                           |            | 0.01 MT/M                                                            | Manually collected and stored in a designated area                |  |  |  |
| 2.         | Plastic waste | e                                                         |            | 0.01 MT/M                                                            | and sold to scrap vendors                                         |  |  |  |
| 3.         | Municipal S   | olid waste                                                |            |                                                                      |                                                                   |  |  |  |
|            | Non-Biodeg    | radable                                                   |            | 100 Kg/M                                                             | Manually collected and sold to scrap vendors                      |  |  |  |
|            | Bio-degrada   | ıble                                                      |            | 1 MT/M                                                               | Used in Composting                                                |  |  |  |

#### **b.** Hazardous Waste

Table 16 Details of hazardous waste generated and its disposal

| Sr. No. | Category | Description of waste | Quantity | Mode of Collection and Disposal                                                          |
|---------|----------|----------------------|----------|------------------------------------------------------------------------------------------|
| 1.      | 5.1      | Used Oil             | 1.3 KLA  | Shall be collected in Leak Proof Containers and utilized as lubricant for bullock carts. |

# 3. 0 BASELINE ENVIRONMENTAL STATUS

#### 3.1 AIR ENVIRONMENT

#### 3.1.1 METEOROLOGICAL CHARACTERISTICS OF THE STUDY AREA

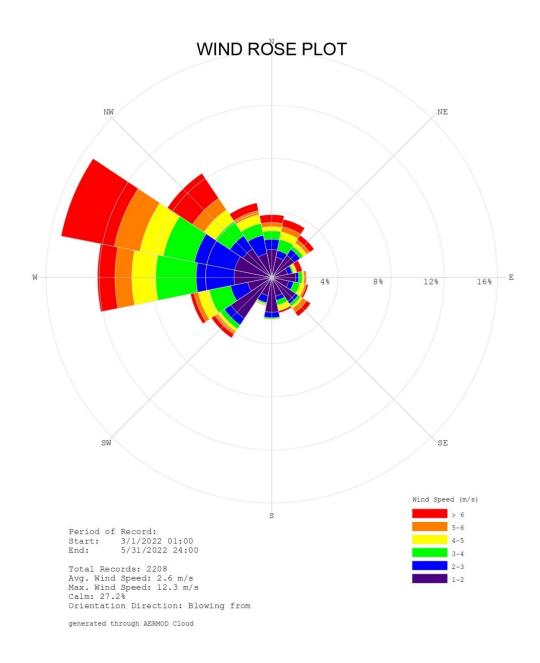



Figure 4 Windrose diagram for the study area (blowing from)

From **Figure 2** it can be seen that the Average wind speed of the study period is 2.6 m/s. and the predominant wind direction is from Northwest-west to Southeast-east direction. This has been used in selecting the receptors.

**Table 17 Receptor summary** 

| Sr.<br>No. | Symbol  | Description                                              | Latitude      | Longitude     | Distance | Direction<br>(in degree) |
|------------|---------|----------------------------------------------------------|---------------|---------------|----------|--------------------------|
|            | Stack 1 | Existing (60 m)                                          | 17°44'31.41"N | 74°56'40.06"E |          |                          |
|            | Stack 2 | Proposed (72 m)                                          | 17°44'19.28"N | 74°56'50.56"E |          |                          |
| 1          | A1      | Near Entry Gate (Within Industry premises)               | 17°44'32.52"N | 74°56'43.42"E |          |                          |
| 2          | A2      | Near Proposed Distillery Unit (Within Industry premises) | 17°44'20.35"N | 74°56'54.29"E |          |                          |
| 3          | A3      | Near Maldoli                                             | 17°43'33.76"N | 75° 2'11.20"E | 9.55     | 98.46                    |
| 4          | A4      | Near Hanuman Mandir<br>Chandapuri                        | 17°43'48.34"N | 74°57'33.75"E | 1.59 Km  | 126.91                   |
| 5          | A5      | Near Nimgaon                                             | 17°45'48.47"N | 74°59'13.88"E | 5.02 Km  | 56.65                    |
| 6          | A6      | Near Piliv                                               | 17°40'42.70"N | 74°58'1.80"E  | 6.98     | 162.60                   |
| 7          | A7      | Near Tarangfal                                           | 17°46'29.95"N | 74°55'29.43"E | 4.65 Km  | 329.29                   |
| 8          | A8      | Near Bhandewasti                                         | 17°42'49.14"N | 74°53'56.72"E | 5.82 Km  | 241.35                   |

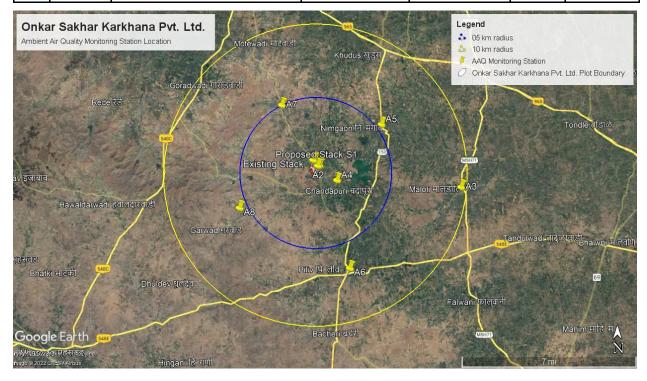



Figure 5 10 km. radius study area map indicating Ambient air quality monitoring locations

Table 18 Ambient air quality monitoring results

|     |           |                 | Dollartont       | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | NO <sub>2</sub> | CO         |
|-----|-----------|-----------------|------------------|------------------|-------------------|-----------------|-----------------|------------|
| Sr. | Da        | ceptor/ Village | Pollutant        | $(\mu g/m^3)$    | $(\mu g/m^3)$     | $(\mu g/m^3)$   | $(\mu g/m^3)$   | $(mg/m^3)$ |
| No. | Re        | ceptor/ vmage   | NAAQ<br>Standard | 100              | 60                | 80              | 80              | 04 (1 hr)  |
|     |           | Near Entry      | Maximum          | 61.10            | 40.90             | 24.60           | 29.90           | 1.50       |
| 1   | <b>A1</b> | Gate (Within    | Minimum          | 49.20            | 25.20             | 11.64           | 16.50           | 0.70       |
| 1   | AI        | Industry        | Average          | 55.80            | 35.90             | 20.67           | 25.91           | 1.07       |
|     |           | premises)       | 98 Percentile    | 60.32            | 40.02             | 23.87           | 29.33           | 1.50       |
|     |           | Near Proposed   | Maximum          | 62.20            | 41.30             | 24.80           | 29.30           | 1.60       |
|     |           | Distillery Unit | Minimum          | 50.30            | 25.90             | 12.54           | 17.84           | 0.80       |
| 2   | <b>A2</b> | (Within         | Average          | 56.55            | 36.25             | 21.51           | 26.15           | 1.22       |
|     |           | Industry        | 98 Percentile    | 61.00            | 40.47             | 24.33           | 28.83           | 1.60       |
|     |           | premises)       |                  |                  |                   |                 |                 |            |
|     |           |                 | Maximum          | 54.70            | 36.30             | 20.20           | 22.70           | 1.10       |
| 3   | A3        | Near Maldoli    | Minimum          | 46.80            | 28.80             | 15.80           | 16.40           | 0.40       |
| 3   | AJ        |                 | Average          | 50.59            | 32.45             | 17.23           | 19.71           | 0.72       |
|     |           |                 | 98 Percentile    | 54.30            | 35.45             | 19.50           | 22.50           | 1.10       |
|     |           | Near Hanuman    | Maximum          | 58.40            | 38.00             | 22.90           | 27.20           | 1.40       |
| 4   | A4        | Mandir          | Minimum          | 49.70            | 31.00             | 16.90           | 19.30           | 0.50       |
| 4   | A4        | Chandapuri      | Average          | 53.90            | 34.37             | 19.10           | 22.62           | 0.92       |
|     |           | Chandapuri      | 98 Percentile    | 57.50            | 37.15             | 22.05           | 27.05           | 1.35       |
|     |           |                 | Maximum          | 53.20            | 34.80             | 16.61           | 20.40           | 1.00       |
| 5   | A5        | Near Nimgaon    | Minimum          | 45.80            | 29.20             | 13.23           | 17.80           | 0.30       |
| 3   | AS        |                 | Average          | 49.31            | 31.88             | 14.74           | 18.97           | 0.62       |
|     |           |                 | 98 Percentile    | 52.85            | 34.35             | 16.23           | 20.30           | 1.00       |
|     |           |                 | Maximum          | 51.50            | 32.10             | 21.20           | 23.30           | 1.30       |
| 6   | A6        | Near Piliv      | Minimum          | 46.10            | 28.60             | 16.10           | 17.30           | 0.50       |
| 0   | A0        | Near Piliv      | Average          | 48.46            | 30.15             | 18.09           | 20.30           | 0.83       |
|     |           |                 | 98 Percentile    | 51.30            | 31.90             | 20.70           | 23.20           | 1.25       |
|     |           |                 | Maximum          | 48.20            | 29.30             | 12.61           | 15.20           | 0.80       |
| 7   | A 77      | Naga Tagan afal | Minimum          | 42.50            | 26.30             | 9.74            | 12.80           | 0.20       |
| /   | A7        | Near Tarangfal  | Average          | 44.99            | 27.57             | 11.17           | 14.02           | 0.47       |
|     |           |                 | 98 Percentile    | 47.89            | 29.04             | 12.57           | 15.20           | 0.80       |
|     |           |                 | Maximum          | 45.30            | 25.10             | 11.41           | 14.90           | 0.60       |
| o   | 4 0       | Near            | Minimum          | 40.20            | 22.90             | 8.63            | 12.60           | 0.10       |
| 8   | <b>A8</b> | Bhandewasti     | Average          | 42.46            | 23.83             | 9.96            | 13.62           | 0.30       |
|     |           |                 | 98 Percentile    | 45.20            | 25.10             | 11.27           | 14.90           | 0.60       |

#### 3.1.1 IMPACT ON AIR QUALITY DUE TO PROPOSED ACTIVITY

Table 19 Details of the incremental concentrations due to proposed expansion

| Sr. | Receptor/Village                                         |        | 10- 24-ho<br>tration (μ |       |        | 2.5- 24-hοι<br>tration (μg |       |        | 2- 24-hour<br>ration (με |       |       | Ox- 24-hou<br>tration (µ |       |
|-----|----------------------------------------------------------|--------|-------------------------|-------|--------|----------------------------|-------|--------|--------------------------|-------|-------|--------------------------|-------|
| No. |                                                          | Backgr | Increm                  | ,     | Backgr | Increm                     | Total | Backgr | Incre                    | Total | Backg | Incre                    | Total |
|     |                                                          | ound   | ental                   | Total | ound   | ental                      | Total | ound   | mental                   | Totai | round | mental                   | Total |
| 1   | Near Entry Gate (Within Industry                         | 61.10  | 0.0                     | 61.10 | 40.90  | 0.0                        | 40.90 | 24.60  | 0.0                      | 24.60 | 29.90 | 0.0                      | 29.90 |
| 1   | premises)                                                | 01.10  | 0.0                     | 01.10 | 40.70  | 0.0                        | 40.70 | 24.00  | 0.0                      | 24.00 | 27.70 | 0.0                      | 27.70 |
| 2   | Near Proposed Distillery Unit (Within Industry premises) | 62.20  | 0.0                     | 62.20 | 41.30  | 0.0                        | 41.30 | 24.80  | 0.01                     | 24.81 | 29.30 | 0.01                     | 29.31 |
| 3   | Near Maldoli                                             | 54.70  | 0.09                    | 54.79 | 36.30  | 0.06                       | 36.36 | 20.20  | 0.35                     | 20.55 | 22.70 | 0.33                     | 23.03 |
| 4   | Near Hanuman<br>Mandir<br>Chandapuri                     | 58.40  | 0.16                    | 58.56 | 38.00  | 0.11                       | 38.11 | 22.90  | 0.58                     | 23.48 | 27.20 | 0.54                     | 27.74 |
| 5   | Near Nimgaon                                             | 52.20  | 0.04                    | 52.24 | 34.80  | 0.03                       | 34.83 | 16.61  | 0.13                     | 16.74 | 20.40 | 0.13                     | 20.53 |
| 6   | Near Piliv                                               | 51.50  | 0.04                    | 51.54 | 32.10  | 0.02                       | 32.12 | 21.20  | 0.13                     | 21.33 | 23.30 | 0.13                     | 23.43 |
| 7   | Near Tarangfal                                           | 48.20  | 0.06                    | 48.26 | 29.30  | 0.04                       | 29.34 | 12.61  | 0.20                     | 12.81 | 15.20 | 0.19                     | 15.39 |
| 8   | Near<br>Bhandewasti                                      | 45.30  | 0.06                    | 45.36 | 25.10  | 0.04                       | 25.14 | 11.41  | 0.25                     | 11.66 | 14.90 | 0.23                     | 15.13 |

#### **Conclusions**

Air quality predictions are done considering the concentrated spentwash, bagasse or coal as a fuel. Considered the proposed boilers working at full load conditions to estimate the GLC of PM10, PM2.5, SO2 and NOx due to the proposed expansion/establishment of the industry under the prevailing conditions of meteorology and emission data set, air quality modeling is performed for Onkar Sakhar Karkhana Pvt Ltd. Incremental concentrations are worked out for 8 receptor locations, at which ambient air quality monitoring was carried out. Total concentrations are computed considering background (Ambient Air Monitoring) concentrations and incremental concentrations (AERMOD) due to the proposed expansion/establishment. Results are compared with the Ambient Air Quality Standards (AAQS).

From the results, it can say that,

- At the selected 8 receptor locations, surrounded in 10 km radius around Onkar Sakhar Karkhana Pvt Ltd, Chandapuri, Tal. Malshiras, Dist. Solapur, Maharashtra State. GLCs are well within the limits of AAQS.
- Under the working conditions of proposed 1\*110 TPH sugar division boiler and proposed 1\*30 TPH incineration boiler, PM<sub>10</sub>GLCs at all the 8 receptor locations are in the range of 45.36 μg/m3 to 62.2 μg/m3 which are within the limits of AAQS.
- Similarly, PM<sub>2.5</sub> GLCs for those receptors are in the range of 25.14  $\mu$ g/m3 to 41.3  $\mu$ g/m3 which is within the limits of AAQS.
- For SO<sub>2</sub>, GLCs are in the range of 11.66  $\mu$ g/m3 to 24.81  $\mu$ g/m3which is within the limits of AAQS.
- NO<sub>x</sub> GLCs are in the range of 15.13  $\mu$ g/m3 to 29.90  $\mu$ g/m3which is within the limits of AAQS.

It can be inferred that there shall not be any adverse effect on Ambient Air Quality due to the proposed expansion/establishment.

#### 3.2 WATER ENVIRONMENT

The unit is located at Village Chandapuri, Taluka Malshiras, District Solapur, Maharashtra State. Majority of the study area (10 km around site) is under agriculture land use. Source of water is Nira Right Bank Canal, which is 0.05 Km away from the project site. The necessary permissions for lifting the water for industrial use are in process. (Application Submitted to Irrigation Authority).

Bheema River, Nira Right Bank Canal and Nimgaon Lake are main source of water for agriculture use. Nira Right Bank Canal at 0.05 km towards East from the project site. Groundwater is used as an alternate source in surrounding villages for domestic and drinking purposes. Therefore, it is important to assess the existing baseline status of both ground water quality and surface water quality within the study area.

#### 3.2.1 GROUND WATER

| TE 11 AO ES 4 11 C41 1 4                | 104 04 0           | 10 1 40            |
|-----------------------------------------|--------------------|--------------------|
| Lable /II Details of the ground water ( | inality manifaring | campling locations |
| Table 20 Details of the ground water of | uanty momitoring   | sampling rocations |

| Sr.<br>No. | Symbol | Description       | Latitude      | Longitude     |
|------------|--------|-------------------|---------------|---------------|
| 1          | GW-1   | Near Nimgaon      | 17°45'50.39"N | 74°59'8.41"E  |
| 2          | GW -2  | Near Nimgaon Lake | 17°44'58.94"N | 74°58'59.96"E |
| 3          | GW -3  | Near Kusmod       | 17°42'0.03"N  | 75° 0'22.40"E |
| 4          | GW -4  | Near Tarangphal   | 17°46'28.42"N | 74°55'24.59"E |
| 5          | GW -5  | Near Chandapuri   | 17°43'52.64"N | 74°57'33.10"E |
| 6          | GW -6  | Near Garwad       | 17°44'5.64"N  | 74°53'22.04"E |
| 7          | GW -7  | Near Bhande Wasti | 17°42'43.61"N | 74°53'51.16"E |
| 8          | GW -8  | Near Piliv        | 17°41'34.14"N | 74°57'35.07"E |

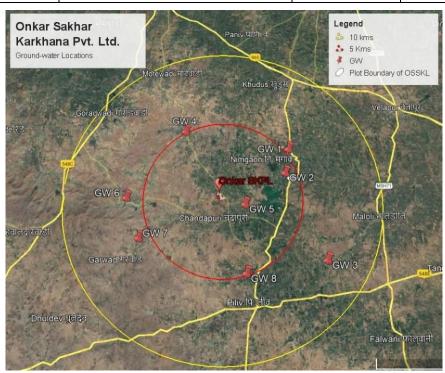



Figure 6 10 km. radius study area map indicating groundwater sampling location

Table 21 Groundwater analysis report within 10 km radius of the study area

| Sr. | D ' ' '                                           | <b>T</b> T •4        |       |      |      | Res   | sults |       |       |       | Desirable  | Permissible    |
|-----|---------------------------------------------------|----------------------|-------|------|------|-------|-------|-------|-------|-------|------------|----------------|
| No  | Description                                       | Unit                 | GW-1  | GW-2 | GW-3 | GW-4  | GW-5  | GW-6  | GW-7  | GW-8  | IS 10500:2 | 2012 Standards |
| 1   | pН                                                |                      | 6.90  | 6.85 | 7.04 | 6.86  | 6.92  | 6.77  | 7.23  | 7.34  | 6.5-8.5    | No relaxation  |
| 2   | Temperature                                       | $^{\circ}\mathrm{C}$ | 26.5  | 27   | 26.8 | 26.2  | 27.1  | 26.1  | 26.6  | 27.4  | Not        | Specified      |
| 3   | Turbidity                                         | NTU                  | 0.9   | 0.97 | 1.02 | 0.85  | 1.06  | 0.79  | 0.98  | 1.1   | 1          | 5              |
| 4   | Electrical Conductivity                           | μS/cm                | 1668  | 1346 | 1844 | 2597  | 2122  | 5024  | 5539  | 2885  | Not        | Specified      |
| 5   | Total Dissolved Solids                            | mg/lit               | 393.1 | 354  | 389  | 372.6 | 390.4 | 348.1 | 360.9 | 436.8 | 500        | 2000           |
| 6   | Total Suspended Solids                            | mg/lit               | 3     | 5    | 3    | 4     | 6     | 4     | 4     | 3     | Not        | Specified      |
| 7   | Salinity                                          | ppt                  | 1.8   | 1.3  | 1.5  | 1.2   | 1.6   | 1.8   | 1.4   | 1.5   | Not        | Specified      |
| 8   | Chemical Oxygen<br>Demand                         | mg/lit               | 18    | 24   | 27   | 16    | 34    | 28    | 22    | 37    | Not        | Specified      |
| 9   | Biochemical Oxygen<br>Demand @ 27°C for 3<br>days | mg/lit               | < 4   | 4    | 5    | < 4   | 8     | 6     | 5     | 11    | Not        | Specified      |
| 10  | Chlorides as Cl-                                  | mg/lit               | 124   | 110  | 132  | 105   | 96    | 88    | 126   | 139   | 250        | 1000           |
| 11  | Sulphates as SO <sub>4</sub>                      | mg/lit               | 36    | 45   | 51   | 47    | 56    | 38    | 43    | 51    | 200        | 400            |
| 12  | Fluoride as F                                     | mg/lit               | 0.68  | 0.43 | 0.57 | 0.50  | 0.64  | 0.62  | 0.70  | 0.61  | 1          | 1.5            |
| 13  | Total Alkalinity as CaCO <sub>3</sub>             | mg/lit               | 144   | 168  | 137  | 170   | 163   | 130   | 141   | 165   | 200        | 600            |
| 14  | Nitrate as NO <sub>3</sub>                        | mg/lit               | 3.7   | 3.2  | 4.8  | 5.6   | 3.6   | 6.1   | 4.3   | 4.8   | 45         | No relaxation  |
| 15  | Nitrite as NO <sub>2</sub>                        | mg/lit               | 0.08  | 0.06 | 0.05 | 0.11  | 0.10  | 0.13  | 0.08  | 0.09  | Not        | Specified      |
| 16  | Ammonia as N                                      | mg/lit               | 0.25  | 0.26 | 0.20 | 0.28  | 0.34  | 0.28  | 0.23  | 0.30  | 0.5        | No Relaxation  |
| 17  | Total Phosphate as PO <sub>4</sub>                | mg/lit               | 0.16  | 0.19 | 0.15 | 0.16  | 0.18  | 0.14  | 0.20  | 0.19  | Not        | Specified      |
| 18  | Magnesium as Mg                                   | mg/lit               | 41    | 24   | 29   | 33    | 38    | 40    | 19    | 37    | 30         | 100            |
| 19  | Total Hardness as CaCO <sub>3</sub>               | mg/lit               | 321   | 190  | 244  | 238   | 296   | 320   | 174   | 312   | 200        | 600            |
| 20  | Calcium as Ca                                     | mg/lit               | 60    | 36   | 49   | 40    | 55    | 61    | 38    | 63    | 75         | 200            |
| 21  | Sodium as Na                                      | mg/lit               | 29    | 22   | 28   | 27    | 31    | 24    | 33    | 30    | Not        | Specified      |

| Sr. | Description          | TT *4  |             |             |            | Res         | sults       |             |             |        | Desirable               | Permissible   |
|-----|----------------------|--------|-------------|-------------|------------|-------------|-------------|-------------|-------------|--------|-------------------------|---------------|
| No  | Description          | Unit   | GW-1        | GW-2        | GW-3       | GW-4        | GW-5        | GW-6        | GW-7        | GW-8   | IS 10500:2012 Standards |               |
| 22  | Iron as Fe           | mg/lit | 0.18        | 0.13        | 0.16       | 0.24        | 0.14        | 0.20        | 0.17        | 0.19   | 0.3                     | No Relaxation |
| 23  | Copper as Cu         | mg/lit | 0.05        | 0.07        | 0.06       | 0.07        | 0.08        | 0.06        | 0.05        | 0.08   | 0.05                    | 1.5           |
| 24  | Total Chromium as Cr | mg/lit | NIL         | NIL         | NIL        | NIL         | NIL         | NIL         | NIL         | NIL    | 0.05                    | No Relaxation |
| 25  | Chromium as Cr+6     | mg/lit | NIL         | NIL         | NIL        | NIL         | NIL         | NIL         | NIL         | NIL    | 0.10                    | No Relaxation |
| 26  | Nickel as Ni         | mg/lit | NIL         | NIL         | NIL        | NIL         | NIL         | NIL         | NIL         | NIL    | 0.02                    | No relaxation |
| 27  | Cadmium as Cd        | mg/lit | NIL         | NIL         | NIL        | NIL         | NIL         | NIL         | NIL         | NIL    | 0.003                   | No relaxation |
| 28  | Mercury as Hg        | mg/lit | NIL         | NIL         | NIL        | NIL         | NIL         | NIL         | NIL         | NIL    | 0.001                   | No Relaxation |
| 29  | Arsenic as As        | mg/lit | NIL         | NIL         | NIL        | NIL         | NIL         | NIL         | NIL         | NIL    | 0.01                    | 0.05          |
| 30  | Cyanide as Cn        | mg/lit | NIL         | NIL         | NIL        | NIL         | NIL         | NIL         | NIL         | NIL    | 0.05                    | No Relaxation |
| 31  | Lead as Pb           | mg/lit | NIL         | NIL         | NIL        | NIL         | NIL         | NIL         | NIL         | NIL    | 0.01                    | No Relaxation |
| 32  | Zinc as Zn           | mg/lit | 0.05        | 0.04        | 0.03       | 0.04        | 0.05        | 0.05        | 0.04        | 0.05   | 5                       | 15            |
| 33  | Total Coliform       | Org/ml | 10          | 13          | 0          | 15          | 10          | 13          | 11          | 0      | No Relaxation           |               |
| 34  | Fecal Coliform       | Org/ml | Presen<br>t | Presen<br>t | Absen<br>t | Presen<br>t | Presen<br>t | Presen<br>t | Presen<br>t | Absent | No F                    | Relaxation    |

#### 3.2.2 SURFACE WATER

Table 22 Details of surface water quality monitoring locations

| Sr.<br>No. | Symbol | Description           | Latitude      | Longitude     |  |  |
|------------|--------|-----------------------|---------------|---------------|--|--|
| 1          | SW-1   | Nimgaon Lake          | 17°44'22.76"N | 74°58'45.49"E |  |  |
| 2          | SW -2  | Near Magarwadi        | 17°45'52.48"N | 74°57'34.68"E |  |  |
| 3          | SW -3  | Near Project site     | 17°44'22.41"N | 74°56'57.96"E |  |  |
| 4          | SW -4  | Near Garwad           | 17°44'2.73"N  | 74°54'24.02"E |  |  |
| 5          | SW -5  | Near Sulewadi         | 17°40'31.37"N | 74°54'23.91"E |  |  |
| 6          | SW -6  | Lake Near Garwad Pati | 17°46'23.83"N | 74°51'58.32"E |  |  |
| 7          | SW -7  | Near Kusmod           | 17°43'4.01"N  | 75° 0'19.00"E |  |  |

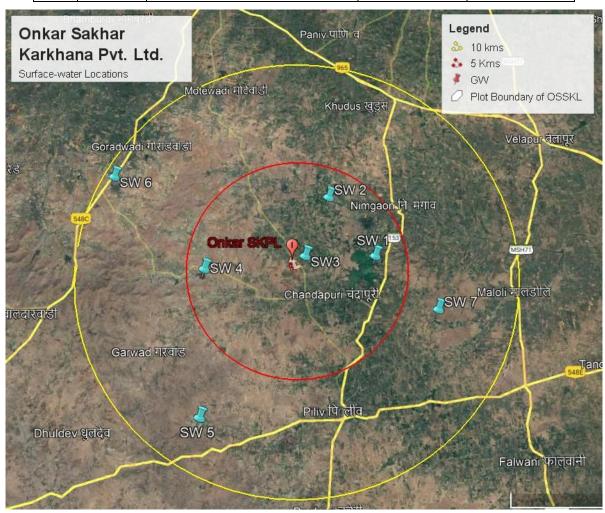



Figure 7 10 km. radius study area map indicating surface water sampling location

Table 23 Surface water analysis report within 10 km radius of the study area

| G N    | D                                           | TT *4  |      |      |      | Results |      |      |      |
|--------|---------------------------------------------|--------|------|------|------|---------|------|------|------|
| Sr No. | Description                                 | Unit   | SW-1 | SW-2 | SW-3 | SW-4    | SW-5 | SW-6 | SW-7 |
| 1      | pH                                          |        | 7.41 | 7.53 | 7.12 | 7.20    | 7.23 | 7.60 | 7.35 |
| 2      | Temperature                                 | °C     | 27   | 27.4 | 27   | 27      | 28   | 27.7 | 28   |
| 3      | Turbidity                                   | NTU    | 3.2  | 2.2  | 2.4  | 2.8     | 2.6  | 3.1  | 2.7  |
| 4      | Electrical Conductivity                     | μS/cm  | 426  | 458  | 509  | 401     | 495  | 466  | 449  |
| 5      | Total Dissolved Solids                      | mg/lit | 264  | 288  | 311  | 264     | 317  | 284  | 277  |
| 6      | Total Suspended Solids                      | mg/lit | 13   | 8    | 10   | 12      | 6    | 9    | 8    |
| 7      | Salinity                                    | ppt    | 4.5  | 5.6  | 4.9  | 4.4     | 5.9  | 6.1  | 5.1  |
| 8      | Dissolved Oxygen                            | mg/lit | 5.1  | 5.4  | 5.3  | 5.2     | 6.3  | 6.9  | 5.7  |
| 9      | Chemical Oxygen Demand                      | mg/lit | 41   | 60   | 38   | 42      | 48   | 68   | 59   |
| 10     | Biochemical Oxygen Demand @ 27°C for 3 days | mg/lit | 12   | 17   | 11   | 12      | 14   | 26   | 24   |
| 11     | Chlorides as Cl-                            | mg/lit | 70   | 81   | 94   | 89      | 101  | 68   | 49   |
| 12     | Sulphates as SO <sub>4</sub>                | mg/lit | 17   | 26   | 30   | 28      | 34   | 40   | 47   |
| 13     | Fluoride as F                               | mg/lit | 0.70 | 0.46 | 0.58 | 0.40    | 0.59 | 0.60 | 0.50 |
| 14     | Total Alkalinity as CaCO <sub>3</sub>       | mg/lit | 145  | 157  | 154  | 116     | 161  | 134  | 141  |
| 15     | Nitrate as NO <sub>3</sub>                  | mg/lit | 5.2  | 4.2  | 6.2  | 6.8     | 3.9  | 5.8  | 4.1  |
| 16     | Nitrite                                     | mg/lit | 1.33 | 0.02 | 0.18 | 0.03    | 0.65 | 0.02 | 0.02 |
| 17     | Ammonia as N                                | mg/lit | 0.35 | 0.21 | 0.19 | 0.24    | 0.24 | 0.27 | 0.20 |
| 18     | Total Phosphate as PO <sub>4</sub>          | mg/lit | 0.11 | 0.06 | 0.12 | 0.05    | 0.10 | 0.05 | 0.08 |
| 19     | Calcium as Ca                               | mg/lit | 32   | 35   | 37   | 24      | 28   | 40   | 31   |
| 20     | Magnesium as Mg                             | mg/lit | 20   | 22   | 19   | 16      | 18   | 22   | 24   |
| 21     | Total Hardness as CaCO <sub>3</sub>         | mg/lit | 163  | 179  | 172  | 127     | 145  | 192  | 178  |
| 22     | Sodium as Na                                | %      | 2.31 | 0.06 | 2.01 | 0.08    | 0.16 | 0.07 | 0.05 |
| 23     | Iron as Fe                                  | mg/lit | NIL  | NIL  | NIL  | NIL     | 0.2  | NIL  | NIL  |
| 24     | Copper as Cu                                | mg/lit | NIL  | NIL  | NIL  | NIL     | NIL  | NIL  | NIL  |
| 25     | Total Chromium as Cr                        | mg/lit | NIL  | NIL  | NIL  | NIL     | NIL  | NIL  | NIL  |

| C. No  | Description      | T I 24 |         |         |         | Results |         |         |         |
|--------|------------------|--------|---------|---------|---------|---------|---------|---------|---------|
| Sr No. | Description      | Unit   | SW-1    | SW-2    | SW-3    | SW-4    | SW-5    | SW-6    | SW-7    |
| 26     | Chromium as Cr+6 | mg/lit | NIL     |
| 27     | Nickel as Ni     | mg/lit | NIL     |
| 28     | Cadmium as Cd    | mg/lit | NIL     |
| 29     | Mercury as Hg    | mg/lit | NIL     |
| 30     | Arsenic as Ar    | mg/lit | NIL     |
| 31     | Cyanide as CN    | mg/lit | NIL     |
| 32     | Lead as Pb       | mg/lit | NIL     |
| 33     | Zinc as Zn       | mg/lit | NIL     | NIL     | NIL     | NIL     | 0.03    | NIL     | NIL     |
| 34     | Total Coliform   | Org/ml | 86      | 56      | 77      | 46      | 80      | 86      | 63      |
| 35     | Fecal Coliform   | Org/ml | Present |

#### Note:

Remark: All samples of surface water viz. SW-1, SW-2, SW-3, SW-4, SW-5, SW-6 and SW-7, are of Class D as per Central Pollution Control Board Water Quality criteria. Accordingly, the surface water can be directly used for Propagation of Wild life and Fisheries, Irrigation, Industrial Cooling, Controlled Waste disposal.

#### Summary of the groundwater and surface water quality monitoring results

**Table 24 Water Analysis Results** 

| Sr. No | Parameters                    | Groun | d water | Surface | e water |
|--------|-------------------------------|-------|---------|---------|---------|
| 51.10  | 1 at ameters                  | Min   | Max     | Min     | Max     |
| 1.     | рН                            | 6.77  | 7.34    | 7.12    | 7.60    |
| 2.     | Total Dissolved Solids (mg/l) | 348.1 | 436.8   | 264     | 317     |
| 3.     | Total Hardness (mg/l)         | 174   | 321     | 127     | 192     |
| 4.     | Chlorides (mg/l)              | 88    | 139     | 49      | 101     |
| 5.     | Fluoride (mg/l)               | 0.43  | 0.70    | 0.40    | 0.70    |
| 6.     | Sulphates (mg/l)              | 36    | 56      | 17      | 47      |

#### 3.3 SOIL ENVIRONMENT

Table 25 Details of the soil sampling locations

| Sr. No. | Symbol     | Description                    | Latitude      | Longitude     |
|---------|------------|--------------------------------|---------------|---------------|
| 1       | <b>S</b> 1 | Near Piliv                     | 17°41'8.03"N  | 74°57'50.60"E |
| 2       | S2         | Near Project Site              | 17°44'14.01"N | 74°56'44.28"E |
| 3       | S3         | Near Nimgaon lake              | 17°44'40.85"N | 74°58'52.80"E |
| 4       | S4         | Near Hanuman Mandir Chandapuri | 17°43'48.34"N | 74°57'33.75"E |
| 5       | S5         | Near Nimgaon                   | 17°45'48.47"N | 74°59'13.88"E |
| 6       | S6         | Near Kusmod                    | 17°42'11.65"N | 75° 0'19.46"E |
| 7       | S7         | Near Tarangfal                 | 17°46'29.95"N | 74°55'29.43"E |
| 8       | S8         | Near Bhandewasti               | 17°42'49.14"N | 74°53'56.72"E |

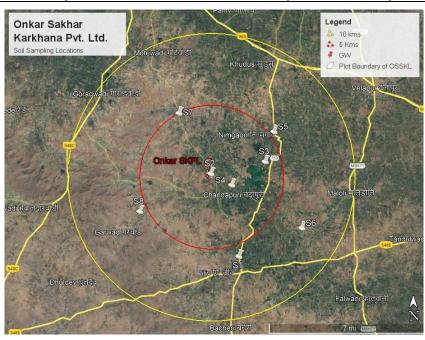



Figure 8 10 km. radius study area map indicating soil sampling location

Table 26 Soil Analysis report within 10 km radius of the study area

| Sr. | Description                                | Unit       |               |                    |               | RESUL         | T             |               |               |               | As per Ministry of              |
|-----|--------------------------------------------|------------|---------------|--------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------------------------|
| No. | Description                                | Unit       | S-1           | S-2                | S-3           | S-4           | S-5           | S-6           | S-7           | S-8           | Agriculture 2011                |
| 1.  | Colour                                     | -          | Black         | Black              | Black         | Black         | Black         | Black         | Black         | Black         | Ministry of<br>Agriculture 2011 |
| 2.  | Grain Size Distribution                    |            |               |                    |               |               |               |               |               |               |                                 |
|     | Clay                                       | %          | 17            | 22                 | 10            | 18            | 16            | 14            | 10            | 13            | Not Specified                   |
|     | Sand                                       | %          | 60            | 50                 | 55            | 58            | 64            | 52            | 58            | 60            | Not Specified                   |
|     | Silt                                       | %          | 25            | 28                 | 35            | 24            | 20            | 34            | 32            | 27            | Not Specified                   |
| 3.  | Texture Class                              |            | Sandy<br>Loam | Sandy Clay<br>Loam | Sandy<br>Loam | Sandy<br>Loam | Sandy<br>Loam | Sandy<br>Loam | Sandy<br>Loam | Sandy<br>Loam | Not Specified                   |
| 4.  | Bulk Density                               | gm/cc      | 1.12          | 1.16               | 1.24          | 1.08          | 1.34          | 1.29          | 1.22          | 1.45          | Not Specified                   |
| 5.  | Permeability                               | cm/hr      | 4.5           | 4.1                | 4.8           | 3.8           | 4.5           | 4.9           | 3.9           | 4.7           | Not Specified                   |
| 6.  | Water Holding capacity                     | %          | 45            | 38                 | 48            | 46            | 50            | 43            | 40            | 52            | Not Specified                   |
| 7.  | Porosity                                   | %          | 45            | 38                 | 48            | 46            | 50            | 43            | 40            | 52            | Not Specified                   |
| 8.  | pH (1: Aq Extraction)                      |            | 7.28          | 7.4                | 7.11          | 7.03          | 7.35          | 7.21          | 7.18          | 7.08          | <8.5                            |
| 9.  | Electrical Conductivity (1: Aq Extraction) | μS/cm      | 586           | 621                | 610           | 594           | 612           | 635           | 605           | 627           | 150 – 650                       |
| 10. | Cation Exchange Capacity                   | meq/ 100gm | 0.7           | 0.62               | 0.57          | 0.73          | 0.68          | 0.61          | 0.79          | 0.74          | Not Specified                   |
| 11. | Sodium Absorption Ratio                    |            | 12.71         | 10.55              | 11.8          | 12.33         | 10.55         | 11            | 12.62         | 11.28         | 10-18                           |
| 12. | Total Nitrogen Content                     | Kg/ha      | 324           | 357                | 331           | 340           | 354           | 318           | 326           | 348           | 280-560                         |
| 13. | Available Phosphorous (P)                  | Kg/ha      | 40.2          | 53.4               | 45.8          | 61.5          | 70            | 56            | 44.6          | 65.8          | 10-24.60                        |
| 14. | Available Potassium                        | Kg/ha      | 142           | 135                | 130           | 144           | 128           | 110           | 108           | 122           | 108-280                         |
| 15. | Organic Carbon                             | %          | 0.62          | 0.7                | 0.65          | 0.6           | 0.69          | 0.58          | 0.71          | 0.66          | Not Specified                   |
| 16. | Organic Matter                             | %          | 0.68          | 0.61               | 0.7           | 0.54          | 0.57          | 0.62          | 0.5           | 0.6           | 0.5 - 0.75                      |
| 17. | Total Iron (Fe)                            | mg/kg      | 3.4           | 3.28               | 3.46          | 3.25          | 3.18          | 3.33          | 3.47          | 3.58          | Not Specified                   |
| 18. | Zinc (Zn)                                  | mg/kg      | 2.2           | 2.14               | 1.88          | 1.74          | 2.38          | 2.13          | 2.78          | 1.76          | Not Specified                   |
| 19. | Nickel (Ni)                                | mg/kg      | 1.2           | 1.44               | 1.63          | 1.58          | 1.75          | 1.52          | 1.37          | 2.35          | Not Specified                   |
| 20. | Copper (Cu)                                | mg/kg      | 1.78          | 1.56               | 1.88          | 2.32          | 2.14          | 1.7           | 1.55          | 1.23          | Not Specified                   |

#### **Summary of the results**

The soil samples were collected at total eight locations within the study area.

- Indicative of the **neutral** to slightly alkaline soil.
- The values for Nitrogen were found to be better to more than sufficient at all locations ranging between 318 to 357 kg/ha, which is an indicative of sufficient nitrogen content in soils.
- The concentration of Phosphorous was found to be less at all the locations ranging between **40.2 to 70 kg/ha**, which is an indicative of less to on an average sufficient phosphorous in soil.
- The concentration of organic carbon was found to be medium to on an average sufficient at all the locations ranging between 0.58 to 0.71 %, which is an indicative of medium to on an average sufficient organic carbon in soil.
- It is important to note that the concentration of potassium was found to be less at all locations ranging between 108 to 144 kg/ha. which is an indicative of medium potash content in soil This indicates it is required to use potash rich fertilizers for agriculture purposes.

Based on the above findings it can be concluded that the soil samples can be classified as per soil classification given by Tondon H.L.S. (2005). The samples fall under **medium low to Medium** fertile soils.

#### 3.4 NOISE ENVIRONMENT

Table 27 Details of noise quality monitoring locations

| Sr. No.   | Symbol         | Description                    | Latitude      | Longitude     |
|-----------|----------------|--------------------------------|---------------|---------------|
| Inside Fa | actory Premise | es                             |               |               |
| 1         | N1             | Near Entry Gate                | 17°44'32.52"N | 74°56'43.42"E |
| 2         | N2             | Near Mill House                | 17°44'32.08"N | 74°56'40.03"E |
| 3         | N3             | Near Boiler                    | 17°44'30.99"N | 74°56'40.42"E |
| 4         | N4             | Near ETP                       | 17°44'27.62"N | 74°56'36.88"E |
| 5         | N5             | Near Compressor                | 17°44'30.40"N | 74°56'41.15"E |
| Outside   | Factory (With  | ing Study Area)                | •             |               |
| 1         | N6             | Near Nimgaon Lake              | 17°44'40.85"N | 74°58'52.80"E |
| 2         | N7             | Near Hanuman Mandir Chandapuri | 17°43'48.34"N | 74°57'33.75"E |
| 3         | N8             | Near Nimgaon                   | 17°45'48.47"N | 74°59'13.88"E |
| 4         | N9             | Near Kusmod                    | 17°42'11.65"N | 75° 0'19.46"E |
| 5         | N10            | Near Tarangfal                 | 17°46'29.95"N | 74°55'29.43"E |
| 6         | N11            | Near Bhandewasti               | 17°42'49.14"N | 74°53'56.72"E |

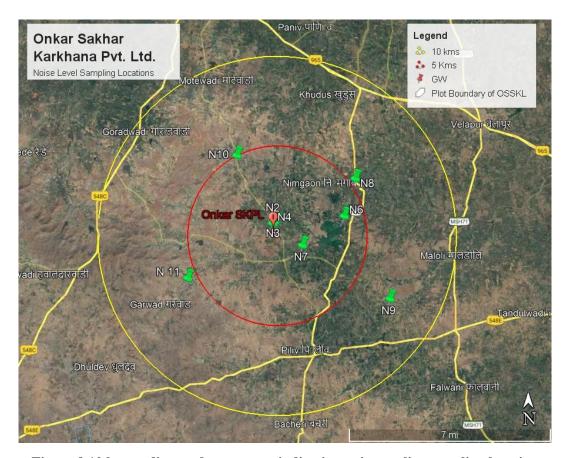



Figure 9 10 km. radius study area map indicating noise quality sampling location

Table 28 Noise levels of the study area

| Sr. No. | Station                        | Standard Limit dB(A) Leq | Time  | dB (A) Leq |
|---------|--------------------------------|--------------------------|-------|------------|
|         | Inside 1                       | factory premises         |       | 1          |
| 1.      | Noon Entry Coto                | 75                       | Day   | 62.0       |
| 1.      | Near Entry Gate                | 70                       | Night | 50.2       |
| 2.      | Near Mill House                | 75                       | Day   | 86.9       |
| ۷.      | Near Mill House                | 70                       | Night | 83.1       |
| 3.      | Near Boiler                    | 75                       | Day   | 85.3       |
| ٥.      | Near Boller                    | 70                       | Night | 78.4       |
| 4       | Near ETP                       | 75                       | Day   | 61.8       |
| 4.      |                                | 70                       | Night | 49.3       |
| 5       | Noor Compressor                | 75                       | Day   | 84.5       |
| 5.      | Near Compressor                | 70                       | Night | 77.6       |
|         | Outside factor                 | ry (withing study area)  |       |            |
| 1       | NY NY Y I                      | 55                       | Day   | 45.8       |
| 1.      | Near Nimgaon Lake              | 45                       | Night | 42.1       |
| 2       | N II M di . Ch d               | 55                       | Day   | 48.6       |
| 2.      | Near Hanuman Mandir Chandapuri | 45                       | Night | 41.0       |
| 2       | NI NI                          | 55                       | Day   | 47.9       |
| 3.      | Near Nimgaon                   | 45                       | Night | 42.4       |
| 4.      | Near Kusmod                    | 55                       | Day   | 48.8       |

| Sr. No. | Station           | Standard Limit dB(A) Leq | Time  | dB (A) Leq |
|---------|-------------------|--------------------------|-------|------------|
|         |                   | 45                       | Night | 42.9       |
| 5.      | Near Terror of al | 55                       | Day   | 44.5       |
|         | Near Tarangfal    | 45                       | Night | 38.1       |
| 6.      | N. Di i di        | 55                       | Day   | 45.7       |
|         | Near Bhandewasti  | 45                       | Night | 40.1       |

#### **Summary of the results**

#### Daytime Noise Levels (Leq)day

**Industrial Zone:** The day time noise level at the Project site was found in the range of 61.80 – 86.90 dB (A), which is well below the permissible limit of 75 dB (A) except for locations Near Mill House, Near Boiler and Near Compressor.

**Residential Zone:** The daytime noise levels in all the residential locations were observed to be in the range of 44.50 (A) to 48.80 dB (A).

#### Night time Noise Levels (Leq)<sub>night</sub>

**Industrial Zone:** The night time noise level in the Project site was observed in the range of 49.30 (A) to 83.10 dB (A), which is well below the permissible limit of 70 dB (A) except for locations Near Mill House, Near Boiler and Near Compressor.

**Residential Zone:** The night time noise levels in all the residential locations were observed to be in the range of 38.10 dB (A) 42.90 dB (A).

The industry is making all efforts to control the noise levels within the limits by providing acoustic measures and silencer pads etc. all the employees in these work places shall be provided with ear plugs / muffs.

#### 3.5 LAND USE/LAND COVER OF THE STUDY AREA

Table 29 Land use/ Land cover areas in km<sup>2</sup> around 10 km radius for project site

| Sr No. | LULC Class  | Area in Ha | Area in km² | Percentage |
|--------|-------------|------------|-------------|------------|
| 1      | Scrub Land  | 11702.45   | 117.02      | 35.17      |
| 2      | Open Land   | 6946.81    | 69.47       | 20.88      |
| 3      | Agriculture | 13395.71   | 133.96      | 40.26      |
| 4      | Fallow Land | 666.74     | 6.67        | 2.00       |
| 5      | Habitation  | 63.14      | 0.63        | 0.19       |
| 6      | Waterbodies | 498.76     | 4.99        | 1.50       |
|        | Total Area  | 33273.61   | 332.74      | 100.00     |

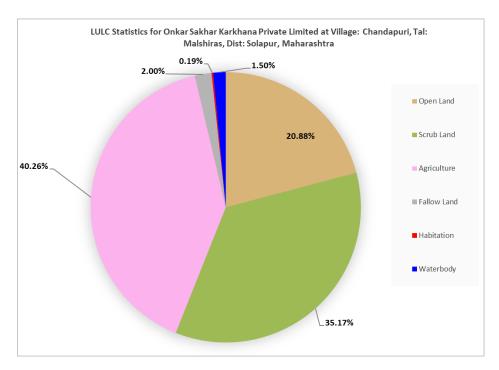



Figure 10 Pie chart of LULC classes around 10 km radius of Project site

#### 4.0 IDENTIFICATION, PREDICTION AND MITIGATION MEASURES

The anticipated impacts during construction and operational phase due to the proposed activity on air, water, soil, noise, ecology and biodiversity, and socio-economic environment are assessed and mitigation measures to minimize the impacts on the same are suggested in Chapter 4 in this report.

#### 5.0 ANALYSIS OF ALTERNATIVE (TECHNOLOGY AND SITE)

The technologies for the treatment and safe disposal of spent-wash, most polluting element from distilleries and the site selection criteria are discussed in the chapter 5 in this report. This is to understand the available technology options and the option selected by the project proponent. Molasses based distilleries are among the most polluting industries. Therefore, it is important to use state of the art technologies to achieve the Zero Liquid Discharge. The whole process is based on proven technology i.e., Multi Pressure distillation followed by Multi Effect Evaporation and Incineration due to following merits.

- The final spent wash converted to Potash rich ash.
- Useful as agricultural feed. The final output (i.e., Potash rich ash) is not a waste but a nutrient rich by-product.
- This technology will help in meeting the potash requirement of the soil.
- Zero Liquid Discharge Technology.

This Industry has decided to undertake an "Alternative Analysis (AA)" for this project. The various alternatives are (1) Product (2) Raw materials, (3) Technology, Engineering & Hardware, (4) Site, and (5) Project

- Availability of raw material/fuel
- Proximity of molasses as a raw material and cost-effective transportation logistics
- Availability of water supply
- The availability of water from the source is adequate to meet the requirement of the proposed sugar & distillery expansion. For proposed project water will be sourced from Neera right bank canal.
- Availability of infrastructural facility

Industrial infrastructural facilities such as roads, transport, security, water, power, administration etc. are available with existing factory. Community facilities such as quarters, medical services, education and training facility etc. are also available at site.

# 6.0 ENVIRONMENT MONITORING PROGRAMME

#### Table 30 Environment management programme

| Sr.<br>No. | Item                                                                                                                                  | Parameters Frequency Monitorin                                                                                                                                                            |                                         | Location                                                                                       |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|--|
| 1.         | Ambient Air quality<br>at appropriate<br>location for PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , SO <sub>2</sub> , and NO <sub>x</sub> | $PM_{10}$ , $PM_{2.5}$ , $SO_{2}$ , and $NO_{x}$                                                                                                                                          | 24 hourly,<br>Quarterly                 | 4 Locations 1 @ Upwind and 2@ downwind directions from stack @ 1200 to each other 1 Near entry |  |
| 2.         | Stationary Emission<br>from Stack<br>PM, SO <sub>2</sub> , NOx                                                                        | PM, SO <sub>2</sub> , NOx                                                                                                                                                                 | Monthly                                 | 1 DG set Stack,<br>1 Boiler Stack                                                              |  |
|            | Water                                                                                                                                 | Water quality parameters as per 10500:2012                                                                                                                                                | Monthly                                 | Drinking water locations                                                                       |  |
| 3.         | Waste water quality<br>(treated and<br>Untreated)                                                                                     | pH, BOD, COD, TSS,<br>Flow, TDS etc.                                                                                                                                                      | Monthly                                 | STP inlet and outlet<br>CPU inlet and Outlet                                                   |  |
| 4.         | Noise                                                                                                                                 | Day and Night levels Equivalent noise level - dB (A)                                                                                                                                      | Quarterly or as<br>often as<br>required | 5 Locations Upwind and downwind directions Near boilers and near main gate and CPU             |  |
| 5.         | Soil (Qualitative and quantitative testing/analysis to check the soil fertility                                                       | pH, Cation Exchange Capacity, Total Nitrogen, Phosphorous, Potassium, moisture, Permeability, Conductivity, Texture & structure, Organic carbon                                           | Quarterly or as<br>often as<br>required | 1 near Greenbelt 1 near CPU Composite sample shall be taken at each location                   |  |
| 6.         | Solid waste<br>generation<br>monitoring / Record<br>Keeping                                                                           | Manual record keeping                                                                                                                                                                     | To be updated daily                     |                                                                                                |  |
| 7          | Greenbelt and plantation monitoring                                                                                                   | Type of species shall be decided based on soil &climatic conditions. The number of trees would be 2500 per hectare, however; the number of trees would vary depending on the type of soil | Six Monthly                             |                                                                                                |  |

## 7.0 ADDITIONAL STUDIES 7.1: RISK ASSESSMENT

Hazard analysis involves the identification and quantification of the various hazards (unsafe condition) that exist in the plant during both construction and operation phases. On the other hand, risk analysis deals with the identification and quantification of the risk, the plant equipment and Personnel exposed to accidents resulting from the hazards present in the plant. Risk analysis involves the identification and assessment of risks to the population, which is likely to be exposed to as a result of hazards incidence.

This requires an assessment of failure probability, credible accident scenario, vulnerability of population, etc. Much of this information is difficult to get or generate consequently, the risk analysis in present case is confined to worst case and maximum credible accident studies and safety and risk aspect related to sulphitation process, alcohol storage and plant operations. Detailed Quantitative Risk Assessment (QRA) on potentially more hazardous and risky situations have been carried out in details and presented in the chapter 7 in the EIA report.

# 8.0 BUDGETARY PROVISIONS TOWARDS ENVIRONMENTAL MANAGEMENT PLAN

**Table 31 EMP Budget** 

| Sr.<br>No. | Component                               | ]                                                                                                                                                      | Particulars                                                  | Capital<br>Investment<br>(In Lakhs) | Recurring<br>Investment<br>(In Lakhs) |
|------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|---------------------------------------|
| 1.         | Air                                     | Construction of n                                                                                                                                      | ew stack for boiler and ESP                                  | 700                                 | 20                                    |
| 2.         | Water                                   | Sugar and dist                                                                                                                                         | eration boiler for Distillery                                | 3500                                | 100                                   |
| 3.         | Noise                                   | Acoustic enclosu                                                                                                                                       | res, Silencer pads, ear plugs<br>etc                         | 15                                  | 3                                     |
|            |                                         | nment Monitoring (Per Year)                                                                                                                            |                                                              |                                     |                                       |
|            |                                         | Ambient air monitoring                                                                                                                                 | PM <sub>10</sub> , PM <sub>2.5</sub> , SO <sub>2</sub> , NOx |                                     |                                       |
|            | Environment                             |                                                                                                                                                        |                                                              |                                     | 10                                    |
| 4.         | monitoring and<br>Management            | Boiler & DG Set Monitoring                                                                                                                             | TPM, SO <sub>2</sub> , NOx                                   |                                     |                                       |
|            |                                         | Effluent<br>(Treated<br>&Untreated)                                                                                                                    | pH, COD, BOD, TSS,<br>TDS, Oil & Grease                      |                                     |                                       |
| 5.         | Occupational<br>Health                  | Glares, Breathing Masks, Gloves, Boots, Helmets, Ear Plugs etc. & annual health- medical checkup of workers, Occupational Health (training, OH center) |                                                              | 40                                  | 10                                    |
|            | C 1 1                                   | Green belt development activity                                                                                                                        |                                                              | 10                                  | 3                                     |
| 6.         | Greenbelt                               | Maintenance of green belt                                                                                                                              |                                                              |                                     | 3                                     |
| 7.         | Solid Waste<br>Management               | Solid Waste Management                                                                                                                                 |                                                              | 20                                  | 7                                     |
| 8.         | Rain water<br>Harvesting                | Rain v                                                                                                                                                 | water Harvesting                                             | 12                                  | 2                                     |
| 9          | Stormwater<br>Harvesting                | Storm                                                                                                                                                  | water Harvesting                                             | 15                                  | 3                                     |
| 10         | Solar Power &<br>Energy<br>Conservation | Street lights installation with Solar Systems                                                                                                          |                                                              | 20                                  | 3                                     |
| 11         | Fire and Safety                         | Fire and                                                                                                                                               | Safety Management                                            | 10                                  | 2                                     |
| 12         | Laboratory                              | Testing and Analysis                                                                                                                                   |                                                              | 10                                  | 2                                     |
|            |                                         | TOTAL C                                                                                                                                                | OST (INR, LAKHS)                                             | 4352                                | 168                                   |

#### 9.0 GREENBELT DEVELOPMENT PLAN

Greenbelt development is undertaken in the area provided separately. As per suggestion given earlier by EAC for similar kind of proposal 2500 trees should be available per hectare of land for Greenbelt development. Total 5.413409 Hectares of land is reserved for greenbelt development; hence there should be minimum 13534 no. of trees. At present the industry has already planted about 5000 Trees, and remaining 8534 trees shall be planted within two years. The industry proposes to plant 1000 to 1500 trees per year in order to increase the greenbelt over and above 33% of the total factory area

#### 10.0 CORPORATE ENVIRONMENT RESPONSIBILITY PLAN

The capital cost of the proposed expansion and distillery project is Rs. 313.99 Crores. The industry has reserved **Rs. 2.355 Crores** (0.75 % of the cost of the project as per Office Memorandum Vide F. No. 22-65/2017-IA.III Dated 01.05.2018) which will be spent on the activities like sanitation and health, education, and educational facilities as a cost towards corporate environment responsibility (CER).

#### 11.0 RAINWATER AND STORMWATER HARVESTING PLAN

The industry is making efforts to conserve natural resources by adopting green technologies and as such industry proposes to adopt rain water harvesting system. With the annual rainfall of 524.9 mm there is good potential to harvest rainwater. The rainwater harvesting system will be installed at various buildings and about 20491.38 Sq.m of area. 8604.7 m3 per year water is harvested. This harvested water shall be utilized for ground water recharge in order to increase the ground water table in the surrounding area.

Stormwater management system shall be also adopted by the industry. Separate drains of minimum 0.6 m \* 1.0 m will be provided for the collection and disposal of stormwater from the industry premises.

| Table 32 Rain water | r harvesting quantity |
|---------------------|-----------------------|
|---------------------|-----------------------|

| Sr.<br>No. | Location      | Area in m2 |        | Average Run-<br>off Factor | Rainfall in mm | The quantity of rainwater per year m <sup>3</sup> |        |
|------------|---------------|------------|--------|----------------------------|----------------|---------------------------------------------------|--------|
|            |               | Only       | 20491. | 38 m2 area                 |                |                                                   |        |
| 1          | Built-up area | use        | for    | rainwater                  | 0.80           | 524.9                                             | 8604.7 |
|            |               | harve      | sting  |                            |                |                                                   |        |

#### Storm water harvesting

Table 33 Quantity of Storm water per annum

| Sr.<br>No | Location           | Area m2    | Average Run-<br>off Factor | Rainfall in mm | The quantity of rainwater per year m <sup>3</sup> |
|-----------|--------------------|------------|----------------------------|----------------|---------------------------------------------------|
|           | Total factory area | 162000-    |                            |                |                                                   |
| 1         | 1 - Built-up area  | 20491.38=  | 0.40                       | 524.9          | 29,711.15                                         |
|           |                    | 141,508.62 |                            |                |                                                   |

#### 12.0 CONCLUSIONS

As the industry has provided all the necessary pollution control measures for water, air and solid and hazardous waste disposal, the negative impacts on the environment would be minimal/ negligible. The expansion of sugar unit would help to produce good quality of sugar and establishment programme would help to produce good quality of power and RS/ENA/alcohol and has a great potential for export. Ethanol produced will mainly utilized in blending with petrol (additives) and ENA is used to manufacture liquors and medicine.