PROPOSED DISTILLERY OF CAPACITY 10 KLPD BASED ON GRAINS TO PRODUCE ETHANOL AT GUT NO 40, GAON JAMOTI, TALUKA BAGLAN (SATANA), DISTRICT NASHIK, MAHARASHTRA, PIN CODE – 423301., BY UDDHAVESH URJA ETHANOL PRODUCTS PVT. LTD. PROPOSAL FOR ENVIRONMENT CLEARANCE

TABLE OF CONTENTS

T	ABLE	OF CONTENTS	i
L	IST OF	TABLE	ii
1	INT	RODUCTION	1
	1.1	PROJECT LOCATION	1
2	PRO	DJECT DESCRIPTION	2
	2.1	RESOURCE REQUIREMENT AND INFRASTURE FACILITIES	2
3	BAS	SELINE ENVIRONMENTAL STATUS	4
	3.1	AIR ENVIRONMENT	4
	3.1.	1 IMPACT ON AIR QUALITY DUE TO PROPOSED ACTIVITY	6
	3.2	WATER ENVIRONMENT	7
	3.3	SOIL ENVIRONMENT	8
	3.4	NOISE ENVIRONMENT	8
	3.5	LAND USE/LAND COVER OF THE STUDY AREA	9
	3.6	ECOLOGY AND BIODIVERSITY	9
	3.7	DEMOGRAPHIC OR SOCIO-ECONOMIC PROFILE	9
4	IDE	ENTIFICATION, PREDICTION AND MITIGATION MEASURES	11
5	AN.	ALYSIS OF ALTERNATIVE (TECHNOLOGY AND SITE)	12
6	EN	VIRONMENT MONITORING PROGRAMME	13
7	AD:	DITIONAL STUDIES	14
	7.1	RISK ASSESSMENT	14
8	BU	DGETARY PROVISIONS TOWARDS ENVIRONMENTAL MANAGEMENT PLAN:	18
9	CO	RPORATE ENVIRONMENT RESPONSIBILITY PLAN	19
1() (ONCLUSIONS	19

LIST OF TABLE

Table 1.1 Salient features of the project site	1
Table 2.1 Proposed Products manufacturing quantities	
Table 2.2 Landuse breakup	
Table 3.1 Stack Inventory	
Table 3.3 Change in General Land use/ Land cover of Study Area (2008 to 2019)	
Table 4.1 Anticipated environment impacts its effect and mitigation measures during	construction
phase	11
Table 6.1 Environment management programme	13
Table 8.1EMP Budget	

EXECUTIVE SUMMARY

1 INTRODUCTION

Uddhavesh Urja Ethanol Products Pvt. Ltd. is a company registered under Indian Companies Act 2013, located at Gut No. 40, Gaon Jamoti, Taluka Baglan (Satana), District Nashik, Maharashtra, Pin Code – 423301.

The registered office of Uddhavesh Urja Ethanol Products Pvt. Ltd.is located at 949 Akshay Chasmaghar, TDA Road, Taluka Satana, Dist Nashik, Maharashtra 423301and the project site is located at Gut No. 40, Gaon Jamoti, Taluka Baglan (Satana), DistrictNashik, Maharashtra, Pin Code – 423301

The proposed project will produce 10 KLPD Ethanol from grains as a raw material. Ethanol is manufactured using numerous methods. The method for selecting ethanol production usually depends upon raw material availability and the method of production. The raw materials required during production, grains shall be directly taken from traders and the nearby farmers. This will help to maintain socio economy in the region.

The spent wash from proposed grain distillery will be subjected to decantation to separate out wet cake and 6-7% w/w solid thin slop will be fed to evaporator. The thick syrup @ 35- 40 % solids after the evaporation would then fed to DWGS drier to produce DDGS at 88-90% w/w solids which will be sold as cattle feed.

The aggregated capital investment for the proposed project is estimated at Rs. 20 Crores.

The promoters have extensively and carefully analyzed the present and future scenario of central Govt. policies for promotion of ethanol addition in the petroleum fuels. They have also studied carefully the present irrigation facilities and surplus grain availability, as well as future potential of irrigation and additional grain availability.

1.1 PROJECT LOCATION

The salient features of the project site are

Table 1.1 Salient features of the project site

Sr. No.	Features	Description
1.	latitude	20°46'58.68"N
2.	Longitude	74°03'25.17"E
3.	Elevation above MSL	740 m
4.	Nearest highway	SH-141 (7.22 Km)
5.	Nearest railway station	Manmad (100 km)
6.	Nearest air port	Nashik (77.69 Km)
7.	Nearest town	Satana (26.24 km)
8.	Nearest human settlement	Mulher (3.34 km)
9.	Protected Area	None within 10 km
10	Reserved Forests	None within 10 km

Sr. No.	Features	Description	
11 Wildlife Sanctuary		None within 10 km	
12 Archeological site		None within 10 km	
13 State boundary		None within 10 km	
14 Defense installations		None within 10 km	
15	Average Rainfall	450 mm	

2 PROJECT DESCRIPTION

The details about the maufacturing capacity of the proposed establishment are given in table below

Table 2.1 Proposed Products manufacturing quantities

Sr. No.	Product	Capacity	
1	Main Product- Distillery (Grain based)	10 KLPD	
	By Product		
2	CO2	8 MT/Day	
3	DDGS Powder	10 MT/Day	

2.1 RESOURCE REQUIREMENT AND INFRASTURE FACILITIES

A) Land use Details

The total area available with the factory is **2.72 Hectares** Out of which, **0.8976 Hectares will be** utilized for green belt development. A detailed area breakup is given below

Table 2.2 Landuse breakup

Sr. No.	Description	Area in Hectares	% of Area
1	Built Up	1.32174	48.6
2	Green Belt Area	0.8976	33
3	Parking Area	0.272	10
4	Vacant Area	0.22866	8.4
	Total Plot Area	2.72	100.00

B) Power requirement

The power requirement for proposed distillery unit will be 25 KW and it shall be taken from MSCB.

C) Water Consumption details

Fresh water requirement will be obtained from Irrigation department. The mill has taken permission from irrigation department. (Enclosed as annexure to main report). Detailed water budget discussed in Table;

Source- Irrigation Department

Total water requirement – 243.3 TPD

Process water – 107 TPD

Cooling tower makeup- 102 TPD

Distillation – 13 TPD

D.M.Water-21.3TP

D) Air Emission Management

Biomass Briquettes, Agricultural Waste, Waster Biomass 40 TPD (9 Month) and Coal 32T (3months) will be used as fuel for 1*5 TPH Incineration boiler. A stack of 40 meters height and wet scrubber as APC equipment shall be provided to control air emissions. Also DG set: DG set of capacity 500 KVA each is proposed as emergency.

Table 2.4 Details of boilers and its APC equipment for existing as well as proposed

Sr. No.	Stack attached to		Types of Fuel	Height in meter	APC System		
	Proposed Installation						
1	5 TPH incineration	Distillery	Briquettes	40	Wet		
1	boiler	Division	and coal	40	Scrubber		

E) Solid waste Management

a) Non Hazardous solid wastes details

Table 2.5 Details of non-hazardous waste generated and its disposal

Sr. No.	Description of waste	Quantity	Disposal
1.	Waste Sludge from DDGS Drier	10 Kg/day	Used as manure
2.	Boiler Ash	400 kg/day	Sold to brick manufacturers
3.	DDGS	10 Tons per Day	Sold as cattle feed

3 BASELINE ENVIRONMENTAL STATUS

3.1 AIR ENVIRONMENT

Ambient air monitoring was carried out at 8 locations, 24 hours a day, twice a week at each location over/for a period of three months (March 2021 to May 2021) to determine background concentrations. The Maximum concentrations of each pollutant observed are considered as a background concentration of the respective location, the summary of the results is given below.

1. Particulate Matter (PM₁₀)

The maximum, minimum, average and 98th percentile concentrations for PM10 were recorded in the study area in the range of 39.1 to 57.1 μ g/ m3. The maximum 98th Percentile concentration is 56.41 mg/m3 were recorded at Project site (location -1). The concentrations of PM10 are well below the CPCB standard of 100mg/ m3.

2.Particulate Matter (PM2.5)

The maximum, minimum, average and 98th percentile concentrations for Particulate Matter (PM2.5) monitored in the study area were 17.1–28.5 mg/m3. Highest 98th percentile value is 27.99mg/m3 which

was observed at Village Antapur (Location-4). The concentration of PM2.5 is well below the prescribed limit of $60\mu g/m3$.

3. Sulfur Dioxide (SO₂)

The Minimum, maximum, average and 98th percentile value of Sulphur dioxide in the study area from the monitored data was in the range of $9.1 - 19.2 \,\mu\text{g}/\text{m}3$. Maximum 98th Percentile value of Sulfur dioxide is $18.83 \,\mu\text{g}/\text{m}3$ obtained at Project site (location -1). The concentration of SO2 is well below the prescribed limit of $80 \,\mu\text{g}/\text{m}3$.

4.Oxides of Nitrogen (NOx)

The Minimum, maximum, average and 98th percentile value of Oxides of Nitrogen (NOx) in the study area from the monitored data was in the range of 13.2–22.11 mg/ m3. Maximum 98th Percentile value of Oxides of Nitrogen (NOx) is 22.11 mg/ m3obtained at Near Mulher Village (Location-2). The concentration of NOx is well below the prescribed limit of $80\mu g/m3$.

5. Carbon Monoxide (CO)

The Minimum, maximum, average and 98th percentile value of Carbon Monoxide (CO) in the study area from the monitored data was in the range of 0.02 - 0.09 mg/ m3. Maximum 98th Percentile value of Carbon Monoxide (CO) is 0.09 mg/ m3. The concentration of CO is well below the prescribed limit of 4.0 mg/m3.

The ambient air quality monitoring results indicates that the overall air quality in the study area is within permissible standards prescribed by NAAQ Standards.

3.1.1 IMPACT ON AIR QUALITY DUE TO PROPOSED ACTIVITY

At present Briquettes, quantity of 40 T/day required and 32 T/day coal when shortage of bagasse as a fuel for 1*5 TPH boiler, hence air quality predictions are done considering the fuel quantity of proposed scenario, results of which are indicated in the following tables. Emission data is collected through Source emission monitoring according to IS 11255 (Part-1 to 3 and Part-7). Results of the same as described below. These pollutant emission rates are used in AERMOD software to compute incremental GLCs for these receptors at selected receptors.

Table 3.1 Stack Inventory

Sr. No.	Particulars	Description					
A. Point	A. Point Source (Stack attached to boiler)						
1	Stack attached to	Distillery boiler					
2	Capacity	5 TPH					
3	Fuel type	Bagasse					
4	Total fuel quantity requirement	Briquettes, -40 T/day	Coal-32 T/day				
5	Stack height	40 m.					
6	Stack diameter	4.5 m.					
7	Flue gas temp.	175°C					
8	Flue gas velocity	12.0 m/s					
9	Controlling equipment	Wet scrubber					
10	Emission rate	(g/sec)					
	i. TPM	0.67					
Based or	n Observed Conc. & Fuel						
	ii. NOx	based on observed conc	entrations - 6.91				
		based on observed conc	entrations - 6.48				
	iii. SO ₂	based on fuel characteri	stics - Bagasse – 2.3148				
		based on fuel characteristics-Coal-31.11					
11	Ash content	500 kg/day					
12	Ash below grate	1.44 MT/day (20 % of the total ash)					

Sr. No.	Particulars	Description			
13	Remaining Ash	5.76 MT/day (8	5.76 MT/day (80 % of the total ash)		
14	Ash going to stack, QPM (with ESP removal efficiency of 99%)	0.0576 MT/day (Consider 99% ESP Efficiency)			
15	Ambient temperature	30°C			
	Average time of movement of vehicle inside the premises		5 min		
	Distance travelled by the vehicles inside	premises	0.2 km		
	Q _{PM} (g/sec)		0.1047		
	Q _{NOx} (g/sec)		1.1367		
	Q _{co} (g/sec)		0.5967		

3.2 WATER ENVIRONMENT

Water sampling and subsequent analysis was carried out to determine both the groundwater and surface water quality of the study area. Ground water & Surface water samples were collected at 8 locations & 6 locations respectively within study area. These samples were analyzed for physical and chemical parameters to ascertain the Baseline status in the existing surface water and ground water bodies.

Table 3.2 Water Analysis Results

C. No	Parameters	Ground water		Surface water	
Sr. No		Min	Max	Min	Max
1.	pН	7.60	7.10	7.2	7.5
2.	Dissolved Solids (mg/l)	466	324	324	401.32
3.	Total Hardness (mg/l)	189.32	146	138	163.60
4.	Chlorides (mg/l)	66.52	7.24	35.64	68.90
5.	Fluoride (mg/l)	0.63	0.25	< 0.01	< 0.01
6.	Sulphates (mg/l)	31.5	38.50	BDL	BDL

Ground water and surface water samples were collected and analyzed as per the Standard methods and the water quality of the study area is found within the permissible limits of IS: 10500- 2012. Fluoride concentrations observed are lower than the required concentration.

Groundwater quality is found to be good, which can be directly used for irrigation purpose. However, ground water used for drinking purpose after the appropriate treatment.

Surface water quality is found to be good, which can be directly used for irrigation purpose. However, for drinking purpose, conventional treatment suggested.

3.3 SOIL ENVIRONMENT

The soil monitoring was carried out at 8 locations in the study area, and analyzed for chemical and physical characteristics; the summary of the results is as under

- The finding of the study reveals that pH of soil in the area ranged between **7.10** to **7.60** which is an indicative of the **neutral** to **slightly alkaline** soil.
- The values for Nitrogen at all locations varied between 168.90 to 371.54 mg/kg. Maximum concentration of nitrogen was observed at location S-4, while the lowest concentration can be observed at location S-3.
- It is important to note that the concentration of potassium was found to be high at all locations ranging between 106.10 to 226.40 mg/kg.

Based on the above findings it can be concluded that the soil samples can be classified as per soil classification given by Tondon H.L.S. (2005). The samples fall under **medium to high** fertile soils.

3.4 NOISE ENVIRONMENT

In order to assess the noise levels in the study area, monitoring was carried out at eight different locations within 10 km radius of the study area.

Daytime Noise Levels (Leq)_{day}

Residential Zone: The daytime noise levels in all the locations were observed to be in the range of 50.03 dB (A) to 51.25 dB (A), which is well below the permissible limit of 55 dB (A).

Night time Noise Levels (Leq)_{night}

Residential Zone: The night time noise levels in all the residential locations were observed to be in the range of 41.34 dB (A) –42.9 dB (A), which is well below the permissible limit of 45 dB (A).

The industry is making all efforts to control the noise levels within the limits by providing acoustic measures and silencer pads etc. all the employees in these work places shall be provided with ear plugs / muffs for the proposed establishment

3.5 LAND USE/LAND COVER OF THE STUDY AREA

Table 3.3 Change in General Land use/ Land cover of Study Area (2008 to 2019)

Landuse	Area in km2		% of Study Area		
Landuse	2008	2018	2008	2018	
Agriculture land	159.07	185.33	39.80	42.84	
Barren Land	142.85	120.51	33.24	29.63	
Open Scrub	68.76	46.52	4.27	2.90	
Settlement	84.48	90.79	21.14	22.70	
Water Bodies	6.52	7.78	1.63	1.95	
Total	400.00	400.00	100	100	

- In the year 2008 Water body area is about 6.52 km², whereas in the year 2018 it is increased and is 7.78 km².
- It can be inferred that there is an increase in 4.92 % of land under settlement, water bodies and agricultural land whereas a decrease in area under Scrub and Barren Land is 4.92 %.
- Increase in settlement due to an increase in industrial growth and migration of the people.
- Increase in agricultural land due to improved irrigation facilities like drip/trickle irrigation instead
 of surface and subsurface irrigation techniques. Therefore barren land is converted into
 agricultural land.

3.6 ECOLOGY AND BIODIVERSITY

- The moist and dry tropical deciduous forests provide natural and varied ecological habitats for the varied fauna. Nashik district is one of the northern part of Sahyadri in Maharashtra. On the basis of ecological aspects, a scientific study has been carried out with respect to wild animal biodiversity in Nashik region. The present investigation was done to enlist, identify and number of different species of mammals, reptiles and birds.
- All waste management practices should be identified and implemented right from the construction phase of the project and should be up-graded during the operational phase. The up gradation should be periodic and in match with improving technologies.
- A robust forestation and biodiversity plan should be formulated and practiced with a continuous check on its efficacy.
- The project activities should be carried out only after considering all possible secondary and tertiary impacts on the environment and mitigation measures should be incorporated such as to reduce any possibility of impact on the existing environment.

3.7 DEMOGRAPHIC OR SOCIO-ECONOMIC PROFILE

The project has a positive response from the public. The willingness to pay and the willingness to accept the project has positive an outcome. The ratio between this is around 1:10. It means the benefits are ten times greater than the loss. The losses due to the polluting agents are proposed to be diluted through various methods. The wastes and the pollutions can be reducing with some measures as suggested in the report. The social and cultural vulnerability index responds a very less and level of resilience is at the

nigher side. The sustained high growth rates and poverty reduction, however, can be realized only when the sources of growth are expanding, and an increasing share of the labour force is included in the growth process in an efficient way. From a static point of view, growth associated with progressive distributional changes will have a greater impact in reducing poverty than growth which leaves distribution unchanged. This is in fact expresses the inclusive growth of the region.		

4 IDENTIFICATION, PREDICTION AND MITIGATION MEASURES

Approx. 37 nos. of labours shall be employed during installation phase for the project which includes installing new machinery and units of the plant.

Table 4.1 Anticipated environment impacts its effect and mitigation measures during construction phase

Sr. No.	Impacts	Effects	Mitigation Measures		
1	Dust	Respiratory diseases	All the internal Roads are tar felted Dus separation sprinkling water, use machinery meeting		
2	Noise	Impairing, Hearing, Fatigue related Health issues	Provide acoustic measures and silencer pads to reduce noise level. Provide personal protective equipment to the workers.		
3	Land	Reduction of vacant land	Utilize the existing infrastructures and adopt vertical expansion and maximize the operation schedules.		
4	Top soil	Loss of fertility	Utilize for Green belt development.		
5	Water	Additional water is required for construction activities and Drinking			
6	Wastewater	Improper disposal of waste water leads to contamination of water sources and soil	Domestic wastewater shall be treated based on Root zone technology and treated wastewater shall be used for gardening.		

Anticipated environment impacts its effect and mitigation measures during operational phase is given in chapter 4.

5 ANALYSIS OF ALTERNATIVE (TECHNOLOGY AND SITE)

UDDHAVESH URJA ETHANOL PRODUCTS PVT. LTD, will be a grain based Distillery unit registered under the Company Act 1956. Factory is located Gat no 40, Gaon- Jamoti, Taluka- Baglan (Satana), District- Nashik, Maharashtra, Pin code – 423301.

The registered office of Uddhavesh Urja Ethanol Products Pvt. Ltd.is located at 949 Akshay Chasmaghar, TDA Road, Taluka Satana, Dist Nashik, Maharashtra 423301and the project site is located at Gut No. 40, Gaon Jamoti, Taluka Baglan (Satana), DistrictNashik, Maharashtra, Pin Code – 423301

The proposed project will produce 10 KLPD Ethanol from grains as a raw material. The raw materials are directly taken from the nearby farmers. This will help to maintain socio economy in the region.

The Project Site is conveniently located for development of the Project.

- Mulher village at a distance of 3.34 km
- Satana, at a distance of 26.24 km
- Manmade is nearest Railway station 100 km away from factory site.
- Nashik International airport is nearest Airport 77.69 Km away from factory site.
- > Environmental Setting-
 - Location –20°46'58.68"N and 74°03'25.17"E
 - Nearest State Highway SH-141 (7.22 Km)
 - There is no any river flowing near to the factory site
 - Seismicity Seismic Zone as per IS:1893 (Part-I):2002

The industry has sufficient land for proposed establishment. The minimum quantity of water is required, which can be obtained from the irrigation department. There are no negative impacts due the proposed establishment. Thus, the existing site is suitable for the porposed establishment.

6 ENVIRONMENT MONITORING PROGRAMME

Table 6.1 Environment management programme

SR.NO	ITEM	PARAMETERS	FREQUENCY OF MONITORING	LOCATION
1.	Ambient Air quality at appropriate location for PM ₁₀ , PM _{2.5} , SO ₂ ,andNO _x ,	PM ₁₀ , PM _{2.5} , SO ₂ ,andNO _x	24 hourly, Quarterly	5 Locations 1 @ Upwind and 2@ downwind directions from stack @ 1200 to each other Near entry and exit gates
2.	Stationary Emission from Stack PM, SO ₂ , NOx	PM, SO ₂ , NOx	Monthly	1 DG set Stack, 2 Boiler Stack
	Water	Water quality parameters as per 10500:2012	Monthly	Drinking water locations
3.	Waste water quality (treated and Untreated)	pH, BOD, COD, TSS, Flow, TDS etc.	Monthly	ETP inlet and Outlet
4.	Noise	Day and Night levels Equivalent noise level- dB (A)	Quarterly or as often as required	6 Locations Upwind and downwind directions Near boilers and near main gate and ETP.
5.	Soil (Qualitative and quantitative testing/analysis to check the soil fertility,)	pH, Cation Exchange Capacity, Total Nitrogen, Phosphorous, Potassium, moisture, Permeability, Conductivity, Texture & structure, Organic carbon	Quarterly or as often as required	1 near Greenbelt 1 near ETP Composite sample shall be taken at each location
6.	Solid waste generation monitoring / Record Keeping	Manual record keeping	To be updated daily	
7	Greenbelt and plantation monitoring	Type of species shall be decided based on soil & climatic conditions. The number of trees would be 1500 per hectare, however; the number of trees would vary depending on the	Six Monthly	

SR.NO	ITEM	PARAMETERS	FREQUENCY OF MONITORING	LOCATION
		typeof soil		
8	Carbon and Water foot Print Monitoring	Maintain the data of raw materials consumption, steam consumption, vehicle frequency for transport of raw materials, effluent generation, air emissions, hazardous waste generation, and raw material recovery	Daily and Monthly	

7 ADDITIONAL STUDIES

7.1 RISK ASSESSMENT

HAZOP and Quantitative Risk Assessment studies are carried out for each product, disasters management plan, onsite and offsite emergency plan are prepared and given in Chapter 7 of the EIA Report

Consequence analysis of ethanol due to storage facility

Scenario of Ethanol in different forms

SITE DATA:

Location: UDDHAVESH URJA ETHANOL PRODUCTS PVT. LTD

Building Air Exchanges Per Hour: 0.44 (unsheltered single storied)

Time: November 9, 2021 1200 hours ST (using computer's clock)

CHEMICAL DATA:

Chemical Name: ETHANOL

CAS Number: 64-17-5 Molecular Weight: 46.07 g/mol

ERPG-1: 1800 ppm ERPG-2: 3300 ppm ERPG-3: N/A

IDLH: 3300 ppm LEL: 33000 ppm UEL: 190000 ppm

Ambient Boiling Point: 76.6° C

Vapor Pressure at Ambient Temperature: 0.088 atm

Ambient Saturation Concentration: 93,798 ppm or 9.38%

ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)

Wind: 2.78 knots from 178° true at 3 meters

Ground Roughness: open country Cloud Cover: 5 tenths

Air Temperature: 27° C Stability Class: B

No Inversion Height Relative Humidity: 50%

Type of Tank Failure: BLEVE tank explodes and chemical burns in a fireball

Potential hazards from BLEVE:

• Thermal radiation from fireball and pool fire

• Hazards fragments and blast force from explosion

• Downwind toxic effects of fire byproducts

BLEVE/Fire ball Scenario: The higher the internal tank pressure/temperature at the time of tank failure, the larger the fire ball. Any liquid not consumed by the fire ball will form a pool fire.

SOURCE STRENGTH:

BLEVE of flammable liquid in vertical cylindrical tank

Tank Diameter: 20 meters Tank Length: 21.5 meters

Tank Volume: 6750 cubic meters

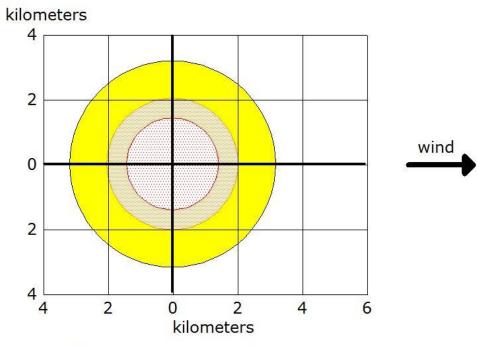
Tank contains liquid

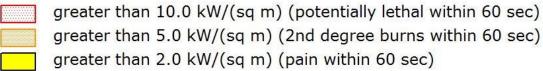
Internal Storage Temperature: 27° C

Chemical Mass in Tank: 4,376 tons Tank is 75% full

Percentage of Tank Mass in Fireball: 100%

Fireball Diameter: 918 meters Burn Duration: 40 seconds


THREAT ZONE:


Threat Modeled: Thermal radiation from fireball

Red : 1.4 km - (10.0 kW/(sq m)) = potentially lethal within 60 sec)

Orange: 2.0 km --- (5.0 kW/(sq m) = 2 nd degree burns within 60 sec)

Yellow: 3.2 km --- (2.0 kW/(sq m) = pain within 60 sec)

Conclusions

When tank explodes and ethanol in a fireball due to BLEVE;

The Thermal radiation from fireball of Ethanol having value of 5 kw/sqm is Vulnerable for second degree burns to all the plant personnel in the radius of 2.0 kilometer.

Project proponent will implement all preventive measures to tackle all type of emergencies arising out of operation or malfunction of individual unit's. The required resources for Onsite and Offsite emergency management plan will be properly planned and provided to implement the plan effectively. The factory shall give highest priority towards Health and safety of the employees and people residing nearby areas. Management shall conduct the training to the nearby villagers to appraise them about their role during emergency. All nearby people shall be given training on do's and don'ts during emergency situation. Distillery Industry (Ethanol Plant) is associated with potential hazards to the employee and environment. As the hazards involved during operation and production activities will be known to the Management, all required mitigation measures shall be implemented in time to avoid the emergency situation from the arising. Unfortunately, if there is any emergency onsite of offsite, it will be tackled effectively due to availability of required resources at the site. Similarly, all the concern staff and members of the Teams shall be trained appropriately to tackle the emergencies in the plant. By knowing the type of emergency situation that may arise during operation of the plant, appropriate control measures will be implemented to reduce the gravity of the emergencies. Similarly, to avoid the emergency situation, all required

mitigation measures will be implemented as recommended.

8 BUDGETARY PROVISIONS TOWARDS ENVIRONMENTAL MANAGEMENT PLAN:

The costs involved in environmental monitoring and management to mitigate the adverse effects will be put on account for the proposed project. The capital cost for the EMP will be Rs. 338 Lakhs. And recurring cost will be Rs.65.9 Lakhs. The detailed EMP budget is given in table below

Table 8.1EMP Budget

Sr. No.	Attribute	Specific measure	Capital Cost (Rs. Cr.)	O&M Cost (Rs. Cr.)	Remarks
1.	Water	Water & Wastewater management	0.75	0.20	
2.	Air	Emission control Engineering	0.5	0.015	
3.	Noise	Acoustic enclosure for DG set	0.35	0.05	
4.	Solid waste	Disposal of solid waste	0.30	0.10	
5.	Hazardous waste				
6.	Fuel & Energy	Solar light, LED light etc.	0.045		
7.	Safety & heath	PPE, Safety Audit, training etc.	0.095	0.25	
8	Rain water harvesting	RWH reservoir	0.065	0.045	
9.	Gardening	Plantation of trees, manure and man power etc.	0.85	0.035	
			3.38	0.695	

9 CORPORATE ENVIRONMENT RESPONSIBILITY PLAN

As per EIA Notification dated 14th Sep., 2006 as amended from time to time; the project falls in Category 'B1', Project or Activity -5(g). The Chapter on "Environmental Cost Benefit Analysis" is applicable only, if the same is recommended at the Scoping stage.

As per the ToR points issued by SEIAA, Govt. Of Maharashtra vide letter no. SIA/MH/IND2/67482/2021 dated 15-09-2021 for the proposed 10 KLPD Grain Based Distillery at Gut no- 40, Gaon- Jamoti, Taluka- Baglan, District- Nashik, Maharashtra, Pin Code – 423301; No recommendation of environmental cost benefit analysis was given during appraisal stage, hence it is not carried out.

10 CONCLUSIONS

- As the industry has provided all the necessary pollution control measures for water, Air and Solid
 and hazardous waste disposal, the negative impacts on the environment would be minimal/
 negligible. The project will generate employment opportunities during operational phase. The
 standard of living of local people due to employment is likely to be better, so we may say that it is
 positive socioeconomic impact.
- In short, we can say that this project has no negative impact on environment.