SIA/MH/IND2/63973/2021, Category 'B1'

EXECUTIVE SUMMARY

of

Environmental Impact Assessment Report

Expansion of Sugar Unit from 5,500 to 8,000 TCD, Cogeneration 18 to 36 MW and Molasses Based Distillery 30 to 90 KLPD

M/s. SHRI SOMESHWAR SAHAKARI SAKHAR KARKHANA LIMITED

Someshwarnagar, Tal.:Baramati, Dist.:Pune, Maharashtra

Prepared by

VASANTDADA SUGAR INSITUTUE

Manjari (Bk.), Tal.:Haveli, Dist.:Pune-412 307, Maharashtra. Ph.: (020) 2690 2100, 2690 2343/7, Fax: (020) 26902244 E-mail: admin@vsisugar.org.in Website: www.vsisugar.com

ISO 9001:2015 Certified

Accredited by QCI/NABET for EIA consultancy services, (Certificate No. NABET/EIA/2023/RA 0208)

Recognized R & D Center by Department of Scientific and Industrial Research (DSIR),

Ministry of Science and Technology, Government of India Recognized
Post Graduate & Research Centre of 'Savitribai Phule Pune University'

Environmental Monitoring period: Jan-Mar 2021 Laboratory Involved: Aavanira Biotech Pvt. Ltd. (NABL & MoEF&CC approved)

OCTOBER 2021

CONTENTS OF SUMMARY

POINT	PARTICULAR	PAGE
1.0	Introduction	1
1.1	Features of the site	1
2.0	Material and infrastructure	5
2.1	Water	6
2.2	Fuel	10
2.3	Steam	10
2.4	Power	10
2.5	Boiler	10
2.6	Fuel handling system	11
2.7	Ash handling system	11
2.8	Land	11
2.9	Manpower	12
3.0	Process description	12
4.0	Baseline environment condition	15
4.1	Land use	16
5.0	Impact assessment	17
5.1	Air environment	17
5.1.1	Impact causing factors	17
5.1.2	Impact assessment:	17
5.1.3	Preventive, control and mitigation measures	17
5.1.3.1	Air pollutant dispersion modeling	18
5.2	Water environment	21
5.2.1	Impact causing factors	21
5.2.2	Impact assessment	21
5.2.3	Environment management plan	21
5.3	Land environment	22
5.3.1	Impact causing factors	22
5.3.2	Impact assessment	22
5.3.3	Environmental management plan	22

POINT	PARTICULAR	PAGE
5.4	Ecology	23
5.4.1	Impact causing factors	23
5.4.2	Impact assessment	23
5.4.3	Environmental management plan	23
5.5	Socio- economic environment	23
5.5.1	Impact causing factors	23
5.5.2	Impact assessment	23
5.5.3	Environment management plan	23
6.0	Fire protection system	24
6.1	Safety Aspects through Design and Engineering	24
6.2	Plant lighting	24
7.0	Environment management plan	24
8.0	Safety, occupational health management	28
9.0	Conclusion	29

LIST OF TABLES

TABLE	PARTICULAR	PAGE
1	Highlights of the project	2
2	Availability of raw materials, finished good product and mode	5
	of transport	
3	Water Balance Sugar and Cogeneration Unit	6
4	Water balance 45 KLPD distillery unit	8
5a	Details of existing Storage Tanks	14
5b	Details of proposed Storage Tanks	15
6	Summary of Environmental features of study area	15
7	Summary of Maximum 24-hour GLC due to proposed project	19
8	Solid Waste and its Management	21
9	Summary of Environment Management Plan	24
10	Financial provision for CER activities planned for next five year	28
11	Estimated Capital & Recurring Expenses for Environment Mag.	28

LIST OF FIGURES

TABLE	PARTICULAR	PAGE
1	Flowchart sugar manufacturing process	12
2	Schematic of Cogeneration process	13
3	Schematic of Manufacturing Process	14
4	Details of Land use	16
5	Isopleth showing GLC location and distance for PM (Short	18
	term 24 hourly)	
6	Isopleth showing GLC location and distance for SO2	19
	(Short term 24 hourly)	

EXECUTIVE SUMMARY

1.0 INTRODUCTION

M/s Shri Someshwar Sahakari Sakhar Karkhana Ltd., (SSSSKL) Someshwarnagar, Tal. Baramati, Dist. Pune was registered under the Maharashtra Co-Operative Society Act, 1960 vide registration no. G-281, dated 20/06/1960. The industry is very progressive and has achieved best technical performance & expanded its capacity time-to-time.

The first crushing season of the sugar mill was conducted in the year 1962-63 with the initial installed crushing capacity was 1016 TCD and. The sugar mill carried out expansion from 3500 TCD to 5,500 TCD with 18 MW Co-generation plant in 2010-11. The existing 30 KLPD distillery was established in 2007.

As a result of increase in sugar cane availability in its command area, the management of SSSKL has decided to enhance the existing sugar crushing capacity from 5,500 to 8,000 TCD. Due to this expansion, the availability of bagasse and molasses will also increase. Considering all these aspects and to gain more benefits from this industrial complex the management also decided to enhance the capacity of the existing cogeneration unit from 18 to 36 MW and the existing distillery from 30 to 90 KLPD

The existing sugar ETP will be modified to treat the additional effluent generated after expansion. Zero liquid discharge (ZLD) of spent wash for total 90 KLPD is planned through concentration of spent wash followed by incineration

1.1 Features of the site

The total land allocated for industrial activity (such as sugar and cogeneration unit and distillery project is around 27.0 Ha of land. The proposed expansion will take place in the existing industrial plot. No additional land need to be procured. Available open land is adequate to accommodate proposed expansion. The existing site meets the industrial sitting guidelines of the Ministry of Environment, Forest and Climate Change (MoEFCC). This site location map is enclosed as Annexure I in the main EIA report. The other important aspects are highlighted in the following table.

Table 1: Highlights of the project

1.	Project	M/s Shri Someshwar Sahakari Sakhar Karkhana Ltd.,				
	Proponent					
2.	Project	Expansion of Sugar unit from 55	500 to 800	00 TCD, Cog	generation	
		from 18 to 36 MW and Molasses Bo	ased Distille	ery from 30 to	90 KLPD	
3.	Location of the	Survey no: 53, 61, 100, 101, 102,	104, 124,	at Someshw	varnagar,	
	project	Tal. Baramati, District Pune, Maha	rashtra.			
4.	Working days	Sugar: Average 160 days (Max. 20	00 days); C	Cogeneration	n unit	
		Season + 60 days; Distillery unit: ye	ar arounc	I		
5.	Product	A. Sugar and cogeneration				
		Product	Existing	Proposed	Total	
		Cane crushing (TPD)	5500	2500	8000	
		Sugar (Recovery@12%) (TPD)	660	300	960	
		Cogeneration (MW)	18	18	36	
		Byproducts				
		Bagasse @ 28.0%, TPD	1540	700	2240	
		Molasses 'C' @4.32 %, TPD OR	237.6	108	345.6	
		Molasses 'B' @6%, TPD	330	150	480	
		Press mud @4 %, TPD	220	100	320	
		B. Distillery				
		Rectified spirit / ENA /	30	60	90	
		Anhydrous Alcohol (KLPD)				
		Fusel oil (L/day)	120	240	360	
6.	Effluent	For sugar mill effluent and spray	pond ove	rflow: ETP (Ex	kisting ETP	
	Treatment	will be upgraded)				
	System	For Sewage: New STP will be installed				
		For spent wash: Evaporation followed by incineration (for full 90				
		KLPD capacity)				
		For spent lees, condensate and other effluent: Two stage				
		biological treatment followed by tertiary treatment				
7.	Air Pollution	Existing scenario:				
	Control- flue	• 1 no. 100 TPH Boiler with stack	of heigh	t72 m and E	SP as air	

	gases	pollution contro	ol device				
	CO ₂ from	• 2 nos 20 TPH b	oiler with sta	ck heig	ght of 32 m and v	vet scrubl	ber
	fermentation	as air pollution	control devi	се			
		• 1 no 40 TPH bo	oiler with sta	ck heig	ht of 35 m and v	vet scrubl	ber
		as air pollution	control devi	се			
		Proposed scenario:					
		• Existing 2nos 2	20 TPH and	1 no 40) TPH boiler will b	e discard	ded
		and new 100	TPH boiler w	ith sta	ck height of 70 m	and ESP	as
		air pollution co	ontrol device	e will be	e installed for suga	ar unit	
		• New 30 TPH in	ncineration b	ooiler w	vith stack height	of 60 m c	and
		ESP as air poll	ution contro	l devic	e will be installed	d for distill	ery
		unit					
		Bottling plant	for process (CO2em	issions will be insta	alled	
INFR	ASTRUCTURE						
8.	Land	Plot allocated fo	or industrial	activity	[,] 27 ha; propose	d expans	ion
		will take place within the same.					
		Greenbelt area	= 8.91 ha (89	,100 sq	.m.)		
		Land details are	given in follo	owing to	able:		
		Description	Existing		Proposed	Total	
			(sq.m)		(sq.m)	(sq.m))
		Sugar	180,400	Mod	fication will be	180,40	0
		&cogeneratio		done	in existing area		
		n					
		Distillery Unit	26,800			26,800)
		Expansion will b	e done in th	ne exist	ing area propos	ed for sug	gar
		and distillery uni	it, Available	land is	under the posse	ession of	the
		project propone	nt. No need	of aco	uisition of new la	nd.	
9.	Main Raw	A. Sugar unit					
	Material	Raw Material	Existir	ng	Proposed	Tot	al
	required	Sugar cane (TPD	550	0	2500	800	00
		Lime (TPD)	8.09	7	3.67	11.3	76
		Sulphur (TPD)	2.73	5	1.25	4.0	0

		B. Co-generation unit:	Bagasse @	1768 TPD	
		C. Distillery unit			
		Raw material	Exiting	Proposed	Quantity
		Molasses (C-Type) OR	111 TPD	222 TPD	333 TPD
		Molasses (B-Type) OR		300 TPD	300 TPD
		Sugarcane (for juice)		1320TPD	1320TPD
		Nutrient N,P	100 kg/d	200 kg/d	300 kg/d
		Turkey Red Oil (TRO)	150 kg/d	300 kg/d	450 kg/d
10.	Technology for Product	Sugar: Double sulphito	·		
	Manufacturing	Cogeneration: DECC season) and only DECC Distillery: Continuous/	C turbine du	uring off-season	
		Distillery: Continuous/Fed-batch fermentation &multi-pressure-vacuum distillation for the production of Rectified spirit or Extra Neutral Alcohol with Molecular Sieve De-Hydration (MSDH) plant for Anhydrous/Fuel ethanol			
11.	Steam required	Sugar and Cogeneration unit: 3,888 TPD (162TPH) Source: 200 TPH boilers (proposed 100 TPH + existing 100 TPH boiler) Distillery Unit: 648 TPD (27 TPH) Source: Proposed 30 TPH incineration boiler			
12.	Fuel utilization	Cogeneration Unit: Bas Distillery Unit: Conc. Sp bagasse 117 TPD			al 64.35 TPD or
13.	Boiler	as per point 11of the to	able		
14.	Power required	Sugar and cogeneration unit: 11.89 MW Source: Captive Distillery unit: 2.47 MW (Source: Captive proposed incineration boiler)			
15.	Total Water Requirement	Sugar and cogeneration Unit: 351 m³/day (During Season) and 480 m³/day (During off season – for cogen unit) Distillery Unit: 643 m³/day Source: Nira Left Canal			

16.	Water Source	Nira river through Left Canal
17.	Manpower	Direct employment to 74 persons and about 30-35 seasonal
		employment
FINA	ANCIAL ASPECTS	
18.	Total Project	Project cost for Expansion of Sugar unit: Rs. 7037.55 Lakh
	Cost	Project cost for Expansion of Cogen unit: Rs. 7768.14 Lakh
		Project cost for expansion of distillery unit: Rs.11885.28 lakh
		> EMP cost for Sugar and cogeneration unit: Rs. 835 Lakh
		> EMP cost for Distillery unit: Rs. 5490 Lakh
		❖ CER cost @ 0.75% on total project cost i.e. Rs. 26,690.97 Lakh =
		Rs. 200.18 Lakh
		Total Project cost including EMP and CER cost: Rs. 26891.15 Lakh
19.	Capital	EMP cost for Sugar and cogeneration unit: Rs. 835 Lakh
	expenses for	EMP cost for Distillery unit: Rs. 5,490 Lakh
	EMP	

2.0 MATERIAL AND INFRASTRUCTURE

Table 2: Availability of raw materials, finished good product and mode of transport

Raw	Estimated	Source market	Final product	Estimated	Transport		
materials	quantity		By product	quantity	mode		
Sugar unit							
Sugar Cane	8,000TPD	Local farms	White sugar	960 TPD	Truck		
			Molasses 'C '	345.6 TPD	Tractor		
			or B	480 TPD			
Lime	11.76 TPD	Mumbai, Pune	Press mud	320 TPD	Truck		
Sulfur	4.0 TPD		Bagasse	2240 TPD	Tractor		
Co-generatio	n unit						
For season*	1768 TPD	Own factory	Power	35.43 MW	Transmission		
Bagasse							
Distillery unit							

Molasses		Own factory	Rectified spirit	90	Finished
'C' heavy or	333 TPD	&supplementa	+ Impure spirit	KLPD	product
'B' heavy or	300 TPD	ry from nearby	(5%)		transport - By
Sugarcane	1,320 TPD	sugar mill.	OR		Road- through
Nutrients N, P	300 Kg/d	Local Market	ENA +IS (6 %)		By Road- Truck
Turkey Red Oil	450 Kg/d	Pune, Mumbai	OR		Tempo
(TRO)			Fuel Alcohol		
Coal or	64.3 TPD	Market	(Anhydrous		By rail/Road-
Bagasse	117 TPD	Own sugar unit	alcohol) + IS		Truck
Spent Wash	223.2 TPD	Own Distillery	(5%)		HDPE pipeline
	= 180 m3	unit			

2.1 Water

Fresh Water requirement for the sugar and cogeneration unit will be 351 m³/day considering recycling of process condensate and reuse of water. Whereas the fresh water requirement for off-seasonal operation of the cogeneration unit will be 480m³/day. Daily fresh water requirement for the proposed expansion activity is given in table no. 3 & 4

Table 3: Water Balance 8000 TCD Sugar unit and 36 MW Cogeneration Unit

#	Particulars	Quantity
,	1) Boiler section	
	i. Water Input	
1	Maximum boiler input (100 TPH + 100 TPH = 200TPH)	4,800
2	Water input in boiler (Steam Generation + 2% Blow Down against	4,176
	steam generation + 5% loss) (162+ 3.24 + 8.10= 173.34 say 174 TPH	
3	Actual steam generation 162 TPH @ 90% Efficiency	3,888
	ii. Water and waste water output	
1	Condensate recycled to boiler (162 TPH) (140 TPH -process ,	3,888
	Deaerator 3 TPH, 9 TPH HP Heater, 10 TPH Condenser)	
2	Boiler blow down @2 % on steam generation = 3.24 say 4 TPH	96.0
3	Over all steam loss 5% on steam generation @ 8.0 TPH	192.0
	Total	4,176

	iii. Net water requirement for boiler	
1	Net water requirement 96 + 192 = 288	288
2	Effluent generation from boiler house	96.0
	2) Cogeneration unit	
	Water Input	
1	For cooling tower capacity 1000	2,400
2	Water recycle back	23,520
3	Water loss	480
4	Net fresh water requirement for CT makeup	480
	3) Sugar process	
	A. Water input sugar process	
1	Mill imbibition's @ 35 % on cane crushing As RE8(C)	2,880
2	Steam exhaust from boiler 42 % on cane	3,360
3	Water from cane 70% on cane	5,600
4	condenser/boiler parts cooling, Vacuum Pump & Others @ 8 %	640
	Total	12,480
	B. Output from process	
1	Steam condensate	3,168
2	Water from cane @ 70.0 % on cane crush	5,600
3	condenser/boiler parts cooling, Vacuum Pump & Others @ 8 %	640
	Total	9,408
	C. Overall process loss	
	Over all process loss	86.0
	D. Water loss product and by product	
1	Water losses in bagasse @ 50% Moisture	1,120
2	Water loss in Pressmud @ 70% on pressmud	224
3	Water loss in molasses @13% water	42
	Total	1,386
	E. Water loss as effluent and other waste water	
1	Effluent from process@100 lit/T of cane crush	800
2	Spray pond over flow @100 lit/T of cane crush	800

F. Hot water generation from process Steam condensate Process condensate Total					
Process condensate					
	3,168				
Total	5,600				
	8,768				
G. Hot water (Condensate) consumption					
H. Excess condensate generation					
Hot water generation – hot water consumption/recycle (8768 – 7568 = 1200)	1,200				
Excess condensate should be treated through Condensing Polishing Unit. CP	U will				

Excess condensate should be treated through Condensing Polishing Unit. CPU will have equalizing tank, anoxic tank, aeration tank, clarifier, duel media filter and activated carbon filter are used. CPU will deliver industrial utilizable water such as

sugar factory cleaning washing, cooling water make up and distillery process etc. 100% excess condensate can be utilized by the industry

- I. Fresh water requirement for seasonal operation is 288 m³/day
- J. Domestic water requirement

Total manpower (existing 571 + Proposed 00 = 571) @110 liter per person per day

say 63

- K. Net fresh water requirement during seasonal operation is 288 + 63 = 351
 m³/day
- L. Total water requirement in operational season @ 160 days = 56,160 m³
- M. For off seasonal operation only cooling tower makeup water will required i.e. 480.0 m³/day for

Table 4: Water Balance 90 KLPD Distillery Unit

#	Particulars	Consumptio
		n
	A. Fresh Water Requirement	
1	Process Water for Fermentation section and CO ₂ scrubber	999
2	Boiler feed water @22.0 TPH	528
3	Soft Water For Vacuum Pump & Others	100
4	Soft Water Makeup For Cooling Towers	383

5	Other Domestic Usage	10			
	Total Water Input at start-up	2,020			
	B. Water output from process				
1	Spent Lees (PR & Rect.)	180			
2	Soft Water For Vacuum Pump & Others	100			
3	Boiler waste water as blow down & steam loss	15			
4	Exhaust condensate	513			
5	Process condensate	576			
6	Water loss in RS	5			
7	Water loss in concentrated spent wash	48			
	Total Water Output	1,437			
	C. Water loss from process				
1	CT Evaporation & Drift Losses	383			
2	Domestic Consumption loss	10			
3	Water loss in concentrated Spent wash 60% Solids = 57.6 say 58	58			
	Over all process loss	132			
	Total	583			
	Total output from process = Water output + water loss	2020			
	(1437 + 583 = 2020)				
	D. Recycle streams after treated through CPU unit				
1	Lees Recycle For molasses dilution 180 (after CPU) + B. blowdown15	195			
	=195				
2	Process Condensate (after CPU)	576			
3	Steam condensate recycled to boiler	513			
4	Soft Water For Vacuum Pump & Others cooling water	100			
	Total Recycling /Re-utilizations of water per day	1,384			
	Total Daily Water requirement/Input = (2020 – 1384 = 636)	636			
	The fresh water requirements per lit of Alcohol including domestic	7.0 lit/lit of RS			
	water				
	E. Net fresh water requirement				
	Daily net fresh water requirement for the distillery unit	636 M³/day			

2.2 Fuel

For existing 100 TPH and proposed 100 TPH boiler of sugar and cogeneration unit bagasse will be used as a fuel! 1768 TPD. Concentrated spent wash of >55° brix up to 60° brix will be incinerated along with coal or bagasse for distillery project. Spent wash available for incineration will be 180 m³/day or 223.2 TPD. This quantity of spent wash will produce 16.27 TPH steam (GCV 1750K.cal). Along with spent wash, coal or bagasse will be used as supplementary fuel in 70:30 ratio and remaining

2.3 Steam

Steam required for the proposed Sugar & Co-generation unit will be the max. 162 TPH which will be fulfilled through existing and proposed boilers of total capacity 200 TPH. Steam requirement for existing 30 KLPD distillery and proposed 60 KLPD will be 27.00 TPH. Required steam will be fulfilled from proposed independent incineration boiler of 30 TPH Bagasse or coal will be used as supplementary fuel with concentrated spent wash.

It will be utilized for distillation, boiler units, and standalone multi-effect evaporation plant. Exhaust steam from STG will be used for distillery.

2.4 Power

The total power generation after the proposed expansion of cogeneration unit will be 35.43 MW out of which 11.89 MW will be the captive power consumption and remaining 23.52 MW will export during the season. During off season, cogeneration plant will be running on double extraction cum condensing (DECC) route and total power generation through the same will be 18 MW out of which 2.35 MW will be the captive power consumption and remaining 15.65 MW will be exported. Total power requirement for distillery unit will be 2.47 MW it will be fulfilled from proposed independent 2.5 MW steam turbine generators. In case of shut down, power will be generated from DG set or purchased from state electricity grid. Existing two DG set of 320 KVA and 500 KVA will be in use.

2.5 Boiler

In existing scenario, 4 boilers are available, of which

- 1. 100 TPH boiler with stack of height 72 m and ESP as air pollution control device,
- 2. 40 TPH boiler with stack height of 35 m and wet scrubber as air pollution control device and

3. Two 20 TPH boiler with stack height of 32 m and wet scrubber as air pollution control device

For proposed project, Existing two 20 TPH and one 40 TPH boiler will be discarded and new 100 TPH boiler with stack height of 70 m and Electro Static Precipitator (ESP) as air pollution control device will be installed for sugar unit and New 30 TPH incineration boiler with stack height of 60 m and Electro Static Precipitator (ESP) as air pollution control device will be installed for distillery unit.

2.6 Fuel Handling System

Bagasse generated is used as fuel in boiler of sugar plant, suitable bagasse handling slat conveyor is provided for the boiler plant. Provision is made for conveying excess bagasse (not used in the boiler) to a storage area by belt conveyor.

Entire coal storage area/ yard will be covered with permanent weather shed roofing and walls on three sides. Mechanized fuel handling system as well as dust suppression system will be installed for this area. Coal handling will have a capacity of max. 5 TPH the conveyors will be suitably covered with hood or enclosures. Crushed coal will be used, mainly of 3 to 8 mm size. In case of bagasse, the in-house bagasse will be used and it will be transport from bagasse yard to boiler section through conveyer belt or in covered trucks.

2.7 Ash handling system

The ash handling system envisages wet extraction of bottom ash & dry extraction for fly ash. The fly ash will be extracted in dry form from the electrostatic precipitator hoppers, economizer, air heater hoppers, stack hopper, and transported to storage silo as a measure for promoting ash utilization. For collecting fly ash in dry form, the system will be designed such that, the fly ash and conveying air mixture will be conveyed to storage silo with bag filters. Once in eight hours shift, the fly ash will be sequentially extracted from these hoppers. The fly ash handling system will be designed to collect ash in dry form in fly ash silos through pneumatic pressure conveying system.

2.8 Land

The total land allocated for proposed expansion is 27Ha of which only approx. 5.68 is existing built-up area and about 1.60 Ha will be proposed built-up area and 8.91 Ha will be greenbelt area and remaining area is mainly open plots and partially

covered by internal roads. The detailed break-up of land for different units of the sugar, cogeneration and distillery (both existing and proposed) are already given in chapter II of main EIA report.

2.9 Manpower

Proposed Sugar, co-generation & distillery project will provide direct employment to 74 persons and about 30-35 seasonal employment. However, it has a great potential to generate large indirect employment mainly through transportation of Sugar, coal and ethanol.

3.0 PROCESS DESCRIPTION

A. Sugar

The double sulphitation process for manufacturing plantation white sugar will be used in this expansion. The process consists of the following steps. A flowchart of the process is given in figure 1.

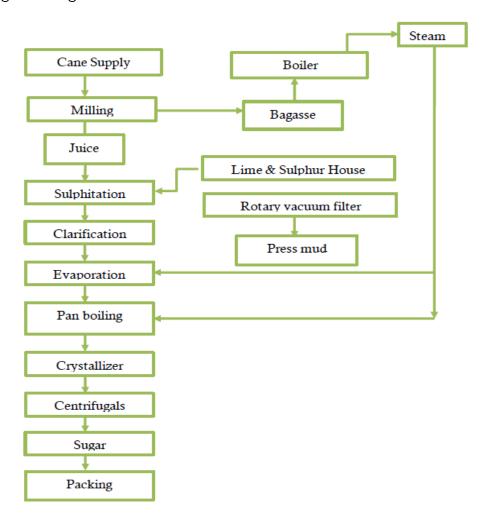


Figure 1: Flowchart Sugar Manufacturing Process

B. Co-generation

The proposed cogeneration, aims at improving the energy efficiency of the sugar factory significantly and enabling the plant to generate surplus power from its cane crushing operation. This surplus power will be exported to the state electricity grid. Energy efficiency and the export of power to the grid are made feasible due to the availability of high pressure and high temperature steam and by the utilization of the available bagasse. The flow chart for generation of the power in cogeneration as shown in following figure.

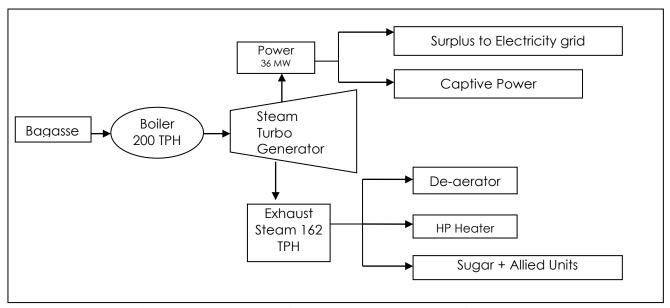


Figure 2: Schematic of Cogeneration process (for season)

C) Distillery

For the proposed project, the management has planned to adopt the latest technology for process as well as for effluent disposal. Overall objective of this is to achieve high efficiency of operations, save energy and water and achieve Zero Liquid Discharge (ZLD).

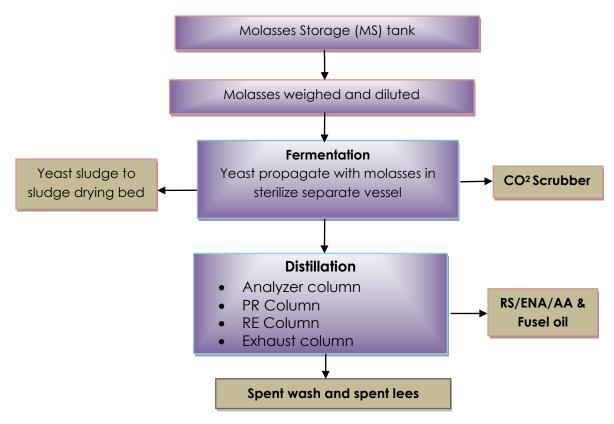


Figure 3: Schematic of Manufacturing Process

Details of molasses and product storage tanks are given in Table 5a & 5b Table 5a: Details of existing Storage Tanks

	Specifications For Receivers & Storage Tanks – Thickness As Per Is-803-1976:							
#	Particulars	Existing Quantity	Existing					
			Capacity (in m³)					
1	Rectified spirit receivers	03	114					
2	Impure spirit receivers	03	15					
3	* Rectified spirit storage tanks	02	1800					
4	* Impure spirit storage tank	02	300					
5	Fusel oil storage tank	01	10					
6	Molasses storage at distillery	01	5000 (MT)					
	(Tons)							

Table 5b: Details of proposed Storage Tanks

	Specifications For Receivers & Storage Tanks – Thickness As Per Is-803-1976:						
#	Particulars	Existing Quantity	Existing				
			Capacity (in m³)				
1	Rectified spirit receivers	03	210				
2	Impure spirit receivers	03	30				
3	* Rectified spirit storage tanks	03	2700				
4	* Impure spirit storage tank	01	1000				
5	ENA receiver	03	210				
6	ENA Storage	02	1800				
7	Ethanol receiver	03	210				
8	Ethanol storage	04	34000				
9	Fusel oil storage tank	01	10				
10	Molasses storage at distillery (Ton)	01	10000 (MT)				

4.0 BASELINE ENVIRONMENTAL CONDITIONS

The guiding factors for the present baseline study are the requirements prescribed by the Ministry of Environment, Forestry and Climate Change (MoEFCC) for conducting Environmental Impact Assessment study published in the EIA notification 2006 and its subsequent amendments. Apart from this, the terms of reference for the EIA were also considered while planning and executing the monitoring. For baseline data collection sampling of air, water and soil was carried out from December 2020 to March 2021.

Table 6: Summary of Environmental features of study area

#	Facet	In brief
1	General	Hot and dry
	characteristics	
2	Rainfall	The normal rainfall over the district is about 490 mm. Rains
		are received mainly during June-September months
3	Temperature	The maximum temperature in summer is around 40°C and
		minimum temperature in winter is around 20°C
4	Humidity	The maximum humidity in the study area ranges between
		60 to 80 percent in the month of August and minimum

		humidity ranges from 30-40 percent in the month of March and April.
5	Wind	Predominant wind direction was East followed by Northwest and the average wind speed was 2.02 m/s during the study period
6	Land use	Crop land area 69.77%, scrub land 25.17%, forest 1.93%, Habitation area 0.65%, canal 0.33 and river 2.15%
7	Air Quality	Complies NAAQ standards of Nov. 2009 at all monitored locations.
8	Noise	Complies the standard
9	Groundwater	As per Central Ground Water Board report 2013, the groundwater quality in the district is affected because of high NO ₃ concentrations
10	Soil	Very shallow (soil depth less than 10 cm) to deep black alluvial soils
11	Nearest sanctuary	Mayureshwar Wildlife Sanctuary 28 km from the site

4.1 Land-use/Land cover classes details

The break-up of land use/land cover is shown in Fig. 4

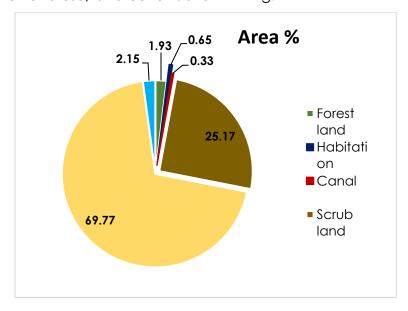


Figure 4: Details of Land use

5.0 IMPACTASSESSMENT

5.1 Air Environment

Ambient air quality of the study area was assessed through a network of eight air monitoring stations, considering the wind pattern for the study area. Methods used for AAQ analysis: PM 2.5 & PM10: CPCB, NOx: IS- 5182 (Part vi) 2006, SO2: IS- 5182 (Part ii) 2001.

The values for PM10, PM 2.5, SO2 and NOx for all monitored locations were well within National Ambient Air Quality (NAAQ) Standard limits.

5.1.1 Impact causing factors

- 1) Emissions from process: It will be due to incineration of spentwash along with coal.
- 2) Transportation: Vehicular pollution due to transportation activity, dust from roads, loading unloading of material and transportation of material will involve mainly transportation of coal, molasses to some extent and ethanol/spirit. Hence, this could cause minor increase mainly in NOx, particulate matter and HC.
- 3) Fugitive Emissions and Other sources of air pollution: Fugitive emissions from handling and storage of coal and ash transportation activities and odour are also anticipated to cause significant negative impact. System for suppression of dust from handling of coal and ash will be installed. It includes mainly, use of pulse jet bag filters for coal loading-unloading on conveyors, foggers/dust suppressors in coal and ash storage yard, wind breakers for ash storage area.
- **5.1.2 Impact Assessment:** Estimated incremental concentrations of PM and SO_X in the downwind direction of the site are minor, considering the baseline value. The baseline concentrations of these pollutants are well within the NAAQS. Therefore, after adding the incremental concentration to the baseline value at nearest downwind site will not exceed the NAAQS. So, it is anticipated that, the increase in the concentration of these air pollutants due to the burning of fuel, likely to cause minor negative impact on air environment.

5.1.3 Preventive, control and mitigation measures

- Mechanized handling of coal and ash
- Green belt development on 8.9Ha area for the proposed unit
- Plantation of 13350 trees is proposed for greenbelt
- Wind breaks will be developed to control PM generation from ash storage yard

- PPE will be provided to workers, working in dust prone areas
- The carbon dioxide emissions from fermentation process will be controlled by bottling the generated gas in a bottling plant
- Job rotation for workers, working in dust prone areas
- Use of economically affordable techniques for suppression of dust from handling and storage area
- Ash will be transported in closed/covered vehicles to the brick manufacturing unit
- Construction of permanent roads

5.1.3.1 Air Pollutant Dispersion Modeling

Prediction of impacts on air environment has been carried out employing mathematical model -AERMOD view dispersion model 9.2 software developed by Lakes Environment Software, Canada.

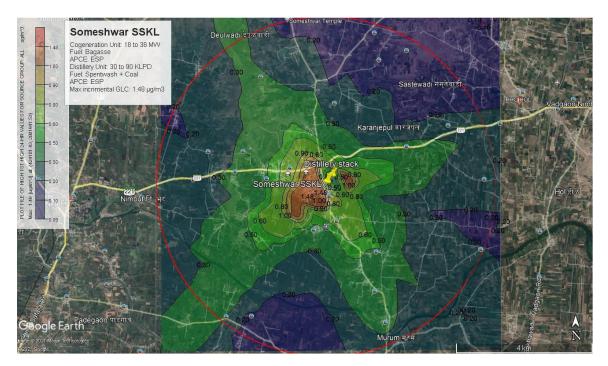


Figure 5: Isopleths showing GLC location and distance for PM (Short term 24 hourly)

Figure 6: Isopleths showing GLC location and distance for SO2 (Short term 24 hourly)

From the mathematical modeling of air pollutant dispersion study, it is observed that

Table 7: Summary of Maximum 24-hour GLC due to proposed project

Locations	Project	karanje	Karan	Waghal	Wane	Sortew	Malshi	Potew
	Site		jepul	wadi	wadi	asti		asti
Direction	-	Ν	NE	NW	SE	NW	W	Е
PM- Avg. Baseline value (µg/m3)	71.0	66.6	69.7	74.0	62.2	65.7	65.2	64.4
Maximum G	LC (1.48 µ	ıg/m3) at	18°6'14.4	7"N & 74°1	6'57.5"E			
Increment al Conc. (µg/m3)	0.50	0.2	0.2	0.6	0.6	0.3	0.3	0.2
Post Project Scenario (µg/m3)	71.5	66.8	69.9	74.6	62.8	66.0	65.5	64.6
SO2- Avg. Baseline value (µg/m3)	21.6	24.5	23.7	23.3	24.9	20.4	20.9	23.9
Maximum G	Maximum GLC (6.42 μg/m3) at 18°6'14.47"N & 74°16'57.5"E							
Increment	4.0	1.0	1.0	2.0	2.0	2.0	2.0	1.0

al Conc. (µg/m3)								
Post Project Scenario (µg/m3)	25.6	25.5	24.7	25.3	26.9	22.4	22.9	24.9

- Maximum increase in the concentration of PM and SO₂ is predicted at approx
 0.66 km i.e. roughly 600 m towards west from the stack
- Sugar factory own land is observed at this distance
- Village Waghalwadi is the nearest ambient air quality (AAQ) monitored location to incremental GLC towards west and village Wanewadi towards east.
- Maximum concentration of PM10 recorded at village Waghalwadi (74μg/m³) and Maximum concentration of SO2 was recorded at village Wanewadi (24.9μg/m³) during monitoring period.
- Considering this incremental load, predicted GLC of PM 10 and SO2 for the said villages will be 74.6μg/m³ and 26.9μg/m³
- Considering the incremental load of operation phase of the project, the resulting concentration for PM10 and SO2 predicted to be well within national ambient air quality standards (NAAQS)
- Village Wanewadi is the nearest AAQ monitored place located at east of the site.
 The maximum incremental load predicted at this point is 0.6 µg/m³ for particulate matter (PM10) and 2.00 µg/m³ for SO₂.
- From the mathematical modeling study, it is observed that resultant concentration of air pollutant PM 10 and SO2 in downwind directions will be well within the national ambient air quality standards prescribed by CPCB in Nov. 2009.
- Fly ash emitted through flue gasses likely to settle mainly in 1-2 km distance from stack. Thus, agricultural vegetation and flora/plants in this area likely to get affected due to dust/fly ash (particulate matter). Minor negative impact anticipated on vegetation in surrounding areas upto 2 km

5.2 Water Environment

- **5.2.1 Impact causing factors:** Drawl of fresh water in large quantity and its usage, water pollution, disposal of polluted water into nearby waterbodies.
- 5.2.2 Impact Assessment: No negative impact on water environment and aquatic ecosystem is envisaged due to the proposed project. Minor negative impact is envisaged on soil within the premises. The project proponent has water drawl permission from Irrigation Department to lift the water from Nir left canal. Thus, water used in the project will be exclusively allocated for industrial activities.
- **5.2.3 Environment management plan:** In order to reduce the fresh water intake, the management has planned to reuse of waste water after proper treatment (Thro' ETP and CPU). Wastewater from various sources will be collected and properly treated so as to reutilize it and thus conserve the fresh water resource. The treated water shall be mainly reused in the sugar unit for auxiliary requirements and/or for gardening activity. The sanitary wastewater will be treated by STP unit. Thus, zero liquid discharge will be achieved. Boiler blow down and water from cooling tower will be stored in ponds and recycled thereafter. The management also proposed to install rainwater harvesting system to recharge the aquifer and partly fulfill the requirement during startup.

5.3 Land Environment

a) Impact of effluent discharge

As discussed earlier, highly polluted wastewater i.e. spent wash will be disposed by incineration process. It will be stored in impervious lagoons as per CPCB guidelines. Other polluted water will be treated in CPU and reused.

b) Solid waste

Table 8: Solid Waste and its Management

#	Waste	Quantity, TPD	Treatment	Disposal	Remark		
	Sugar Unit						
1	Sugar ETP slud	ge 2.4	Land Application	Land Application	Organic +		
	(TPD)				Inorganic		
2	Ash (TPD)	Bagasse	Used as a soil	Used as a soil	Inorganic		
		ash 35.34	enriching material	enriching material			
		TPD	or sold to brick	or sold to brick			

			manufacturers.	manufacturers.			
3	Spent oil from DG	20 to 25	Will be given to	Will be given to the	Oily		
	and process	KL/A	the authorized	authorized recycler			
			recycler				
			Distillery				
1	Yeast sludge (wet	1.2 to 1.5	Drying in SDB	Used as a soil	Organic		
	weight)			enriching material			
2	2 Incineration Boiler Ash						
	Concentrated	40.17	-	Sold to brick	Inorganic		
	spent wash (@18%)			manufacturing unit			
	Coal ash (@35%) OR	22.52	-				
	Bagasse ash (@ 2%)	2.34	-				
3	CPU sludge (wet	0.7 to 0.8	Drying in SDB	Used as a soil	Organic		
	weight) TPD			enriching material			

- **5.3.1 Impact causing factors:** Disposal of solid and hazardous waste, disposal of effluent, change intopography
- **5.3.2 Impact Assessment:** The project is not going to generate any hazardous waste. The only hazardous waste likely to be generated will be scrap oil from DG set, automobiles, gears etc. Since the DG set will run only in case of failure of regular power supply. The quantity of used or scrap oil will be low. Since, the solid waste is non-toxic and non-hazardous, it is anticipated that the solid waste will have no negative impact on land but very negligible negative impact on air environment due to emissions from stack. Minor negative impact is also envisaging on the land environment of the site due to construction of the proposed unit.
- **5.3.3 Environmental management plan:** The solid waste viz. ash will be generated due to burning of spent wash along with coal in the boiler and burning of bagasse in cogeneration boiler. Ash is estimated to be about 35.34 TPD from sugar & cogeneration boiler and 40.17 TPD from Incineration boiler. Sludge from CPU this sludge is usually bio-degradable, organic and nearly neutral in nature. It doesn't contain any toxic or hazardous elements. Therefore, this will be safely disposed by mixing into soil as manure. As an option, ash may be sold to the local bricks manufacturer.

5.4 Ecology

- **5.4.1 Impact causing factors:** Discharge of air and water pollutants into environment, solid waste, change in land use, removal of vegetation cover, reclamation of wetland/water bodies etc.
- **5.4.2 Impact Assessment:** In general, it is observed that, Impact of an industrial activity on ecology and biodiversity mainly due to a) Habitat destruction and/or, alteration and/or fragmentation, b). Disturbance to wild life from project or linked activities, c) Pollution related impact on ecosystem d). Threat to rare, endangered flora and fauna from the project related activities.

Considering this, the present project examined for its impact in the abovementioned categories. In the later part of the assessment, likelihood score estimated to determine the actual ecological sensitivity by considering project specific data

5.4.3 Environmental management plan: Presence of chinkara and carnivores such as gray wolf and hyena reported for the study area. However, since the establishment of the unit up till now there were no incidences of man-animal conflict observed in and around the factory area. But, considering such minor probability the environment management plan has been proposed in the main report. It mainly comprises of proper fencing of the unit, monitoring the changes takes place in the surrounding habitat and immigration or emigration of wild animals wrt such change, accordingly a plan need to be reviewed on annual basis for the management. Greenbelt development - for mitigation of air and noise pollution. Solid waste is organic and safely gets disposed-off by applying into soil.

5.5 Socio- economic environment

- **5.5.1 Impact Causing Factors:** issues of rehabilitation; restoration; population flux; pressure on available resources and infrastructure.
- **5.5.2 Impact Assessment:** Considering the long term benefits to the locals, the project will have positive impact on socio-economicenvironment.
- **5.5.3 Environment Management Plan:** Project is agro-based therefore, indirectly beneficial to local farmers; no issues of rehabilitation or restoration; local candidates will be employed thus, migration of population to the site surrounding area and pressure on infrastructure and resources is anticipated to be negligible.

6.0 FIRE PROTECTIONSYSTEM

Fire protection system shall be provided in accordance to PESO, OISD-117 and LPA regulations. The fire- fighting system will consist of a hydrant network, piping etc. Fire protection system will also include one electric driven pump, one diesel engine driven pump, one jockey pump, piping, basin etc. Water hydrants will be provided at all strategic points. A suitable Fire ring system as per the guidelines of TAC will be incorporated.

Automatic fire Sprinkler System (Water Hydrant) – Electro-magnetic dehydration system uses an electric fire detection system installed in the area as open sprinklers /spray nozzles. Upon sensing a hazard, the Electromagnetic valveopens.

6.1 Safety Aspects through Design and Engineering

- All design will be as per ISI standard specification and drawings are to be approved by factory/electrical inspectorate/safety inspectorate weights & measurement inspectorates.
- All distillation columns accessed from flooring(grating)
- The roof of the structures (fermentation, distillation, receivers) must be covered totally by pre- coated sheets (Pre-painted galvano loom sheet i.e. PPGL sheets) of 0.5 mmthickness.
- The layout will take into account the working space & safety requirement of Factory Inspectorate, Govt. of Maharashtra State.

6.2 Plant Lighting

Plant building lighting will be as per norms & as per Electrical inspectorate/factory inspectorate norms.

7.0 ENVIRONMENTMANAGEMENTPLAN

Table 9: Summary of Environment Management Plan (not covered above)

Environmental	Impact causing factor	Control/Mitigation Measures
Aspect		
Air Environment	Generation of	• ESP to control ash emission
	Particulate Matter	through stack with height 70 m for
	(PM), SO ₂ , NO _x during	cogeneration boiler and 60 m for
	cogeneration/	incineration boiler
	incineration	• CO2 bottling plant after

Environmental	Impact causing factor	Control/Mitigation Measures		
Aspect				
	Generation of Carbon dioxide from fermentation, Odour from spent wash storage Handling of bagasse, coal and ash	separation/scrubbing of the gas • Mechanized system for coal, bagasse and ash handling • Wind breaks for ash storage area and Development of greenbelt Continuous online emission monitoring system as per the norms		
Water Environment	Effluent generation from processes, cleaning, blow down water & condensate. Storage of spentwash, its treatment and disposal	Sugar effluent and spray pond overflow will be treated in upgraded ETP. Condensates will be treated in CPU and then recycled. 'Zero liquid discharge' through - standalone evaporation (using MEE) as a primary treatment to reduce the spentwash volume followed by Incineration of concentrated spentwash by burning with coal/bagasse in furnace Spentlees, condensate of MEE and other effluents will be treated in condensate polishing unit (CPU) and treated water will be reused in distillery. spentwash Lagoons will be made impervious as per CREP guidelines Piezometric well, in downstream area of spentwash storage to monitor ground water quality Continuous online effluent monitoring system – as per the norms		
Soil Environment	Boiler Ash from coal	Given to the nearby brick		

Environmental	Impact causing factor	Control/Mitigation Measures		
Aspect				
	and spent wash	manufacturing unit		
Bagasse ashar		It is organic in nature, degradable		
	sludge from	hence, mixed into soil		
	Fermentation unit,			
	spent wash tanks and			
	CPU			
	Excavated fertile soil	Stacked separately and reused for		
		greenbelt development		
		Stones and excess soil will be used for		
		foundation or internal roads or leveling		
		purpose within premises		
Noise	Increase in noise level	provisions of separate parking for		
	due to operation of	goods and other vehicles		
	machines, motors,	Provision of adequate personal		
	vehicular movement,	protective equipment for workers		
	DG set etc.	Job rotation for high noise level		
		work places, if required		
		Regular health checkup for		
		workers		
		Acoustic enclosure will be provided		
		to DG set		
Ecology and	Air, water, soil and	Existing transmission line will be		
Biodiversity	noise pollution	used for cogeneration unit		
	Tree cutting failing,	No tree cutting/ failing involved		
	disturbance to wildlife	since project is on open land		
	due to project	Areas close to the industry should		
		be strictly and effectively protected		
		from fire.		
		Restricting vehicular activities		
		during night time for the areas which		
		are probable for the movement of		
		carnivores (particularly northern, north-		

Environmental	Impact causing factor	Control/Mitigation Measures	
Aspect			
		western part of the site)	
		• Domestic solid waste to be	
		disposed in such a way that it will not	
		attract wolf or hyena	
		Nigh time light arrangements in	
		the unit, to be made non-intense, non-	
		glary; it should not disturb the wild	
		animals	
Socio-economic	Rehabilitation and	No rehabilitation and restoration	
Environment	Restoration (RR),	issue involved since site is already	
	pressure on available	under the possession of project	
	manmade	proponent	
	infrastructure/resource	Local candidates will be preferred	
	due to population flux	for employment. Skilled work force is	
		available at nearby towns and cities	
Safety and	Accidents, improper	Safety officer and safety	
Occupational	work practices	committee will be formulated	
health		Provision of adequate safety	
		gears	
		Insurance policy for workers	
Risk and disaster	Fire, accidents,	The entire premises will be	
management	earthquake, etc.	declared as 'no smoking zone'	
	Samiquako, oto.	Lightening arresting system will be	
		installed	
		Ethanol vapor condensing system	
		will be installed at storage area	
		 Proper storage of molasses, 	
		ethanol and coal	

8.0 SAFETY, OCCUPATIONAL HEALTH MANAGEMENT

- Existing Firefighting system (of sugar & Cogeneration unit) will be modified suitably so as to make it suitable for proposed project (as per the statutory guidelines)
- Regular medical checkup of workers, contractual workers and employees
 Facilities at existing sugar unit such as drinking water facility, canteen, toilet and
 bathrooms, petrol pump, first aid facility, safety gears and PPE will be made
 available to workers, as well as to the visitors and transporters.

Table 10: Financial provision for CER activities planned for next five year

CSR activity head	Year		TOTAL	
	1 st	2 nd	3 rd	1
	Budgetary provision (Rs. in lakt		hs)	
Improvement in social infrastructure				
Provision of rooftop solar system in local schools	20	30	30	80
Provision for green belt development in nearby villages	10	10	10	30
Provision of clean drinking water facility in local schools	5	7.5	7.5	20
Provision for Man Human Conflict and Medical Emergency equipments	10	10	10	30
Infrastructure Development/Maintenance (Eg. Road, canal maintenance, etc)	10	10	10	30
Other activities for maintaining social and cultural harmony	2	4	4.18	10.18
TOTAL BUDGETARY ALLOCATION FOR NEXT FIVE (0.75% of the capital budget)	/E YEARS			200.18

Table 11: Estimated Capital & Recurring Expenses for Environment Management

#	Particulars	Capital cost in Lakh			
Α	A. Sugar and Cogeneration unit				
1	Electrostatic precipitator and dump condenser for new 100 TPH boiler	100.00			
2	Fuel handling system	80.00			
3	Ash handling system	40.00			
4	Stack	150.00			
5	Sugar ETP Up-gradation	200.00			

6	Condensate polishing unit	200.00
7.	STP (combined)	65.00
В.	Distillery unit	
1	Multi Effect Evaporator (MEE)	900.00
2	Incineration boiler with electrostatic precipitator and dump condenser	3700.00
3	Fuel handling system	200.00
4	Ash handling system	100.00
5	Stack	120.00
6	Spent-wash storage lagoon	10.00
7	Condensate polishing unit	170.00
8	CO ₂ Bottling	195.00
9	Environmental monitoring and management for Sugar, Cogeneration and distillery unit	25.00
10	Greenbelt development for Sugar, Cogeneration and distillery unit	40.00
11	Rainwater harvesting for Sugar, Cogeneration and distillery unit	30.00
	Total	6325.00
C.	Recurring Expenses/ Annum for Environment Manage	ement
1	Salaries and wages	75.00
2	Maintenance @2.5% on capital investment for EMP i.e. 6325.00	158.50
3	Fuel (Incineration activity) and Electricity (in case of diesel generator operation)	150.00
4	Miscellaneous/contingency	10.00
	Total	393.50
D. Additional Provision towards CER (0.75 % of capital investment)		

9.0 CONCLUSION

The project proposed by a progressive cooperative sugar mill from Pune district of Maharashtra. The mill is having adequate capacity to produce >75% of required molasses in the form of B heavy type and remaining will get easily available from nearby sugar mills. The mill is having its own open land where the project will be developed. Hence, issues of rehabilitation and restoration of people is not involved in this case.

The potential environmental, social and economic impacts of the project have been assessed during the EIA study and given in EIA report. The proposed expansion of the sugar and cogeneration unit and establishment of new distillery unit will have certain levels of marginal impacts on the local environment. It has been endeavored to minimize the negative impacts by addressing them through environmental management plan. Necessary control measures have been suggested to meet with the norms and safeguard the environment. The implementation of this project will definitely improve the physical and social infrastructure of the surrounding area. Adequate financial provision is made by management of SSSKL for EMP and CER activities (i.e. for upliftment of the local people). The proposed project will contribute to economic growth of the region and also help in improving the power reliability and energy security.