

P-539-MSML-DISTILLERY-22020 (Revision - 01)

# SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT

(IN ENGLISH AND MARATHI)

FOR

# ESTABLISHMENT OF 45 KLPD MOLASSES/CANE JUICE BASED DISTILLERY

BY

# **MUKTESHWAR SUGAR MILLS LTD.**

DHAMORI (BK), TAL.: GANGAPUR, DIST.: AURNAGABAD, MAHARASHTRA

PREPARED BY



# **EQUINOX ENVIRONMENTS (I) PVT. LTD.**

Environmental; Civil & Chemical Engineers, Consultants and Analysts, Kolhapur (MS) E-mail: projects@equinoxenvi.com, eia@equinoxenvi.com

An ISO 9001 : 2015 & QCI - NABET Accredited Organization



JUNE - 2020



MFG/2020-21/123 Dtd- 15/07/2020 **To**,

**The Member Secretary** Maharashtra Pollution Control Board (MPCB); 3<sup>rd</sup> & 4<sup>th</sup> Floor, Kalpataru Point, Sion Circle, Sion (E), Mumbai - 400 022

# MUKTESHWAR SUGAR MILLS LTD.

Regd. Office : 210, The Pentagon, Shahu College Road, Next to Satara Road, Tel. Exchange, Parvati, Pune - 411 009. Maharashtra. Ph. : 020-24227358, 24218307, 7507771400 Fax : 020-66016576 Email : mukteshwar.sugarmill@gmail.com CIN No. U154240B2007PLC29478 GST No. 27AAECM9672M12P

- Sub.:Application for 'Public Hearing'to be conducted forproposed45 KLPD molasses/cane juice based distillery by -Mukteshwar Sugar Mills Ltd. (MSML), located atGat No.190, 191, 192, 194, 195, 196, 197, 198, A/p: Dhamori (BK), Tal.: Gangapur, Dist.: Aurangabad, Maharashtra State.
- Ref.: 'Terms of Reference'(ToR) granted vide letter no. IA-J-11011/24/2020-IA-II(I) dated 30.04.2020. Copy enclosed at Enclosure I.

#### Dear Sir,

We -- "Mukteshwar Sugar Mills Ltd." have planned to establish 45 KLPD molasses/cane juice based distilleryatGat No.190, 191,192, 194,195,196, 197, 198, A/p: Dhamori (BK), Tal.: Gangapur, Dist.: Aurangabad, Maharashtra State

Accordingly, an application in Form -1 format was submitted to the 'Ministry of Environment, Forest and Climate Change (MoEFCC); New Delhi' for grant of ToR's on 24.01.2020. Subsequently, standard ToR's were granted on 30.04.2020. ReferEnclosure -I for copy of ToR letter. In the ToR letter, directions were given to conduct Public Hearing w.r.t. our proposed distillery project. Now, in order to conduct Public Hearing, we hereby are submitting all the relevant documents and information to your office.

Along with the Public Hearing application, a draft EIA Report as per the generic structure stipulated in MoEF Notification No. S.O.1533 (E) dated 14.09.2006 as amended vide Notification No. 3067 (E) dated December 01, 2009 and Executive Summary Report in two languages (English and Marathi) are enclosed separately. The same provide details of Pollution Control Facilities, Production Processes and Raw Materials as well as Finished Productsand Environmental Management Plan (EMP) etc. regarding the unit.

'Twenty Sets' of various documents, as mentioned above and equivalent number of soft copies of same have been submitted for your information and necessary further action. Also, a Demand Draft of Rs. 25,000/- (Rs. Twenty Five Thousand only) Bearing No.drawn ondated towards the Public Hearing charges, as decided by the govt., has been presented herewith.

Please do the needful and oblige.

Thanking you.

Your faithfully for **Mukteshwar Sugar Mill Ltd.** 

A.B.Patare Chief Executive Officer

Encl.: 1. Executive Summary of project 2. A Draft EIA Report 3. A D.D. bearing no. dateddrawn on



### ACKNOWLEDGEMENT

I am extremely thankful to the management of **Mukteshwar Sugar Mills Ltd. (MSML)**, located at Gat No.190, 191,192, 194,195,196, 197, 198, Dhamori (BK), Tal.: Gangapur, Dist.: Aurangabad, in Maharashtra for entrusting assignments of the EIA study and Environmental Clearance procurement in respect of proposed establishment of 45 KLPD molasses/cane juice based distillery. It was indeed a great experience to have interactions, involvement and discussions with the management and technical experts of MSML. Their knowledge and co-operation as well as support given during the draft EIA Report preparation impressed me a lot. Sharing of thoughts and planning with Mr. Sachin Nikam Chairman of MSML was always an interesting thing during the course of assignment. Thank you very much sir!

Prompt response as well as help from Mr. Annasaheb B. Patare Chief Executive Officer of MSML during providing certain information, documentation and data related to the production, processes and details of manufacturing is duly appreciated. Also, the co-operation of staff of MSML is duly acknowledged here.

I must thank our Functional Area Experts Sulakshna Ayarekar, Yuvraj Damugade, Jaydeep Patil, Sandip Mangalekar & Anup Gargate, as well as our other Empanelled Functional Area Experts Dr. J. B. Pishte, Mr. Vinod Sahasrabuddhe, Mr. Vinaykumar Kurakula, Mr. Balkrishna Lole & Mr. Rahul Deshmukh for their able and timely contributions in the draft EIA studies and report preparation. Despite their busy schedules in the universities, colleges and own professions, they were always available, on time, for the necessary inputs; field visits and discussions.

My staff of the EIA Study Cell here must receive a commendation and credit for all the inhouse management and inputs during the monitoring, report preparation and presentations. Our other In-house experts of various functional areas have also contributed their best.

Last but not the least, the contributions from my non-technical staff and laboratory team is also duly appreciated here.

Zbagan C.

DR. SANGRAM GHUGARE Chartered Engineer Chairman & MD Equinox Environments (India) Pvt. Ltd. (EEIPL); Kolhapur

## **CAUTION**

The information, data, figures, flow charts and drawings in respect of manufacturing processes, mass balance, chemical reactions, production layouts and instrumentation details included in this Environmental Impact Assessment (EIA) Report are the sole property of **Mukteshwar Sugar Mills Ltd. (MSML)**, located at Gat No.190, 191,192, 194,195,196, 197, 198, Dhamori (BK), Tal.: Gangapur, Dist.: Aurangabad, in Maharashtra State. Some of the products, reactions and process methodologies may be patented.

The style and format of this Draft EIA Report as well as the data, processing and presentations of various environmental features, environmental management planning; designs; drawings; plates; calculations, demonstrations on attributes towards pollution control and abatement aspects etc. are the intellectual property of M/s. Equinox Environments (India) Pvt. Ltd. (EEIPL); Kolhapur.

All maps (District, State, Country etc.) enclosed in this reports for referring information are purely indicative, graphical & not to scale.

Under no circumstances, any part of this report may be used; reproduced; translated; recorded or copied in any form and manner except by the Govt. authorities requiring this report for taking decisions, based on details and information provided in same, during the Environmental Clearance procedure carried out as per EIA Notification No. S.O. 1533 (E) dated 14.09.2006 as amended from time to time.

Equinox Environments (India) Pvt. Ltd. (EEIPL); Kolhapur

Environmental, Civil and Chemical Engineers, Consultants & Analysts ISO 9001: 2015 & QCI-NABET accredited Organization



### **CERTIFICATE**

Declaration by Expert contributing to the Draft EIA in respect of proposed establishment of 45 KLPD molasses/cane juice based distillery by Mukteshwar Sugar Mills Ltd. (MSML), located at Gat No.190, 191,192, 194, 195, 196, 197, 198, Dhamori (BK), Tal.: Gangapur, Dist.: Aurangabad, in Maharashtra State.

We, hereby, certify that we were a part of the Draft EIA team in the following capacities that developed the above EIA.

| Project No.<br>FIA Coordinators              | P-539-MSML-DISTILLERY-22020                         |          |  |  |
|----------------------------------------------|-----------------------------------------------------|----------|--|--|
| Name                                         | : Dr. Sangram Ghugare                               | Fogun C. |  |  |
| Period of Involvement<br>Contact Information | : October 2019 – July 2020<br>: eia@equinoxenvi.com |          |  |  |

: <u>eia@equinoxenvi.com</u>

**Functional Area Expert:** 

| Sr.<br>No. | Functional<br>Area | Name of the<br>expert/s                        | Involvement<br>(Period & Task)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Signature |
|------------|--------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1          | WP                 | Dr. Sangram<br>Ghugare                         | <ul> <li>October 2019 to July 2020</li> <li>Study of process and operations</li> <li>Site visit and finalization of water sampling locations</li> <li>Preparation of water balance and identification of water generation.</li> <li>Evaluation of water pollution &amp; control management</li> <li>Identification of impacts, suggestion and finalization of mitigation measures</li> <li>Study on Treatment of effluents through existing ETP and to be upgraded under proposed expansion was contemplated and designe were deve accordingly.</li> </ul> | Eggun C.  |
| 2          | EB                 | Sulakshna<br>Ayarekar &<br>Mr. Anup<br>Gargate | <ul> <li>October 2019 to December 2019</li> <li>Selection of Site for conducting ecological &amp; biodiversity status of the study region.</li> <li>Interaction with Govt. offices and agencies for certain secondary data and information pertaining to region specific issues</li> <li>Study of terrestrial fauna by sighting, noting pug-marks, calls, sounds, droppings, nests and burrows etc.</li> <li>Interaction with local residents for obtaining information about various</li> </ul>                                                           | Kyane Kar |

| Sr. | Functional | Name of the | Involvement                                                                                                                                                                                                                                               | Signatura     |
|-----|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| No. | Area       | expert/s    | (Period & Task)                                                                                                                                                                                                                                           | Signature     |
|     |            |             | species of animals and birds usually                                                                                                                                                                                                                      |               |
|     |            |             | observed their existence and importance                                                                                                                                                                                                                   |               |
|     |            |             | in the study region.                                                                                                                                                                                                                                      |               |
|     |            |             | • Review of rules, legislation and criteria                                                                                                                                                                                                               |               |
|     |            |             | towards knowing and understanding                                                                                                                                                                                                                         |               |
|     |            |             | inclusion in the study region of any eco-                                                                                                                                                                                                                 |               |
|     |            |             | sensitive zones, wild life sanctuary.                                                                                                                                                                                                                     |               |
|     |            |             | • Collection, compilation and presentation                                                                                                                                                                                                                |               |
|     |            |             | of the data as well as incorporation of                                                                                                                                                                                                                   |               |
|     |            |             | same in to the EIA report.                                                                                                                                                                                                                                |               |
| 3   | SE         | Mr. Rahul   | October 2019 to December 2019                                                                                                                                                                                                                             | A, DA KH      |
|     |            | Deshmukh    | • Collection of data on socio-economic                                                                                                                                                                                                                    | Rahuel Hormer |
|     |            |             | aspects in study area through surveys.                                                                                                                                                                                                                    |               |
|     |            |             | • Public opinions and recording of events                                                                                                                                                                                                                 |               |
|     |            |             | for future industrialization in the study                                                                                                                                                                                                                 |               |
|     |            |             | alea.                                                                                                                                                                                                                                                     |               |
|     |            |             | • Study of sociological aspects like human                                                                                                                                                                                                                |               |
|     |            |             | infrastructural facilities available in                                                                                                                                                                                                                   |               |
|     |            |             | study area                                                                                                                                                                                                                                                |               |
|     |            |             | • Compilation of primary and secondary                                                                                                                                                                                                                    |               |
|     |            |             | data and its inclusion in EIA report                                                                                                                                                                                                                      |               |
| 4   | АР         | Mr. Yuvrai  | October 2019 to December 2019                                                                                                                                                                                                                             |               |
| -   |            | Damugade    | • Involved in detailed study of mass                                                                                                                                                                                                                      | 20.1          |
|     |            | C C         | balance w.r.t. raw materials & products                                                                                                                                                                                                                   | They          |
|     |            |             | especially from view point of process                                                                                                                                                                                                                     | -10           |
|     |            |             | emissions.                                                                                                                                                                                                                                                |               |
|     |            |             | • Site visit and finalization sampling                                                                                                                                                                                                                    |               |
|     |            |             | locations.                                                                                                                                                                                                                                                |               |
|     |            |             | • Planning & identifying the most                                                                                                                                                                                                                         |               |
|     |            |             | appropriate air pollution control                                                                                                                                                                                                                         |               |
|     |            |             | equipment from view points of                                                                                                                                                                                                                             |               |
|     |            |             | efficiencies, capital as well as O & M                                                                                                                                                                                                                    |               |
|     |            |             | cost & suitability.                                                                                                                                                                                                                                       |               |
|     |            |             | • Identification of impact and suggesting                                                                                                                                                                                                                 |               |
| _   | 10         |             | the mitigation measures.                                                                                                                                                                                                                                  |               |
| Э   | AQ         |             | • Designing of Ambient AOM network                                                                                                                                                                                                                        |               |
|     |            |             | for use in prediction modeling and micro                                                                                                                                                                                                                  |               |
|     |            |             | metrological data development                                                                                                                                                                                                                             |               |
|     |            |             | • Development and application of air                                                                                                                                                                                                                      |               |
|     |            |             | quality models in prediction of pollutant                                                                                                                                                                                                                 |               |
|     |            |             | dispersion                                                                                                                                                                                                                                                |               |
|     |            |             | • Plotting of isopleths of GLCs Worst                                                                                                                                                                                                                     |               |
|     |            |             | case scenarios prediction w.r.t. source                                                                                                                                                                                                                   |               |
|     |            |             | and receptors.                                                                                                                                                                                                                                            |               |
|     |            |             | <ul> <li>metrological data development.</li> <li>Development and application of air quality models in prediction of pollutant dispersion.</li> <li>Plotting of isopleths of GLCs, Worst case scenarios prediction w.r.t. source and receptors.</li> </ul> |               |

| Sr. | Functional | Name of the     | Involvement                                                                      | Signatura  |
|-----|------------|-----------------|----------------------------------------------------------------------------------|------------|
| No. | Area       | expert/s        | (Period & Task)                                                                  | Signature  |
| 6   | HG         | Dr. J.B. Pishte | October 2019 to December 2019                                                    | tellt      |
|     |            |                 | • Hydro geological studies, data                                                 | Mart       |
|     |            |                 | processing; analysis and evaluation,                                             | a          |
|     |            |                 | Ground water table measurement and                                               |            |
| 7   | CEO        |                 | monitoring network methodology                                                   |            |
| /   | GEU        |                 | preparation.                                                                     |            |
|     |            |                 | • Planning and scheduling of groundwater                                         |            |
|     |            |                 | sampling stations in the region.                                                 |            |
|     |            |                 | • Study of geology & general geological                                          |            |
|     |            |                 | configuration of the region as well as                                           |            |
|     |            |                 | • Determination of impact and suggesting                                         |            |
|     |            |                 | • Determination of impact and suggesting                                         |            |
| 8   | рн         | Mr Vinod        | October 2019 to December 2019                                                    |            |
| 0   | <b>NII</b> | Sahasrabuddhe   | • All the necessary literature for processes                                     | Charapeter |
|     |            |                 | storage of hazardous chemicals was                                               | PONMIN     |
|     |            |                 | studied before visit.                                                            |            |
|     |            |                 | • Site visit and Verification of adequacy                                        |            |
|     |            |                 | of on-site emergency preparedness plan                                           |            |
|     |            |                 | for proposed unit was done.                                                      |            |
|     |            |                 | • Identification of probable emergencies                                         |            |
|     |            |                 | and procedures for preparedness for                                              |            |
|     |            |                 | handling the same was verified.                                                  |            |
|     |            |                 | • Worst case analysis by using ALOHA,                                            |            |
|     |            |                 | Ware house safety measures, suggestion                                           |            |
|     | N 7N 7     |                 | of mitigation measures.                                                          |            |
| 9   | NV         | Mr. Vinay       | October 2019 to December 2019                                                    | ALLE       |
|     |            | Kumar           | • verification of noise levels Monitoring<br>(both work zone and ambient) in the | finguance  |
|     |            | Kulakula        | (both work zone and amount) in the                                               |            |
|     |            |                 | • Finalization and verification of sampling                                      |            |
|     |            |                 | locations ambient noise monitoring                                               |            |
|     |            |                 | stations and the data collected.                                                 |            |
| 10  | LU         |                 | • Land use land cover mapping using                                              |            |
|     |            |                 | NRSC Satellite image.                                                            |            |
|     |            |                 | • Satellite image processing, Image                                              |            |
|     |            |                 | classification, Technical analysis and                                           |            |
|     |            |                 | study for setting up of facility, planning                                       |            |
|     |            |                 | of storage facility.                                                             |            |
| 11  | SHW        |                 | • Detailed study of manufacturing process                                        |            |
|     |            |                 | and mass balance.                                                                |            |
|     |            |                 | • Solid wastes generation in different                                           |            |
|     |            |                 | steps of manufacturing was identified                                            |            |
|     |            |                 | and their quantification done was                                                |            |
|     |            |                 | Identification of various bazardous                                              |            |
|     |            |                 | wastes generated through manufacturing                                           |            |
|     |            |                 | process                                                                          |            |
| L   | 1          | 1               |                                                                                  |            |

| Sr.<br>No. | Functional<br>Area | Name of the expert/s | Involvement<br>(Period & Task)                                                                                                                                                                                                                                                                                                                                                                                | Signature |
|------------|--------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|            |                    |                      | • Practices of storage and disposal of HW                                                                                                                                                                                                                                                                                                                                                                     |           |
|            |                    |                      | its impact and mitigation measures.                                                                                                                                                                                                                                                                                                                                                                           |           |
| 12         | SC                 | Mr. B. S. Lole       | <ul> <li>October 2019 to December 2019</li> <li>Involvement physical analysis &amp; characterization of the soils.</li> <li>Identification of Impact and its mitigation measures.</li> <li>Interpretation of soil analysis, results and data including comparison of same with standard soil classification.</li> <li>Collection, study and evaluation of soil information from data obtained from</li> </ul> | Reber     |

Declaration by the Head of the Accredited Consultant Organization/authorized person:

I, M/s. Equinox Environments (I) Pvt. Ltd. (EEIPL); Kolhapur, Environmental & Civil Engineers, Consultants and Analysts., hereby confirm that the above mentioned experts were involved in preparation of Draft EIA and Executive Summary in respect of establishment of 45 KLPD molasses/cane juice based distillery by Mukteshwar Sugar Mills Ltd. (MSML), located at Gat No.190, 191,192, 194, 195, 196, 197, 198, Dhamori (BK), Tal.: Gangapur, Dist.: Aurangabad, in Maharashtra State.

I also confirm that the consultant organization shall be fully accountable for any mis-leading information mentioned in this statement.

Signature:

Fogur C.

Name: Dr. Sangram Ghugare

Designation: Chairman & MD

Name of the EIA Consultant Organization: M/s. Equinox Environments (I) Pvt. Ltd. (EEIPL); Kolhapur.

NABET Certificate No. & Issue Date: NABET/EIA/1821/ RA 0135 dated 02.06.2019

# **INDEX**

| SR. NO. | DESCRIPTION                    | PAGE<br>NO. |
|---------|--------------------------------|-------------|
| 1.      | SUMMARY EIA IN ENGLISH         | 1-19        |
| 2.      | SUMMARY EIA IN MARATHI         | 20-42       |
| 3.      | APPENDIX                       | 43-54       |
| 4.      | CERTIFICATES & OTHER DOCUMENTS | 55-58       |

### Summary of EIA Report For Establishment of 45 KLPD Molasses/Cane Juice Based Distillery By Multashuan Sugar Mills Ltd. (MSML)

# Mukteshwar Sugar Mills Ltd. (MSML)

Gat No.190, 191,192, 194,195,196, 197, 198, Dhamori (BK), Tal. Gangapur, Dist. Aurangabad, in Maharashtra State.

### 1) The Project

Mukteshwar Sugar Mills Ltd. (MSML) is located at Gat No.190, 191,192, 194,195,196, 197, 198, Dhamori (BK), Tal. Gangapur, Dist. Aurangabad, in Maharashtra State. They have planned to establish 45 KLPD molasses/Cane Juice based Distillery unit in the existing 2,500 TCD Sugar Factory.

As per the provisions of "EIA Notification No. S.O. 1533 (E)" dated 14.09.2006; and amended EIA Notification dated 13.06.2019 (Notification No. S.O. 1960 (E)) thereto issued by the MoEFCC; New Delhi. Accordingly, proposed distillery project is listed as activity *5(g)-Distillery*; Category 'B'. But, in absence of SEAC/ SEIAA committee, an application in Form I format was submitted to MoEFCC; New Delhi & granted standard ToRs on 30.04.2020.

Proposed distillery project will be formulated in such a fashion and manner so that the utmost care of Safety Norms and Environment Protection shall be taken. Details of capital investment are given in table 1.

| No   | Inductuial unit | Capital Investment (Rs. Cr.) |               |  |
|------|-----------------|------------------------------|---------------|--|
| INO. | Industrial unit | Existing                     | Proposed      |  |
| 1    | Sugar Factory   | Rs. 61.08 Cr.                |               |  |
| 2    | Distillery Unit |                              | Rs. 41.77 Cr. |  |
|      | Total           | Rs. 102.85 Cr.               |               |  |

 Table 1 Project Investment Details

### 2) The Place

Proposed project will be implemented in the existing premises of MSML. Total land acquired by the industry is 2,40,000 Sq. M. (24.0 Ha). Total built up area under existing sugar factory & proposed distillery unit is 61,269.05 Sq. M. Detailed area break-up is presented at Table 2.

| No. | Description                                      | Area (Sq. M.) |
|-----|--------------------------------------------------|---------------|
| Α   | Built-up Area                                    |               |
|     | i. Existing Sugar Factory                        | 11,371.82     |
|     | ii. Area under colony, Parking & other amenities | 29,003.23     |
|     | iii. Proposed Distillery Unit                    | 20,894.0      |
|     | Total                                            | 61,269.05     |
| В   | Area Under Roads                                 |               |
|     | i. Existing                                      | 23,736.98     |
|     | ii. Proposed                                     | 1128.71       |
|     | Total                                            | 24,865.69     |
| С   | Green belt area (Norm: 33% of Total Plot)        |               |
|     | i. Existing Green Belt (17.7% of Total Plot)     | 42,444.54     |
|     | ii. Proposed Green Belt (15.3% of Total Plot)    | 36,842.3      |

Table 2 Area Break up

| No. | Description              | Area (Sq. M.) |
|-----|--------------------------|---------------|
|     | Total                    | 78,286.84     |
| D   | Open Area                | 75,578.42     |
| E   | Total Plot Area(A+B+C+D) | 2,40,000.0    |

#### **3)** The Promoters

MSML promoters are well experienced in the field of sugar factory & distillery unit & have made thorough study of entire project planning as well as implementation schedule. Name and designation of the promoters are as under-

| Table | 3 | List | of | <b>Promoters</b> |
|-------|---|------|----|------------------|
|-------|---|------|----|------------------|

| No. | Name                    | Designation |
|-----|-------------------------|-------------|
| 1.  | Mrs. Asha B. Nikam      | Chairman    |
| 2.  | Mrs. Maithilli S. Nikam | Director    |
| 3.  | Mrs. Shriya D. Nikam    | Director    |
| 4.  | Mrs. Lata M. Sharma     | Director    |

#### 4) The Products

The details of products as well as by-products in existing sugar & proposed molasses/cane juice based distillery activities has been presented in table below.

| Industrial Unit          | Product & By-product                | Unit  | Quantity |
|--------------------------|-------------------------------------|-------|----------|
|                          | Sugar(11%)*                         | MT/D  | 275      |
| Servicting Sugar Eastory | By-Product                          |       |          |
| (2500 TCD)               | Bagasse (29%)*                      | MT/D  | 725      |
| (2300  ICD)              | Press Mud (4%)*                     | MT/D  | 100      |
|                          | Molasses (4%)*                      | MT/D  | 100      |
|                          | Products                            |       |          |
| Proposed Distillary      | Rectified Spirit (RS)/Extra Neutral |       | 45       |
| I Toposed Distinct y     | Alcohol (ENA)/Ethanol               | KLI D | 75       |
| (45  KI PD)              | By-Product                          |       |          |
| (43 KLI D)               | Fusel Oil                           | MT/D  | 0.09     |
|                          | $CO_2$                              | MT/D  | 34       |
|                          | Compost                             | MT/D  | 36       |

Table 4 Product & By-product for Integrated Complex

**NOTE-** \$:Values as per valid CTO, \*: Percent of Cane Crushed.

### 5) THE PURPOSE

Sugarcane potential, agro-climatic conditions, cost of conversion & overheads etc are the major deciding factors for fixing the crushing capacity of sugar factory. Today, sugar factories cannot survive in healthy condition on a single product i.e. sugar. Thus, it is essential to develop sugar factory into an affiliated complex so as to utilize the valuable by-products more profitably. Bagasse based cogeneration of steam and electricity has been practiced since long time in sugar mills. Molasses is also another important by-product of the sugar industry. Alcohol has assumed very important place in the Country's economy. It is a vital raw material for a number of chemicals and also a renewable source of energy. It has been a source of a large amount of revenue by way of excise duty levied by the Govt. on alcoholic liquors. It has a potential as fuel in the form of power alcohol for blending with petrol. Also, the fermentation alcohol has great demand in countries like Japan, U.S.A., Canada, Sri Lanka etc., as the synthetic alcohol produced by these countries, from naphtha of

petroleum crude, is not useful for beverages. Considering the above facts as well as availability of raw material, management of MSML decided for establishment of distillery.

#### MANUFACTURING PROCESS 6)

Detailed manufacturing process and flow diagram for sugar factory & distillery unit are given in Chapter 2 of EIA report. Manufacturing process of integrated project complex is presented at Figure 1.

### **Figure 1 Integrated Manufacturing Process Operations**



#### **ENVIRONMENTAL ASPECTS** 7)

MSML has implemented an effective 'Environmental Management Plan' and various aspects of the same are as follows: -

### A) Water Use and Effluent Generation

### a. Water Use

Total water requirement for existing sugar factory will be 955 M<sup>3</sup>/D (As per consent 390 M<sup>3</sup>/D- fresh water). Out of total water requirement, 866 M<sup>3</sup>/Day will be Cane Condensate, 51 M<sup>3</sup>/Day will be treated water from ETP & 38 M<sup>3</sup>/Day will be fresh water taken from Javakwadi dam.

Total water required for proposed distillery unit during crushing season will be  $514 \text{ M}^3/\text{Day}$ . Out of total water requirement, 366 M<sup>3</sup>/Day will be treated water from CPU, 116 M<sup>3</sup>/Day will be Cane Condensate, 20 M<sup>3</sup>/Day will be treated water from ETP & 12 M<sup>3</sup>/Day will be the fresh water taken from Jayakwadi dam.

Total water required for proposed distillery unit during non-crushing season will be 514  $M^3$ /Day. Out of total water requirement, 366  $M^3$ /Day will be treated water from CPU & 148  $M^3$ /Day will be the fresh water taken from Jayakwadi dam.

Details of water usage in sugar factory & distillery unit is presented in Table 5 & 6.

|     | Description                                                        | Water Consumption (M <sup>3</sup> /Day)      |                                    |  |
|-----|--------------------------------------------------------------------|----------------------------------------------|------------------------------------|--|
| No. |                                                                    | Existing Sugar                               | Existing Sugar – As<br>per consent |  |
| 1   | Domestic                                                           | #12                                          | #20                                |  |
| 2   | Industrial                                                         |                                              |                                    |  |
| a)  | Process                                                            | *660                                         | #350                               |  |
| b)  | Cooling Make up                                                    | *82                                          | #20                                |  |
| c)  | Boiler Make up                                                     | *120                                         | 7 20                               |  |
| d)  | Lab & Washing                                                      | *3                                           |                                    |  |
| e)  | DM Plant                                                           | #26                                          |                                    |  |
| f)  | Ash quenching                                                      | *1                                           |                                    |  |
|     | Industrial Total                                                   | <b>892 (*866</b> + <sup>#</sup> <b>26</b> )  | #370                               |  |
|     | Recycle                                                            | 97%                                          |                                    |  |
| 3   | Green Belt                                                         | Ω <sub>51</sub>                              |                                    |  |
|     | Grand Total                                                        | 955 (*866+ <sup>#</sup> 38+ <sup>Ω</sup> 51) | #390                               |  |
|     | Fresh Water Consumption<br>(Norm: 100 Lit / MT of Cane<br>Crushed) | 10.4 Lit.                                    | 148 Lit.                           |  |

Table 5 Details of Water Consumption in Existing Sugar Factory

Note: # Fresh water from Jayakwadi dam  $\Omega$  Treated water from ETP

\* Sugarcane condensate

 Table 6 Details of Water Consumption in Proposed Molasses Distillery Unit

 (During Sugarcane Crushing & Non- Crushing Season Days)

| Water Consumption (M <sup>3</sup> /Da |                                                           | tion (M <sup>3</sup> /Day)                                |                                      |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|
| No.                                   | Description                                               | Crushing Season<br>(150 Days)                             | Non-Crushing Season<br>(120 Days)    |
| 1                                     | Domestic                                                  | #2                                                        | #2                                   |
| 2                                     | Industrial                                                |                                                           |                                      |
| a)                                    | Process                                                   | *357                                                      | *357                                 |
| b)                                    | Cooling Make up                                           | 78 ( <b>*</b> 69+ <b>*</b> 9)                             | 78( <sup>#</sup> 69+ <del>*</del> 9) |
| c)                                    | Boiler Make up                                            | *43                                                       | #43                                  |
| d)                                    | Lab & Washing                                             | *3                                                        | #3                                   |
| e)                                    | DM Plant                                                  | #10                                                       | #10                                  |
| f)                                    | Ash quenching                                             | *1                                                        | #1                                   |
|                                       | Industrial Total                                          | 492( <b>*</b> 366+*116+ <sup>#</sup> 10)                  | <b>492(*366</b> + <sup>#</sup> 126)  |
|                                       | Recycle                                                   | 98% Recycle                                               | 74% Recycle                          |
| 3                                     | Greenbelt                                                 | °20                                                       | #20                                  |
|                                       | Grand Total                                               | <b>514 (*366+</b> *116+ <sup>#</sup> 12+ <sup>Ω</sup> 20) | 514 (*366+#148)                      |
|                                       | Fresh Water Consumption<br>(Norm: 10 KL/KL of<br>Alcohol) | 0.2 KL                                                    | 2.8 KL                               |

Note: # Fresh water from Jayakwadi dam  $\Omega$  Treated water from ETP

\* Sugarcane condensate

✓✓Treated Water from Distillery CPU

| No. | Description                 | Water Consumption (M <sup>3</sup> /Day) |
|-----|-----------------------------|-----------------------------------------|
| 1   | Domestic                    | #2                                      |
| 2   | Industrial                  |                                         |
| a)  | Cooling Make up             | *78                                     |
| b)  | Boiler Make up              | *43                                     |
| c)  | Lab & Washing               | *3                                      |
| d)  | DM Plant                    | #10                                     |
| e)  | Ash quenching               | *1                                      |
|     | Industrial Total            | 135(*125+#10)                           |
|     | Recycle                     | 98% Recycle                             |
| 3   | Greenbelt                   | <sup>Ω</sup> 20                         |
|     | Grand Total                 | $157 (*125+^{\#}12+^{\Omega}20)$        |
|     | Fresh Water Consumption     | 0.2 KI                                  |
|     | (Norm: 10 KL/KL of Alcohol) | 0.2 KL                                  |

 Table 7 Details of Water Consumption in Proposed Cane Juice Distillery Unit

 (During Sugarcane Crushing Season – 150 Days)

Note: # Fresh water from Jayakwadi dam \* Sugarcane condensate  $\Omega$  Treated water from ETP

### b. Effluent Treatment-

### i) Domestic Effluent

Domestic effluent from existing sugar factory is  $10M^3/D$ , same is being treated separately in proposed STP. After implementation of distillery unit, total domestic effluent from MSML campus will be 11.5 M<sup>3</sup>/D (Domestic effluent from sugar factory – 10 M<sup>3</sup>/D & distillery 1.5 M<sup>3</sup>/D). Same will be treated in proposed Sewage Treatment Plant (STP) of capacity 20M<sup>3</sup>/D and treated effluent will be reused for flushing and also used for gardening.

### ii) Industrial effluent

Total trade effluent generated from existing sugar activities is 142  $M^3/D$  (As per consent 240  $M^3/D$ ). Same is treated in existing Effluent Treatment Plant (ETP) provided in own factory premises having capacity 300  $M^3/D$  comprising of primary & secondary unit operations.

From proposed molasses distillery unit, raw spentwash about 360 M<sup>3</sup>/D will be generated. Here, spentwash will be primarily treated in bio-methanation plant followed by concentration in MEE. Concentrated spentwash (@ 75 M<sup>3</sup>/D will be forwarded for composting. Refer **Appendix- F** for mass balance for composting. Other effluents viz. spent lees (@ 63 M<sup>3</sup>/D, MEE condensate (@ 281 M<sup>3</sup>/D, cooling & boiler blow down (@ 17 M<sup>3</sup>/D and lab-wash & DM backwash (@ 13 M<sup>3</sup>/D will be treated in proposed CPU. Treated water from CPU will be reused for industrial operations, thereby achieving Zero Liquid Discharge (ZLD) for process effluent.

|                                 | Effluent                               |                                                         |                                                                       |
|---------------------------------|----------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|
| Description                     | Sugar Factory<br>(M <sup>3</sup> /Day) | Sugar Factory (M <sup>3</sup> /Day)<br>– As per consent | Disposal                                                              |
| 1. Domestic                     | 10                                     | 16                                                      | Treated in proposed STP                                               |
| 2. Industrial                   |                                        |                                                         |                                                                       |
| a)Process                       | 80                                     |                                                         | Treated in existing ETP                                               |
| b)Cooling                       | 8                                      |                                                         | having primary &<br>secondary treatment<br>units; used for green belt |
| c)Boiler                        | 25                                     | 240                                                     |                                                                       |
| d)DM Plant                      | 26                                     |                                                         | & gardening                                                           |
| e)Lab & Washing                 | 3                                      |                                                         |                                                                       |
| Industrial Total<br>(a+b+c+d+e) | 142                                    | 240                                                     |                                                                       |

## Table 8 Effluent Generation from Existing Sugar Factory

## Table 9 Effluent Generation from Distillery Unit

| Description         | Quantit              | y (M <sup>3</sup> /D) | Disposal                                 |  |
|---------------------|----------------------|-----------------------|------------------------------------------|--|
| Description         | Molasses Distillery  | Cane Juice Distillery | Disposal                                 |  |
| 1. Domestic         | 1.5                  | 1.5                   | Treated in proposed STP                  |  |
| 2. Industrial       |                      |                       |                                          |  |
| a)Process           | Raw Spent wash – 360 | Raw Spent wash – 180  | Raw spentwash shall be primarily         |  |
|                     | Conc. Spentwash – 75 | Conc. Spentwash – 30  | treated in Bio-methanation plant         |  |
|                     |                      |                       | followed by concentration in Multi       |  |
|                     |                      |                       | Effect Evaporator (MEE). Conc.           |  |
|                     |                      |                       | Spentwash shall be forwarded for         |  |
|                     |                      |                       | bio-composting alongwith pressmud.       |  |
|                     | MEE Condensate -281  | MEE Condensate - 146  | Other effluents viz. MEE condensate,     |  |
|                     | Spent lees – 63      | Spent lees – 37       | spent lees, cooling b/d, boiler b/d, lab |  |
| b)Cooling Blow down | 8                    | 8                     | & washing effluent shall be              |  |
| c)Boiler Blow down  | 9                    | 9                     | forwarded to Distillery CPU. Treated     |  |
| d)Lab; Washing      | 3                    | 3                     | process to achieve Zero Liquid           |  |
| e)DM back wash      | 10                   | 10                    | Discharge (ZLD) for process effluent.    |  |
| Total               | Conc. Spent wash-75  | Conc. Spent wash-30   |                                          |  |
| Totai               | Other effluent – 374 | Other effluent – 213  |                                          |  |



Figure 2 - Flow Chart of Existing Sugar Factory ETP

Figure 3 Process Flow Diagram of Proposed CPU





### Figure 4 Process Flow Diagram of Proposed CPU for Distillery

**Figure 5 Flow Chart of Proposed STP** 



### **B)** Air Emissions

Presently, steam required for existing sugar activities is taken from boiler of 48 TPH capacity. Bagasse to the tune of 478 MT/D alongwith Biogas 825 Nm<sup>3</sup>/Hr is used as fuel. Wet Scrubber is provided as APC.

A 10 TPH boiler will be installed under proposed 45 KLPD distillery unit. Bagasse to the tune of 105 MT/D will be used as fuel. Wet Scrubber will be provided as APC.

Steam required for the proposed distillery activities will be taken from existing 48 TPH boiler of sugar factory as well as from new 10 TPH boiler. A common stack of 65 M height will be provided for existing & proposed boiler.

There will be process emissions in the form  $CO_2$  from Fermenters in distillery unit to the tune of 34 MT/D. Same will be collected, purified, compressed and filled in cylinders and sold for production of beverages. Details of Boilers are presented at table 10.

| No. | Description   | Boile                             | DG Set                |             |
|-----|---------------|-----------------------------------|-----------------------|-------------|
|     |               | Existing (Sugar Factory)          | Proposed (Distillery) | Existing    |
| 1   | Capacity      | 48 TPH                            | 10 TPH                | 500 KVA     |
| 2   | Fuel type     | Bagasse & Biogas                  | Bagasse               | Diesel      |
| 3   | Fuel Qty.     | 478 MT/D & 825 M <sup>3</sup> /Hr | 105 MT/D              | 90 Lit./Hr. |
| 4   | MOC           | R.C.C                             | R.C.C                 | MS          |
| 5   | Shape         | Round                             | Round                 | Round       |
| 6   | Height        | 65 M                              |                       | 5 M (ARL)   |
| 7   | Diameter      | 2.5 M                             | 2.5 M                 | 150 mm      |
| 8   | APC Equipment | Wet Scrubber                      | Wet Scrubber          |             |

Table 10 Details of Boiler and Stack in MSML

### A) Noise Pollution Aspect

### i. Sources of Noise

- 1. In the distillery, very high noise generating sources would not exist. Expected noise levels in the section would be about 70 dB (A) or so. Adequate noise abatement measures like silencer & maintenance of pumps, motors, and compressors would be carried out and enclosures would be provided to abate noise levels at source. Moreover, enclosures to the machinery would be provided wherever possible.
- 2. Fermentation section & distillation section would be the other minor noise generating sources. The expected noise levels in these sections would be in range of 70 to 80 dB(A).
- 3. Existing sugar factory and co-gen; noise-generating sources are the boiler house, turbine rooms, cane crushing section and mill house, etc.
- 4. Adequate green would be developed in phase wise manner in and around the industry. So that it would further attenuate the noise levels.

### ii. Control Measures

Isolation, separation and insulation techniques to be followed, PPEs in the form of earmuffs, earplugs etc. would be provided to workers. D.G. Sets are enclosed in a separate canopy to reduce the noise levels.

### B) Hazardous Wastes

Different types of hazardous wastes being generated from proposed unit alongwith disposal methods are presented in Table 11.

| No. | Industrial Unit | Category               | Quantity     | Disposal                    |
|-----|-----------------|------------------------|--------------|-----------------------------|
| 1   | Sugar Factory & | Spent Oil – Cat.5.1    | 1.6 MT/Yr.   | Reuse in own boiler as fuel |
|     | Distillery Unit | Empty Containers –33.1 | 20 Nos. /Yr. | Authorized re-seller        |

### Table 11 Hazardous Solid Waste Generation & Disposal

### C) Solid Wastes

| Table 12 D | <b>Details of Solid</b> | Waste |
|------------|-------------------------|-------|
|------------|-------------------------|-------|

| No. | Unit                          | Туре                       | Quantity (MT/D) | Disposal                                       |
|-----|-------------------------------|----------------------------|-----------------|------------------------------------------------|
| 1   | Sugar Factory                 | ETP Sludge                 | 0.3             | Used as Manure                                 |
|     | (Existing)                    | Boiler Ash (Bagasse)       | 14              | Bricks / cement manufacturers<br>/ manure      |
| 2   | Distillery Unit<br>(Proposed) | Boiler Ash (Bagasse)       | 3               | Bricks / cement manufacturers<br>/ manure      |
|     |                               | Yeast Sludge<br>CPU Sludge | 8<br>0.6        | Used as filler material for composting/ manure |

Agreement with brick manufacturers will be done after commissioning of distillery unit.

### C) Odour Pollution

There are number of odour sources such as molasses handling and storage, fermentation and distillation, secondary effluent treatment, and storage of effluents, stale cane, bad mill sanitation, bacterial growth in interconnecting pipes & unattended drains. Measures adopted under existing unit for controlling same are proper housekeeping, sludge management in biological ETP units, steaming of major pipe lines, regular use of bleaching powder in the drains, efficient handling, prompt & proper disposal of press mud. Under proposed project of distillery, spentwash shall be carried through closed pipeline for spentwash storage and handling activity shall be entirely eliminated.

### D) Compliance with the Norms

All the relevant acts, rules and guidelines with respect to effluent treatment and disposal, solid & hazardous wastes handling and disposal as well as in respect of emission handling and disposal, wherever applicable, as specified by the Maharashtra Pollution Control Board (MPCB) or any other concerned authority are strictly followed in the existing set up. Same practice shall be continued after proposed establishment.

### E) Environmental Management Cell

EMC will be proposed by MSML, functioning under its sugar & distillery unit. Members of EMC will be well qualified and experienced in their concerned fields. EMC is as under-

| No. | Designation             |       | Number (s) |
|-----|-------------------------|-------|------------|
| 1.  | Managing director       |       | 1          |
| 2.  | Chief Executive Officer |       | 1          |
| 3.  | Production Manager      |       | 1          |
| 4.  | Environmental Officer   |       | 1          |
| 5.  | Safety Officer          |       | 1          |
| 6.  | Chief Chemist           |       | 1          |
|     |                         | Total | 06         |

 Table 13 Environmental Management Cell of MSML

Details of capital as well as O & M costs towards environmental aspects under the existing sugar setup & proposed distillery are as follows –

| No. | Description                                            | Cost Compor | ient (Rs. Lakhs) |  |
|-----|--------------------------------------------------------|-------------|------------------|--|
|     | Description                                            | Capital     | O & M / Year     |  |
| Α   | Existing                                               |             |                  |  |
| 1   | APC Equipments – Wet Scrubber, Stack (65 M) for boiler | 200.0       | 50.0             |  |
|     | of 48 TPH & Ash Collection System                      |             |                  |  |
| 2   | Water Pollution Control - ETP & CPU (Prop.)            | 250.0       | 30.0             |  |
| 3   | Noise Pollution Control                                | 10.0        | 2.0              |  |
| 4   | Solid Waste Management                                 | 10.0        | 2.0              |  |
| 5   | Occupational Health and Safety                         | 20.0        | 2.0              |  |
| 6   | Green Belt Development                                 | 40.0        | 5.0              |  |
| 7   | Environmental Monitoring & Management                  | 15.0        | 2.0              |  |
|     | Total (9% of Capital Investment of Rs. 61.08 Cr.)      | 545.0       | 93.0             |  |
| B   | Proposed                                               |             |                  |  |
| 1   | APC Equipment – Wet Scrubber                           | 100.0       | 30.0             |  |
| 2   | Water Pollution Control – CPU & Bio-methanation plant, | 250.0       | 50.0             |  |
|     | MEE                                                    |             |                  |  |
| 3   | Noise Pollution Control                                | 10.0        | 2.0              |  |
| 4   | Occupational Health & Safety                           | 30.0        | 5.0              |  |
| 5   | Green Belt Augmentation Plan & Rain Water Harvesting   | 70.0        | 12.0             |  |
|     | implementation                                         |             |                  |  |
| 6   | Environmental Monitoring & Management                  | 20.0        | 5.0              |  |
|     | Total (11.4% of Capital Investment of Rs. 41.77 Cr.)   | 480.0       | 104.0            |  |

Table 14 Capital as well as O & M Cost under Existing & Proposed Unit

#### F) Rainwater Harvesting Aspect

- Total area of Plot 2,40,000 Sq. M.
- Total Open Space 75,578.42 Sq. M.
- Average annual rainfall in the area= 741 mm

### A Roof Top Harvesting-

RWH Quantity =  $10,364.88 \text{ M}^2 \ge 0.74 \text{ M} \ge 0.8$ = 6136.0 M<sup>3</sup>

#### **B** Surface Water Harvesting –

| 1.RWH Quantity from Green Belt  | $= 78,286.84 \text{ M}^2 \text{ X } 0.74 \text{ M } \text{ X } 0.3$ $= 17,379.6 \text{ M}^3$ |
|---------------------------------|----------------------------------------------------------------------------------------------|
| 2. RWH Quantity from Roads      | = $24,865.69M^2 \ge 0.74 \le 0.5$<br>= $9,200.3 \le M^3$                                     |
| 3. RWH Quantity from Open Space | $= 75,578.42 M^2 X 0.74 M X 0.3$ $= 16,778.4 M^3$                                            |

Total RWH from Surface Area =  $17,379.6M^3 + 9,200.3 M^3 + 16,778.4 M^3$ = **43,358.3 M<sup>3</sup>** 

Hence, the total water becoming available after rooftop and land harvesting will be

| <b>Rooftop Harvesting</b> | + | Surface Harvesting | = | <b>Total RWH</b>        |
|---------------------------|---|--------------------|---|-------------------------|
| 6,136.0                   | + | 43,358.3           | = | 49,494.3 M <sup>3</sup> |
|                           |   |                    | = | 49.4 ML                 |

### J) The Green Belt

| No. | Description                                     | Area (Sq. M.) |
|-----|-------------------------------------------------|---------------|
| Α   | Built-up Area                                   |               |
|     | iv. Existing Sugar Factory                      | 11,371.82     |
|     | v. Area under colony, Parking & other amenities | 29,003.23     |
|     | vi. Proposed Distillery Unit                    | 20,894.0      |
|     | Total                                           | 61,269.05     |
| В   | Area Under Roads                                |               |
|     | iii. Existing                                   | 23,736.98     |
|     | iv. Proposed                                    | 1128.71       |
|     | Total                                           | 24,865.69     |
| С   | Green belt area (Norm: 33% of Total Plot)       |               |
|     | iii. Existing Green Belt (17.7% of Total Plot)  | 42,444.54     |
|     | iv. Proposed Green Belt (15.3% of Total Plot)   | 36,842.3      |
|     | Total                                           | 78,286.84     |
| D   | Open Area                                       | 75,578.42     |
| E   | Total Plot Area(A+B+C+D)                        | 2,40,000.0    |

### **Table 15 Area Details**

### The Criteria for Proposed Greenbelt Development Plan

Emission of SPM,  $SO_2$  is the main criteria for consideration of green belt development. Plantation under green belt is provided to abate effects of the above emissions. Moreover, there would also be control on noise from the industry to surrounding localities, as considerable attenuation would occur due to the barrier of trees provided in the green belt.

### **K)** Socio-Economic Development

Socio economic study was carried out in 38 villages within 10 Km radius of the study area was carried out with the help of a structured close-ended interview schedule, comprising of 30 questions in Marathi. The schedule was administered by using Simple Random Disproportionate Sampling Technique. Refer Socio – economic profile in Chapter 3, Section 3.12 of EIA report for detailed information of socio economic aspect. Observations and conclusions after the socio-economic study are as follows-

- Most of the villages have basic facilities like drinking water, preliminary educational infrastructure, toilets and electricity. Good transportation & satisfactory educational facilities are present.
- A majority of the population within the sample size had a good income which is mostly due to sugarcane cultivation.
- Indirect & direct Job opportunities provided to locals by industry.
- Most villages lacked drainage system, open drainages; scattered solid waste as well as poor sanitation was visible.
- Improper, inadequate and not within close vicinity health facilities is the major problem faced by locals.

### 8) ENVIRONMENTAL MONITORING PROGRAMME

Reconnaissance survey of the study area was undertaken in the month of December 2018. Field monitoring for measuring meteorological conditions, ambient air quality, water quality, soil quality and noise levels was initiated in October 2019. Report incorporates data monitored during the period from October 2019 to December 2019 and secondary data collected from various sources, which include Government Departments, related to ground water, soil, agriculture, forest etc.

### a. Land Use

Land use study requires data regarding topography, zoning, settlement, industry, forest, roads & traffic etc. The collection of this data was done from various secondary sources viz, Census books, Revenue records, State and Central Government Offices, Survey of India Toposheets as well as high resolution satellite image and through primary field surveys.

| No. | Class           | Area (Ha) | Percentage (%) |
|-----|-----------------|-----------|----------------|
| 1   | Built Up Area   | 743       | 2.37           |
| 2   | Crop Land       | 54        | 0.17           |
| 3   | Fallow Land     | 16712     | 53.20          |
| 4   | Water Bodies    | 7627      | 24.28          |
| 5   | Nadi/ Canal     | 2314      | 7.37           |
| 6   | Forest Area     | 1023      | 3.26           |
| 7   | Open Scurb Land | 2942      | 9.36           |
|     | Total           | 31415     | 100            |

### b. Land Use/ Land Cover Categories of Study Area

Table 16 Land Use/ Land Cover

### c. Meteorology

Methodology adopted for monitoring surface observations is as per the norms laid down by Bureau of Indian Standards (BIS) and the India Meteorology Department (IMD). On-site monitoring was undertaken for various meteorological variables in order to generate the data. Further, certain secondary meteorological data like temperatures, relative humidity, rainfall intensity etc. have been taken from IMD, Satara.

Meteorological parameters were monitored during the period October 2019 to December 2019. Details of parameters monitored, equipments used and the frequency of monitoring have been given in Chapter 3 of the Draft EIA report.

### d. Air Quality

This section describes selection of sampling locations, includes methodology of sampling and analytical techniques with frequency of sampling. Presentation of results for October 2019 to December 2019 survey is followed by observations. All the requisite monitoring assignments, sampling and analysis was conducted through the laboratory - M/s. Green Envirosafe Engineers & Consultant Private Limited, Pune. Lab has received NABL accreditation and has been approved by MoEFCC; New Delhi. Further, it has also received ISO 9001:2008, ISO 14001:2004OHSAS 18001–2007 certifications by DNV. Ambient air monitoring was conducted in the study area to assess the quality of air for  $PM_{10}$ ,  $PM_{2.5}$ ,  $SO_2$ ,  $NO_x$  and CO. The various monitoring stations selected are shown in following table.

| AAQM Station Code | Name of the Station | Distance from Site<br>(km) | Direction w.r.t. Site |
|-------------------|---------------------|----------------------------|-----------------------|
| A1                | Industrial Site     |                            |                       |
| A2                | Dhamori Bk.         | 1.68                       | Е                     |
| A3                | Ranjangaon Khuri    | 5.40                       | Е                     |
| A4                | Kodapur Jhanjadi    | 3.45                       | SW                    |
| A5                | Malwadi             | 2.13                       | NW                    |
| A6                | Antapur             | 3.49                       | Ν                     |
| A7                | Harsuli             | 3.63                       | S                     |
| A8                | Bhagatwadi          | 1.34                       | SW                    |

Table 17 Ambient Air Quality Monitoring (AAQM) Locations

|                 |       |                    |                |                     | Locati              | on      |         |         |            |
|-----------------|-------|--------------------|----------------|---------------------|---------------------|---------|---------|---------|------------|
| Paran           | neter | Industrial<br>Site | Dhamori<br>Bk. | Ranjangaon<br>Khuri | Kodapur<br>Jhanjadi | Malwadi | Antapur | Harsuli | Bhagatwadi |
| PM10            | Max.  | 62.50              | 57.40          | 57.80               | 57.60               | 57.80   | 56.80   | 57.30   | 57.90      |
| $(\mu g/M^3)$   | Min.  | 55.30              | 49.70          | 48.50               | 47.60               | 48.90   | 49.10   | 49.10   | 48.90      |
|                 | Avg.  | 59.19              | 54.08          | 53.36               | 53.48               | 54.54   | 54.17   | 54.09   | 54.25      |
|                 | 98%   | 62.09              | 57.22          | 57.76               | 57.42               | 57.62   | 56.62   | 57.11   | 57.72      |
| PM2.5           | Max.  | 22.30              | 20.10          | 18.90               | 19.70               | 19.70   | 19.50   | 19.70   | 23.90      |
| $(\mu g/M^3)$   | Min.  | 17.40              | 14.80          | 15.40               | 14.30               | 14.20   | 14.10   | 14.10   | 13.00      |
|                 | Avg.  | 19.77              | 17.73          | 17.25               | 17.43               | 17.29   | 17.65   | 17.59   | 17.43      |
|                 | 98%   | 21.93              | 19.96          | 18.68               | 19.65               | 19.65   | 19.45   | 19.59   | 23.81      |
| SO <sub>2</sub> | Max.  | 22.50              | 20.20          | 18.60               | 19.20               | 18.60   | 18.50   | 18.60   | 20.30      |
| $(\mu g/M^3)$   | Min.  | 18.10              | 14.60          | 15.30               | 14.40               | 14.40   | 14.40   | 14.70   | 14.50      |
|                 | Avg.  | 20.50              | 17.40          | 16.83               | 16.63               | 16.61   | 16.53   | 16.57   | 16.96      |
|                 | 98%   | 22.36              | 20.06          | 18.56               | 18.98               | 18.55   | 18.50   | 18.60   | 20.12      |
| NOx             | Max.  | 31.80              | 24.40          | 22.80               | 23.80               | 22.50   | 24.70   | 23.10   | 24.80      |
| $(\mu g/M^3)$   | Min.  | 26.30              | 19.20          | 18.70               | 18.20               | 18.50   | 18.20   | 18.50   | 16.80      |
|                 | Avg.  | 28.95              | 21.45          | 21.02               | 20.94               | 20.52   | 21.77   | 21.20   | 21.63      |
|                 | 98%   | 31.66              | 23.85          | 22.76               | 23.66               | 22.45   | 24.65   | 23.02   | 24.57      |
| СО              | Max.  | 0.90               | 0.06           | 0.07                | 0.07                | 0.08    | 0.07    | 0.07    | 0.06       |
| $(mg/m^3)$      | Min.  | 0.20               | 0.01           | 0.02                | 0.01                | 0.01    | 0.01    | 0.02    | 0.02       |
|                 | Avg.  | 0.46               | 0.03           | 0.04                | 0.04                | 0.04    | 0.04    | 0.04    | 0.04       |
|                 | 98%   | 0.81               | 0.06           | 0.07                | 0.07                | 0.07    | 0.07    | 0.07    | 0.06       |

# Table 18 Summary of the AAQ Levels for Monitoring Season[October 2019 to December 2019]

Note:1. PM<sub>10</sub>, PM<sub>2.5</sub>, SO<sub>2</sub> and NO<sub>x</sub> are computed based on 24 hourly values. 2.CO is computed based on 8 hourly values.

### Table 19 National Ambient Air Quality Standards (NAAQS) by CPCB

(Notification No. S.O.B-29016/20/90/PCI-L by MOEFCC; New Delhi dated 18.11.2009)

| Zono Station                            | PM <sub>10</sub> μg/M <sup>3</sup> |      | PM <sub>2.5</sub> µg/M <sup>3</sup> |     | $SO_2 \mu g/M^3$ |      | NOx µg/M <sup>3</sup> |      | CO mg/M <sup>3</sup> |      |
|-----------------------------------------|------------------------------------|------|-------------------------------------|-----|------------------|------|-----------------------|------|----------------------|------|
| Zone Station                            | 24 Hr                              | A.A. | 24 Hr                               | A.A | 24 Hr            | A.A. | 24 Hr                 | A.A. | 8 Hr                 | 1 Hr |
| Industrial, Rural &<br>Residential Area | 100                                | 60   | 60                                  | 40  | 80               | 50   | 80                    | 40   | 4                    | 4    |
| Eco-sensitive Area<br>Notified by Govt. | 100                                | 60   | 60                                  | 40  | 80               | 20   | 80                    | 30   | 4                    | 4    |

Note: A.A. represents Annual Average

### e. Water Quality

Sampling and analysis of water samples for physical, chemical and heavy metals were also undertaken through the laboratory of Green Enviro Safe Engineers & Consultant Pvt. Ltd, Pune. Eight locations for surface water and Eight locations for ground water were selected. Same are listed below

| Station | <b>Geographical Locations</b> | Distance from Site (Km) | <b>Direction from Site</b> |
|---------|-------------------------------|-------------------------|----------------------------|
| GW1     | 19°41'49.02"N 75°10'41.60"E   | 0.38                    | SSW                        |
| GW2     | 19°41'52.17"N 75°10'48.58"E   | 0.30                    | SSE                        |
| GW3     | 19°41'30.99"N 75°11'32.44"E   | 1.72                    | SE                         |
| GW4     | 19°42'17.63"N 75°11'38.24"E   | 1.65                    | NE                         |
| GW5     | 19°42'38.04"N 75°11'5.25"E    | 1.25                    | NE                         |
| GW6     | 19°42'40.49"N 75°9'50.22"E    | 1.94                    | NW                         |
| GW7     | 19°41'44.89"N 75°10'6.75"E    | 1.22                    | SW                         |
| GW8     | 19°41'8.63"N, 75°10'37.68"E   | 1.71                    | SSW                        |

 Table 20 Monitoring Locations for Ground Water

| Station | Station<br>Location | Distance<br>(Km) | Direction | Justification                                                     |
|---------|---------------------|------------------|-----------|-------------------------------------------------------------------|
| SW1     | Tembhapuri          | 4.64             | NNE       | West of south west side tank near the project site                |
| SW2     | Pimparkheda         | 5.73             | NE        | North west side stream of the project site                        |
| SW 3    | Dhamori BK          | 2.87             | NE        | North of the north west side stream near the project site         |
| SW 4    | Ranjangaon          | 6.65             | Е         | Downhill stream of the project site                               |
| SW5     | Aurangpur           | 9.56             | SE        | Downhill stream of the project site                               |
| SW6     | Kodapur             | 6.48             | SW        | Nathsagar tank to the east of south east side of the project site |
| SW7     | Nandrabad           | 3.95             | W         | South of south east side stream of the project site               |
| SW8     | Pimpalwadi          | 9.54             | NW        | South of south east side stream of the project site               |

**Table 21 Monitoring Locations for Surface Water** 

Results observed after monitoring ground water locations and surface water locations are mentioned in Chapter 3 of the EIA report.

### f. Noise Level Survey

Study area of 10 Km radius with reference to the proposed project site has been covered for noise environment. The four zones viz. Residential, Commercial, Industrial and Silence Zones have been considered for noise monitoring. Some of the major arterial roads were covered to assess the noise due to traffic. Noise monitoring was undertaken for 24 hours at each location. The details of noise monitoring stations are given in following table

| Station | Station Location | Distance (Km) | Direction |
|---------|------------------|---------------|-----------|
| N1      | Project Site     | -             | -         |
| N2      | Bhagatwadi       | 1.20          | SW        |
| N3      | Janjardi         | 3.30          | SW        |
| N4      | Harsul           | 3.16          | S         |
| N5      | Shendurwada      | 3.45          | SE        |
| N6      | Dhamori Buzurg   | 2.34          | NE        |
| N7      | Antapur          | 3.60          | NE        |
| N8      | Sultanpur        | 2.44          | NW        |

**Table 22 Noise Sampling Locations** 

 Table 23 Ambient Noise Levels

| Ne   | Location       | Average Noise Level in dB(A) |                 |      |          |            |                 |  |
|------|----------------|------------------------------|-----------------|------|----------|------------|-----------------|--|
| INO. | Location       | $L_{10}$                     | L <sub>50</sub> | L90  | Leq(day) | Leq(night) | L <sub>dn</sub> |  |
| 1    | Project Site   | 60.2                         | 65.4            | 68.4 | 73.2     | 60.3       | 72.3            |  |
| 2    | Bhagatwadi     | 46.0                         | 47.6            | 48.9 | 53.0     | 42.5       | 52.8            |  |
| 3    | Janjardi       | 44.4                         | 46.4            | 48.3 | 52.3     | 41.0       | 51.9            |  |
| 4    | Harsul         | 45.0                         | 46.6            | 48.0 | 52.4     | 41.1       | 51.9            |  |
| 5    | Shendurwada    | 45.4                         | 47.0            | 48.3 | 52.8     | 41.5       | 52.3            |  |
| 6    | Dhamori Buzurg | 43.9                         | 46.9            | 48.9 | 52.6     | 42.4       | 52.5            |  |
| 7    | Antapur        | 45.1                         | 46.9            | 47.9 | 52.3     | 41.8       | 52.1            |  |
| 8    | Sultanpur      | 44.5                         | 48.1            | 49.4 | 53.3     | 43.8       | 53.5            |  |

#### g. Socio-Economic Profile

Survey of 38 villages within 10 Km study area of MSML, taking the reference of census 2011. Survey was carried out with the help of a Simple Random Disproportionate Sampling and Snowball Technique, comprising of 30 questions in Marathi. Chapter 3 may be referred for details of this aspect.

### h. Ecology

Field survey was carried out according to random sampling method for flora, and opportunistic sighting method and standard point count method for fauna were followed. In general, visual observation and estimation method was used for qualitative study of the biota. Birds and fish were studied being good indicators of local environmental change. Flora, mainly major tree species, was focused on identification and species abundance.

### 9) ADDITIONAL STUDIES & INFORMATION

### **Risks Assessment**

Risk to human health is inherent. It is safe only when the installation is dismantled at the end of its useful life. The following principles should be used as guidelines for the selection of risk criteria -

- 1. Increase in risk, caused by the presence of the plant to local community (i.e. neighboring public) should be negligible in comparison to the risk they already have in their daily life.
- 2. Work force on the plant should be expected to accept a potentially greater risk than the members of the local community since the work force have been trained to protect themselves from the possible hazards and thus reducing the actual risk to themselves.

The risk criteria considered by Green A.G. (1982) are given as below:

- 1. Risk to Plant: This risk is to be given priority only when it is proved beyond doubt that the risk to life is so low that reducing this risk may not be justified. Under this consideration, the risk to economic damage may be considered.
- Risk to Public and Employees: Scale used for risk to employee and public is Fatal Accident Rate (F.A.R.) or more commonly Fatal Accident Frequency Rate. (F.A.F.R.).
   F.A.R. and F.A.F.R. is defined as number of deaths from industrial injury expected in a group of 1000 men during their working period.

For more details, w.r.t. this aspect, Chapter 7 may be referred.

### **10) ENVIRONMENTAL IMPACT AND MITIGATION MEASURES**

### A. Impact on Topography

No major topographical changes are envisaged in the acquired area due to MSML project. Industrial activity would invite positive benefits in the form of land leveling and tree plantation in the plant vicinity and other premises.

### **B.** Impact on Climate

Impact on the climate conditions due to the establishment activity is not envisaged, as emissions to the atmosphere, of flue gases with very high temperatures are not expected.

### C. Impact on Air Quality

A study area of 10 km radius is considered for determination of impacts.

### i. Baseline Ambient Air Concentrations

24 hourly 98 percentile concentrations of  $PM_{10}$ ,  $PM_{2.5}$ ,  $SO_2$  and NOx in Ambient Air, recorded during the field study conducted for the season October-November-December 2019 are considered as baseline values. They represent impact due to operations of existing nearby industries on this region. Average concentrations of above mentioned parameters, at this location, are considered to be the 'Baseline Concentrations' to determine the impact of proposed industrial operation on ambient air quality. The existing baseline concentrations are summarized in following table-

### Table 24 Basline Concetrations at site

| Parameter     | PM <sub>10</sub>    | PM <sub>2.5</sub>       | $SO_2$              | NO <sub>X</sub>         | СО                    |
|---------------|---------------------|-------------------------|---------------------|-------------------------|-----------------------|
| 98 percentile | $62.09 \ \mu g/m^3$ | 21.93 μg/m <sup>3</sup> | $22.36 \ \mu g/m^3$ | 31.66 µg/m <sup>3</sup> | $0.81 \text{ mg/m}^3$ |
| NAAQS         | $100 \ \mu g/m^3$   | $60 \ \mu g/m^3$        | $80 \ \mu g/m^3$    | $80 \ \mu g/m^3$        | $4 \text{ mg/m}^3$    |

### ii. Air Polluting Sources

Existing boiler of 48 TPH capacity is provided under sugar factory & proposed 10 TPH boiler will be provided under distillery unit.

DG set of capacity 500 KVA is provided under existing project.

### D. IMPACT ON WATER RESOURCES

### i. Impact on Surface Water Resouces & Quality

Surface water along with recycled water will be used to meet water requirment of proposed project. Total trade effluent generated from existing sugar activities is 142  $M^3/D$  (As per consent 240  $M^3/D$ ); treated in existing ETP. Effluent from proposed distillery in the form of spentlees, MEE condensate and other effluents will be treated in proposed CPU & used back in process operations. Hence, there will not be any impact on surface water resource. More details about water budget are presented at Chapter 2 under Section 2.7.1

### ii. Impact on Ground Water Resources & Quality

Water required for the industry will be obtained from Jayakwadi Dam. Permissions will be obtained for lifting required amount of water from the Dam. Ground water will not be a source of raw water for the proposed establishment project. Moreover, there will not be any discharge of untreated effluent so there will not be any impact on ground water level and quality.

### E. Impact on Soil

Impact on the soil characteristics is usually attributed to air emissions, wastewater discharges and solid waste disposal. Under proposed distillery as well as existing sugar factory, as mentioned above, there will not be discharge of any untreated effluent on land. For proposed boiler ESP will be installed. Boiler ash from proposed distillery boiler is given to cement /brick manufacturers/used as manure whereas ETP sludge is used as manure. CPU sludge and yeast sludge from distillery will be used as filler material for composting/ manure. Domestic effluent will be treated in proposed STP. Hence, there will not be any major increase in chemical constituents of soil through deposition of air pollutants/ discharge of wastewater.

### F. Impact on Noise Levels

Workers could get annoyance and can lose concentration during operation. It can cause disturbance during working. People working near the source need risk criteria for hearing damage while the people who stay near the industry need annoyance and psychological damage as the criteria for noise level impact analysis. Major noise emanating sources in MSML complex shall be Fermentation section, distillation section plant, boiler house, turbine rooms, cane crushing section and mill house and DG set etc. MSML is not a major noise producing industry. There shall be no any prominent effect due to Vibration at the project site.

### G. Impact on Land Use

Present use of the project land is Industrial wherein the proposed establishment of distillery unit will be implemented in existing project land premises MSML. Hence, no change in the land use pattern is expected. Therefore, the impact on land use is non-significant.

### H. Impact on Flora and Fauna

Discharge of the untreated wastewater from the industry in surrounding area can also cause significant environmental impact on the aquatic habitats and affect dependent biodiversity. In case of air pollution, the industry is going to contribute in SPM pollution load in the nearby area. This may have negative impact particularly on avifauna, surrounding crop yields and local population. The details in respect of impacts on ecology and biodiversity are described in Chapter 3.

### I. Impact on Historical Places

No historical place is within the study area and the impact is nil.

### 11) SALIENT FEATURES OF EMP

Following routine monitoring programme as detailed in Table 25 shall be implemented at site. Besides to this monitoring, the compliances to all Environmental Clearance (EC) conditions and regular permissions from CPCB /MoEFCC shall be monitored and reported periodically.

| No. | Description                                           | Location                                                                                                                                                                                                                 | Parameters                                                                                 | Frequency       | Conducted by                |
|-----|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------|-----------------------------|
| 1.  | Air Emissions                                         | Upwind – 1, Downwind - 2 (Near<br>main gate, Fermentation section,<br>Distillation section)                                                                                                                              | PM <sub>10</sub> , PM <sub>2.5</sub> , SO <sub>2</sub> , NOx,<br>CO                        | Monthly         |                             |
|     |                                                       | Study area – (Industrial Site,<br>Dhamori Bk., Ranjangaon Khuri,<br>Kodapur Jhanjadi, Malwadi,<br>Antapur, Harsuli, Bhagatwadi)                                                                                          |                                                                                            | Quarterly       |                             |
| 2.  | Stack<br>Emissions                                    | Boiler – 2 No., D.G Set – 1 Nos.                                                                                                                                                                                         | SO <sub>2</sub> , SPM, NOx                                                                 | Monthly         |                             |
| 3.  | Noise                                                 | Workzone 5 Locations - (Near<br>Main Gate, Near Fermentation<br>Section Distillation section, Boiler,<br>DG set, Turbine)                                                                                                | Spot Noise Level<br>recording; Leq(n),<br>Leq(d), Leq (dn)                                 | Monthly         | MoEFCC &                    |
|     |                                                       | Ambient Noise location - 8                                                                                                                                                                                               |                                                                                            | Quarterly       | NABL                        |
| 4.  | Drinking water                                        | Canteen                                                                                                                                                                                                                  | Parameters as per<br>drinking water Std<br>IS10500                                         | Monthly         | Approved<br>External<br>Lab |
| 5.  | Soil                                                  | 8 locations - (Project site,<br>Shendurwada, Wajhar,<br>Bhagatwadi, Sarangpur,<br>Imampurwadi, Tandulwadi,<br>Nandrabad)                                                                                                 | pH, Salinity, Organic<br>Carbon, Nitrogen,<br>Phosphorous and Potash                       | Quarterly       |                             |
| 6.  | Water Quality<br>(Ground Water<br>& Surface<br>Water) | Locations in study area - Ground<br>Water & Surface Water                                                                                                                                                                | Parameters as per CPCB<br>guideline for water<br>quality monitoring –<br>MINARS/27/2007-08 | Quarterly       |                             |
| 7.  | Effluent                                              | Treated, Untreated                                                                                                                                                                                                       | pH, SS, TDS, COD,<br>BOD, Cl, Sulphates, Oil<br>& Grease.                                  | Monthly         |                             |
| 8.  | Waste<br>management                                   | Implement waste management plan<br>that Identifies and characterizes<br>every waste associated with<br>proposed and existing activities and<br>which identifies the procedures for<br>collection, handling & disposal of | Records of Solid Waste<br>Generation, Treatment<br>and Disposal shall be<br>maintained     | Twice in a year | By MSML                     |

### Table 25 Plan For Monitoring of Environmental Attributes within Industrial Premises

| No. | Description  | Location                          | Parameters                 | Frequency       | Conducted by |
|-----|--------------|-----------------------------------|----------------------------|-----------------|--------------|
|     |              | each waste arising.               |                            |                 |              |
| 9.  | Emergency    | Fire protection & safety measures | On site Emergency Plan,    | Twice a year    | By MSML      |
|     | Preparedness | to take care of fire & explosion  | Evacuation Plan,           |                 |              |
|     | such as fire | hazards, to be assessed & steps   | firefighting mock drills   |                 |              |
|     | fighting     | taken for their prevention.       |                            |                 |              |
| 10. | Health Check | Employees and migrant Labour      | All relevant health check- | Twice a Year    | By MSML      |
|     | up           | health check ups                  | up parameters as per       |                 |              |
|     | -            | -                                 | factories act.             |                 |              |
| 11. | Green Belt   | Within Industry premises as well  | Survival rate of planted   | In consultation | By MSML      |
|     |              | as nearby villages                | sapling                    | with DFO.       |              |
| 12. | CER          | As per activities                 |                            | Six Monthly     | By MSML      |