SIA/MH/IND2/47635/2019, Category 'B'

EXECUTIVE SUMMARY OF

Environmental Impact Assessment Report TCD, Expansion of Sugar unit from 4,900 TCD to 10,000 Cogeneration 13 MW to 28 MW and New 45 KLPD Molasses Based Distillery

M/s. SHARAD SAHAKARI SAKHAR KARKHANA LTD. Narande, Tal. Hatkanagale, Dist. Kolhapur, Maharashtra

Prepared by

VASANTDADA SUGAR INSTITUTE, PUNE

Manjari (Bk.), Tal. : Haveli, Dist. : Pune 412 307, Maharashtra, India Telephone: (020) 2690 2100, 2690 2343/7 Fax (020) 26902244

Website: www.vsisugar.com

ISO 9001:2015 Certified

Accredited by QCI/NABET for EIA consultancy services, (Certificate No. NABET/EIA/1720/RA 0096) Recognized R & D Center by Department of Scientific and Industrial Research (DSIR), Ministry of Science and Technology, Government of India

Recognized Post Graduate & Research Centre of 'Savitribai Phule Pune University'

March 2020

VSI/EIA/SSSKL/DR-01/20200318

CONTENTS

#	Particulars	Page No.
1.0	Introduction	1
1.1	Features of the Site	1
2.0	Material And Infrastructure	7
2.1	Water	9
2.2	Fuel	13
2.3	Steam	13
2.4	Power	13
2.5	Boiler	14
2.6	Fuel Handling System	14
2.7	Ash Handling System	14
2.8	Land	14
2.9	Manpower	15
2.10	Process Description	15
4.0	Baseline Environmental Conditions	19
4.1	Land Use	20
5.0	Impact Assessment	21
5.1	Air Environment	21
5.1.1	Impact Causing Factors	21
5.1.2	Impact Assessment	21
5.1.3	Preventive, Control And Mitigation Measures	21
5.1.3.1	Air Pollutant Dispersion Modeling	22
5.2	Water Environment	24
5.2.1	Impact Causing Factors	24
5.2.2	Impact Assessment	24
5.2.3	Environment Management Plan	24
5.3	Land Environment	25
5.3.1	Impact Causing Factors	25

	-	
5.3.2	Impact Assessment	25
5.3.3	Environment Management Plan	26
5.1	Ecology	26
5.4.1	Impact Causing Factors	26
5.4.2	Impact Assessment	26
5.4.3	Environment Management Plan	27
5.5	Socio- Economic Environment	27
5.5.1	Impact Causing Factors	27
5.5.2	Impact Assessment	27
5.5.3	Environment Management Plan	27
6.0	Fire Protection System	27
6.1	Safety Aspects Through Design And Engineering	28
6.2	Plant Lighting	28
7.0	Environment Management Plan	28
8.0	Safety, Occupational Health Management	32
9.0	Conclusion	35

List of Tables

#	Title	Page No.
1	Highlights of the project	1
2	Availability of raw materials, finished good product and mode	4
	of transport	
3	Water Balance Sugar and Cogeneration Unit	6
4	Water Balance 45 KLPD Distillery Unit	9
5	Details of Storage Tanks	15
6	Summary of Environmental features of study area	16
7	Summary of Maximum 24-hour GLC due to proposed	21
	project	
8	Solid Waste and its Management	22
9	Summary of Environment Management Plan	25
10	Financial provision for CER activities planned for next five	30
	years	
11	Estimated Capital & Recurring Expenses for Environment	31
	Management	

List of Figures

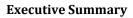
#	Title	Page No.
1	Flowchart Sugar Manufacturing Process	13
2	Schematic of Cogeneration process	14
3	Schematic of Manufacturing Process	15
4	Details of Land use	17
5	Isopleth showing GLC location and distance for PM (Short term 24 hourly)	19
6	Isopleth showing GLC location and distance for SO ₂ (Short term 24 hourly)	20

EXECUTIVE SUMMARY

1.0 INTRODUCTION

M/s. Sharad Sahakari Sakhar Karkhana Ltd. (SSSKL) is a cooperated sugar mill located at Narande village in Hatkanangale taluka of Kolhapur district in Maharashtra. The unit is registered and having registration number KPR/HFE/PRG(A)/S-65/96 dated 01/08/1996. The mill started its actual crushing from season 2002-03 with crushing capacity of 2,500 TCD. The management of SSSKL has taken efforts for increasing the sugar cane in its area of operation which resulted in increase in sugar cane availability. It was thus decided to increase crushing capacity from 2,500 TCD to 4,900 TCD. Due to further increase in sugar cane availability, it was decided to enhance the existing sugar cane crushing capacity to 10,000 TCD. The production of byproducts like bagasse and molasses will also increase with this expansion. The management has thus decided expand the co-generation unit from 13 MW to 28 MW and set up new 45 KLPD molasses-based distillery unit to utilize these by byproducts and to increase the profitability.

1.1 Features of the site


The proposed expansion and new distillery project requires around 257300 sq.m (63.5 acres) of land. The detailed break-up of land for different units of the sugar, cogeneration and distillery along with its allied units including storage of raw material, finished products and waste material (both existing and proposed) are already given in table 2.2 of chapter II of main EIA report. The existing site meets the industrial sitting guidelines of the Ministry of Environment, Forest and Climate Change (MoEFCC). This site location map is enclosed as Annexure I in the main EIA report. The other important aspects are highlighted in the following table.

1.	Name of the	M/s. Sharad Sahakari Sakhar Karkhana Ltd. (SSSKL)
	Industry	
2.	Project	Expansion of Sugar unit from 4,900 to 10,000 TCD, Co-generation
		from 13 to 28 MW and New 45 KLPD molasses-based distillery unit
3.	Location of the	Survey no: 1178, 1180, 1171A, 1171B, 1153, 1159, 1170 Post
	project	Narande, Tal. Hatkanagale, Dist. Kolhapur, Maharashtra

Table 1: Highlights of the project

4.	Working days	Sugar and cogeneration: Average 160 days (Max. 180 days)					
		Distillery unit: Year around					
5.	Product	A. Sugar and cogeneration					
		Product Existing Proposed Total					
		White Sugar (TPD)	1250				
		Cogeneration (MW)	28				
		Byproducts	I	I	1		
		Bagasse (@ 28.6 %, T	PD 1401	.4 1458.6	2860		
		Molasses 'C' (@4%, TI	PD 196	204	400		
		Molasses 'B' (@6%, TI	PD -	600	600		
		Press mud @3.7 %, TF	PD 181.	3 188.7	370		
		B. Distillery	I	I			
		Rectified spirit followed by Anhydrous Alcohol (Fuel 45 KLPD					
		ethanol)					
		Fusel oil: 360 L/day					
6.	Effluent	For sugar mill effluent: ETP and CPU					
	Treatment	For spent wash: Eva	poration follo	wed by standal	one multi-effect		
	System	evaporation (MEE) fo	llowed by inci	neration			
		For spent lees, co			-		
		biological treatment f	followed by ter	tiary treatment			
7.	Air Pollution	New stack of 82 m	(with inner	diameter of 4	m) with ESP		
	Control- flue gases	(Electrostatic precipi	tator)				
	CO ₂ from	CO ₂ bottling plant					
	fermentation						
INFF	RASTRUCTURE						
8.	Land	Total land available w	ith project pro	ponent: 25.73 H	la (2,57,300		
		sq. m.)					
		Land details are given	in following ta	ible:			
		Description	Existing	Proposed	Total (sq.m)		
		Sugar &	217548.75	13651.25	231200		

		cogeneration							
		Distillery Unit		-	26100	26100			
		Greenbelt	22,	374	62,535	87909			
		Open plot near the s	Open plot near the sugar mill will be developed into a dis						
		Available land is under the possession of the project proponent. N							
		need of acquisition of	need of acquisition of new land.						
9. Mai	in Raw	A. Sugar unit							
Mat	terial	Raw Material	Exi	sting	Proposed	Total			
		Sugar cane (TPD)	4,	900	5,100	10,000			
		Lime (TPD)	9	.31	9.69	19			
		Sulphur (TPD)	2	.35	2.45	4.8			
		B. Co-generation un	it: Baga	gasse 1,724 TPD Quantity					
		C. Distillery unit							
		Raw material	l						
		Molasses (C-Type) OF	र	167 TPD					
		Molasses (B-Type) Ol	150 TPD 660 m ³ /day 150 kg/d						
		Sugarcane juice							
		Nutrient N,P							
		Turkey Red Oil (TRO))	225 kg/d					
10. Stea	am	Sugar and Cogenerati	on unit	: 3,816 T	'PD (159 TPH)				
		Source: 175 TPH boi	ler (exis	sting 50 '	TPH + proposed	125 TPH)			
		Distillery Unit: 324 T	PD						
		Source: Proposed 15	TPH ind	cineratio	n boiler with 1.5	5 MW TG set			
11. Fue	21	Cogeneration Unit: Ba	agasse:	1,735 TF	PD				
		Distillery Unit: Conc.	Spenty	twash 111.6 TPD + coal 32.18 TPD or					
		bagasse 58.50 TPD							
12. Boi	ler	Cogeneration: New b	oiler of	125 TPH	l and existing bo	oiler of 50			
		ТРН							
			on boiler of 15 TPH with pressure 45 kg/cm ² will						
		be used							

13.	Power	Sugar and cogeneration unit: 13.5 MW Source: Captive					
		Distillery unit: 1.2	MW (Source: Captive proposed incineration				
		boiler)					
14.	Total Water	Sugar and cogeneration Unit: 300 m ³ /day (300 x 160= 4800 m ³)					
	Requirement	Source: Warna river					
		Distillery Unit: 410 m³/day					
		Source: Excess condensate from sugar unit 351 m ³ /day therefore					
		59 m ³ /day water will be required during crushing season and					
		during off season 410 m ³ /day water will be used from Warna river					
15.	Water Source	e Warana River through canal.					
16.	Manpower	Existing: 741 Proposed: 105 Total:846					
FINA	NCIAL ASPECTS						
17.	Total Project Cost		14,308.5 lakh				
18.	Capital expenses fo	or environmental	3050 Lakhs				
	management						

2.0 MATERIAL ANDINFRASTRUCTURE

Table 2: Availability of raw materials, finished good product and mode of transport

TI	10,000	Raw Mat	erial			
Sugar cane 10 TH	10,000					
TI	L0,000					
Lime 19	ſPD	Local farms	White Sugar	1250 TPD	By road	
	L9 TPD	Maharashtra, Karnataka, Rajasthan	Molasses 'C' Press Mud	400 TPD 300 TPD		
Sulphur 4.	4.8 TPD	Mumbai, Pune	Bagasse	2860	Bullock cart	
B. Co-generation Unit						
Bagasse 1, '	L,735 TPD	Own factory	Power	28	Closed conveyer	

Particulars	Estimated quantity	Source market	Final product	Estimated quantity	Transport mode	
Molasses (C-Type)	167 TPD	Own sugar	Rectified spirit +	45 KLPD	By Road-	
Molasses (B-	150 TPD	mill	Impure spirit		through	
Type)	130 110		(5%) or ENA + IS		Tanker	
Sugarcane juice	660		or			
	m ³ /day		Fuel Alcohol + IS			
Chemicals						
Nutrients N, P	150	Kolhapur,	-	-	By Road-	
	Kg/day	Pune etc.			Truck	
Turkey Red Oil	150					
(TRO)	Kg/day					
		Utiliti	es	I		
Fuel						
A. Co-generation ι	ınit					
Bagasse	1,274 TPD	Own sugar	-	-	By truck	
		unit				
B. Distillery unit						
Spentwash +	111.6 TPD	Distillery	-	-	Ву	
Coal/	+ 32.18	From market			Road/rail	
Bagasse	TPD/	Own Mill				
C	, 58.50 TPD					
	50.00 11 2				P • • •	
Water (daily)			-	-	Existing transport	
A. Sugar &	300 m ³ /d	Warna river,			facility	
cogeneration		Irrigation			will be	
B. Distillery unit	410 m ³ /d	Dept.			used	
Steam						
A. Sugar and Co-	1724 TPD	175 TPH	-	-	-	
generation		boiler				
		(existing 50 +				
		proposed				
		125)				

Executive Summary

Particulars	Estimated quantity	Source market	Final product	Estimated quantity	Transport mode
B. Distillery unit	324 TPD	Proposed 15			
		ТРН			
		incineration			
		boiler			
Power			-	-	-
A. Sugar and Co-	13.5 MW	Captive			
generation		proposed			
B. A. Sugar and	1.2 MW	incineration			
Co-generation		boiler			

2.1 Water

The sugar and cogeneration unit requires 300 m³/day fresh water after recycling of process condensate and reuse of water whereas the distillery unit will require 410 m³/day fresh water after recycling of process condensate and spentlees. Daily fresh water requirement for the after proposed expansion activity is given in table 3 & table 4.

#	Particulars	Quantity, m ³
1) E	Boiler section	
	i. Water Input	
1	Boiler 50 +125 = 175 TPH	4200
2	Steam generation 158.3 TPH 3799.2 say 3800 @ boiler	3800
3	Boiler blow down	76
4	Over all process loss	114
5	Boiler input	3990
	Total	3990
	ii. Water and waste water Out put	
1	Steam generation	3800
2	Boiler blow down @ 2.0%	76
3	Over all process loss	114
	Total	3990
	iii. WTP balance	

#	Particulars	Quantity, m ³
1	Input of fresh water	300
2	Treated water send to (Boiler 190)	190
3	Reject water sent to GSR	110
Tota	l fresh water requirement for cogent. and boiler	300
2) S	ugar process	-
	i. Water input (3843TPD)	
1	Mill imbibition @ 30% on cane	3000
2	Steam exhaust from boiler	3800
3	Water from cane @ 70% on cane	7000
	Total	13800
	ii. Hot water (Condensate) output from process	
1	Exhaust condensate from SK @38 % on cane	3800
2	condensate from CJ heating two numbers @2.8% on cane	280
3	Vapor condensate(Q. body 2)@16.7% on cane	1670
4	Vapour Condensate (SJ 1 st & 2nd) @ 4.9 % on cane	490
5	Vapour Condensate of all pans @ 25% on cane	2500
6	Vapour Condensate(Q. body 3)@ 8.9% on cane	890
7	Vapour Condensate(Q. body 4)@ 0.7% on cane	70
8	Vapour Condensate(Q. body 5) @ 0.7% on cane	70
9	Vapour Condensate (RJ 1st)@2.8% on cane	280
	Total	10050
	iii. Hot water (Condensate) consumption	
1	Required at boiler @ 150.41TPH of steam generation	3610
2	Required for imbibition's at mill @ 30 % on cane	3000
3	Required for MOL Preparation @ 3 % on cane	300
4	Required at vacuum filters @ 3 % on cane	300
5	Required at Pan & Molasses movement @ 5 % on cane	500
6	Required for sugar melting @ 3.0% on cane	300
7	Required at magma mixers. @ 1% on cane	100
8	Required at A C/F M/c-4 Nos @ 1.5 % on cane	150
9	Required for Cont. M/c-9 Nos @ 1.5 % on cane	150
10	Required for soda boiling at Evaporator, Pan soda Boiling, Cleaning of screen of centrifugal @ 1.01% on cane	101
	Total	8511

#	Particulars	Quantity, m ³		
	Net excess condensate generation 10050 -8511 = 1539	1539		
	ss condensate is cooled by mist cooling technology and sent to distille sses dilution	ery unit for		
	iv. Water loss in product and by-product			
1	Water in bagasse @ 50% moisture & @ 28.0% production on cane	1400		
2	Water in press mud @ 70% moisture & @ 2.75 % production on cane	192.5		
3	Water in final molasses @ 12% moisture & @ 4.0 % production on cane	48		
	Total	1640.5		
	v. Waste water generation			
1	From Sugar process as per CPCB norms 100 l/MT cane crush including boiler blow down	1000		
2	From spray pond over flow as per CPCB norms 100 l/MT cane crush	1000		
	Total	2000		
vi	. Net water requirement	-		
1.	Hot water consumption in process	8461		
2.	Water loss (Process + CT drift loss) 114 + 500	614		
3.	Net effluent generation (Boiler Blow-down + Process Effluent +2000Spray pond over flow) = 20002000			
4.	Excess condensate available from process sent to cooling tower	1539		
5.	Condensate available after cooling tower @2% loss 31.78 say 32cum per day =1539 -32 = 1507			
6.	Excess condensate consumption			
	i. Excess condensate sent to cogeneration cooling tower make water	500 351		
	ii. Excess condensate sent to distillery unit cooling tower make	851		
7.	Net condensate availability 1507 – 851 = 656 Condensate sent to irrigation purpose after CPU	656		
8.	Net fresh water requirement for WTP including boiler	300		
	Fresh water requirement for crushing season = 300 X 160 = 4	800 m ³		

Particulars	Quantity, m ³
A. Process Input Water	
For molasses dilution	528
For cooling tower makeup	351
For vacuum pump cooling	15
For fusel oil decanter & Alcohol scrubber	15
Boiler feed water (@15TPH)	360
Others (Domestic)	10
Total Water Input at start-up	1279
B. Output Water	I
Spent Lees (PR & Rect.)	90
Process condensate	360
From vacuum pump cooling	15
Boiler steam condensate	324
Cooling tower blow down	75
Boiler blow down	5
WTP reject	15
Total Water Output	884
C. Water Loss	
Domestic loss	10
Cooling tower drift loss	276
For fusel oil decanter & Alcohol scrubber	15
Total Loss	301
D. Water Available For Recirculation	
Spent Lees (PR & Rect)	90
Process condensate recycle to process after CPU treatment	360
Boiler blow down	5
Boiler steam condensate recycle back to boiler as a feed water	324
Cooling tower blow down	75
WTP reject	15
Total water available for recirculation	869
Net fresh water requirement per lit of RS 1279 -869/= 410	9.11 L/L of RS

Table 4: Water Balance 45 KLPD Distillery Unit

Water consumption per lit of alcohol 410/45= 9.11				
Summary of water balance				
Fresh water requirement	= Water input – water	recycle		
	= 1279 - 869			
Net fresh requirement	= 410 m ³ /day= 410/45 = 9	.11 lit/lit RS		
 Net fresh water requirement durin unit recycle to the distillery unit fo during running crushing season he cum per day for boiler and domest Net fresh water requirement durin off season will be 410 cum per day purpose only Net fresh water requirement for yes During seasonal operation = 59 X 1 During off seasonal operation = 41 Total fresh water per year = 79140 	r cooling tower make up i.e. 351 cu ence the water requirement will be ic purpose only ng off season : Net fresh water requ for cooling tower make, boiler and ear: 160 days = 9440 m ³ 0 X 170 = 69700 m ³	um per day 410 -351 = 59 uirement during		

2.2 Fuel

Bagasse will be used as a fuel in 175 TPH boiler for sugar and cogeneration project. Concentrated spent wash of >55° brix up to 60° brix will be incinerated along with coal or bagasse for distillery project. Spent wash available for incineration will be 90 m³/day or 111.6 TPD. This quantity of spent wash will produce 15 TPH steam (GCV 1750K.cal). Along with spentwash, coal or bagasse will be used as supplementary fuel in 70:30 ratio.

2.3 Steam

For co-generation unit, during cane crushing season, the steam will be generated from boiler of 175 TPH capacity (existing 125 TPH + Proposed 50 TPH). The exhaust steam from cogeneration unit will be utilized in sugar factory. The distillery will require maximum 13.5 TPH steam. And it will be fulfilled from proposed 15 TPH boiler.

2.4 Power

The estimated power requirement for proposed expansion of sugar and co-generation unit will be 13.5 MW and 1.2 MW for distillery unit. The cogeneration unit will fulfill the power requirement for the sugar unit whereas the captive proposed incineration boiler will supply the power to the distillery. In case of shut down, power will be purchased from state

electricity grid.

2.5 Boiler

One new fluidized bed boiler of 125 TPH capacity, having 45 kg/cm² (g) pressure & 400 \pm 5^oC temperature, proposed for the cogeneration project. It will comply IBR specifications.

The distillery will have an incineration boiler of 15 TPH having 45 kg/cm² (g) pressure & $400 \pm 5^{\circ}$ C temperature. Boiler shall be as per latest IBR specifications.

2.6 Fuel HandlingSystem

Suitable bagasse handling slat conveyor is provided for the boiler plant. During season the bagasse generated is used as fuel in boiler of sugar plant. Hence, bagasse is supplied to boiler from elevated carriers and belt conveyors. Provision is made for conveying excess bagasse (not used in the boiler) to a storage area by belt conveyor.

Entire coal storage area/ yard will be covered with permanent weather shed roofing and walls on three sides. Mechanized fuel handling system as well as dust suppression system will be installed for this area. Coal handling will have a capacity of max. 5 TPH. The conveyors will be suitably covered with hood or enclosures. Crushed coal will be used, mainly of 3 to 8 mm size. In case of bagasse, the in-house bagasse will be used and it will be transport from bagasse yard to boiler section through conveyer belt or in covered trucks.

2.7 Ash handling system

The ash handling system envisages wet extraction of bottom ash & dry extraction for fly ash. The fly ash will be extracted in dry form from the electrostatic precipitator hoppers, economizer, air heater hoppers, stack hopper, and transported to storage silo as a measure for promoting ash utilization. For collecting fly ash in dry form, the system will be designed such that, the fly ash and conveying air mixture will be conveyed to storage silo with bag filters. Once in eight hours shift, the fly ash will be sequentially extracted from these hoppers. The fly ash handling system will be designed to collect ash in dry form in fly ash silos through pneumatic pressure conveying system.

2.8 Land

The proposed expansion and new distillery project requires around 2,57,300 sq.m (63.5 acres) of land The detailed break-up of land for different units of the sugar, cogeneration

and distillery (both existing and proposed) are already given in table 2.2 of chapter II in main EIA report.

2.9 Manpower

The project will be generating direct employment to 105 persons out of which \sim 35 will be skilled and others will be semi-skilled and unskilled. Apart from this, anticipated indirect employment opportunities will be from transportation, local service providers, shopkeeper and various facility providers such as schools, medical facilities, etc.

3.0 PROCESS DESCRIPTION

A. Sugar

The double sulphitation process manufacturing plantation white sugar will be used in this expansion. The process consists of the following steps. A flowchart of the process is given in figure 1.

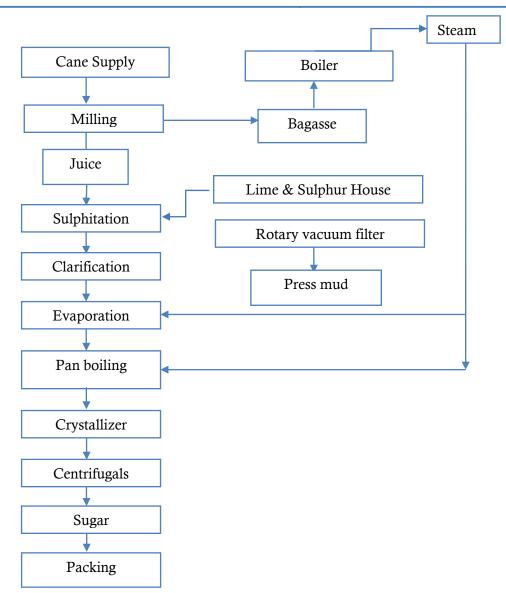
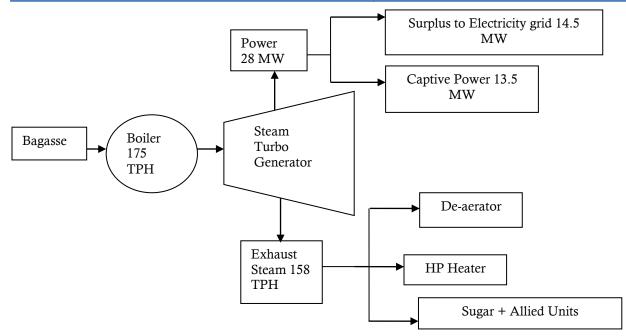



Figure 1: Flowchart Sugar Manufacturing Process

B. Co-generation

The proposed cogeneration, aims at improving the energy efficiency of the sugar factory significantly and enabling the plant to generate surplus power from its cane crushing operation. This surplus power will be exported to the state electricity grid. Energy efficiency and the export of power to the grid are made feasible due to the availability of high pressure and high temperature steam and by the utilization of the available bagasse. The flow chart for generation of the power in cogeneration as shown in following figure.

Figure 2: Schematic of Cogeneration process

C) Distillery

For the proposed project, the management has planned to adopt the latest technology for process as well as for effluent disposal. Overall objective of this is to achieve high efficiency of operations, save energy and water and achieve Zero Liquid Discharge (ZLD). The characteristic of manufacturing process is given below and a schematic is shown in figure 3

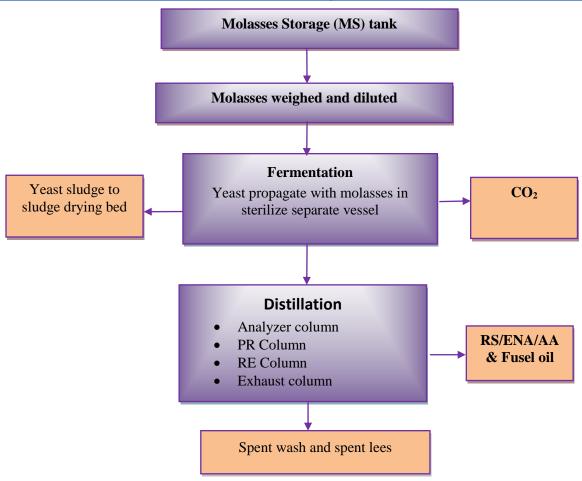


Figure 3: Schematic of Manufacturing Process

Details of molasses and product storage tanks are given in Table 5.

Specifications For Receivers & Storage Tanks – Thickness As Per Is-803-1976:				
#	Particulars	Quantity	Capacity (in m ³)	
1.	Rectified spirit receivers	03	60	
2.	Impure spirit receivers	02	10	
3.	* Rectified spirit storage tanks	02	600	
4.	* Impure spirit storage tank	01	200	
5.	Fusel oil storage tank	01	10	
6.	Molasses storage at distillery (Tons)	01	5,000 MT	

4.0 BASELINE ENVIRONMENTAL CONDITIONS

The guiding factors for the present baseline study are the requirements prescribed by the Ministry of Environment, Forestry and Climate Change (MoEFCC) for conducting Environmental Impact Assessment study published in the EIA notification 2006 and its subsequent amendments. Apart from this, the terms of reference for the EIA were also considered while planning and executing the monitoring. For baseline data collection sampling of air, water and soil was carried out from October 2019 to January 2020.

The baseline study begins with site visits and reconnaissance survey in the study area. During these visit the locations were fixed for the monitoring and collection of primary data.

#	Facet	In brief	
1	General	Cool in the western hilly areas but as you move towards the	
	characteristics	eastern part of the district the weather becomes hotter and dry.	
2	Rainfall	An average annual rainfall of 925 mm	
		Rains are received mainly during June-September months	
3	Temperature	Maximum temperature in summer is around 39°C and minimum	
		temperature in winter is around 12°C.	
4	Humidity	Relative maximum humidity between 70-89% and minimum 25-	
		35%.	
5	Wind	Predominantly wind direction East and North West during study	
		period	
6	Land use	Crop land area 90.12 %, Built up area- rural 3.08 %, Water bodies	
		0.78%, Scrub 3.18 %, Forest 3.50 %, 2.14 %	
7	Air Quality	Complies NAAQ standards of Nov. 2009 at all monitored locations	
8	Noise	Complies national standard on project site but exceeding in study	
		area	
9	Ground water	As per Central Ground Water Board report 2013-	
		Slightly alkaline, suitable for both drinking and irrigation purposes	
10	Soil	The soils of the district are the weathering products of Basalt and	

Table 6: Summary of Environmental features of study area

			have various shades from brownish to reddish to black.
ſ	11	Nearest	Nearest Sanctuary is Sagareshwar Deer Sanctuary at distance of 36
		sanctuary	km

4.1 Land use

Satellite data of Rabi season was classified using supervised classification technique. Maximum likelihood algorithm classifier was used for the analysis. The scenes were individually classified and then were integrated to get a composite classified output where information from Rabi season is available. A truth table was generated taking 0.95 as the conversion threshold. After aggregation, the final classified output was converted in raster format. The image was then converted in raster format, which is understood by GIS software. Five landuse/ land cover classes were identified in 10 sq. km area around the Project Site. Area under each class has been calculated.

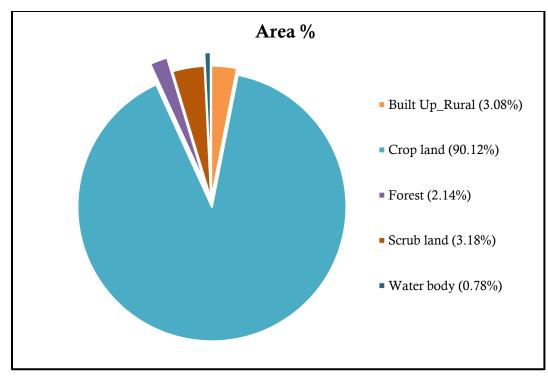


Figure 4: Details of Land use

5.0 IMPACT ASSESSMENT

5.1 Air Environment

Ambient air quality of the study area was assessed through a network of eight air monitoring stations, considering the wind pattern for the study area. Methods used for AAQ analysis: PM2.5 & PM10: CPCB, NOx: IS- 5182 (Part vi) 2006, SO2: IS- 5182 (Part ii) 2001. The values for PM10, PM2.5, SO2 and NOx for all monitored locations were well within National Ambient Air Quality (NAAQ) Standard limits.

5.1.1 Impact causing factors

1) **Emissions from process:** It will be due to incineration of spent wash along with coal.

2) **Transportation:** Vehicular pollution due to transportation activity, dust from roads, loading unloading of material and transportation of material will involve mainly transportation of coal, molasses to some extent and ethanol/spirit. Hence, this could cause minor increase mainly in NOx, particulate matter and HC.

3) **Fugitive Emissions and Other sources of air pollution:** Fugitive emissions from handling and storage of coal and ash; transportation activities and odour are also anticipated to cause significant negative impact. System for suppression of dust from handling of coal and ash will be installed. It includes mainly, use of pulse jet bag filters for coal loading-unloading on conveyors, foggers/dust suppressors in coal and ash storage yard, wind breakers for ash storage area.

5.1.2 Impact Assessment: Estimated incremental concentrations of PM and SO_X in the downwind direction of the site are minor, considering the baseline value. The baseline concentrations of these pollutants are well within the NAAQS. Therefore, after adding the incremental concentration to the baseline value at nearest downwind site will not exceed the NAAQS. So, it is anticipated that, the increase in the concentration of these air pollutants due to the burning of fuel, likely to cause minor negative impact on air environment.

5.1.3 Preventive, control and mitigation measures

- Mechanized handling of coal and ash
- Green belt development on 2.3 acres area for the proposed unit
- Plantation of 2500 trees is proposed for greenbelt
- Wind breaks will be developed to control PM generation from ash storage yard
- PPE will be provided to workers, working in dust prone areas

- The carbon dioxide emissions from fermentation process will be controlled by bottling the generated gas in a bottling plant
- Job rotation for workers, working in dust prone areas
- Use of economically affordable techniques for suppression of dust from handling and storage area
- Ash will be transported in closed/covered vehicles to the brick manufacturing unit
- Construction of permanent roads

5.1.3.1 Air Pollutant Dispersion Modeling

Prediction of impacts on air environment has been carried out employing mathematical model -AERMOD view dispersion model 9.2 software developed by Lakes Environment Software, Canada.

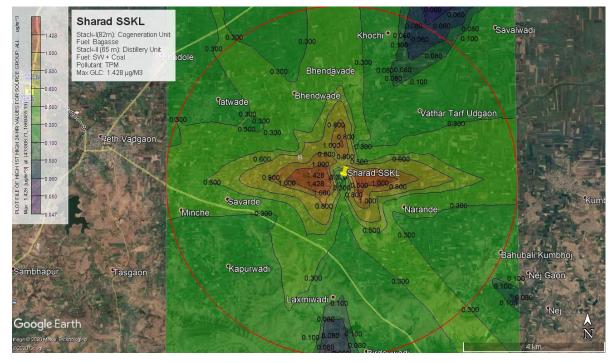


Figure 5: Isopleth showing GLC location and distance for PM (Short term 24 hourly)

Figure 6: Isopleth showing GLC location and distance for SO₂ (Short term 24 hourly)

Observation

From the mathematical modeling of air pollutant dispersion study, it is observed that-

- Maximum increase in the concentration of PM and SO_2 is predicted at approx 0.52 km i.e. roughly 520 m west from the stack
- Agricultural vegetation is observed at this distance
- Village Savarde is the nearest ambient air quality (AAQ) monitored location to incremental GLC
- Considering the incremental load of operation phase of the project, the resulting concentration for PM10 and SO2 predicted to be well within national ambient air quality standards (NAAQS)
- Second highest increase is predicted towards the east at a similar distance
- Village Narande nearest AAQ monitored place located at east of the site
- The maximum incremental load predicted at this point is 1.00 µg/m³ for particulate matter (PM10) and 5.00 µg/m³ for SO₂.
- Maximum concentration of PM10 and SO2 recorded at Narande village during monitoring period was 70.01 μ g/m³ and 21.91 μ g/m³
- Considering this incremental load, predicted GLC of PM 10 and SO2 for the said village will be

71.01 μ g/m³ and 26.91 μ g/m³

From the mathematical modeling study, it is observed that resultant concentration of air pollutant PM 10 and SO2 in downwind directions will be well within the national ambient air quality standards prescribed by CPCB in Nov. 2009.

Description	Concentration µg/m ³	
	РМ	SO ₂
Maximum rise in GLC	1.428	7.15
Direction of Occurrence and distance	W (0.52 km)	W (0.52 km)
Coordinates of maximum GLC	16º49'35" N	16º49'35" N
	74º22'27" E	74º22'27" E
Baseline Concentration reported at monitored location nearest to the maximum incremental GLC (Village: Savarde)	67.18	17.17
Total Concentration (Post project scenario at Village: Savarde)	68.60	24.32
NAAQS	100 (PM ₁₀)	80
*The distance is measured from stack to the receptor of maximum GLC		

Table 7: Summary of Maximum 24-hour GLC due to proposed project

5.2 Water Environment

5.2.1 Impact causing factors: Drawl of fresh water in large quantity and its usage, water pollution, disposal of polluted water into nearby water bodies.

5.2.2 Impact Assessment: No negative impact on water environment and aquatic ecosystem is envisaged due to the proposed project. Minor negative impact is envisaged on soil within the premises. The project proponent has water drawl permission from Irrigation Department to lift the water from Warna River. Thus, water used in the project will be exclusively allocated for industrial activities.

5.2.3 Environment management plan: In order to reduce the fresh water intake, the management has planned to reuse of waste water after proper treatment. Wastewater from

the fresh water resource. The treated water shall be mainly reused in the sugar unit for auxiliary requirements and/or for gardening activity. The sanitary wastewater will be disposed by using sugar ETP unit. Thus, zero liquid discharge will be achieved. Boiler blow down and water from cooling tower will be stored in ponds and recycled thereafter. The management also proposed to install rainwater harvesting system to recharge the aquifer and partly fulfill the requirement during startup.

5.3 Land Environment

a) Impact of effluent discharge

As discussed earlier, highly polluted wastewater i.e. spent wash will be disposed by incineration process. It will be stored in impervious lagoons as per CPCB guidelines. Other polluted water will be treated in CPU and reused.

b) Solid waste

#	Waste	Quantity (TPA)	Disposal	Remark
Sug	ar and Cogeneratio	n unit		
1.	Sugar ETP/ CPU sludge	3 TPD	Used for land application	Organic
2.	Boiler ash	34.48 TPD	Sold to brick manufacturers	Inorganic
Dis	tillery unit	-	-	-
3.	CPU sludge (dry)	1.5 TPD	Used for land application	Organic/Inorganic
4.	Fermenter sludge	1.5 TPD		
5.	Boiler ash	31.35 TPD	Sold to brick manufacturer	-

Table 8: Solid Waste and its Management

5.3.1 Impact causing factors: Disposal of solid and hazardous waste, disposal of effluent, change in topography

5.3.2 Impact Assessment: The project is not going to generate any hazardous waste. The only hazardous waste likely to be generated will be scrap oil from DG set, automobiles, gears etc. Since the DG set will run only in case of failure of regular power supply. The quantity of used or scrap oil will be low. Since, the solid waste is non-toxic and non-

hazardous, it is anticipated that the solid waste will have no negative impact on land but very negligible negative impact on air environment due to emissions from stack. Minor negative impact is also envisaging on the land environment of the site due to construction of the proposed unit.

5.3.3 Environmental management plan: The solid waste viz. ash will be generated due to burning of spent wash along with coal in the boiler and burning of bagasse in cogeneration boiler. Ash is estimated to be about 34.48 TPD from sugar & cogeneration boiler and 31.35 TPD from Incineration boiler. Sludge from CPU this sludge is usually bio-degradable, organic and nearly neutral in nature. It doesn't contain any toxic or hazardous elements. Therefore, this will be safely disposed by mixing into soil as manure. As an option, ash may be sold to the local bricks manufacturer.

5.4 Ecology

5.4.1 Impact causing factors: Discharge of air and water pollutants into environment, solid waste, change in land use, removal of vegetation cover, reclamation of wetland/water bodies, etc.

5.4.2 Impact assessment: In case of proposed project, the air dispersion modeling study reveals that the ground level concentration of PM (during operation phase) in ambient air will be an increase in the concentration of PM and SOx mainly towards west at approx. 520 m (0.51 km) from the stack towards Savarde village. Village Narande - nearest AAQ monitored place located at east of the site. The maximum incremental load predicted at this point is 1.00 μ g/m3 for particulate matter (PM10) and 5.00 μ g/m3 for SO2. Maximum concentration of PM10 and SO2 recorded at Narande village during monitoring period was 70.01 μ g/m3 and 21.91 μ g/m3. Considering this incremental load, predicted GLC of PM 10 and SO2 for the said village will be 71.01 μ g/m3 and 26.91 μ g/m3

- From the mathematical modeling study, it is observed that resultant concentration of this air pollutant in downwind direction will be well within the national ambient air quality standards prescribed by CPCB in Nov. 2009. The negative impact is anticipated due to following.
- Due to construction on the present open areas, land- foraging ground may get lost permanently for some of the birds, insects and reptiles; also this activity may cause negative impact on soil micro- fauna.

- In addition, the transmission lines may cause minor negative impact on soil and avian-fauna. Beneficial Impact is anticipated due to following factors.
- The effluent/wastewater generated will be treated and recycled/reused for greenbelt, which is anticipated as positive impact for the conservation of resource as well as efficient utilization of it.
- Solid waste generated in the project will be rich in potash. It will be added to soils. Thus, nutrient will get recycled and soil enrichment will take place. This is anticipated as another positive impact on the land and the surrounding eco-system.
- Greenbelt development will help in enhancing the biodiversity of the area. It will also help in improving the aesthetics. This is another positive impact anticipated due to the project.

5.4.3 Environmental management plan: ESP as an air pollution control device attached to stack of 82 m height for cogeneration unit & 65 m height for distillery unit; mechanized handling of bagasse and ash, etc. for air pollution prevention and control; Greenbelt development - for mitigation of air and noise pollution. Solid waste is organic and safely gets disposed-off by applying into soil.

5.5 Socio- economic environment

5.5.1 Impact Causing Factors: issues of rehabilitation; restoration; population flux; pressure on available resources and infrastructure.

5.5.2 Impact Assessment: Considering the long term benefits to the locals, the project will have positive impact on socio-economic environment.

5.5.3 Environment Management Plan: Project is agro-based – therefore, indirectly beneficial to local farmers; no issues of rehabilitation or restoration; local candidates will be employed – thus, migration of population to the site surrounding area and pressure on infrastructure and resources is anticipated to be negligible.

6.0 FIRE PROTECTION SYSTEM

Fire protection system shall be provided in accordance to PESO, OISD-117 and LPA regulations. The fire- fighting system will consist of a hydrant network, piping etc. Fire protection system will also include one electric driven pump, one diesel engine driven pump, one jockey pump, piping, basin etc. Water hydrants will be provided at all strategic points. A suitable Fire ring system as per the guidelines of TAC will be incorporated. Non-flame proof and flame proof area will be separated by minimum distance of 15 meters.

Portable fire extinguishers will also be provided in strategic locations viz., power house, control rooms, storage yard.

Automatic fire Sprinkler System (Water Hydrant) – Electro-magnetic dehydration system uses an electric fire detection system installed in the area as open sprinklers /spray nozzles. Upon sensing a hazard, the Electromagnetic valve opens.

6.1 Safety Aspects through Design and Engineering

- All design will be as per ISI standard specification and drawings are to be approved by factory/electrical inspectorate/safety inspectorate weights & measurement inspectorate etc.
- All distillation columns accessed from flooring (grating)
- The roof of the structures (fermentation, distillation, receivers) must be covered totally by pre- coated sheets (Pre-painted galvano loom sheet i.e. PPGL sheets) of 0.5 mm thickness.
- The layout will take into account the working space & safety requirement of Factory Inspectorate, Govt. of Maharashtra State.

6.2 Plant Lighting

- a) The normal process area lighting will generally compromise of Fluorescent fittings & Mercury vapor fittings.
- b) Flameproof light fittings conforming to IS 2148 shall be provided for hazardous areas, particularly in distillation & storage section, while non-flame proof fittings in other areas.
 Plant building lighting will be as per norms & as per Electrical inspectorate/factory inspectorate norms.

7.0 ENVIRONMENT MANAGEMENT PLAN

Table 9: Summary of Environment Management Plan

Environmental	Impact causing factor	Control/Mitigation Measures
Aspect		
Air Environment	Generation of Particulate	• ESP to control ash emission through
	Matter (PM), SO ₂ , NO _x	stack with height 82 m for
	during cogeneration/	cogeneration boiler and 65 m for
	incineration	incineration boiler

 CO2 bottling plant after scrubbing Mechanized system for coal and ash handling Fugitive dust control/suppression for coal yard will be done properly Wind breaks for ash storage area Development of greenbelt Sugar effluent and spray pond overflow will be treated in upgraded ETP. Condensates will be treated in CPU and then recycled. 'Zero liquid discharge' will be achieved in distillery by implementing - Integrated and stand-alone evaporation (using MEE) as a primary treatment to reduce the spentwash volume Incineration of concentrated spentwash by burning with coal/bagasse in furnace Spentlees, condensate of MEE and other effluents will be treated in condensate polishing unit (CPU) and treated water will be reused in distillery. All the effluent will be properly treated/ utilized/disposed within the premises

Environmental	Impact causing factor	Control/Mitigation Measures
Aspect		
		 and concentrated spentwash. Lagoons will be made impervious as per CREP guidelines Fresh water requirement will be reduced by recycling of water (treated water), using rain water during startup period Piezometric well, in downstream area of spentwash storage to monitor ground water quality
Soil	Boiler Ash	Sold to nearby brick manufacturing unit
Environment		
	Sludge from	Sludge is degradable, organic in nature
	Fermentation unit and CPU	hence, mixed into soil
	Excavated fertile soil	 Stacked separately and reused for greenbelt development Stones and excess soil will be used for foundation or internal roads or leveling purpose within premises
Noise	Increase in noise level due to operation of machines, motors, vehicular movement, DG set etc.	 Regular maintenance of machines and factory vehicles provisions of separate parking for goods and other vehicles Internal roads will be either asphalted or RCC, leveled, illuminated and will be maintained Safety sign boards will be placed at strategic locations within premises

Environmental	Impact causing factor	Control/Mitigation Measures			
Aspect					
Ecology and	Air, water, soil and noise	 Provision of adequate personal protective equipments for workers Job rotation for high noise level work places, if required Regular health checkup for workers Acoustic enclosure will be provided to DG set Adequate preventive, control and 			
Biodiversity	pollution Tree cutting failing, disturbance to wildlife due to project	 mitigation measures for air, water and soil pollutants No tree cutting/ failing involved since project is on barren land No wildlife sanctuary, national park or biosphere reserve within 10km radius, site is not in migratory route of any wildlife, no rare and endangered species of plants/animals reported from the region Development of greenbelt will help to enhance the biodiversity and will provide habitat to many species 			
Socio-economic Environment	Rehabilitation and Restoration (RR), pressure on available manmade infrastructure/resource due to population flux	 No rehabilitation and restoration issue involved since site is already under the possession of project proponent Local candidates will be preferred for employment. Skilled work force is available at nearby towns and cities 			

Environmental	Impact causing factor	Control/Mitigation Measures			
Aspect					
Safety and	Accidents, improper	Safety officer and safety committee			
Occupational	work practices	will be formulated			
health		Provision of adequate safety gears			
		Insurance policy for workers			
		Regular health check-up			
Risk and	Fire, accidents,	• The entire premises will be declared			
disaster	earthquake, etc.	as 'no smoking zone'			
management		Lightening arresting system will be			
		installed			
		Ethanol vapor condensing system			
		will be installed at storage area			
		Proper storage of molasses, ethanol			
		and coal			
		• Ethanol storage as per PESO			
		guidelines			
		• Firefighting system as per OISD and			
		local authority guidelines			
		Earthquake resistant construction			

8.0 SAFETY, OCCUPATIONAL HEALTH MANAGEMENT

The goal of all occupational health and safety programs is to foster a safe work environment. In this project, aspects of Safety and Occupational Health are given with the due consideration, over and above applicable legislations such as Factories Act 1948. Extra attention will be paid to provide measures for ensuring safety and health of workers and as well integrity of plant. This will be done by applying following national or international standards.

- Use of flameproof electrics
- Standard operating procedures (SOP) will be developed as per the manual of respective equipment and machines. These SOP will be strictly implemented to ensure safety,

health and environment throughout the premises

- Smoking and igniting activities will be strictly prohibited in the entire unit
- Existing Firefighting system (of sugar & Cogeneration unit) will be modified suitably so as to make it suitable for proposed project (as per the statutory guidelines)
- Regular medical checkup of workers, contractual workers and employees

Facilities at existing sugar unit such as drinking water facility, canteen, toilet and bathrooms, petrol pump, first aid facility, safety gears and PPE will be made available to workers, as well as to the visitors and transporters.

Table 10: Financial	provision for CER activities	planned for next five years
rabic rollinanciai	provision for chicactivities	plaimed for mext live years

CSR activity head	Year TO				ТОТА	
	1 ^s	2n	3rd	4th	5th	L
	t	d				
	Budgetary provision (Rs. in lakhs				ths)	
Provision of rooftop solar system in local	20	20	20	20	20	100
schools						
Provision of toilets and sanitary fixtures in	10	10	10	10	10	50
local schools						
Provision of clean drinking water facility in	10	10	10	10	10	50
local schools						
Education						
Education/training to local youths, farmers,	5	5	5	5	5	25
family members of employee's						
Infrastructure Development/Maintenance	10	10	10	10	5	45
(Eg. Road, canal maintenance, etc)						
Other activities for maintaining social and	2	2	2.5	2.5	2	11
cultural harmony						
TOTAL BUDGETARY ALLOCATION FOR NEXT FIVE YEARS				281		
(2% of the capital budget)						

	Deutinulaur	Amount		
#	Particulars	(Rs. in Lakhs)		
	Capital Expenses			
1.	Standalone evaporator system	600.00		
2.	Incineration boiler with ESP	1200.00		
3.	ESP for sugar & cogeneration	100.00		
4.	Fuel storage & handling system	120.00		
5.	Ash handling system	40.00		
6.	Spentwash storage tank	30.00		
7.	Condensate polishing units for sugar & distillery	300.00		
8.	ETP upgradation for sugar	100.00		
9.	CO ₂ bottling plant	450.00		
10.	Environmental monitoring and management	50.00		
11.	Greenbelt development	30.00		
12.	Rainwater harvesting	30.00		
	TOTAL	3050.00		
	Additional provision towards CER (2 % of capital investment)	281.00		
	Recurring Expenses/Annum			
1.	Salaries and wages	75.00		
2.	Maintenance (@ 5% on capital investment of Rs. 3050 lakhs) of pollution	152.50		
۷.	control devices e.g. ESP, etc.			
3.	Fuel (incineration activity)	192.0		
5.	Electricity (in case of diesel generator operation)			
4.	Miscellaneous	15.00		
	TOTAL	434.50		

Table 11: Estimated Capital & Recurring Expenses for Environment Management

9.0CONCLUSION

The project proposed by a progressive cooperative sugar mill from Kolhapur district of Maharashtra. The mill is having adequate capacity to produce >75% of required molasses in the form of B heavy type and remaining will get easily available from nearby sugar mills. The mill is having its own open land where the project will be developed. Hence, issues of rehabilitation and restoration of people is not involved in this case.

The potential environmental, social and economic impacts of the project have been assessed during the EIA study and given in EIA report. The proposed expansion of the sugar and cogeneration unit and establishment of new distillery unit will have certain levels of marginal impacts on the local environment. It has been endeavored to minimize the negative impacts by addressing them through environmental management plan. Necessary control measures have been suggested to meet with the norms and safeguard the environment. The implementation of this project will definitely improve the physical and social infrastructure of the surrounding area. Adequate financial provision is made by management of SSSKL for EMP and CER activities (i.e. for upliftment of the local people). The proposed project will contribute to economic growth of the region and also help in improving the power reliability and energy security.