TABLE OF CONTENTS

1 NABET Disclosure 1-2 2 Executive Summary 3-4 Chaper 1 Introduction of the Project / Background Information 5 1.1 Identification of project 6 1.2 Project Proponent 6 1.2 Brief description of nature of the project 7 1.2.1 Climate 7 1.2.2 Soil 7 1.2.3 Means of irrigation 8 1.2. Sugar Vs other cash crops 8 1.3 Need for the project & its importance 8 Highlights of the Project 9 1 1.4 Demand – Supply Gap 10 1.5 Imports Vs. Indigenous production 10 1.6 Employment Generation (Direct & Indirect) 10 1.6 Employment Generation (Direct & Indirect) 10 1.4 Demand – Supply Gap 11 2.2 Location 11 2.3 Working Days: The Sugar Unit would work 16 aximum 180 days. 16 2.5 Size or magnitude of operation 16 2.5	Sr. No.		Description	Page No.
2 Executive Summary 3-4 Chaper 1 Introduction of the Project / Background Information 5 1.1 Identification of project 6 1.2 Project Proponent 6 1.2 Brief description of nature of the project 7 1.2.1 Climate 7 1.2.2 Soil 7 1.2.3 Means of irrigation 8 1.2. Sugar Vs other cash crops 8 1.3 Need for the project & its importance 8 Highlights of the Project 9 10 1.5 Imports Vs. Indigenous production 10 1.6 Employment Generation (Direct & Indirect) 10 due to the project 11 12 2.1 Type of project 11 2.2 Location 11 2.3 Working Days: The Sugar Unit would work maximum 180 days. 16 2.4 Alternative Sites 16 2.5 Size or magnitude of operation 16 2.6 Process details 16 2.7 List of Products & Raw materials 19 <td>1</td> <td>NABE</td> <td>T Disclosure</td> <td>1-2</td>	1	NABE	T Disclosure	1-2
Chaper 1Introduction of the Project / Background Information51.1Identification of project61.2Project Proponent61.2Brief description of nature of the project71.2.1Climate71.2.2Soil71.2.3Means of irrigation81.2.Sugar Vs other cash crops81.3Need for the project & its importance8Highlights of the Project91.4Demand - Supply Gap101.5Imports Vs. Indigenous production101.6Employment Generation (Direct & Indirect) due to the project101.2.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20	2	Execu	tive Summary	3-4
1.1Identification of project61.2Project Proponent61.2Brief description of nature of the project71.2.1Climate71.2.2Soil71.2.3Means of irrigation81.2.Sugar Vs other cash crops81.3Need for the project & its importance8Highlights of the Project91.4Demand – Supply Gap101.5Imports Vs. Indigenous production101.6Employment Generation (Direct & Indirect) due to the project101.6Employment Generation (Direct & Indirect) due to the project112.1Type of project112.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/Recycling and Reuse202.9Requirement of Water, Energy / Power20	Chaper 1	Introduction of the Project / Background Information		5
1.2 Project Proponent 6 1.2 Brief description of nature of the project 7 1.2.1 Climate 7 1.2.2 Soil 7 1.2.3 Means of irrigation 8 1.2. Sugar Vs other cash crops 8 1.3 Need for the project & its importance 8 1.4 Demand – Supply Gap 10 1.5 Imports Vs. Indigenous production 10 1.6 Employment Generation (Direct & Indirect) due to the project 10 1.6 Employment Generation (Direct & Indirect) due to the project 11 2.2 Location 11 2.2 Location 11 2.3 Working Days: The Sugar Unit would work maximum 180 days. 16 2.4 Alternative Sites 16 2.5 Size or magnitude of operation 16 2.6 Process details 16 2.7 List of Products & Raw materials 19 2.8 Resource Optimization/Recycling and Reuse 20		1.1	Identification of project	6
1.2Brief description of nature of the project71.2.1Climate71.2.2Soil71.2.3Means of irrigation81.2.Sugar Vs other cash crops81.3Need for the project & its importance81.3Need for the project & its importance91.4Demand – Supply Gap101.5Imports Vs. Indigenous production101.6Employment Generation (Direct & Indirect)10due to the project112.2Location112.3Working Days: The Sugar Unit would work16maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		1.2	Project Proponent	6
1.2.1Climate71.2.2Soil71.2.3Means of irrigation81.2.Sugar Vs other cash crops81.3Need for the project & its importance81.3Need for the project & its importance91.4Demand - Supply Gap101.5Imports Vs. Indigenous production101.6Employment Generation (Direct & Indirect) due to the project101.6Employment Generation (Direct & Indirect) due to the project112.1Type of project112.2Location1112.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		1.2	Brief description of nature of the project	7
1.2.2Soil71.2.3Means of irrigation81.2.Sugar Vs other cash crops81.3Need for the project & its importance8Highlights of the Project91.4Demand - Supply Gap101.5Imports Vs. Indigenous production101.6Employment Generation (Direct & Indirect) due to the project101.6Employment Generation (Direct & Indirect) due to the project112.1Type of project112.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/Recycling and Reuse202.9Requirement of Water, Energy / Power20		1.2.1	Climate	7
1.2.3Means of irrigation81.2.Sugar Vs other cash crops81.3Need for the project & its importance8Highlights of the Project & its importance91.4Demand – Supply Gap101.5Imports Vs. Indigenous production101.6Employment Generation (Direct & Indirect) due to the project101.6Employment Generation (Direct & Indirect) due to the project112.1Type of project112.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		1.2.2	Soil	7
1.2.Sugar Vs other cash crops81.3Need for the project & its importance81.3Need for the project & its importance8Highlights of the Project91.4Demand – Supply Gap101.5Imports Vs. Indigenous production101.6Employment Generation (Direct & Indirect) due to the project101.6Employment Generation (Direct & Indirect) due to the project102.1Type of project112.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		1.2.3	Means of irrigation	8
1.3Need for the project & its importance8Highlights of the Project91.4Demand - Supply Gap101.5Imports Vs. Indigenous production101.6Employment Generation (Direct & Indirect) due to the project10Chapter 2Project Description112.1Type of project112.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		1.2.	Sugar Vs other cash crops	8
Highlights of the Project91.4Demand – Supply Gap101.5Imports Vs. Indigenous production101.6Employment Generation (Direct & Indirect) due to the project10Chapter 2Project Description2.1Type of project112.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		1.3	Need for the project & its importance	8
1.4Demand – Supply Gap101.5Imports Vs. Indigenous production101.6Employment Generation (Direct & Indirect) due to the project10Chapter 2Project Description2.1Type of project112.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details192.8Resource Optimization/Recycling and Reuse202.9Requirement of Water, Energy / Power20			Highlights of the Project	9
1.5Imports Vs. Indigenous production101010101.6Employment Generation (Direct & Indirect) due to the project10Chapter 2Project Description112.1Type of project112.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/Recycling and Reuse202.9Requirement of Water, Energy / Power20		1.4	Demand – Supply Gap	10
Image: Image in the second systemImage in the second systemImage in the second system1.6Employment Generation (Direct & Indirect) due to the project10Chapter 2Project Description112.1Type of project112.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/Recycling and Reuse202.9Requirement of Water, Energy / Power20		1.5	Imports Vs. Indigenous production	10
1.6Employment Generation (Direct & Indirect) due to the project10Chapter 2Project Description112.1Type of project112.2Location112.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/Recycling and Reuse202.9Requirement of Water, Energy / Power20				
due to the projectfunctionChapter 2Project Description112.1Type of project112.2Location112.3Working Days: The Sugar Unit would work162.3Working Days: The Sugar Unit would work162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		1.6	Employment Generation (Direct & Indirect)	10
Chapter 2Project Description112.1Type of project112.2Location112.3Working Days: The Sugar Unit would work162.3Working Days: The Sugar Unit would work162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20			due to the project	
2.1Type of project112.2Location112.3Working Days: The Sugar Unit would work16maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20	Chapter 2	Projec	et Description	11
2.2Location112.3Working Days: The Sugar Unit would work16maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		2.1	Type of project	11
2.3Working Days: The Sugar Unit would work maximum 180 days.162.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		2.2	Location	11
maximum 180 days.2.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		2.3	Working Days: The Sugar Unit would work	16
2.4Alternative Sites162.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20			maximum 180 days.	
2.5Size or magnitude of operation162.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		2.4	Alternative Sites	16
2.6Process details162.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		2.5	Size or magnitude of operation	16
2.7List of Products & Raw materials192.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		2.6	Process details	16
2.8Resource Optimization/ Recycling and Reuse202.9Requirement of Water, Energy / Power20		2.7	List of Products & Raw materials	19
2.9Requirement of Water, Energy / Power20		2.8	Resource Optimization/ Recycling and Reuse	20
		2.9	Requirement of Water, Energy / Power	20

2.10	Schematic representation of the feasibility	25
	drawing which give information of EIA	
	purpose.	
3. Site	e Analysis	26
3.1	Connectivity	26
3.2	Land Form, Land use & Land Ownership	26
3.3	Topography	28
3.4	Existing Infrastructure	28
3.5	Soil classification	28
3.6	Climatic data from secondary sources	28
3.7	Social Infrastructure available	28
4.Plan	nning Brief	29
4.1	Planning Concept, Town & Country	29
	Planning/Development authority classification	
4.2	Population Projection	29
4.3	Land use planning	29
	(Break up along with green belt)	
4.4	Assessment of Infrastructure Demand	30
	(Physical & Social	
4.5	Amenities/Facilities	30
5.Proj	posed Infrastructure (Existing)	30
5.1	Social Infrastructure	31
5.2	Connectivity (Traffic & Transportation Road/	31
	Rail/Metro/Water ways etc)	
5.3	Drinking Water Management (Source &	31
	Supply of Water)	
5.4	Sewerage System	31
5.5.1	Industrial Waste Management	31
	a. Industrial Effluent	31
	b. Industrial Emissions	32
	c. Hazardous waste	32
 -	1	

		d. Solid Waste	32
	5.6	Solid Waste Management	32
	5.7	Power Requirement Supply / Source	33
	6.Reha	bilitation & Resettlement (R&R) Plan	33
	6.1	Policy to be adopted in respect of the project	33
		affected persons including home oustees, land	
		oustees & landless labourers.	
	7.Proje	ect Schedule & Cost Estimates	33
	7.1	Likely Date of start of construction & likely	33
		date of completion	
	7.2	Estimated project cost along with analysis in	34
		terms of economics viability of the project	
	7.3	Proposed Schedule of Implementation	34
	8.ANA	LYSIS OF PROPOSAL	34
	8.1	Financial & social benefits with special	34
		emphasis on benefits to the local people	
		including tribal population.	
Chapter 3	AIR Q	UALITY MODELLING	40
	3.2	Location and plant layout	41
	3.3	Fuel used	41
	3.4	Stack Height Calculations	41
	34.1	Stack Height Calculation Based on SO ₂ Emission	41
	3.5	Air quality estimation	42
Chapter 4	4.1	Environmental Status	50
Chapter 5		GEOMORPHOLOGICAL, GEOLOGICAL	92
		AND HYDROGEOLOGICAL STATUS ORF	
		SHIOL TALUKA, KOLHAPUR DISTRICT,	
	5.1	Introduction	92
	5.2	Geomorphology	93
	5.3	Drainage	93
	1		

	5.4	Soil	94
	5.5	Geology	95
	5.6	Seismicity and Tectonics	95
	5.7	Hydrogeology	96
	5.8	Ground water related issues and problems	96
Chapter 6		LANDUSE (LU)	97
	6.1	Introduction	97
	6.2	Data	97
	6.3	Methodology	97
	6.4	Study Area	97
	6.5	General Landuse	99
	6.6	Village wise General Landuse of Study Area	101
	6.7	IRRIGATION AND LANDUSE	102
	6.8	Source of Irrigation	103
	6.9	Village wise Irrigation	104
	6.10	LANDUSE STUDY WITH SATELLITE DATA	106
	6.11	Limitation	111
Chapter 7		ECOLOGY AND BIODIVERSITY	112
	7.1	Introduction	112
	7.2	Objectives of the ecological studies:	112
	7.3	Survey Methodology:	113
	7.4	Assessment of flora :	114
	7.4.1	Agricultural and Commercial Crops	115
	7.4.2	Ornamental Plants	116
	7.4.3	Natural vegetation	118
	7.5	Species diversity index and species richness of plant population	123
	7.6	Faunal study	125
	7.7	Species diversity index and species richness of bird population	134
	7.8	Aquatic ecosystem :	135

	7.9	Pollutants absorbing and Carbon sequestrating plants	140
Chapter 8		SOCI-ECONOMIC PROFILE OF THE	141
		PROJECT AREA	
	8.1	Introduction	141
	8.2	Methodoloy	142-145
		a.Field survey	
		b.Socio - economic study of Project Affected	
		Persons (PAPs)	
		c. Outcome of the survey	
		d. Steps of the SIA/EIA	
		e. Study area	
		f. Objectives	
		g. Sources of information	
		h. Sampling	
	8.3	Geography and Climate	146
	8.4	Rainfall	148
	8.5	Size of the land holding	149
	8.6	Land use pattern	149
	8.7	Demographic features	150
	8.8	Agriculture sector	156
	8.9	Rivers and Irrigation	159
	8.10	Industrial sector in the location	160
Chapter 9		ENVIRONMENTAL MANAGEMENT SYSTEM (EMS)	176
	9.1	ENVIRONMENTAL POLICY:	176
	9.2	ORGANIZATIONAL COMMITMENT:	176
	9.3	ENVIRONMENTAL IMPACT ASSESSMENT:	176
	9.4	COMMUNITY CONSULTATION:	176

	9.5	ENVIRONMENTAL MANAGEMENT CELL PATTERN AND REPORTING	177
	9.6	LABORATORY FACILITIES	177
	9.7	DOCUMENTATION	177
	9.8	OPERATIONAL AND EMERGENCY PLAN:	177
	9.9	TRAINING:	183
	9.11	WASTE MINIMIZATION OPTIONS:	183
	9.12	WATER RECYCLING:	183
	9.13	INTERLOCKING THE PROCESS WITH ETP PERFORMANCE AND AIR EMISSIONS 1.REFERENCE BOOKS: - <u>2. LIST OF JOURNALS IN THE</u> <u>OF ENVIRONMENT</u>	184-185
Chapter10		ENVIRONMENTAL MANAGEMENT PLAN (EMP)	186
	10.1	IMPACTS AND MITIGATION PLAN:	186
	10.2	RECORDS AND DOCUMENTATIONS: -	194
	10.2 A	DOCUMENTATIONS: -	195
	10.2.B	GAZETTE NOTIFICATIONS: -	195
	10.2 C	TROUBLESHOOTING: -	195
	10.3	MEASURES BUILT IN THE PROCESS	197
	10.4.1	WATER MANAGEMENT	197
	10.4.2	SURFACE WATER QUALITY	197
	10.4.3	GROUND WATER QUALITY	198
	10.4.4	AIR QUALITY	198
	10.4.5	NOISE	198
	10.4.6	LAND	198
	10.4.7	ECOLOGY	198
	10.4.8	SOCIO – ECONOMIC FACTORS	199
	10.5	OPERATIONAL PHASE MANAGEMENT PLAN	199

	10.5.1	WATER MANAGEMENT	199
	10.5.1.	WATER RESOURCES	199
	Α		
	10.5.1.	WASTE WATER	199
	В		
	10.5.2	AIR ENVIRONMENT	199
	10.5.3	SOLID WASTE	200
	10.5.5	BIOLOGICAL ENVIRONMENT	200
	10.5.6. A	CRITERIA FOR SELECTION OF SPECIES FOR GREEN BELT	201
	10.5.7	Rain Water Harvesting:	201
	10.6	OCCUPATIONAL HEALTH STUDIES	201
	10.6.1	INTRODUCTION	201
	10.7	REHABILITATIONANDRESETTLEMENT (R & R) PLAN	203
	10.8	ENVIRONMENTAL POLICY	203
	10.9	STANDARD OPERATING PROCEDURES OR PROCESSES	204
	10.10	NON COMPLIANCE REPORT	206
Chapter11		RISK ASSESSMENT AND SAFETY / EMERGENCY MANAGEMENT PLAN	207
	11.1	RISK ASSESSMENT	207
	11.1.1	HAZARD	207
	11.1.2	RISK	207
	11.1.3	RISK ASSESSMENT	207
	11.1.4	RISK PREVENTION OR CONTROL	207
	11.2	OBJECTIVES OF THE STUDY	208
	11.3	PROJECT FEATURES AND HAZARDS	208
	11.3.1	IDENTIFICATION OF POSSIBLE HAZARDS	208
	11.3.2	IDENTIFICATION INVOLVING RELATIVE RATING TECHNIQUE THROUGH FIRE EXPLOSION AND TOXICITY INDEX	208

11.3.3	GENERAL PROCESS HAZARD (GPH)	209
11.3.4	SPECIAL PROCESS HAZARD (SPH)	209
11.3.5	MINIMUM PREVENTIVE AND PROTECTIVE MEASURES FOR FIRE AND EXPLOSION	209
11.4	HAZARD ANALYSIS	210
11.4.1	PRELIMINARY HAZARD ANALYSIS	210
11.4.2	HEALTH HAZARDS	210
11.5	MAXIMUM CREDITABLE ACCIDENT ANALYSIS 1.HEAT RADITION MODEL-POOLFIRE 2.VISUALISATION AND SIMULATION OF MAXIMUM ACCIDENTAL SCENARIOS . 3.EFFECTS OF POOL FIRE 4.DAMAGE CRITERIA FOR HEAT RADIATION 5. CRITICAL RADIATIONS OF INTEREST ON HUMAN BODY 6. PHYSIOLOGICAL EFFECT OF THRESHOLD THERMAL DOSES	211-212
11.6	CONSEQUENCE ANALYSIS	213
	i. FAILURE FREQUENCIES	213
	ii. FAILURE DATA	213
	iii. PROBABILITY OF OCCURRENCE OF IDENTIFIED HAZARDS	213
	iv. IGNITION SOURCES OF MAJOR FIRES	214
	v. SITE SPECIFIC CONSEQUENCES	215
11.7	SAFETY MANAGEMENT PLAN	215
11.8	OBJECTIVE OF EMERGENCY MANAGEMENT PLAN	215
11.8.1	ON-SITE EMERGECNY	215
11.8.2	OFF-SITE EMERGENCY	215
11.8.3	RISK ASSESSMENT	215

11.9	STRUCTURE OF EMERGENCY ORGANIZATION	215
11.9.1	EMERGENCY CONTROL ROOM (EMR)	216
11.9.2	LIST OF FACILITES AT ENERGENCY CONTROL ROOM	216
11.9.3	SAFETY MEASURES	216
	1. COMMUNICATION SYSTEM	217
	2. FIRE FIGHTING FACILITY	217
	3. SFETY EQUIPMENTS AND APPLIANCES	217
	4EMERGENCY TRANSPORT VEHICLE	217
	5. AMBULANCE	218
	6. ASSEMBLY POINTS	218
11.10	ACTION PLAN FOR CONTROL OF EMERGENCY	218
	1. IDENTIFICATION AND ASSESSMENT OF HAZARDS	218
	2. DECLARATION OF EMERGENCY	218
11.11	FUNCTIONS OF EMERGENCY MANAGEMENT PRSONNEL	218
	i. FUNCTIONS OF DECLARER OF EMERGENCY	218
	ii. FUNCTIONS OF INCIDENCE CONTROL INCIDENCE CONTROLLER	219
	iii. EVACUATION TEAM	219
	iv. REPAIR TEAM	219
	v. ESSENTIAL SERVICE TEAM	219
	vi. FUNCTIONS OF EMERGENCY CO- ORDINATION EMERGENCY CO- ORDINATOR:	220
	vii. TRANSPORTATION VEHICLE TEAM AND	220

		viii. MEDICAL ASSISTANCE TEAM	220
		xi. SECURITY	220
		x. COMMUNICATION TEAM	220
		xi. EMERGENCY SHUT DOWN OF PLANTS	220
		xii. EVACUATION OF PERSONNEL	221
		xiii. ACCOUNTING OF PERSONNEL:	221
		xiv. INFORMATION TO THE RELATIVES OF AFFECTED PEOPLE:	221
		xv. MEDICAL TREATMENT:	221
		xvi. MUTUAL AID	221
		xvii. SECURITY	221
		xviii. LAW AND ORDER	222
		xix. ALL CLEAR SIGNAL:	222
		xx INTIMATION TO AUTHORITIES	222
		xxi. RELIEF AND REHABILITATION	222
		xxii. REVIEW OF INCIDENCE	222
		xxiii. UPDATE OF EMERGENCY PLAN	222
		xxiv. TRAINING AND REHEARSAL	222
	11.12	IDENTIFY HAZARD	223
ANNEX	URES	<u>ANNEXURE I</u> PHOTOGRAPHS OF GREEN BELT	226
		FRONT VIEW ADMINISTRATIVE BUIDLING	228
		<u>ANNEXURE II</u>	230
		MANUFACTURING PROCESS	
		<u>ANNEXURE III</u> Techno Economic feasibility report of ETP facilities provided at Shree Datta Shethkari SSK Ltd., Dattanagar, Tal: Shirol, Dist: Kolhapur	235

ANNEXURE IV	240		
Contour Map			
ANNEXURE V	241-247		
Environmental Clearance for 7500 TCD			
Compliance			
ANNEXUREVI	248-255		
TORS issued by SEIAA			
ANNEXURE VII	256		
Site Specific Meteorological Data			
ANNEXURE VIII	257-281		
Ambient Air Quality monitoring data of 24			
Hours average twice in Week for 3 Months			

LIST OF TABLES

Table No.	Description	Page No.
1.1	The list of the present Board of Directors	6
2.1	List of Raw materials & Products 1. Raw Materials required for sugar plant of capacity (9000 TCD) 2.List of Products with Production Capacity (9000 TCD) 3. Raw Materials required for sugar plant of capacity (9000 TCD) 4 List of Products with Production Capacity (9000 TCD)	19-20
2.2	Land Utilization Pattern in Shirol Taluka	27
2.3	Land use planning (Break up along with green belt)	29
2.4	A.STANDRAD TERMS OF REFERENCE B.SPECIFIC TERMS OF REFFERANCE FOR EIA STUDIES FOR SUGAR INDUSTRY & THERMAL PLANTS	35-39
3.1	Air quality estimation	42
3.2	AMBIENT AIR QUALITY STANDARDS :(Prescribed by CPCB)	43-44
41	ANALYSIS REPORT	51-88
4.2	NOISE LEVEL MEASUREMENT REPORT	89-90
4.3	ANALYSIS REPORT FOR STACK EMISSION	91
6.1	Villages Within 10Km Radius from Factory Site	98-99
6.2	Summary of General Landuse of Study Area	100
6.3	Village wise General Landuse of Study Area	101-102
6.4	Summary of Irrigated and Un-Irrigated Land	102
6.5	Source of Irrigation	103
6.6	Village-wise Irrigation Status of Study Area	104-105
7.1	List of Agricultural and Commercial Crops	115-116
7.2	List of Ornamental Plants	117-118
7.3	Herb vegetation	118-119
7.4	Shrub vegetation	119
7.5	Tree vegetation	119-120
7.6	The sites studied for plant and bird indices	124
7.7	Shannon Weiner Index and Species richness of plant population in study area.	124

7.8	Category wise Index of total study area:	124
7.9	The list of mammals, amphibians, reptiles, butterflies, fishes, insects	125-128
	and dragonflies found in the study area	
7.10	The list of bird species found in the study area.	130-132
7.11	Shannon Weiner Index and Species richness study of bird population	135
	in study area	
7.12	Zooplankton List	136-138
7.13	Phytoplankton List	138-139
7.14	The list of selected plants and trees which can be grown in the	140
	surrounding area of the factory	
8.1	Name of the Villages within the Radius of 15 KM	145-146
8.2	Average Rainfall in Shirol Taluka (mm)	149
8.3	Land Use Pattern	149-150
8.4	Demographic Features of the Selected Villages	155-156
8.5	Area under Different Crops	156-157
8.6	Soil Salinity Land in Shirol Taluka in 2007	158
8.7	Irrigation by Different Sources in Shirol Taluka	159
8.8	Sample families in the Project Area	161-162
8.9	Dependents in the Family	162-163
8.10	Profile of the Sam Fpleamilies Surveyed for SIA.	164
8.11	Educational Level of the Persons in the Families	165
8.12	Micro-enterprising Activities of the Families	165-166
8.13	Size of Land Holding	167
8.14	Agricultural Training	169
8.15	Cultural Resilience	170
8.16	Classification of the Responses in the Advantages of the Project	172
8.17	Classification of the Responses for willingness to accept	173
8.18	Classification of Expectations from the Sugar Factory	174
9.1	Objectives and Targets	176-177
9.2	LIST OF LABORATORY EQUIPMENT	178
9.3	EFFLUENT TREATMENT PLANT MONITORING DATA	179

9.4	PERFORMANCE OF EFFLUENT TREATMENT PLANT	179
9.5	AIR POLLUTION DATA (STACK)	180
9.6	AIR POLLUTION DATA (AMBIENT)	180
9.7	SOUND LEVELS (dB) Leq	181
9.8	Well Water/Surface Waters Proform to monitor impact of pollution	182
	discharged to environment	
9.9	Soil Proform to monitor impact of pollution discharged to	183
	environment	
10.1	Impacts and Mitigation Plan	186-187
10.1.A	Impacts and Mitigation measures specific to SHREE DATTA SSK	187-193
	Limited	
10.1.B	Impact Assessment based on Battelle Environment Evaluation System	194
	(BEES)	
10.2	Troubleshooting	195-197
10.3	Employees Health Status	202-203
10.4	NON COMPLIANCE REPORT	206
11.1	Minimum preventive and protective measures are recommended.	210
11.2	ORGANIZTION-CHART EMERGENCY	224
11.3	AUTHORITIES	225
S	ANNEXURE II 1.Addition of Equipment Suitable For 9000	233
Ш	TCD & its Tentative Cost	
L L	ANNEXURE II 2. Addition of Equipment Suitable For 9000 TCD	234
S	8. its Tontativo Cost	
	ANNEXURE III 1. Estimated COD, BOD, Suspended Solids removal	238
2	efficiency of ETP 2 ETP Flow Chart	239
4		244 247
A		244-247
-	ENVIRONMENTAL CLEARANCE CONDITIONS AND COMPLIANCE FOR	
	5000 TO 7500 TCD	
	ANNEXURE VII Site Specific Meterological Data at Shree_Datta	256
	Shetakari Sahakari Sakhar Karkhana Ltd.	

LIST OF FIGURES

Figure	Description	Page
No.		No.
2.1	Location Map	12
2.2	LOCATION MAP OF STUDY AREA	13
2.3	Toposheet Map	14
2.4	Layout Map of SDSSSK Ltd., Shirol	15
2.5	Process details	17-18
2.6	Water Balance for (7500 MT) sugar cane, m3/day	21
2.7	Raw Water balance (7500 MT) m3/day	21
2.8	Condenser Cooling Water Balance, (7500 MT) m3/day	22
2.9	Total water balance (7500 MT), m3/day	22
2.10	Water Balance for sugar cane, (9000 MT) m3/day	23
2.11	Raw Water balance (9000 MT) m3/day	23
2.12	Condenser Cooling Water Balance, (9000 MT) m3/day	24
2.13	Total water balance(9000 M.T), m3/day	24
2.14	Schematic representation of the feasibility drawing	25
	which give information of EIA purpose.	
3.1	PREDICTION OF AIR QUALITY AND PRESENT STATUS OF	40
	<u>10 KM RADIUS MAP</u>	
3.2	WIND ROSE DIAGRAM (AERMET)	45
3.3	ISOPHELETES FOR PM 10 (AERMOD)	46
3.4	ISOPHELETES FOR SOx (AERMOD)	47
3.5	ISOPHELETES FOR NOx (AERMOD)	48
3.6	ISOPHELETES FOR PM 2.5 (AERMOD)	49
4.1	ENVIRONMENTAL STATUS	50
5.1	Map of Maharashtra and Kolhapur District	92

5.2	Flat topography of the region	93
5.3	Krishna basin map	94
5.4	Deep black soil near river bed	95
6.1	Shree Datta Shetkari Sahakari Sakhar Karkhana Ltd.,	98
	Shirol Location Map	
6.2	General Landuse	100
6.3	Irrigated and Un-irrigated Land	103
6.4	Source of Irrigation	104
6.5	Satellite Image View	107
6.6	Village Map	108
6.7	Landuse - Landcover	109
6.8	Landuse / Land Cover Map (Satellite Image)	110
6.9	Road Map	111
7.1	Map of study sites with grids	114
7.2	Natural Vegetation	121-123
7.3	Fanual study	128-129
7.4	Bird species in study area	132-134
7.5	Phytoplankton List:	139-140
8.1	Google Map	148
8.2	Agriculture sector	157
8.3	Rivers and Irrigation	160
10.1	Hierarchical System	205
S	ANNEXURE I	226-229
Ä	PHOTOGRAPHS OF GREEN BELT	
NX	ANNEXURE II Manufacturing Process Flow Sheet	232
INE	ANNEXURE III ETP Flow Chart	239
AN	ANNEXURE IV Contour Map	240

NABET DISCLOSURE

Declaration of experts contributing to EIA Report for the expansion of the Sugar factory capacity from 7500 TCD to 9000 TCD at Shree Datta Shetkari Sahakari Sakhar Karkhana Ltd., Dattanagar, Tal: Shirol, Dist: Kolhapur, Maharashtra State.

I, hereby certify that we were part of the team in the following capacity that developed the above project document.

Signature:

Name of EIA Co-ordinator: Dr. B. Subbarao

Date: 20-08-2016-

Period of Involvement: September 2015 till date

Contact Information: "Arundhati" Bunglow, MSEB road, Opp., Sahyognagar, Vishrambag-416415, Sangli, Maharashtra State

TelNo. (0233)2301857 Mobile: 09372109522

Functional Area Experts:

Sr.No.	Functional Area	Name of Expert	Involvement (Period & Task)	Signature
1	WP, SHW(ISW & HW) AQ, AP	Dr.B.Subbarao	September 2015 till date	3. Sulba Rav
2	WP	Mrs. Nagjyoti Bollapragada	September 2015 till date	ME
3	AP	Mr.S.B.Patil	September 2015 till date	Blob
4	NV	Dr.S.P. Chavan	September 2015 till date	Slow
5	SE	Dr.V.B.Jugale	September 2015 till date	93.E
6	LU	Dr. Pradip Saymote	September 2015 till date	HIZIONT
7	RH, SC	Mr. G.G.Watwe	September 2015 till date	GI-OI.WCS
8	GEO, HG	Prof. M.B.Kulkarni	September 2015 till date	Tagone
9	EB	Dr.P.D. Raut	September 2015 till date	Ont.
10	SE	Dr.J.B.Chougule	September 2015 till date	Bel A

QCI-NABET Scheme for accreditation of EIA Consultant Organisations/Version 3/June 2015

Declaration by the Head of the accredited consultant organization/ authorized person

I, <u>B.SUBBARAO</u>, hereby, confirm that the above mentioned experts prepared the EIA State Data State Configure Data State State Configure Data State State State State State State

Signature: B. Sulakao

Name: B.SUBBARAD

Designation: Head to the Erganization

Name of the EIA consultant organization: DY. Subbarous Emvironment- Centra NABET Certificate No. & Issue Date: Renderm 141, 5th August 2016. NEWSIN 3, Sr. No. 29.

DECLARATION OF ASSOCIATION IN THE EIA

SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India

E-Mail : klp.<u>dattsssk@gmail.com</u>

- 1. Shree Datta Shetakari Sahakari Sakhar Karkhana Ltd proposes to expand the sugar factory capacity from 7500 TCD to 9000 TCD. The industry follows hundred percent recycling of excess condensate and as such fresh water requirement for process is Zero. The domestic consumption of water would be 1000 Cum/day and the process water for its Distillery unit would be 800 Cum/day. Thus the total fresh water requirement is 900 Cum/day even after expansion.
- 2. The effluent generation would be 332.23 Cum/day even after expansion as compared to 324.25 Cum/day for its present crushing capacity of 7500TCD. This could be achieved due to complete recycling, reuse and dry washing practices followed by the industry.
- 3. The Industry draws steam from Urjankur Shree Datta Power Company limited as per the bilatreral agreement for establishing 36 MW power plant. At present 72T/hr of Baggase is received to generate 180T/hr of steam by Urjankur Shree Datta Power Company limited which in turn supplies 138T/hr of steam to Shree Datta Shetakari SSK Ltd for its Sugar factory and Distillery operations i.e. for sugar process 128T/hr Distillery 10T/hr. Even after expansion of the sugar factory capacity from 7500TCD to 9000TCD, the steam required shall remain unchanged as 128T/hr for sugar unit as it is proposed to reduce steam consumption from 39% to 34% per ton of cane crushed by modernizing the process operations.
- 4. The power requirement for 7500TCD and 9000TCD shall remain same as 176400KW/day. Shree Datta SSK Ltd provided full pledged ETP for sugar effluent and also for excess condensates. The treated sugar factory effluent along with spray pond over flow is used for irrigation on 1000acres of land. The excess condensate is used as process water.
- 5. The environmental status study of the project area is surveyed for ambient air quality. Noise levels, Ground water, River water and soil. The salinity of Ground water is found to be high. However, the water can be used for cash crops like sugarcane. The ambient air quality and sound levels are found to be well within the standards. The Krishna river water is found to be fit for Drinking after treatment.
- 6. The air quality modeling was done as per AERMOD version 7.4 for PM10, PM 2.5 SO_2 and NO_x .

a.Air quality estimation

Air quality modeling is done based on AERMOD version 7.4. The required meteorological data is monitored at the site and the data for AERMOD model was obtained from Envitrans Gaziyabad, UP based on the model studies, the Isopheletes were drawn. It is observed that the maximum concentrations in Study area are well within the NAAQS standards.

		SO x	NO x	PM 10	PM2.5	CO
Sr. No.		µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
1	CONCENTRATIONS	19.28	41.82	76.45	48.45	***
2	NAAQS	80	80	100	60	2

- 7. The Occupational Health studies were carried out for the employees who are vulnerable to fugitive emissions and heat. As per the medical reports of X ray, lung function test and General check up, all the employees are found to be fit. The factory has well established Hospital to carry out the medical check-up for the employees and nearby villages and the farmers.
- 8. The Industry established educational facilities for the benefit of nearby villages and employees and local people and created confidence on the activities of the Industry.
- 9. Rain water Harvesting was done for the entire campus and collected in a pond. The rain water so collected is used for Green belt development.
- 10. The Industry has developed Greenery and around 18000 trees are planted. Industry committed to develop Greenbelt as per CPCB guidelines of 1500 trees per hector of the factory area.
- 11. Industries earmarked 2.5% of the total cost of the project for CSTactivities and utilize the funds for social activities such as education, health camps, soil testing and Drinking water supply in drought affected villages.
- 12. The socio economic development in the study area is excellent. The vulnerability index responds very low and resilience is high. The project has positive impacts. Willingness to pay and the willingness to accept. The expansion has positive outcomes which is 1:10.09 which means the benefits are more 10 times than the loss.
- 13. The pollution absorbing trees are suggested. Shannon Weiner Index suggests maximum species diversity which should be protected. The flora and fauna in the study area are found to be very rich.
- 14. The parking area provided is 12.0 hectares and Green belt area is 29.64 hectares out of total area of 85.46 hectares.
- 15. The capital cost of the modernization of sugar factory crushing capacity from 7500TCD to 9000TCD would be 14.84 crores.

CHAPTER 1 INTRODUCTION

INTRODUCTION OF THE PROJECT/ BACKGROUND INFORMATION

Shree Datta Shetakari Sahakari Sakhar Karkhana Ltd., (SDSSSKL), Shirol, Taluka Shirol, Dist Kolhapur is a Co-operative sugar factory with an installed capacity of 7500 TCD. The average crushing rate of the Sugar Factory is 7500 TCD and crushes around 12-13 lakh MT per annum.

The growth of Sugar Industries in the state of Maharashtra started prior to Independence in the private sector and in the Co-operative sector since 1950. Maharashtra State assumes a leadership position in India in terms of area under sugarcane cultivation, number of Sugar factories, sugarcane production, yield, recovery and Sugar production in the country. Almost 85% of the Sugar factories in Maharashtra are in Co-operative sector. The growth of this Industry in the Co-operative sector has certainly helped to improve Socio-economic conditions of the rural parts of the State.

Shree Datta Shetakari Sahakari Sakhar Karkhana Ltd., (SDSSSKL), Shirol, Taluka Shirol, Dist Kolhapur, was established on 9th June 1969 with an initial installed capacity of 1250 TCD. The first crushing operations started in the 10th June 1970. The capacity of the sugar plant was expanded from 1250 TCD to 2000 TCD in 31st May 1978. The capacity of the sugar plant further expanded from 2000 TCD to 2500 TCD in 7th May 1986. The capacity of the sugar plant 2500 TCD to 5000 TCD was commissioned in 9th December 1988. The capacity of the sugar plant from 5000 To 7500 TCD was commissioned on 1st August 2001. The industry now proposes to expand / modernize the sugar plant capacity from 7,500 TCD to 9,000 TCD.

The command area of the sugar factory has excellent cane potential and the sugarcane grown in this area is rich in sucrose content. Sugarcane potential of SDSSSKL from its command area is around 16 lakh tonnes. It has also installed a 36 MW cogen facility on

5

BOOT principles with Urjankur Shri Datta Power Company Ltd., suitable for operation during crushing season as well as off-season.

SDSSSKL is today one of the best professionally managed and financially sound co-operative sugar factory in Maharashtra.

Backed by a proven managerial and financial track record, SDSSSKL management now propose to implement further expansion / modernization programme to operate the sugar factory at optimum capacity with high up time and lower captive energy consumption with a view to enhance the financial capability of the factory to pay better cane price to its members.

1.1 Identification of project

It is Modernization and Expansion of Sugar unit from 7500 TCD to 9000 TCD.

1.2 Project Proponent

Shri Ganpatrao Appasaheb Patil, Chairman of SDSSSKL, a great visionary, has successfully guided the revival of the factory ever. The list of the present Board of Directors is as below:

Sr. No.	Name	Designation
1	Hon. Shri Ganapatrao Appasaheb Patil	Chairman
2	Hon. Shri Sidgauda Gurusidgauda Patil	Vice Chairman
3	Hon. Shri Usufsaheb Rasulsaheb Mestri	Director
4	Hon. Sou. Vinaya Ramesh Ghorpade	Director
5	Hon. Shri Anilkumar Dinakarao Yadav	Director
6	Hon. Shri Shrenik Jaygaunda Patil	Director
7	Hon. Shri Babaso Shankar Patil	Director
8	Hon. Shri Sharadchandra Vishwnath Pathak	Director
9	Hon. Shri Arunkumar Shankar Desai	Director
10	Hon. Shri Raghunath Devgaunda Patil	Director

Table	No.	1.1
-------	-----	-----

Sr. No.	Name	Designation
11	Hon. Shri Vishwnath Dhondi Mane	Director
12	Hon. Shri Shekhar Kalgaunda Patil	Director
13	Hon. Shri Basgaunda Malgaunda Patil	Director
14	Hon. Shri Pramod Vasant Patil	Director
15	Hon. Shri Annaso Appaso Pawar	Director
16	Hon. Shri Khema Hanama Kambale	Director
17	Hon. Sou Yashoda Balaso Koli	Director
18	Hon. Sou Sangita Sanjay Patil	Director
19	Hon. Shri Indrajit Pasgaunda Patil	Director
20	Hon. Shri Ranjit Ashok Kadam	Director
21	Hon. Shri Raosaheb Giryappa Naik	Director
22	Hon. Shri Vijay Nivruti Suryawanshi	Director
23	Hon. Shri Raosaheb Annaso Bhosale	Director
24	Regional Deputy Director (Sugar), Kolhapur	Director
26	Hon. Shri Mahadev Vithal Patil	Managing Director

1.2 Brief description of nature of the project

1.2.1 Climate

The normal temperatures in the region are between 18° C to 42° C in summer and 8°C to 25° C in winter. There is no occurrence of frost in area of operation of factory. Hence, climate of the region is well suited for sugarcane cultivation.

1.2.2 Soil

The Soil in area of operation is loamy and sandy loamy soil. The soil conditions are well suited for sugarcane cultivation. The structure of Soil are Sand is 40 to 60%, Clay is 10 to 20% and Silt is 30 to 40%.

1.2.3 Means of irrigation

The following are the four major direct sources of irrigation in area of operation;

(1) Panchaganga River, Krishna River. These are a major source of water to fields located on both sides of the area of operation.

(2) Private Pipelines, Wells, Adequate facilities for irrigation ensure a steady sugarcane corp.

1.2.4 Sugar Vs other cash crops

Adequate water for sugarcane cultivation is available throughout the year. Sugarcane has the following advantages over other crops for the farmers. Sugarcane prices paid by sugar factories are always higher than other crops in the region. The varietal pattern of sugarcane in the area of operation of the factory is satisfactory.

1.3 Need for the project & its importance

Sugarcane Potential, agro climatic conditions and the cost of conversion and overheads etc. are the major deciding factors for fixing the crushing capacity of a sugar plant. It has been established that wages and other overhead costs per tonne of sugar get reduced substantially with higher plant sizes.

Most of the land in the operational area of the factory is suitable for cane cultivation. The average sugarcane yield is 115-120 tonnes/hectare in the operational area of SDSSSKL. The total sugarcane availability at present is about 16 lakh tones of cane.

SDSSSKL, keeping in view the above citied reasons, plans to expand / modernize its existing 7500 TCD sugar plant and also carry out balancing so as to increase its capacity utilization to about 125% which will enable it to crush the available sugarcane in optimum season duration of 160-180 days.

The steam requirement for cane crushing is 36%. The Bagasse available is 28.5% on cane. From 7500 TCD, Bagasse available is 89.06 T/hr. The actual requirement is only 72.0 T/hr, taking into consideration Bagasse to steam ratio as 1:2.5. At present, the saving is 17.06 T/hr. The Bagasse availability after expansion would be 106.875 T/hr., whereas the Bagasse requirement to generate 180 T/hr steam would remain the same. The effective saving of Bagasse would be 106.875-72=34.875 T/hr taking into consideration, the existing saving of Bagasse of 17.06 T/hr, the net saving of Bagasse would be 34.875-17.06=17.815T/hr. The present cost of Bagasse can be taken as Rs.2000=00. Thus the net gain would be 17.815x24x2000=Rs.8,55,120=00 per day as against the loss of revenue of sale of power of 1.52 MW which is required for expansion. Taking into consideration, the present cost of power Rs. 6.07 the loss as per unit, revenue would be 1.52x1000x24x6.07=Rs.2,21,433.60.Thus the net gain in terms of fuel saving would be Rs 8,55,120=00-Rs 2,21,433.60=Rs 6,33,686.40 (Six lakh thirty three thousand six hundred eight six rupees and paisa forty) only per day. This additional benefit can be transferred to farmers as cane price.

Besides the direct benefit, the expansion would help to crush cane intime so that the high recovery due to timely crushing would further improve the economy of the farmers.

To implement the above programme, the management of SDSSSKL has appointed consultants with the objective of expansion / modernization & capacity optimization of sugar plant, with emphasis on reduction in cost of production through improvement in milling efficiency and reduction in process steam/energy consumption.

This TOR prefeasibility report has been prepared for Shree Datta Shetakari Sahakari Sakhar Karkhana Ltd, (SDSSSKL) for expansion / modernization of Sugar unit for 375 TCH (9,000 TCD) at its existing sugar mill.

Highlights of the Project

Name and Address: Shree Datta S.S.S.K. Ltd.,

Factory Site: Dattanagar, Shirol, Taluka Shirol District – Kolhapur – 416120 Maharashtra Ph: (0) (02322) 236251, 236552, 236253; Fax: (0) (02322) 236555

Constitution & Type: Co-operative

Products : Sugar, Rectified Spirit, ENA, Ethanol

1.4 Demand – Supply Gap

During the year 2014-2015 the sugar production is 260 lakh tonnes. Where as the demand is 255 MT. However the Government of India as taken a discussion a minimum quantity of 40 Lakh MT should be exported in order to improve the economy of the sugar industries and also earn foreign exchange. There for the management decided to increase the crushing capacity not only to achieve the export target but also to meet the growing demand of the farmers to process there produce in time. Sugar cane is one off the stardust cash crop which can give better returns.

1.5 Imports Vs. Indigenous production

As has been already explain the Indigenous production can easily meet the demand. There is a great potential for export of Sugar in the third world.

1.6 Employment Generation (Direct & Indirect) due to the project

The existing staff would be adequate even after expansion. Thus there would not be any direct employment opportunities. However, there will be employment opportunities indirectly by way of additional transportation required to carry sugarcane to the factory and also the sugarcane cutting labour etc.

CHAPTER 2 PROJECT DESCRIPTION

2.1 Type of project

It is the expansion of existing sugar factory from 7,500 TCD to 9,000 TCD. The existing capacity of the project is from 5000 TCD to 7500 TCD in the year 2001.

2.2 Location

SDSSSKL is located at Dattanagar, Shirol, Tal: Shirol Dist: Kolhapur. There are no sensitive, historical, forest reserves and wild life sanctuaries etc within 10 Km radius of the factory site. The Mumbai – Bangalore National Highway (N.H. 4) is 45 Km away from the factory site. The Latitude and longitude are 16°45'N and 74°36'E respectively. The Elevation above the Mean Sea Level is 542 m.

The Project Site is conveniently located for development of the Project.

- a. 45 Km away from Kolhapur, which is district place
- b. Other important towns nearby are
 - i. Jaysingpur, at a distance of 06 Km.
 - ii. Sangli, at a distance of 16 Km.
- c. Jaysingpur, is nearest Railway station 07 Km away from factory site.
- d. Kolhapur is nearest Airport 45 Km away from factory site.

Refer Annexure-I for Photographs of Green Belt, front view of Administrative Building, Aerial views of factory.

Kolhapur District SHIROL TALUKA

SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India

E-Mail : klp.<u>dattsssk@gmail.com</u>

Fig. 2.3 Toposheet Map

Fig. 2.4 Layout Map of SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL

2.3 Working Days: The Sugar Unit would work maximum 180 days.

2.4 Alternative Sites

The existing facilities and utilities shall be used for expansion and modernization of the sugar factory capacity and as such alternative site is not warranted.

2.5 Size or magnitude of operation

After successful establishment of the sugar factory and its efficient operations since year 1970, the management of SDSSSKL planned and implemented allied projects in the campus which include 36 MW co-generation plant on BOOT principles. Based on availability of sugarcane in its area of operation, the management of SDSSSKL has planned to go for expansion/modernization of the existing sugar unit. The proposed expansion is for increased production.

2.6 Process details

Matured cane is harvested and brought to the factory through Trucks, and Bullok carts. Cane is weighed on automatic weighing scales at the factory gate. The prepared cane is subjected for extraction of the juice in milling system for successive compressing followed by imbibitions. The extracted juice is weighed automatically and subjected for sugar. By product of milling system which is known as Bagasse is passed for boiler as a fuel for generation of steam. The exhaust generated from prime movers is utilized for heating of the juice massecuite. The weighed juice is heated and subjected to automatic liming and Sulphitation process. This sulphited juice is heated and settled in clarifier. The supernant liquid is taken for evaporation where it is concentrated up to 60° BX and passed for crystallization in the vacuum pans. The concentrated syrup is again sulphited and used as a pan boiling system. The three massecuite boiling system is adopted for production of white sugar. Separated crystals are packaged in the gunny bags and stitched and are send to the godown.

Refer Annexure - II for Manufacturing process and schematic diagram of manufacturing process, Addition of Equipment Suitable For 9000 TCD & its Tentative Cost, Addition of Equipment Suitable For 9000 TCD & its Tentative Cost.

2.7 List of Raw materials & Products

Table-1: Raw Materials required for sugar plant of capacity (9000 TCD)						(2.1)
Sr.	Name of raw	Existing	Proposed	Total After	Mode of	Source
No.	material	required	required	Expansion	transportation	
		quantity	Quantity	(MT/M)		
		MT/Month	(MT/ month)			
1.	Sugarcane	225000	45000	270000	Trucks &	Farmers
	(M.T.)				Bullockcarts	
2.	Lime (M.T.)	382.500	76.500	459.000	Road	Open
						Market
3	Sulphur	120.000	24.750	144.750	Road	Open
	(M.T.)					Market
4.	Phosphoric	10200.0	2052.0	12252.0	Road	Open
	Acid (Kg)					Market
5	Flocculant	360	72.00	432.00	Road	Open
	(kg)					Market
6.	Electricity	5292000	NIL	5292000	Own	Own
		KW/Month		KW/Month		

Table No. 2.: List of Products with Production Capacity (9000 TCD)

Sr.	Proposed	Existing Product	Proposed Product	Total After
No.	Product	Quantity (MT /	Quantity (MT /	Expansion
		month)	month)	(MT/M)
1.	Sugar	28125.000	5625.000	33750.000
2.	Bagasse	64125.000	12825.000	76950.000
3	Filter cake	8400.000	1687.500	1087.500
4.	Molasses	8400.000	1687.500	1087.500
5.	Electricity	5292000	NIL	5292000
		KW/Month		KW/Month

Table-3: Raw Materials required for sugar plant of capacity (9000 TCD)

		<u> </u>		
Sr.	Name of raw material	Existing required	Proposed required	Total After
No.		quantity MT/Day	Quantity (MT /	Expansion
			Day)	(MT/Day)
1.	Sugarcane	7500	1500	9000
2.	Lime	12.750	2.55	15.30
3	Sulphur	4.000	0.825	4.825
4.	Phosphoric Acid (kg)	340	68.40	408.40
5	Flocculant (kg)	12	2.40	14.40
6.	Electricity	176400 KW/Day	NIL	176400 KW/Day

Sr.	Proposed	Existing Product	Proposed Product	Total After
No.	Product	Quantity (MT / Day)	Quantity (MT/Day)	Expansion
				(MT/Day)
1.	Sugar	937.500	187.500	1125.000
2.	Bagasse	2137.500	427.500	2565.000
3	Filter cake	280.000	56.250	336.250
4.	Molasses	280.000	56.250	336.250
5.	Electricity	176400 KW/Day	NIL	176400 KW/Day

Table No. 4.: List of Products with Production Capacity (9000 TCD)

2.8 Resource Optimization/ Recycling and Reuse

SDSSSKL has adopted latest process technologies for the all manufacturing units of existing unit. Therefore, waste generation would be very negligible amount. There is no any extra water would be required for expansion activities. Further, the fuel for boiler is Bagasse from existing sugar factory which is less polluting than coal or any other solid fuel. The effluent from existing as well as expansion activities is treated in ETP provided in the existing sugar factory unit. The entire treated effluent quantity is used for gardening.

2.9 Requirement of Water, Energy / Power

- (I) Source of water and its availability. Commitment regarding availability of requisite quantity of water from the competent authority.
 - Krishna River is the source of water. Permission is being sought from Govt. of Maharashtra. The raw water requirement is 800 m³/day and shall be drawn from Krishna River which is 5 Km away from the site.
- (II) Power required for 375 TCH cane crushing is 11.2 MW @ 24 kwh/TCH which is supplied by existing setup of Co-generation having capacity 36 MW.

Total water balance (7500 MT), m3/day

Condenser Cooling Water Balance, (9000 MT) m3/day Condensers 109980

3.0 SITE ANALYSIS

The site is well developed and the entire land is non agriculture. The baring capacity of soil is well above the requirement for construction activities. The contours of sites varying from 492 to 505 m. The factory is located the highest points. There would not be any drainage problems. The water source is Panchaganga River which is 3 Km. The industry is situated around the agricultural land so that the treated effluent can be used for cultivation purpose. The nearest cities are Jaysingpur and Shirol which are not so densely populated.

3.1 Connectivity

The Project Site is conveniently located for development of the Project.

- (i) 45 Km away from Kolhapur town, which is on Mumbai Bangalore National Highway No.4
- (ii) 6 Km off the Kolhapur Sangli State Highway.
- (iii) Other important towns nearby are
 - a. Sangli, at a distance of 16 Km.
 - b. Miraj at a distance of about 14 Km.
- (iv) 7 Km way from the nearest railway station, Jaysingpur.
- (v) Kolhapur airport is nearest to the site.
- (vi) Ratnagiri and Margaon/Vasco at 175 Km and 215 Km respectively are the nearest ports.
- 3.2 Land Form, Land use & Land Ownership

Most of the land in the operational area of the factory is suitable for cane cultivation. The average sugarcane yield is 115-120 tonnes/hectare in the operational area of SDSSSKL. Study of land use pattern and cropping pattern is primarily based on the information obtained from Government Departments, field interviews and discussions with farmers.

Table No. 2.2

Land Utilization Pattern in Shirol Taluka (in hectares)

Sr. No.		ltems	<mark>1960-61</mark>	<mark>1980-81</mark>	2010-11	Percen tage
1.	Total Geogr	aphical Area	50809	50793	50300	
2	Area under	Forest	902 (177)	896 (176)	1267 (2.59)	40.46
3	Area Not Available for Cultivation	Land Put Non- agriculture Use Barren and Cultivable Land	339 (0.66) 3439 (6.77)	2662 (5.24) 1152 (2.27)	1220 (2.43) -	259.88
		Total	3778 (7.44)	3814 (7.51)	1220 (2.43)	- 67.70
	Other Uncultivab	Cultivable Waste Land	2178 (4.28)	1896 (3.73)	693 (138)	- 68.18
4	le Land Excluding	Permanent Pastured and Other Grazing	1134 (2.25)	1114 (2.9)	1491 (2.96)	31.48
	Land	Land under Misc. Tree Crop etc. not	÷	÷	624 (1.24)	÷
		Total	13312 (6.52)	3010 (5.92)	2808 (5.58)	- 78.90
	Fallow Land	Current Fallow Land	48 (0.09)	576 (113)	3404 (6.77)	6991.67
5		Other Fallow Land	01 (0.01)	208 (0.40)	1162 (2.31)	116100
		Total	49 (0.10)	784 (154)	4566 (9.07)	9218
6	Net Area Sown		42823	42289	35258	- 17.66
7	Area Sown	More than Once	372 (0.86)	5834 (13.79)	1548 (4.39)	316
8	Gross Cropp	ed Area	43195	48123	38806	- 10.16
9	Cropping In	tensity	100.86	113.78	110.06	-

Source: Socio Economic Review of Kolhapur District from 1960-61 to 2006-07 & Agriculture Office, BDO, Shirol

Note : Figures in parenthesis shows percentage to total geographical area and in case of area sown more than once percent to net area sown Cropping Intensity = (Gross Cropped Area/Net Area Sown) x 100

The Table No. 3 shows that land utilization pattern of Shirol taluka since 1960-61.

3.3 Topography

Refer Annexure-V for the Countor map of the site.

3.4 Existing Infrastructure

Housing accommodation is provided for employs with drinking water & sanitation facilities. A well developed Hospital is established for the benefit of Employees, share holder & near by Villagers. Recreation facilities such as well developed Gardens, Fish pond, Temple and gymkhana are established. IT and Diploma college of engineering is established for the benefit of local people. Well developed Tar felted/ Concrete Roads are constructed in the entire campus area.

3.5 Soil classification

The soil holding / binding vegetation such as grass shall be grown around the construction site before commencement of construction activity to reduce soil erosion.

3.6 Climatic data from secondary sources

The normal temperatures in the region are between 18° C to 42° C in summer and 8°C to 25° C in winter. There is no occurrence of frost in area of operation of factory. Hence, climate of the region is well suited for sugarcane cultivation.

3.7 Social Infrastructure available

The cultural activities such as get-together of employs in various ockegens such as festivals and marriages are frequently arrange. Primary and Secondary schools are sponsored to the employees. Education loans are given to the employees. Farmers are supplied with agricultural seeds and security on bank Loans for seed capital for agricultural activities. As already mentioned a well developed Hospital is established in campus for the well fare of the employees.

4.0 PLANNING BRIEF

4.1 Planning Concept, Town & Country Planning/Development authority classification The factory situated in a village which do not require from the town planning department however, the industry license rules are applied which are strictly followed any sanction.

4.2 Population Projection – As per Census 2001, the population was 359139. Among these, male population was 185014 and female population was 174165. The sex ratio is 941. The density is 707 sq. km. as per the census of 2001. There are 52 villages and 02 municipalities. The total urban area is only 27.20 sq. km. but as against the total rural area is 480.70 sq. km. The large numbers of people (294785) stay in rural area.

4.3 Land use planning (Break up along with green belt)

Sr.	Description	Area in Hectares
1.	Built up area (Sugar & Distillery plants including storage	4.61
	facilities)	-
2.	Parking Area	10.5
3.	ETP (Sugar + Distillery)	13.0
4.	Roads	10.0
5.	Educational Institutes	2.50
6.	Green Belt	29.64
7.	Water Storage & Rain water Harvesting	2.0
8.	Domestic Colony	0.73
9.	Cogeneration plant on BOOT principles	12.0
10.	Vacant Land	0.48
	Total Area	85.46

Table No. 2.3

4.4 Assessment of Infrastructure Demand (Physical & social) - It is not applicable.

4.5 Amenities/Facilities

Amenities like education, medical, water supply, communication, road network, electricity etc. are available in the project area.

5.0 **PROPOSED INFRASTRUCTURE (EXISTING)**

The total area available for the project is 85.46 hectares, out of which 4.61 hectares is built up area, 0.73 Hectares is a Residential area and 29.64 hectares for green belt development. Development of greenbelt in and around the industry is an effective way to check pollutants and their dispersion into surrounding areas. The degree of pollution attenuation by a green belt depends on its height and width, foliage surface area and density.

The main objective of green belt around the factory is:-

- a. Mitigation of impacts due to fugitive emissions.
- b. Attenuation of noise levels.
- c. Ecological restoration.
- d. Creation of aesthetic environment.
- e. Waste water reuse.

Criteria for selection of species for green belt:-

- a. Rapid growth and evergreen habitats
- b. Tolerance to water stress and extreme climatic conditions
- c. Difference in height and growth habits
- d. Aesthetic and pleasing appearance
- e. Provide shade
- f. Large bio-mass to provide fodder and nitrogen
- g. Improving waste land
- h. To suit specific climate and soil characteristics (local species).
- i. Sustainability with minimum maintenance

- j. Recommended plant species shall be utilized for development of green belt and greenery in and around the factory premises.
- 5.1 Social Infrastructure

Amenities like water supply, communication, electricity, education, medical, road network, etc. are available in the project area.

5.2 Connectivity (Traffic & Transportation Road/ Rail/Metro/Water ways etc)

The Project Site is conveniently located 7 Km way from the nearest railway station, which is Jaysingpur. Other important towns nearby are Sangli, at a distance of 16 Km & Miraj at a distance of about 14 Km. Ratnagiri and Margaon/Vasco at 175 Km and 215 Km respectively are the nearest ports.

5.3 Drinking Water Management (Source & Supply of Water)

The existing raw water requirement is 800 Cum/day and shall be drawn from Panchaganga River. For drinking purpose, the clarified water is treated in sand filters and chlorinated. No additional water is required for expansion/modernization.

Refer Annexure-III for Detailed Water Budget.

5.4 Sewerage System

The domestic effluent from existing and expansion activities is treated separately in septic tank followed by soak pits in a decentralized manner.

5.5.1 Industrial Waste Management

a. Industrial Effluent

The effluent shall be treated in the existing effluent treatment plant. The effluent treatment plant consist of preliminary treatment (Oil & Grease trap, flow meter), Equalization tank Anaerobic Filter, Aeration tank, Secondary Clarifier, Sludge drying beds and 15 days treated storage tank for no demand period. The total quantity of per day shall not exceed 700 Cum/day. The domestic effluent shall be 80 m³/day, which shall be treated in septic tanks followed by anaerobic filter. Existing ETP facilities is adequate for proposed modernization, as the effluent quantity shall not exceed 700 Cum/day as the Industry has already implemented recycle and reuse techniques of the entire condensates generated.

Refer Annexure-IV for Design feasibility report of ETP facilities provided.

b. Industrial Emissions

Steam and power are taken from Urjankur Shree Datta Power Company Ltd. There is one Boiler of 180 T/hr having a pressure of 110 Kg/Sqcm at 525°C. The Stack height is 95 meter with 4.0 meter diameter Electrostatic Precipitator is provided as APC equipment. There shall not be any additional boiler for generation of steam for proposed expansion / modernization of sugar cane crushing capacity of 9,000 TCD.

c. Hazardous waste

Around 5 MT of lubricant oils are used in a year. The spent oil generated which is classified as Hazardous waste is 0.10 MT/month. The spent oil is mixed with Bagasse and Burnt in the Boiler.

d. Solid Waste

The total quantity of pressmud & sold as manure. Garbage waste is generated to the tune of 1 MT/M & used in composting.

5.6 Solid Waste Management

The total quantity of pressmud generated is estimated as 10,000 - 11,000 MT per month. The disposal fly ash generated shall be the responsibility of Urjankur Shree Datta Power Company Ltd. as they are operating cogeneration power plant on BOOT Principles. It is understood that they are disposing of fly ash for composting/manure/Brick manufacturing.

5.7 Power Requirement Supply / Source

The Industry obtains the power from Urjankur Shree Datta Power Company Ltd., which is set up on BOOT principles. The capacity of the Co-generation Power plant is 36 MW. The present power requirement is 7.60 MW and after expansion the Power requirement would be 11.20 MW. Thus there would not be any power extraction from MSEB Grid. At present, the Cogeneration unit is exporting around 27 MW and after expansion; the unit would export around 25 MW.

6.0 REHABILITATION & RESETTLEMENT (R&R) PLAN

There is no rehabilitation (Displacement) of habitation or villages etc. Thus resettlements do not arise.

6.1 Policy to be adopted in respect of the project affected persons including home oustees, land oustees & landless labourers.

The sugar factory would be implemented in existing premises. There are no any rehabilitation & resettlement issues involved. Hence there would not be any policy to be adopted in respect of the project affected persons like home oustees, land oustees & landless labourers.

7.0 PROJECT SCHEDULE & COST ESTIMATES

7.1 Likely Date of start of construction & likely date of completion

The project shall be started as soon as environmental clearance is received. The time required for the date of six months from the receipt of the environmental clearance obtains.

7.2 Estimated project cost along with analysis in terms of economics viability of the project

The estimated cost towards expansion activities would be Rs. 1484/-Lacs.

7.3 Proposed Schedule of Implementation

After all the clearances from the State and Central Governments are received, expected time of commissioning of shall be in November 2016.

8.0 ANALYSIS OF PROPOSAL

8.1 Financial & social benefits with special emphasis on benefits to the local people including tribal population.

The steam requirement for cane crushing is 36%. The Bagasse available is 28.5% on cane. From 7500 TCD, Bagasse available is 89.06 T/hr. The actual requirement is only 72.0 T/hr, taking into consideration Bagasse to steam ratio as 1:2.5. At present, the saving is 17.06 T/hr. The Bagasse availability after expansion would be 106.875 T/hr., whereas the Bagasse requirement to generate 180 T/hr steam would remain the same. The effective saving of Bagasse would be 106.875-72=34.875 T/hr. taking into consideration, the existing saving of Bagasse of 17.06 T/hr, the net saving of Bagasse would be 34.875-17.06=17.815T/hr. The present cost of Bagasse can be taken as Rs.2000=00. Thus the net gain would be 17.815x24x2000=Rs.8,55,120=00 per day as against the loss of revenue of sale of power of 1.52 MW which is required for expansion. Taking into consideration, the present cost of Rs. 6.07 per unit, the revenue loss would power as be 1.52x1000x24x6.07=Rs.2,21,433.60.Thus the net gain in terms of fuel saving would be Rs 8,55,120=00-Rs 2,21,433.60=Rs 6,33,686.40 (Six lakh thirty three thousand six hundred eight six rupees and paisa forty) only per day. This additional benefit can be transferred to farmers as cane price. Besides the direct benefit, the expansion would help to crush cane intime so that the high recovery due to timely crushing would further improve the economy of the farmers.

Table No. 2.4

Α.	STANDRAD TERMS OF REFERENCE				
Sr. No.	TOR Condition		Compliance		
1.	Executive Summary of the project.	Pg	3-4		
2.	Introduction.				
	i. Details of the EIA Consultant including NABET accreditation.	Pg 1-2			
	ii. Information about the project proponent.	Pg 5-10			
	iii. Importance and benefits of the project.	Pg 8-9			
3.	Project Description.	i.	Pg 3-4		
	i. Cost of project and time of compliance.		6months,		
	ii. Products with capacities for the proposed project.		after EC		
	iii. If expansion project, details of existing product with capacities and whether	ii.	Pg 19-20		
	adequate land is available for expansion, reference of earlier EC if any.	iii.	Pg 19-		
	iv. List of raw materials required and their source along with mode of		20,Yes		
	transportation.		Existing		
	v. Other chemicals and materials required with quantities and storage		unit, EC-		
	capacities.		23 rd		
	vi. Details of Emission, effluents, hazardous waste generation and their		March		
	management.		2000		
	vii. Requirement of water, power, with source of supply, status of approval,	iv.	Pg 19		
	water balance diagram, man-power requirement (regular and	v.	Pg 19		
	contract).	vi.	ETP-240,		
	viii. Process description along with major equipments and machineries, process		ESP-91,		
	flow sheet (quantative) from raw material to products to be provided.		Spent oil.		
	ix. Hazard identification and details of proposed safety systems.	vii.	Pg 21-24,		
	x. Expansion/ modernization proposals.		Panchaga		
	a. Copy of all the environmental Clearance(s) including Amendments		nga River,		
	thereto obtained for the project from MOEF/SEIAA shall be		approved,		
	attached as an Annexure. A certified copy of the latest Monitoring		No		
	Report of the Regional Office of the Ministry of Environment and	viii.	Pg 16-18		
	Forests as per circular dated 30 th May 2012 on the status of	ix.	Pg 205-		
	compliance of conditions stipulated in all the existing		225		
	environmental clearances of Consent to Operate for the ongoing	х.	A.EC is		
	existing operation of the project from SPCB shall be attached with		enclosed.		
	the EIA-EMP report.		B.Enclosed		
	b. In case the existing project has not obtained environmental				
	clearance, reasons for not taking EC under the provisions of the EIA				
	Notification 1994 and/ or EIA Notification 2006 shall be provided.				
	Copies of Consent to Establish /No Objection Certificate and				
	Consent to Operate (in case of units operating prior to EIA				
	Notification 2006, CTE and CTO of FY 2005-2006) obtained from the				
	SPCB shall be submitted. Further, compliance report to the				
	conditions of consent from the SPCB shall be submitted.				
4.	Site Details:				
	Location of the project site covering village, Taluk/Tehsil, District and State,				
	Justification for selecting the site whether other sites were considered.				
	i. A toposheet of the study area of radius of 10Km and site location on		_		
	1:50,000/1:25,000 scale on an A3/A2 sheet. (including all eco-sensitive	i.	Pg 14		
	areas and environmentally sensitive places)	ii. N	A –Existing		
	ii. Details w.r.t. option analysis for selection of site.	_	Unit		
	iii. Co-ordinates (lat-long) of all four corners of the site.	iii.	Pg 11		

	E-Mail . Kip. <u>dattsssk@gillall.com</u>	<u>. </u>
	iv. Google map-Earth downloaded of the project site.	iv. Pg 107-108
	v. Layout maps indicating existing unit as well as proposed unit indicating	v. Pg 15
	storage area, plant area, greenbelt area, utilities etc. If located within	
	an Industrial area /Estate/Complex, layout of Industrial Area indicating	
	location of unit within the Industrial area/ Estate.	
	vi. Photographs of the proposed and existing (if applicable) plant site. If	vi. Pg 15, 226-
	existing, show photographs of plantation/greenbelt, in particular.	227
	vii. Landuse break-up of total land of the project site (identified and acquired), government/private-agricultural, forest, wasteland, water bodies,	vii.Pg 29
	settlements, etc shall be included. (not required for industrial area)	
	viii. A list of major industries with name and type within study area (10Km	viii.NA
	radius) shall be incorporated. Land use details of the study area.	
	ix. Geological feature and Geo-hydrological status of the study area shall be included.	ix.Pg 92-96
	x. Details of Drainage of the project upto 5Km radius of study area. If the site	x.Pg 92-96,
	is within 1Km radius of any major river, peak and lean season river	River is 3 kms
	discharge as well as flood occurrence frequency based on peak rainfall	away
	data of the past 30 years. Details of Flood Level of the project site and	
	maximum Flood Level of the river shall also be provided. (mega green field projects)	
	vi Status of acquisition of land. If acquisition is not complete stage of the	
	xi. Status of acquisition of rand. If acquisition is not complete, stage of the	vi NA
	land.	XI.INA
	xii. R & R details in respect of land in line with state Government policy.	xii.NA
5.	Forest and wildlife related issue (if applicable):	
	i) Permission and approval for the use of forest land (forestry	
	clearance), if any and recommendations of the State Forest	i. NA
	Department. (if applicable)	
	ii) Landuse map based on High resolution satellite imagery (GPS) of	
	the proposed site delineating the forestland (in case of	ii. NA
	projects involving forest land more than 40 ha)	
	iii) Status of Application submitted for obtaining the stage I forestry	
	clearance along with latest status shall be submitted.	iii.NA
	iv) The projects to be located within 10 Km of the National Parks,	
	Sanctuaries, Biosphere Reserves, Migratory Corridors of wild	
	Animals, the project proponent shall submit the map duly	iv.NA
	authenticated by Chief Wildlife Warden showing these	
	features vis-à-vis the project location and the	
	recommendations or comments of the Chief Wildlife Warden-	
	thereon.	
	v) Wildlife Conservation Plan duly authenticated by the Chief Wildlife	v.NA
	Warden of the State Government for conservation of Schedule	
	I fauna, if any exists in the study area.	
	vi) Copy of application submitted for clearance under the Wildlife	vi.NA
	(Protection) Act, 1972. to the Standing Committee of the	
	National Board for Wildlife.	
6.	Environmental Status:	
5.	i) Determination of atmospheric inversion level at the project site and site-	i.Data is taken
	specific micrometeorological data using temperature relative	as ner
	humidity hourly wind speed and direction and rainfall	
	ii) AAO data (except monsoon) at 8 location level for PM_{10} PM_{10} SO_2 NOY	version7.4
		VCISIUI17.4

SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India

E-I	Ma	il	3	k	lp. <u>d</u>	lat	tsss	k(a	gmai	l.com
								_	-		

		E-Mail: KIP. <u>datt955K@ginan.com</u>	
		CO and other parameters relevant to the project shall be collected. The	ii.Annexure -
		monitoring stations shall be based CPCB guidelines and take into	24 Tables
		account the predominant wind direction, population zone and sensitive	
		receptors including reserved forests.	
	iii)	Raw data of all AAQ measurement for 12 weeks of all stations as per	
		frequency given in the NAQQM Notification of Nov.2009 along with –	iii.Annexures-
		min. max average and 98% values for each of the AAO parameters	VIII-24 Tables
		from data of all AAO stations should be provided as annexure to the	
		FIA Report	
	iv)	Surface water quality of nearby River (100m unstream and downstream of	
	10)	discharge point) and others surface drains at eight locations as per	iv Da 70 90
		CDCD (MoEF 9, CC quidelines	IV.Fg / 5-00
		CPCD/ MOEF & CC guidelines.	
	v)	whether the site fails hear to pollution stretch of river identified by the	
		CPCB/MOEF & CC if yes give details.	V.NO
	vi)	Ground water monitoring at minimum at 8 locations shall be included.	vi.Pg 78
	vii)	Noise levels monitoring at 8 locations within the study area.	vii.Pg 89-90
	viii)	Soil characteristic as per CPCB guidelines.	viii.Pg 81-88
	ix)	Traffic study of the area, type of vehicles, frequency of vehicles for	ix.Annexure
		transportation of materials, additional traffic due to proposed project,	
		parking arrangement etc.	
	x)	Detailed description of flora and fauna (terrestrial and aquatic) existing in	x.Pg 112-140
		the study area shall be given with special reference to rare, endemic	
		and endangered species. If Schedule- I fauna within the study area, a	
		Wildlife Conservation Plan shall be prepared and furnished.	
	xi)	Socio-economic status of the study area.	xi.Pg 141-175
	,		
7.		Impact and Environment Management Plan:	
	i)	Assessment of ground level concentration of pollutants from the stack	
		emission based onsite-specific meteorological features. In case the	i. Pg 40-49
		project is located on a hilly terrain, the AQIP Modeling shall be done	0
		using inputs of the specific terrain characteristics for determining the	
		notential impacts of the project of the project on the AAO. Cumulative	
		impact of all sources of emissions (including transportation) on the	
		AAO of the area shall be assessed. Details of the model used and the	
		AAQ of the area shall be assessed. Details of the modeling shall also be	
		mput uata useu anu the mput uata useu for modeling shall also be	
		provided. The air quality contours shall be plotted on a location map	
		snowing the location of project site, habitation hearby, sensitive	II.NA
		receptors, it any.	
	ii)	Water Quality modeling – in case of discharge in water body.	III. No significant
	iii)	Impact of the transport of the raw materials and end products on the	increase in traffic
		surrounding environment shall be assessed and provided. In this	vehicles
		regard, options for transport of raw materials and finished products	
		and wastes (large quantities) by rail-cum road transport or conveyor	
		cum-rail transport shall be examined.	
	iv)	A note on treatment of wastewater from different plant operations, extent	iv.Pg-239
		recycled and reused for different purpose shall be included. Complete	
		scheme of effluent treatment. Characteristics of untreated and treated	
		effluent to meet the prescribed standards of discharge under E(P)	v.Mainly PM: APC-
		Rules.	ESP
	٧١	Details of stack emission and action plan for control of emissions to meet	vi. Sprinkling of
	-,	standards.	water and dust
	vil	Massures for fugitive emissions control	collector
1	VI)		collector

		E-wail: kip. <u>dattsssk@gmail.com</u>	
	vii)	Details of hazardous waste generation and their storage, utilization and	vii.Spent oil-only
		management. Copies of MOU regarding utilization of solid and	HW,Pg 186-206
		hazardous waste in cement plant shall also be included. EMP shall	
		include the concept of waste-minimization, recycle/reuse/recover	viii.Flv Ash is used
		techniques. Energy conservation, and natural resource conservation.	in Composting and
		Proper utilization of fly ash shall a ansured as per fly Ash Netification 2000	cold to brick
	VIII	A detailed plan of action shall be provided	Solu to brick
		A detailed plan of action shall be provided.	manufacturers
	IX)	Action plan for the green belt development plan in 33% area i.e. land with	ix.80% completed
		not less than 1,500 trees per ha. Giving details of species, width of	
		plantation, planning schedule etc, shall be included. The green belt	
		shall be around the project boundary and a scheme for greening of the	x.Complied
		roads used for the project shall also be incorporated.	
	x)	Action plan for rainwater harvesting measures at plant site shall be	
		submitted to harvest rainwater from the roof tops and storm water	
		drains to recharge the ground water and also to use for the various	
		activates at the project site to conserve fresh water and reduce the	xi Canital Cost-2 Cr
		water requirement from other sources	Recurring Cost
		water requirement noni other sources.	Folokha
	XI)	I otal capital cost and recurring cost/annum for environmental pollution	Sulakns
		control measures shall be included.	XII.Pg 186-206
	xii)	Action plan for post-project environmental monitoring shall be submitted.	Xiii.Onsite Plan is
	xiii) Onsite and Offsite Disaster (Natural and Man-made) Preparedness and	prepared and
		Emergency Management plan including Risk Assessment and damage	offsite plan is to be
		control. Disaster management plan should be linked with District	implemented, 207-
		Disaster Management Plan.	225.
		-	
8.	upational	Health:	
	i)	Plan and fund allocation to ensure the occupational health & safety of all contract	i.Pg 203
		and casual workers.	_
	ii)	Details of exposure specific health status evaluation of worker. If the workers health	
		is being evaluated by pre designed format, chest x-rays, Audiometry,	ii.Pg 202-203
		Spirometry, Vision testing (Far & Near vision, color vision and any other ocular	
		defect) ECG, during pre placement and periodical examinations give the details	
		of the same. Details regarding last month analyzed data of above mentioned	
		parameters as per age, sex, duration of exposure and department wise.	
	iii)	Details of existing Occupational & Safety Hazards. What are the exposure levels of	
		hazards and whether they are within Permissible Exposure level (PEL). If these	
		are not within PEL, what measures the workers can be preserved.	iii.Pg 202-203
	iv)	Annual report of health status of workers with special reference to Occupational	
		Health and Safety.	
			iv.202-203
		. down and Dallar	
9.	porate En	vironment Policy	: D= 170 0 001
)	of Directors I f co. it may be detailed in the FIA second	1.Pg-176 & 204
		or prectors? It so, it may be detailed in the EIA report.	ii Da 204
	")	to bring into focus only infrincement (deviation (violation of the available of the	11.Pg-204
		to pring into rocus any infringement/deviation/violation of the environmental or forest norme/conditions2 if so, it may be detailed in the FIA	
	:::\	or rorest norms/ conditions: it so, it may be detailed in the EIA. What is the hierarchical system or Administrative order of the company to deal with	iii Da-209
	"")	the environmental clearance conditions? Dotails of this system may be siver	III.Fg-200
	:)	The environmental clearance conditions: Details of this system may be given.	
	IV)	onvironmental norms to the Board of Directors of the company and /or	iv Da 206
		charabolders or stakeholders at large? This reporting machanism shall be	IV.Fg-200
1			
		detailed in the FIA report	
		detailed in the EIA report.	
10	Details ro	detailed in the EIA report.	Existing facilities

-		
	to the labor force during construction as well as to the casual workers including truck drivers during operation phase.	are adequate
11.	erprise Social Commitment (ESC) equate funds (at least 2.5% of the Project cost) shall be earmarked towards the Enterprise Social Commitment based on public hearing issues and item-wise details along with time bound action plain shall be included. Socio-economic development activities need to be elaborated upon.	Yes, Earmarked Public Hearing yet to conducted
12.	Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.	NO
13.	A tabular chart with index for point wise compliance of above TOR	YES

B.SPECIFIC TERMS OF REFFERANCE FOR EIA STUDIES FOR SUGAR INDUSTRY & THERMAL PLANTS					
1.	Complete process flow diagram describing each unit, its processes and	operations in	Included		
	production of sugar, along with material and energy inputs and outputs	(material and			
	en	ergy balance).			
2.	Details on water balance including quantity of effluent generated, recycled & re	eused. Efforts	Included		
	to minimize effluent is charge and to maintain quality of receiving wate	r body.			
3.	Details of effluent treatment plant, inlet and treated water quality with specific	efficiency of	Included		
	each treatment unit in reduction in respect to fall concerned/regulated env	ironmental			
	parameters.				
4.	Number of working days of the sugar production unit.		180 Days		
5.	Details of the use of steam from the boiler.		128 T/h		
6.	Details of proposed source-specific pollution control schemes and equipments t	o meet the	-		
	national standards.				
7.	Collection, storage, handling and transportation of molasses.		Steel tanks		
8.	Collection, storage and handling of bagasse and Pressmud.		Closed Svs.		
9.	Fly ash management plan for coal based and bagasse and action plan	Fly ash management plan for coal based and bagasse and action plan			
10.	Details on water guality parameter such as Temperature, Colour, pH. BOD, COD, Total Kie	ldhal Nitrogen.	Enclosed		
-	Phosphates, Oil & Grease, Total Suspended Solids and Total Coli form bacteri	a etc.			
11.	etails on existing ambient air quality and expected, stack and fugitive emissions for PM10	, PM2.5, SO2*,	Enclosed		
	NOx*, etc., and evaluation of the adequacy of the proposed pollution control devise to	meet standards			
	for point sources and to meet AQ standards. (*-As applicable)				
Ac	ditional TORs for EIA studies:	-			
1.	or the EIA report the prescriptions of Model ToR by MoEF published in April, 2015 shall be	Complie	d		
-	adopted.				
2.	Detail analysis of fuel requirement for the boiler may be made to prove that additional fuel	Already Cov	vered		
2	Will not be required.	Already Co	arad		
з. ∕I	The DB shall achieve an outlet TBM of less than 100 mg/Nm3		d		
7. 5	consonance with the Notification of CPCB the PP shall not exceed quantum of final treated	Complie	ed ed		
5.	effluent discharge bevond 100 lit/tonnes of cane crushed. Similarly quantum of waste	compile			
	water from spray pond / cooling towers blow down shall not exceed 100 lit/tonnes of				
	cane crushed. These may be shown through precise calculations.				
6.	Details of ash management including storage facility and disposal of ash to brick	Complie	d		
	manufacturers ensuring there is no generation of air pollutants in the entire process of				
	handling of ash may be described.				
7.	Public consultation will be required.	To be He	ld		

3.1 Introduction

Shree Datta Shetkari SSK Limited (SDSSSKL) is located at Dattanagar, Taluka Shirol, District Kolhapur in the state of Maharashtra. The sugar factory has installed capacity of 7500 TCD and proposes to modernize the sugar factory capacity to 9000 TCD by improving the efficiency steam consumption from the existing 39% to 34 % per ton of cane crushed.

The factory established 36 MW bagasse based cogeneration plant based on BOOT principle . The major fuel envisaged for the cogeneration plant during season is Bagasse and during off-season, saved Bagasse, imported coal and agro waste/biomass. The steam is generated from 180 TPH Boiler with the outlet steam parameters of 110 kg/sq. cm (g) and 540 deg. C.

3.2 Location and plant layout

The Co-gen Project was located in the sugar factory complex. The Project Site is conveniently located for development of the Project.

- 45 km away from Kolhapur town, which is on Mumbai –Bangalore National Highway No. 4
- km off the Kolhapur Sangli State Highway

3.3 Fuel used

During season operation, the boiler will consume 72 TPH bagasse for 180 days of operation, whereas the excess bagasse available will be 36.75 TPH which can be used during off-season operation, for 90 days. Thus the Power plant can operate for 270 days with bagasse as fuel. The unit may further operate with imported coal of 25 TPH.

3.4 Stack Height Calculations

The main operating fuels for the boilers will be bagasse and imported coal. The stack height for the boiler shall be decided based on the operation with bagasse and imported coal, considering both the particulate and SO2 emissions. The calculated stack height shall be about 95 m. The stack shall be of Reinforced Cement Concrete (RCC) construction, with internal firebrick lining for the entire height of the stack. The air gap between the lining and the RCC shall be properly maintained with adequate air inlet and vent holes in the shell. The stack shall be provided with lightening protection and aviation warning lights, as per acceptable standards.

3.4.1 Stack Height Calculation Based on SO₂ Emission

Stack height is calculated using following formula

 $H = 14 (Q)^{0.3}$

H is height of Chimney

Q = Quantity of fuel (kg/hr) x sulphur content (%) x 2

100

The sulphur content in the bagasse is negligible (around 0.1 %) as compared to coal (around 1%). There fore the stack height will be calculated on the basis of coal.

Bagasse will be mainly used in the off-season operation also. However maximum quantity of coal that will be burnt is 24.49 TPH. The SO2 emission = $24.49 \times 0.01 \times 2 \times 1000 = 489.80 \text{ kg/hr}$

H = 14 (489.80)0.3

= 89.8 meters Based on Ash Emissioms

Stack height is calculated using following formula

H = 74 (Q) 0.27

H is height of Chimney

Q = Quantity of fuel (MT/hr) x Ash content (%) x 70% (in flue gas)

The ash content in the coal is (around 10 %) as compared to 1.83 % in Bagasse. Therefore the stack height will be calculated on the basis of coal.

Therefore provide the stack height of 95 meters.

3.5 Air quality estimation

Air quality estimations is done based on AERMOD version 7.4. The required meteorological data is monitored at the site and the data for AERMOD model was obtained from Envitrans Gaziyabad, UP based on the model studies the Isopheletes were drawn. It is observed that the maximum concentration in Study area as below which are well within the NAAQS standards.

Table No. 3.1

Sr. No.		SO x	NO x	PM 10	PM2.5	СО
1	CONCENTRATIONS	19.28	41.82	76.45	48.45	***
2	NAAQS	80	80	100	60	2

AMBIENT AIR QUALITY STANDARDS :(Prescribed by CPCB) Table No. 3.2

Pollutants	Time weighted	Concentration in Ambient Air (μ g/m3)			
	average	Industrial Areas	Residential, Rural & other areas	Sensitive Areas	
Sulphur	Annual Average*	80	60	15	
Dioxide (SO2)	24 hours **	120	80	30	
Oxides of	Annual Average*	80	60	15	
Nitrogen as NO2	24 hours **	120	80	30	
Suspended	Annual Average*	360	140	70	
Particulate Matter (SPM)	24 hours **	500	200	100	
Respirable	Annual Average*	120	60	50	
Particulate Matter (RPM)	24 hours **	150	100	75	

			Maximum Concentrations (in µg/m3)					
Sr. No.	Location	March						
		SO₂ (μg/m³)	NO₂ (μg/m³)	PM 10 (μg/m ³)	PM2.5 (μg/m ³)	CO (mg/m ³)		
1	Main Gate	11	28	65	28	0.2		
2	Shirol	15	38	74	45	0.3		
3	Arjunwad	15	28	65	35	0.15		
4	Chipri	13	18	60	26	0.4		
5	Jaysingpur	18	38	76	48	0.28		
6	Kondigiri	14	24	68	40	0.3		
7	Kanwad	14	30	50	36	0.16		
8	Kurundwad	15	30	48	30	0.197		
			Maximum Concentrations (in µg/m3)					

Sr. No.	Location		April				
		SO ₂	NO ₂	PM 10	PM2.5	СО	
		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(mg/m ³)	
1	Main Gate	13	27	62	29	0.15	
2	Shirol	15	40	72	42	0.16	
3	Arjunwad	12	26	66	38	0.17	
4	Chipri	12	18	58	28	0.19	
5	Jaysingpur	18	32	76	46	0.34	
6	Kondigiri	14	26	65	35	0.24	
7	Kanwad	15	28	48	36	0.245	
8	Kurundwad	15	30	46	32	0.186	
		Maximum Concentrations (in ug/m3)					

		ITTAX		lecileration		<i>,</i>
Sr. No.	Location	Мау				
		SO x	NO x	PM 10	PM2.5	СО
1	Main Gate	12	26	60	29	0.16
2	Shirol	15	31	73	45	0.2
3	Arjunwad	13	28	68	28	0.16
4	Chipri	12	22	58	28	0.15
5	Jaysingpur	18	36	74	46	0.34
6	Kondigire	15	26	65	38	0.212
7	Kanwad	14	32	50	38	0.252
8	Kurundwad	15	29	55	32	0.205

MAXIMUM	18	40	76	48
IMPACT DUE TO THE EXPANSION OF	1.28	1.82	0.45	0.45
SUGAR FACTORY UNIT AT 9000 TCD				
CAPACITY				
TOTAL MAXIMUM CONCENTRATIONS AT	19.3	41.8	76.5	48.5
ANY POINT IN STUDY AREA				

WIND ROSE DIAGRAM (AERMET) Fig.3.2

ISOPHELETES FOR PM 10 (AERMOD) Fig.3.3

AERMOD View - Lakes Environmental Software

ISOPHELETES FOR SOx (AERMOD) Fig.3.4

ISOPHELETES FOR NOx (AERMOD) Fig.3.5

ISOPHELETES FOR PM 2.5 (AERMOD) Fig.3.6

AERMOD View - Lakes Environmental Software

CHAPTER 4 ENVIRONMENTAL STATUS

Table No. 4.1

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description Location	: Bapu Rama Ghatge, Arjunwad road Chinchwad. : NL- 16°51'21'', EL- 74°35'49''

Sample Quantity : 2000ml

Date of Collection:- 04/03/2016

Sr. No.	Parameter	Result	Unit	Limit	Test Method
1.	Color	< 5	Hazen		IS:3025(P-4)1983
2.	Odor	Odorless			IS:3025(P-5)1983
3.	рН	7.68	-		IS:3025(P-11)1983
4.	Turbidity	3.4	NTU		IS:3025(P-10)1984
5.	Total Dissolved Solids	850	mg/l		IS:3025(P-16)1984
6.	Electrical Conductivity	983	µmhos/c		IS:3025(P-14)1984
			m		
7.	Total Hardness (as CaCO ₃)	662	mg/l		IS:3025(P-21)1983
8.	Calcium Hardness (as	605	mg/l		IS:3025(P-21)1983
	CaCO₃)				
9.	Magnesium Hardness (as	57	mg/l		IS:3025(P-21)1983
	CaCO₃)				
10.	Calcium (as Ca)	242	mg/l		IS:3025(P-40)1991
11.	Magnesium (as Mg)	14	mg/l		IS:3025(P-46)1994
12.	Total Alkalinity (as CaCO₃)	215	mg/l		IS:3025(P-23)1986

Date:- 14/03/2016

ANALYSIS REPORT

: Datta SSK
: Shirol.
: Borewell Water Sample
: Bapu Rama Ghatge, Arjunwad road Chinchwad

Location : NL- 16°51'21", EL- 74°35'49"

: 2000ml

Sample Quantity

Date of Collection :- 04/03/2016.

Sr.	Parameter	Result	Unit	Limit	Test Method
No.					
13.	Chlorides (as Cl)	235	mg/l		IS:3025(P-32)1988
14.	Sulphate (as SO ₄)	38	mg/l		IS:3025(P-24)1986
15.	Total Nitrate (as NO₃)	2.12	mg/l		IS:3025(P-34)1988
16.	Total Nitrogen (as N)	< 0.45	mg/l		IS:3025(P-34)1983
17.	Total Phosphate (as PO ₄)	< 0.092	mg/l		IS:3025(P-31)1988
18.	Ammonical Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1988
19.	Copper (as Cu)	< 0.1	mg/l		IS:3025(P-42)1992
20.	Manganese (as Mn)	< 0.1	mg/l		IS:3025(P-59)2006
21.	Iron (as Fe)	0.13	mg/l		IS:3025(P-53)2003
22.	Fluoride (as F)	0.34	mg/l		APHA 22 ST EDITION
					4500 FD
23.	Cyanide (as CN)	< 0.01	mg/l		IS:3025(P-27)1986
24.	Phenolic Compounds (as	< 0.001	mg/l		IS:3025(P-43)1992
	С6Н5ОН)				
25.	Boron (as B)	< 0.05	mg/l		AAS

Date:- 14/03/2016

ANALYSIS REPORT

: Datta SSK
: Shirol.
: Borewell Water Sample
: Bapu Rama Ghatge, Arjunwad road Chinchwad

Location : NL- 16°51'21", EL- 74°35'49"

: 2000ml

Sample Quantity

Date of Collection :- 04/03/2016.

Sr.	Parameter	Result	Unit	Limit	Test Method
No.					
26.	Zinc (as Zn)	< 0.1	mg/l		IS:3025(P-49)1986
27.	Aluminium (as Al)	< 0.03	mg/l		IS:3025(P-55)2003
28.	Cadmium (as Cd)	< 0.002	mg/l		IS:3025(P-41)1992
29.	Lead (as Pb)	< 0.01	mg/l		IS:3025(P-47)1994
30.	Nickel (as Ni)	< 0.02	mg/l		IS:3025(P-54)2003
31.	Mercury (as Hg)	< 0.001	mg/l		IS:3025(P-48)1994
32.	Arsenic (as As)	< 0.001	mg/l		IS:3025(P-37)1988
33.	Selenium (as Se)	< 0.005	mg/l		IS:3025(P-56)1988
34.	Sodium (as Na)	70	mg/l		IS:3025(P-45)1993
35.	Potassium (as K)	0.5	mg/l		IS:3025(P-45)1993
36.	Chemical Oxygen Demand	26	mg/l		IS:3025(P-58)2006
37.	BOD 3 days at 27°C	< 2	mg/l		APHA 22 ST EDITION
					4500 FD
38.	MPN (Coliform bacteria)	< 2	MPN/100ml		IS:1622-1981
					(Reaffirmed2009)

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Biroba Maal Mandir, Arjunwad.

Location : NL- 16°46'48", EL- 74°36'45"

: 2000ml

Sample Quantity

Date of Collection:- 04/03/2016

Sr. No.	Parameter	Result	Unit	Limit	Test Method
1.	Color	< 5	Hazen		IS:3025(P-4)1983
2.	Odor	Odorless			IS:3025(P-5)1983
3.	рН	7.80	-		IS:3025(P-11)1983
4.	Turbidity	0.3	NTU		IS:3025(P-10)1984
5.	Total Dissolved Solids	920	mg/l		IS:3025(P-16)1984
6.	Electrical Conductivity	333	µmhos/c		IS:3025(P-14)1984
			m		
7.	Total Hardness (as CaCO₃)	157	mg/l		IS:3025(P-21)1983
8.	Calcium Hardness (as	95	mg/l		IS:3025(P-21)1983
	CaCO₃)				
9.	Magnesium Hardness (as	62	mg/l		IS:3025(P-21)1983
	CaCO₃)				
10.	Calcium (as Ca)	38	mg/l		IS:3025(P-40)1991
11.	Magnesium (as Mg)	15	mg/l		IS:3025(P-46)1994
12.	Total Alkalinity (as CaCO ₃)	125	mg/l		IS:3025(P-23)1986

Date:- 14/03/2016

ANALYSIS REPORT

: Datta SSK
: Shirol.
: Borewell Water Sample
: Biroba Maal Mandir, Arjunwad.

Location : NL- 16°46'48", EL- 74°36'45"

: 2000ml

Sample Quantity

Date of Collection :- 04/03/2016.

Sr. No.	Parameter	Result	Unit	Limit	Test Method
13.	Chlorides (as Cl)	71	mg/l		IS:3025(P-32)1988
14.	Sulphate (as SO ₄)	24	mg/l		IS:3025(P-24)1986
15.	Total Nitrate (as NO₃)	2.12	mg/l		IS:3025(P-34)1988
16.	Total Nitrogen (as N)	< 0.5	mg/l		IS:3025(P-34)1983
17.	Total Phosphate (as PO ₄)	< 0.08	mg/l		IS:3025(P-31)1988
18.	Ammonical Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1988
19.	Copper (as Cu)	< 0.1	mg/l		IS:3025(P-42)1992
20.	Manganese (as Mn)	< 0.1	mg/l		IS:3025(P-59)2006
21.	Iron (as Fe)	0.12	mg/l		IS:3025(P-53)2003
22.	Fluoride (as F)	0.28	mg/l		APHA 22 ST EDITION
					4500 FD
23.	Cyanide (as CN)	< 0.03	mg/l		IS:3025(P-27)1986
24.	Phenolic Compounds (as	< 0.001	mg/l		IS:3025(P-43)1992
	С6Н5ОН)				
25.	Boron (as B)	< 0.05	mg/l		AAS
Date:- 14/03/2016

ANALYSIS REPORT

: Datta SSK
: Shirol.
: Borewell Water Sample
: Biroba Maal Mandir, Arjunwad.

Location : NL- 16°46'48", EL- 74°36'45"

: 2000ml

Sample Quantity

Sr. No.	Parameter	Result	Unit	Limit	Test Method
26.	Zinc (as Zn)	< 0.5	mg/l		IS:3025(P-49)1986
27.	Aluminium (as Al)	< 0.03	mg/l		IS:3025(P-55)2003
28.	Cadmium (as Cd)	< 0.002	mg/l		IS:3025(P-41)1992
29.	Lead (as Pb)	< 0.005	mg/l		IS:3025(P-47)1994
30.	Nickel (as Ni)	< 0.02	mg/l		IS:3025(P-54)2003
31.	Mercury (as Hg)	< 0.001	mg/l		IS:3025(P-48)1994
32.	Arsenic (as As)	< 0.001	mg/l		IS:3025(P-37)1988
33.	Selenium (as Se)	< 0.005	mg/l		IS:3025(P-56)1988
34.	Sodium (as Na)	52.9	mg/l		IS:3025(P-45)1993
35.	Potassium (as K)	3.9	mg/l		IS:3025(P-45)1993
36.	Chemical Oxygen Demand	21	mg/l		IS:3025(P-58)2006
37.	BOD 3 days at 27°C	< 2	mg/l		APHA 22 ST EDITION
					4500 FD
38.	MPN (Coliform bacteria)	< 2	MPN/100ml		IS:1622-1981
					(Reaffirmed2009)

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Rajendra Dattatray Patil, Raygound Galli, Dharangutti.
Location	: NL- 16°43'51", EL- 74°33'52"

Location

Sample Quantity

: 2000ml

Sr.	Parameter	Result	Unit	Limit	Test Method
NO.					
1.	Color	< 5	Hazen		IS:3025(P-4)1983
2.	Odor	Odorless			IS:3025(P-5)1983
3.	рН	7.63	-		IS:3025(P-11)1983
4.	Turbidity	0.8	NTU		IS:3025(P-10)1984
5.	Total Dissolved Solids	2000	mg/l		IS:3025(P-16)1984
6.	Electrical Conductivity	1895	µmhos/c		IS:3025(P-14)1984
			m		
7.	Total Hardness (as CaCO₃)	1123	mg/l		IS:3025(P-21)1983
8.	Calcium Hardness (as	983	mg/l		IS:3025(P-21)1983
	CaCO₃)				
9.	Magnesium Hardness (as	62	mg/l		IS:3025(P-21)1983
	CaCO₃)				
10.	Calcium (as Ca)	141	mg/l		IS:3025(P-40)1991
11.	Magnesium (as Mg)	34	mg/l		IS:3025(P-46)1994
12.	Total Alkalinity (as CaCO ₃)	385	mg/l		IS:3025(P-23)1986

Date:- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Prakash Ramchandra Mahadik, Arjunwad.

Location : NL- 16°44'45", EL- 74°36'10"

: 2000ml

Sample Quantity

Sr.	Parameter	Result	Unit	Limit	Test Method
No.					
13.	Chlorides (as Cl)	342	mg/l		IS:3025(P-32)1988
14.	Sulphate (as SO ₄)	74	mg/l		IS:3025(P-24)1986
15.	Total Nitrate (as NO₃)	3.47	mg/l		IS:3025(P-34)1988
16.	Total Nitrogen (as N)	< 0.4	mg/l		IS:3025(P-34)1983
17.	Total Phosphate (as PO ₄)	< 0.1	mg/l		IS:3025(P-31)1988
18.	Ammonical Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1988
19.	Copper (as Cu)	< 0.02	mg/l		IS:3025(P-42)1992
20.	Manganese (as Mn)	< 0.05	mg/l		IS:3025(P-59)2006
21.	Iron (as Fe)	0.09	mg/l		IS:3025(P-53)2003
22.	Fluoride (as F)	0.42	mg/l		APHA 22 ST EDITION
					4500 FD
23.	Cyanide (as CN)	< 0.04	mg/l		IS:3025(P-27)1986
24.	Phenolic Compounds (as	< 0.001	mg/l		IS:3025(P-43)1992
	С6Н5ОН)				
25.	Boron (as B)	< 0.5	mg/l		AAS

Date:- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Prakash Ramchandra Mahadik, Arjunwad.

Location : NL- 16°44'45", EL- 74°36'10"

: 2000ml

Sample Quantity

Sr.	Parameter	Result	Unit	Limit	Test Method
No.					
26.	Zinc (as Zn)	< 0.2	mg/l		IS:3025(P-49)1986
27.	Aluminium (as Al)	< 0.02	mg/l		IS:3025(P-55)2003
28.	Cadmium (as Cd)	< 0.002	mg/l		IS:3025(P-41)1992
29.	Lead (as Pb)	< 0.05	mg/l		IS:3025(P-47)1994
30.	Nickel (as Ni)	< 0.01	mg/l		IS:3025(P-54)2003
31.	Mercury (as Hg)	< 0.001	mg/l		IS:3025(P-48)1994
32.	Arsenic (as As)	< 0.001	mg/l		IS:3025(P-37)1988
33.	Selenium (as Se)	< 0.005	mg/l		IS:3025(P-56)1988
34.	Sodium (as Na)	272	mg/l		IS:3025(P-45)1993
35.	Potassium (as K)	1.6	mg/l		IS:3025(P-45)1993
36.	Chemical Oxygen Demand	20	mg/l		IS:3025(P-58)2006
37.	BOD 3 days at 27°C	< 2	mg/l		APHA 22 ST EDITION
					4500 FD
38.	MPN (Coliform bacteria)	< 2	MPN/100ml		IS:1622-1981
					(Reaffirmed2009)

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Manohar Nana Thorvat, Ghalwad

Location : NL- 16°44'48", EL- 74°37'44"

: 2000ml

Sample Quantity

Sr. No.	Parameter	Result	Unit	Limit	Test Method
1.	Color	< 5	Hazen		IS:3025(P-4)1983
2.	Odor	Odorless			IS:3025(P-5)1983
3.	рН	7.71	-		IS:3025(P-11)1983
4.	Turbidity	1.8	NTU		IS:3025(P-10)1984
5.	Total Dissolved Solids	950	mg/l		IS:3025(P-16)1984
6.	Electrical Conductivity	882	µmhos/c		IS:3025(P-14)1984
			m		
7.	Total Hardness (as CaCO₃)	587	mg/l		IS:3025(P-21)1983
8.	Calcium Hardness (as	500	mg/l		IS:3025(P-21)1983
	CaCO₃)				
9.	Magnesium Hardness (as	87	mg/l		IS:3025(P-21)1983
	CaCO₃)				
10.	Calcium (as Ca)	200	mg/l		IS:3025(P-40)1991
11.	Magnesium (as Mg)	21	mg/l		IS:3025(P-46)1994
12.	Total Alkalinity (as CaCO₃)	300	mg/l		IS:3025(P-23)1986

Date:- 14/03/2016

ANALYSIS REPORT

: Datta SSK
: Shirol.
: Borewell Water Sample
: Manohar Nana Thorvat, Ghalwad

Location : NL- 16°44'48", EL- 74°37'44"

: 2000ml

Sample Quantity

Sr.	Parameter	Result	Unit	Limit	Test Method
NO.					
13.	Chlorides (as Cl)	152	mg/l		IS:3025(P-32)1988
14.	Sulphate (as SO ₄)	38	mg/l		IS:3025(P-24)1986
15.	Total Nitrate (as NO ₃)	2.56	mg/l		IS:3025(P-34)1988
16.	Total Nitrogen (as N)	< 0.8	mg/l		IS:3025(P-34)1983
17.	Total Phosphate (as PO ₄)	< 0.01	mg/l		IS:3025(P-31)1988
18.	Ammonical Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1988
19.	Copper (as Cu)	< 0.05	mg/l		IS:3025(P-42)1992
20.	Manganese (as Mn)	< 0.05	mg/l		IS:3025(P-59)2006
21.	Iron (as Fe)	< 0.1	mg/l		IS:3025(P-53)2003
22.	Fluoride (as F)	0.2	mg/l		APHA 22 ST EDITION
					4500 FD
23.	Cyanide (as CN)	< 0.04	mg/l		IS:3025(P-27)1986
24.	Phenolic Compounds (as	< 0.001	mg/l		IS:3025(P-43)1992
	С6Н5ОН)				
25.	Boron (as B)	< 0.5	mg/l		AAS

Date:- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Manohar Nana Thorvat, Ghalwad

Location : NL- 16°44'48", EL- 74°37'44" : 2000ml

Sample Quantity

Sr. No.	Parameter	Result	Unit	Limit	Test Method
26.	Zinc (as Zn)	< 0.5	mg/l		IS:3025(P-49)1986
27.	Aluminium (as Al)	< 0.03	mg/l		IS:3025(P-55)2003
28.	Cadmium (as Cd)	< 0.002	mg/l		IS:3025(P-41)1992
29.	Lead (as Pb)	< 0.005	mg/l		IS:3025(P-47)1994
30.	Nickel (as Ni)	< 0.02	mg/l		IS:3025(P-54)2003
31.	Mercury (as Hg)	< 0.001	mg/l		IS:3025(P-48)1994
32.	Arsenic (as As)	< 0.001	mg/l		IS:3025(P-37)1988
33.	Selenium (as Se)	< 0.005	mg/l		IS:3025(P-56)1988
34.	Sodium (as Na)	69	mg/l		IS:3025(P-45)1993
35.	Potassium (as K)	1.1	mg/l		IS:3025(P-45)1993
36.	Chemical Oxygen Demand	18	mg/l		IS:3025(P-58)2006
37.	BOD 3 days at 27°C	< 2	mg/l		APHA 22 ST EDITION
					4500 FD
38.	MPN (Coliform bacteria)	< 2	MPN/100ml		IS:1622-1981
					(Reaffirmed2009)

Date :- 14/03/2016

ANALYSIS REPORT

: Datta SSK
: Shirol.
: Borewell Water Sample
: Ahmadiya Majid, Kanwad.

Location : NL- 16°44'5", EL- 74°41'28"

: 2000ml

Sample Quantity

Sr. No.	Parameter	Result	Unit	Limit	Test Method
1.	Color	< 5	Hazen		IS:3025(P-4)1983
2.	Odor	Odorless			IS:3025(P-5)1983
3.	рН	7.62	-		IS:3025(P-11)1983
4.	Turbidity	0.2	NTU		IS:3025(P-10)1984
5.	Total Dissolved Solids	920	mg/l		IS:3025(P-16)1984
6.	Electrical Conductivity	766	µmhos/c		IS:3025(P-14)1984
			m		
7.	Total Hardness (as CaCO ₃)	272	mg/l		IS:3025(P-21)1983
8.	Calcium Hardness (as	200	mg/l		IS:3025(P-21)1983
	CaCO₃)				
9.	Magnesium Hardness (as	72	mg/l		IS:3025(P-21)1983
	CaCO₃)				
10.	Calcium (as Ca)	80	mg/l		IS:3025(P-40)1991
11.	Magnesium (as Mg)	18	mg/l		IS:3025(P-46)1994
12.	Total Alkalinity (as CaCO ₃)	500	mg/l		IS:3025(P-23)1986

Date:- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Ahmadiya Majid, Kanwad.

Location : NL- 16°44'5", EL- 74°41'28"

: 2000ml

Sample Quantity

Sr.	Parameter	Result	Unit	Limit	Test Method
No.					
13.	Chlorides (as Cl)	64	mg/l		IS:3025(P-32)1988
14.	Sulphate (as SO ₄)	18	mg/l		IS:3025(P-24)1986
15.	Total Nitrate (as NO₃)	1.42	mg/l		IS:3025(P-34)1988
16.	Total Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1983
17.	Total Phosphate (as PO ₄)	< 0.01	mg/l		IS:3025(P-31)1988
18.	Ammonical Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1988
19.	Copper (as Cu)	< 0.02	mg/l		IS:3025(P-42)1992
20.	Manganese (as Mn)	< 0.05	mg/l		IS:3025(P-59)2006
21.	Iron (as Fe)	0.05	mg/l		IS:3025(P-53)2003
22.	Fluoride (as F)	0.18	mg/l		APHA 22 ST EDITION
					4500 FD
23.	Cyanide (as CN)	< 0.01	mg/l		IS:3025(P-27)1986
24.	Phenolic Compounds (as	< 0.001	mg/l		IS:3025(P-43)1992
	С6Н5ОН)				
25.	Boron (as B)	< 0.05	mg/l		AAS

Date:- 14/03/2016

ANALYSIS REPORT

Location : NL- 16°44'5", EL- 74°41'28"

Sample Quantity

: 2000ml

Sr. No.	Parameter	Result	Unit	Limit	Test Method
26.	Zinc (as Zn)	< 0.1	mg/l		IS:3025(P-49)1986
27.	Aluminium (as Al)	< 0.02	mg/l		IS:3025(P-55)2003
28.	Cadmium (as Cd)	< 0.002	mg/l		IS:3025(P-41)1992
29.	Lead (as Pb)	< 0.005	mg/l		IS:3025(P-47)1994
30.	Nickel (as Ni)	< 0.01	mg/l		IS:3025(P-54)2003
31.	Mercury (as Hg)	< 0.001	mg/l		IS:3025(P-48)1994
32.	Arsenic (as As)	< 0.001	mg/l		IS:3025(P-37)1988
33.	Selenium (as Se)	< 0.01	mg/l		IS:3025(P-56)1988
34.	Sodium (as Na)	170.3	mg/l		IS:3025(P-45)1993
35.	Potassium (as K)	0.9	mg/l		IS:3025(P-45)1993
36.	Chemical Oxygen Demand	14	mg/l		IS:3025(P-58)2006
37.	BOD 3 days at 27°C	< 2	mg/l		APHA 22 ST EDITION
					4500 FD
38.	MPN (Coliform bacteria)	< 2	MPN/100ml		IS:1622-1981
					(Reaffirmed2009)

ANALYSIS REPORT

: NL- 16°43'1", EL- 74°40'28"

mple
•

Location

Sample Quantity : 2000ml

Sr. No.	Parameter	Result	Unit	Limit	Test Method
1.	Color	< 5	Hazen		IS:3025(P-4)1983
2.	Odor	Odorless			IS:3025(P-5)1983
3.	рН	7.52	-		IS:3025(P-11)1983
4.	Turbidity	3.0	NTU		IS:3025(P-10)1984
5.	Total Dissolved Solids	1700	mg/l		IS:3025(P-16)1984
6.	Electrical Conductivity	1875	µmhos/c		IS:3025(P-14)1984
			m		
7.	Total Hardness (as CaCO ₃)	1193	mg/l		IS:3025(P-21)1983
8.	Calcium Hardness (as	555	mg/l		IS:3025(P-21)1983
	CaCO₃)				
9.	Magnesium Hardness (as	638	mg/l		IS:3025(P-21)1983
	CaCO₃)				
10.	Calcium (as Ca)	222	mg/l		IS:3025(P-40)1991
11.	Magnesium (as Mg)	156	mg/l		IS:3025(P-46)1994
12.	Total Alkalinity (as CaCO ₃)	380	mg/l		IS:3025(P-23)1986

Date:- 14/03/2016

ANALYSIS REPORT

: Datta SSK
: Shirol.
: Borewell Water Sample
: Jain Mandir, Hasur.

Location : NL- 16°43'1", EL- 74°40'28"

: 2000ml

Sample Quantity

Sr.	Parameter	Result	Unit	Limit	Test Method
No.					
13.	Chlorides (as Cl)	660	mg/l		IS:3025(P-32)1988
14.	Sulphate (as SO ₄)	62	mg/l		IS:3025(P-24)1986
15.	Total Nitrate (as NO₃)	2.36	mg/l		IS:3025(P-34)1988
16.	Total Nitrogen (as N)	< 0.5	mg/l		IS:3025(P-34)1983
17.	Total Phosphate (as PO ₄)	< 0.01	mg/l		IS:3025(P-31)1988
18.	Ammonical Nitrogen (as N)	< 0.01	mg/l		IS:3025(P-34)1988
19.	Copper (as Cu)	< 0.02	mg/l		IS:3025(P-42)1992
20.	Manganese (as Mn)	< 0.05	mg/l		IS:3025(P-59)2006
21.	Iron (as Fe)	0.1	mg/l		IS:3025(P-53)2003
22.	Fluoride (as F)	0.24	mg/l		APHA 22 ST EDITION
					4500 FD
23.	Cyanide (as CN)	< 0.01	mg/l		IS:3025(P-27)1986
24.	Phenolic Compounds (as	< 0.001	mg/l		IS:3025(P-43)1992
	С6Н5ОН)				
25.	Boron (as B)	< 0.05	mg/l		AAS

Date:- 14/03/2016

ANALYSIS REPORT

: Datta SSK
: Shirol.
: Borewell Water Sample
: Jain Mandir, Hasur.

Location : NL- 16°43'1", EL- 74°40'28"

: 2000ml

Sample Quantity

Sr. No.	Parameter	Result	Unit	Limit	Test Method
26.	Zinc (as Zn)	< 0.05	mg/l		IS:3025(P-49)1986
27.	Aluminium (as Al)	< 0.04	mg/l		IS:3025(P-55)2003
28.	Cadmium (as Cd)	< 0.002	mg/l		IS:3025(P-41)1992
29.	Lead (as Pb)	< 0.05	mg/l		IS:3025(P-47)1994
30.	Nickel (as Ni)	< 0.01	mg/l		IS:3025(P-54)2003
31.	Mercury (as Hg)	< 0.001	mg/l		IS:3025(P-48)1994
32.	Arsenic (as As)	< 0.001	mg/l		IS:3025(P-37)1988
33.	Selenium (as Se)	< 0.05	mg/l		IS:3025(P-56)1988
34.	Sodium (as Na)	215.6	mg/l		IS:3025(P-45)1993
35.	Potassium (as K)	0.9	mg/l		IS:3025(P-45)1993
36.	Chemical Oxygen Demand	22	mg/l		IS:3025(P-58)2006
37.	BOD 3 days at 27°C	< 2	mg/l		APHA 22 ST EDITION
					4500 FD
38.	MPN (Coliform bacteria)	< 2	MPN/100ml		IS:1622-1981
					(Reaffirmed2009)

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Hanuman Mandir, Nurshihwadi road, Shirol.

Location : NL- 16°42'48", EL- 74°36'6"

Sample Quantity

: 2000ml

Sr. No.	Parameter	Result	Unit	Limit	Test Method
1.	Color	< 5	Hazen		IS:3025(P-4)1983
2.	Odor	Odorless			IS:3025(P-5)1983
3.	рН	7.86	-		IS:3025(P-11)1983
4.	Turbidity	0.3	NTU		IS:3025(P-10)1984
5.	Total Dissolved Solids	2400	mg/l		IS:3025(P-16)1984
6.	Electrical Conductivity	2860	µmhos/c		IS:3025(P-14)1984
			m		
7.	Total Hardness (as CaCO₃)	2366	mg/l		IS:3025(P-21)1983
8.	Calcium Hardness (as	1203	mg/l		IS:3025(P-21)1983
	CaCO₃)				
9.	Magnesium Hardness (as	1164	mg/l		IS:3025(P-21)1983
	CaCO₃)				
10.	Calcium (as Ca)	481	mg/l		IS:3025(P-40)1991
11.	Magnesium (as Mg)	284	mg/l		IS:3025(P-46)1994
12.	Total Alkalinity (as CaCO ₃)	215	mg/l		IS:3025(P-23)1986

Date:- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Hanuman Mandir, Nurshihwadi road, Shirol.
Location	: NL- 16°42'48", EL- 74°36'6"

Sample Quantity

: 2000ml

Sr. No.	Parameter	Result	Unit	Limit	Test Method
13.	Chlorides (as Cl)	1296	mg/l		IS:3025(P-32)1988
14.	Sulphate (as SO ₄)	76	mg/l		IS:3025(P-24)1986
15.	Total Nitrate (as NO₃)	2.82	mg/l		IS:3025(P-34)1988
16.	Total Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1983
17.	Total Phosphate (as PO ₄)	< 0.01	mg/l		IS:3025(P-31)1988
18.	Ammonical Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1988
19.	Copper (as Cu)	< 0.05	mg/l		IS:3025(P-42)1992
20.	Manganese (as Mn)	< 0.05	mg/l		IS:3025(P-59)2006
21.	Iron (as Fe)	0.30	mg/l		IS:3025(P-53)2003
22.	Fluoride (as F)	0.56	mg/l		APHA 22 ST EDITION
					4500 FD
23.	Cyanide (as CN)	< 0.04	mg/l		IS:3025(P-27)1986
24.	Phenolic Compounds (as	< 0.001	mg/l		IS:3025(P-43)1992
	С6Н5ОН)				
25.	Boron (as B)	< 0.05	mg/l		AAS

Date:- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Hanuman Mandir, Nurshihwadi road, Shirol.

Location : NL- 16°42'48", EL- 74°36'6"

: 2000ml

Sample Quantity

Sr. No.	Parameter	Result	Unit	Limit	Test Method
26.	Zinc (as Zn)	< 0.1	mg/l		IS:3025(P-49)1986
27.	Aluminium (as Al)	< 0.03	mg/l		IS:3025(P-55)2003
28.	Cadmium (as Cd)	< 0.002	mg/l		IS:3025(P-41)1992
29.	Lead (as Pb)	< 0.005	mg/l		IS:3025(P-47)1994
30.	Nickel (as Ni)	< 0.02	mg/l		IS:3025(P-54)2003
31.	Mercury (as Hg)	< 0.001	mg/l		IS:3025(P-48)1994
32.	Arsenic (as As)	< 0.001	mg/l		IS:3025(P-37)1988
33.	Selenium (as Se)	< 0.005	mg/l		IS:3025(P-56)1988
34.	Sodium (as Na)	190.6	mg/l		IS:3025(P-45)1993
35.	Potassium (as K)	1.1	mg/l		IS:3025(P-45)1993
36.	Chemical Oxygen Demand	14	mg/l		IS:3025(P-58)2006
37.	BOD 3 days at 27°C	< 2	mg/l		APHA 22 ST EDITION
					4500 FD
38.	MPN (Coliform bacteria)	< 2	MPN/100ml		IS:1622-1981
					(Reaffirmed2009)

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Riyaj Gulab Bhendwade, Gourwad.

Location : NL- 16°42'1", EL- 74°37'37"

: 2000ml

Sample Quantity

Sr. No.	Parameter	Result	Unit	Limit	Test Method
1.	Color	< 5	Hazen		IS:3025(P-4)1983
2.	Odor	Odorless			IS:3025(P-5)1983
3.	рН	7.95	-		IS:3025(P-11)1983
4.	Turbidity	4.2	NTU		IS:3025(P-10)1984
5.	Total Dissolved Solids	960	mg/l		IS:3025(P-16)1984
6.	Electrical Conductivity	1089	µmhos/c		IS:3025(P-14)1984
			m		
7.	Total Hardness (as CaCO ₃)	397	mg/l		IS:3025(P-21)1983
8.	Calcium Hardness (as	330	mg/l		IS:3025(P-21)1983
	CaCO₃)				
9.	Magnesium Hardness (as	67	mg/l		IS:3025(P-21)1983
	CaCO₃)				
10.	Calcium (as Ca)	132	mg/l		IS:3025(P-40)1991
11.	Magnesium (as Mg)	16	mg/l		IS:3025(P-46)1994
12.	Total Alkalinity (as CaCO₃)	215	mg/l		IS:3025(P-23)1986

Date:- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Riyaj Gulab Bhendwade, Gourwad.

Location : NL- 16°42'1", EL- 74°37'37"

: 2000ml

Sample Quantity

Sr.	Parameter	Result	Unit	Limit	Test Method
NO.					
13.	Chlorides (as Cl)	294	mg/l		IS:3025(P-32)1988
14.	Sulphate (as SO ₄)	34	mg/l		IS:3025(P-24)1986
15.	Total Nitrate (as NO₃)	1.40	mg/l		IS:3025(P-34)1988
16.	Total Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1983
17.	Total Phosphate (as PO ₄)	< 0.01	mg/l		IS:3025(P-31)1988
18.	Ammonical Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1988
19.	Copper (as Cu)	< 0.02	mg/l		IS:3025(P-42)1992
20.	Manganese (as Mn)	< 0.05	mg/l		IS:3025(P-59)2006
21.	Iron (as Fe)	0.25	mg/l		IS:3025(P-53)2003
22.	Fluoride (as F)	0.32	mg/l		APHA 22 ST EDITION
					4500 FD
23.	Cyanide (as CN)	< 0.03	mg/l		IS:3025(P-27)1986
24.	Phenolic Compounds (as	< 0.001	mg/l		IS:3025(P-43)1992
	С6Н5ОН)				
25.	Boron (as B)	< 0.1	mg/l		AAS

Date:- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Riyaj Gulab Bhendwade, Gourwad.

Location : NL- 16°42'1", EL- 74°37'37"

: 2000ml

Sample Quantity

Sr.	Parameter	Result	Unit	Limit	Test Method
No.					
26.	Zinc (as Zn)	< 0.5	mg/l		IS:3025(P-49)1986
27.	Aluminium (as Al)	< 0.02	mg/l		IS:3025(P-55)2003
28.	Cadmium (as Cd)	< 0.002	mg/l		IS:3025(P-41)1992
29.	Lead (as Pb)	< 0.005	mg/l		IS:3025(P-47)1994
30.	Nickel (as Ni)	< 0.01	mg/l		IS:3025(P-54)2003
31.	Mercury (as Hg)	< 0.001	mg/l		IS:3025(P-48)1994
32.	Arsenic (as As)	< 0.001	mg/l		IS:3025(P-37)1988
33.	Selenium (as Se)	< 0.005	mg/l		IS:3025(P-56)1988
34.	Sodium (as Na)	198.3	mg/l		IS:3025(P-45)1993
35.	Potassium (as K)	4.3	mg/l		IS:3025(P-45)1993
36.	Chemical Oxygen Demand	13	mg/l		IS:3025(P-58)2006
37.	BOD 3 days at 27°C	< 2	mg/l		APHA 22 ST EDITION
					4500 FD
38.	MPN (Coliform bacteria)	< 2	MPN/100ml		IS:1622-1981
					(Reaffirmed2009)

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Borewell Water Sample
Sample Description	: Gunpaal Aanappa Shapure, Shedshal.

Location : NL- 16°44'45", EL- 74°40'12"

: 2000ml

Sample Quantity

Sr. No.	Parameter	Result	Unit	Limit	Test Method
1.	Color	< 5	Hazen		IS:3025(P-4)1983
2.	Odor	Odorless			IS:3025(P-5)1983
3.	рН	7.88	-		IS:3025(P-11)1983
4.	Turbidity	0.3	NTU		IS:3025(P-10)1984
5.	Total Dissolved Solids	890	mg/l		IS:3025(P-16)1984
6.	Electrical Conductivity	998	µmhos/c		IS:3025(P-14)1984
			m		
7.	Total Hardness (as CaCO ₃)	527	mg/l		IS:3025(P-21)1983
8.	Calcium Hardness (as	440	mg/l		IS:3025(P-21)1983
	CaCO₃)				
9.	Magnesium Hardness (as	87	mg/l		IS:3025(P-21)1983
	CaCO₃)				
10.	Calcium (as Ca)	176	mg/l		IS:3025(P-40)1991
11.	Magnesium (as Mg)	21	mg/l		IS:3025(P-46)1994
12.	Total Alkalinity (as CaCO ₃)	345	mg/l		IS:3025(P-23)1986

Date:- 14/03/2016

ANALYSIS REPORT

: Datta SSK
: Shirol.
: Borewell Water Sample
: Gunpaal Aanappa Shapure, Shedshal.

Location : NL- 16°44'45", EL- 74°40'12"

: 2000ml

Sample Quantity

10 ++ +5 ; 22 /+ +0 12

Sr.	Parameter	Result	Unit	Limit	Test Method
NO.					
13.	Chlorides (as Cl)	196	mg/l		IS:3025(P-32)1988
14.	Sulphate (as SO ₄)	20	mg/l		IS:3025(P-24)1986
15.	Total Nitrate (as NO ₃)	1.05	mg/l		IS:3025(P-34)1988
16.	Total Nitrogen (as N)	< 1.0	mg/l		IS:3025(P-34)1983
17.	Total Phosphate (as PO ₄)	< 0.01	mg/l		IS:3025(P-31)1988
18.	Ammonical Nitrogen (as N)	< 0.1	mg/l		IS:3025(P-34)1988
19.	Copper (as Cu)	< 0.02	mg/l		IS:3025(P-42)1992
20.	Manganese (as Mn)	< 0.05	mg/l		IS:3025(P-59)2006
21.	Iron (as Fe)	0.1	mg/l		IS:3025(P-53)2003
22.	Fluoride (as F)	0.32	mg/l		APHA 22 ST EDITION
					4500 FD
23.	Cyanide (as CN)	< 0.01	mg/l		IS:3025(P-27)1986
24.	Phenolic Compounds (as	< 0.001	mg/l		IS:3025(P-43)1992
	С6Н5ОН)				
25.	Boron (as B)	< 0.05	mg/l		AAS

Date:- 14/03/2016

ANALYSIS REPORT

: Datta SSK
: Shirol.
: Borewell Water Sample
: Gunpaal Aanappa Shapure, Shedshal.

Location : NL- 16°44'45", EL- 74°40'12"

: 2000ml

Sample Quantity

Sr.	Parameter	Result	Unit	Limit	Test Method
No.					
26.	Zinc (as Zn)	< 0.2	mg/l		IS:3025(P-49)1986
27.	Aluminium (as Al)	< 0.03	mg/l		IS:3025(P-55)2003
28.	Cadmium (as Cd)	< 0.002	mg/l		IS:3025(P-41)1992
29.	Lead (as Pb)	< 0.005	mg/l		IS:3025(P-47)1994
30.	Nickel (as Ni)	< 0.01	mg/l		IS:3025(P-54)2003
31.	Mercury (as Hg)	< 0.001	mg/l		IS:3025(P-48)1994
32.	Arsenic (as As)	< 0.001	mg/l		IS:3025(P-37)1988
33.	Selenium (as Se)	< 0.005	mg/l		IS:3025(P-56)1988
34.	Sodium (as Na)	122	mg/l		IS:3025(P-45)1993
35.	Potassium (as K)	4.3	mg/l		IS:3025(P-45)1993
36.	Chemical Oxygen Demand	13	mg/l		IS:3025(P-58)2006
37.	BOD 3 days at 27°C	< 2	mg/l		APHA 22 ST EDITION
					4500 FD
38.	MPN (Coliform bacteria)	< 2	MPN/100ml		IS:1622-1981
					(Reaffirmed2009)

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Ground Water Sample
Sample Description	: Panchganga River

Location : NL- 16°41'35", EL- 74°36'6"

Sample Quantity : 2000ml

Sr. No.	Parameter	Intake of Datta ssk	100m Up Stream	100m Down Stream	Unit	Limit	Test Method
1.	Color	< 5	< 5	< 5	Hazen		IS:3025(P-4)1983
2.	Odor	Odorless	Odorless	Odorless			IS:3025(P-5)1983
3.	рН	7.54	7.68	7.56	-		IS:3025(P-11)1983
4.	Turbidity	0.7	0.9	0.6	NTU		IS:3025(P-10)1984
5.	Total Dissolved Solids	700	712	710	mg/l		IS:3025(P-16)1984
6.	Electrical Conductivity	802	815	811	µmhos /cm		IS:3025(P-14)1984
7.	Total Hardness (as CaCO₃)	454	470	460	mg/l		IS:3025(P-21)1983
8.	Calcium Hardness (as CaCO ₃)	395	405	385	mg/l		IS:3025(P-21)1983
9.	Magnesium Hardness (as CaCO ₃)	59	65	75	mg/l		IS:3025(P-21)1983
10.	Calcium (as Ca)	158	162	154	mg/l		IS:3025(P-40)1991
11.	Magnesium (as Mg)	14	16	18	mg/l		IS:3025(P-46)1994
12.	Total Alkalinity (as CaCO₃)	308	312	296	mg/l		IS:3025(P-23)1986

Date :- 14/03/2016

ANALYSIS REPORT

: NL- 16°41'35", EL- 74°36'6"

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: River Water Sample
Sample Description	: Panchganga River

Location

Sample Quantity : 2000ml

Sr.	Parameter	Intake	100m Up	100m	Unit	Limit	Test Method
No.		of	Stream	Down			
		Datta ssk		Stream			
13.	Chlorides (as Cl)	158	162	152	mg/l		IS:3025(P-32)1988
14.	Sulphate (as SO ₄)	24	26	24	mg/l		IS:3025(P-24)1986
15.	Total Nitrate (as	1.26	1.38	1.26	mg/l		IS:3025(P-34)1988
	NO ₃)						
16.	Total Nitrogen (as	< 0.5	< 0.5	< 0.5	mg/l		IS:3025(P-34)1983
	N)						
17.	Total Phosphate (as	< 0.01	< 0.01	< 0.01	mg/l		IS:3025(P-31)1988
	PO ₄)						
18.	Ammonical	< 1.0	< 1.0	< 1.0	mg/l		IS:3025(P-34)1988
	Nitrogen (as N)						
19.	Copper (as Cu)	< 0.02	< 0.02	< 0.02	mg/l		IS:3025(P-42)1992
20.	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	mg/l		IS:3025(P-59)2006
21.	Iron (as Fe)	0.1	0.1	0.1	mg/l		IS:3025(P-53)2003
22.	Fluoride (as F)	0.2	0.26	0.2	mg/l		APHA 22 ST EDITION
							4500 FD
23.	Cyanide (as CN)	< 0.04	< 0.05	< 0.04	mg/l		IS:3025(P-27)1986
24.	Phenolic	< 0.001	< 0.001	< 0.001	mg/l		IS:3025(P-43)1992
	Compounds (as						
	С6Н5ОН)						
25.	Boron (as B)	< 0.5	< 0.5	< 0.5	mg/l		AAS

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: River Water Sample
Sample Description	: Panchganga River

Location

Sample Quantity : 2000ml

: NL- 16°41'35", EL- 74°36'6"

Sr. No.	Parameter	Intake of Datta ssk	100m Up Stream	100m Down Stream	Unit	Limit	Test Method
26.	Zinc (as Zn)	< 0.1	< 0.2	< 0.1	mg/l		IS:3025(P-49)1986
27.	Aluminium (as Al)	< 0.02	< 0.03	< 0.02	mg/l		IS:3025(P-55)2003
28.	Cadmium (as Cd)	< 0.002	< 0.002	< 0.002	mg/l		IS:3025(P-41)1992
29.	Lead (as Pb)	< 0.05	< 0.008	< 0.05	mg/l		IS:3025(P-47)1994
30.	Nickel (as Ni)	< 0.01	< 0.02	< 0.01	mg/l		IS:3025(P-54)2003
31.	Mercury (as Hg)	< 0.001	< 0.001	< 0.001	mg/l		IS:3025(P-48)1994
32.	Arsenic (as As)	< 0.001	< 0.001	< 0.001	mg/l		IS:3025(P-37)1988
33.	Selenium (as Se)	< 0.005	< 0.01	< 0.005	mg/l		IS:3025(P-56)1988
34.	Sodium (as Na)	70.3	72.2	71.7	mg/l		IS:3025(P-45)1993
35.	Potassium (as K)	1.6	1.9	1.4	mg/l		IS:3025(P-45)1993
36.	Chemical Oxygen Demand	15	16	15	mg/l		IS:3025(P-58)2006
37.	BOD 3 days at 27°C	< 2	< 2	< 2	mg/l		APHA 22 ST EDITION 4500 FD
38.	MPN	< 2	< 2	< 2	MPN/		IS:1622-1981
	(Coliform bacteria)				100ml		(Reaffirmed2009)

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Soil Sample
Sample Description	: Salim Mulla, Aurwad.

Location : NL- 16°41'45", EL- 74°36'57"

Sample Quantity : 5 Kg

Sr. No.	Test Parameter	Result	Unit	Limit
1.	Percentage of different Comp	onents		
a.	Sand	42	%	
b.	Silt	35	%	
c.	Clay	23	%	
2.	Water Holding Capacity	30	%	
3.	рН	8.39		
4.	E. Conductivity	0.100	(µmhos/cm	
)	
5.	Available Nitrogen	196	%	
6.	Available Phosphorus	44.33	%	
7.	Available Potassium	430	%	
8.	Organic Carbon	0.921	%	
9.	Sodium as Na	14.4	%	
10.	Calcium as Ca	1.953	%	
11.	Magnesium as Mg	0.152	%	
12.	Cation Exchange Capacity	67.22	meq/100g	

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Soil Sample
Sample Description	: Riyaj Gulab Bhendwade, Gourwad.

Location

Sample Quantity : 5 Kg

Date of Collection:- 04/03/2016

		Result	Unit	Limit
Sr.	Test Parameter			
No.				
1.	Percentage of different Comp	oonents		
a.	Sand	31	%	
b.	Silt	42	%	
c.	Clay	27	%	
2.	Water Holding Capacity %	32	%	
3.	рН	8.52		
4.	E. Conductivity	0.708	(µmhos/c	
			m)	
5.	Available Nitrogen	185	%	
6.	Available Phosphorus	53.83	%	
7.	Available Potassium	600	%	
8.	Organic Carbon	0.461	%	
9.	Sodium as Na	69.9	%	
10.	Calcium as Ca	1.553	%	
11.	Magnesium as Mg	0.164	%	
12.	Cation Exchange Capacity	64.17	meq/100g	

: NL- 16°42'1", EL- 74°37'37"

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Soil Sample
Sample Description	: Ballaso Guruprasad Keripale, Kagwad road Shedshal.
Location	: NL- 16°41'34", EL- 74°40'10"

Sample Quantity : 5 Kg

		Result	Unit	Limit
Sr.	Test Parameter			
No.				
1.	Percentage of different Comp	oonents		
a.	Sand	24	%	
b.	Silt	36	%	-
c.	Clay	24	%	-
2.	Water Holding Capacity %	28	%	-
3.	рН	8.34		
4.	E. Conductivity	0.482	(µmhos/c	
			m)	
5.	Available Nitrogen	154	%	
6.	Available Phosphorus	47.5	%	
7.	Available Potassium	490	%	
8.	Organic Carbon	0.603	%	
9.	Sodium as Na	41.1	%	
10.	Calcium as Ca	2.05	%	
11.	Magnesium as Mg	0.104	%	
12.	Cation Exchange Capacity	60.08	meq/100g	

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Soil Sample
Sample Description	: Shankar Aanappa Parit,(Rajmane) Terwad.
Location	· NII 16º20'51" EL 71º21'20"

Location : NL- 16°39'54", EL- 74°34'39

Sample Quantity : 5 Kg

		Result	Unit	Limit		
Sr.	Test Parameter					
No.						
1.	Percentage of different Components					
a.	Sand	32	%			
b.	Silt	39	%			
с.	Clay	29	%			
2.	Water Holding Capacity %	30	%			
3.	рН	8.41				
4.	E. Conductivity	0.083	(µmhos/c			
			m)			
			,			
5.	Available Nitrogen	185	%			
5. 6.	Available Nitrogen Available Phosphorus	185 57	% %			
5. 6. 7.	Available Nitrogen Available Phosphorus Available Potassium	185 57 510	% %			
5. 6. 7. 8.	Available Nitrogen Available Phosphorus Available Potassium Organic Carbon	185 57 510 0.178	% % % %	 		
5. 6. 7. 8. 9.	Available Nitrogen Available Phosphorus Available Potassium Organic Carbon Sodium as Na	185 57 510 0.178 11.5	% % % % % % %	 		
5. 6. 7. 8. 9.	Available Nitrogen Available Phosphorus Available Potassium Organic Carbon Sodium as Na Calcium as Ca	185 57 510 0.178 11.5 1.353	% % % % % % % % % %	 		
5. 6. 7. 8. 9. 10. 11.	Available Nitrogen Available Phosphorus Available Potassium Organic Carbon Sodium as Na Calcium as Ca Magnesium as Mg	185 57 510 0.178 11.5 1.353 0.055	% % % % % % % % % % % %	 		
5. 6. 7. 8. 9. 10. 11. 12.	Available Nitrogen Available Phosphorus Available Potassium Organic Carbon Sodium as Na Calcium as Ca Magnesium as Mg Cation Exchange Capacity	185 57 510 0.178 11.5 1.353 0.055 39.04	% % % % % % % % % % % % % % % % % % % meq/100g	 		

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Soil Sample
Sample Description	: Mohan Raghunath Pujari, Near Jirge pump, Dattanagar, Shirol
Location	: NL- 16°45'34", EL- 74°35'7"

Sample Quantity : 5 Kg

		Result	Unit	Limit	
Sr.	Test Parameter				
No.					
1.	Percentage of different Components				
a.	Sand	34	%		
b.	Silt	37	%		
c.	Clay	29	%		
2.	Water Holding Capacity %	22	%		
3.	рН	8.11			
4.	E. Conductivity	0.366	(µmhos/c		
			m)		
5.	Available Nitrogen	182	%		
6.	Available Phosphorus	28.5	%		
7.	Available Potassium	2560	%		
8.	Organic Carbon	0.2856	%		
9.	Sodium as Na	0.079	%		
10.	Calcium as Ca	2.285	%		
11.	Magnesium as Mg	0.116	%		
12.	Cation Exchange Capacity	60.61	meq/100g		

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Soil Sample
Sample Description Location	: Devendra Satappa Magdum, old Udhgaon road, Umalwad. : NL- 16°48'1", EL- 74°32'54"

Sample Quantity : 5 Kg

		Result	Unit	Limit
Sr.	Test Parameter			
No.				
1.	Percentage of different Comp	onents		
a.	Sand	30	%	
b.	Silt	37	%	
с.	Clay	33	%	
2.	Water Holding Capacity %	26	%	
3.	рН	8.14		
4.	E. Conductivity	0.343	(µmhos/c	
			m)	
_				
5.	Available Nitrogen	175	%	
6.	Available Phosphorus	38	%	
7.	Available Potassium	600	%	
8.	Organic Carbon	0.857	%	
9.	Sodium as Na	0.097	%	
10.	Calcium as Ca	1.653	%	
11.	Magnesium as Mg	0.116	%	
12.	Cation Exchange Capacity	43.48	meq/100g	

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Soil Sample
Sample Description	: Pandurang Balu Gavde, Near Star Chemical, Chipri.
Location	: NL- 16°45'40", EL- 74°30'45"

Sample Quantity : 5 Kg

		Result	Unit	Limit
Sr.	Test Parameter			
No.				
1.	Percentage of different Comp	onents		
a.	Sand	35	%	
b.	Silt	32	%	
c.	Clay	33	%	
2.	Water Holding Capacity %	30	%	
3.	рН	8.08		
4.	E. Conductivity	0.228	(µmhos/c	
			m)	
5.	Available Nitrogen	245	%	
6.	Available Phosphorus	19	%	
7.	Available Potassium	250	%	
8.	Organic Carbon	0.842	%	
9.	Sodium as Na	0.045	%	
10.	Calcium as Ca	0.842	%	
11.	Magnesium as Mg	0.122	%	
12.	Cation Exchange Capacity	35.47	meq/100g	

Date :- 14/03/2016

ANALYSIS REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Soil Sample
Sample Description	: Vishnu Dadu Yadav, Near Balumama Temple, Kondigre.
Location	: NL- 16°44'40", EL- 74°30'5"

Sample Quantity : 5 Kg

		Result	Unit	Limit
Sr.	Test Parameter			
No.				
1.	Percentage of different Comp	onents		
a.	Sand	29	%	
b.	Silt	36	%	
C.	Clay	35	%	
2.	Water Holding Capacity %	28	%	
3.	рН	7.82		
4.	E. Conductivity	0.374	(µmhos/c	
			m)	
5.	Available Nitrogen	238	%	
6.	Available Phosphorus	60.16	%	
7.	Available Potassium	950	%	
8.	Organic Carbon	0.711	%	
9.	Sodium as Na	0.079	%	
10.	Calcium as Ca	0.711	%	
11.	Magnesium as Mg	0.146	%	
12.	Cation Exchange Capacity	49.21	meq/100g	

Date :- 14/03/2016

Table no. 4.2 NOISE LEVEL MEASUREMENT REPORT

Name of Industry	: Datta SSK
Address	: Shirol.
Name of Sample	: Noise Level Measurement
Date of Collection	: 04/03/2016

Sr.	Monitoring Location	Time	Noise Level in	Standards
No.			dB-A	Noise Level in
				dB-A
1.	Near ETP	Day	64.7	75.0
	(NL- 16°44'58''			
	EL- 74°35′0″)	Night	53.4	70.0
2.	Factory Main Gate	Day	59.4	75.0
	(NL- 16°44'57"			
	EL- 74°35′0″)	Night	40.9	70.0
3.	Shirol Telegram Kharedi Vikri	Day	49.8	55.0
	Sangh, Ltd., Jayshingpur.			
	(NL- 16°46'40''	Night	41.1	45.0
	EL- 74°33′5″)			
4.	Near Grampanchayat Office,	Day	51.8	55.0
	Kondigre.			
	(NL- 16°44'12''	Night	38.2	45.0
	EL- 74°29'50'')			

Date :- 14/03/2016

NOISE LEVEL MEASUREMENT REPORT

Name of Industry: Datta SSKAddress: Shirol.Name of Sample: Noise Level MeasurementDate of Collection: 04/03/2016

Sr.	Monitoring Location	Time	Noise Level in	Standards
No.			dB-A	Noise Level in
				dB-A
5.	Shri Datta Nagri Pathsanstha,	Day	52.2	55.0
	Arjunwad.			
	(NL- 16°44'48''	Night	40.8	45.0
	EL- 74°37′35″)			
6.	Grampanchayat Office, Kanwad.	Day	50.7	55.0
	(NL- 16°43'59"			
	EL- 74°41′26″)	Night	41.6	45.0
7.	Shirol Telegram Agriculture Div.	Day	51.6	55.0
	Kurundwad.			
	(NL- 16°43'59''	Night	39.9	45.0
	EL- 74°41′26″)			
8.	Grampanchayat Office, Chipri	Day	50.3	55.0
	(NL- 16°45'40", EL- 74°30'45")			
		Night	38.5	45.0

Table No. 4.3				
ANALYSIS REPORT F	OR STACK EMISSION			
Report Date	14/03/2016			
Name of Industry	Urjankur Shree Datta Power Company Ltd.,			
Address	Dattanagar, Shirol.			
Date of Sampling	04/03/2016			
PARTICULAR	<u>RS OF STACK</u>			
Stack Attached to	Boiler			
Stack Diameter (Meter)	4.0			
Stack Height (Meter)	95.0			
Stack Temperature(°C)	130			
Stack Velocity of Flue Gases (m/s)	14.0			
Stack Volume of Flue Gases (Nm ³ /hr)	633600			
Type of Fuel	Bagasse			

POLLUTION PARAMERS					
Parameter	Result	Limit	Unit	Method	
Total Particulate Matter (TPM)	80	150	mg/Nm ³	EPA Method – 17	
SO ₂ conc.	N. D.		mg/Nm ³	IS- 11255 (Part 2) 1985	
				Reaffirmed 2009	
NO _x conc.	70		mg/Nm ³	APHA (42603-01-70T)	
Remark: Instrument used:- Envirotech APM 610 Calibration Due date :- 04-08-2017					

N. D. – Not Detected.
CHAPTER 5

GEOMORPHOLOGICAL, GEOLOGICAL AND HYDROGEOLOGICAL STATUS ORF SHIOL TALUKA, KOLHAPUR DISTRICT, MAHARASHTRA

5.1 Introduction-

Shirol is a major town in Ichalkaranji division of Kolhapur district and is also major industrial zone and it is situated in the eastern part of the district. Shirol is one of the 12 talukas of the district and is bordering Karnataka in the east and south .The topography of Shirol is carved by Krishna river which is a major river of Maharashtra .The major crops are sugarcane, groundnut and jawar. Most of the area around the Krishna river is well irrigated through a number of lift irrigation schemes .

The coordinates of the region are 16.44 N and 74.36 E.

There are 52 villages in the taluka and 2 municipal regions the total population is 359139 as per 2011 census.

Climatically, Shirol has moderate climate in all seasons. The average rainfall in the area is 580 mm spread over 48 rainy days. The temperature ranges between 40 to 25 degree Celsius on an average.

Fig5.1)- Map of Maharashtra and Kolhapur District

Fig5.2)-Flat topography of the region

The major villages in 10 km radius of the Datta sugar factory are Jambhali, ,Nandani, Shirdhon, Kurundwad, Nrusinhwadi, Ghalwad, Arjunwad, Chichwad etc.

5.2 Geomorphology-

The area under study mostly consists of a flat topography. The region mostly consists of vast plain area sloping eastwards and bounded by Krishna and Panchaganga rivers. The topography is unlike the rest of the deccan trap region with average height of 600 mts. Of which 92 % is below 540 mts. This has been mainly due to the presence of Krishna river and its tributaries developing extensive alluvial tract.. At some places particularly towards the western part of the taluka a locally rugged topography can be observed

5.3 Drainage-

The term drainage describes the river system of the area. The streams within a drainage basin form certain patterns depending upon the slope of land underlying rock structure as well as the climatic conditions of the area. The Krishna river has carved a neatly developed drainage in the region. The dendritic to sub dendritic drainage pattern develops where the river channel follows the general slope of terrain. Most streams are first to third order streams and prominently show semi dendritic drainage pattern which is typical of the Deccan Trap terrain. The drainage density in the region is low as compared to the rest of the deccan trap region.Krishna river flows for a length of 63 km.in the taluka and drains 20153 hectares of land while the river Panchgangaflows for a length of 27 kms and drains 17636 hectares of land .

5.4 Soil-

The area typically shows of different soil types The coarse shallow soilis light brown in colour and loamy to sandy in nature. This type of soil covers 29 % of the area. The medium black variety of soil occurs mainly in the central and northern part of the taluka that covers 22 % of the area. However the most dominant soil type of the region is the deep black soil which is highly frtile and productive. It covers about 47% of the region.

In addition to these types saline soil also occurs at isolated locations.

Fig5.4) Deep black soil near river bed

5.5 Geology-

The geological formation in the region consist of the Deccan Trap Basalts (Cretaceous-Eocene) and the recent alluvium of Krishna. Basalts occupy about 95% of the region and are overlain by alluvium.Basalts normally occur with a horizontal disposition and as sequential layers or flows with thickness ranging from 15 to 40 m. Two main types of basalts occur in the region, vesicular and non vesicular. The vesicular variety consists of small to large vesicles which are formed due to escape of gases during cooling of the lava. The non vesicular variety often is compact and jointed in nature and show vertical, horizontal or oblique joints. Deccan Trap Basalts of the region are dark grey to greenish grey in colour and contains augite and plagioclase as the essential minerals. At many places zeolitic basalt also can be seen with infillings of quartz and calcite.

5.6 Seismicity and Tectonics-

The area has not experienced any seismicity in the recent past nor there any historical records of any kind of tectonic activity. There are no major marked lineaments in the region thus can be regarded as shield region.

5.7 Hydrogeology-

The main aquifers in the region are the inter-trappean beds or decomposed zones of the deccan traps. At places the presence of joints yield sufficient quantity of ground water. The depth of water table is variable, between 8 to 12 meters. Shirol taluka receives an average rainfall of 580 mm. with 48 rainy days on an average.

Since most of the area is occupied by extensive alluvium which is at places 10 meters thick and the area is irrigated by a network of lift irrigation schemes there are less number of wells in the area surrounding the sugar

5.8 Ground water related issues and problems-

The major problem in the area is the quality of ground water, at places the water is brackish and can not be used for domestic purposes. The concentration of nitrate and total hardness is much above the permissible limits. Another major problem in the area is the increasing number of wells and bore wells.

Also due to excess irrigation over a prolonged period of time, soil salinity has acquired alarming dimension. A total of 3164 hectare land has turned saline and another 6238 hectares is partially saline. Thus a total of 9402 hectares of precious land resource has been saline in nature.

Water is intermittently released in the Krishna River from the reservoirs in the upstream side which is heavily used for irrigation purpose resulting into drying up of the river. Once the river dries up the region suffers acute shortage of groundwater.

CHAPTER 6 Landuse (Lu)

6.1 Introduction

The land use / land cover analysis is of relationship between people and land. Man is using the land for various purposes like grazing, agriculture, urban, mining and many more. According to Mayer (1995) land use is the way in which, and the purposes for which, human beings employ the land and its resources e.g. farming, mining, lumbering, etc. The detail information of land use and land cover is essential for all developmental activities, land resource evaluation, management and planning as well as well as environmental assessment. Accessing land use and land cover is essential to understand both the positive and negative aspects of a project on the respective region. In this section an attempt is made to understand the landuse condition within 10 km radius from factory site.

6.2 Data

Generally the study of landuse and landcover is carried out on different levels i.e. general landuse / landcover, urban land use, agriculture land use, etc. The data is most essential component in analysis and decision making process. The data for landuse study is depend on the site and level on which it is being implementing. The landuse data published in census is one of the authentic data which is useful for different analysis. The census data is quantification of land under forest, agriculture uses, fallow land, etc. which is made available for different kinds of users. The general landuse dataset of year 2011 is tabulated from census 2011 and systematically utilized in present study.

The computer aided digital image analysis is essential to utilize the capabilities of remote sensing data. The Landsat satellite dataset of ETM (Enhance Thematic Mapper) sensors is used to check the Landuse / Landcover conditions.

6.3 Methodology

The general landuse data from 2011 census is tabulated and arranged using spreadsheet. The graphical representation of important aspects is carries out. The review of landuse status is complied with statistical tables, graphs and its interpretation is made. The landuse / landcover condition due to natural and human activities can be well understood using remote sensing satellite dataset. In second phase digital landuse / landcover mapping is carried out with the help of Landsat satellite images. The supervised image classification technique is used for mapping landuse / landcover of the study area.

6.4 Study Area

Shree Datta Shetkari Sahakari Sakhar Karkhana Ltd., Shirol district Kolhapur (Maharashtra) is one of the reputed sugar factory in South-Western Maharashtra. The study area for environmental impact assessment is 10 km from respective factory site. In present study area of 10 km radius from Datta sugar factory is considered.

Fig. XXX

The study area of 10 km radius is covering 2 two different tahsils i.e. Shirol and Miraj from Kolhapur and Sangli districts respectively. There are total 49 localities out of which 5 are urban centres (2 from Kolhapur and 1 from Sangli district which is parts of Municipal Corporation) and 44 are villages. There are 9 villages from Sangli district 35 villages from Kolhapur district occupying more or less area. Its details are given in table no.XXX.

Villages / City	Tahsil - District	Area (in Ha.)	Population	Household	Settlement Type	Occupancy Type
Arjunwad	Shirol - Kolhapur	919	5641	1151	Rural	100
Aurwad	Shirol - Kolhapur	476	4540	836	Rural	100
Bastawad	Shirol - Kolhapur	379.3	2321	527	Rural	30
Bubnal	Shirol - Kolhapur	668	3154	614	Rural	40
Chichvad	Shirol - Kolhapur	396.3	4285	879	Rural	100
Chipari	Shirol - Kolhapur	878.4	7876	1710	Rural	100
Danoli	Shirol - Kolhapur	2717.9	14075	3059	Rural	10
Dharangutti	Shirol - Kolhapur	1009	7233	1562	Rural	100
Gaurwad	Shirol - Kolhapur	249	2631	547	Rural	100
Ghalwad	Shirol - Kolhapur	681.8	3535	735	Rural	100
Haroli	Shirol - Kolhapur	430	3280	672	Rural	100
Hasur	Shirol - Kolhapur	566.1	4045	827	Rural	40

	=					
Herwad	Shirol - Kolhapur	1235.5	7165	1454	Rural	10
Jainapur	Shirol - Kolhapur	701	2358	506	Rural	30
Jambhali	Shirol - Kolhapur	622	4963	1020	Rural	100
Jayshingpur (Rural)	Shirol - Kolhapur	235	4796	1115	Rural	90
Kanwad	Shirol - Kolhapur	562	3280	672	Rural	15
Kavatheguland	Shirol - Kolhapur	903.7	3685	736	Rural	70
Kondigre	Shirol - Kolhapur	685.8	3245	700	Rural	25
Kurundawad (R)	Shirol - Kolhapur	1797	694	144	Rural	100
Kutwad	Shirol - Kolhapur	368	2271	457	Rural	100
Lat	Shirol - Kolhapur	2253	16271	3340	Rural	10
Majarewadi	Shirol - Kolhapur	350	2273	528	Rural	20
Nandani	Shirol - Kolhapur	1692	15093	3312	Rural	100
Nimshirgaon	Shirol - Kolhapur	1064.3	4851	1081	Rural	10
Nrusinhawadi	Shirol - Kolhapur	416.7	4168	930	Rural	100
Shedshal	Shirol - Kolhapur	803.8	4866	1020	Rural	5
Shirati	Shirol - Kolhapur	1173.1	5640	1238	Rural	100
Shirdhon	Shirol - Kolhapur	1883.9	9486	2080	Rural	95
Shirol	Shirol - Kolhapur	6028	21	13	Rural	100
Takavade	Shirol - Kolhapur	1026.3	8735	1859	Rural	30
Terwad	Shirol - Kolhapur	1043.8	5986	1244	Rural	20
Udagaon	Shirol - Kolhapur	1746	14513	3136	Rural	100
Umalwad	Shirol - Kolhapur	506.6	5024	1061	Rural	100
Yadrav	Shirol - Kolhapur	846.5	10530	2338	Rural	15
Ankali	Miraj - Sangli	450.8	5255	1129	Rural	100
Bamani	Miraj - Sangli	410.1	793	159	Rural	100
Dhavali	Miraj - Sangli	649	2969	646	Rural	100
Haripur	Miraj - Sangli	561	7595	1643	Rural	10
Inam Dhamani	Miraj - Sangli	514	5424	1128	Rural	100
Mhaisal(s)	Miraj - Sangli	3552	14922	3156	Rural	10
Nilaji	Miraj - Sangli	542.1	729	166	Rural	100
Vaddi	Miraj - Sangli	1287	4252	862	Rural	40
Vijay Nagar	Miraj - Sangli	330	3474	739	Rural	40
SANGLI (Urban)	Miraj - Sangli				Urban	10
MIRAJ (Urban)	Miraj - Sangli				Urban	30
WANLESWADI (Urban)	Miraj - Sangli				Urban	10
KURUNDVAD (Urban)	Shirol - Kolhapur				Urban	100
JAYSINGPUR (Urban)	Shirol - Kolhapur				Urban	100

Source : Census of India, 2011

6.5 General Landuse

The categories of general landuse may vary as per nature of study. The landuse categories considered in this study are from census. Table No XXX represents these categories of landuse and total area under it.

Sr No	Category	Area in Ha.	Percentage to Total Area
1	Forests	362.20	0.48
2	Area Under Non-Agricultural Uses	1577.10	2.08
3	Barren and Un-Cultivable land	1998.90	2.64
4	Permanent Pastures and Other Grazing		
	Lands	1085.90	1.43
5	Land Under Miscellaneous Tree Crops etc.	148.70	0.20
6	Cultivable Waste Land	3057.20	4.03
7	Fallow Lands Other Than Current Fallows	3135.50	4.13
8	Current Fallows	1878.00	2.48
9	Net Area Sown	32094.50	42.32
10	Total Irrigated Land Area	19255.30	25.39
11	Total Un-Irrigated Land Area	11239.40	14.82
	Total	75832.70	100.00

Source: District Census of Indian (Soft Copy in CD form)

The total area under and of study area is 75832.70 ha. (it is total 100% area of all 49 localities). The general landuse classes are ranging from minimum 148.70 ha. (0.20) i.e. land under miscellaneous tree crops on the contrary maximum is 32094.50 ha (42.32%) which is net sown area. The area under non-agricultural uses occupies 2.08% and barren and uncultivable land covered 2.64% land. The proportion of cultivable waste land is 4.03% (3057.20 ha) and fallow lands other than current fallow is 4.13% i.e. 4.13% to total area of 49 villages. Total irrigated land is 19255.30 ha which becomes 25.39% to total and total un-irrigated area is 11239.40 ha which become 14.82%.

6.6 Village wise General Landuse of Study Area

The village wise condition of general landuse is comprehended and presented in table no.XXX. There are total 49 villages coming in 10 km radius, out of which half i.e.24 villages are laying completely within this radius and rest 25 villages have occupied land from 5% to 95% area. The statistical landuse data for 44 villages are available but it is not available for rest 5 urban centres.

Villages / City	Forests	Area under Non- agricultural Uses	Barren and Un- cultivable land	Permanent Pastures & Other Grazing Lands	Miscellaneous Tree Crops etc.	Cultivable Waste Land	Fallow lands other than current fallows	Current Fallows	Net Area Sown	Total Irrigated Land Area	Total Un-irrigated Land Area
Arjunwad	0	2	221.4	2.2	0	50	0	0	643.4	424	219.4
Aurwad	0	4.6	0	0	0	44.6	11.5	76.6	338.8	203	135.8
Bastawad	0	26.2	0	0	0	58.6	2	0	292.4	0	292.4
Bubnal	0	5	23	0	0	73	0	0	567	567	0
Chichvad	0	31.7	10	0	0	10	10	0	334.6	294.6	40
Chipari	0	3.1	52.3	25.2	72.8	14.2	4.2	50	656.6	121.9	534.8
Danoli	236.4	36.4	350	71	0	0	3.2	313	1708	1395	313
Dharangutti	0	73.7	0	0	0	457.4	0	0	477.9	140	337.9

		•									
Gaurwad	0	2.7	0	0	8.1	0	6.1	31.7	200.4	125.2	75.2
Ghalwad	0	6.2	170.1	5.8	0	0	0	0	499.7	499.7	0
Haroli	0	15	25	30	5	19	17	9	310	210	100
Hasur	0	22.4	22.2	8.4	0	47.8	11.1	9.1	445.1	268.3	176.8
Herwad	0	2	171	51.4	0	280	43.2	0	688	450	238
Jainapur	0	96.8	22.1	53.9	0	46.2	0	0	482	122	360
Jambhali	0	47.6	0	0	0	55.2	0	0	519.2	62	457.2
Jayshingpur (R.)	0	91.8	0	0	0	0	6.7	0	136.5	48.5	88
Kanwad	0	54	0	0	0	80	0	0	428	219	209
Kavatheguland	0	8.3	0	0	0	16	0	12.4	867	867	0
Kondigre	0	2.7	25.2	26.6	45.8	30.9	17.7	78.7	458.1	150	308.1
Kurundawad (R)	0	159.8	0	0	0	267.8	0	0	1369.4	922.7	446.7
Kutwad	0	1	14	0	0	15	28	78	232	160	72
Lat	0	3	100	46	2	260	170	64	1608	579	1029
Majarewadi	0	16	0	0	0	99.1	0	0	234.9	152.3	82.6
Nandani	0	150.6	0	0	0	180.7	0	0	1360.7	528	832.7
Nimshirgaon	125.8	1.3	71.1	67.6	15	130.9	36.6	158. 6	457.4	288.1	169.4
Nrusinhawadi	0	26.5	0	0	0	61.5	0	8.2	320.5	320.5	0
Shedshal	0	36.9	167	8.5	0	115.5	0	5.1	470.8	413.6	57.2
Shirati	0	2.3	37.2	0	0	0	0	24.5	1109.1	1109.1	0
Shirdhon	0	5	40.1	8.3	0	0	41.7	0	1788.8	1788.8	0
Shirol	0	0	0	579	0	0	2588	759	1829	0	229
Takavade	0	1.7	18.9	0	0	105	0	29.7	871	871	0
Terwad	0	6.4	134	40	0	22.7	25.7	40	775	625	150
Udagaon	0	2	180	45	0	260	0	0	1259	960	299
Umalwad	0	52.5	20.8	17	0	180.3	0	0	236	185	51
Yadrav	0	64.7	0	0	0	0	0	0	781.8	152.9	628.9
Ankali	0	1.4	54.4	0	0	0	0	0	394.9	394.9	0
Bamani	0	2	21.1	0	0	0	0	57.2	329.8	251.7	78.1
Dhavali	0	31.2	0	0	0	0	0	0	617.8	568.3	49.4
Haripur	0	103.7	0	0	0	0	0	0	457.3	220	237.3
Inam Dhamani	0	1.5	48	0	0	0	0	0	464.6	464.6	0
Mhaisal (s)	0	218.4	0	0	0	52.9	62.8	50.2	3167.7	1194.6	1973.2
Nilaji	0	6	0	0	0	22.9	50	23	440.3	357	83.3
Vaddi	0	111	0	0	0	0	0	0	1176	445	731
Vijay Nagar	0	40	0	0	0	0	0	0	290	136	154
Total	362.2	1577.1	1998.9	1085.9	148.7	3057.2	3135.5	1878	32094.5	19255.3	11239.4

Source: District Census Handbook

6.7 IRRIGATION AND LANDUSE

The irrigation is most vital element of socio-economic and overall transformation for particular region. The study area is situated in well developed watershed of Krishna river particularly on the bank of Panchganga river. Due the various sources of irrigation land is been irrigated in which different types of cash crops are cultivated. Sugarcane is one of the important crop been cultivated which is raw material for sugar factory.

There is very close relationship between irrigation and landuse. Generally when irrigation sources are developed that time several transformations are automatically taking place in that area. As a result the economic status of farmer is seems changing. The river passing through study area is providing source of water for the agriculture. During conducted field visit it is observed that the agriculture is well developed in all villages except urban centres and mining patches around Jaysingpur. Due to surrounding urban patches employment opportunities have generated same time datta sugar factory have provided jobs.

Table – 6.4 : Summary of Irrigated and Un-Irrigated Land

Sr No	Category	Area in Ha.	Percentage
1	Total Irrigated Land Area	19785.2	63.77
2	Total Un-irrigated Land Area	11239.40	36.23

Source: District Census of Indian (Soft Copy in CD form)

Table – XXX represents the summary of total irrigated and un-irrigated land of 49 villages of study area. Total land of study area is 31024.6 ha. out of which total irrigated land is 19785.2 ha. In other words out of total area 57% land is un-irrigated and rest 43% land is irrigated (Figure XXX).

Fig. 6.3

6.8 Source of Irrigation

The India is agriculture based country but most of the agricultural land is giving proper returns. The agriculture of an area will develop if irrigation facilities are well developed. Unfortunately most of agriculture in un-irrigated hence it is essential to comprehend the status of irrigation in study area. Because the irrigation facilities can change the landuse as well as socio-economic condition of study area. The irrigation system of Krishna and Panchganga river is well developed.

Category	Area in Ha.	Percentage to Total Irrigated Area
Canals (C)	2981	15.07
Wells/Tube-wells (W/TW)	7244.8	36.62
Tanks/Lakes (T/L)	726.6	3.67
Water Falls (WF)	0	0.00
Others (O)	8832.8	44.64
Total	19785.2	100.00

Source: District Census handbook

There are different sources of irrigation like canal, well/tube well, tank, river, etc. The total irrigated area is 19785.2 ha by various sources of irrigation i.e. canal, well/tube well, tank, etc. The highest land is irrigated by other sources of irrigation (8832.8 ha.) which is 44.64% to total irrigated area. The river irrigation is main source of irrigation in study area. The second highest category is wells and tube wells is 7244.8 ha (36.63%.). The proportion of tanks and lakes is 3.67% (726.6 ha) and this area is of plane topography hence water fall are not available hence no irrigation is developed on waterfall.

6.9 Village wise Irrigation

The general irrigation pattern of study is discussed in above section. But to understand clear condition up to local level village wise irrigation condition is represented in below given table. In this table irrigation status of urban areas the data is not given as it is not available. The villages near to river are having quite good share of irrigated land whereas in villages in urban fringe areas un-irrigated land is more. There are few villages like Chichvad, Chipari, Haroli, Hasur, Herwad, etc. Villages like Nandni, Kurundwad, Kondigre, etc. are having share

of wells and tube wells is more. Villages like Danoli, Shirati, Udgaon, Mhaisal, etc. are having river irrigation share more. The share of waterfall is nothing.

Table No – 6.6: Village-wise Irrigation Status of Study Area

Villages / City	Canals (C)	Wells/Tube- wells (W/TW)	Tanks/Lakes (T/L)	Water Falls (WF)	Others (O)
Arjunwad	0	0	0	0	424
Aurwad	0	0	0	0	203
Bastawad	0	0	0	0	0
Bubnal	0	567	0	0	0
Chichvad	250.6	44	0	0	0
Chipari	52.2	69.7	0	0	0
Danoli	0	0	7.8	0	1387.2
Dharangutti	0	140	0	0	0
Gaurwad	0	0	0	0	125.2
Ghalwad	0	50	0	0	449.7
Haroli	73	107	0	0	30
Hasur	223.2	45.1	0	0	0
Herwad	325	125	0	0	0
Jainapur	0	122	0	0	0
Jambhali	0	20.4	0	0	41.6
Jayshingpur (R.)	0	48.5	0	0	0
Kanwad	0	219	0	0	0
Kavatheguland	867	0	0	0	0
Kondigre	26.5	123.5	0	0	0
Kurundawad (R)	0	922.7	0	0	0
Kutwad	0	0	0	0	160
Lat	0	187	0	0	392
Majarewadi	0	152.3	0	0	0
Nandani	0	238.9	0	0	289.1
Nimshirgaon	208	80.1	0	0	0
Nrusinhawadi	320.5	0	0	0	0
Shedshal	0	0	0	0	413.6
Shirati	0	9	0	0	1100.1
Shirdhon	0	1600	188.8	0	0
Shirol	0	0	0	0	530
Takavade	0	871	0	0	0
Terwad	530	95	0	0	0
Udagaon	0	60	0	0	900

Umalwad	105	80	0	0	0
Yadrav	0	152.9	0	0	0
Ankali	0	44.8	0	0	350.1
Bamani	0	251.7	0	0	0
Dhavali	0	0	0	0	568.3
Haripur	0	75	0	0	145
Inam Dhamani	0	0	0	0	464.6
Mhaisal (s)	0	557.2	0	0	637.3
Nilaji	0	0	0	0	357
Vaddi	0	50	0	0	395
Vijay Nagar	0	136	0	0	0
Total	2981	7244.8	726.6	0	8832.8

Source : District Census handbook

6.10 LANDUSE STUDY WITH SATELLITE DATA

The first thing people ever used to meet their basic needs was land – to feed themselves, to move around and to settle. Hence, the relationship of people with land is as old as man. When the users of land decided to utilize it for different purposes, land use / land cover change occurs producing both desirable and undesirable impacts.

The analysis of land use / land cover change is essentially the analysis of changing relationship between people and land. The use to which we put land could be grazing, agriculture, urban development, and mining among many others. *Land use* is the way in which, and the purposes for which, human beings employ the land and its resources e.g. farming, mining, lumbering, etc. *Land cover* describes the physical state of the land surface i.e. cropland, forests, wetland, water bodies among others (Meyer, 1995). In this section landuse condition is studied with help of satellite image digital image processing.

Figure XXX is represents the study area in true colour satellite image. In below given figure the 10 km boundary of study area is overlaid on 1 meter spatial resolution satellite image dataset. Figure XXX represents the village wise status of study area on 1M spatial resolution. The roads, river, land parcel, crop land and other features are clearly visible in this image. The landuse classification of NRSC is used to represent the condition in study area. The yellow patch is agriculture land and read patches are built-up. The image classification work is carried out on the dataset which is acquired from Enhanced Thematic Mapper (ETM+) sensor (Fig. XXX). The green patches are agriculture land, read are settlement patches and blue is the water body. The last figure represents the road network of study area.

Shree Datta Shetkari Sahakari Sakhar Karkhana Ltd., Shirol Satellite Image View

Fig. 6.5

110

SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India E-Mail : klp.dattsssk@gmail.com Shree Datta Shetkari Sahakari Sakhar Karkhana Ltd., Shirol

6.11 Limitation Fig.6.9

There are total 49 villages / urban centres but these all are not fully 100% inside 10 km limit; rather the coverage area is varying from 5% to 95%. In calculation and tables the area of village is considered as 100% for analysis; not as per its proportion. The spectral signature of satellite image is having problem which put limitation on image classification process.

ECOLOGY AND BIODIVERSITY

CHAPTER - 7

An ecosystem is a natural unit consisting of all plants, animals and micro-organisms in an area functioning together with all of the non-living or physical factors of the environment. Services derived from ecosystems are referred to as ecosystem services. They may include facilitating the enjoyment of nature, which may generate many forms of income and employment, water retention, thus facilitating a more evenly distributed release of water, soil protection, open-air laboratory for scientific research, etc. Critical processes at the ecosystem level influence plant productivity, soil fertility, water quality, atmospheric chemistry, and many other local and global environmental conditions that ultimately affect human welfare. These ecosystem processes are controlled by diversity and identity of the plant, animal and microbial species living within a community. Human modifications to the living community in an ecosystem as well as to the collective biodiversity of the earth can therefore alter ecological functions and life support services that are vital to the well being of human societies. Ecosystem functioning reflects the collective life activities of plants, animals and the effect of their activities on feeding, growing, moving, excreting waste etc. have on the physical and chemical conditions of the environment.

An ecological study becomes an important tool for decision making. It gives us an idea about the losses or benefits to the environment due to upcoming projects in the area. The changes taking over the time can be quantified and related to the existing environmental conditions and can be used for monitoring the biological environment of the proposed establishment or expansion of the unit. The area considered for study is 10 kilometres of periphery around the project site.

7.2 Objectives of the ecological studies:

Following are the specific objectives to conduct ecology and biodiversity study to understand status of an ecosystem.

- i. To identify and finalize ecological sampling sites of the study area.
- ii. To study types of forests if any in the study area.

- iii. To prepare checklist of floral components like herbs, shrubs and trees.
- iv. To identify rare and endangered species in the study area.
- v. To prepare check list of phytoplankton and zooplankton of the study area.
- vi. To study ecologically sensitive areas like national parks or wildlife sanctuaries in the study area.
- vii. To study specific flora and fauna for their species richness and diversity by biodiversity indices.

7.3 Survey Methodology:

The survey for ecology and biodiversity study was conducted around 10 km radius of the sugar factory unit. Before stating actual survey the toposheets, land use maps and goggle satellite images were used. The field study was conducted during June - July, 2016. The visit to the study sites were carried out during the morning and evening time when maximum movements of birds and animals can be seen.

The study area was divided in to two zones namely Core Zone within 5 km. radius and Buffer Zone from 5 km. to 10 km. radius from the distillery site. The core zone is a area under immediate impact and buffer zone is comparatively having less impact. The total study area is divided in to grids of 1 sq. km. The stratified random sampling method was adopted for complete study. The 6 grids were studied from the core zone and 5 grids were studied from the buffer zone were studied. Within each of these sites according to habitat type the quadrates and line transects were laid down. For the floral component study quadrates of 100 m x 100 m were used in each grid. The bird life was studied by line transect of 1 km. in the grid. This methodology is useful to understand species richness and diversity of plants. The other floral and faunal components were studied by visual encounter survey, secondary data including Government Gazettes and published literature, and discussion with local people. The aquatic planktons were studied Krishna river on East and Panchganga river on South in the study area. There is no National Park, Wildlife Sanctuary, Biosphere Reserve, Wildlife corridor, Tiger / Elephant Reserves within

the study area, which has been confirmed with Forest Department and with available literature.

Map of study sites with grids :

7.4 Assessment of flora : Fig.7.1

The sugar factory site is located on plain area about 540 below mean sea level and the rainfall in this area is 600 mm and lasts for a span of four months. The soil of this area is deep black cotton soil. It is supposed to be very fertile soil and the cash crops like sugarcane, jowar, maize, cotton and commercially important vegetables like brinjal are grown in this area. Mainly the vegetation observed in the factory area and its 10 km radius is cultivated and mostly agricultural crops. The factory has very good and well maintained nursery supplying plantlets to the nearby area people. Due to water logging

formation of saline soil is the main problem. The natural vegetation is mainly dominated by Acacia sps. like Babhul, Gulmohar, Neem, Mango, Jambhul. The factory had grown supari (areca nut), coconut trees in large numbers which is also giving good amount of yield.

7.4.1 Agricultural and Commercial Crops :

Agricultural activity is mainly confined to South West monsoon months of July to September. In some areas during post monsoon months agricultural crops are depending on the irrigation from river Krishna and Panchganga. The dominant agricultural crops of the project area consist of Sugarcane (*Sacchaum officinarum*), Jawar (*Sorghum vulgare*), Maize (*Zea mays*), Grape, Brinjal (*Solanum melongena*) whereas some other commercial crops are also grown in the area.

Cr.	Crop variaty	Family	Botanical	Trado/Vorpagular
5r.	Crop variety	Falliny	BOldifical	Trade/ Vernacular
NO.				name
I	Cereals	Poaceae	Sorghum valgare	Jawar
		Poaceae	Zea mays	Maige
П	Sugarcane	Poaceae	Saccharum officinarum	Sugarcane
Ш	Vegetables	Malvaceae	Abellmotchus escnlentns	Bhendi
		Cucurbitaceae	Momordica charantia	Karela
		Cucurbitaceae	Cucumis sativus	Kakadi
		Cucurbitaceae	Citrullus lanatus	Tarbuj
		Solanaceae	Capcicum annum	Mirchi
		Solanaceae	Solanum melongena	Brinjal
		Amaryllidaceae	Allium cepa	Onion
		Brassicaceae	Brassica oleracea var.	Cabbage
			capitata	
		Brassicaceae	Raphanus sativus	Radish
		Convolvulaceae	Ipomoea batatas	Sweet Potato
		Apiaceae	Daucus carota subsp. sativus	Carrot
		<u>Solanaceae</u>	Solanum lycopersicum	Tomato
		Fabaceae	Trigonella foenum-graecum	Fenugreek
IV	Pulses	Fabaceae	Cajanus cajan	Piegion Pea
		Fabaceae	Cicer arietinum	Chick Pea
		Fabaceae	Vigna unguiculata	Cow Pea

Table 7.1 List of Agricultural and Commercial Crops :

		Fabaceae	Lablab purpureus	Pavata
		Fabaceae	Glycine max	Soybean
		Fabaceae	Vigna mungo	Udid
		Fabaceae	Vigna radiate	Moong
		Fabaceae	Pisum sativum	Watana
		Fabaceae	Macrotyloma uniflorum	Kulliith
		Anacardiaceae	Mangifera indica	Mango
		Vitaceae	Vitis vinifera	Grapes
		Musaceae	Musa Linnaeus	Banana
V	Fruits	Sapotaceae	Manilkara zapota	Chiku
		Rhamnaceae	Ziziphus mauritiana,	Bor / Ber
		Myrtaceae	Psidium guajava	Gauva
		Caricaceae	Carica papaya	Рарауа
		Legumes	Arachis hypogaea	Groundnut
VI	Oil crops	Asteraceae	Helianthus annuus	Sunflower
		Pedaliaceae	Sesame indicum	Javas
		Malvaceae	Hibiscus cannabinus	Ambadi
VII	Fiber crops	Malvaceae	Gossypium herbaceum	Cotton

7.4.2 Ornamental Plants:

The Sugar factory has its own nursery of 72 acres of area and variety of ornamental as well as commercially important horticulture plants are grown and distributed to farmers. Lawn on 14 acres is also a good sign of carbon sequestration. There are also number of 'Green Houses' in the 10 km radius of distillery site which grow some ornamental plants, roses and even some vegetables. The following species have been grown in nursery, gardens and at public places.

Table 7.2List of Ornamental Plants

Sr. No.	Common Name	Scientific Name	Family
1	Chafa	Plumeria rubra	Apocynaceae
2	Cycas	Cycas rivoluta	Cycadaceae
3	Ficus	Ficus benjamina	Moraceae
4	Idlimbu	Citrus maxima L.	Rutaceae
5	Jaswand	Hibiscus rosa sinensis	Malvaceae
6	Kaneri	Nerium oleander	Apocynaceae

7	Mehandi	Lawsonia inermis	Lythraceae
8	Parijatak	Nyctanthes arbor-tristis	Oleaceae
9	Royal Palm	Roystonea regia	Arecaceae
10	Sadaphuli	Vinca rosea	Apocynaceae
11	Satavari	Asparagus racemosus	Asparagaceae
12	Zendu	Tagetes erecta	Asteraceae
13	Bogunvel	Bougainvillea glabra	Nyctaginaceae
14	Rain tree	Albizia saman	Fabaceae
15	Kamal	Nelumbo nucifera	Nelumbonaceae
16	Duranda	Duranta erecta	Verbenaceae
17	Lili	Lilium candidum	Liliaceae
18	Kham suru	Casuarina equisetifolia	Casuarinaceae
19	Dresina	Dracaena draco	Asparagaceae
20	Song of Indian	Dracaena reflexa	Asparagaceae
21	Fern	Asplenium bulbiferum	Aspleniaceae
22	Hydrangea	Hydrangea macrophylla	Hydrangeaceae
23	Mogara	Jasminum sambac	Oleaceae
24	Bottle palm	Hyophorbe lagenicaulis	Arecaceae
25	Exora	Ixora coccinea	Rubiaceae
26	Suru	Casuarina equisetifolia	Casuarinaceae
27	Kunda	Jasminum multiflorum	Oleaceae
28	Gulab	Rosa chinensis	Rosaceae
29	Asclepias	Asclepias syriaca	Apocynaceae
30	Kamini	Murraya paniculata	Rutaceae
31	Galanda	Gaillardia pulchella	Asteraceae
32	Silver oak	Grevillea robusta	Proteaceae
33	Limbu	Citrus aurantifolia	Rutaceae
34	Umbrela	Cyperus involucratis	Cyperaceae
35	Fan palm	Washingtonia filifera,	Arecaceae
36	Bottle Brush	Callistemon viminalis	Myrtaceae
37	Aralia	Aralia elata	Araliaceae
38	Croton	Codiaeum variegatum.	Euphorbiaceae
39	Beloperone	Justicia californica	Acantheceae
40	Dieffenbachia	Dieffenbachia bowmannii	Araceae
41	Asparagus	Asparagus officinalis,	Asparagaceae
42	Jam	Randia formosa	Rubiaceae
43	Star fruit	Averrhoa carambola	Oxalidaceae
44	Geranium	Geranium endressii	Geraniaceae
45	Money Plant	Pachira aquatica	Malvaceae

46	Kardali	Canna indica	Cannaceae		
47	Blasom	Impatiens balsamina	Balsaminaceae		
48	Cactus	Acanthocereus tetragonus	Cactaceae		

7.4.3 Natural vegetation:

Natural vegetation in the study area is predominant with 78 species including herbs, shrubs and trees. The barren area is not seen in this area as the entire area is irrigated. There are some water logged areas where mainly the population of babhul and vedi babhul which are tolerant to water are growing. Some land under cultivation is also becoming saline due to excessive irrigation. During the study following 78 species i.e. 13 herb species, 16 shrub species and 49 trees were observed.

Table 7.3 Herb vegetation:

HERBS				
Sr. No.	Local Name	Scientific Name	Family	
1	Agada	Achyranthes aspera	Amaranthaceae	
2	Dagadi pala	Tridax procumbens,	Asteraceae	
3	Gokarna	Clitoria ternatea L.	Fabaceae	
5	Harali	Cynodon Dactylon	Poaceae	
6	Kombada	Celosia argentea L.	Amaranthaceae	
7	Kongress	Parthenium hysterophorus	Asteraceae	
8	Pankanis	Typha Elephantina	Typhaceae	
9	Rangavi	Solanum anguivi Lam.	Solanaceae	
10	Reshim Kata	Alteranthera triandra	Amaranthaceae	
11	Sarata	Tribulus terrestris Linn	Zygophyllaceae	
12	Agada	Achyranthes aspera	Amaranthaceae	
13	Lavhala	Pandanus tectorius	Pandanaceae	

Table No. 7.4 Shrub vegetation:

SHRUBS					
Sr. No.	Local Name	Scientific Name	Family		
1	Besharmi	Ipomoea Carnea	Convolvulaceae		
2	Bor	Ziziphus mauritiana	Rhamnaceae		
3	Dhotara	Datura wrightii	Solanaceae		
4	Earand	Ricinus communis	Euphorbiaceae		
5	Ghaneri	Lantana Camara	Verbenaceae		
6	Kanheri	Nerium oleander	Apocynaceae		

7	Kekatad	Agave	Asparagaceae
8	Koranty	Barleria cristata	Acanthaceae
9	Korphad	Aloe vera	Asphodelaceae
10	Lajalu	Mimosa pudica L.	Leguminoceae
11	Niragudi	Vitex negundo	Lamiaceae
12	Rui	Calotropis gigantea	Apocynaceae
13	Sher	Euphorbia tirucalli	Euphorbiaceae
14	Taravad	Prosopis juliflora	Fabaceae
15	Tuti	Morus alba	Moraceae
16	Mogali Erand	Jatropha curcas	Euphorbiaceae

Table 7.5 Tree vegetation:

	TREE				
1	Aamba	Mangifera Indica	Anacardiaceae		
2	Ashoka	Polyalthia Longifolia	Annonaceae		
3	Babhul	Acacia nilotica	Fabaceae		
4	Badam	Terminalia catappa	Combretaceae		
5	Bahava	Cassia fistula	Fabaceae		
6	Bamboo	Bambusa vulgaris	Poaceae		
7	Chafa	Plumaria obtusa	Apocynaceae		
8	Chandan	Santalum album	Santalaceae		
9	Chiku	Achras sapota	<u>Sapotaceae</u>		
10	Chinch	Tamarindus indica	Fabaceae		
11	Coconut	Cocos nucifera L.	Arecaceae		
12	Cycus	Cycas revoluta	Cycadaceae		
13	Gulamohar	Delonix regia	Fabaceae		
14	Hinganbet	Balanites aegyptiaca	Balanitaceae		
15	Jambhul	Syzygium cumini	Myrtaceae		
16	Kadipata	Murraya koenigii	Rutaceae		
17	Kadunimb	Azadirachta indica	Meliaceae		
18	Karanj	Pongamia pinnata	Fabaceae		
19	Keli	Musa paradisium	Musaceae		
20	Nilgiri	Eucalyptus obliqua	Myrtaceae		
21	Palas	Butea monosperma Kuntze	Fabaceae		
22	Palm	Roystonea regia	Arecaceae		
23	Рарауа	Carica papaya	Caricaceae		
24	Peru	Psidium guajava	Myrtaceae		
25	Pimpal	Ficus religiosa	Moraceae		
26	Ramfal	Annona reticulata	Annonaceae		
27	Sagavan	Tectona grandis	Lamiaceae		
28	Shevaga	Moringa oleifera	Moringaceae		

29	Shitafal	Annona squamosa	Annonaceae
30	Umbar	Ficus racemosa	Moraceae
31	Vad	Ficus Benghalensis	Moraceae
32	Vedi Babhul	Prosopis juliflora	Fabaceae
33	Vilayati Chinch	Pithecellobium dulce	Fabaceae
34	Supari	Areca catechu	Arecaceae
35	Aapata	Bauhinia racemosa	Fabaceae
36	Kanchan	Phanera variegata	Fabaceae
37	Aavala	Phyllanthus emblica,	Phyllanthaceae
38	Tamalpatri	Cinnamomum tamala,	Lauraceae
39	Cherry	Prunus cerasus	Rosaceae
40	Jaiphal	Myristica fragrans	Myristicaceae
41	Rain tree	Albizia saman	Fabaceae
42	Anjir	Ficus carica	Moraceae
43	Shampen Palm	Hyophorbe lagenicaulis	Arecaceae
44	Morpanki	Platycladus orientalis	Cupressaceae
45	Khrismas tree	Araucaria columnaris	Araucariaceae
46	Traveller Plam	Ravenala madagascariensis	Strelitziaceae
47	Rubber	Ficus elastica	Moraceae
48	Ficus	Ficus carica	Moraceae
49	Umbrela	Cyperus alternifolius	Cyperaceae

Cyperus rotundus

Oleracea portulaca

Alternanthera triandra

Tridax procumbens

Arachis hypogaea

Ipomea carnea

Syzyguum cumuni

Nelumbo nucifera

Delonix regia

Duranta repens

Roystonea regia

Cocos nucifera

Phyllostachys aurea

Musa acuminata

Mix cropping

Calendula officinalis

7.5 Species diversity index and species richness of plant population

Biodiversity refers to the number and variety of organisms within a particular area. It is always used as a measure of the health of biological system. Species diversity is a characteristic unique to the community level of biological organization. Higher species diversity is generally thought to indicate a more complex and healthier community because a greater variety of species allows for more species interactions. Hence, a greater system stability indicates good environmental conditions. Species richness is the number of different species present in an area. The more species present in a sample area the 'richer' the area.

In the present study "Shannon – Weiner Index" and "Species Richness" is calculated for the natural vegetation occurring in the study area. The study area was divided in to grids of 1 sq. km. The stratified random sampling method was adopted for the study. The herbs, shrubs and trees were studied by quadrate method. One quadrate taken for study was of 100 m x 100 m. The 6 grids from the core zone and 5 grids from the buffer zone were studied.

Table from the sites studied for plant and site indices					
Site	Region	Village	Latitude	Longitude	
No					
		Sugar Factory			
1		premises	16°45'01.32"N	74°35'11.88"E	
2	Core	Shirol	16°43'40.01"N	74°35'54.38"E	
3		Nandani	16°43'33.76"N	74°32'35.89"E	
4		Jaysinghpur	16°46'59.58"N	74°33'31.05"E	
5		Chinchwad	16°47'37.46"N	74°36'14.18"E	
6		Arjunwad	16°46'47.87"N	74°37'35.67"E	

Table No.7.6 the sites studied for plant and bird indices

7		Inam Dhamani	16°49'23.55"N	74°35'07.95"E		
8	Buffer	Jambhali	16°43'26.01"N	74°30'50.42"E		
9		Kutwad	16°44'32.07"N	74°40'06.31"E		
10		Jainapur	16°47'10.29"N	74°30'51.93"E		
11		Terwad	16°40'11.98"N	74°34'56.21"E		

Table 7.7 Shannon Weiner Index and Species richness of plant population in study area.

Site No	SW Index	Sp.
		Richness
1	2.76	109
2	3.17	57
3	3.41	47
4	3.38	61
5	3.40	56
6	3.37	61
7	3.01	52
8	3.35	54
9	3.55	62
10	3.33	60
11	3.32	50

 Table 7.8 Category wise Index of total study area:

Type of vegetation	SWI	Species Richness
Tree	2.54	50
Herb	2.16	17
Shrub	2.26	17

From the above tables it can be stated that the Site No. 9 i.e. Kutwad is located near Krishna river shows highest 'Shannon Weiner Index' suggesting maximum species diversity. Species richness i.e. number of species is maximum at sugar factory site where maximum plantation is found as well as the factory has iots own nursery with variety of plant species grown for distribution to the farmers. Therefore, it is worth to mention that the organisation should take care of all these species in this area.

7.6 Faunal study:

Fauna includes all invertebrate and vertebrate animals. With plants these animals maintain balance of the ecosystem and therefore, fauna of a particular region indicates environmental conditions and the well being of the population residing in the area. As the animals are very sensitive and have capacity to move from one place to another, any change or modification in the ecosystem may lead to death or migration from the region and

therefore, they are considered as best indicators of the ecosystem function. It helps to understand pollution level, biological richness, habitat change as well as to quantify any change in species composition.

Following methodology is being used to prepare a comprehensive list of fauna of the study area.

- i. Secondary sources like Government Gazettes, news articles and published literature.
- ii. Interviews of local people.
- iii. Sighting of animals during survey visits.
- iv. Bird and animal calls.
- v. Nesting and roosting.
- vi. Line transects for birds.

The study area has very rich fauna. During the study visits 7 molluscs, 16 insect species, 14 Butterfly species, 8 Dragon fly species, 1 crab, 10 fish species, 3 Amphibian species, 16 Reptile species and 21 Mammalian species were spotted and they are listed in the table. There are 10 species are predominant in the rivers and streams of this area which have been taken from the available literature and information from local people and fisherman.

An exhaustive list of birds have been prepared by line transect as well as spotting of birds during movement of team during visit. 59 bird species belonging to 16 orders are spotted and most of them are included in Schedule IV and V and 5 are in Schedule I of Wildlife Protection Act, 1972. With literature survey and information from the Forest Department reveals that the study area is not having any scheduled animal.

Table 7.9 the list of mammals, amphibians, reptiles, butterflies, fishes, insects and dragonflies found in the study area.

	Sr.	Common Name	Scientific Name
	No.		
Mammals	1	Fruit Eating Bat	Rousettus spp.
	2	Indian gray mangoose	Herpested edwardsil
	3	Stripped Squirrel	Funambulus palmarum
	4	Sasa	Lepus refieeandatus
	5	Kolha	Canis aureus
	6	Landaga	Canis pallipes
	7	Ox	Bos indicus
	8	Donkey	Equus asinus
	9	Sheep	Ovis aries
	10	Dukkar	Sus scrofa davidi
	11	Cow	Bos primigenius
	12	Goat	Capra hircus aegagrus
	13	Common House Rat	Rattus rattus
	14	Indian Field Mouse	Mus booduga
	15	House Mouse	Mus musculus
	16	Cat	Felis silvestris catus
	17	Dog	Canis lupus familiaries
	18	Domestic Buffalo	Bubalus bubalis
	19	Chinkara	Gazella gazelle bennetti
	20	Common Langur	<u>Simia entellus</u>
	21	Indian Hare	Lepur nigricollis
Amphibians	1	Common Frog	Polypedates eucomystax
	2	Indian Bull frog	Rana tigrina
	3	Common Indian Toad	Bufo melanostictus
Mollusc	1	Terrestrial snail	Macrochlymus indica
	2	Common Snail	Cryptozona bistrilis
	3	Land Snail	Glessula sp
	4	Brown Slug	Mariaella dussumieri
	5	Freshwater Snail	Physella acuta
	6	Quilted melania	Tarebia granifera
	7	Mussel	Margaritifera margaritifera
Arthropod	1	Crab	Paratelphusa jaquemontii
Reptiles	1	Mugger	Crocodylus palustris
	2	House gecko	Hemidactylus brooki
	3	Common Garden	Calotes versicolor
		Lizzards	

E-Mail : klp.dattsssk@gmail.com **Rock Lizzard** Psmmophilus blanfordanus 4 **Monitor lizzard** 5 Varanus benghalensis 6 Skink Lampropholis guichenoti 7 **Rat Snake** Ptyas mucosa 8 **Checkered keel back** Xernochrophis piscator 9 Nag Naja naja 10 Ghonas Vipera rusellii 11 Saw-scaled viper Echis carinatus 12 **Banded** racer Argyrogena fasciolata **Banded krait Bangarus** caeruleus 13 14 **Russel Viper** Viperarusseli Trinket Coelognathus helena 15 **Indian Flap shell** Lissemys punctata 16 Turtle **Butterfly** 1 **Common Rose** Pachliopta aristolochae 2 Zebra Blue Leptotes plinius 3 **Chocklate Pancy** Junonia iphita Melanitis leda 4 **Common Evening** Brown **Common Emigrant** Catopsilia pyranthe 5 Danaus genutia 6 Stripped Tiger **Common grass yellow** Eurema hecabe 7 8 **Common Indian crow** Euploea core 9 **Red Pierrot** Talicada nyseus 10 Zizina otis Laser grass blue 11 Psyche Leptosia nina 12 **Denaid Eggfly** Hypolimnus misippus 13 **Plain Tiger** Danaus chrysippus 14 **Plain Cupid** Chilades pandava **Fishes** 1 Katla Katla katla 2 Kolshi Puntius kolus 3 Labeco rohita Rohu Cirrhinus cirrhosus 4 Mrigal 5 Murrel Channa marulius 6 Wam Mastacembelus armatus 7 Loach Bhavania australis 8 Silver Carp Hypopthalmichthys molitrix 9 **Grass Carp** Ctenopharyngodon idella 10 Tilapia Oreochromis mossambica Insect 1 Dung fly Leptocera caenosa 2 Jwell Bug chrysocoris stolli 3 Forficula auricularia, Earwig

SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India E-Mail : kin dattsssk@gmail.com
E-Mail : klp. <u>dattsssk@gmail.com</u>				
	4	Grass hopper	Cyrtacanthacris tatarica	
	5	Honey bee	Apis dorsata	
	6	Common black ground beetle	Pterostichus melanarius	
	7	Cow dung Beetle	Onthophagus catta	
	8	House Cricket	Acheta domestica	
	9	Termites	Odontotermes wallonensis	
	10	Stick insect	Carausius morosus	
	11	Emerald cockroach	Ampulex compressa	
		wasp		
	12	Hover fly	Mesembrius insignis	
	13	Carpenter bee	Xylocopa micans	
	14	Millipede	Narceus americanus	
	15	Wolf Spider	<u>Hogna lenta</u>	
	16	Mantis	Euantissa pulchra	
Dragon fly	1	Long leged marsh skimmer	Trithemis Pallidinerries	
	2	Ditch Jewel	Brachythemis contaminata	
	3	Damcel Fly	Pseudagrion decorum	
	4	Senegal golden dartlet	Ischnura senegalensis	
	5	Yellow bush dart	Copera marginipus	
	6	Crimson marsh glidder	Trithemis aurora	
	7	Ruddy marsh skimmer	Crocothemis servilia	
	8	Ground skimmer	Diplacodes trivialis	

Ptyas mucosa Fig.7.3

Mugger observed in study area

Bubalus bubalis

Canis lupus familiarizes

Sr.	Order	Family	Common Name	Scientific Name	Sche
1	Accinitriformes	Accinitridae	Black winged Kite Flanus caeruleus		
	Accipititionnes	Accipititude	Brohminy Kito	Brohming Kite	
			Didiminy Kile		
	Amerifer	Antidaa	Black Kite	ivilivus migrans	
2	Ansemormes	Antidae		Anas	
<u> </u>			Indian spotbilled duck	Poecileorhyncha	IV
4	Ciconiiformes	ciconiidae		Mycteria	
			Painted Stork	leucocephala	IV
			Wooly necked Stork	Ciconia episcopus	
			Rock Pigeon	Columba livia	
5	Columbitormes	Columbidae		Spilopelia	n <i>.</i> /
			Laugning Dove	senegalensis	IV
			Furneriere cellered Deve	Streptopella	N7
		-	Eurasian collard Dove	aecaocto	IV
			Spotted Dava	stigmatopena	11/
		Scolonacidao	Common Sandningr	Actitic hypoloucos	
6	Charadriiformes	<u>Scolopacidae</u> Charadriidae		Actitis hypoleucos	
	charadimornes	Charadridae	Red wattled Lapwing	Vanellus Indicus	IV
		<u>Sternidae</u>	River tern	Sterna aurantia	
		<u>Recurvirostrida</u>	Black winged stilt	Himatopous	IV
			Common Kingfisher	Alcedo atthis	IV
7	Coraciiformes	Alcedinidae	White throated		
			Kingfisher	Halcyon smyrnesis	IV
		Meropidae	Green bee Eater	Merops orientalis	
8	Cuculiformes	Cuculidae		Centropus	
			Southern Coucal	(sinensis) parrotia	IV
				Eudynamys	
			Asian Koel	scolopaceus	IV
		Corvidae	House Crow	Corvus splendens	V
	_			Corvus	
	Passeriformes		Jungle Crow	macrorhynchos	V
		Dicruridae		Dicrurus	
			Black Drongo	macrocercus	IV
		Passeridae	House Sparrow	Passer domesticus	IV
		Cisticolidae	Plain Prinia	Prinia inornata	IV
			Jungle Prinia	Prinia sylvatica	IV
			Ashy Prinia	Prinia socialis	IV
		Muscicapidae	Oriental Magpie	Copsychus	
			Robin	saularis	IV
			¹⁰¹ Indian Robin	Saxicoloides	IV

SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO: DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India E-Mail : klp.dattsssk@gmail.com fulicatus **Pied Bushchat** Saxicola caprata IV Pycnonotidae **Red vented Bulbul** Pycnonotus cafer IV Motacillidae White browed Motacilla Wagtail maderaspatensis IV Paridae Great tit Parus major Nectariniidae Purple Sunbird **Cinnyris asiaticus** IV Purple rumped Leptocoma Sunbird zeylonica IV Sturnidae **Acridotheres Common Myna** tristis IV Jungle Myna Acridotheres fusus IV Sturnia brahminy starling pagodarum IV **Estrildidae** Euodice **Indian Silverbill** malabarica IV lonchura Scaly brested Munia Punctulata IV **Tri-Coloured Munia** Lonchura malacca Ploceidae Ploceus Baya, Weaver philippinus IV Hirundinidae Wire tailed Swallow Hirundo smithlli ____ **Red rumped Swallow** Cecropis daurica ---Leiothrichidae Turdoides malcolmi Large grey Babbler IV Laniidae Bay Backed Shrike Lanius vittatus ---**Pelecaniformes** 10 Ardeidae Indian pond Heron Ardeola grayii IV **Grey Heron** Ardea cinerea IV Ardea alba **Great Egret** Egretta Intermediate Egret intermedia IV Little Egret Egretta garzetta IV Threskiornithid Threskiornis ae **Red- naped Ibis** melanocephalus IV **Psittaciformes Psittacidae** 11 **Rose ringed Parakeet** Psittacula krameri IV **Podicipediformes** Podicipedidae 13 Tachybaptus **Little Grebe** ruficollis IV Galliformes Phasianidae 14 Coturnix coturnix IV **Common Quail** Francolinus **Grey Francolin** pondicerianus IV Indian Peafowl Pavo cristatus L

	SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India E-Mail : klp.dattsssk@gmail.com						
15	15 Gruiformes Accipitridae Shikra Accipiter badius I						
	White breasted Amaurornis						
		Rallidae waterhen phoenicurus					
	Porphyrio						
	Purple Swamphen porphyrio						
16	Suliformes	Phalacrocoraci		Phalacrocorax			
		dae	Little Cormorant	niger	IV		

Table No. 7.10 the list of bird species found in the study area.

Zizina otis

Himatopous himantopous Fig.7.4

Merops orientalis

Ploceus philippinus

Ardea cinerea

Lanius vittatus

Saxicola caprata

Amaurornis phoenicurus

Anas Poecileorhyncha

Ardea alba

Lonchura malacca

7.7 Species diversity index and species richness of bird population :

In the present study "Shannon – Weiner Index" and "Species Richness" is calculated for the bird population in the study area. The study area was divided in to grids of 1 sq. km. The stratified random sampling method was adopted for the study. The 6 grids from the core zone and 5 grids from the buffer zone were studied. In these grids line transects of 1 km. length were taken and by standard protocol of line transect birds were listed. The calculations were carried out for "Shannon – Weiner Index" i. e. species diversity and "Species Richness". It is found that the site no. 1 and 6 Andhalgaon is showing maximum diversity and site no. 1 is showing maximum richness of bird species. The area is fertile and therefore, the bird population is good due to availability of food in the area.

Site No	SW Index	Sp.
		Richness
1	2.66	48
2	2.12	20
3	2.15	42
4	2.05	43
5	2.21	18
6	2.66	34
7	1.63	14
8	1.87	14
9	2.24	34
10	2.29	40
11	2.21	18

 Table 7.11 Shannon Weiner Index and Species richness study of bird population in study area.

7.8 Aquatic ecosystem :

Life evolved in aquatic environment and therefore it is not surprising that aquatic ecosystem contain areas of high biodiversity and abundance. The sugar factory site is located on plain area about 540 mean sea level and the average rainfall in this area is 600 mm and lasts for a span of four months. The aquatic planktons were studied from Krishna River on East and Panchganga River on South in the study area. During the visits to the study area the team has collected samples of water mainly from river by plankton net with mesh size = 625 is equal to 625 holes in 1.25cm. The references and cross references from the study area are also being used to confirm plankton.

a. Diatoms and Dinoflagellates :

Diatoms and Dinoflagellates are single celled eukaryotic algae. Diatom cells are encased in glass like silica and resempble like petridish. They contain chlorophyll and are producers. Dinoflagellates are eukayotic cells covered by theca or sheath and usually with two flagella. They also have capacity to produce their own food. Presence of Diatoms and Dinoflagellates in aquatic ecosystem becomes support to zooplanktons.

b. Phytoplankton :

Phytoplankton as primary producers used as direct source of food by other aquatic plants and animals to maintain energy flow. Composition and development of phytoplankton get influenced by short and long term environmental changes in the aquatic ecosystem. Phytoplanktons are primary producers and very useful tools for the biomonitoring of water body with regard to its pollution status. Following families are represented viz. Cyanophyceae, Bacillophyceae, Chlorophyceae, Desmidiaceae and Acanthocystidae. Some of the genera such as Oscillate, Chrococcus, Cyclotella, Scenedesmus, Navicula etc were bioindicators of pollution.

c. Zooplankton :

The zooplankton community reflects the nature and potential of aquatic ecosystem. The composition depends on physico-chemical characteristics of the water. The zooplankton is the main food of fish population of the aquatic ecosystem. The major groups of zooplankton observed during study were Cladocera, Rotifera, Protozoa, Nematoda, Aostraca, Schizopyrenida and Copepoda.

Zooplankton List: Table No.7.12

Sr. No.	Group	Family	Scintific Name	
		Sididae	Diaphanosoma excisum.	
			Diaphanosoma sarsi.	
			Moina brachiata.	
			Moina macrocopa.	
		Moinidae	Moina rectirostris.	
			Moina micrura.	
1.			Moina oryzae.	
		Bosminidae	Bosminopsis deitersi.	
			Macrothrix goeldi.	
	Cladocera	Macrothricidae	Macrothrix laticornis.	
			Leydiga acanthocercoides.	
			Alona monocantha monocantha.	
			Alona cambouei.	
			Alona pulchella.	
		Chydoridae	Biapertura karua.	
		Chydoridae	Pleuroxus trigonellus.	
			Pleuroxus denticulatus.	
			Chydorus sphaericus.	
			Chydorus barroisi barroisi.	
			Chydorus reticulates.	
			Rhinediaptomus indicus.	
		Diaptomidae	Heliodiaptomus viduus.	
			Neodiaptomus stregilipes.	
	Copepoda		Tropocyclops prasinus.	
2.			Paracyclops fimbriatus.	
		Cyclopidae	Mesocyclops leuckarti.	
			Mesocyclops hyalinus.	
			Brachionus angularis.	
	Rotifera		Brachionus bidentata.	
			Brachionus caudatus.	

	E-N	lail : klp. <u>dattsssk@gn</u>	nail.com
		Brachionidae	Brachionus falcatus.
			Brachionus calyciflorus.
			Brachionus forficula.
			Brachionus bennini.
			Brachionus quadridentatus.
			Brachionus rubens
			Brachionus plicatilis
			Brachionus urceolaris
3.			Brachionus diversicornis
			Platyias quadricornis
			Platyias putulus.
			Keratella tropica.
			Keratella cochlearis
			Keratella quadrata.
			Platyias quadricornis
			Lecane leontina.
		Lecanidae	Lecane luna.
			Monostyla bulla.
		Fuchlanidaa	Euchlanis dilatata.
		Euchianidae	Euchlanis triquetra.
		Tostudinollo	Testudinella patina.
		restudinena	Pompholyx sulcata.
		Notommatidae	Cephalodella gibba.
		Acalonchaideo	Asplanchna priodanta.
		Aspianchnidae	Asplanchna brightwelli.
		Mutiliaidaa	Mytilina acanthophora
		wytiinidae	Mytilina ventralis.
		Colurellidae	Lepadella rhomboids.
		Trichoceridae	Trichocera similes.
		Filipidae	Filinia opoliensis.
		Filmidae	Filinia longiseta.
			Callidina bidens
		Philodinidae	Rotifer tardus.
			Rotatoria neptunia
		Meliceratidae	Lacinularia socialis.
		Trochospharidae	Horella brehmi.
		Cyprididae	Hemicypris fossulata.
4.	Ostracoda	Ilyocypridae	Ilyocypris gibba.
		Darwinulidae	Darwinula sp.
		Stenocyprinae	Stenocypris hislopi

Phytoplankton List: Table No. 7.13

Sr. No.	Family	Name
		Gomphosphaeria
		Anacystis
		Geotrichum
		Botryococcus
	Grananhuasaa	Phormidi
1.	Cyanophyceae	Oscillate
		Rivularia
		Gloeotrichia
		Synechocystis
		Chroccoccus
		Synedra
		Suriella
		Tabellaria
		Stauroneis
	Bacillariophyceae	Amphore
2.		Navicula
		Diatoma
		Fradilaria
		Asterionella
		Cyclotella
		Cymbella
		Spirogyra
		Chlorella
		Ankistrodesmus
		Pediastrum
		simplex
		Tetraspora
		Scenedesmus
3.	Chlorophyceae	Nitella
		Microspora
		Zygnema
		Ulothrix
		Mougeotia
		Coelastrum
		Cosmarium
		Tetrahedron

	=				
		Treubaria			
		Micractinium			
		Pochycladon			
		Anthrodesmus			
		Volvex			
		Sphaerocystis			
		Gonatozygon			
		Netrium			
4.	Hydrocharitaceae	Hydrilla			
5.	Desmidiaceae	Closterium			

Krishna River

Plankton Sampling in Krishna River

Margaritifera margaritifera

7.9 Pollutants absorbing and Carbon sequestrating plants :

Shree Datta Shetakari SSK Ltd., Shirol District Kolhapur is a sugar factory. During production of the factory is releasing air pollutants like smoke consisting particulate matter and various gases produced during the process. Therefore, there is a need to grow plants which can grow well in this area and also absorb air pollutants and toxins in the environment. Though the factory premises are having nursery and good plantation, following is the list of selected plants and trees which can be grown in the surrounding area of the factory.

Т	a	b	le	Ν	0.	7	.14	
	u	~	· •		•••			

Sr. No.	Local Name	Scientific Name	Family
1	Nandaruk	Ficus benjamina	Moraceae
2	Neem	Azadirachta indica	Meliaceae
3	Pimpal	Ficus religiosa	Moraceae
4	Gulmohor	Delaonix regia	Fabaceae
5	Vilayati chinch	Pithecolobium dulce	Fabaceae
6	Sitafal	Annona squamosa	Annonaceae
7	Tulas	Ocimum tenuifolium	Lamiaceae

CHAPTER -8

SOCI-ECONOMIC PROFILE OF THE PROJECT AREA 8.1 Introduction

Socio-economic livelihood in the project villages is of great concern while introducing an expanding the existing unit. Such project may carry both positive and negative impact on the society as a whole. Industries are required for the development, but not at cost of ecological and environmental degradation. Obviously, a tradeoff between the strong and the weak sustainability is essential. Environmentalists support the strong sustainability, while the economists support the weak sustainability. A combination of both is essential. It can be attained by minimizing the negative values and maximising the positive values, which ought to be the best practice of the management. A project would bring the positive impact on the socio-economic life of the people settled in the area without harming the sustainability provided it is well planned and managed. The tradeoff between the strong sustainability (environmentalist's approach to serve the ecology and environment) and weak sustainability (economist's approach to serve the society and the economy) can only be obtained through this method. Hence, a social impact assessment (SIA) becomes an integral part of the project.

Environmental Impact Assessment and Social Impact Assessment (SIA) extend the impact of the project on the livelihood of the natives in the study area. This chapter is devoted to assess the socio-economic impact of the expansion of the Datta Cooperative Sugar on the livelihood of the Shirol taluka.

SIA is a process in the project cycle. It is an attempt to identify and quantify the impacts of both positive and negative on the society and the environment as a whole. It is an attempt to make a project more beneficial, and convert those affected as project beneficiaries. It helps in planning for mitigation measures against any adverse impacts. It helps in evolving alternative participatory approach. However, it recognizes that all impacts (like social, cultural, and psychological) cannot be measured in a given short period. Participatory experience provides the real facts and the figures about the project impact on

the area in general and the livelihood in particular. Hence, methodology for SIA and EIA is essential.

8.2 Methodology

Charlie P. Wolf, the father of social impact assessment defines the social impacts as the "people impacts", which analyses and evaluates the conditions, causes and consequences of a change on the people; they live in a locality due to an industrial project. Making the best possible decision using the best available information in a systematic and proper manner is in fact the impact assessment. The SIA can be classified as economic impact, social and cultural impact and psychological impacts.

a. Field survey

The field survey is proposed to,

- identify all structures within the impact zone
- identify all families with in the impact zone
- provide some identification token for having covered under the survey
- identify family members by age, education and skill levels
- assess type and extent of loss to each family
- categorize families as per the type and extent of loss
- identify and quantify loss of infrastructure

b.Socio - economic study of Project Affected Persons (PAPs)

The socio - economic study of Project Affected Persons (PAPs) (sample) covers;

- demography details family size, sex ratio, literacy, dependency ratio,
- operational holding include lands leased in/out and encroached and cropping pattern
- other economic activities skill base
- employment status and migration pattern
- household income by sources
- type and amount of household expenditure
- health and nutritional status

social organization and leadership

c.Outcome of the survey

The expected outcome from the sample survey would be;

- an understanding of the socio-economic conditions of the affected and host population
- provide input to the preparation of RAP
- help identify relocation sites
- identify alternatives for economic rehabilitation
- types of social organizations and leadership available for community mobilization
- mechanism to resolve conflicts between displaced and host population effectiveness of implementing agencies

d. Steps of the SIA/EIA

The SIA/EIA includes the following steps;

- Social Screening
- Baseline Socio-Economic Survey
- Consultations
- Resettlement Action Plan (RAP)
- Tribal/Community Development Plan
- Income Restoration Plan
- Follow up Consultation
- Monitoring Mechanism
- Grievance Redress Mechanism

e.Study area

Every industrial project has its operational area. The Datta Sugar Cooperative is a multi-state cooperative sugar factory established as an agro-industrial enterprise in Shirol taluka. Its operational area covers 115 villages around the radius of 25 km covering the Karnataka (28 villages from Athani and Chikkodi talukas of the state) and 37 villages from Hatakangale, Kagal and Karveer talukas of the Kolhapur district. There are other sugar

factories around the Datta Sugar. The Shirol taluka covers 54 villages, of which 16 villages fall under the radius of 15 km around the Datta Suga .Theywere Shirol,Udagaon,Arjunwad,Ghalwad,Shirati,Nrusinhawadi,Aurwad,

Dharangutti,Chipari,Jambhali, Nandani,Kondigre,Jaysingpur (rural),Haroli,Umalwad andAgar bhag.All villages were selected for conducting the SIA study.

f.Objectives

The objectives are adopted in the assessment of socio-economic condition as given below.

- 1. To evaluate parameters defining socio-economic condition of the population.
- Analysis of the identified socio attributes like, population distribution, availability of public utilities, socio-economic livelihood etc. through literature like District Census Handbook, Agricultural Census, N S S study rounds etc.
- **3.** Primary household survey to assess the present socio-economic status of the families settled around the sugar factory.
- 4. Public opinion for industrial expansion in the study area. And the social impact on the general livelihood of the population after the industrial project.

g.Sources of information

As per the scope of the study, the information on socio-economic aspects has been gathered and compiled from several secondary sources. These include Taluka Office, district Collectorate, Agriculture Department, Irrigation Department, Central Ground Water Board, Department of Mines and Geology etc. The demographic data has mainly been compiled from the 'District Census Handbook, 2011' for Kolhapur District and the Socio-Economic Survey Report on the Kolhapur District, as these documents are comprehensive and authentic.

h.Sampling

Census survey is not essential when the samples are systematically selected to represent the universe. Using the Yamne's formula, the number of sampling is derived with the help of the formula given as under;

 $n = N / 1 + N (e)^{2}$

Where,

n = Sample size

N = Population size

e = Sampling error (0.052)

The (e) value is fixed at 0.052. Population size of the selected households in the study area (N) is 24815. Of which we are expected to make sample size (n) by using the formula as above. The actual figure we arrived at is 364, but the field response to it was 388, with the help of which we come to the conclusion about the project SIA.

> n = 24815/ 1 + 24815 (0.052)² n = 24815/1 + 24815 (0.002704) n = 24815/ 1 + 67.0005 n = 24815/68.0005 n = 364

(Actuallyfield response was 388)

The sampling has no stratification since the households are assumed to be the homogeneous groups of the society representing the social impact of the project. Even we have not derived the Kth sample for conducting the impact study. It would be very difficult to prepare the list of the households in the selected locality of 16 villages. We used the free-lance offer with first come first interviewed method to assess the impact. We used the structured questionnaire for conducting the interviews. The collected data information is processed and tabulated as per the social and economic parameters identified for measuring the impact of the project on the households.

Table No 8.1 Name of the Villages within the Radius of 15 KM

Sr. No.	Names of the villages	No. of households	Sample families selected for field survey
1	Shirol	6028	54
2	Udagaon	3136	20
3	Arjunwad	1151	47
4	Ghalwad	735	43
5	Shirati	1238	53

		699	
6	Nrusinhawadi	930	25
7	Aurwad	836	30
8	Dharangutti	1562	18
9	Chipari	1710	11
10	Nandani	3312	19
11	Jambhali	1020	15
12	Kondigre	700	02
13	Jaysingpur	1115	09
14	Haroli	672	04
15	Umalwad	1061	18
16	Agar bhag	1145	20
Total		24815	388

8.3 Geography and Climate

The Datta Sugar is located in the Shirol village, which is also a taluka place. This taluka is one of the developing talukas in Kolhapur district, situated in the eastern 16.370 and 16.520 north latitudes and 74.270 and 74.420 east longitudes. It has 507.9 sq. km. land constituting 6.15 percent of geographical area of the Kolhapur district. As per Census 2011, the population is3,20,133. The estimated mid-term population of the taluka is3,27,897 as on Jan. 2014. Among these, male population is1,64,223 and female population is1,55,910. The sex ratio is 949. The population density is 666 sq. km. as per the census of 2011. There are 54 villages and 02 municipalities. The total urban area is only 27.20 sq. km. and the total rural area is 480.70 sq. km. The large number of population stays in rural area. The number of total household is 68681. The main occupation of Shirol taluka is agriculture.

Shirol taluka comes within theboundaries of Sangli district to its north, Belgaum district of Karnataka state to its south and east and Hatkanangale taluka to its west. Shirol taluka has a vast plain area slopping eastward and surrounded bythe Krishna, the Panchganga, the Dudhganga and Warana rivers. Shirol taluka is located in plain areaat an average height of 600 meters above the sea level. The river Krishna andits tributaries have

made this area an extensive alluvial tract. The medium and alluvial soils and moderate levelled land are mostlysuitable for irrigation. Therefore, the plain area has tremendously increased under irrigation and largely affected by salinisation.

The foothill found in the North West and central southern part of the region. The height of foothill zone is 750 meter in Jaysingpur city, the highest area in Shirol taluka. The hilly area found in the North West part of the region. This hill range limits to the boundary of Shirol and Hatakangale taluka. The height of this hill area is 788 metres. The climate is one of the important factors, which determine the agricultural development. The climate of the Shirol taluka is typically monsoonal in character with four seasons.

- a) Hot weather period March to May
- b) South west monsoon period June to September
- c) Post monsoon period October to mid-December
- d) The cold weather period mid December to February

It is Hot in summer. Shirol summer highest day temperature is in between 33 ° C to 41° C Average temperatures of January is 25 ° C , February is 26 ° C , March is 29 ° C , April is 31 ° C, May is 31 ° C.

Source: Google Map Fig.8.1

8.4 Rainfall

During the summer particularly in April and May, thunder storms are common feature all over theregion. The rainfall in this season is accompanied by thunder storms andit is about 20 mm in April and 50 mm in May. This period accounts forabout 11 percent of the total annual rainfall. The first week of June is provides south west monsoon rainfall to the taluka. This accountsfor 74 percent of the annual rainfall. A major portion of this taluka lies inrain shadow zone of the Sahyadri hills. The average annual rainfall is around 600mm in Shirol taluka.October to mid-December is the post monsoon period, whichprovides 14 percent of the annual rainfall. This rainfall is very useful for rabbicrops. However, this rainfall is not sufficient for agriculture. The average days of raining remained around 40 days. It was 38 in 2013-14 and 40 days in 2014-15.

Sr. No.	Year	Average rainfall
1	1960-61	595
2	1970-71	585
3	1980-81	587
4	1994-95	610
5	2006-07	647
6	2010-11	486
7	2013-14	382
8	2014-15	480

Table No. 8.2Average Rainfall in Shirol Taluka (mm)

Source: Socio Economic Survey Report of Kolhapur District

8.5 Size of the land holding

The total area of cultivable land is 43,900 hectares. Totalnumber of cultivators is around 50,000. The average size of land holding was 1.14 hectares asper census of 1991 and land-man ratio was 0.3 hectares as per census of 2001. The current size of holding is averaged to 0.64 hectare per family.

8.6 Land use pattern

The land use pattern accounts how the available land resources are used for productive purpose. Shirol tehsil is one of the densely irrigated areas. Hence, the uncultivable land has been brought up under cultivation since last 3-4 decades. The cultivable waste has been become minus during the last 50 years. The average net sown area remained minus due to the high amount of land area under sugarcane area.

Table 8.3Land Use Pattern

Sr.	Items	1960-61	1980-81	2010-11	Percentage
No.					
1	Area under forest	902	896	1267	40.46
		(1.77)	(1.76)	(2.59)	
2	Land put non-	339	2662	1220	259.88
	agriculture	(0.66)	(5.24)	(2.43)	
	use				
3	Barren and	3439	1152	-	-

		L-INIAII . KIP. <u>uali</u>	sssk@gman.com		-
	Cultivable Land	(6.77)	(2.27)		
4	Cultivable Waste	2178	1896	693	- 68.18
	Land	(4.28)	(3.73)	(1.38)	
5	Permanent	1134	1114	1491	31.48
	Pastured and Other	(2.25)	(2.9)	(2.96)	
	Grazing Land				
6	Land under Misc.	-	-	624	-
	Tree Crop etc. not			(1.24)	
	including Area				
	Sown				
7	Current Fallow	48	576	3404	6991.67
	Land	(0.09)	(1.13)	(6.77)	
8	Other Fallow Land	01	208	1162	116100
		(0.01)	(0.40)	(2.31)	
9	Net Area Sown	42823	42289	35258	- 17.66
10	Area Sown More than	372	5834	1548	316
	Once	(0.86)	(13.79)	(4.39)	
			-	-	
11	Gross Cropped Area	43195	48123	38806	- 10.16
12	Cropping Intensity	100.86	113.78	110.06	-

Source: Socio Economic Survey Report of Kolhapur District

Note : Figures in parenthesis shows percentage to total geographical area and in case of area sown more than once percent to net area sown Cropping Intensity = (Gross Cropped Area/Net Area Sown) x 100

8.7 Demographic features

1. Agar is a large village located in Shirol taluka with total 1145 families residing. The Agar village has population of 5412 of which 2770 are males while 2642 are females as per Population. In Agar village population of children with age 0-6 is 571, which make up 10.55 % of total population of village. Average Sex Ratio of Agar village is 954, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Agar as per census is 903, higher than Maharashtra average of 894.Agar village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Agar village was 86.49 % compared to 82.34 % of Maharashtra. In Agar male literacy stands at 92.11 % while female literacy rate was 80.64 %.

2. Arjunwad is a large village with total 1151 families residing. The Arjunwad village has population of 5641 of which 2913 are males while 2728 are females as per Population

Census 2011. In Arjunwad village population of children with age 0-6 is 584, which make up 10.35 % of total population of village. Average Sex Ratio of Arjunwad village is 936, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Arjunwad as per census is 921, higher than Maharashtra average of 894. Arjunwad village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Arjunwad village was 83.47 % compared to 82.34 % of Maharashtra. In Arjunwad male literacy stands at 91.68 % while female literacy rate was 74.71 %.

3. Aurwad is a large village with total 836 families residing. The Aurwad village has population of 4540 of which 2293 are males while 2247 are females as per Population Census 2011. In Aurwad village population of children with age 0-6 is 496, which make up 10.93 % of total population of village. Average Sex Ratio of Aurwad village is 980, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Aurwad as per census is 984, higher than Maharashtra average of 894. Aurwad village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Aurwad village was 89.47 % compared to 82.34 % of Maharashtra. In Aurwad male literacy stands at 92.22 % while female literacy rate was 86.66 %.

4. Chipari is a large village with total 1710 families residing. The Chipari village has population of 7876 of which 4024 are males while 3852 are females as per Population Census 2011. In Chipari village population of children with age 0-6 is 867, which make up 11.01 % of total population of village. Average Sex Ratio of Chipari village is 957, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Chipari as per census is 927, higher than Maharashtra average of 894. Chipari village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Chipari village was 83.61 % compared to 82.34 % of Maharashtra. In Chipari male literacy stands at 89.70 % while female literacy rate was 77.26 %.

5. Dharangutti is a large village with total 1562 families residing. The Dharangutti village has population of 7233 of which 3739 are males while 3494 are females as per Population Census 2011. In Dharangutti village population of children with age 0-6 is 936, which make up 12.94 % of total population of village. Average Sex Ratio of Dharangutti village is 934, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Dharangutti as per census is 895, higher than Maharashtra average of 894.Dharangutti village

152

has lower literacy rate compared to Maharashtra. In 2011, literacy rate of Dharangutti village was 77.10 % compared to 82.34 % of Maharashtra. In Dharangutti male literacy stands at 83.05 % while female literacy rate was 70.77 %.

6. Ghalwad is a large village with total 735 families residing. The Ghalwad village has population of 3535 of which 1871 are males while 1664 are females as per Population Census 2011. In Ghalwad village population of children with age 0-6 is 352, which make up 9.96 % of total population of village. Average Sex Ratio of Ghalwad village is 889, which is lower than Maharashtra state average of 929. Child Sex Ratio for the Ghalwad as per census is 862, lower than Maharashtra average of 894.Ghalwad village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Ghalwad village was 85.20 % compared to 82.34 % of Maharashtra. In Ghalwad male literacy stands at 91.20 % while female literacy rate was 78.48 %.

7. Haroli is a large village with total 672 families residing. The Haroli village has population of 3280 of which 1691 are males while 1589 are females as per Population Census 2011. In Haroli village population of children with age 0-6 is 373, which make up 11.37 % of total population of village. Average Sex Ratio of Haroli village is 940, which is higher than Maharashtra state average of 29. Child Sex Ratio for the Haroli as per census is 933, higher than Maharashtra average of 894. Haroli village has lower literacy rate compared to Maharashtra. In 2011, literacy rate of Haroli village was 81.08 % compared to 82.34 % of Maharashtra. In Haroli male literacy stands at 88.58 % while female literacy rate was 73.10 %.

8. Jambhali is a large village located in Shirol of Kolhapur district, Maharashtra with total 1020 families residing. The Jambhali village has population of 4963 of which 2562 are males while 2401 are females as per Population Census 2011.In Jambhali village population of children with age 0-6 is 522, which make up 10.52 % of total population of village. Average Sex Ratio of Jambhali village is 937, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Jambhali as per census is 782, lower than Maharashtra average of 894.Jambhali village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Jambhali village was 84.06 % compared to 82.34 % of Maharashtra. In Jambhali male literacy stands at 90.39 % while female literacy rate was 77.44 %.

9. Jayshingpur (rural) is a large village with total 1115 families residing. The Jayshingpur village has population of 4796 of which 2496 are males while 2300 are females as per Population Census 2011. In Jayshingpur (rural) village population of children with age 0-6 is 479, which make up 9.99 % of total population of village. Average Sex Ratio of Jayshingpur (rural) village is 921, which is lower than Maharashtra state average of 929. Child Sex Ratio for the Jayshingpur as per census is 828, lower than Maharashtra average of 894. Jayshingpur (rural) village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Jayshingpur village was 90.27 % compared to 82.34 % of Maharashtra. In Jayshingpur (rural). Male literacy stands at 93.38 % while female literacy rate was 86.94 %.

10. Kondigre is a large village with total 700 families residing. Kondigre village has population of 3245 of which 1638 are males while 1607 are females as per Population Census 2011. In Kondigre village population of children with age 0-6 is 429, which make up 13.22 % of total population of village. Average Sex Ratio of Kondigre village is 981, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Kondigre as per census is 950, higher than Maharashtra average of 894.Kondigre village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Kondigre village was 83.56 % compared to 82.34 % of Maharashtra. In Kondigre male literacy stands at 89.77 % while female literacy rate was 77.25 %

11. Nandani is a large village with total 3312 families residing. The Nandani village has population of 15093 of which 7736 are males while 7357 are females as per Population Census 2011. In Nandani village population of children with age 0-6 is 1567, which make up 10.38 % of total population of village. Average Sex Ratio of Nandani village is 951, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Nandani as per census is 863, lower than Maharashtra average of 894.Nandani village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Nandani village was 83.11 % compared to 82.34 % of Maharashtra. In Nandani male literacy stands at 89.70 % while female literacy rate was 76.25 %.

12. Nrusinhawadi is a large village located in Shirol of Kolhapur district, Maharashtra with total 930 families residing. The Nrusinhawadi village has population of 4168 of which 2137 are males while 2031 are females as per Population Census 2011.In Nrusinhawadi

village population of children with age 0-6 is 369, which make up 8.85 % of total population of village. Average Sex Ratio of Nrusinhawadi village is 950, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Nrusinhawadi as per census is 912, higher than Maharashtra average of 894.Nrusinhawadi village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Nrusinhawadi village was 89.68 % compared to 82.34 % of Maharashtra. In Nrusinhawadi male literacy stands at 93.00 % while female literacy rate was 86.20 %.

13.Shirati is a large village located in Shirol of Kolhapur district, Maharashtra with total 1238 families residing. The Shirati village has population of 5640 of which 2903 are males while 2737 are females as per Population Census 2011.In Shirati village population of children with age 0-6 is 510, which make up 9.04 % of total population of village. Average Sex Ratio of Shirati village is 943, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Shirati as per census is 835, lower than Maharashtra average of 894.Shirati village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Shirati village was 83.12 % compared to 82.34 % of Maharashtra. In Shirati male literacy stands at 90.55 % while female literacy rate was 75.33 %.

14. Shirol is a large village located in Shirol of Kolhapur district, Maharashtra with total 6028 families residing. The Shirol village has population of 27649 of which 14216 are males while 13433 are females as per Population Census 2011.In Shirol village population of children with age 0-6 is 2876, which make up 10.40 % of total population of village. Average Sex Ratio of Shirol village is 945, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Shirol as per census is 833, lower than Maharashtra average of 894.Shirol village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Shirol village was 84.53 % compared to 82.34 % of Maharashtra. The male literacy stands at 90.44 % while female literacy rate was 78.37 %.

15. Udagaon is a large village located in Shirol of Kolhapur district, Maharashtra with total 3136 families residing. The Udagaon village has population of 14513 of which 7411 are males while 7102 are females as per Population Census 2011. In Udagaon village population of children with age 0-6 is 1648, which make up 11.36 % of total population of village.

155

Average Sex Ratio of Udagaon village is 958, which is higher than Maharashtra state average of 929. Child Sex Ratio for the Udagaon as per census is 883, lower than Maharashtra average of 894.Udagaon village has lower literacy rate compared to Maharashtra. In 2011, literacy rate of Udagaon village was 78.38 % compared to 82.34 % of Maharashtra. The male literacy stands at 84.29 % while female literacy rate was 72.29 %.

16. Umalwad is a large village located in Shirol of Kolhapur district, Maharashtra with total 1061 families residing. The Umalwad village has population of 5024 of which 2615 are males while 2409 are females as per Population Census 2011. In Umalwad village population of children with age 0-6 is 572, which make up 11.39 % of total population of village. Average Sex Ratio of Umalwad village is 921, which is lower than Maharashtra state average of 929. Child Sex Ratio for the Umalwad as per census is 827, lower than Maharashtra average of 894.Umalwad village has higher literacy rate compared to Maharashtra. In 2011, literacy rate of Umalwad village was 83.36 % compared to 82.34 % of Maharashtra. In Umalwad male literacy stands at 90.53 % while female literacy rate was 75.67 %.

Sr. No.	Names of the villages	No. of households	Sample families	Pop 2011	Sex ratio	Literacy %
1	Shirol	6028	54	27649	945	84.53
2	Udagaon	3136	20	14513	958	78.38
3	Arjunwad	1151	47	5641	936	83.47
4	Ghalwad	735	43	3535	889	85.20
5	Shirati	1238	53	5640	943	83.12
6	Nrusinhawadi	930	25	4168	950	89.68
7	Aurwad	836	30	4540	980	89.47
8	Dharangutti	1562	18	7233	934	77.10
9	Chipari	1710	11	7876	957	83.61
10	Nandani	3312	19	3312	951	83.11
11	Jambhali	1020	15	4963	937	84.06
12	Kondigre	700	02	3245	981	83.56

Table8. 4 Demographic Features of the Selected Villages

13	Jayshingpur (rural)	1115	09	4796	921	90.27
14	Haroli	672	04	3280	940	81.08
15	Umalwad	1061	18	5024	921	83.36
16	Agar bhag	1145	20	5412	954	86.49
Total		24815	388	110827	943	84.15

There are 4973 Antyodaya Anna beneficiaries, 14071 BPL and 61331 above BPL families in the taluka area.

8.8 Agriculture sector

Agriculture is the predominant sector in the selected villages. The village wise data was not available. Hence, the taluka data is used to acknowledge the situation in the region.Sugarcane occupies a pride of place in the agricultural economyof Shirol taluka, as it is one of the important commercial crops. The totalarea under sugarcane in Shirol taluka was 2288 hectares in 1960-61which increased to 10422 hectares in 2010-11. The area undersugarcane has increased by almost 355.50 percent in the last 5 decades.

Items	Values				
Geographical area of Shirol taluka (in ha.)	507834				
Non-agricultural land area (in ha.)	6041				
Cultivable area (in ha.)	41667				
Double cropped area (in ha.)	6964				
Total cultivable area (in ha.)	48631				
Eligible for cultivation (in ha.)	42279				
Major crops grown during the season - 2014-15 (data in	parenthesis indicate the area in				
hectares)					
Rice (570) Wheat (1342), K Jowar (155), R jowar (2100),Baj	ara (21), Maize (336), total Jowar				
(2255), Nachani (45), Sava (200), Cereals (4955), Gram (2230), Tur (77), Mug (544), Udid (206),				
Math (18), Wal (209), Watana (18), Pulses (539), Pulses tota	l (3841), total food grains (8790),				
Sugracene (17883), Chillies (381), Spices (44), total spices	(425), Mango (273), Fruit crops				
(797), total Fruits (1070), Onion (209), Tomato (85), Vegetabl	es (538), total vegetables (832), F				
& V (1902), oil seeds (85), Groundnut (2250), Fodder crops (7	478),Non-edible crops (27)				
Total area under crops (58794)					
Wet area (22328)					
Agricultural income 2006-07 (DGDP) Rs. 244693 lakh					
Electrical motor pumps (No) 16409					
Wells (No) 3429 (9014 ha area)					

Tube wells (No)	541
Irrigation sources (No)	Local MIT – 01
Coop Lift Irrigation Schemes – 75 as on 2010	PT – 04
	KT weirs – 01
Surface irrigation (ha)	8082
NIA (ha)	17096
GIA (ha)	17540
% of GIA to CA	36.07
Milk production 2013-14	29492 (000) litres
PACS (No)	147, A/c holders – 31467, Small
	A/C holders – 18552, Large A/C
	holders 31.

The increasing area under lift and private irrigation schemes had been mainlyresponsible for growth in the area under sugarcane. The second main factorthat has induced the expansion in the sugarcane area has been theestablishment of cooperative sugar factories in the vicinity of the taluka. However, over use of irrigationand chemical fertilizers create problems like waterlogging and salinity that led todecrease in productivity of land. Continuously mono-cropping i. e. areaunder sugarcane during the last 5 decades increased and createdsalinity problem in Shirol taluka. (See table 8.6below).

SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India E-Mail : klp.dattsssk@gmail.com Soil Salinity Land in Shirol Taluka in 2007

(Area in ha)

Sr. No.	Name of the Villages	Saline Area Land	Partial Salinity Zone	Total Saline Land
1	Abbdullat	176	137	313
2	Uadgaon	119	87	206
3	Shirdhon	110	543	653
4	Arjunwad	121	328	449
5	Shirdwad	27	147	170
6	Hasure	15	162	177
7	Majarewadi	69	201	270
8	Kurundwad	217	223	440
9	Kawatheguland	105	265	370
10	Kutwad	66	169	235
11	Gourwad	42	195	237
12	Aalas	12	217	343
13	Shedshal	75	99	174
14	Bastwad	28	85	113
15	Kothali	60	206	266
16	Herwad	40	110	150
17	Bubnal	128	253	381
18	Umalwad	41	95	136
19	Danoli	102	238	340
20	Shirti	110	410	520
21	Nandni	83	100	183
22	Shirol	292	379	671
23	Kavathesar	119	213	332
24	Dattwad	78	361	239
25	Akkiwat	230	341	571
26	Danwad	220	120	344
27	Terwad	27	101	128
28	Ghalwad	105	238	343
29	Ganeshwadi	31	52	83
30	Aurwad	30	21	51
31	Takwade	35	157	192
32	Dharangutti	44	67	111
33	Chinchwad	53	118	171
	Total	3164	6238	9402

Source : Soil Testing Lab. Kolhapur

8.9 Rivers and Irrigation

Krishna and Panchaganga rivers flow through the taluka area. There are good numbers of Co-operative Lift Irrigation Schemes in the taluka. They are well managed and running efficiently. The main sources of irrigation in Shirol taluka are surface irrigation through lift irrigation schemes and wells. Co-operative Lift Irrigation Societies have great importance in thematter of production of agricultural production by providing waterfacilities to the land. This is more so in case of agriculture, which isdependent on nature to the agriculturists for irrigating their lands bypumping water from the rivers. Shirol is the only taluka in the whole ofKolhapur district, where co-operative lift irrigation societies have madetremendous progress. Because of this, taluka is richly drained by therivers of Panchaganga and Krishna, which are united at Narsobawadi.The Warana and the Dudhganga are the other two tributaries, which flowin Shirol taluka. All of the rivers facilitated increased the surface irrigationby various means of lift irrigation societies working in all villages of Shirol taluka. Among variouscrops, sugarcane is the main crop in such irrigated land.

Table No. 8..7

Sr. No.	Area Irrigated by Different Source	1960-61	1980-81	2009-10	Percentage Change
1	Surface Irrigation/Lift Irrigation	1772	9209	29514	1565.55
2	Well Irrigation	2011	5120	14316	<mark>611.88</mark>
3	Net Area Irrigated	3783	14329	43830	1058.60
4	Total Gross Area Irrigated	3783	14805	43830	1058.60

Irrigation by Different Sources in Shirol Taluka

Source - Socio Economic Review of Kolhapur District from 1960-61 to 2006-07 and 2009

There is a considerable growth of the sugarcane in the Shirol taluka. Various cane development activities are being implemented by the sugar factory since last two decades. Consequently the cane crushing of the sugar factory has gone up. There is an excessive use of the crushing capacities since last few years. Almost 72846 account holders of various land

sizes are engaged in sugarcane cultivation. Sugarcane crop has a credit link with the PACS; its harvesting is shouldered by the sugar factories. Obviously, farmers prefer to go to sugarcane crop, though it may be a mono crop culture. Other crops have a marketing risk. Labour shortage is another cause in rural area. So there is a surety of cane supply in the area.

Due to short of the crushing capacity of the Datta Sugar, the diversion of the cane supply to other neighbouring sugar factories took place several times. There is diversion of around 25 per cent of sugarcane to other sugar factories. The Datta sugar has worked even late up to April, which is not remunerative to the sugar factory. The sugar recovery deteriorates during the summer. The crushing efficiency of the Datta Sugar is quite good. The cane development department is efficiently managing the quality of the sugarcane in the area. Various incentives are being provided to the farmers through sugar factory.

8.10 Industrial sector in the location

There are 1305 industrial units in the taluka area. Kurundwad and Jaysingpur are the two municipal areas in the taluka area. These two cities are having three MIDC areas, where these units are working. Of these units, 159 units are categorised as Red unit, 70 as Orange units and 1076 as Green units. The industrial investment in 162 units was to the tune of Rs 8733 crores. Besides, there are around 4724 micro enterprises working in the taluka area. There are 53 marketing cooperatives 15 godowns functioning for providing the remunerative

prices to the agricultural producers of the farmers and supplying the agricultural inputs to the farming. There are 137 Fair Price Shops working with the PACS and other private agencies. There are 1647 SHGs registered in the taluka. More than 22 villages are having the banking units, 47 villages are having the Post Offices and 45 Health Centres.

8.11 Socio-Economic Profile Selected Samples of the

The corresponding sub-sections are the outcome of the field survey conducted in the vicinity of the Datta sugar. The number of household covered under the field survey was 388 from the selected 16 villages. The details are given table 8. The percentage of irrigated area to total agricultural area was 48.35 in the selected villages. The percentage of sugarcane area to total agricultural area 38.31 in the villages selected so for. Similarly the percentage of sugarcane area to total irrigated area remained at 79.24. This indicates the significance of the sugarcane in the selected villages. Hardly some drought villages have very limited irrigated land area. The area under sugarcane crop always variates very frequently. The supply response to sugarcane always works in the area. Efforts are being made to introduce cent per cent irrigated area. It is possible because the river basin is very near to some villages. Area under sugarcane will further go up during the corresponding period.

The selected families were classified in to various categories for our analysis and exploration.

Sr. No.	Names of the villages	No. of households	Sample families
1	Shirol	6028	54
2	Udagaon	3136	20
3	Arjunwad	1151	47
4	Ghalwad	735	43
5	Shirati	1238	53
6	Nrusinhawadi	930	25
7	Aurwad	836	30
8	Dharangutti	1562	18

Table No. 8.8 Sample families in the Project Area

	E-mail: kip. <u>dattsssk@ginall.com</u>					
9	Chipari	1710	11			
10	Nandani	3312	19			
11	Jambhali	1020	15			
12	Kondigre	700	02			
13	Jayshingpur (rural)	1115	09			
14	Haroli	672	04			
15	Umalwad	1061	18			
16	Agar bhag	1145	20			
Total		24815	388			

1. Dependents in the families

The heads of family indicate the women status in the society. The families covered under the survey indicate that no female was heading the families. Almost all families were headed by male. This indicates the male domination in the society.

The head of the families along with other members work together for the families collectively. The number of dependents in the families is classified in Table 9. The average size of the family is six, which indicate the rational size of the family.

Sr. No.	Names of the villages	Sample families	Girls	Boys	Grandparents
1	Shirol	54	16	69	26
2	Udagaon	20	19	31	07
3	Arjunwad	47	51	62	31
4	Ghalwad	43	47	62	09
5	Shirati	53	55	69	34
6	Nrusinhawadi	25	20	33	13
7	Aurwad	30	33	54	12
8	Dharangutti	18	17	20	19
9	Chipari	11	12	13	07

Table No8. 9 Dependents in the Family

10	Nandani	19	26	29	07			
11	Jambhali	15	15	28	08			
12	Kondigre	02	03	03	-			
13	Jayshingpur (rural)	09	05	14	08			
14	Haroli	04	02	06	02			
15	Umalwad	18	16	24	09			
16	Agar bhag	20	24	27	09			
Total	•	388	407	484	201			
SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India

E-Mail : klp.<u>dattsssk@gmail.com</u>

Table 8.10 Profile of the Sample Families Surveyed for SIA.

Sr.	Names of the	No. of	Agricultural land	Irrigated	Sugarcane	% of irrigated	% of sugarcane	% of sugarcane
No.	villages	households	area of the	area (in ha)	area of the	area to total	area to total	area to total
			village(in ha)		village (in ha)	agricultural area	agricultural area	irrigated area
1	Shirol	6028	1062	896	896	84.37	84.37	100
2	Udagaon	3136	710	655	395	92.25	55.63	60.30
3	Arjunwad	1151	345	264	208	76.52	60.29	78.78
4	Ghalwad	735	277	252	171	90.97	61.73	67.86
5	Shirati	1238	477	329	222	68.97	46.54	67.48
6	Nrusinhawadi	930	170	146	146	85.88	85.88	100
7	Aurwad	836	163	163	83	100	50.92	50.92
8	Dharangutti	1562	378	285	255	75.39	67.46	89.48
9	Chipari	1710	357	128	55	35.85	15.40	42.97
10	Nandani	3312	688	175	139	25.43	20.20	79.43
11	Jambhali	1020	253	171	78	67.89	30.83	45.61
12	Kondigre	700	257	104	38	40.46	14.79	36.54
13	Jayshingpur (rural)	1115	378	75	53	19.84	14.02	70.66
14	Haroli	672	172	85	54	49.42	31.40	63.53
15	Umalwad	1061	265	265	185	100	69.81	69.81
16	Agar bhag	1145	1063	896	896	84.29	84.29	100
Tota	I	24815	10112	4889	3874	48.35	38.31	79.24

The sex ratio of the children in the family is 841. The boys dominate in the families. The grand parents in the families were less.

2. Education level in the family

The number of illiterates (1177) in the families is high in the study area. This indicates poor performance of the families who remained illiterates even when the compulsory education facility is being implemented since long. The number of undereducated below matriculation is 709, the number of matriculation is 193, HSC 172, graduates 84 and postgraduates are 19.

Level of education	No of persons	% to total (2354)
Illiterates	1177	50.0
Undereducated below	709	30.12
matriculatio		
Matriculation	193	8.20
HSC	172	7.30
Graduates	84	3.57
Postgraduates	19	0.81
Total	2354	100.00

Table 8.11 Educational Level of the Persons in the Families

3. Occupational classification

Most of people now a day prefer to opt for the side business or the support activities to agriculture sector. More than 91.42% of the families were solely engaged in agriculture sector. Employment in the service sector constitutes 139 persons. It was equally considered as supportive activities in the taluka area. Only 10 persons are engaged in the business and trade activities, while 25 persons are self-employed activities. Other 29 persons are involved in other micro enterprises to support the families (see table 11).

Table No 8.12 Micro-enterprising Activities of the Families

Sr. No.	Names of the villages	Nature of activity	Sample families
1	Shirol	Welding, Tractor and	10
		trailer repair, Hoteling	
2	Udagaon	Dairy	01
3	Arjunwad	Lawyer	01
4	Ghalwad	Retailing, Brick making	02

	E man : Kipi <u>aata</u>	ooon a ginamooni	
5	Shirati	Tempo and stationery	02
6	Nrusinhawadi	Catering, Stationery and	05
		Agro-services centre	
7	Aurwad	Tractor	02
8	Dharangutti	Contractor and Lawyer	02
9	Chipari	Workshop	01
10	Nandani	-	-
11	Jambhali	-	-
12	Kondigre	-	-
13	Jaysingpur	-	-
14	Haroli	-	-
15	Umalwad	Dairy	02
16	Agar bhag	Animal husbandry	01
Total	•		29

Agriculture provides enterprising activities since the taluka is having potentials of sugarcane crops. All other economic activities are least important in the area. The villagers were equally engaged in cane cultivationsince its processing and marketing is linked with sugar factories. People were interested in trading business rather than production activities. Marketing of the fruits is an economic activity in the taluka.

Only 29 families were engaged in business and trading activities. Most of the enterprising activities falls under the micro enterprises and self-employed.

4. Land holding

Since the dependency on agriculture is high, the land holding is less in the taluka area. Large farmers have irrigation facilities. Small land holders could hardly invest in irrigation. Hence they depend on the cooperative lift irrigation. Obviously, the farmers prefer to go for sugarcane agriculture.

Size of land holding	No. of Families	%
Up to 1 acre	71	18.30
1-2 acres	114	29.38
2-5 acres	169	43.56
5-7 acres	14	3.61
7-10 acres	10	2.58
Above 10 acres	11	2.83
Total	388	100.0

Around 283 families (73%) were having the one to five acres of land holding in the villages. The number of large farmers is only 11.

5. Cropping pattern

Agriculture being a main occupation, farmers prefers to go for sugarcane plantation crops. Most of the cultivable land falls under irrigation. The total land area which falls under the dry land constitutes only 3.52 acres and 10.84 acres as non-irrigated area in the selected villages. Remaining 488.57 acres of land area is irrigated. Of the total irrigated land area67.27 acres was under well irrigation, 22.97 acres under tube wells and 374.07 acres was under the cooperative lift irrigation schemes. Only 24.26 acres of land area was under the modern irrigation i.e. drip and sprinkling system.

More than 427.97 acres (88%) of land area comes under the sugarcane crop. Other supporting crops like Soybean 24.30 acres, fruit plantation 6.20 acres, vegetables 9.77 acres Fodder 3.40 acres Jowar 2.22 acres and other cereals 11.47 acres are grown in the villages during 2015-16 seasons.

6. Addictions

Most of the family members were not addicted by habits. However, around 24 families were having the habit of tobacco and ghutaka. There was only person smoking bidi was found among the samples, three persons were addicted with alcohol drinking. Other nine persons were having other habits.

7. Income level

The occupational structure of the villages has an impact on the level of income in the villages. The agriculturists were mostly engaged in sugarcane plantation crop. Hence their income level remains high. The employed and self-employed persons mostly belong to the poor families. They preferred to work at the low wages. Hence, the number of families belonging to the low layers of the income stream is high among the selected families.

The agricultural income from the sugarcane earned by the 388 families during the 2015-16 seasons constitute to Rs 4, 23, 75,400 at the current prices. The average falls to Rs.1,09,215 per family and Rs. 99,008 per acre of sugarcane area. The non-agricultural income earned by the families was Rs 66,90,000 during the same year. The per capita income of the families stood at Rs 1,26,457 per family during the year at current prices.

The farm processing was regularly done by 237 families (76%). Mostly the farmers who were engaged in fruit and vegetable have to process their produce. The processing and transport of sugarcane is handled by the sugar factories themselves. Obviously the farmers feel comfortable to entertain sugarcane as their main cropping pattern. Besides, crop loan facility is also provided to the sugarcane, which remained highest at Rs 50000-70000 per acre. The PACS and the other commercial banks provide this facility. The share of PACS remained at nearly 99%.

8. Agricultural training

When farmers are going for commercial crops, they are ought to have a knowledge of cultivation and marketing. The farmers in the project villages have undergone some professional training in sugarcane agricultural practices. The number of such families was 22.68%. Most of the farmers have under gone a rigorous training on sugarcane cultivation and water management for sugarcane. Water is plenty in the villages. Fertiliser application is another area of training of the farmers. Water –fertilizer management is an important training areas required for the farmers engaged in sugarcane cultivation.

Sr.	Names of the	No. of	Sample	Short	Diploma	Degree	Modern
No.	villages	households	families	duration			techniques
			selected	training			
			for field				
			survey				
1	Shirol	6028	54	02	-	-	-
2	Udagaon	3136	20	-	-	-	-
3	Arjunwad	1151	47	21	-	-	-
4	Ghalwad	735	43	07	-	-	-
5	Shirati	1238	53	-	-	01	-
6	Nrusinhawadi	930	25	-	02	-	-
7	Aurwad	836	30	-	-	-	-
8	Dharangutti	1562	18	-	-	-	-
9	Chipari	1710	11	01	-	-	-
10	Nandani	3312	19	-	-	-	-
11	Jambhali	1020	15	-	-	-	-
12	Kondigre	700	02	-	-	-	-
13	Jaysingpur	1115	09	-	-	01	-
14	Haroli	672	04	-	-	-	-
15	Umalwad	1061	18	-	01	-	-
16	Agar bhag	1145	20	07	-	-	-
Tota	1	24815	388	83	03	02	-

Table No. 8.14 Agricultural Training

9. Cultural resilience

The cultural vulnerability is observed in most of the modern societies. With growth of economic provisioning the vulnerability goes up. But the villages covered under survey protect the resilience level at the higher level. Even after the growth it will be maintained by the villages. Every village is having a temple. Rituals are regularly conducted in such villages (see table 14).

People worship the God and Goddesses. The cultural vulnerability index is very less in the

villages. Only 18 families have expressed their modernity and abused the traditional worships.

Sr.	Names of the	No. of	Sample	No of	No of	Cultural
No.	villages	households	families	families	villages	distracting
			selected	followed	with	activities
			for field	rituals and	temples	followed by
			survey	festivals		the families
1	Shirol	6028	54	49	54	05
2	Udagaon	3136	20	20	20	-
3	Arjunwad	1151	47	47	47	-
4	Ghalwad	735	43	41	43	02
5	Shirati	1238	53	50	53	03
6	Nrusinhawadi	930	25	22	25	03
7	Aurwad	836	30	28	30	02
8	Dharangutti	1562	18	18	18	-
9	Chipari	1710	11	11	11	-
10	Nandani	3312	19	18	19	01
11	Jambhali	1020	15	15	15	-
12	Kondigre	700	02	01	02	01
13	Jaysingpur	1115	09	09	09	-
14	Haroli	672	04	04	04	-
15	Umalwad	1061	18	17	18	01
16	Agar bhag	1145	20	20	20	-
Total		24815	388	370	388	18

Table 8.15 Cultural Resilience

10. Impact of the Project

Datta Sugar is located in highly dense irrigated area. The availability of sugarcane surpasses the crushing capacity of the unit. In fact the crushing goes more than the established capacity. So, its management thought that it would be advantageous to improve the living conditions of people in and around the plant site by expanding the unit. It will therefore, generate employment of resources and the persons in the local area. In turn local people can avoid uncertainty of job, raise their living standard, do supplementary jobs and other farming, cattle, poultry, brick making unit etc. thus, to stabilize and prosper in life. This will surely be a positive impact on the livelihood of the people living around the site.

A. Advantages and disadvantages

1. Economic advantages

Almost all families have a positive response to the installation of the project. Since it brings industrial growth with development in infrastructure and employment levels in the region, the per capita income is likely to grow largely with employment opportunities. Employment and the general facilities grow with the expansion of the sugar factories. The business outlook also changes. Other social infrastructure will also go up (see table 15).

Table 8.16Classification of the Responses in the Advantages of the Project

Sr.No	Advantage of the Project	Frequency	Percent
1	Employment increases	387	99.74
2	Facility increases	345	88.92
3	Business increases	367	94.59
4	Turnover of money in the villages	388	100.0
5	Other facilities increases	370	95.36
6	Total	426	100.00

2. Disadvantage of Pollution

Any industry renders some pollution and waste, which needs to be minimized through remedial systems. More than 52% of families know that the pollution increases through industrial enterprises. More than 35% families have responded that water pollution would be the major source of pollution. But people also know that it could be reduced through alternative measures. Villagers also know the recycling of the waste water mainly for agricultural purpose. Air pollution can also increase with the industrial project. Of the total families 29.38% families have responded to air pollution and 32.98% to noise pollution. But there are various measures to reduce them. People know about the modern tools and techniques of reducing the pollutions.

1. Willingness to accept

Willingness to accept the hazards and willingness to pay for the distress caused by expansion of the industry is one of the best contingent method of assessing the SIA and EIA. People prefer development at the cost of distress caused by pollutions. However, if the proper and perfect techniques are applied remove or to reduce the disasters, it would be further more acceptable to the people. The expansion of the crushing capacity is much needed aspect of the region. It has local as well as individual benefits. So people are willing accept the expansion. The general infrastructure in the region and roads grows with the industrial expansion. Its rate of returns to the society is higher. Infrastructural development further provides general incentives for growth of the region. It has a long term impact on the region. Business and other social facilities have the least scope to develop due to the crushing expansion (see table 16).

Sr.No	Advantage of the Project	Frequency	Percent
1	Migration will decline	351	90.46
2	Economic provisioning will grow	371	95.62
3	Other sources of income will increase	283	72.94
4	Turnover of money in the villages will go up	365	94.07
5	Self-employment will increases	251	64.69
6	Cultural resilience	369	95.10
7	Others	248	63.92

Table 8.17 Classification of the Responses for willingness to accept

The rural-urban migration will be reduced through this project. Infrastructural development obviously helps to grow the transport modes and means in the region. More than 70% of the families were in the positive response of growing transport facilities in the villages.

The economic provisioning in the villages will grow with the project. Small enterprising activities in the villages will grow due to the project in the area. Self and wage employment provides an opportunity to implement the inclusive grow model. Inclusiveness also increases with project, which brings out the elimination of the poverty in the region. People will not feel excluded. The rate of return on such incidences remains higher than the development of the developed one.

Expectations from the factory

The growth needs to be adjusted with the hazards. Various tools and techniques can be employed to reduce or to minimize the hazards. People have positive expectations from the project. The classification indicates that employment and the industrial activities will grow and provide jobs in the region.

People were in urge of road development, medical aids, education and safe drinking water facilities in the villages, which the project enterprises are interested to fetch needs. Besides people were assured of what can be grown in the region. Most prominent predictions of the villagers was growth of hotel industry, retail shopping, cloth shops, vegetable marketing,

poultry and milk development and employment in transport activities. These are likely to grow with the project.

Sr.No	Advantage of the Project	Frequency
1	Employment	56
2	Remunerative sugarcane prices	203
3	Social capital	09
4	Health facilities	29
5	Education facilities to grow	07
6	Training facilities	11
7	Overheads	27

Table 8.18 Classification of Expectations from the Sugar Factory

The schooling facility is one of the least required demands of the families. Expansion will not need the schooling facility to grow. All families were in access of the schools, hence; need not worry about this facility. People also know that the medical and health facilities also go with expansion of the project. Those in access need not worry about the facility. Only 11 families have placed their expectations in this concern.

The tradeoff between advantages and the disadvantages have to be obtained through proper policy initiatives and their effective implementations. The villagers were predicted of growing business avenues in the villages. The wage and self-employment are an immense opportunity to the villagers to grow their standard of living. When money enters in to the village economy, ultimately the standard of living increases with provision of various business avenues in the villages.

What can grow?

What can be grown in the villages was responded by 56 families. Mostlyhoteling, milk and poultry activities, shops and retailing etc. will grow in the villages around the site. An urge of development, the villagers deserve, depends on their short and long term needs of the villagers. They need good roads, employment, educational needs and drinking water. People will get

opportunities to increase additional sources of income. Dairy, animal husbandry, transport means and modes, grocery shops, welding and repairs, agro-services, poultry, hotels, stationery and flour mills will grow in the respective village localities. This provides self-employment to women in the villages. Out of 56 responses more than 50% respondents have told that dairy will grow, which in turn makes the non-creditworthy persons creditworthy.

Conclusions

The project has a positive response from the public. The willingness to pay and the willingness to accept the project has positive outcome. The ratio between this is around 1: 10.09. it means the benefits are ten times greater than the loss. The losses due to the polluting agents are proposed to be diluted through various methods. The wastes and the pollutions can be reducing with some measures as suggested in the report. The social and cultural vulnerability index responds a very less and level of resilience is at the higher side. The sustained high growth rates and poverty reduction, however, can be realized only when the sources of growth are expanding, and an increasing share of the labour force is included in the growth process in an efficient way. From a static point of view, growth associated with progressive distributional changes will have a greater impact in reducing poverty than growth which leaves distribution unchanged. This is in fact expresses the inclusive growth of the region.

References

DSE, GoM (2015), Socio-Economic Survey Report of Kolhapur District, Department of Statistics and Economic Bureau, GoM.

GoM (2011), Census of Kolhapur District.

Jugale V. B. (2015), Irrigation Water Pricing, serials Publications, New Delhi.

Jugale V. B. (1990), Irrigation and Rural Change: A case Study of Alas, Shivaji University Journal, Vol. 19, 1990.

Datta Sugar, (2014-15) Annual Report.

CHAPTER - 9

ENVIRONMENTAL MANAGEMENT SYSTEM (EMS)

9.1. ENVIRONMENTAL POLICY:

The EMS shall give importance on energy and resource recovery. In case of sugar industry it would be water recycling so that the cost of water can be reduced and also to conserve Natural water resources. The waste minimization would reduce the capital as well as recurring expenditure on ETP and also disposal of treated effluent.

9.2. ORGANIZATIONAL COMMITMENT:

The Top Management shall consider that Socio-economic development go hand in hand with environmental issues and the industry shall give commitment to implement all the statutory requirements., such as conservation of water recycle all cooling waters and excess condensate. The air emissions shall be controlled by installing Wet-scrubbers. All the solids wastes shall be composted.

9.3. ENVIRONMENTAL IMPACT ASSESSMENT:

The industry shall carryout the EIA studies from time to time to assess the environmental quality and review the policies and commitments.

9.4. COMMUNITY CONSULTATION:

There shall be good rapport between the Management and the Public. The Management shall publish all the technical and financial aspects of the EMS not only in annual reports but also in local newspapers.

Sr.	Object	and	Target		Date of completion	Responsible	Supervisor
No.	Manage	ment tool				agency	
1.	Water	pollution	To achieve ir	rigation /	Along with the	Contractor	Consultan
	Control		steam standar	ds	commissioning of		t / Civil
					the plant.		Engineer.
2.	Air	Pollution	To achieve	e SPM	-do-	Suppliers	Consultan
	Control		concentrations	below			t / Chief

Table No.9.1: Objectives and Targets:

	L-mail: kip. <u>dattsssk@ginali.com</u>							
		150 mg/Nm ³			Engineer			
3	EIA studies	To monitor ground and	Before and after	Industry	Consultan			
		surface waters/ soil.	the completion of		t/			
		Ambient Air Stack	the project		Regulator			
		emissions, Noise.	surrounding an		y agency.			
			area of 5 KM.					
4	Noise control	To achieve sound levels	Along with the	Contractor /	Consultan			
	(Silencer pads,	below 75 dB during the	commencement of	Management	t / Chief			
	barriers, self	day time and 70 dB	the unit.		Engineer			
	protective devices	during the night time.						
	such as earplugs							
	& earmuffs)							
5	Domestic waste	To achieve recyclable	Septic tanks	Contractor	Consultan			
	Management	water for gardening /	followed by filters		t / Civil			
	(septic tanks	tree plantations	along with the		Engineer.			
	followed by		establishment of					
	anaerobic filter		the colony and					
	and Root Zone		Root Zone					
	treatment)		treatment after					
			one year.					

9.5 ENVIRONMENTAL MANAGEMENT CELL PATTERN AND REPORTING

The industry shall appoint a consultant to advice on various issues related to environment.

9.6 LABORATORY FACILITIES

The industry shall establish laboratory facilities to carryout Air, Noise, Soil, Water and wastewater Analysis. The important lists of equipment are given, as guidance. The Environment cell shall use these facilities to monitor the treatment plant efficiency and also the effect of treated effluent on land and ground and surface water quality. Similarly, the stack emissions, ambient air quality & Noise levels are to be monitored regularly. The instruments are to be calibrated as per the specifications and in any case at least once in a year.

9.7 DOCUMENTATION

Records of Air Quality, Solid Waste Disposal and wastewater treatment plant operations shall be maintained. It is suggested to publish these results in the local newspapers.

9.8 OPERATIONAL AND EMERGENCY PLAN:

The factory shall prepare a Disaster Management Plan and organize regular meetings of the workers to exchange the ideas on the procedures to be followed to maintain clean and healthy environment to avoid fire and accidents. The mock drills are to be organized regularly. A safety officer shall be appointed with supporting staff

1.	Air Pollution Monitoring Equipments				
	a) Stack Monitoring Kit				
	b) High Volume Sampler				
	c) Meteorological Station (Wind				
	Velocity & Direction, Temperature &				
	Humidity)				
2	Autoclave				
3	Bacteriological Incubator				
4	Balance				
	a) Double Pan				
	b) Single Pan				
5	BOD Incubator				
6	Centrifuge				
7	COD Reflux Unit				
8	Conductivity Meter				
9	Distillation Apparatus				
10	Dissolved Oxygen Meter				
11	Drying Oven				
12	Flame Photometer				
13	Kjeldhal Assembly				
14	Magnetic Stirrer				
15	Microscope				
16	Muffle Furnace				
17	pH Meter				
18	Platinum Crucibles (2 Nos.)				
19	Refrigerator				
20	Soxhlet apparatus				
21	Sound Measurement Apparatus				
22	Spectrophotometer				
23	Nephelometer				

Table 9.2 : LIST OF LABORATORY EQUIPMENT

Table No.9.3: EFFLUENT TREATMENT PLANT MONITORING DATA

		1	2	3	4		5	
SI.	Date	Flow (Cum/day)	Color	Temperature	Power (Ch	Chemicals used in ETP	
No.				(°c)	(Kw H)	Lime	Urea	Super Phosphate

Table No.9.4: PERFORMANCE OF EFFLUENT TREATMENT PLANT

		6	7	8	9	10	11	12	13
SI.	Particulars	рН	COD	SVI	Oil &	SS	BOD	MLSS	SRT
Ν			(mg/l)		Grease	(mg/l)	(mg/l)	(mg/l)	
ο					(mg/l)				
1	Before Primary Treatment								
2	After Primary Treatment								
3	Biological Treatment								
4	Secondary Clarifier								
5	Effluent quantity used for								
	irrigation								

Schedule of tests 1 to 8 - Every Day, 9 and 10 - Alternate Day and 11 to 13 – once in a week.

If the biological treatment consists of more than one unit, the performance shall be expressed for each unit separately.

DATE:

SEAL/STAMP

MANAGING DIRECTOR

Table No.9.5 : AIR POLLUTION DATA (STACK)

SI.	Date	No. of	Capacity	Туре		Stack Details		EMMISSION DATA					Remarks		
No		Boilers	of Boiler (TPH)	of Boile r	Height (m)	Dian (r Top	neter n) Bot.	Materia l of stack	Flue Gas Velocity (m/s)	Temp eratu re (°C)	SPM mg/N m ³	NOx (µg/Nm³)	SO₂ (µg/Nm ³)	CO2 Percen t	

Schedule: Once in a month

Table No.9.6 : AIR POLLUTION DATA (AMBIENT)

SI. No	Date	Location of Station with respect to	Distanc e from Stack	PM2.5 mg/Nm ³	PM ₁₀ mg/Nm ³	NO _x (μg/Nm³)	SO ₂ (μg/Nm³)	CO ₂ (µg/Nm ³)	Relative humidity	Wind Direction	Ambi Temp	ent air erature	Remarks
		Wind direction									Max	Min	

Schedule: Once in a month at least in three stations.

SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India E-Mail : klp.<u>dattsssk@gmail.com</u> Table No.9.7 : SOUND LEVELS (dB) Leq

No	Station	Date				
1	Cane Cutter					
2	Mill House					
3	Mill house turbine					
4	Boiler house					
5	Boiling section					
6	Steam Exhaust					
7	Centrifugal section					
8	Pan section					
9	Power Turbine					
10	Colony					

Schedule: Once in month

Proform to monitor impact of pollution discharged to environment

The following parameters shall be analyzed as per the schedule given below.

C) Well Water/ Surface Waters

Table No 9.8 : Well Water/ Surface Waters Proform to monitor impact of pollution discharged to environment

Sr. No.	Parameter	Daily	Weekly	Monthly
1	Color			*
2	Odor			*
3	рН			*
4	Alkalinity			*
5	COD			*
6	BOD			*
7	T.S			*
8	TDS			*
9	SS			*
10	Chlorides			*
11	Calcium			*
12	Magnesium			*
13	Hardness			*
14	Sodium			*
15	Potassium			*
16	% Na (max)			*
17	Conductivity			*
	μ mhos/cm			

D) Soil

Sr. No.	Parameter	Daily	Weekly	Monthly
1	рН			*
2	Conductivity			*
	µmhos/cm			
3	Available			*
	Nitrogen			
	kg/ha			
4	Available			*
	Phosphorus			
	kg/ha			
5	Available			*
	Potassium			
	kg/ha			
6	Organic			*
	Carbon %			
7	Sodium %			*
8	Calcium %			*
9	Magnesium %			*
10	C.E.C.			*
	meq/100gm			

Table No.9.9 : Soil Proform to monitor impact of pollution discharged to environment

9.9. TRAINING:

It is suggested to send the staff regularly for training to educational, R&D institutes, Pollution Control Boards- Centers of excellence. They shall be also deputed to workshops and seminars. The usefulness and implementation of the training shall be reviewed by the top management. In order to understand legislation and recent development in the field, the management has been advised to purchase all the publications of the CPCB and subscribe to journals. A selected list of the text books and Indian journals are given in Annexure II.

9.10. ENVIRONMENTAL IMPACT, COMPLIANCE AND REVIEW AUDITS:

The Environmental Management Cell shall carry out Environment Audit, EIA Studies and Compliance Report. The management shall engage an external agency to cross check the internal system and report directly to the Managing Director about discrepancies if any.

9.11. WASTE MINIMIZATION OPTIONS:

The industry shall adopt various options for waste minimization by proper in plant control measures, good housekeeping practices and process modifications etc.

9.12 –WATER RECYCLING: The water recycling approach shall be the major loop to conserve water.

9.13. INTERLOCKING THE PROCESS WITH ETP PERFORMANCE AND AIR EMISSIONS: -

Even though it is advisable to stop the operations if there are upset conditions in ETP or APC performance, it is suggested to find alternative approaches such as diverting the effluent into panic ponds or "Compost plant". In case of failure of APC, the ground level concentrations do not increase beyond 600 meter from the stack and thus may not have much adverse impact on the Habitation of Khandali village. However, the workers shall be advised to use masks instead of installing stand bye APC equipment.

1.REFERENCE BOOKS: -

- 1. Standard methods for the examination of water and wastewater, (2005), 21st Edition, APHA. AWWA-WPCF
- 2. Manual on Water and Wastewater analysis, (1988) BY NEERI, Nagapur 440020
- 3. Water and Wastewater Testing 1985 By R.P. Mathur 2nd Edition, Nemchand and brothers- Roorkee-247667
- 4. Microbiology for Sanitary Engineers, 1962 by ROSE, E. McKinney- McGraw Hill Book Company, Inc. New York
- 5. Wastewater Engineering Treatment Disposal Reuse, 1979, By –Metcalf and Eddy Inc. 2nd Edition, Tata McGraw Hill Publishing Company Ltd; New Delhi
- 6. Instrumental Methods of Analysis, By Dr. D. K. Sharma, Goel Publishing House Meerut.
- 7. Chemistry and Unit operations in Sewage treatment by D. Barnes & D. Wilson. Applied Science Publisher.
- 8. Text book of Water supply and Sanitary Engineering 1971 by S.K. Husen, Oxford & TBH publishing Company, New Delhi.
- 9. Water and Wastewater Technology by Mark J. Hammer, Willey and Sons Publishing.
- 10. Environmental Impact Assessment Handbook, (1980) BY- G. J. Rau and C.D. Wooten, McGraw Hill Book Company Inc. New York.
- 11. Environmental Impact Assessment (1977) BY- L. Canter. McGraw Hill Book Company Inc. New York.
- 12. Environmental Engineering by Peauy, Row. Tata McGraw Hill Book Company Inc. New York.
- **13.** Wastewater treatment for Pollution Control (1986), By Soli J. Arceivala Tata McGraw Hill Book Company Inc. New York.
- 14. Microbiology (1977) by Pelczar M.I. and R.D. Reid 2nd Edition Tata McGraw Hill Book Company Inc. New York.
- 15. Solid Waste Management in Developing countries (1983), A.D. Bhide, B.B.Sundersen, Indian National Scientific Documentation Centre, New Delhi.
- 16. Composting, Sanitary Disposal and Reclamation of Organic Waste (1956) Gotaas H.B. WHO, Geneva.

- 17. Water and Wastewater Engineering BY Fair, Geyer, Ocum, Tata McGraw Hill Publishing Company Ltd; New Delhi
- **18.** Chemistry for Environmental Engineering by C.N. Sawyer, McCarty
- 19. Air Pollution, Its Origin and Control (1981) by Keenth Wark and Cecil F. Warner, Harper and Row Publishers New Delhi.
- 20. Air Pollution Volume I, II, III, IV (1968), by A.C. Stern, Academic Press New York
- 21. Air Pollution and Industry (1972) R.D. Rosean, Nostrand Reinhod and Co-New York
- 22. Air Pollution Control Theory (1980) by Martin Crawford, Tata McGraw Hill Publishing Company Ltd; New Delhi
- 23 Methods of Air sampling and Analysis (1977), 2nd Edition by APHA, Washigton D.C.
- 24 Noise Control Handbook of Principles and Practices BY Davis M. Liscomli and Arthur C. Tayler Jr. Van Nostrand Reinhold and Co. New York.
- 25 Oil Chemical analysis (1967) By M. L. Jackson, Prentise Hall of India, Pvt. Ltd. New Delhi.
- 26 Chemistry of Soil (1969) BY Firman E. Bear. Oxford and IBH Publishing Company New Delhi.
- 27 Methods of Analysis (1955) by Association of Official Agricultural Chemists Washington 4, C.D.
- 28 Commercial Methods of Analysis (1972) By F. D. Snell. F.M. Biffen. D.B. Taraporewala Sons & Company (P) Ltd; Mumbai.
- 29 Pollution Cotrol Acts, Rules and Notifications Issued Thereunder Central Pollution Control Board. (Ministry of Environment and Forests, Govt. of India) September 2001, Parivesh Bhavan, East Arjunnagar, Delhi-110032

2. LIST OF JOURNALS IN THE FIELD OF ENVIRONMENT

- 1. "Journal of the Institute of Public Health Engineers, India", Secretary General Institute of Public Health Engineers India. 1 Garstin Place, Calcutta, 700 001
- 2. "Journal of Indian Association for Environmental Management Indian Association for Environmental Management", NEERI, P.O. Nagpur -440020
- 3. Indian Journal of Environmental Health, Director, NEERI, Nagpur- 440 020
- 4. Scavanger Society for clean Environment, Garden Resort, 606 Sion -Trombey Rd. Chembur, Bombay- 400071
- 5. Asian Environment. P.O. Box. -90 MCC Makati, Philippines.
- 6. Down to Earth Centre for Science and Environment. 41, Tughlakabad Institutional Area New Delhi. 110062

CHAPTER – 10 ENVIRONMENTAL MANAGEMENT PLAN (EMP)

10.1 . IMPACTS AND MITIGATION PLAN:

The Environmental Management plan shall consist of the impacts and mitigation measures during the construction and operation of the units. The impacts on environmental components such as Air Quality, Water Quality, Noise levels and Soil quality shall be illustrated in detail. The methodology consists of the measures on minimization of the proposed impacts. Some of the Environmental Components, proposed impacts and mitigation measures are listed below.

Sr.	Environmenta	Source	Impact	Mitigation measures
No.	l Component			
1.	Air Quality	- Excavation, Transportation during the Construction,	- Increased Dust levels.	-Provide masks to the workers and spray water to suppress the dust.
		- Emission through	- Increase in the	-Install Wet-scrubber/
		stack (After the	Ground level	Electrostatic Precipitator
		Plant is	concentration of	to control stack
		commissioned)	SPM	emissions.
2.	Water Quality	-Process	-Oil & grease, BOD & low pH.	-Provide oil & grease separators-mechanical. –Adopt Clean technologies as per Comprehensive Industry Document on Sugar Industry (COINDS), Control pH by biological means.
		- Hot water	-ETP performance	- Cool the water and
		(Condensates)	gets affected,	reuse.
		-Spillages & leakages	-Shock loads on ETP.	- Adopt dry-cleaning methods and collect the leakages, spillages and reprocess.
			- Shock loads on	
		- Periodical washings	ЕТР	 Provide a separate storage pond and add in a controlled manner to ETP.

Table No. 10.1: Impacts and Mitigation Plan

3.	Noise	Turbines, Steam exhausts, Cane cutters, Boiler	Affects the hearing and cause fatigue and sometimes nervous breakdown.	-Provide silencer pads and barriers and give earplugs and earmuffs. Change the work schedules of the workers from high exposure places to low levels of exposure.
4.	Soil Quality	Application of treated effluent	Increase in soil salinity.	Effluent quality as well as quantity shall be strictly controlled by regular monitoring.
5.	Green-belt	All around the factory and within the premises	Helps to reduce CO ₂ levels	Provide at least 2500 plants per hectare covering more than one- third area of the vacant land.

Table 10.1 A : Impacts and Mitigation measures specific to SHREE DATTA SSK Limited

Sr No.	Nature of Impact	Major Impact Identified	Mitigation measures suggested			
1	Air Pollution	 1.Fugitive emissions of Bagasse and fly ash are observed. 2.Bagasse is entering into drains even though the Drains are covered inside and outside the factory. The Gutter choked up 3.Eventhough ambient air quality standards are meeting inside the factory premises 	and storage are to be improved and,fly ash Disposal to be implemented on day to day basis The Gutters shall be replaced with closed pipe			
		there are complaints with regard to fly'ash in nearby villages.	2. Steam is taken from Urjankur Shree Datta power company Ltd., which erected the Co-generation plant on Boot principles. The matter was			

			referred to them and
			asked to check the
			efficiency of the ESP.
			-
2	Air Quality	1.Aermode version 7.4 was	1. ESP has been provided as ASP
	Modelling	used to predict the air Quality.	equipment
		The impacts on Pivilu, Pivilus,	2 Continuos monitoring of Air
		and are within NAAOS	Quality may be the best solution
		standards.	to cross check the results
			whenever such complaints are in
		2.Eventhough the Air Quality of	recurrence.
		all the stations in the study area	
		are meeting the AAQ standards,	3. Suggested to carry out post
		the complaints are received	monitoring Air Quality status and
		the online monitoring results	evaluate the impacts for suggesting mitigation measures
		are meeting the standards.	suggesting mitigation measures
		5	
		3. The predictions are made for	
		one season and when only once	
		the project requires clearance.	
		Ine impacts on post monitoring	
		cross checks.	
3	Hazardous	1.The only hazardous waste	No action is contemplated.
	Waste	spent oil generation is very low	
		as the Industry is not using	
		lubricating oils.	No action is suggested
		2 Hazardous chemicals such as	No action is suggested.
		NaOH,H ₂ SO ₄ are in small	
		quantities and stored in plastic	
		containers.	No action is suggested.
		2 As the offluent service	
		negligible quantities of oil &	
		grease, no impact on receiving	
		soil for land applications.	
4	Water	1. Industry follows the	1. Industry proposes to
	Pollution	recycling of cooling	adopt the practice of
		waters and	recycling for the
		condensates from its	proposed Distillery.

	I			<u> </u>	
			unit due to severe shortage of water in Solapur district same practice shall be followed for evaporator condensates and spentlees from Distillery units by providing condensate polishing units.	2.	It is suggested to mix Bagasse cillo along with pressmud to reduce the requirement of filler material besides concentrating digested effluent in multiple effect evaporators.
		2.	As the availability of filler material pressmud is main limitation for spentwash composting, the Distillery unit may not run for more than 200 days which may affect the economy of industry.	3.	Industry shall strictly implement the CPCB guidelines and operate the composting plant with utmost care to avoid seepage leakages.
		3.	The composting process shall be designed and operated properly to avoid only possible contamination of ground water.		
5	Industrial Solid Waste	1.	The major industrial solid waste generated are pressmud fly ash and ETP Sludge lime clinker. All the solid waste are composted with spentwash and converted into manure. This process is known as composting. If composting operations are not practiced	1. 2.	Composting operations are to be scientifically carried out. The leachates shall be collected and pumped back for composting operations The excess fly ash can be sold to brick manufacturers or can be

		 scientifically leachates may enter into Environment and contaminate soil, ground and surface waters. 2. The entire quantity of fly ash may not be consumed in composting operations. 3. Fly ash is very light and can enter into environment and cause fugitive emissions 	sold as soil conditioner. 3. Fly ash shall be stored in silos/ shall be disposed immediately without any storage to avoid fugitive emissions.
6	Socio Economics	 The project has positive impacts. The willingness to pay and the willingness to accept the project has positive outcome. The ratio between these is 1:10.09.It means benefits are more than 10 times than the loss. 	
		3. The social and cultural vulnerability index responds very low and resilience is at the higher side.	

		E-Mail : Kip. <u>datt555K@gillall</u>	
		4. From a static point of view growth	
		associated with	
		progressive	
		distributional	
		changes will have a	
		greater impact in	
		reducing poverty	
		than growth which	
		leaves distribution	
		unchanged.	
		unenungeu.	
		5. Management is	
		responsive to	
		reduce poverty level	
		by giving economic	
		incentives and	
		Facilities to the	
		employees and	
		Earmers which are	
		the centre of the	
		growth	
		growin	
7	LandUse	1. Quantification of generated	As the irrigation land is mainly
		the data indicates 68% is	availability of water sources may
		irrigated.land.	get depleted sol suggested to
		2. Highest Source of irrigation is	adopt modern practices of
		Dug wells & Tube wells, and lift	irrigations such as drip and
		Irrigation schemes.	sprinkler systems.
		3. The area derived from	
		satellite image and census	
		statistics do not match. The	
		area derived from satellite	
		consus data is sum of all	
		villages.	
8	Hydrology,	1. Due to sever Draught	1. Rain water harvesting to
	Ground	conditions the water levels in	recharge wells in combed area.
	Water &	the wells are depleting.	2. Excess irrigations practices

	1					
	Water	2. Ground water Quality is also	shall be avoided to reduce			
	Conservation	brackish and cannot be used for	salinity. Exaction of water from			
		drinking purpose	river bed by digging wells shall			
		3. The farmers are excavating	be strictly prohibited.			
		wells in River Beds which may				
		vesult in depletion of Diver				
		result in depiction of River				
		water for villages.				
9	Ecology and	1. Identifying Pollution				
	Biodiversity	absorbing trees and plants				
		2. Core zone was considered as				
		5kms radius and Buffer zone				
		from 5 Km to 10 Km radius of				
		the project site. The study area				
		was divided into Grids of				
		15g Km Stratified rendem				
		15q.Km. Stratilled random				
		sampling method was adopted.				
		Six Grids from the Core zone				
		and four Grids from the Buffer				
		zone were studied. The Study				
		area is rich in Faunal				
		Components and also in Bird				
		population. Faunal components				
		and Habitat for Bird population				
		should not be disturbed.				
		3. Shannon Weiner Index				
		suggest maximum Species				
		diversity which should be				
		protected. Shannon weiner				
		Index varied from 1 89 to 3 03				
		and spacios Pichnass from 2E to				
		and species Richness from 25 to				
		42 for plant population. SW				
		Index varied between 2.323 to				
		3.298 and species index 41 to				
		136 for bird population.				
10	Risk	1. Pool height and the	Not Applicable			
	Assessment	distance required for storage				
	and	of Rectified Spirit, Ethanol				
	Hazardous	Were Calculated				
	Management		Not Applicable			
		2. Location of Fire	····			
L						

		extinguishers were suggested and Disaster Management plan was suggested.	
		3. Safety measures to the employees were suggested	Not Applicable
11	Noise and Vibrations	Noise levels at Boiler and Turbine house are high (85db to 95 db)	Provide Acoustic enclosures and check the standards of Noise levels of the machines and report to the supplier for corrective action

10.1.B.IMPACT ASSESSMENT BASED ON BATTELLE ENVIRONMENT 10.1.B. INTRODUCTION:

In any Impact assessment, the weight ages for the Impacts are given based on past experience. These weight ages are based broadly on the various types of environmental affects and issues.

In BEES, the major pollution aspects are classified as below.

- Biological Environment.
- Environment Pollution.
- Aesthetics.
- Human Interest.

It may be clearly indicated that the weightages are arbitrarily assumed and requires verification after the implementation of the project.

Some of the important abbreviations used are given as below.

- EQ- Environmental Quality Indicator.
- PIU-Parameter Importance Units.
- EIU- Environment Impact Unit.
- EIU is assed as = (ΣEQxPIU) before (ΣEQxPIU) after

- In this exercise
- EQ is taken as 0 (poor) to 1 (good)
- PIU is taken as 1000 points.

Table No. 10.1.B Impact Assessment based on Battelle Environment Evaluation System (BEES)

S.No.	Impact	PIU (X)	EQ (Before) (Y)	EQ (After) (Z)	EQ (Before) (XY)	EQ (After) (XZ)	Result
I	Environmental Pollution(600)						
I.A	Air Pollution	300	0.5	0.6	150	180	+30
I.B	Water Pollution	100	0.2	0.1	20	10	-10
I.C	Land Pollution	100	0.5	0.4	50	40	-10
I.D	Solid Waste Pollution	100	0.2	0.1	20	10	-10
		600			210	240	0
II	Biological Pollution (100)						
II.A	Aquatic life	50	0.30	0.20	15	10	-5
II.B	Flora & fauna	50	0.40	0.30	20	15	-5
		0					-10
	Aesthetics(100)						
III.A	Odour & Fly nuisance	100	0.2	0.1	20	10	-10
IV	Human Interest (200)						
IV.A	Employment	20	0	0.3	0	6	+6
IV.B.	Standard of living	80	0.2	0.8	16	64	+48
IV.C.	Land Cost	40	0.2	0.5	8	20	+12
IV.D.	Infrastructural facility	60	0.2	0.8	12	48	+36
		1000					+82
		1000			Ν	let	+82

10.2. RECORDS AND DOCUMENTATIONS: -

The Registers shall be maintained on the performance of ETP, Chemical consumption, Power requirements etc. and these records shall be made available to the Regulatory Agency, Consultant and Stakeholders.

10.2.A. DOCUMENTATIONS: -

All the important documents such as consent letters, Environmental Clearances, Water Cess returns, Environmental Statement Form – V, Hazardous Waste (Management & Handling) Rules, 1989 and amended rules thereof and compliance reports shall be exhibited for inspection by the Government Agencies and Stakeholders.

10.2. B. GAZETTE NOTIFICATIONS : -

The Gazette Notifications published by the MOEF shall be kept in the laboratory for ready reference. Similarly, the testing procedures for Water, Air, Soil and Wastewater shall be kept in the laboratory at each equipment for ready reference.

10.2. C. TROUBLESHOOTING: -

Sr.	Parameter	Area of	Causes	Mitigation
No.		Occurrence		measures
1	Low pH	a) Anaerobic	- High organic	- Discontinue
		Digesters.	loading	the loading
				temporarily
				- Increase the
				alkalinity by
				adding
				lime/Sodium bi-
				carbonate Total
				Alkalinity shall
				be maintained
				three times the
				Total Volatile
				Fatty Acids.
			 Extraneous or toxic 	- Identify the
			matters	source of toxic
				substance.
				Either detoxify

Table No10.2 : Troubleshooting

	-			
				or do not allow
				the waste to
				enter into the
				ETP or treat it
				separately
		b) Aeration	-High F/M ratio more	-Reduce the
		Systems	than the design.	organic load and
				maintain the
				F/M as per the
				design.
2.	Low COD/BOD	Poor	Increase in organic	Characterize the
	removal efficiency	performance of	loading	waste stream.
		biological		Provide
		reactors		additional units
				if required.
3	SVI	Aerobic	Low MLSS	- Increase MLSS
		Systems	concentration (below	concentration
			2000 mg/l)	by increasing
				the re-
				circulation ratio
				of the return
				sludge.
			Cludge Bulling	
			(SVI above 100)	
				-Check the D.O.
				in the aeration
				tank. Always
				maintain D.O.
				above 1.5 mg/l
				- Check the F/M
				Ratio.
				- Chlorinate the
				waste to reduce
				filamentous
				growth.
4	Sludge Rising	Settling Tanks	De-nitrification	Increase the
				sludge
				withdrawal rate
				from the
				clarifier and also
				increase re-
				circulation ratio.

	E-Mail : klp.dattsssk@gmail.com					
5	Lubricants	Oil and Grease	Due to improper maintenance of the removal mechanism. -Poor Housekeeping practices.	Control the spillages of oil and grease and adopt efficient oil removal device.		
6	Low D.O.	Aeration tanks	Poor performance	Check the oxygenation capacity of the aerators. Always purchase aerators from reputed manufacturers.		
7	Poor efficiency of SPM removal	APC equipment	Performance of different type of equipment. a) Multi cyclone- 50- 55% b) Wet-scrubber- 80- 85% c) ESP- 95-98 %	Select appropriate equipment to meet the regulatory standards		

The main objective of Environment Management Plan (EMP) is to conserve resources, minimize waste generation, treatment of wastes, recovery of by products and recycling of material. It also incorporates vegetation and landscaping of the open area and also the post project quality monitoring. The EMP measures to minimize adverse impact are classifies as below:

Measures built in the process Measures during construction phase Measures during operational phase

10.3 MEASURES BUILT IN THE PROCESS

The objective is to employ environment friendly processes. It shall incorporate efficient utilization of resources, minimum waste generation, built in waste treatment and operational safety. The measures suggested are :

10.4 CONSTRUCTION PHASE MANAGEMENT PLAN

10.4.1 - WATER MANAGEMENT

Construction equipment requiring minimum water for cooling should be chosen. High pressure hoses should be used for cleaning and dust suppression. If water from well is to be extracted, the rate of extraction should be kept below the safe yield level.

10.4.2 - SURFACE WATER QUALITY

The construction activities would be avoided during monsoon season, particularly the excavation work if possible. Wherever needed check dams and dykes shall be provided for control of soil erosion. The soil holding / binding vegetation such as grass shall be grown around the construction site before commencement of construction activity to reduce soil erosion. Appropriate sanitation facilities will be provided for workers.

10.4.3 - GROUND WATER QUALITY

Construction wastes will not be discharged to surface or ground water bodies. As far as possible construction wastes will be recycled and reused. Alternatively they will be disposed off on a designated landfill site.

10.4.4 - AIR QUALITY

All vehicles and construction equipment with internal combustion engines will be maintained for effective combustion to reduce vehicular emissions. Vehicles and all internal combustion engines shall meet the prescribed emission standards of CPCB.

Unleaded petrol will be used for vehicles in use

Good quality petrol and diesel from authorized dealers will be used, thereby ensuring good combustion and hence reduced gaseous emissions. It is advised that the industry shall have its own fuel station.

Vehicles being allowed within the construction site for the construction activity should meet standards as per the CPCB guidelines.

Water will be sprayed with high-pressure hoses for dust suppression during dust generating activities such as excavation, crushing, concrete mixing, material handling etc.,

As far as possible asbestos will not be used for construction work. If asbestos is used, all asbestos waste will be collected separately and disposed off on landfill with appropriate soil cover.

10.4.5 - NOISE

Construction equipment with minimum noise and vibrations will be chosen.

Construction workers engaged and operation of the noise producing equipment will use earplugs and / earmuffs.

Construction equipment with internal combustion engines will be provided with proper silencers and mufflers to reduce noise levels.

Noise attenuating green belt will be developed to reduce noise impacts.

10.4.6 - LAND

CHECK BUNDS SHALL be built in the construction area to prevent soil erosion due to rainwater.

Measures will be taken to minimize waste soil generation. Construction waste material will be recycled.

Designation and demarcation of construction site with due provision for infrastructure. Using appropriate measures for slope stabilization to reduce soil erosion.

10.4.7 - ECOLOGY

Plantation of dust absorbing trees near dust emission areas.

Plantation of soil holding / binding and fast growing plants e.g. grass to avoid soil erosion. Plantation of noise attenuating species to reduce noise pollution both during the construction as well as in the operation phase.

Stabilization of all disturbed slopes before the onset of monsoon to avoid soil erosion.

Avoiding felling of existing trees / vegetation as far as possible. If necessary, the number of trees felled to be replaced with double the number of trees in the form of green belt development.

Reuse of wastewater generated out of construction activity for irrigation / green belt. Avoiding use of high noise producing equipments during nighttime to avoid impact on fauna in the study area.

10.4.8 - SOCIO – ECONOMIC FACTORS

Making use of local people for construction work to the maximum extent possible.

* Providing proper facilities for water supply, sanitation, domestic fuel, education, transportation, etc. for construction workers. Protection of company employees and equipment from construction hazards, including open excavations, falling objects, welding operations, dust, temporary wiring, and temporary overhead electrical lines. Barricades and fences are provided around the construction area. Personnel protective equipments e.g. safety helmet, goggles, gumshoes, etc. will be provided to the workers.

10.5 OPERATIONAL PHASE MANAGEMENT PLAN

The generation of pollutants such as wastewater, gaseous emissions and solid wastes during normal operational phase will cause adverse impacts and stress on various environment parameters. The management plan for mitigation of adverse impacts and enhancement of beneficial impacts are discussed below.

10.5.1 WATER MANAGEMENT

10.5.1.A - WATER RESOURCES

Fresh water required shall be minimized by adopting 3R principles.

A network of planned storm water drainages shall be provided to avoid contamination of rainwater with factory wastewater or other waste material. Rain harvesting plan shall be implemented to collect and store rainwater and also to replenish the ground water source.

10.5.1.B - WASTE WATER

The quantity and quality of wastewater in the plant is controlled by following measures :
Recycle of process water including steam condensate and reuse of treated wastewater in the plant. Control of water taps, washings, leakages from pump glands and flanged joints.

Overflow of vessels is strictly avoided. Floor cleaning with water will be replaced with dry cleaning with bagasse. Leakage and spillage of molasses at pumps and vessels is collected in small pits and recycled.

Effluent treatment facilities shall be provided to make the treated water fit for land application.

Storage reservoirs of adequate capacity shall be provided to hold rainwater and treated effluent during unfavorable climatic conditions.

10.5.2 - AIR ENVIRONMENT

Gaseous emission in the industry is mainly due to burning of bagasse in boilers. These are controlled by installation of ESP & Wet Scrubber. The fugitive emissions are mainly from roads. Besides the APC equipment, the following measures shall be adopted.

Tree plantation in3 to 5 rows shall be developed all around the premises.

All internal roads shall be properly paved or tarred to avoid fugitive emissions. A tree plantation in 2 to 3 rows shall be developed on both sides of the roads.

All the other roads in the vicinity of the factory used for transportation of raw materials and products will be paved or tarred, and these shall be maintained in good condition. Trees shall be planted on either side of the road. D.G. sets shall be provided stack of 6 m high above the roof level. Vehicle engines are maintained in good condition to avoid incomplete combustion.

10.5.3 - SOLID WASTE

Green belt of 4 to 6 m width is maintained all around the compost, bagasse and press mud yards.

ETP Sludge, boiler ash and lime sludge may be mixed together to produce enriched manure.

10.5.4 - NOISE ENVIRONMENT

Necessary measures as indicated below are taken to reduce sound intensity below the allowable limits at the source itself. In general at the locations of turbines, compressors, fans etc. The sound intensity generally exceeds the standards. The workers engaged in such locations are provided with earmuffs/ear plugs to have additional safety.

Adoption of noise reduction measures in the industry as per the CPCB guidelines.

Specifying the noise standards to the manufacturers of machineries.

Acoustic barriers or shields to the machineries.

Vibration free foundations for machineries.

Acoustical walls and roofs to the building where such machineries are installed.

Segregation of machineries having high noise level in isolated buildings.

Incorporation of sound absorbers to blowers and compressors.

Sound control measures to steam vents.

Proper maintenance of machineries, especially oiling and greasing of bearings and gears etc. Avoiding vibration of machineries with proper design of machineries such as speed and balancing etc.

Use of personnel protective equipment such as earmuffs and earplug for persons working in such locations.

Plantation of green trees around the factory building and premises to control the intensity of noise to the surrounding area.

With above noise abatement measures the noise level in the premises will be maintained within the desired limits. It will be ensured that the workers in high noise areas use earmuffs, earplugs. Further, it is ensured that the noise level in side the work area will conform to the standards of industrial area and noise level outside premises will conform to the standards of residential areas.

10.5.5 BIOLOGICAL ENVIRONMENT

Plantation program as indicated below will be undertaken to enhance biological environment.

Development of green belt all around the project site.

Conservation of existing vegetation.

Taking up tree plantation work in the vicinity of factory in co-operation with village authorities as a community service.

Clearing of existing vegetation should be kept to minimum and should be done only when absolutely necessary.

Plantation program should be undertaken in all available areas. This should include plantation in the proposed plant premises, along the internal and external roads, around the solid waste storage yards and around the administrative buildings.

10.5.6.A - CRITERIA FOR SELECTION OF SPECIES FOR GREEN BELT

Rapid growth and evergreen habitats

Tolerance to water stress and extreme climatic conditions

Difference in height and growth habits

Aesthetic and pleasing appearance

Provide shade

Large bio-mass to provide fodder and nitrogen

Improving waste land

To suit specific climate and soil characteristics (local species).

Sustainability with minimum maintenance

Recommended plant species shall be utilized for development of green belt and greenery in and around the factory premises.

10.5.7. Rain Water Harvesting:

The Roof top area is found to be 8000 SQM and the maximum rainfall estimated is around 650 mm. The ruff coefficient is taken as 0.8.

Thus the total water in any Rainy season would be 8000X0.65X0.8= 4160 m³/season. The Collected Rain water shall be recharged into the existing rainwater havesting pond.

10.6 OCCUPATIONAL HEALTH STUDIES 10.6.1 INTRODUCTION:

The health status of the employees who are exposed to Boiling and Pan Section and Boilers are subjected to heat and vapors from sugar process are monitored. The important test such as X ray, Lung fuction test and fitness are carried out and tabulated. The inference can be drawn as all the employees are medically fit.

Shree Datta Shetkari Sahakari Sakhar Karkhana Limited Charitable Trust, Shirol

Sr.	Name of Employee	Age	Sex	Х	LUNG	Found- Fit/Not Fit
No.				RAY	TEST	Physically or
						Mentally for the
						Work
1	Mahavir Balaso Patil	50	Male	Y	Ν	FIT
2	Shashikant Balu Pujari	41	Male	Υ	Ν	FIT
3	Praveen Jotiram Patil	42	Male	Υ	Y	FIT
4	Prashant Annaso Sutar	41	Male	Υ	Ν	FIT
5	Malgonda Maruti Mali	40	Male	Υ	Υ	FIT
6	Dipak Laxman Jadhav	39	Male	Y	Y	FIT
7	Mahadev Shahu Varekar	50	Male	Y	Y	FIT
8	Shivaji Bapu Gotkhinde	53	Male	Y	N	FIT
9	Ramesh Bandu Mane	42	Male	Y	Ν	FIT
10	Suresh Annappa Nipane	44	Male	Y	Y	FIT
11	Bhanudas Pandurang Mane	41	Male	Υ	Ν	FIT
12	Yunus Badshaha Shaikh	41	Male	Υ	Ν	FIT
13	Gopal Sidram Jangam	38	Male	Υ	Y	FIT
14	Rajesh Yashwant Thomake	42	Male	Y	N	FIT
15	Balaso Datta Bavache	45	Male	Y	Y	FIT
16	Rajendra Sukhdev Ghule	40	Male	Y	Y	FIT
17	Rajaram Baburao Mane	40	Male	Y	N	FIT
18	Kiran Dhondiram Vathare	42	Male	Y	Ν	FIT
19	Abaso Anandrao Patil	40	Male	Υ	Y	FIT
20	Aashalam Rasul Bhusari	42	Male	Y	Y	FIT
21	Pandurang Ganpati Patole	56	Male	Υ	Ν	FIT
22	Ajit Chandrakant Kumbhoje	32	Male	Y	Y	FIT

Employees Health Status Table No.10.3

	E-Mail : klp. <u>da</u>	ttsssk(@gmail.c	om	. (,
23	Sunil Tatoba Patil	42	Male	Y	Y	FIT
24	Raghunath Balaso Chavan	51	Male	Υ	Υ	FIT
25	Yunus Isak Pathan	35	Male	Υ	Y	FIT
26	Digambar Bhagwat Kamble	42	Male	Y	Y	FIT
27	Mohan Pandit Kamble	56	Male	Y	Y	FIT
28	Balaso Amagonda Patil	32	Male	Ν	Y	FIT
29	Dilip Devappa Pattekari	55	Male	Y	Y	FIT
30	Babaso Annu Ghatage	52	Male	Y	Y	FIT
31	Rajaram Bhauso More	50	Male	Y	Y	FIT
32	largonda Angonda Patil	53	Male	Y	Y	FIT
33	Abadugafar Gousmahamad Patel	55	Male	Υ	Υ	FIT
34	Hari Santu Kamble	53	Male	Υ	N	FIT
35	Vijay Mohan Mane	28	Male	Υ	N	FIT
36	Raghu Joti Parit	52	Male	Y	N	FIT

Note: Around 25 to 30 lakhs are reserved for occupational health programme

10.7 REHABILITATION AND RESETTLEMENT (R & R) PLAN

DSSK Ltd. has adequate existing infrastructure on 85.46 ha of factory owned premises. There are no project affected persons of any kind. Hence Rehabilitation and Resettlement Plan is not relevant.

10.8 ENVIRONMENTAL POLICY

1) Comply with relevant laws and regulations as well as any additional measures to maintain sustainable environment.

- 2) Adopt a systematic approach of EMP for continual improvement.
- 3) Prevent pollution and recycle, reuse and reduce wastes.
- 4) Minimize emission by using clean fuels.
- 5) Conserve resources by efficient operation and process.
- 6) Develop green belt in an around plant area.

7) Create awareness to employees to avoid spillages, wastages and also general public for clean and healthy environment.

8) Safety and health of employees is the prime and utmost priority of the Management.

10.9 STANDARD OPERATING PROCEDURES OR PROCESSES:-

Process Identification:-

A) Whether lubricating oils used at mills are collected and recirculated.

B) Whether alignment of the mills are checked regularly to avoid heating of bearings to reduce excessive use of cooling waters.

C) Whether the evaporators and juice heaters are as per the designed crushing capacity to eliminate contamination of juice vapours in condensates.

D) Whether the entrainment catches are giving the desired efficiency to avoid entrainment.

E) Whether sulphur burner gasses are scrubbed and the scrubbed water is collected and treated.

F) Whether hot condensates are only used for imbibition, milk of lime preparation and floor washings.

G) Whether quality of all cooling waters, excess condensates, floor and vessel washing are checked regularly and recycling of all these streams are practiced.

H) Spray pond overflow may contain organic and inorganic solids contamination and should be treated before disposal.

I) Fly ash shall be sold to brick manufactures or used as soil conditioner.

J) Efficiency of each unit of the ETP shall be checked regularly and up gradation of the units may be required as per the efficiency achieved in each unit.

K) Air emissions shall be checked regularly and up gradation of APC equipment is to be carried out, if necessary.

L) All the employees working in high sound level areas such as milling plant. Compressors, boilers and turbines shall be provided with ear plugs / ear muffs.

M) Helmets and goggles shall be provided to all employees and the employees working at high heat exposure zones shall be provided with heat resistant Aprons.

Fig10.1 - Hierarchical System

C) Hierarchical system:-

D) Does the company have a system of reporting compliance violation of environmental norms to the Board of Directors of the company and shareholders or stake holders at large.

10.10 NON COMPLIANCE REPORT

Table No.10.4: Non Compliance Report

Sr. No.	EC Conditions	Compliance
1	Six monthly reports are to be submitted to	Complied Regurly
	MPCB/ CPCB/ Regional Director, MoEF.	
2	Effluent standrads and air emissions shall	Effluent standards,
	meet the MPCB/EP ACT, 1986 standrads,	ambient air quality
	whichever is stricter.	standards and noise
		standards are meet.
		Steam is taken from
		Urjankur Shree Datta
		Power Company Limited
		and as such stack
		emissions standards are
		not applicable.
3	The treated effluent characteristics and air	Complied
	emissions shall be displayed in the website	
_	of MPCB/ CPCB.	
4	Rain water harvesting shall be implemented	Implemented
5	Occupationl health studies of the	Complied
	employees are to b regurly carried out.	
6	Capital and recuuring expenditure	Yes, funds are used for
	environmental protection shall not be	specific purpose only.
	diverted.	
7	Greenbelt shall be 33% of the total area of	Complied
	the factory area	

<u>CHAPTER 11</u> <u>RISK ASSESSMENT AND SAFETY / EMERGENCY MANAGEMENT</u> PLAN

11.1 RISK ASSESSMENT

The industry with its complex nature of activities involving various plant machineries, raw materials, products, operations, intermediates and environmental discharges has a number of associated hazards. A minor failure may lead to a disaster causing heavy losses to life, property and environment. It is, therefore necessary to ensure safety and reliability of any new plant, through a systematic study of industrial installations based on scientific methods to identify possible failures and prevent their occurrences before they actually cause disasters and production loss. Risk assessment studies are being conducted to ensure safety in the industry. It consists of following activities:

Risk identification Risk assessment Risk prevention & Safety measures Monitoring and assessment of safety performance

Some of the terms frequently associated with risk assessment are defined below.

11.1.1 HAZARD

A hazard is any material or situation that has the inherent potential for an event to occur which may damage life, property or environment.

11.1.2 RISK

A risk is the probability (likely hood) and severity of an adverse effect (hazard) on health, property or environment, which can be quantitatively expressed as

Risk = Probability x Consequence

The concept of risk includes not only probability and consequence but also how the society evaluates them.

11..1.3 RISK ASSESSMENT

Risk assessment is the estimation of the likely hood of damage to health, property and environment. It is also associated with risk identification.

11.1.4 RISK PREVENTION OR CONTROL

It is the activity of trying to prevent the chances of hazardous events occurring, which if occurred can cause damage to life, property or environment.

11.2 OBJECTIVES OF THE STUDY

To ensure safe operation of the plant, it is proposed to carry out the Risk Analysis Study with the following objectives,

To study the industrial operations, related to the manufacture of Ethanol

To identify the major hazards relating to fire, explosion and toxicity due to storage and handling of hazardous chemicals

To visualize and quantify primary and secondary effects and damage potentials of the identified maximum credible accident scenarios using standard procedure

To study the nature of exposures, pathways and consequences of maximum credible accident scenarios and characteristics of risk levels

To provide guidelines for disaster management plan

Risk assessment studies have been carried out to assess the worst-case scenarios of the plant operations to formulate an emergency management plan.

11..3 PROJECT FEATURES AND HAZARDS

There are no hazardous processes in the proposed project.

The probable fire hazard in the plant is in the areas of storage and handling. Incase of leaks, invisible vapors spread easily and can be set on fire by ignition sources. Therefore, it is important to control or eliminate all potential ignition sources in areas that might lead to ignition of vapor. All forms and types of energy can be considered a potential ignition source. The potential sources of ignition are :

Open flames/Electrical wiring / devices

Smoking, Heat sources / Hot surfaces

Welding and cutting Friction

Sparks and Arcs, Static sparks

Gas Compression

Following are some of the precautions that will be taken to minimize the probability of ignition:

Electrical equipment and wiring should be protected for the hazard. (Flame proof fittings) If a heating operation is necessary, use only indirect heating methods

Do not allow any open flames

Provide grounding and bonding for all equipment

Maintenance program will be established to ensure that all equipment and safety controls are functioning satisfactorily.

11.3.1 IDENTIFICATION OF POSSIBLE HAZARDS

In order to identify hazards the following two methods have been used.

Identification based on storage and handling of hazardous chemicals

Identification involving relative rating technique through Fire Explosion and Toxicity Index.

11.3.2 IDENTIFICATION INVOLVING RELATIVE RATING TECHNIQUE THROUGH FIRE EXPLOSION AND TOXICITY INDEX

Fire, explosion & Toxicity Indexing (FETI) is a rapid ranking method for identifying the degree of hazard. The basic objectives that characterize Fire Explosion and Toxicity Index are,

Identification of equipment within the plant that would contribute to the initiation or escalation of accidents.

Quantification and classification of the expected damage potential of fire explosion and toxicity index in relative terms

Determination of area of exposure

Fire explosion and Toxicity Index is a product of Material Factor and Hazard Factor. Material factor represents the flammability and reactivity of the chemicals. The hazards factor itself is a product of general process and special process hazard.

Respective Material Factor (MF), General Hazard Factors (GHF), Special Process Hazard factors (SPH) are computed using standard procedure of awarding penalties based on storage, handling and reaction parameters. Material factor / General factor is a measure of intrinsic rate of potential energy release from fire and explosion produced by combustion or other chemical reaction.

11.3.3 GENERAL PROCESS HAZARD (GPH)

The plant activities, which contribute to a significant enhancement of potential for Fire and Explosion, have been identified. The measured values of penalties have been added to obtain the value of General Process Hazard as given IN DOWS Fire & Explosion Index Hazard classification guide.

11.3.4 SPECIAL PROCESS HAZARD (SPH)

The Special Process Hazard includes, the factors that contribute, the probability and occurrence of accident. They are :

Process temperature Low pressure Operation in or near flammable range Operation pressure Low temperature Quantity of Flammable and toxic material Corrosion and erosion Leakage, Joints

11.3.5 MINIMUM PREVENTIVE AND PROTECTIVE MEASURES FOR FIRE AND EXPLOSION

Based on the categorization of Degree of Hazard, the following Table.

Features	Light	Moderate	FE & I Rating		
			Intermediat	Heavy	Severe
			е		
Fire Proofing	2	2	3	4	4
Water Spray Directional	2	3	3	4	4
Area	2	3	3	4	4
Certain Special	1	2	2	2	4
Instruction					
Temperature	2	3	3	4	4
Pressure	2	3	3	4	4
Flow Control	2	3	4	4	4
Blow down – spill	1	2	3	3	4
Internal Explosion	2	3	3	4	4
Combustible gas	1	2	3	3	4
Monitors					
Remote Operation	1	2	2	3	4
Dykes	4	4	4	4	4
Blast and Barrier wall	1	2	3	4	4
separation					
1 = Optional 2 = 9	uggested	3 = Recon	nmended 4 =	Required	

Table No.11.1 : Minimum preventive and protective measures are recommended.

11.4 HAZARD ANALYSIS

11.4.1 PRELIMINARY HAZARD ANALYSIS

Preliminary Hazard analysis is used to identify typical and often relatively apparent risk sources and damage / events in a system. Based on the preliminary hazard identification, the storage and handling facilities of molasses, press mud and bagasse has been recognized as distinctive and relatively evidential risk source.

Hazards of significant nature whose consequences are worth considering involving specified area or number of personnel are likely to be present etc., are considered in identifying the hazards. The significant hazards in the plant could be hazards related to storage and handling.

Loading and unloading from storage and forwarding may lead to containment failure for various reasons. Such situation can cause fires or explosions depending upon the situation.

11.4.2 HEALTH HAZARDS

The following acute health effects may occur Can affect when breathed in and by passing through skin

May cause mutations

Can irritate the skin. Repeated contact can dry the skin with cracking, peeling and itching Exposure can cause headache, nausea, a feeling of heat and drowsiness, higher exposure can cause unconsciousness

Exposure can irritate the eyes, nose, mouth and throat

11.5 MAXIMUM CREDITABLE ACCIDENT ANALYSIS

Maximum Creditable Accident Analysis (MCA Analysis) is one of methodologies evolved to identify worst credible accident with maximum damage from a distance, which is still believed to be probable. The analysis do not include quantification of probability. The following is an attempt in this direction.

Hazardous substance may be released as a result of failures or catastrophes, causing damage to surrounding area. The physical effects resulting from the release of hazardous substances can be calculated by means of Models. The results thus obtained through modeling are used to translate the physical effects in terms of injuries and damage to exposed population and environment.

The probable fire hazard in the plant is in the area storage and handling. It is proposed to store about 40 days production of the products within a common dyke of 40 x 55 m. In a worst case, it is assumed that the entire contents are leaked out or due to rupture of the pipeline connecting the tank and on ignition fire will eventuate forming pool fire. In order to assess the radiation levels, heat radiation model has been used. The algorithm of the models is based on the formulae published in the yellow book by (TNO, Netherlands). Details of the model are given below :

1. HEAT RADIATION MODEL – POOL FIRE

The heat load on objects outside the burning pool of liquid can be calculated with the heat radiation model. This model uses average radiation intensity, which is dependent on the type of the liquid. Consideration is also taken of the diameter to height ratio of the fire, which depends on the burning liquid. In addition, the heat load is also influenced by the following factors :

Distance from the fire and relative humidity of air (water vapor has a relatively high heat absorbing capacity)

2. VISUALISATION AND SIMULATION OF MAXIMUM ACCIDENTAL SCENARIOS

The worst-case scenarios, which is considered for MCA analysis in a Pool fire due to failure of storage of molasses in the tank form area.

As a worst case it is assumed that the entire contents are leaked out. In the event of spilling its contents through a small leakage or due to rupture of the pipeline connecting the tank and on ignition, fire will eventuate forming pool fire. As the tanks are provided within the dyke wall, the fire will be confined within the dyke wall.

Fires affect surroundings primarily through radiated heat, which is emitted. If the level of heat radiation is sufficiently high, other objects, which are inflammable, can be ignited. In addition, any living organism may be burned by heat radiation. The damage caused by heat radiation can be calculated from the dose of radiation received, a measure of dose is the energy per unit area of surface exposed to radiation over the duration of exposure.

3. EFFECTS OF POOL FIRE

Pool fire may result when bulk storage tanks will leak/burst, and the material released is ignited. As these tanks are provided with dyke walls to contain the leak and avoid spreading of flammable material, the pool fire will be confined to the dyke area only. However, the effects of radiation may be felt to larger area depending upon the size of the pool and quantity of material involved.

Thermal radiation due to pool fire may cause various degrees of burns on human bodies. More over, their effects on objects like piping, equipment are severe depending upon the intensity. The heat radiation intensities due to the pool fire of the above tank forms are computed using the pool fire model.

4. DAMAGE CRITERIA FOR HEAT RADIATION

The following table indicates likely damage level for different levels of heat radiations :

Type of Damage	Incident Radiation Intensity (kW/m ²)
i. Spontaneous ignition of wood	62.0
ii. Sufficient to cause damage to process equipment	37.5
iii. Minimum energy required to ignite	25.0
wood at infinitely long exposure (non-piloted	d)
iv. Minimum energy required for piloted	12.5
v. Sufficient to cause pain to personnel if	4.5
unable to reach cover within 20 seconds;	
however blistering of skin (1 st degree burns) is likely.
vi. Will cause no discomfort to long exposure	1.6
vii. Equivalent to solar radiation	0.7
5. CRITICAL RADIATIONS OF INTEREST ON HUMAN B	DDY
Continuous 1.5 kW/m ² on UN protected skin	
	1 2

Blisters in skin at 30 sec	5 kW/m
Protected skin	5 kW/m²
Special protection	8 kW/m ²

For continuous presence of persons, thermal radiation intensity levels of 4.5 kW/m² for plant operators and 1.6 kW/m² for outside population are usually assumed. These criteria are followed where peak load conditions may occur for a short time but mostly without warning. If the operators are properly trained and clothed, they are expected to run to shelter very quickly. For the secondary fires, a thermal incident radiation of 12.5 kW/m² is adopted as minimum criteria.

6. PHYSIOLOGICAL EFFECT OF THRESHOLD THERMAL DOSES

The effects of heat radiation depend upon the intensity and duration of exposure. Intensity and duration put together is the thermal dose. The consequences on human body for different thermal dose are tabulated here :

Dose threshold (kW/m ²)	Effects
37.5	3 rd degree burns
25.0	2 nd degree burns
4	1 st degree burns

11.6 CONSEQUENCE ANALYSIS

Consequence analysis is a part of hazard analysis and it provides a relative measure of likelihood and severity of various possible, hazardous events and enables those responsible to focus on the potential hazards. For practical purposes, the risk analysis may be based on subjective common-sense evaluation. Thus, this study concerns itself with the adverse effects of accidental and short-term release of hazardous materials on people in the surrounding area. The long-term effects of continuous pollutants are not dealt with.

i. FAILURE FREQUENCIES

Failure rates for various critical equipment are very important in risk assessment. Very limited data in this regard is available in our country. However, Safety and Reliability Directorate of UK and IEEE of USA have certain data in this regard. Relevant data are extracted and used in estimating failure rates leading to release of chemical. This data has different norms such as per hour, per vessel year, errors per million operations etc.

ii. FAILURE DATA

Process Control Failure	3.0 e (-) 5 per hour
Process Control Value	2.4 e (-) 6 per hour
Alarm	4.6 e (-) 5 per hour
Leakage at largest Storage tank	3.0 e (-) 5 per year
Leakage of pipeline (150 mm dia)	
Full Bore	8.0 e (-) 8 per meter per year
Leakage of pipeline (150 mm dia)	
20 % rupture	2.6 e (-) 8 per meter per year
Human failure	1.8 e (-) 3 demand

iii. PROBABILITY OF OCCURRENCE OF IDENTIFIED HAZARDS

The probability and consequence for each identified hazard event considering the method and procedure of plant operation and existing infrastructure for hazard control is evaluated.

The following criteria is adopted related to ignition probabilities :

For instantaneous releases, immediate ignition may occur 0.25 times. There could be delayed vapor cloud explosions for such releases, towards residential areas 0.9 times. Flash fire probability if 0.5.

When the release is continuous, the chance of immediate ignition is 0.1 and delayed ignition is 0.75. A directional probability of 0.2 is considered with regards to wave propagation direction in case explosions.

iv. IGNITION SOURCES OF MAJOR FIRES

Electrical Wiring	23%
Smoking	18%
Friction –bearings / broken parts	10%
Overheated materials	08%
Hot surfaces – boilers – lamps	07%
Burner flame – torch	07%
Combustion sparks	05%
Spontaneous ignition	04%
Cutting, Welding	04%
Exposure fires	03%
Incendiaries	02%
Mechanical sparks	02%
Molten substances	01%
Chemical action	01%
Static charge	01%
Lightning	01%
Miscellaneous	01%

v. SITE SPECIFIC CONSEQUENCES

In order to assess the site-specific consequences, information pertaining to the site such as nearest habitation, nearest industry etc. was collected.

The nearest village to the plant site is Shrepur with a population of about 5000 located at distance of 1.0 km from the plant site. Site specific consequences, analysis of failure cases are carried out with the objective to study how many persons are involved in an accident and are likely to get killed or injured, or how large is the area which is likely to be destroyed or rendered unusable so that a true assessment of the safety of the plant can be made.

11.7 SAFETY MANAGEMENT PLAN

Industries are prone to hazards due to the complex nature of their installations and activities. Even though all safety measures are adopted, the hazards leading to emergency situations and disaster are likely to occur under unforeseen circumstances. The project

proponents are therefore required to prepare an "Emergency Management Plan" (EMP) for the proposed project. An industrial emergency is a situation likely to arise due to catastrophic failure of plant and systems, which may have serious detrimental effects on life, property or environment. EMP is the systematic information along with a set of instructions and preparatory details to meet such eventualities with a view to contain it to the minimum in terms of damage or loss to health, life, property and environment within the industry or outside the industry.

11.8 OBJECTIVE OF EMERGENCY MANAGEMENT PLAN

The emergency management plan is concerned with preventing hazards through good design, operation, maintenance and inspection. Though every care is taken at the design stage itself, absolute safety is not achievable and therefore the essential aspect of emergency management plan must include measures to mitigate the effects of such eventualities. An important element of mitigation is emergency planning, i.e., recognizing that accidents are possible, assessing the consequence procedure would need to be implemented in the event of an emergency.

The main objective of emergency management plan is to keep the organization in a state of readiness to contain the extent of emergency and cascading effect of the original emergency and bring the incident under control with priority to saving of life, preventing further injury and loss of property and also to bring back the plant to normal and to working condition. Mobilize internal and external resources of man, materials and services required to manage emergency. Containing the hazards will require prompt action by operators and emergency staff. Minimizing the effects will include rescue, first aid, evacuation, rehabilitation and giving information promptly to the concerned people.

Emergency planning is just one aspect of safety and is not substitute for maintaining good standards within the plant operation. Before starting to prepare the EMP, it should be ensured that all the necessary standards and codes of safety including electrical, insurance etc., are followed from the design stage itself in the industry. For convenience of planning the emergencies are classified as on-site and off-site emergencies.

11.8.1 ON-SITE EMERGECNY

It consists of those situations affecting one or more plants of the industrial facility and manageable by a planned resources of the industry itself.

In Ethanol industries the eventualities are likely to cause emergency situation confined to the industry itself, and therefore, on-site emergency management plan is prepared for the proposed industry.

11.8.2 OFF-SITE EMERGENCY

It consists of more serious situations affecting several plants of the industry, even spreading outside and requiring outside assistance including state and national level resources mobilization.

11.8.3 RISK ASSESSMENT

To work out EMP, it is necessary to assess the risk involved in and around the proposed industry.

11.9 STRUCTURE OF EMERGENCY ORGANIZATION

In the event of disaster it is required to declare emergency, evacuate persons, arrange rescue, repair (hazard control) operations and medical attention to injured etc. Officers of the factory have to be designated to be In-charge of these operations. Other important aspect of EMP is to acquaint and train concerned persons in the factory and around about the likely hazards, and the measures in case of disaster so that the consequences are minimized.

A team consisting of senior officers of the factory is formed to manage the emergency situations. A senior officer of the factory is overall in-charge of the emergency management group and is designated as Emergency Declarer. Incident controller and Emergency coordinator will have the responsibility of Control if Incidence. Incidence control involves operations of prevention and control of damage to life and property during emergency situation and the emergency co-ordination involves the activity of facilitating the former. Incident controller and emergency coordinator are in turn assisted by different teams to carry out specified tasks of the emergency management.

11.9.1 EMERGENCY CONTROL ROOM (EMR)

It is expeditious and an advantage to have one specified control room for interactions and directions. The Administration building is chosen as the ECR, from where emergency situation is controlled by emergency controller. Senior staff and communication facilities are available in the administrative building. In case of hazard to administrative building, an alternative room is identified as an alternative location. The ECR is provided with communication facilities and information files required in control of emergency situation.

11.9.2 LIST OF FACILITES AT ENERGENCY CONTROL ROOM

P & T, Fax, Telephone and E-mail facilities for internal and external communications.

Mobile Phones

Layout plan of factory and site with indication of vulnerable zones, location of safety equipments and other resources, escape routes, roads, assembly points and evacuation plants etc.

List with addresses of first air centers, fire fighting personnel, employees trained in Fire fighting and safety, key officers of the factory, statutory authorities, essential services and organizations.

Data sheet of chemicals

Copy of EMP, list with addresses of emergency control team members and siren with codes Internal and external telephone directories

Emergency shutdown procedure for each plant

Security Officer along with emergency coordinator is responsible to maintain the ECR along with the facilities indicated above.

11.9.3 SAFETY MEASURES

Rescue and control team have to work under hostile environment and therefore require different types of protective appliances and equipments. Further to manage the situation such as ambulance, fire brigade, emergency vehicle, ladders etc. in addition to fire fighting and first aid facilities. These facilities will be procured and kept at easily accessible locations. A list of safety equipments, protective appliances and other facilities needed for control of emergency is given below.

1. COMMUNICATION SYSTEM

P & T, internal and external telephones, mobile telephones, Fax, E-mail, etc., shall be available at ECR. Internal telephone and mobile phone are provided to all departments. Receptionist during daytime and the security officer during other times are available for communications within and outside the factory premises.

2. FIRE FIGHTING FACILITY

FIRE HYDRANTS

Fire hydrant system with hose pipe of 7 kg/cm² pressure with single hydrants are located at strategic points in the Plant.

Water tank at elevated place:50 M³ capacityWater pump at 10 kg/cm² pressure:200 M³/hr.

FIRE EXTINGUISHERS

Fire extinguishers

Foam water	: 2 each at main office and stores
CO ₂ type	: 6 Nos. one each at departmental office
DCP type	: 8 Nos. in Plant
Sand buckets	: Nos. as Specified

FIRE PROTECTIVE APPLIANCES

Three sets of fire safety appliances each consisting of fire mask (6), face shield (6), fire gloves(12), fire helmet (12), safety belts (6), located at office and Ethanol plant.

FIRE BRIGADE

Fire brigade facilities available at Factory site, Akluj and other nearby industries shall be utilized whenever need arises.

3. SFETY EQUIPMENTS AND APPLIANCES

These equipment and facilities listed below are kept at administrative building / stores building and are under the control of emergency coordinator

First Aid medical units - one unit at each department, 4 units at store and 4 units at ECR.

Safety belts

Earmuffs, Noise muffs, Nose masks against dust, Aprons against chemical spillage. Shockproof gloves and mats. Leather / Asbestos Aprons. Safety items of shoes, gumshoes, hand gloves, helmets, goggles. Safety ladder. Face masks & gas masks (against SO₂ gas). Asbestos pullovers, leather gloves. Breathing apparatus. Stretchers and oxygen cylinder Flame proof battery and lighting . Ambulance facilities from hospital and Akluj and other near by industries. Emergency lighting facilities. Air lifeline for working in vessels and tanks

4. EMERGENCY TRANSPORT VEHICLE

One vehicle along with driver is always made available at the factory premises for emergency.

5. AMBULANCE

Ambulance facilities at hospitals of Akluj and other near by industries will be made available whenever need arises. The Industry shall have its own Ambulance facilities.

6. ASSEMBLY POINTS

Assembly points are those locations where the persons not connected with emergency operations can wait for further instructions or for rescue, transportation and rehabilitation. These points are safe locations free from hazard and have easy access to other departments of the factory. Premises at the entrance of Sugar/power plant are specified as assembly point for the employees working in the Sugar / power plant. Assembly points will be managed by security officers and are under the control of emergency coordinator.

11.10 ACTION PLAN FOR CONTROL OF EMERGENCY

Various functions to be carried out for control of emergency are categorized and assigned to Emergency Controller, and to the members of Incident Control and Emergency Co-ordination.

1. IDENTIFICATION AND ASSESSMENT OF HAZARDS

The worker, who is first to notice the hazard will communicate the incident to the plant supervisor personally or through phone. The plant supervisor will come to the spot, to assess the situation and communicate to Declarer of Emergency or his alternative, through phone / messenger. The supervisor assumes the responsibility to control the hazard till the arrival of emergency controller to the spot.

It is essential that the situation be identified at the earliest possible time and judged correctly and if necessary an emergency be declared. Under this plan, the G.M. Sugar plant

(or alternate G.M. Power plant) shall move to the place of hazard/calamity. He will assess the nature and magnitude of situation and if necessary decides to declare emergency and assumes the responsibility of emergency control.

2. DECLARATION OF EMERGENCY

For the purpose of declaring emergency, the declarer will arrange to sound the siren continuously for two minutes with intermittent low pitch at every half minutes. On hearing the coded sound, the workers in factory and around will be alerted for emergency situation and especially the members of emergency control teams will be in touch with emergency control room (ECR) for necessary direction. Workers of the plants that are not affected by the emergency can continue their normal work.

11.11 FUNCTIONS OF EMERGENCY MANAGEMENT PRSONNEL

i. FUNCTIONS OF DECLARER OF EMERGENCY

* After receipt of message the emergency declarer will visit the spot assess the situation of hazard and take over the management of emergency.

* Declare emergency if the situation is of serious in nature by means of coded siren and by public address system.

Interact with Incidence controller and emergency coordinator and direct them to proceed with the operations of emergency control. Arrange to liaison with fire brigade, medical assistance; seek aid from near by factories and outside experts.

Monitor emergency control operation and give necessary guidance.

Nominate person to give information to media and families of team members and affected persons.

Arrange to inform statutory authorities such as Chief Inspector of factories, Maharashtra State Pollution Control Board, Local Police authorities etc.

Give all clear signal through the coded siren, when the emergency situation has been controlled and normalcy restored.

Make a detailed report.

ii. FUNCTIONS OF INCIDENCE CONTROL INCIDENCE CONTROLLER :

Assemble the members of incident control team.

Decide the course of action to be taken to control the particular type of emergency and give direction for evacuation, repair and essential services.

Arranges for appropriate safety equipment and necessary tools for the team members.

Keep in touch with the "Declarer of Emergency" and inform the progress being made.

After completely controlling the emergency, inform the emergency declarer of the same.

iii. EVACUATION TEAM

Ensure that the evacuation paths are adequately lighted if the emergency situation arises during night hours.

Evacuate the workers through the exit route to assembly point.

Remove obstacles inside plant for movement of personnel and machineries used for controlling emergency.

Organize for accounting of personnel and in case of differences, initiate search and evacuation.

iv. REPAIR TEAM

Shutdown power supply, boiler and other machineries in case it is required. Segregate the affected area.

Remove dangerous material from work area to prevent any secondary disaster.

Fighting of the fire with fire extinguishers, fire hydrants and fire fighting equipments.

Attend hazard control operations such as prevention of leaks etc.

v. ESSENTIAL SERVICE TEAM

Maintain essential services like D.G. sets, water, compressed air and power supply for lighting and other essential needs.

Plan for alternative facilities in the event of power failure to maintain essential services such as lighting, telephone, water and other utilities.

Give necessary instructions to electricians and shift-in-charges regarding emergency power supply and isolations of certain sections.

Ensure availability of adequate quantities of protective equipment and other emergency service materials, spares etc.,

vi. FUNCTIONS OF EMERGENCY CO-ORDINATION EMERGENCY CO-ORDINATOR:

Assemble team members of emergency coordination group. Plan the course of action needed to assist the emergency control and direct the operations

Maintain liaison with emergency declarer and incident controller.

Make available necessary funds for rescue and emergency operations, and canteen facilities shall be kept open.

Assist incident controller in updating of EMP, training of personnel for emergency operations, organizing mock drills and furnishing reports to emergency declarer.

vii. TRANSPORTATION VEHICLE TEAM AND

Make available vehicles.

viii. MEDICAL ASSISTANCE TEAM:

Keep a list of First air personnel of the factory and seek their assistance.

Maintain adequate stock of first aid emergency requirements. If necessary, mobilize extra medical help from outside.

Ensure that all the personnel safety appliances and protective equipments are available for the emergency activities.

Arrange medical treatment to the injured and if necessary shift the injured to nearby hospitals.

xi. SECURITY

Receive and assemble the workers at the assembly point.

Along with relief team account the number of workers with respect to attendance register. Cordon off the hazard location. Control the public and traffic.

x. COMMUNICATION TEAM

Maintain liaison with hospital, fire brigade, police station etc., and seek their assistance whenever needed.

Maintain liaison with neighboring industries and if required seek assistance.

Persons treated for minor injuries are escorted to their residence. Intimation to be sent to the kith and kin of those personnel who are hospitalized through messengers, who in turn will also intimate the emergency coordinator.

xi. EMERGENCY SHUT DOWN OF PLANTS

The shutdown may be required either to one or more plants and is decided by the declarer of emergency. Incidence may be confined to a particular plant such as fermentation unit, distillation unit or dehydration unit. In such cases, stop steam, stop pumps and motor, release pressure from pressure equipments and switch off power to the plant. In case of major event to the entire plant, stop main steam supply, switch off main power supply and release pressure from pressure equipments. D.G. Sets shall be used for emergency power requirement and lighting.

xii. EVACUATION OF PERSONNEL

All the employees shall be trained to understand emergency sirens and to leave the premises through specified exit routes and report to assembly point. The evacuation team and the respective plant manager are in-charge of evacuation. Evacuation paths and assembly paths shall be displayed in plant for workers knowledge. Low and high pitch siren for one minute in the respective plant is the indication for the workers to evacuate the location. The team members of medical team shall attend to the injured and give first aid.

xiii. ACCOUNTING OF PERSONNEL:

The plant manager along with evacuation personnel is responsible for accounting the personnel of the plant involved and of the rescue team. In the event of any worker not accounted for, the matter is reported to control room so that the necessary arrangements can be made for rescue team to search and locate the missing person. The security officer again verifies accounting of personnel at the assembly point. The attendance roll of the employees is available with the plant manager and the security officer.

xiv. INFORMATION TO THE RELATIVES OF AFFECTED PEOPLE:

Persons with minor injuries who are given first air and not requiring further medical care are taken to their residence with an escort. In case of persons hospitalized, the message is immediately sent through a messenger to their relatives and he has to confirm the same to the emergency coordinator.

xv. MEDICAL TREATMENT:

On intimation from declarer of emergency / emergency coordinator the head of medical assistance team will arrange for necessary facilities to render medical treatment for affected workmen.

Send medical assistants where the evacuated workmen are reporting.

Ensure that those requiring medical assistance are segregated.

Arrange for ambulance and transportation for shifting the affected workers to hospitals.

Treat all who can be handled inside the factory premises.

Inform outside hospitals about treatment of injured and seek their assistance. If required arrange for hospitalization.

Sufficient number of factory persons should be trained in first aid and emergency medical service. Presence of adequate number of trained first aid and other service is ensured in each shift.

xvi. MUTUAL AID

Emergency coordinator / safety officer shall arrange for assistance such as ambulance, fire fighting equipment, medical facilities etc. from nearby industry and other agencies for fighting fire and rescue work. The authorities to be contacted are given in Table-3.

xvii. SECURITY

The security officer will attend to the following :

Receive and assemble the evacuated workers at the designated assembly point.

Account for number of workers by keeping readily the number of workers who entered into the factory along with rescue and relief team.

Organize for fire control and call for outside help.

Help the police to control the traffic and law and order, outside the factory premises.

xviii. LAW AND ORDER

The security officer along with emergency coordinator will attend to the following:

Control traffic and crowds and keep the area clear.

Maintain law and order.

Cordon off the affected premises.

Keep liaison with the local police and seek their assistance if needed to maintain law and order.

xix. ALL CLEAR SIGNAL:

Once the emergency is controlled, the declarers of emergency assess the situation along with other team leaders. If he is satisfied that normalcy is regained and no further hazards involved, he shall arrange all clear signal by giving one minute continuous siren at high pitch.

xx INTIMATION TO AUTHORITIES

Immediately after the incidence is brought into control, the personnel manager in coordination with declarer of emergency will inform telephonically to all the Government officers and to the Maharashtra Pollution Control Board. A detailed report on the nature of emergency and its consequence will be sent to them within 24 hours of the incidence.

xxi. RELIEF AND REHABILITATION

After emergency situation is over, the prime responsibility of the declarer of the emergency is to interact with management and arrange for rehabilitation of those affected (physically and financially) due to the hazards and take remedial measures as necessary.

xxii. REVIEW OF INCIDENCE

After emergency situation is over, the management shall appoint an expert committee to Identify the causes leading to the emergency situation.

Preventive measures to avoid recurrence of such situations in future.

Identifying the areas of lapses in implementing emergency plan so that the same can be improved in future.

Recommendation for further strengthening of EMP.

xxiii. UPDATE OF EMERGENCY PLAN

The declarer of emergency shall arrange a meeting of all the members of the emergency organization once in six months to review EMP and also to ensure its effectiveness.

xxiv. TRAINING AND REHEARSAL

Mock drills and training exercise will be conducted half yearly to acquaint all the employees of the factory to

11.12 IDENTIFY HAZARD

Understand the siren for emergency declaration, evacuation and all clear messages. To know the exit routes and assembly points in case of evacuation. Render necessary help during the emergency,

First aid personnel, firefighting personnel, team members of emergency management are adequately trained. Rehearsal and mock drills will be conducted as indicated above.

For training program assistance of District Fire Brigade Station, Central Labor Institution, etc., shall be utilized. Such training from external agencies will be arranged once in a year.

SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India E-Mail : klp.<u>dattsssk@gmail.com</u> Table – 11.2 ORGANIZTION - CHART EMERGENCY

Sr. No.	Designation	Person	Alternate Person
1.	Declarer of Emergency	Managing Director	1. Chief Chemist
			2. Chief Engineer
2.	Incidence Controller	Chief Engineer	Maintenance Engineer
2.1	Evacuation and	Production Manager	Production Chemist
	Resource Team		
2.2	Repair Team	Maintenance	Asst-Engineer
		Manager	(maintenance)
2.3	Essential Service Team	Utility Engineer	Asst. Engineer (Utility)
3.0	Emergency	Quality Manager	Chemist
	Coordinator		
3.1	Transportation Vehicle	Commercial	Asst. Commercial Manager
	Team	Manager	
3.2	Medical Services Team	Environmental	Asst. Environmental
		Manager	Manager
3.3	Security	Security Officer	Security Supervisor
3.4	Communication	Safety Officer	Commercial Manager

Table –11.3 - AUTHORITIES

Sr. No.	Authority
1.	The Chief Inspector of Factories, Maharashtra State.
2.	The Chief Inspector of Boilers, Kolhapur.
3.	The Member Secretary, Maharashtra Pollution Control Board, Mumbai.
4.	The Regional Officer, MPCB, Kolhapur.
5.	The Deputy Commissioner, Kolhapur.
6.	The Superintendent of Police.
7.	Inspector of Police, Shirol.
8.	General Hospital, Shirol.
9.	The Inspector of Police, Jaysingpur.
10.	Primary Health Center, Shirol.
11.	Fire Station Officer, Kolhapur.
12.	List of Adjacent Industries.

ANNEXURE I PHOTOGRAPHS OF GREEN BELT

ANNEXURE I PHOTOGRAPHS OF GREEN BELT

FRONT VIEW ADMENSTRATIVE BUIDLING

<u>ANNEXURE II</u>

MANUFACTURING PROCESS

Cane is weighed on the platform weigh-bridge and is dumped into cane carrier. It is prepared by leveller ad cutter and it is passed through mills for extraction of the juice. Weighed quantity of hot water used on last mill Bagasse to extract maximum quantity of juice. Mills juice from mills is pumped to the boiling house.

The mixed juice is weighed on automatic axwell Boulouge type weighing scales. First heating of the juice is done in raw juice heaters upto 65° to 70°C. The juice is then taken into continuous sulphitation tank where it is mixed with proportionate quantity of milk of lime and sulphur dioxide gas. The reaction is controlled by maintaining proper pH. After sulphitation juice is again heated upto 100° to 102° in sulphur juice heaters and is transferred to Dorr Clarifier for setting. After retention of 2^{1/2} hours clear juice is taken from the top and mud is taken from the bottom.

This mud is mixed with fine bagacillo and is filtered through Oliver vacuum filter. The filtrate juice is again taken in weighed raw juice and filter cake is taken out and used as manure. Clear juice is obtained from clarifiers is further concentrated into evaporators and is converted into syrup. This syrup is again sulphited in continuous syrup sulphitation and send to pan section for manufacture of sugar.

Sugar is manufactured in the vacuum pans by further concentration of syrup along with the seed as footing. The syrup and seed boiled in the vacuum pan is called as a massecuite. The massecuite after completion of boiling in vacuum pan is dropped in the crystallizer.

The massecuite is taken into centrifugal machine for separation of sugar molasses. The sugar separated in the Centrifugal Machine is dropped in hopper. It is dried there by passing hot and cold air and is graded on graders and is bagged, weighted and marked as per L.S.I. standard. The molasses sent out from the machine is reboiled and after third boiling the molasses is sent out is store in steel tank as final molasses which is being used in distillery for alcohol manufacture.

The Bagasse coming from mills is used in boiler as a fuel for production of steam and excess quantity of Bagasse is used for paper making industry. The generated steam is used for driving the turbines and heating and boiling the juice and syrup.

Addition of Equipment Suitable For 9000 TCD & its Tentative Cost

Table No. 11.4

Sr.No.			Cost In
01.	Cane Carrier	Extension of width up to 2300mm with 200mm pitch	60
		chain, Suitable planetary drive and motor	
02.	Cane Chopper	New assembly of 54 knives with reduction gear box	20
		and motor	
03	Cane Leveler	New swing type assembly of stalled edge knives	25
04	Cane Fibrizer	Modification b adding two more dice and by	20
		increasing no of hammers suitable to extended cane	
05	Rake Elevator	Modification of carrier suitable for extended cane	15
		carrier width	
06	Mill No.Ol	Addition of TUFR roller above the existing TRF	25
07	New Mill	Two roller mill as 6 th mill of size 45" X 90" with suitable	650
		planetary gear box and AC VFD drive and rake type	
		elevator	
08	Addition	of identical pumps for strained & unstrained juice	20
09	Bagasse Elevator	Existing bagasse elevator modification to suit new 6 th	25
		mill and replacement of chain by 200mm pitch, 80 T	
		brooking load	
10	Main Bagasse	Modification to suit new 6 th mill and	25
10			LJ
	Carrier	replacement of chain by 200mm pitch and SOT	
		breaking load	
11	Mill House Craine	Modification and extension of gantry suit new 6th mill	25
		Total-	910

Addition of Equipment Suitable For 9000 TCD & its Tentative Cost

Table No. 11.5

Sr.No.	Equipment Name	Cost In Lacs
01.	Sulphitor/Syrup Tower	40
02.	500 m ² Heating surface Juice heater (4 Nos)	180
03.	400 m ² Heating surface Juice heater (2 Nos)	60
04.	Rj/Sj/Cj Juice Pump (9 Nos)	36
05.	Syrup pump (2 Nos)	6
06.	NK 1500 Cont. C/F Machine (2 Nos)	37.5
07	10 X 20 Feet Oliver Filter (1 No.)	40
08.	Sul/Clear Juice DCH	75
09.	32 Feet Clarifier	100
	Total-	574

The total tentative cost for additional equipment suitable for 9000 TCD is 1484 L

ANNEXURE III

Techno Economic feasibility report of ETP facilities provided at Shree Datta Shethkari SSK Ltd., Dattanagar, Tal: Shirol, Dist: Kolhapur

Shree Datta S.S.K. Ltd., Dattanagar, Tal: Shirol Dist: Kolhapur has a Sugar unit of 7500 TCD. Full pledged Effluent treatment plant based on Anaerobic and Aerobic Biological treatment principles was provided to treat Sugar factory effluent. It is proposed to expand the Sugar Factory capacity from 7500 TCD to 9000 TCD. The industry has adopted recycling arrangements of entire excess condensates into process as well as its Distillery unit and also as make up water for cooling towers. Thus, the water consumption as well as the effluent quantity of 700 cum/day shall remain same.

The design details are as below:

- 1. Oil & Grease Tap: Mechanical Oil & grease trap was provided to remove spent oils. The spent oil was mixed with Bagasse & burnt in boiler.
- 2. Flow Meter: A continuous flow meter with data logger was installed to measure the effluent quantity both at the outlet.
- 3. Design parameters: Flow 700 m³/day

COD - 2500 mg/l BOD - 1500 mg/l Suspended solid -300 - 400 mg/l

4. Equalization tank: In order to minimize the fluctuation in flow & to have uniform flow & effluent characteristic, an equalization tank of 400 m³ capacity is provided the detention time is 400/700 = 13.71 Hrs.
A detention time of 8-12 hr is adequate & thus the equalization tank capacity is adequate.

- 5. Washing Storage Tank (Panic Tank): There could be un precedent discharges of high concentration of organic matter entering in to ETP due to washings of vessels / process failures which may affect the performance of biological treatment performance. In order to overcome this eventuality, a panic tank (washing storage tank) of one day capacity is usually provided. The effluent from this tank is pumped uniformly in a controlled manner to biological process. The capacity of panic tank is 800cum which is 27 hr capacity & thus adequate.
- 6. Primary Settling Tank: A primary settling tank is provided to remove the settleable solids in the incoming effluent which can incidently remove organic matter as well as suspended solids. The BOD removal efficiency expected is 25-30% and suspended solids removal efficiency expected is 75-80%.
- 7. Anaerobic filter: Anaerobic filter is an anaerobic treatment where the organic matter is stabilized in the absence of oxygen. The filter media could be either stone or PVC. The stone media can give a BOD removal efficiency of 15-20%, whereas the PVC media can give removal efficiency of 35-40%. The existing stone media was replaced with PVC media to obtain higher removal efficiency.

BOD entering into filter is 700x1200x103/106=840 kg/day. BOD removal from the filter is 840(1-0.5) = 420 Kgs The effluent leaving from filter is 840-420=420 Kgs, which shall be treated in aerobic ETP.

8. Aerobic Treatment:

BOD load to be treated is 420 Kg/day.

O2 required is 420x2=840 Kgs.

Air required is 840/0.20=4200 kgs/day.

Efficiency of Root Blowers is 80%.

Blower capacity required is 4200/0.80= 5200 kgs/day

Provide two Twin Root Blowers of 30 HP capacity.

Aerobic Tank capacity:

F/M=0.15

MLSS=4000 mg/l

X=aeration tank volume in million liters

420/4000X=0.15

X= 420/600=0.7 million liters i.e. 700 cum

The aeration tank capacity provide is 800cum

And hence adequate 90% BOD removal is expected

Effluent leaving aeration shall have BOD of 420(1-0.9)=42 kgs, which is equivalent to 60 mg/l.

9. Clarifier: Overflow rate of secondary clarifier varies between 8-15 m³/m²/day.

Daily flow is 700cum

Diameter of clarifier provided is 8.25 m

Area of clarifier is 53.478 m²

Overflow rate of maximum 15 $m^3/m^2/day$ is permitted.

Over flow rate provided is $700/53.478=13.09 \text{ m}^3/\text{m}^2/\text{day}$.

The clarifier size is adequate.

Suspended solids removal in the clarifier varies between 80-90%.

Initial Suspended solids concentration 300 mg/l(max)

Final suspended solids 300(1-0.8) = 60 mg/l

10. Sludge Drying Beds:

Excess Sludge produced would be 0.10 kg per kg of BOD removed.

BOD removed in aerobic process is 420-42= 378 kgs.

Excess Sludge produced is 378x0.10=37.80 kgs. Solids percent in sludge is 1%.

Volume of sludge 37.8/0.01=3780 liters (i.e. 3.78 Cum)

Provide 10days time for sludge drying.

Volume of sludge Drying Beds required is 3.78x10=37.8 Cum.

Sludge Beds Volume provided is 45 cum and hence adequate.

11. 15 days storage tank for treated effluent during no demand period of Irrigation

Capacity of the tank = 15x700=10500 Cum.

The capacity of tank provided is 11000 Cum and hence adequate.

The tank is constructed with HDPE lining and concreting at bottom and sides of the tank

Estimated COD, BOD, Suspended Solids removal efficiency of ETP

Sr. No.	Unit	BOD) mg/l	COD) mg/l	Susp Solid	ended s mg/l	Ef	Efiiciency %	
			Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	BOD	COD
1.	Equilization	1500	1500	2500	2500	400	400			
	Tank									
2.	Primary	1500	1100	2500	2000	400	100	27	20	75
	Setlling tank									
3.	Anaerobic	1200	700	2000	1200	100	80	37	40	20
	Filter									
4.	Aeration	700	60	1200	240	80	60	92	80	25
	Tank									

Table No. 11.6

ANNEXURE V

GOVERNMENT OF MAHARASHTRA

No. ENV (NOC) /2000/130/CR-21/D-I

Fax :- 2029388/2025946

Environment Department., 15th floor, New Admn.Bldg., Madam Cama Road, Mantralaya, Mumbai - 400 032

Date :- 23rd March, 2000

To,

The Managing Director, Shri.Datta Shetkari Sakhar Karkhana Ltd., Shirol, Tal - Shirol District - Kolhapur.

Subject :-

Environmental Clearance for expansion of crushing capacity from 5000 MT/Day to 7500 MT/Day.

Sir,

I am directed to refer to your letter No. 15389/ENVR/ETP/1999-2000 dated 29th January., 2000 on the subject mentioned above and to state that the Environment Department of the State Government has no objection from the environmental angle to permit you to expansion of -

crushing capacity from 5,000 MT/Day to 7500 MT/Day At - Shirol, Tal - Shirol, District - Kolhapur.

subject to the following conditions and general conditions appended to this letter.

These stipulations will be enforced among others under the Water (Prevention & Control of Pollution) Act., 1974 the Air (Prevention & Control of Pollution) Act., 1981, the Environment (Protection) Act., 1986 and the Public Liability Insurance Act., 1991 alongwith their amendments.

The above permission is without prejudice to any other permissions required under any of the laws, bye-laws or regulations in force and that the Government may impose additional conditions from time to time for control of pollution, if necessary.

Yours faithfully,

(B.T.Narkar) Section Officer

Encl : As above

sith datta shetkari sahakari SAKHAR KARKHANA LTD. SHROL D科科科会领悟 MO. 19427 2 7 MAR 2000 SENT TO .

GOVERNMENT OF MAHARASHTRA

No. ENV (NOC) /2000/130/CR-21/D-I

Fax :- 2029388/2025946

Environment Department., 15th floor, New Admn.Bldg., Madam Cama Road, Mantralaya, Mumbai - 400 032

Date :- 23rd March, 2000

To,

The Managing Director, Shri.Datta Shetkari Sakhar Karkhana Ltd., Shirol, Tal - Shirol District - Kolhapur.

Subject :-

Environmental Clearance for expansion of crushing capacity from 5000 MT/Day to 7500 MT/Day.

Sir,

I am directed to refer to your letter No. 15389/ENVR/ETP/1999-2000 dated 29th January., 2000 on the subject mentioned above and to state that the Environment Department of the State Government has no objection from the environmental angle to permit you to expansion of -

crushing capacity from 5,000 MT/Day to 7500 MT/Day At - Shirol, Tal - Shirol, District - Kolhapur.

subject to the following conditions and general conditions appended to this letter.

These stipulations will be enforced among others under the Water (Prevention & Control of Pollution) Act., 1974 the Air (Prevention & Control of Pollution) Act., 1981, the Environment (Protection) Act., 1986 and the Public Liability Insurance Act., 1991 alongwith their amendments.

The above permission is without prejudice to any other permissions required under any of the laws, bye-laws or regulations in force and that the Government may impose additional conditions from time to time for control of pollution, if necessary.

Yours faithfully,

(B.T.Narkar) Section Officer

med to CC	SAKHAR KAWAANA LTD. SHAROL DHIWANIS NO. 1942.7
Cont MDW Cris	2 7 MAR 2000
27. Sz.	SENT TO .

Encl : As above

1. The 'Project Authority shall take adequate safety precautions in handling the raw materials, plant and machinery and the products of the processes so as to avoid any damage/loss of life or property, or environment.

2. The Project Authority shall provide personal protective equipments, impart training and medical facilities to the workers and handling the hazardous/dangerous raw materials, finished products or processes.

3. The Project Authority shall prepare the on-site disaster management plan and should submit to the Director, Industrial safety and Health. The copies of which shall also be submitted to the District Collector, Local Authority, MPCB and the Environment Department, Government of Maharashtra. The Project Authority shall submit the information to the Director, Industrial Safety and Health for the preparation of the off-site disaster Management plan. The Project Authority should carry out periodical rehearsal of the on-site disaster management plan.

4. The Project Authority shall comply with all statutory requirements for safe transportation of raw materials/finished products in case of trucks/tankers corrying hazardous raw material hall be washed and cleaned up within the plant premises, so as to ensure no pollution in the vicinity.

5. The Project Authority shall use cleaner technology for the manufacturing process and the clean fuel for the operations so as to reduce process waste, liquid etiluents and gaseous emissions.

6. The Project Authority shall treat the liquid effluents so as to confirm to the standards prescribed by MPCB. The disposal of the treated effluent shall be in accordance with the conditions imposed by MPCB/GOM(Govt.of Naharashtra/Govt. of India). The continuous monitoring facility for the effluents should be provided by the project authority. If the effluent quality exceeds the standards at any time the corresponding units of the plant which are contri-, buting the excessive pollutant load shall be stopped from the operations till the quality of pollutant discharged from those units are brought down to the required level. Under no circumstances, the quality of the effluent shall exceed the limits mentioned in the consent letter. The Project Authority should draw water consumption alans and the time bound sincere efforts for the reduction of water consumption should be made.

7. In case the treated effluent is proposed to be utilised for land irrigation/gardening on the land owned by the Froject Authority, the sufficient area should be earmarked for the same purpose in consultation with the Agriculture Department. Under no circumstances, such an effluent should be allowed to flow outside the premises of the project. During Mansoon or heavy rainfall period, if the treated effluent can not be absorbed in the project land and there is a likelyhood of the effluent going into the mearby areas, the respective unit should be put out of operation immediately. For the purpose of effluent disposal, mechanical system(sprinkler etc.) and shall make adequate arrangements for the storage of excessive

Received.

DAL Page No-2103

S. wopm to 7.05pm " Date - 24th Aug 2016 Wednesday.

GCP.RUTA/11-898(2000-10-93)

undertake soil testing of the land which are being used for the disposal of the effluent and shall also undertake periodical and regular testing of water sources in the vicinity of the project.

g. The Project Authority shall centrol the air emissions as per the standards prescribed by MPCB. No change in the design of stack and fuel mix be done without the permission of stack. Minimum number of dir quality of air quality monitoring stations should be set up in consultation with MPCB in the plant and nearby areas. The sir quality should be monitored on regular basis. All the stacks of the plant should be provided with the continuous stack monitoring equipment and the stack emission levels shall be recorded and submitted to the MPCB as per their directives.

40. The process emissions shall meet the standards prescribed by MPCB. At no time, the emissions should be beyond the standards. The respective units which exceed the standard should be put out of order immediately and should not be restarted until the control systems are rectified.

10. The solid waste shall be treated and disposed off as prescribed in the authorisation certificate granted by MPCB in accordance with the Hazardous Waste (Handling and Management) Rules, 1989 (Wherever applicable).

12. The Project Authority shall take precautions so as to reduce other types of environmental problems like noise, odour, thermal/heat and radio activity erc. (if applicable).

13. The Project Authority shall set up environment management cell with a suitably qualified staff, to carry cut various functions of the environment management. The Environment Management plan should be prepared by the project authority and same shall be submitted to MPCB. The Project Authority shall also earmarked funds for the Environment Management Cell and same shall not be diverted for any other purpose. The Project Authority shall prepare environment statement every year and copy of the same should be submitted to the MPCB.

19. The cases of any disaster/accident/mishap due to handlingraw materials, processes, plant and machinery or finished products, the Froject Authority shall be personally, jointly and severally be responsible for the event.

15. Tree plantation programme should be undertaken at the rate of not less than 2500 trees per ha. on the factory land, in commultation with the Forest Department of the State Government and MPCB.

15. This environment clearance is not traisferable and shall large after a period of 2 years from the date on which the clearance is given, unless the intended development is commenced before the expiry of the period.

16. The Project Authority must strictly adhers to the stipulations made by NPCB/Government of Maharanhtra/Government of India. The Project Authority shall submit the compliance report regarding conditions imposed by NPCB/Government of Maharashtra(Environment Department)/Govt.of India before commencement of production/acti-

19. The company should store Holasses in still tank and not in Kaccha pit.

ENVIRONMENTAL CLEARANCE CONDITIONS AND COMPLIANCE FOR 5000 TO 7500 TCD

Sr.No.	EC Conditions	Compliance
1.	The Project Authority shall take adequate safety precautions in	Adequate steps
	handling the raw materials, plant and machinery and the	are taken for
	products of the processes so as to avoid any damage/loss of life	storage of
	or property, or environment.	materials. No
		Hazardous
		chemicals are
		used in The
		Process.
2	The Project Authority shall provide personal protective	Workers are
	equinments impart training and medical facilities to the	nrovided with
	workers handling the hazardous/dangerous raw materials	Helmets Anrons
	finished products or processes	Hond Cloves and
	misned products of processes.	Cum Boots of the
		Gum Bools at the
		places like Boller,
		Will House etc.
		well furnished
		Hospital is
		established by the
		Management for
		Medical
		Assistance.
3.	The Project Authority shall prepare the on-site disaster	On site and off
	management nian and should submit to the Director industrial	site emergency
	safety and Health The conjes of which shall also be submitted	nlaces are
	to the District Collector Local Authority MPCB and the	praces are
	Environment Department Covernment of Maharashtra The	submitted to the
	project Authority shall submit the information to the Director	submitted to the
	Industrial Safaty and plan. The Project Authority should carry	drills aro
	aut noviedical veheaveal of the on site disaster management	urins are
	out periodical renearsal of the on-site disaster management	regularly
	pian.	undertaken.
4.	The Project Authority shall comply with all statutory	All the safety
	requirements for safe transportation of raw materials/finished	precautions are
	products in case of trucks/tankers carrying hazardous raw	taken for the
	materials shall be washed and cleaned up within the plant	transport of the
	premises, so as to ensure no pollution in the vicinity.	raw materials. No
		Hazardous raw
		material is
		transported.
-		
5.	The Project Authority shall use cleaner technology for the	The Industry
	manufacturing process and the clean fuel for the operations so	adopted the
	as to reduce process waste, liquid effluents and gaseous	cleaner
	emissions.	technology to
		recycle the entire

	E-Wall . Kip. <u>ualtsssk@ginall.com</u>	[]
		condensates water back to the process. The waste water produced is less than 40 liters as against the CPCB guidelines of 100 liters per tonne of Cane crushed. ESP is provided to control emissions from Boiler.
6.	The Project Authority shall treat the liquid effluents so as to confirm to the standards prescribed by MPCB. The disposal of the treated effluent shall be in accordance with the conditions imposed by MPCB/GOM (Govt. of Maharashtra/Govt. Of India). The continuous monitoring facility for the effluent quality exceeds the standards at any time the corresponding units of the plant which are contributing the excessive pollutant load shall be stopped from the operations till the quality of pollutant discharged from those units are brought down to the required level. Under no circumstances, the quality of the effluent shall exceed the limits mentioned in the plants and time bound sincere efforts for the reduction of water consumption should be made.	The MPCB standards are met as per the consent conditions. Continuous monitoring facilities are installed for the treated effluent. The water consumption for process is nil. River water is drawn for Domestic purpose only.
7.	In case the treated effluent is proposed to be utilised for land irrigation/gardening on the land owned by the Project Authority, the sufficient area should be earmarked for the same purpose in consultation with the Agriculture Department. Under no circumstances, such an effluent should be allowed to flow outside the premises of the project. During Mansoon or heavy rainfall period, if the treated effluent can not be absorbed in the project land and there is a likelihood of the effluent going into the nearby areas, the respective unit should be put out of operation immediately. For the purpose of effluent disposal, mechanical system(sprinkler etc.) and shall make adequate arrangements for the storage of excessive of the Project Authority shall regularly and periodically undertake soil testing of the land which are being used for the disposal of the effluent and shall also undertake periodical and regular testing of water sources in the vicinity of the project.	100 acres of land is available for treated effluent for irrigation purpose which is adequate. Testing of Ground water, Quality is carried out in the project area once in a year.

SHRI DATTA SHETKARI SAHAKARI SAKHAR KARKHANA LTD., SHIROL PO : DATTANAGAR 416 120 TALUKA-SHIROL, DIST.KOLHAPUR, (MS) India

E-Mail : klp. <u>dattsssk@gmail.com</u>						
8.	The Project Authority shall control the air emissions as per the standards prescribed by MPCB. No change in the design of stock and fuel mix be done without the permissions of MPCB. Minimum number of air quality of air qualify monitoring stations should be set up in consultation with MPCB in the plant and nearby areas. The air quality should be monitored on regular basis. All the stacks of equipment and the stack emission levels shall be recorded and submitted to the MPCB as per their directions.	Stack emissions are met by the Urajankur Shree Datta Power Company which is operating the Co-generation power plant on BOOT principles. Around eight ambient air stations are				
		monitored				
9.	The process emission shall meet the standards prescribed by MPCB. At no time, the emissions should be beyond the standards. The respective units which exceed the standard should be put out of order immediately and should not be restarted until the control systems are rectified.	regularly. Process emissions are not generated. Sulphur burner gases are scrubbed. Sugar Bagging Section is provided with dust collector.				
10.	The solid waste shall be treated and disposed off as prescribed in the authorisation certificate granted by MPCB in accordance with the Hazardous waste (Handling and Management) Rules, 1989 (Whenever applicable).	Solid wastes are converted into manure along with spentwash.				
11.	The Project Authority shall take precautions so as to reduce other types of environmental problem like noises, odour, thermal/heat and radio activity etc.(if applicable).	Acoustic measures and Silencer pads are provided to reduce Noise levels. Workers are also provided with ear plugs/muffs at places like Turbine, Boiler, Compressors etc. Workers are provided with Aprons and helmets and Googols at places like Boiling House and mill House. There are no significant odour problems				

		in Sugar
		industries.
12.	The Project Authority shall set up environment management cell with a suitable qualified staff, to carry out various functions of the environment management. The Environment Management plan should be prepared by the project authority and same shall be submitted to MPCB. The Project Authority shall also earmarked funds for the Environment Management Cell and same shall not be diverted for any other purpose. The Project Authority shall prepare environment statements every year and copy of the same should be submitted to the MPCB.	A full pledged Environment cell headed by the chief chemist is set up. Around fifty lakhs are earmarked for Environmental Management plan. The industry also engaged a consultant to advice the Industry on Environmental issues. Environment statements form V is submitted every year on or before 30 th September
13.	The cases of any disaster/accident/mishap due to handling raw materials, processes, plant and machinery or finished products, the Project Authority shall be personally, jointly and severally be responsible for the event.	Noted.
14.	Tree plantation programme should be undertaken at the rate of not less than 2500 trees per ha. On the factory land, in consultation with the Forest Department of the State Government and MPCB.	As per the revised guidelines of CPCB green belt is developed as 1500 trees per hectare in consultation with the forest- Department.
15.	This environment clearance is not transferable and shall expire after a period of 2 years from the date on which the clearance is given, unless the intended development is commenced before the expiry of the period.	The project was commissioned in 2001-2002,well before the expiry of two years.

	L-Mail . kip. <u>dati355k@ginal.com</u>					
16.	The Project Authority must strictly adhered to the stipulations	Compliance				
	made by MPCB/Government of Maharashtra/Government of	Report is				
	India. The Project Authority shall submit the compliance	submitted				
	report regarding conditions imposed by MPCB/Government of	regularly.				
	Maharashtra (Environment Department)/Govt. Of India before					
	commencement of production/activity.					
17.	The Company should store Molasses in still tank and not in	Molasses are				
	Kaccha pit.	stored in Steel				
		tanks only.				

122nd Meeting of State Level Expert Appraisal Committee - 1 held on 24th, 25th & 26th Feb, 2016

Item no. 27	M/s. Shree Datta Shetkari Sahakari Sakhar Karkhana Ltd.(ToR) Expansion
	/modernization of sugar unit from 313 TCH (7500 TCD) to 375 TCH (9000TCD)
	at plot no. agar bagh-343 to 352, 354, 361 shirol-251, 252, 717, 903, 129,
	133/2,135,134,136,210,213,214,230,229,232 to 237, 242, 246+241, 247 to 249,
×	127, 131, Tal- Shirol, Kolhapur.

The PP gave a detailed presentation for approval of ToR for their proposed expansion /modernization of sugar factory crushing activity from 7500 TCD to 9000 TCD. The Project was considered under 5(j)-B1 category of the Schedule of the EIA Notification, 2006.

The Committee noted that the present sugar factory also has 36 MW cogeneration plant and 16 KLPD distillery. These ancillary activities will continue at same quantum of production while sugar manufacturing is proposed to be enhanced. This enhancement will not entail any additional water requirement and effluent generation. Water requirement will remain at 100 m³ and effluent generation at 750 m³.

After detailed discussion the Committee decided to **approve ToR** for preparation of EIA report subject to the following conditions:

- 1. For the EIA report the prescriptions of Model ToR by MoEF published in April, 2015 shall be adopted.
- 2. A detailed analysis of fuel requirement for the boiler may be made to prove that additional fuel will not be required.
- 3. Details of emission inventory may be given w.r.t steam generation and effluent.
- 4. The PP shall achieve an outlet TPM of less than 100 mg/Nm³.
- 5. In consonance with the Notification of CPCB the PP shall not exceed quantum of final treated effluent discharge beyond 100 lit/tonnes of cane crushed. Similarly quantum of waste water from spray pond / cooling tower blow down shall not exceed 100 litres/tonnes of cane crushed. These may be shown through precise calculations.

122nd Meeting of State Level Expert Appraisal Committee - 1 held on 24th, 25th & 26th Feb, 2016

- 6. Details of ash management including storage facility and disposal of ash to brick manufacturers ensuring there is no generation of air pollutants in the entire process of handling of ash may be described.
- 7. Public Consultation will be required.

It was decided that following members will visit the project to study the present processes and environs of the plant on 9.3.2016 at 11 am-

1. Shri. T. C. Benjamin, Chairman

2. Shri. B.H Sehgal, Member

3. Shri. C. I. Sambutwad, Member

4. Shri. D. A. Hiremath, Member

5. Prof. (Dr.) R. Dod, Member

Sizy Member Secretary

Chairman

STANDARD TERMS OF REFERENCE (TOR) FOR EIA/EMP REPORT FOR PROJECTS/ ACTIVITIES REQUIRING ENVIRONMENT CLEARANCE

- 5(j):STANDARD TERMS OF REFERENCE FOR CONDUCTING ENVIRONMENT IMPACT ASSESSMENT STUDY FOR SUGAR INDUSTRY AND INFORMATION TO BE INCLUDED IN EIA / EMP REPORT
- A. STANDARD TERMS OF REFERENCE
- 1) Executive Summary
- 2) Introduction
 - i. Details of the EIA Consultant including NABET accreditation
 - ii. Information about the project proponent
 - iii. Importance and benefits of the project
- 3) Project Description
 - i. Cost of project and time of completion.
 - ii. Products with capacities for the proposed project.
 - iii. If expansion project, details of existing products with capacities and whether adequate land is available for expansion, reference of earlier EC if any.
 - iv. List of raw materials required and their source along with mode of transportation.
 - v. Other chemicals and materials required with quantities and storage capacities
 - vi. Details of Emission, effluents, hazardous waste generation and their management.
 - Requirement of water, power, with source of supply, status of approval, water balance diagram, man-power requirement (regular and contract)
 - viii. Process description along with major equipments and machineries, process flow sheet (quantative) from raw material to products to be provided.
 - ix. Hazard identification and details of proposed safety systems.
 - x. Expansion/modernization proposals:
 - a. Copy of all the Environmental Clearance(s) including Amendments thereto obtained for the project from MOEF/SEIAA shall be attached as an Annexure. A certified copy of the latest Monitoring Report of the Regional Office of the Ministry of Environment and Forests as per circular dated 30th May, 2012 on the status of compliance of conditions stipulated in all the existing environmental clearances including Amendments shall be provided. In addition, status of compliance of Consent to Operate for the ongoing Iexisting operation of the project from SPCB shall be attached with the EIA-EMP report.
 - b. In case the existing project has not obtained environmental clearance, reasons for not taking EC under the provisions of the EIA Notification 1994 and/or EIA Notification

STANDARD TERMS OF REFERENCE (TOR) FOR EIA/EMP REPORT FOR PROJECTS/ACTIVITIES REQUIRING ENVIRONMENT CLEARANCE

2006 shall be provided. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted. Further, compliance report to the conditions of consents from the SPCB shall be submitted.

- 4) Site Details
 - xiv. Location of the project site covering village, Taluka/Tehsil, District and State, Justification for selecting the site, whether other sites were considered.
 - i. A toposheet of the study area of radius of 10km and site location on 1:50,000/1:25,000 scale on an A3/A2 sheet. (including all eco-sensitive areas and environmentally sensitive places)
 - ii. Details w.r.t. option analysis for selection of site
 - iii. Co-ordinates (lat-long) of all four corners of the site.
 - iv. Google map-Earth downloaded of the project site.
 - v. Layout maps indicating existing unit as well as proposed unit indicating storage area, plant area, greenbelt area, utilities etc. If located within an Industrial area/Estate/Complex, layout of Industrial Area indicating location of unit within the Industrial area/Estate.
 - vi. Photographs of the proposed and existing (if applicable) plant site. If existing, show photographs of plantation/greenbelt, in particular.
 - vii. Landuse break-up of total land of the project site (identified and acquired), government/ private - agricultural, forest, wasteland, water bodies, settlements, etc shall be included. (not required for industrial area)
 - viii. A list of major industries with name and type within study area (10km radius) shall be incorporated. Land use details of the study area
 - ix. Geological features and Geo-hydrological status of the study area shall be included.
 - x. Details of Drainage of the project upto 5km radius of study area. If the site is within 1 km radius of any major river, peak and lean season river discharge as well as flood occurrence frequency based on peak rainfall data of the past 30 years. Details of Flood Level of the project site and maximum Flood Level of the river shall also be provided. (mega green field projects)
 - xi. Status of acquisition of land. If acquisition is not complete, stage of the acquisition process and expected time of complete possession of the land.

xii. R&R details in respect of land in line with state Government policy

- 5) Forest and wildlife related issues (if applicable):
 - i. Permission and approval for the use of forest land (forestry clearance), if any, and recommendations of the State Forest Department. (if applicable)

2	n	7	L
4	υ	1	h
			1

STANDARD TERMS OF REFERENCE (TOR) FOR EIA/EMP REPORT FOR PROJECTS/ ACTIVITIES REQUIRING ENVIRONMENT CLEARANCE

- ii. Landuse map based on High resolution satellite imagery (GPS) of the proposed site delineating the forestland (in case of projects involving forest land more than 40 ha)
- iii. Status of Application submitted for obtaining the stage I forestry clearance along with latest status shall be submitted.
- iv. The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, the project proponent shall submit the map duly authenticated by Chief Wildlife Warden showing these features vis-à-vis the project location and the recommendations or comments of the Chief Wildlife Warden-thereon
- v. Wildlife Conservation Plan duly authenticated by the Chief Wildlife Warden of the State Government for conservation of Schedule I fauna, if any exists in the study area
- vi. Copy of application submitted for clearance under the Wildlife (Protection) Act, 1972, to the Standing Committee of the National Board for Wildlife
- 6) Environmental Status
 - i. Determination of atmospheric inversion level at the project site and site-specific micrometeorological data using temperature, relative humidity, hourly wind speed and direction and rainfall.
 - ii. AAQ data (except monsoon) at 8 locations for PM10, PM2.5, SO2, NOX, CO and other parameters relevant to the project shall be collected. The monitoring stations shall be based CPCB guidelines and take into account the pre-dominant wind direction, population zone and sensitive receptors including reserved forests.
 - iii. Raw data of all AAQ measurement for 12 weeks of all stations as per frequency given in the NAQQM Notification of Nov. 2009 along with - min., max., average and 98% values for each of the AAQ parameters from data of all AAQ stations should be provided as an annexure to the EIA Report.
 - iv. Surface water quality of nearby River (100m upstream and downstream of discharge point) and other surface drains at eight locations as per CPCB/MoEF&CC guidelines.
 - Whether the site falls near to polluted stretch of river identified by the CPCB/MoEF&CC, if yes give details.
 - vi. Ground water monitoring at minimum at 8 locations shall be included.
 - vii. Noise levels monitoring at 8 locations within the study area.
 - viii. Soil Characteristic as per CPCB guidelines.
 - ix. Traffic study of the area, type of vehicles, frequency of vehicles for transportation of materials, additional traffic due to proposed project, parking arrangement etc.
 - x. Detailed description of flora and fauna (terrestrial and aquatic) existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna are found within the study area, a Wildlife Conservation Plan shall be prepared and furnished.
 - xi. Socio-economic status of the study area.

STANDARD TERMS OF REFERENCE (TOR) FOR EIA/EMP REPORT FOR PROJECTS/ACTIVITIES REQUIRING ENVIRONMENT CLEARANCE

- 7) Impact and Environment Management Plan
 - i. Assessment of ground level concentration of pollutants from the stack emission based on site-specific meteorological features. In case the project is located on a hilly terrain, the AQIP Modelling shall be done using inputs of the specific terrain characteristics for determining the potential impacts of the project on the AAQ. Cumulative impact of all sources of emissions (including transportation) on the AAQ of the area shall be assessed. Details of the model used and the input data used for modelling shall also be provided. The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any.
 - ii. Water Quality modelling in case of discharge in water body
 - iii. Impact of the transport of the raw materials and end products on the surrounding environment shall be assessed and provided. In this regard, options for transport of raw materials and finished products and wastes (large quantities) by rail or rail-cum road transport or conveyorcum-rail transport shall be examined.
 - iv. A note on treatment of wastewater from different plant operations, extent recycled and reused for different purposes shall be included. Complete scheme of effluent treatment. Characteristics of untreated and treated effluent to meet the prescribed standards of discharge under E(P) Rules.
 - v. Details of stack emission and action plan for control of emissions to meet standards.
 - vi. Measures for fugitive emission control
 - vii. Details of hazardous waste generation and their storage, utilization and management. Copies of MOU regarding utilization of solid and hazardous waste in cement plant shall also be included. EMP shall include the concept of waste-minimization, recycle/reuse/recover techniques, Energy conservation, and natural resource conservation.
 - viii. Proper utilization of fly ash shall be ensured as per Fly Ash Notification, 2009. A detailed plan of action shall be provided.
 - ix. Action plan for the green belt development plan in 33 % area i.e. land with not less than 1,500 trees per ha. Giving details of species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall also be incorporated.
 - x. Action plan for rainwater harvesting measures at plant site shall be submitted to harvest rainwater from the roof tops and storm water drains to recharge the ground water and also to use for the various activities at the project site to conserve fresh water and reduce the water requirement from other sources.
 - xi. Total capital cost and recurring cost/annum for environmental pollution control measures shall be included.
 - xii. Action plan for post-project environmental monitoring shall be submitted.

STANDARD TERMS OF REFERENCE (TOR) FOR EIA/EMP REPORT FOR PROJECTS/ ACTIVITIES REQUIRING ENVIRONMENT CLEARANCE

xiii. Onsite and Offsite Disaster (natural and Man-made) Preparedness and Emergency Management Plan including Risk Assessment and damage control. Disaster management plan should be linked with District Disaster Management Plan.

8) Occupational health

- i. Plan and fund allocation to ensure the occupational health & safety of all contract and casual workers
- ii. Details of exposure specific health status evaluation of worker. If the workers' health is being evaluated by pre designed format, chest x rays, Audiometry, Spirometry, Vision testing (Far & Near vision, colour vision and any other ocular defect) ECG, during pre placement and periodical examinations give the details of the same. Details regarding last month analyzed data of above mentioned parameters as per age, sex, duration of exposure and department wise.
- iii. Details of existing Occupational & Safety Hazards. What are the exposure levels of hazards and whether they are within Permissible Exposure level (PEL). If these are not within PEL, what measures the company has adopted to keep them within PEL so that health of the workers can be preserved,
- Annual report of heath status of workers with special reference to Occupational Health and Safety.
- 9) Corporate Environment Policy
 - i. Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report.
 - ii. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environmental or forest norms / conditions? If so, it may be detailed in the EIA.
 - iii. What is the hierarchical system or Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions? Details of this system may be given.
 - iv. Does the company have system of reporting of non compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism shall be detailed in the EIA report
- 10) Details regarding infrastructure facilities such as sanitation, fuel, restroom etc. to be provided to the labour force during construction as well as to the casual workers including truck drivers during operation phase.
- 11) Enterprise Social Commitment (ESC)
 - i. Adequate funds (at least 2.5 % of the project cost) shall be earmarked towards the Enterprise

STANDARD TERMS OF REFERENCE (TOR) FOR EIA/EMP REPORT FOR PROJECTS/ACTIVITIES REQUIRING ENVIRONMENT CLEARANCE

Social Commitment based on Public Hearing issues and item-wise details along with time bound action plan shall be included. Socio-economic development activities need to be elaborated upon.

- 12) Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details thereof and compliance/ATR to the notice(s) and present status of the case.
- 13) A tabular chart with index for point wise compliance of above TOR.
- B. SPECIFIC TERMS OF REFERENCE FOR EIA STUDIES FOR SUGAR INDUSTRY
- 1. Complete process flow diagram describing each unit, its processes and operation sinproduction of sugar, along with material and energy inputs and outputs (material and energy balance).
- Details on water balance including quantity of effluent generated, recycled & reused. Effort stominimize effluent is charge and to maintain quality of receiving water body.
- 3. Details of effluent treatment plant, inlet and treated water quality with specific efficiency of each treatment unit in reduction in respect to fall concerned / regulated environmental parameters.
- 4. Numberofworkingdaysof thesugar productionunit.
- 5. Detailsoftheuseofsteamfromtheboiler.
- Detailsofproposedsource-specificpollutioncontrol schemes and equipments to meet the national standards.
- 7. Collection, storage, handling and transportation of molasses,
- 8. Collection, storage and handling of bagasse and pressmud.
- 9. Flyash management plan for coal based and bagasse and action plan
- 10. Details on water quality parameter ssuchas Temperature, Colour, pH, BOD, COD, Total Kjeldhal Nitrogen, Phosphates, Oil & Grease, Total Suspended Solids, Total Coli form bacteria etc.
- 11. Details on existing ambient air quality and expected, stack and fugitive emissions for PM10, PM2.5, SO2*, NOx*, etc., and evaluation of the adequacy of the proposed pollution control devices to meet standards for point sources and to meet AAQ standards. (*-As applicable)

ANNEXURE VII

Site Specific Technological Data at Shree Datta Shetakari Sahakari Sakhar

<u>Karkhana</u>

Month	Year	Mean Daily	Mean Daily	Relative Humidity		Rainfall
		Maximum	Minimum			(mm)
		Tempreture(o°c)	Temperature(o°c)	(8:30AM)	(17:30PM)	
March	2016	35.50	15.80	65	27	Nil
April	2016	34.50	16.20	69	37	Nil
May	2016	37.60	22.50	71	48	Nil

Note: Wind direction is dominantly from E.

WindRose Digrams are as per "Aermod Version 7.4"

ANNEXURE VIII