File No.IA-J-11011/256/2017-IA-II(I), Category 'A'

EXECUTIVE SUMMARY

Environmental Impact Assessment Report

New 30 KLPD Molasses based Distillery Unit M/S. DWARKADHISH SAKHAR KARKHANA LIMITED

Sheware, Taluka Satana(Baglan), District Nashik, Maharashtra

VASANTDADA SUGAR INSTITUTE, PUNE

Manjari (Bk.), Tal. : Haveli, Dist. : Pune 412 307, Maharashtra, India Telephone: (020) 2690 2100, 2690 2343/7 Fax (020) 26902244

Website: www.vsisugar.com

*Accredited by QCI/NABET for EIA consultancy services, (Certificate No. NABET/EIA/1417/SA 0014) Recognized R & D Centre by Department of Scientific and Industrial Research (DSIR), Ministry of Science and Technology, Government of India

Recognized Post Graduate & Research Centreof 'SavitribaiPhule Pune University'

December 2017

VSI/EIA/DSKL/DR-01/20171218

Sr. No	Particulars	Page
1.0	Introduction	1
1.1	Features of the Site	1
1.2	Project Information at a Glance	2
1.3	Resources	4
1.3.1	Molasses	4
1.3.2	Press Mud	4
1.3.3	Land	4
1.3.4	Water	4
1.3.5	Steam & Power	5
1.3.6	Fuel	6
2.0	Manufacturing Process	7
2.1	Multi-Pressure Distillation Technology	7
2.1.1	Advantages of Multi-Pressure Distillation	7
2.2	Details of Storage Tanks	8
2.3	Cost of the Project	9
3.0	Environmental Aspects	10
4.0	Baseline Environmental Conditions	11
5.0	Impact Assessment and Environment Management Plan	12
5.1	Air Environment	12
5.1.1	Impact Assessment	13
5.1.2	Air Pollutant Dispersion Modelling	13
5.1.3	Environmental Management Plan	15
5.2	Noise	15
5.2.1	Impact Assessment	15
5.2.2	Environment Management Plan	16
5.3	Water Environment	16
5.3.1	Impact Assessment	16
5.3.1.1	Reuse of Water (After Proper Treatment)	16
5.3.1.2	Conservation of water	17
5.3.2	Environment Management Plan	17

CONTENT: EXECUTIVE SUMMARY

Executive Summary: New 30 KLPD Molasses Based Distillery M/s. Dwarkadhish Sakhar Karkhana Ltd. Sheware, Nashik

5.4	Soil Environment	17
5.4.1	Impact Assessment	17
5.4.2	Environment Management Plan	17
5.5	Ecology And Biodiversity	18
5.5.1	Impact Assessment	18
5.5.2	Environment Management Plan	18
5.6	Socio-Economic Environment	18
5.7	Land Use, Geology and Hydrology/Drainage	19
5.7.1	Impact Assessment	19
5.7.2	Environment Management Plan	19
6.0	Greenbelt Development	19
7.0	Safety, Occupational , Health Management	19
8.0	Environmental Monitoring Programme	20
9.0	Project Benefits	20
10.0	Conclusion	21

LIST OF TABLE

#	Title	Page
1	Features of the Project Site	1
2	Details of Storage and Receiving tanks	8
3	Project Cost Details	9
4	Estimated Capital & Recurring Expenses for Environment Management	9
5	Overview of Environment Management Processes	10
6	Summary of Environmental features of study area	11
7	Resultant Concentrations due to Incremental GLC's	
8	Summarize Environmental Monitoring Programme	
	LIST OF FIGURE	
Figure	Title	Page
1	Satellite image of proposed distillery unit alongwith alternative Site	2
2	Water and Mass Balance	6
3	Schematic of RS/ENA/AA Manufacturing process	8
4	Isopleths showing incremental ground level concentration of	13

	particulate matter during cane crushing season	
5	Isopleths showing incremental ground level concentration of SO_2	14
	during cane crushing season	
6	Isopleths showing incremental ground level concentration of SO_2	14
	during off- season – Bagasse + Biogas as a Fuel	

EXECUTIVE SUMMARY

1.0 INTRODUCTION

M/s. Dwarkadhish Sakhar Karkhana Ltd. (DSKL) is a private sugar mill (limited company) located at village Sheware, Tal-Satana, Dist- Nashik, Maharashtra. It is registered under the Company Act 1956 vide registration No. 25-13345 dated 18/02/1999. The establishment of this sugar factory was in the interest of local sugarcane growers. According to industrial zone classification, this site is situated in D+ zone, which is industrially least developed. The industry was awarded with "Vanshree Puraskar" in 2008 by the Government of Maharashtra for regular tree plantation every year in industry campus and surrounding area.

1.1 Features of the Site

DSKL has approx. 19.2 acres of land, which will be utilized for distillery as well as ancillary units such as pollution control system, greenbelt, etc. The existing site meets the industrial sitting guidelines of the Ministry of Environment, Forest and Climate Change (MoEFCC). The project proponent also explored alternative site for the distillery unit on survey No. 265 towards the NW direction of sugar mill.

This site location map is shown in **Fig. 1**. The other important aspects are highlighted in the following table.

Geographical Location	1) 20°47'51"N, 74°07'14"E 2) 20°47'56"N, 74°07'16"E	
of Distillery unit	3) 20°47'53"N, 74°07'21"E 4) 20°47'49"N, 74°07'21"E	
	Altitude 678 m above MSL	
Road Connectivity	SH-20 (Parshuramnagar-Manmad) and SH-16 (Aurangabad –	
	Taharabad) approx. 2 and 3km away from the project site	
	respectively	
	NH-3 (Mumbai-Agra) is approx. 60 km away from the project site	
Nearest Settlement	Taharabad is approx. 3 km from the project site	
/City/Town	Satana (Taluka place)- 29 km	
	Nashik (city & major market place of Maharashtra) – 119 km	
Railway Station	Manmad railway station approx. 90 km from the project site	
Air Port	Nashik (Ozar) airport is approx. 104 km from the project site	
River	Mosam river is approx. 0.7 km and Haranbari dam is approx. 9km	
	away from the project site	

Table 1: Features of the Project site

Figure 1: Satellite image of proposed distillery unit alongwith alternative site

1.2 Project Information at a Glance

1.	Project Proponent	roject Proponent M/s. Dwarkadhish Sakhar Karkhana Limited (DSKL)	
2.	Project	New 30 KLPD molasses based distillery	
3.	Location of the	Survey No.276, 216 (Compost yard) 265 (Alternate distillery site)	
	project	At village Sheware, Tal. Baglan (Satana), DistNashik,	
		Maharashtra-423301	
4. Project categorization		Category A [item 5g] as per EIA Notification, Sep 2006	
	PROJECT DETAILS		
4.	Working days per	270	
	annum		
5.	Product KLPD	Rectified spirit	28.50 (ISI Grade - I, 323, 2009)
		Impure spirit (5%) OR	1.50
		ENA	28.20 (IS: 6613 – 2002)
		Impure spirit (6 %) OR	1.80
		Anhydrous Alcohol	27.14 (IS:321–1964 & IS:15464 – 2004)

NSI	
संशोधनेन संवृद्धिः	

		Impure spirit (5%) 1.50		
6.	By products	Fusel oil 120 lit/day		
		Biogas	~11,700m ³ /day	
		Bio-compost	~8,775 ton per annum	
6.	Effluent	For Spentwash: Bio	methanation	followed by multi-effect evaporation
	Treatment System	(MEE) followed by h	oio-compostii	ng
		For Spent lees and condensate and other effluent – CPU		
7.	Air Pollution	Wet Scrubber will b	e used as air	pollution control device
	Control Systems			
	for flue gases			
	INFRASTRUCTURE			
8.	Land	 Distillery, evap 	oration unit	(MEE), storage lagoon = 3.0 acres
		Biomethanatio	n=1.0acre	
		 Finished produ 	uct storage =	1.0 acre
		Bio-compostin	g yard and st	orage of PMC/ compost= 9.2 acres
		Green belt dev	elopment= 5.	0 acres
		TOTAL LAND ALLO	CATED =19.	2 acres
9.	Main Raw	Material	Quantity	Source
	Material	Molasses	111 MT/d	Own sugar unit
		Nutrient N,P	100 kg/d	Market at Taharabad, Nashik, etc.
		Turkey Red Oil (TRO)	150 kg/d	Market at Taharabad, Nashik, etc.
		Press mud	57.4 T/d	Own sugar unit
			2700 T per	
			cycle of 60	
			days	
10.	Fuel	Bagasse (as a fuel fo	or boiler F/S r	ratio of 2.2): 109 TPD
		Source: Own sugar	factory	
		Biogas: ~ 11,700 cu	m/day	
		Source: Distillery bi	iomethanatio	n unit
11.	Boiler	New boiler of 12 T	PH with wor	king @~85% efficiency & pressure of
		3.5 Kg/cm ² will be i	nstalled	
12.	Stack height and	Existing 60 m heigh	t and 3.5 m ir	nner diameter (during season)
	Inner diameter	Proposed 45 m heig	ht and 1.3 m	inner diameter (during off-season)
13.	Steam	Maximum 240 TPD		
	requirement	Source: Own sugar	mill boiler – l	ow pressure exhaust steam from
		turbine will be used	for distillery	unit during season
		Off-season: From pr	oposed 12TP	'H boiler
14.	Power	710kwh – Source: from own cogeneration unit during season		
		710kwh- Source: will be purchase from MSEDCL during off-season		
15.	Total Water	1,128 cu.m/day (ini	tial input)	
	Requirement	543 cu.m/day (considering recycle and reuse)		
		Source: From the bunds constructed for storage of runoff of rainwater		
		from the surround	ding areas ((There are seven reservoirs having

	collective capacity of 9 million CFT = 254851.6 m^3)	
16.	Manpower	117: Out of which 80 will be skilled and 37 will be unskilled persons
17.	Green belt	Proposed ~4.0 acre
	FINANCIAL ASPECT	
18.	Total Project Cost	Rs. 5,746.15 lakhs
19.	Capital expenses	Rs. 1,700.5 lakhs
	for Environment	
	management	

1.3 RESOURCES

1.3.1 Molasses

Molasses is the chief raw material for the proposed project. It will mostly be available in-house. The requirement of molasses will be 111 MT/day or 30,000 MT/annum. The factory is having its own molasses to the extent of 25,200 MT, which will be utilized for production of RS or ENA or fuel alcohol. The remaining quantity i.e. 4,800MT of molasses will be purchased from nearby sugar mills.

1.3.2 Press mud

The pressmud generation is approx. 17,920 per annum (@3.2% on cane). The pressmud will be mixed with the concentrated spentwash in the ratio of 1:1 and will be converted to biocompost by the process of biocomposting.

1.3.3 Land

The land required for the proposed project is ~19.2 acres. The proposed land purchasing is in process. The land is flat, open and soon will be under the possession of the industry. The survey No. of proposed land for distillery unit is 276 (part of it) having area of approx. 6.7 acres and is on the east side of sugar mill. Out of available land, approximately 3 acres has been provided for the proposed distillery and ancillary units thereof such as boiler house, distillery plant etc.9.2-acre land will be allotted for compost yard and total~5.0 acres of land will be allocated for proposed green belt development.

1.3.4 Water

The water requirement for the proposed project will be met from the bunds constructed for storage of runoff of rainwater from the surrounding areas. There are about seven reservoirs constructed by the mill having a collective capacity of approx. nine million cubic feet (254851.6 cubic meter). Water will be required for domestic, process and utility purpose. Daily fresh water requirement for the proposed distillery unit will be around 543 m³/d. The water –mass balance is shown in **Fig. 2.** (The water balance is given in **Chapter 2; Table 2.5)**

1.3.5 Steam & Power

Steam requirement for proposed distillery, multi effect evaporation system, boiler, steam coil air pre-heater (SCAPH), de-aerator including pipeline losses is 10 TPH at 3.5 Kg/cm² (g). DSKL is having two boilers of capacity 40 TPH/hr at 32 Kg/cm² (g) and 55 TPH/hr at 72 Kg/cm² (g). Steam from existing sugar unit will be used during crushing season and a new boiler of capacity 12 TPH @ 83.3% efficiency with 3.5 Kg/cm² (g) pressure will be installed to fulfil the steam requirement during off season of the proposed distillery. The power requirement for distillery, boiler and ETP will be approximately 0.71 MW. The electricity for idle days will be purchased from MSEDCL.

1.3.6 Fuel

Bagasse and biogas will be used as a fuel for the steam generation activity of the proposed distillery unit. Bagasse generation is 28.5% on cane crushing. Thus, the mill produces bagasse of 997.5TPD or 41.56TPH. The requirement of bagasse for proposed distillery will be 109 TPD. Even after meeting the distillery requirement, the mill will have surplus bagasse available for distillery operations during off-season of sugar mill (**Refer Chapter 2; Table 2.6** for Bagasse balance during season and off-season).

2.0 MANUFACTURING PROCESS

The manufacturing of alcohol/spirit takes place in two stages; 1) fermentation and 2) distillation. In the process, molasses is diluted with water and sent to fermenters where yeast strains of species *Saccharomyces cerevisieae*, converts reducing sugar present in the molasses in to alcohol. The fermentation of molasses in fermenters take about 24 to 30 hours for completely exhausting the sugars in molasses. Due to technology development in the field of fermentation, yield of 265 to 280 liters of alcohol is generally produced per MT of molasses. In the proposed project, continuous fermentation process will be used. In this processes fermenters are in constant usage with little shut down and after initial inoculation of yeast culture, further inoculation is not necessary. Another advantage of the technology is it generates less volume of spentwash compared to batch process.

2.1 Multi-Pressure Distillation Technology

After fermentation to separate alcohol from fermented wash, distillation is employed. The distillation columns consist of number of bubble cap /Rh grid plates where wash is boiled and alcoholic vapours are separated and concentrated on each plate stage by stage. Rectified spirit of 95% purity is manufactured in the process.

2.1.1 Advantages of Multi-Pressure Distillation

- 1) Few columns operate under vacuum, few under pressure and few under atmospheric pressure; Maximum heat integration is possible.
- 2) Low steam consumption with reboiler (2.2 Kg/lit. of Rectified Spirit & 3.2 Kg/lit. of ENA)
- 3) Spentwash generation is less.
- 4) Pre-rectification column ensure removal of sulfur compounds /mercaptants, reduces load of lower boiling volatile compounds

Fuel ethanol is an important product. As per IS specification, it is nearly 100% pure i.e. water free alcohol. Alcohol as manufactured by Indian distilleries is rectified spirit, which is 94.68% alcohol and rest is water. Therefore, special process for removal of water is required for manufacture of fuel (anhydrous) alcohol. The various processes used for dehydration of alcohol are as follows

- I) Azeotropic Distillation
- II) Molecular Sieve Dehydration (MSDH)

III) Pervaporation / Vapour permeation system.

From these, the DSKL has planned to select molecular sieve dehydration (MSDH) technology.

Fig. 3: Schematic of RS/ENA/AA manufacturing process

2.2 Details of Storage tanks

At present, the factory is having 2 Nos. of mild steel tank having total molasses storage capacity of 9,000MT. Hence, it is proposed to install one additional mild steel tank of 5,000MT capacity in the distillery premises. The details of storage and receiver tank are given below in **Table 2**.

Sr.	Particulars	Receiver tank capacity	Storage tank capacity
No.		(cu.m.)	(cu.m.)
1.	Rectified Spirit	40x3	600x2
	Impure Spirit	10x3	200x1
2.	ENA	40x3	600x1
3.	Anhydrous	40x3	600x2
	Alcohol		
	Impure spirit	10x3	200x1

Fable 2: Details	of storage and	receiving tanks
-------------------------	----------------	-----------------

Executive Summary: New 30 KLPD Molasses Based Distillery M/s. Dwarkadhish Sakhar Karkhana Ltd. Sheware, Nashik

2.3 Cost of the Project

The proposed activity of distillery unit will required about Rs. 5,746.15 lakhs investments. Out of which Rs. 1,700.5 lakhs will be allocated for Environment management. The details of cost for proposed activity and EMP (Capital & Recurring) are mentioned in **Table 3& 4**.

Sr. No.	Particulars	Amount (Rs. in Lakhs)
1.	Land development and internal roads, drains, compound wall & gate	28.00
2.	Civil work and building	970.00
3.	Plant and machinery including taxes and duties	3936.97
4.	Miscellaneous fixed assets	220.26
5.	Preliminary & Pre-operative and other expenses	256.75
6.	Contingencies @ 2%	256.75
7.	Margin Money	77.42
	Total	5,746.15

Table 3: Project Cost Details

Table 4: Estimated Capital & Recurring Expenses for Environment Management

#	Particulars	Amount (Rs. in Lakhs)
1.	Spent wash cooling and holding tank	190.00
2.	Compost yard with PCC top finish	300.00
3.	Civil work at ETP (Foundation for Evaporation, Biogas unit, polishing unit etc.)	80.00
4.	Leachate management system	30.00
5.	Laboratory shed and its glassware, equipments, etc.	12.50
6.	Treatment units for condensate and other effluent	40.00
7.	Bio-methanation Unit	275.00
8.	Stand alone Multi Effect Evaporator	450.00
0	(Civii+ Machinery)	20.00
9.	HDPE piping, valves and fitting	30.00
10.	Bio-composting machinery, pipeline and other	55.00
11.	DG set for ETP	10.00
12.	Chimney	60.00
13.	Wet Scrubber	80.00
14.	Wire fencing around Compost yard	5.00

Executive Summary: New 30 KLPD Molasses Based Distillery M/s. Dwarkadhish Sakhar Karkhana Ltd. Sheware, Nashik

15.	Electrification at compost site	3.00	-
16.	Fire fighting equipments and other	70.0	
17.	Tree plantation and bore well for composting	10.00	
	TOTAL	1,700.50	
Recuri	ing Expenses/Annum		
1.	Salaries and wages	89.80	
2.	Operation and maintenance of all pollution control devices, motors, pumps, pipelines, etc. (@ 5% on capital investment)	77.87	
3.	Fuel (composting activity) and Electricity (in case of diesel generator operation)	1.25	
4.	Transportation	4.0	
	TOTAL	172.92	

3.0 ENVIRONMENTAL ASPECTS

Table 5: Overview of Environment Management Processes

Sr. No	Waste product and source	Treatment and disposal				
1.	Effluent/Wastewater					
	Spentwash	Biomethanation followed by multi effect evaporation followed by bio-composting				
	Spent lees, condensate from MEE and Other effluent	Hot water recycled after cooling Treated in CPU; comprised of primary treatment of effluent followed by aeration as secondary treatment and tertiary treatment				
	Sewage: Domestic wastewater	As local acceptable practice, by septic tank and soak pit system				
2.	Gaseous emission					
	Flue gasses from boilers Due to burning of bagasse and biogas	Particulate emissions will be controlled by Wet scrubber and then vented through a chimney of height 60m				
		Bagasse is carbon neutral fuel, contains sulfur in trace amount				
		Biogas content H_2S gas which will responsible for emission of max. 3.9 g/s of SO_2				
		Bagasse transfer will be through closed conveyers hence fugitive dust will get controlled				

Sr. No	Waste product and source	Treatment and disposal	
		Handling and transportation of various materials will be minimal.	
		Proposed greenbelt plot area is 5.0 acres	
	Bio-composting (CH ₄)	Fully auto spraying and aerobic composting	
	Diesel generators	It will be operational only when captive power supply failure, hence emissions anticipated to be less frequent and minor	
	Fermentation unit: (CO ₂)	Fermenters are covered, CO_2 scrubbed in water	
3	Solid waste		
	Boiler ash	Bagasse ash contains soil nutrients such as potash and phosphates. It will be mixed with bio-compost and sold to farmers (for use in agriculture lands) or to brick manufacturer.	
	Fermented sludge: Yeast sludge, Polishing unit sludge	The sludge from fermenter will be degradable, containing organic nutrient and micro elements. It will be mixed with bio-compost.	

4.0 BASELINE ENVIRONMENTAL CONDITIONS

Table 6: Summary of Environmental features of study area

#	Facet	In brief
1.	General characteristics	Mostly hot and dry
2.	Rainfall	An average annual rainfall of 672 mm
		Most of the rains received from June to September months,
		July being the month with highest rainfall
3.	Temperature	Average maximum temperature in summer is around 36°C
		and average minimum temperature in winter is around
		12.5°C.
4.	Humidity	The relative humidity ranges between 40-60%
5.	Wind	Predominant wind direction was West followed by North
		West and the average wind speed was 1.37 m/s during the
		study period
6.	Land use/Land cover	River/Stream 0.65%; Lake/Pond 0.7%; Settlement 17.5%;
		Open Scrub 1.45%; Dense scrub 5.4%; Crop land 74.5%
7.	Air Quality	Complies NAAQ standards of Nov., 2009 at all monitored

Executive Summary: New 30 KLPD Molasses Based Distillery M/s. Dwarkadhish Sakhar Karkhana Ltd. Sheware, Nashik

		locations and incremental GLC					
8.	Noise Quality	Complies the standards of CPCB					
9.	Ground water Quality	As per Central Ground Water Board report 2014, the					
		grou	ndwater quality in the district is	affected be	ecause of high		
		NO ₃ (concentrations				
10.	Soil Quality	Mode	erate and light brownish black				
11	Important	1.	Nearest Water Bodies				
	Feature/sensitive areas		River Mausam	S	0.740		
	(distance in km)		Haranbari dam	W	9		
		2.	Nearest National Park/ Sanc	tuary			
			Nandurmadhmeshwar Bird	S	89		
			Sanctuary				
		Aner Dam Sanctuary, Dhule NE 124					
			Yawal Sanctuary, Jalgaon	NE	184		
			Purna Wildlife sanctuary	NW	44		
		3.	Religiously Important places	5			
			Mangi-Tungi	NW	6.13		
		4.	Historic Monuments				
			Salher Fort	WSW	20		
			Mulher Fort	SW	7.4		
		5. Archeological Monuments					
		Ellora caves SE 140					
		6. Nearest Settlements					
		TaharabadESE3					
		*Note: All distance are approximate aerial distances from the project					
		site					

5.0 IMPACT ASSESSMENT AND ENVIRONMENT MANAGEMENT PLAN

5.1 Air Environment

1) Emissions from process: It will be due to burning of bagasse and biogas as a main fuel. Bagasse contain 2% of ash and <0.02% sulfur. Biogas contains 2% H_2S which will generate maximum 3.9 g/s of SO₂

2) Transportation: Vehicles of employees and visitors are anticipated as the only source. Hence, thiscould cause negligible increase mainly in NOx, particulate matter and HC.

3) Fugitive and other sources of air pollution: Fugitive emissions will be mainly from Bagasse anddust particles. Since, fly ash will be collected through wet-scrubber hence the fugitive emission will be very less during collection and transport to the compost site, thus, ash is assumed to be negligible source of fugitiveemissions.

5.1.1 Impact Assessment

Air quality: Minor negative impact is anticipated mainly due to stack gas emissions and transportation activities of the proposed project;

Ecology and biodiversity: Minor negative impact is anticipated on avi-fauna due to stack gas exit temperature (approx 80-90°C), and on flora/plants in close vicinity of the project due to dust (particulate matter)

5.1.2 Air Pollutant Dispersion Modeling

Prediction of impacts on air environment has been carried out employing mathematical model -Aermod view dispersion model 9.2 software developed by Lakes Environment Software, Canada.

Figure 4: Isopleths showing incremental ground level concentration of particulate matter (Short Term 24 Hourly) during cane crushing season

Figure 5: Isopleths showing incremental ground level concentration of SO₂ (Short Term 24 Hourly) during cane crushing season

Figure 6: Isopleths showing incremental ground level concentration of SO₂ (Short Term 24 Hourly) during off-season – bagasse + biogas as a fuel

Prediction

The predicted results with baseline concentrations are tabulated below in **Table 7** while incremental dispersion trend is shown as isopleths in **Fig. 4-6**.

Description	Concentration µg/m ³		
	РМ	SO ₂	
Maximum rise in GLC	0.9	1.0 during season	
		9.37 during off-season	
Direction of Occurrence and distance	East (0.52 Km)*	East (0.52 Km)*	
Coordinates of maximum GLC	20º48'01 N	20º48'01 N	
	74º07'34 E	74º07'34 E	
Baseline Concentration reported nearby GLC	59.78	13.90	
(at 2.3km SE)	(Taharabad)	(Taharabad)	
Total Concentration (Post project scenario)	60.68	23.27	
NAAQS	PM ₁₀ 100	80	
*The distance is measured from stack to the re	centor of maximum G	IC	

Table 7: Resultant Concentrations due to Incremental GLC's

*The distance is measured from stack to the receptor of maximum GLC

* The baseline concentration (98th percentile) recorded at station Taharabad at 2.3 km East-south-East, is the nearest to the incremental GLC

5.1.3 Environmental Management Plan

- Wet-scrubber will be used as air pollution control equipment (98% efficiency)
- Use of bagasse as a fuel, transported to boiler through closed conveyer
- Remaining bagasse will be belled and stored in yard
- Fly or bottom ash will be mix in soil, since it is rich in potash
- Provision of separate parking for goods and general vehicles, wide asphalted internal roads,

approach road to state highway is also asphalted

- Green belt of 4.0 acre proposed around the project area
- Strict prohibition on washing and maintenance of vehicles on site or in parking area

5.2 Noise

The project activities do not involve high noise sources. Anticipated noise sources are operations of boiler, pumps, motors, distillation columns, etc.

5.2.1 Impact assessment

Ambient Noise: Noise related hazards/ailments are anticipated on persons working close to noise/vibration source. Minor negative impact is anticipated

Ecology and biodiversity: Minor negative impact of noise from transportation activity is anticipated on particularly human population and fauna, along the approach road (approx. 3km length) that connects site with state highway.

5.2.2 Environment management plan

- Use motors, pumps and other machines which comply national/international standards.
- Noise generating activities will be under roof
- Preventive as well as regular maintenance
- Provision of personal protective equipment's as per requirement will made
- Rotation of duties at high noise generating areas
- Leveled and wide internal roads

5.3 Water Environment

Following wastewater sources have been identified for the proposed project

- Spent wash: major source –highly polluting in nature
- Spent lees: second major source; moderately polluting compared to spentwash
- Condensate water of MEE, Wastewater from washing/cleaning: mild to moderately polluted
- Blow down from boiler/cooling tower: water having high temperature and requires only cooling treatment

5.3.1 Impact Assessment:

- Water availability: Water requirement will be met from the bunds constructed for storage of rainwater run-off from the surrounding areas; reuse, recycle of water will save significant of freshwater intake.
- Water/aquatic environment: No negative impact envisaged on water environment as well as aquatic ecosystems of the surrounding area since 'zero liquid discharge' scheme is adequate and efficient
- Air environment: Minor negative impact is envisaged due to odour of spentwash and due to generation of methane and CO₂ from composting process
- Soil Environment: Due to impervious lagoons as well as compost yard, probability of soil
 pollution could get reduced to zero percent. Hence, no negative impact is anticipated.
 The compost prepared from spentwash, pressmud and solid waste filler material will
 help to recycle the soil nutrients, thus positive impact is anticipated
- Ecology and biodiversity: No negative impact, food chain/web may get strengthened due to composting process as usually it attracts avifauna.

5.3.1.1 Reuse of water (after proper treatment)

Wastewater generated due to cleaning and washing, Spentlees and condensate water will be treated in CPU. This unit will comprised of primary treatment followed by aeration followed by

filtration treatment in CPU unit (discussed in Chapter II); treated water will be used for dilution of molasses, cooling tower make up, irrigation, or cleaning activities, etc.

5.3.1.2 Conservation of water

Rainwater harvesting system will be installed to improve the ground water aquifer and tofulfill the requirement of the proposed unit during startup.

5.3.2 Environment Management Plan

Spentwash of 300 m³/day will first treated in biodigesters to produce biogas. Followed by biodigestion, spentwash will be sent to multi effect evaporation unit to reduce its volume from 300m³to 50m³. Then, it will be sent to biocomposting process where it will be mixed into pressmud (a solid waste from sugar mill) to produce compost; spentlees, condensate from MEE and other wastewater will be treated in CPU and reused; thus achieving 'zero liquid discharge'.Spentwash storage lagoons and the compost yard will be constructed as per CREP guidelines.

5.4 Soil Environment

Soil is likely to get affected due to following-

a. Percolation of spentwash, disposal of untreated solid (ash, sludge, etc) and/or hazardous waste (spent oil, etc) in soil

b. Removal of top soil layer which is usually more fertile

c. Excavation activity – particularly for spentwash storage lagoons and compost yard

5.4.1 Impact Assessment

Soil environment: No negative impact of solid waste; The bio-compost produced from spentwash-pressmud and mixing of degradable solid waste will have positive impact on soil since organic carbon and soil nutrients are likely get recycled by the process

Ecology and Biodiversity: No negative impact envisaged due to solid waste; enhancement in micro-flora due to compost

Water environment: No negative impact envisaged due to solid waste

	_	_		
Sr. No.	Waste Material	Quantity (TPD)	Nature	Upshot
1.	Yeast Sludge	1-1.5	Organic	Used as manure and for land conditioner
2.	Ash	2.33	Inorganic	Sold to the brick manufacturer
3.	Sludge from CPU digester	2.5	Organic	Used as manure and for land conditioner

5.4.2 Environment management plan

- Top soil layer of 15-20cm to be kept separate and use for greenbelt development
- Disposal of excavated material safely for construction of spentwash storage lagoons, compost yard, leveling of roads, etc.

5.5 Ecology and Biodiversity

Probable sources of impact identified for the project are

a) Disturbance to wild life due to project activities

b) Pollution

5.5.1 Impact assessment

Minor negative impact on flora in the close vicinity of the site, due to particulate matter and avifauna due to thermal pollution from flue gases; no negative impacts from other activities are anticipated; Increase in the greenbelt will help to maintain and enhance the biodiversity

5.5.2 Environmental management plan

- Greenbelt development
- Zero Liquid discharge will be achieved
- Safe disposal of solid waste
- Adequate measures to prevent, control and mitigate air and noise pollution

5.6 Socio-economic Environment

Probable Impact	Situation for proposed project	Environment	Impacts
causing factors		Management Plan	
Population flux	Project will provide 117 new	Local candidates will be	No negative
	employment opportunities	preferred	impact
Pressure on	Captive power	Emphasis will be given	No negative
infrastructure	Water requirement will be met	on water conservation	impact
such as electricity,	from own reservoirs	by recycling and reuse/	
water, road etc.	Minor increase in vehicle	Rain water harvesting.	
	number	Public transport	
	Adequate school, college, medical	facilities likely to get	
	facilities are available	improved due to	
	Public transport,	project.	
	telecommunication	Improvement envisaged	
	banks and other infrastructure	for primary school,	
	already exist and adequate to	health services and	
	support minor increase in	commodity market	
	population	Similarly, improvement	
		in daily utility services	
		are also anticipated	
		Maintenance of internal	
		road and approach road	

Employment	Direct	employment	to	117	Local candidates will be	Positive
	people				preferred	Impacts
					Indirect employment to	
					plenty of locals	

5.7 Land Use, Geology and Hydrogeology/Drainage

5.7.1 Impact Assessment

Most of the land selected for proposed project is under rain fed agriculture and barren land. Therefore, the impact on LU is positive i.e. barren land is getting converted into future built up class which is beneficial for local population.

If we consider drainage map of the study area there is no any disturbance of natural drainage. No impact envisaged on geology and hydrogeology of the site due to the proposed project.

5.7.2 Environment management plan

- Precautions need to be taken to preserve or maintain these streams in their natural form or need to be considered while landscape development.
- Earthquake resistant construction as per national building code for seismic zone IV
- Well defined disaster management plan and proper implementation of it
- Training to the personnel for disaster situation, mock drills at periodic interval

6.0 GREENBELT DEVELOPMENT

Greenbelt will be developed on 5 acres of land (33% of the proposed activity plot) in and around an industrial complex. Therefore, approx. 4,000 plants (including trees and shrubs) are proposed for the greenbelt development. It will require approx. 80m³ of water.

7.0 SAFETY, OCCUPATIONAL HEALTH MANAGEMENT

- Use of flame proof electric equipment's
- Provision of lightening arresting system, alcohol vapor condensation system
- Adequate fire fighting measures and provision of safety gears to workers
- Workers working in high noise/ high risk areas must be rotated to other areas
- Smoking and other igniting activities should be strictly prohibited in the distillery, biogas as well as bio-compost area
- Provision of a flare unit for unutilized biogas
- The plant and buildings meet the corresponding provisions of statutes regarding interdistances, exits, ventilation, illumination, etc. Fire fighting arrangements shall be provided as per the required statutes as well as corresponding standards.

8.0 ENVIRONMENTAL MONITORING PROGRAMME

The Environmental monitoring program given below-

Table 8: Summarized environmental monitoring programme

S. No.	Particulars	Parameter	Frequency [#]
1.	Stack Emissions	Particulate matter, SO ₂ , NO _x	Monthly
2.	Ambient Air Quality	PM ₁₀ , PM _{2.5} , SO ₂ , NO _x	Monthly
3.	Inlet and outlet of CPU	pH, BOD, COD, SS, TDS, Oil & Grease etc.	Monthly
4.	Bore well /ground water sample nearer to compost yard	pH, COD, BOD, Total solids, Chlorides, Sulphate, Phosphates, and Calcium	Quarterly/Monthly
5.	Noise monitoring	Noise levels measurement at high noise generating places as well as sensitive receptors in the vicinity	Monthly
6.	Analysis of ready bio- compost	Moisture, Organic Carbon, and C:N ratio, Nitrogen, Phosphorous, Potassium, etc.	Each batch of compost
7.	Occupational health	Health and fitness checkup of employees get exposed to various hazards	Quarterly
		All other staff (except above) including contract and casual labours	Once a year

9.0 PROJECT BENEFITS

- Efficient use of available resources such as bagasse to produce surplus power
- The proposed project on implementation will generate 117 direct employment opportunities
- The project is agro based, hence there will be plenty of indirect employments to locals
- No rehabilitation/resettlement issues are involved
- Factory is already implementing several schemes/activities for the benefit of local farmers, employees and those schemes/activities will be continued
- Compost produced from the spentwash, press mud and other filler material will be sold to farmers; it will help in recycling of soil nutrients and thus soil quality
- Technology for the project and pollution control are available indigenous

10.0 CONCLUSION

Proper implementation of Environmental Management Plan, risk and disaster management plan will help to prevent, control and mitigate the negative impact of the project and allied activities. At the same time, it will help to enhance positive impact. Overall, social and economic benefits of the project envisaged being profound and therefore, the project will be beneficial to the society and overall development of the region.