ACTION PLAN FOR INDUSTRIAL CLUSTER IN CRITICALLY POLLUTED AREA

Monitoring, Sampling, Analysis of Stack, Ambient Air Quality, Surface Water, Ground Water, Waste Water

तारापुर Tarapur

Maharashtra Pollution Control Board

Kalptaru Point, Sion East, Mumbai - 400022 June, 2017

INDEX

Acknowledgement:	Error! Bookmark not defined.
Abbreviations:	Error! Bookmark not defined.
1. Introduction:	Error! Bookmark not defined.
2. Scope of Work	Error! Bookmark not defined.
2.1 Stack Emission Parameters	Error! Bookmark not defined.
2.2 Ambient Air Quality Parameters	Error! Bookmark not defined.
2.3 Water/Waste Water Parameters	Error! Bookmark not defined.
2.4 Methodology followed in Sampling and Analysis	Error! Bookmark not defined.
3. Result of Analysis:	Error! Bookmark not defined.
3.1 Stack Emission:	Error! Bookmark not defined.
3.2 Ambient Air Quality:	Error! Bookmark not defined.
3.3 Water/ Waste Water Quality:	Error! Bookmark not defined.
4 Ground Water Quality:	Error! Bookmark not defined.
4. Summary of the results	Error! Bookmark not defined.
4.1 Stack Emission Monitoring:	Error! Bookmark not defined.
4.2 Ambient Air Quality Monitoring:	Error! Bookmark not defined.
4.3 Waste Water Quality Monitoring:	Error! Bookmark not defined.
5. CEPI Score	Error! Bookmark not defined.
5.1 Comparison of CEPI scores:	Error! Bookmark not defined.
6. Conclusion	Error! Bookmark not defined.
7. Efforts taken for the reduction in pollution:	Error! Bookmark not defined.
9. References	Error! Bookmark not defined.
10. Annexure	Error! Bookmark not defined.
Annexure I: Stack Emission Sampling and Analysis Met	hodologyError! Bookmark not defined.
Annexure II: Ambient Air Sampling and Analysis Metho	dology Error! Bookmark not defined.
Annexure III: Water/Wastewater Sampling and Analysi	s Methodology Error! Bookmark not defined.
Annexure IV: National Ambient Air Quality Standards,	2009Error! Bookmark not defined.
Annexure V: General Standards for Discharge of Enviro Effluents (The Environment (Protection) Rules, 1986, S	
Annexure VI: Drinking Water Specification-IS 10500:20	012Error! Bookmark not defined.
Annexure VII: CPCB Water Quality Criteria:	Error! Bookmark not defined.
Annexure VIII: Water Quality Parameters Requirement	s and Classification Error! Bookmark not define
Annexure VIII: CPCB Water Quality Criteria:	
Annexure IX: Water Quality Parameters Requirements	and Classification 82

Acknowledgement

We gratefully acknowledge **Dr. P. Anbalagan**, Member Secretary, Maharashtra Pollution Control Board, for entrusting this very important and prestigious project to us.

Our special thanks are to Regional and Sub Regional Officer of the concerned areas, for guidance during the sampling. The contribution of Shri V.M Motghare (Joint director APC) is appreciated.

We would also like to extend our thanks to the concerned staff of Regional Hospitals, who has provided us the health data, which is the most important component of this revised concept of CEPI.

By undertaking this project and completing in schedule time, we consider ourselves very lucky since we have helped the mankind by giving the data on pollution load and further action by the Board, to bring down the pollution level.

We also thank our associates for working on this project for making the write up, making graphs and feeding the data on computer.

This acknowledgement will be incomplete if we do not thank our laboratory analysts and others who made this project a success by timely analysing the samples.

We also thank our sampling team members for conducting the sampling in this vast area.

Abbreviations:

АРНА	American Public Health Association
BDL	Below Detection Limit
BOD	Biochemical Oxygen Demand
CEPI	Comprehensive Environmental Pollution Index
СЕТР	Common Effluent Treatment Plant
COD	Chemical Oxygen Demand
СРА	Critically Polluted Areas
DO	Dissolved Oxygen
ЕТР	Effluent Treatment Plant
МІВК	Methyl Isobutyl Ketone
МРСВ	Maharashtra Pollution Control Board
NAAQS	National Ambient Air Quality Standards
NOx	Oxides of Nitrogen
ND	Not Detected
РАН	Poly Aromatic Hydrocarbons
РСВ	Poly Chlorinated Biphenyls
РСТ	Poly Chlorinated Terphenyls
PM 10	Particulate Matter (size less than 10 μ m)
PM _{2.5}	Particulate Matter (size less than 2.5 $\mu m)$
SO ₂	Sulphur Dioxide
STAP	Short Term Action Plan
wно	World Health Organization

1. Introduction:

Rapid modernization and industrialization worldwide has not only uprooted to the economic development, but has increased pollution of land, air and water. This has also destroyed our habitat and environment too. Pollutants discharged from the industries have widespread implications and one of the unpleasant effects on water bodies and air. .Long term exposure to the polluted air and water causes chronic health problems, making the issue industrial pollution into severe one. So, scientists are exploring the quantum of pollution load as well as to device certain strategies and technologies so that our sustainable development would not be jeopardized otherwise our long cherished dream of establishing eco-socialism on this watery planet could not come true.

In view of this, Central Pollution Control Board (CPCB) has evolved the concept of Comprehensive Environmental Pollution Index (CEPI) during 2009-10 as a tool for comprehensive environmental assessment of prominent industrial clusters and formulation of remedial Action Plans for the identified critically polluted areas. Later-on proposals were received from the SPCBs, State Governments, and Industrial Associations and concerned Stake-holders for revisiting the criteria of assessment under CEPI concept. After careful examination and consideration of the suggestions of concerned stake-holders, it was decided to prepare the revised concept of CEPI by eliminating the subjective factors but retaining the factors which can be measured precisely. Hence, revised concept came into existence, which is termed as Revised CEPI Version 2016.

The present report is also based on the revised CEPI version 2016. The results of the application of the Comprehensive Environmental Pollution Index (CEPI) to selected industrial clusters or areas are presented in this report. The main objective of the study is to identify polluted industrial clusters or areas in order to take concerted action and to centrally monitor them at the national level to improve the current status of their environmental components such as air and water quality data, ecological damage, and visual environmental conditions. A total of 88 industrial areas or clusters have been selected by the Central Pollution Control Board (CPCB) in consultation with the Ministry of Environment & Forests Government of India for the study. The index captures the various dimensions of environment including air, water and land. Comprehensive Environmental Pollution Index (CEPI), which is a rational number to characterize the environmental quality at a given location following the algorithm of source, pathway and receptor have been developed.

The present CEPI study includes Tarapur industrial area of Maharashtra state. It is one of the best industrial area situated near Mumbai, Thane and adjacent to Gujarat state on Mumbai - Ahmedabad Express Highway. The industrial part of this place has a number of factories manufacturing dyes, paints and industrial / agricultural chemicals. Heavy metal factories manufacturing a wide variety of equipment are also based in this region. A few nationally prominent industrial establishments have their manufacturing plants in Tarapur. This city accommodates bulk drug manufacturing units, speciality chemical manufacturing units, steel plants and some textile plants. Government of Maharashtra has established Industrial Estate at Boisar, Tarapur in the year 1972. This estate is known as MIDC Tarapur. This is one of the largest chemical industrial estates in the State of Maharashtra.

2. Scope of Work

The Scope of Work consisted of the following:

Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water, and Ground Water Quality for identified five Critically Polluted areas (CPAs) in Maharashtra i.e. **Chandrapur, Dombivali, Aurangabad, Navi Mumbai,** and **Tarapur** and 3 Severely Polluted areas (SPAs) in Maharashtra i.e. **Chembur, Pimpri-Chinchwad and Nashik** as per standard methods.

• At each of the 5 CPAs and 3 SPAs, 24 hourly ambient air quality monitoring to be carried out.

• Representative samples for surface water quality, waste water quality and ground water quality to be collected from prominent surface and ground water bodies located in and around the clusters/areas.

• Submission of complete monitoring, sampling and analysis reports including the summary of the parameters exceeding the prescribed standards/norms for all the 5 CPAs and 3 SPAs.

• Submission of 3 copies of final report with photographs at prominent locations and the CD (soft copy) on completion of the project for every critically polluted and severely polluted area separately.

Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water and Ground Water Quality for Tarapur:

• The sampling was carried out in 3 days at various locations i.e. from 06^{th} June to 08^{th} June, 2017.

• In Tarapur, a total of 7 Stack Monitoring Samples, 6 Ambient Air Quality Monitoring Samples, 7 Waste Water Samples and 6 Ground Water Samples were collected and analyzed.

• Health data of last 05years (2011-2016) was collected from the hospitals nearby industrial clusters under study.

2.1 Stack Emission Parameters

The Stack Emissions were analyzed with the following parameters:

- 1) Acid Mist
- 2) Ammonia
- 3) Carbon Monoxide
- 4) Chlorine
- 5) Fluoride(gaseous)
- 6) Fluoride (particulate)
- 7) Hydrogen Chloride
- 8) Hydrogen Sulphide
- 9) Oxides of Nitrogen
- 10) Oxygen
- 11) Polyaromatic Hydrocarbons (Particulate)
- 12) Suspended Particulate Matter

- 13) Sulphur Dioxide
- 14) Benzene
- 15) Toluene
- 16) Xylene
- 17) Volatile Organic Compounds (VOCs)

2.2 Ambient Air Quality Parameters

The Ambient Air Quality was analyzed with the following parameters:

- 1) Sulphur Dioxide (SO₂)
- 2) Nitrogen Dioxide (NO₂)
- 3) Particulate Matter (PM10)
- 4) Particulate Matter (PM2.5)
- 5) Ozone (O₃)
- 6) Lead (Pb)
- 7) Carbon Monoxide (CO)
- 8) Ammonia (NH₃)
- 9) Benzene (C₆H₆)
- 10) Benzo (a) Pyrene (BaP) (Particulate Phase Only)
- 11) Arsenic (As)
- 12) Nickel (Ni)

2.3 Water/Waste Water Parameters

The Water/Waste Water was analyzed with the following parameters:

a. Prominent Surface Water bodies such as outfalls of CETPs, ETPs, treated effluent drainage, river, canal, ponds, lakes and other such water supply resources flowing through the area or flowing adjoining the CPA.

b. Ground Water Quality data of prominent ground water resources such as observation wells of Central Ground Water Board, drinking water wells, hand pumps, bore wells and other such water supply resources located in the industrial cluster/area under consideration or in the peripheral areas.

Basic water quality parameters for surface water and ground water both are as follows:

i. Simple Parameters:

- 1) Sanitary Survey
- 2) General Appearance
- 3) Colour
- 4) Smell
- 5) Transparency
- Ecological(Presence of animals like fish, insects) (Applicable to only surface water)

ii. Regular Monitoring Parameters:

- 7) pH
- 8) Oil & Grease
- 9) Suspended Solids
- 10) Dissolved Oxygen (% saturation) (Not applicable for ground waters)
- 11) Chemical Oxygen Demand
- 12) Biochemical Oxygen Demand
- 13) Electrical Conductivity
- 14) Nitrite-Nitrogen
- 15) Nitrate-Nitrogen
- 16) (NO₂ + NO₃)-Nitrogen
- 17) Free Ammonia
- 18) Total Residual Chlorine
- 19) Cyanide
- 20) Fluoride
- 21) Sulphide
- 22) Dissolved Phosphate

- 23) Sodium Absorption Ratio (SAR)
- 24) Total Coliforms (MPN/100 ml)
- 25) Faecal Coliforms (MPN/100 ml)

iii. Special Parameters:

- 26) Total Phosphorous
- 27) Total Kjeldahl Nitrogen(TKN)
- 28) Total Ammonia (NH₄ +NH₃)-Nitrogen
- 29) Phenols
- 30) Surface Active Agents
- 31) Organo Chlorine Pesticides
- 32) Polynuclear aromatic hydrocarbons (PAH)
- 33) Polychlorinated Biphenyls (PCB) and Polychlorinated Terphenyls (PCT)
- 34) Zinc
- 35) Nickel
- 36) Copper
- 37) Hexavalent Chromium
- 38) Chromium (Total)
- 39) Arsenic (Total)
- 40) Lead
- 41) Cadmium
- 42) Mercury
- 43) Manganese
- 44) Iron
- 45) Vanadium

- 46) Selenium
- 47) Boron
- iv. Bioassay (Zebra Fish) Test: For specified samples only.

2.4 Methodology followed in Sampling and Analysis

Industries, places and locations that have been chosen for the sampling are representative of the city/area. Sampling has been done at the potential polluted areas so as to arrive at the CEPI. This will further help the authorities to monitor the areas in order to improve the current status of their environmental components such as air and water quality data, ecological damage and visual environmental conditions. Methodology for sampling, preservation and analysis have been done according to the references incorporated. Methodology of various types of parameters is presented under following annexure:

- 1. Stack Emission Sampling and Analysis Methodology Annexure I
- 2. Ambient Air Sampling and Analysis Methodology Annexure II
- 3. Water/Wastewater Sampling and Analysis Methodology Annexure III

3. Result of Analysis

Results of Analysis are tabulated below for Stack Emission Monitoring, Ambient Air Quality Monitoring, Waste Water Analysis and Water Analysis. These are followed by their respective graphical representation.

*Kindly note:

- NA specifies the sample is not analysed for the specific parameter.
- ND specifies that even though the sample was analysed for the parameter, it was not detected.
- BDL specifies that the result obtained is below detection limit.

Please Note: Industrial clusters observed with below detection limit parameters are NOT included into the graphs.

3.1 Stack Emission Monitoring:

Stack Emission Monitoring Results are compared against The Environment (Protection) Rules, 1986 General Emission Standard - Part D. The limits are represented on the graphical representation. Graph of Volatile Organic Carbon (VOCs) could not be prepared as their concentration was found either very less or not detected.

Sr.	Name of Industry	Included in
1.	UPL, Plot No. E-51	Table No. I
2.	Calyx Chemical Ltd.	Table No. I
3.	Siyaram Silk Mills Ltd.	Table No. I
4.	M/s Angadpal industries Pvt. Ltd.	Table No. I

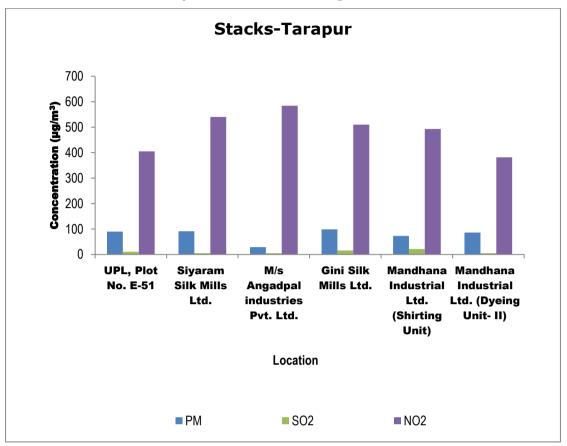

5.	Gini Silk Mills Ltd	Table No. II
6.	Mandhana Industrial Ltd. (Shirting Unit)	Table No. II
7.	Mandhana Industrial Ltd. (Dyeing Unit- II)	Table No. II

Table No. I:

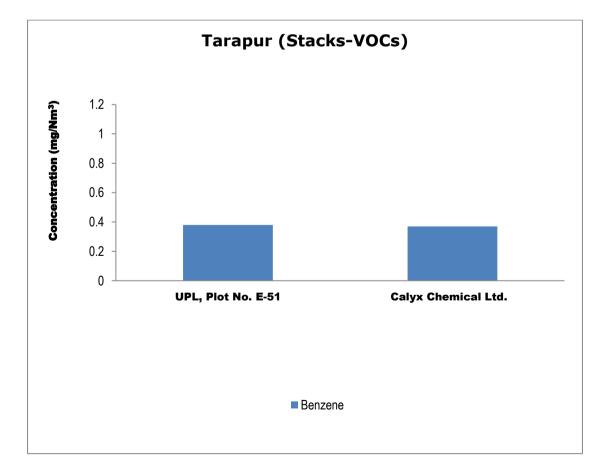
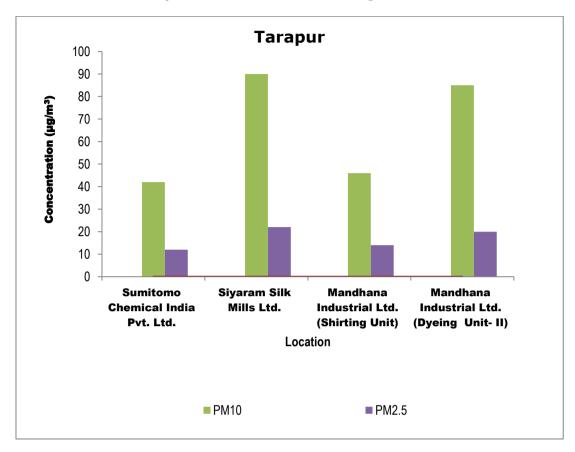

Nam	e of Industry		UPL, Plot No. E-51	Calyx Chemical Ltd.	Siyaram Silk Mills Ltd.	M/s Angadpal industries Pvt. Ltd.
Date	of Sampling		07.06.17	07.06.17	06.06.17	05.06.17
Stac	k ID		Boiler	Boiler	Boiler	Boiler
Sr.	Parameters	Unit		Res	ult	
1	Particulate Matter	mg/Nm ³	90	-	91	29
	Std. Limit	mg/Nm ³	150	150	150	150
2	Sulphur Dioxide	mg/Nm ³	10.6	-	5.33	5.33
2	(SO ₂)	kg/d	5.54	-	1.39	2.9
	Std. Limit	mg/Nm ³	-	-	-	-
3	Nitrogen Dioxide (NO ₂)	mg/Nm ³	405	-	540	584
4.	Volatile Organic Carbons (VOCs)					
	Methyl Isobutyl Ketone	mg/Nm ³	ND	ND	ND	ND
	Benzene	mg/Nm ³	0.38	0.37	ND	ND
	Toulene	mg/Nm ³	1.1	0.23	ND	ND
	Xylene	mg/Nm ³	ND	ND	ND	ND
	Ethyl Benzene	mg/Nm ³	ND	ND	ND	ND
	Ethyl Acetate	mg/Nm ³	ND	ND	ND	ND

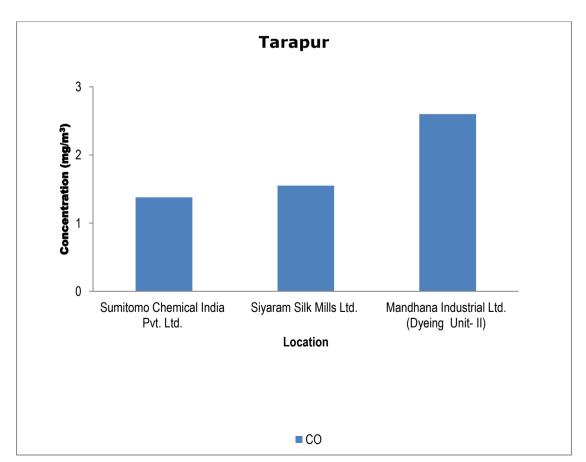
Table No. II:

Name	e of Industry	Gini Silk Mills Ltd	Mandhana Industrial Ltd. (Shirting Unit)	Mandhana Industrial Ltd. (Dyeing Unit- II)	
Date	of Sampling	06.06.17	07.06.17	05.06.17	
Stack	c ID	Boiler	Boiler	Boiler	
Sr. Parameters Unit				Result	
1	Particulate Matter	mg/Nm ³	99	73	86
	Std. Limit	mg/Nm ³	150	150	150
2		mg/Nm ³	16	21.3	5.33
2	Sulphur Dioxide (SO ₂)	kg/d	23.9	23.3	5.89
	Std. Limit	mg/Nm ³	-	-	-
3	Nitrogen Dioxide (NO ₂)	mg/Nm ³	510	493	382
5.	Volatile Organic Carbons (VOCs)				
	Methyl Isobutyl Ketone	mg/Nm ³	ND	ND	ND
	Benzene	mg/Nm ³	ND	ND	ND
	Toulene	mg/Nm ³	ND	ND	ND
	Xylene	mg/Nm ³	ND	ND	ND
	Ethyl Benzene	mg/Nm ³	ND	ND	ND
	Ethyl Acetate	mg/Nm ³	ND	ND	ND

3.2 Ambient Air Quality:


In order to arrive at conclusions, the Ambient Air Quality Monitoring Results are compared against National Ambient Air Quality Standards, 2009 (Annexure IV). The limits are represented on the graphical representation.

Sr.	Locations	Included in
1.	Sumitomo Chemical India Pvt. Ltd.	Table No. I
2.	Siyaram Silk Mills Ltd.	Table No. I
3.	Mandhana Industrial Ltd. (Shirting Unit)	Table No. I
4.	Mandhana Industrial Ltd. (Dyeing Unit- II)	Table No. I


Table No. I:

Location				Sumito mo Chemic al India Pvt. Ltd.	Siyaram Silk Mills Ltd.	Mandha na Industri al Ltd. (Shirtin g Unit)	Mandha na Industri al Ltd. (Dyeing Unit- II)
Date	Date of Sampling			07.06.17	07.06.17	06.06.17	06.06.17
Sr.	Parameters	Unit	Std. Limit (NAAQS, 2009)	Results			
1.	Sulphur Dioxide (SO_2)	µg/m³	80	BDL	BDL	BDL	BDL
2.	Nitrogen Dioxide (NO_2)	µg/m³	80	BDL	BDL	BDL	BDL
3.	Particulate Matter (size <10 µm)or PM10	µg/m³	100	42	90	46	85
4.	Particulate Matter (size <2.5µm)or PM2.5	µg/m³	60	12	22	14	20

Location				Sumito mo Chemic al India Pvt. Ltd.	Siyaram Silk Mills Ltd.	Mandha na Industri al Ltd. (Shirtin g Unit)	Mandha na Industri al Ltd. (Dyeing Unit- II)
Date	of Sampling			07.06.17	07.06.17	06.06.17	06.06.17
5.	Ozone (O ₃)	µg/m³	180	BDL	BDL	BDL	BDL
6.	Lead (Pb)	µg/m³	1	BDL	BDL	BDL	BDL
7.	Carbon Monoxide (CO)	mg/m ³	04	1.38	1.55	BDL	2.6
8.	Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL	BDL
9.	Benzene (C_6H_6)	µg/m³	5	BDL	BDL	BDL	BDL
10.	Benzo (a) Pyrene (BaP) – particulate phase only	ng/m ³	1	BDL	BDL	BDL	BDL
11.	Arsenic (as As)	ng/m ³	6	BDL	BDL	BDL	BDL
12.	Nickel (as Ni)	ng/m ³	20	BDL	BDL	BDL	BDL

3.3 Water/Waste Water:

Water analysis Results are compared against CPCB document on criteria for Comprehensive Environmental Assessment of Industrial Clusters-Water Quality Parameters Requirement and Classification (Annexure VIII), CPCB Water Quality Criteria (Annexure VII) and Drinking Water Specification, IS 10500:2012 (Annexure VI), Wastewater Analysis Results are compared with General Standards for Discharge of Environmental Pollutants Part A: Effluents, The Environment (Protection) Rules, 1986, Schedule VI (Annexure V)

3.3.1.1 Waste Water Analysis Results:

Sr.	Locations	Included in
1.	UPL Plot No. E-51	Table I
2.	Calyx Chemical Ltd.	Table I
3.	Siyaram Silk Mills Ltd.	Table I
4.	Navapur Discharge	Table II
5.	CETP outlet	Table II
6.	CETP inlet	Table II

Table I:

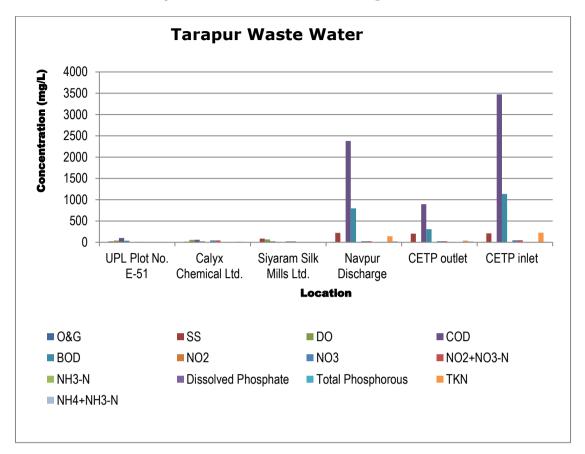
Location				UPL Plot No. E-51	Calyx Chemical Ltd.	Siyaram Silk Mills Ltd.	
Date	e of Sampling	f Sampling 07.06.17 07.06.17				07.06.17	
Sr.	Parameters		Std. Limit	Results			
1.	Colour	Hazen		1	1	10	
2.	Smell	-		Agreeable	Agreeable	Agreeable	
3.	Transparency	m		7.37	6.32	7.41	
4.	рН	-	5.5 -9.0	BDL	BDL	BDL	
5.	Oil & Grease	mg/L	10.0	21	13	86	
6.	Suspended Solids	mg/L	100.0	38	55	65	

Loca	Location			UPL Plot No. E-51	Calyx Chemical Ltd.	Siyaram Silk Mills Ltd.	
Date	e of Sampling			07.06.17	07.06.17		
Sr.	Sr. Parameters			Results			
7.	Dissolved Oxygen (%Saturation)	%		99	60	20	
8.	Chemical Oxygen Demand	mg/L	250.0	34	21	7	
9.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	839	1940	2070	
10.	Electrical Conductivity (at 25°C)	µmhos/cm		BDL	0.016	<0.01	
11.	Nitrite Nitrogen (as N)	mg/L		5.5	43.4	20.1	
12.	Nitrate Nitrogen (as N)	mg/L	10.0	5.5	43.4	20.1	
13.	(NO ₂ + NO ₃)- Nitrogen	mg/L	5.0	BDL	BDL	BDL	
14.	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL	BDL	BDL	
15.	Total Residual Chlorine	mg/L	1.0	BDL	BDL	BDL	
16.	Cyanide (as CN)	mg/L	0.2	0.7	0.4	0.32	
17.	Fluoride (as F)	mg/L	2.0	BDL	BDL	BDL	
18.	Sulphide (as S ²⁻)	mg/L	2.0	BDL	BDL	BDL	
19.	Dissolved Phosphate (as P)	mg/L	5.0	2.59	2.71	9.32	
20.	Sodium Absorption Ratio	-		280	1600	BDL	

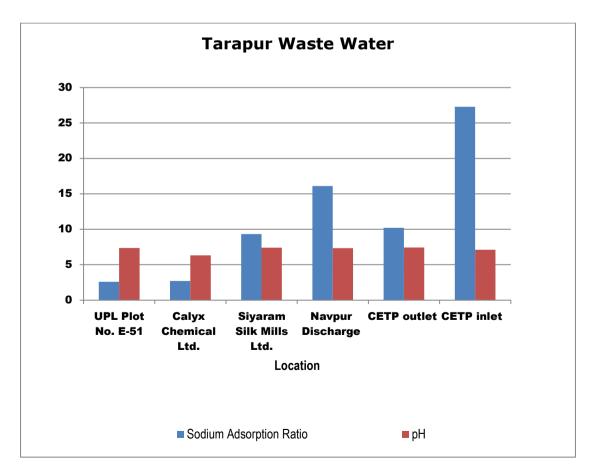
Loca	ation			UPL Plot No. E-51	Calyx Chemical Ltd.	Siyaram Silk Mills Ltd.	
Date	e of Sampling			07.06.17	07.06.17	07.06.17	
Sr.	Parameters		Std. Limit	Results			
21.	Total Coliforms	MPN index/ 100 mL	100.0	170	1600	BDL	
22.	Faecal Coliforms	MPN index/ 100 mL	1000.0	BDL	BDL	BDL	
23.	Total Phosphorous (as P)	mg/L	1.0	4.34	13.3	4.26	
24.	Total Kjeldahl Nitrogen	mg/L	100.0	BDL	7.6	0.32	
25.	Total Ammonia (NH₄+NH₃)- Nitrogen	mg/L	5.0	BDL	BDL	BDL	
26.	Phenols (as C₀H₅OH)	mg/L	3.0	BDL	BDL	BDL	
27.	Surface Active Agents (as MBAS)	mg/L	3.0				
28.	Organo Chlorine Pesticides	µg/L	0.1				
	Alachlor	µg/L	2.0	BDL	BDL	BDL	
	Atrazine	µg/L	0.2	BDL	BDL	BDL	
	Aldrin	µg/L	0.1	BDL	BDL	BDL	
	Dieldrin	µg/L	2.0	BDL	BDL	BDL	
	Alpha HCH	µg/L	0.01	BDL	BDL	BDL	
	Beta HCH	µg/L	2.0	BDL	BDL	BDL	
	Butachlor	µg/L	3.0	BDL	BDL	BDL	

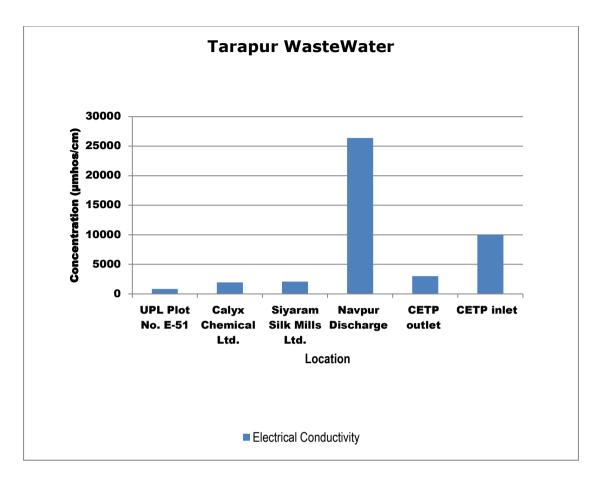
Loci	ation			UPL Plot No. E-51	Calyx Chemical Ltd.	Siyaram Silk Mills Ltd.
Date	e of Sampling			07.06.17	07.06.17	07.06.17
Sr.	Parameters		Std. Limit		Results	
	Chlorpyrifos			BDL	BDL	BDL
	Delta HCH	µg/L	0.2	BDL	BDL	BDL
	p,p DDT	µg/L	0.05	BDL	BDL	BDL
	o,p DDT	µg/L	100.0	BDL	BDL	BDL
	p,p DDE	µg/L	250.0	BDL	BDL	BDL
	o,p DDE	µg/L	30.0	BDL	BDL	BDL
	p,p DDD	µg/L		BDL	BDL	BDL
	o,p DDD	µg/L		BDL	BDL	BDL
	Alpha Endosulfan	µg/L	10.0	BDL	BDL	BDL
	Beta Endosulfan	µg/L		BDL	BDL	BDL
	Endosulfan Sulphate	µg/L	5.0	BDL	BDL	BDL
	Y HCH (Lindane)	µg/L	1.0	BDL	BDL	BDL
29.	Poly Aromatic hydrocarbons (as PAH)	µg/L	0.2	BDL	BDL	BDL
30.	Polychlorinated Biphenyls (PCB)	µg/L	2.0	BDL	BDL	BDL
31.	Zinc (as Zn)	mg/L	5.0	0.09	0.199	BDL
32.	Nickel (as Ni)	mg/L	3.0	BDL	BDL	BDL
33.	Copper (as Cu)	mg/L		BDL	BDL	BDL

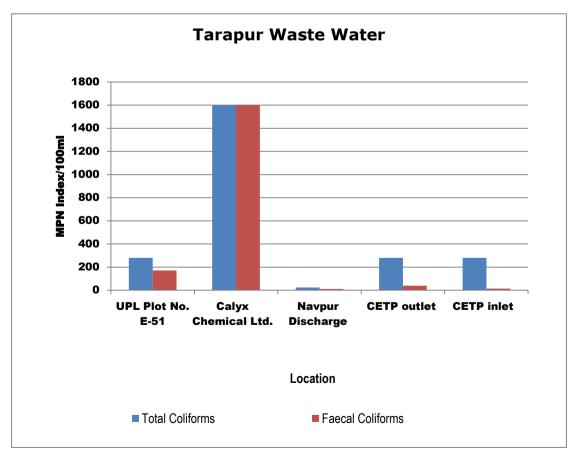
Loca	ation			UPL Plot No. E-51	Calyx Chemical Ltd.	Siyaram Silk Mills Ltd.		
Date	e of Sampling			07.06.17	07.06.17	07.06.17		
Sr.	Sr. Parameters				Results	Results		
34.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL	BDL	BDL		
35.	Total Chromium (as Cr)	mg/L	2.0	BDL	BDL	BDL		
36.	Total Arsenic (as As)	mg/L	0.2	BDL	BDL	BDL		
37.	Lead (as Pb)	mg/L	0.1	0.044	BDL	0.014		
38.	Cadmium (as Cd)	mg/L	2.0	BDL	BDL	BDL		
39.	Mercury (as Hg)	mg/L	0.01	BDL	BDL	BDL		
40.	Manganese (as Mn)	mg/L	2.0	0.057	0.089	0.085		
41.	Iron (as Fe)	mg/L	3.0	4.53	0.667	0.757		
42.	Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL		
43.	Selenium (as Se)	mg/L	0.05	BDL	BDL	BDL		
44.	Boron (as B)	mg/L		BDL	BDL	BDL		
45.	Bioassay Test on fish	% survival	90% survival after 96h in 100%eff luent	100	100	80		

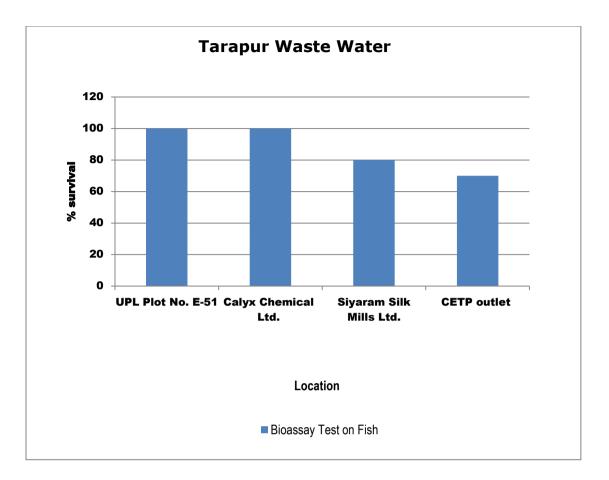

Table II:

Loca	ition			Navapur Discharge (CETP Discharge)	CETP Tarapur MIDC	CETP Tarapur MIDC
Date	e of Sampling			07.06.17	07.06.17	07.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
1.	Colour	Hazen		100	100	100
2.	Smell	-		Agreeable	Agreeable	Agreeable
3.	рН	-	5.5 -9.0			
4.	Oil & Grease	mg/L	10.0	7.33	7.42	7.11
5.	Suspended Solids	mg/L	100.0	4.2	1.2	5
6.	Dissolved Oxygen (%Saturation)	%				
7.	Chemical Oxygen Demand	mg/L	250.0	2380	892	3472
8.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	795	308	1133
9.	Electrical Conductivity (at 25°C)	µmhos/c m		26400	3010	10000
10.	Nitrite Nitrogen (as N)	mg/L		0.017	0.026	0.044
11.	Nitrate Nitrogen (as N)	mg/L	10.0	22.8	23.2	46.3
12.	(NO ₂ + NO ₃)-Nitrogen	mg/L	5.0	22.8	23.2	46.3
13.	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL	BDL	BDL
14.	Total Residual Chlorine	mg/L	1.0	BDL	BDL	BDL
15.	Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL
16.	Fluoride (as F)	mg/L	2.0	0.76	1.14	1.4
17.	Sulphide (as S ²⁻)	mg/L	2.0	BDL	BDL	BDL


Loca	tion			Navapur Discharge (CETP Discharge)	CETP Tarapur MIDC	CETP Tarapur MIDC
Date	of Sampling		07.06.17	07.06.17	07.06.17	
Sr.	Parameters	Unit	Std. Limit		Results	
18.	Dissolved Phosphate (as P)	mg/L	5.0	BDL	0.12	0.23
19.	Sodium Absorption Ratio	-		16.1	10.2	27.3
20.	Total Coliforms	MPN index/ 100 mL	100.0	24	280	280
21.	Faecal Coliforms	MPN index/ 100 mL	1000.0	11	39	14
22.	Total Phosphorous (as P)	mg/L	1.0	0.19	0.22	0.62
23.	Total Kjeldahl Nitrogen	mg/L	100.0	140	40.6	224
24.	Total Ammonia (NH₄+NH₃)-Nitrogen	mg/L	5.0	24.5	22.4	10.1
25.	Phenols (as C_6H_5OH)	mg/L	3.0	BDL	BDL	BDL
26.	Surface Active Agents (as MBAS)	mg/L	3.0	BDL	BDL	BDL
27.	Organo Chlorine Pesticides	µg/L	0.1			
	Alachlor	µg/L	2.0	BDL	BDL	BDL
	Atrazine	µg/L	0.2	BDL	BDL	BDL
	Aldrin	µg/L	0.1	BDL	BDL	BDL
	Dieldrin	µg/L	2.0	BDL	BDL	BDL
	Alpha HCH	µg/L	0.01	BDL	BDL	BDL
	Beta HCH	µg/L	2.0	BDL	BDL	BDL


Loca	ition			Navapur Discharge (CETP Discharge)	CETP Tarapur MIDC	CETP Tarapur MIDC
Date	e of Sampling			07.06.17	07.06.17	07.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
	Butachlor	µg/L	3.0	BDL	BDL	BDL
	Chlorpryrifos			BDL	BDL	BDL
	Delta HCH	µg/L	0.2	BDL	BDL	BDL
	p,p DDT	µg/L	0.05	BDL	BDL	BDL
	o,p DDT	µg/L	100.0	BDL	BDL	BDL
	p,p DDE	µg/L	250.0	BDL	BDL	BDL
	o,p DDE	µg/L	30.0	BDL	BDL	BDL
	p,p DDD	µg/L		BDL	BDL	BDL
	o,p DDD	µg/L		BDL	BDL	BDL
	Alpha Endosulfan	µg/L	10.0	BDL	BDL	BDL
	Beta Endosulfan	µg/L		BDL	BDL	BDL
	Endosulfan Sulphate	µg/L	5.0	BDL	BDL	BDL
	Y HCH (Lindane)	µg/L	1.0	BDL	BDL	BDL
28.	Polynuclear aromatic hydrocarbons (as PAH)	µg/L	0.2	BDL	BDL	BDL
29.	Polychlorinated Biphenyls (PCB)	µg/L	2.0	BDL	BDL	BDL
30.	Zinc (as Zn)	mg/L	5.0	0.395	0.184	1.01
31.	Nickel (as Ni)	mg/L	3.0	0.036	0.012	0.019
32.	Copper (as Cu)	mg/L		0.288	0.048	0.213


Loca	tion			Navapur Discharge (CETP Discharge)	CETP Tarapur MIDC	CETP Tarapur MIDC
Date	e of Sampling			07.06.17	07.06.17	07.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
33.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL	BDL	BDL
34.	Total Chromium (as Cr)	mg/L	2.0	0.058	0.026	0.042
35.	Total Arsenic (as As)	mg/L	0.2	BDL	BDL	BDL
36.	Lead (as Pb)	mg/L	0.1	BDL	BDL	BDL
37.	Cadmium (as Cd)	mg/L	2.0	BDL	BDL	BDL
38.	Mercury (as Hg)	mg/L	0.01	BDL	BDL	BDL
39.	Manganese (as Mn)	mg/L	2.0	0.42	0.188	0.217
40.	Iron (as Fe)	mg/L	3.0	5.49	2.35	5.62
41.	Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL
42.	Selenium (as Se)	mg/L	0.05	BDL	BDL	BDL
43.	Boron (as B)	mg/L		1.28	0.188	0.376
44.	Bioassay Test on fish	% survival	90% survival after 96h in 100%effl uent	0	70	0



Graphs: Waste Water Monitoring Results:

3.3.2 Ground Water Analysis Results:

Sr. No.	Locations	Denotation	Included in
1.	Ankush Gharatwadi	A	Table I
2.	Dhodi Pooja Area	В	Table I
3.	Lala Vajpayee Area	С	Table I
4.	Chiku Wadi	D	Table II
5.	Kumbhavali Village	E	Table II
6.	Salvad Village	F	Table II

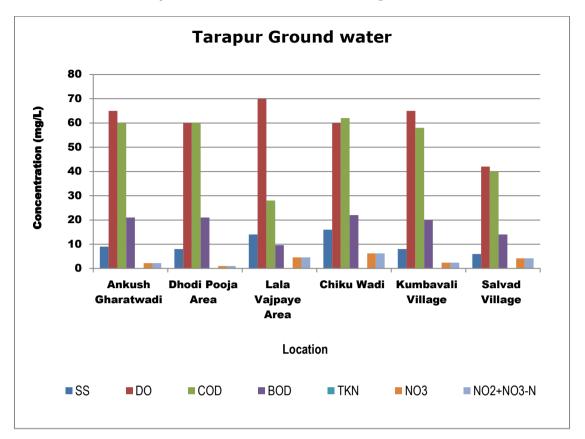
Table I:

Loca	tion			Ankush Gharatwa di	Dhodi Pooja Area	Lala Vajpayee Area
Туре	2			Well Water	Bore Well	Well Water
Date	e of Sampling			06.06.17	06.06.17	06.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
3.	Colour	Hazen	5	1	1	1
	Odour		Agreeable	Agreeable	Agreeable	Agreeable
6.	рН	-	6.5-8.5	7.22	7.42	7.84
7.	Oil & Grease	mg/L	100	BDL	BDL	BDL
8.	Suspended Solids	mg/L	500	9	8	14
10.	Chemical Oxygen Demand	mg/L	10 (WHO, 1993)	60	60	28
11.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	6 (WHO, 1993)	21	21	9.6
12.	Electrical Conductivity (at 25°C)	µmhos/ cm	750	761	545	1524
13.	Nitrite Nitrogen (as N)	mg/L		BDL	BDL	BDL
14.	Nitrate Nitrogen (as N)	mg/L	45	2.21	1.05	4.57
15.	$(NO_2 + NO_3)$ -Nitrogen	mg/L	1.0	2.21	1.05	4.57
16.	Free Ammonia (as NH_3-N)	mg/L	0.5	BDL	BDL	BDL
17.	Total Residual Chlorine	mg/L	0.2	BDL	BDL	BDL
18.	Cyanide (as CN)	mg/L		BDL	BDL	BDL
19.	Fluoride (as F)	mg/L	1	0.4	0.42	0.52
20.	Sulphide (as S ²⁻)	mg/L	0.05	BDL	BDL	BDL

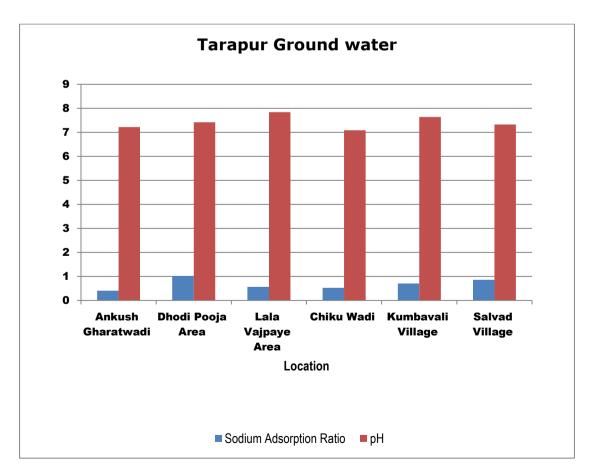
Loca	tion			Ankush Gharatwa di	Dhodi Pooja Area	Lala Vajpayee Area
Туре)			Well Water	Bore Well	Well Water
Date	e of Sampling			06.06.17	06.06.17	06.06.17
21.	Dissolved Phosphate (as P)	mg/L		BDL	BDL	BDL
22.	Sodium Absorption Ratio			0.41	1.02	0.57
23.	Total Coliforms	MPN index/ 100 mL	ND	7.8	79	49
24.	Faecal Coliforms	MPN index/ 100 mL	ND	4.5	33	23
25.	Total Phosphorous (as P)	mg/L	0.5	BDL	BDL	BDL
26.	Total Kjeldahl Nitrogen	mg/L	0.001	0.1	0.11	0.1
27.	Total Ammonia (NH₄+NH₃)-Nitrogen	mg/L	0.5	BDL	BDL	BDL
28.	Phenols (as C_6H_5OH)	mg/L	0.001	BDL	BDL	BDL
29.	Surface Active Agents (as MBAS)	mg/L	0.05	BDL	BDL	BDL
30.	Organo Chlorine Pesticides	µg/L				
i.	Alachlor	µg/L		BDL	BDL	BDL
ii.	Atrazine	µg/L	2	BDL	BDL	BDL
iii.	Aldrin	µg/L	0.03	BDL	BDL	BDL
iv.	Dieldrin	µg/L	0.03	BDL	BDL	BDL
v	Alpha HCH	µg/L	0.01	BDL	BDL	BDL
vi.	Beta HCH	µg/L	0.04	BDL	BDL	BDL

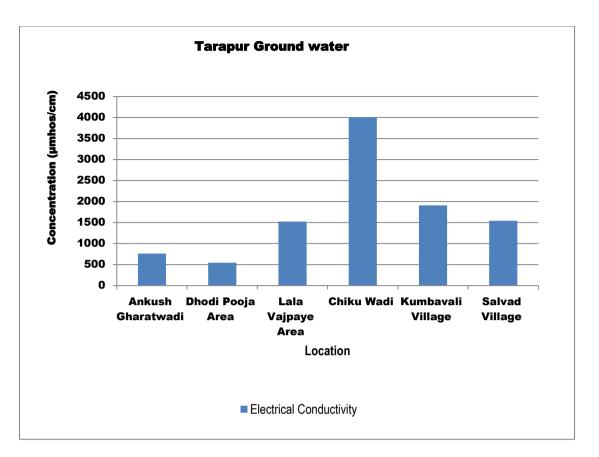
Locat	tion			Ankush Gharatwa di	Dhodi Pooja Area	Lala Vajpayee Area
Туре	Туре		Well Water	Well Water	Bore Well	Well Water
Date	of Sampling			06.06.17	06.06.17	06.06.17
vii	Chlorpryriphos	µg/L		BDL	BDL	BDL
vii.	Butachlor	µg/L	125	BDL	BDL	BDL
viii.	Delta HCH	µg/L	0.04	BDL	BDL	BDL
ix.	p,p DDT	µg/L	1	BDL	BDL	BDL
x.	o,p DDT	µg/L	1	BDL	BDL	BDL
×i.	p,p DDE	µg/L	1	BDL	BDL	BDL
×ii.	o,p DDE	µg/L	1	BDL	BDL	BDL
×iii.	p,p DDD	µg/L	1	BDL	BDL	BDL
xiv.	o,p DDD	µg/L	1	BDL	BDL	BDL
xv.	Alpha Endosulfan	µg/L	0.4	BDL	BDL	BDL
xvi.	Beta Endosulfan	µg/L	0.4	BDL	BDL	BDL
xvii.	EndosulfanSulphate	µg/L	0.4	BDL	BDL	BDL
xviii.	Y HCH (Lindane)	µg/L	2.0	BDL	BDL	BDL
31.	Polynuclear aromatic hydrocarbons (as PAH)	µg/L	0.0001	BDL	BDL	BDL
32.	Polychlorinated Biphenyls (PCB)	µg/L	0.0005	BDL	BDL	BDL
33.	Zinc (as Zn)	mg/L	5.0	BDL	BDL	BDL
34.	Nickel (as Ni)	mg/L	0.02	BDL	BDL	BDL
35.	Copper (as Cu)	mg/L	0.05	BDL	BDL	BDL
36.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	1	BDL	BDL	BDL

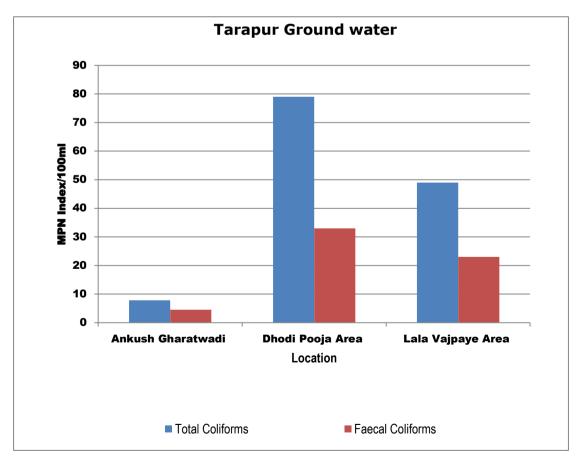
Loca	ition			Ankush Gharatwa di	Dhodi Pooja Area	Lala Vajpayee Area
Туре	Туре			Well Water	Bore Well	Well Water
Date of Sampling				06.06.17	06.06.17	06.06.17
37.	Total Chromium (as Cr)	mg/L	0.05	BDL	BDL	BDL
38.	Total Arsenic (as As)	mg/L	0.01	BDL	BDL	BDL
39.	Lead (as Pb)	mg/L	0.01	BDL	BDL	BDL
40.	Cadmium (as Cd)	mg/L	0.003	BDL	BDL	BDL
41.	Mercury (as Hg)	mg/L	0.001	BDL	BDL	BDL
42.	Manganese (as Mn)	mg/L	0.1	BDL	BDL	BDL
43.	Iron (as Fe)	mg/L	0.3	BDL	BDL	BDL
44.	Vanadium (as V)	mg/L		BDL	BDL	BDL
45.	Selenium (as Se)	mg/L	0.01	BDL	BDL	BDL
46.	Boron (as B)	mg/L		BDL	BDL	4.02
47.	Bioassay Test on fish	% survival		90	100	0
	Dead after 24 h			1	0	10
	Dead after 48 h			1	0	10
	Dead after 72 h			1	0	10
	Dead after 96 h			1	0	10
	Dead after 24 h			90	100	0

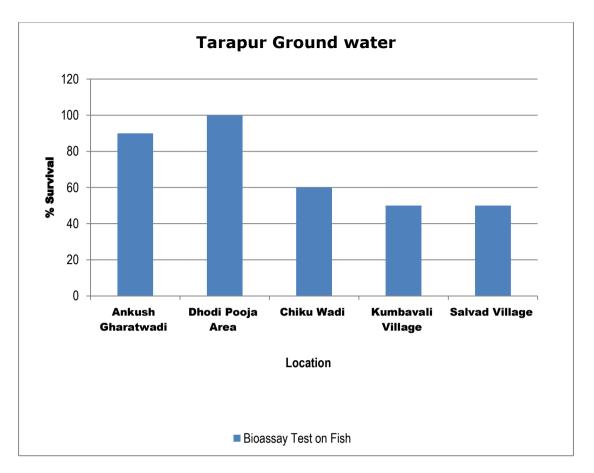

Table II

Location Type			Chiku Wadi	Kumbhava li Village	Salvad Village	
				Bore Well	Bore Well	Bore Well
Date of Sampling				06.06.17	06.06.17	06.06.17
Sr.	Parameter		Std. Limit	nit Results		
1.	Colour	Hazen	5	1	1	1
2.	Odour		Agreeable	Agreeable	Agreeable	Agreeable
3.	рН	-	6.5-8.5	7.09	7.64	7.33
4.	Oil & Grease	mg/L	100	BDL	BDL	BDL
5.	Suspended Solids	mg/L	500	16	8	6
6.	Chemical Oxygen Demand	mg/L	10 (WHO, 1993)	62	58	40
7.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	6 (WHO, 1993)	22	20	14
8.	Electrical Conductivity (at 25°C)	µmhos/ cm	1000	4000	1910	1541
9.	Nitrite Nitrogen (as N)	mg/L		BDL	BDL	BDL
10.	Nitrate Nitrogen (as N)	mg/L	45	6.21	2.42	4.19
11.	(NO ₂ + NO ₃)-Nitrogen	mg/L	1.0	6.21	2.42	4.19
12.	Free Ammonia (as NH ₃ -N)	mg/L	0.5	BDL	BDL	BDL
13.	Total Residual Chlorine	mg/L	0.2	BDL	BDL	BDL
14.	Cyanide (as CN)	mg/L		BDL	BDL	BDL
15.	Fluoride (as F)	mg/L	1	0.28	0.34	0.08
16.	Sulphide (as S ²⁻)	mg/L	0.05	BDL	BDL	BDL
17.	Dissolved Phosphate (as P)	mg/L		BDL	BDL	BDL


Location Type Date of Sampling				Chiku Wadi	Kumbhava li Village	Salvad Village
				Bore Well	Bore Well	Bore Well
				06.06.17	06.06.17	06.06.17
Sr.	Parameter	Std. Limit	Results			
18.	Sodium Absorption Ratio			0.53	0.71	0.86
19.	Total Coliforms	MPN index/ 100 mL	ND	BDL	BDL	BDL
20.	Faecal Coliforms	MPN index/ 100 mL	ND	BDL	BDL	BDL
21.	Total Phosphorous (as P)	mg/L	0.5	BDL	BDL	BDL
22.	Total Kjeldahl Nitrogen	mg/L	0.001	BDL	BDL	BDL
23.	Total Ammonia (NH₄+NH₃)-Nitrogen	mg/L	0.5	BDL	BDL	BDL
24.	Phenols (as C_6H_5OH)	mg/L	0.001	BDL	BDL	BDL
25.	Surface Active Agents (as MBAS)	mg/L	0.05	BDL	BDL	BDL
26.	Organo Chlorine Pesticides	µg/L				
i.	Alachlor	µg/L		BDL	BDL	BDL
ii.	Atrazine	µg/L	2	BDL	BDL	BDL
iii.	Aldrin	µg/L	0.03	BDL	BDL	BDL
iv.	Dieldrin	µg/L	0.03	BDL	BDL	BDL
v	Alpha HCH	µg/L	0.01	BDL	BDL	BDL
vi.	Beta HCH	µg/L	0.04	BDL	BDL	BDL
vii.	Delta HCH	µg/L	0.04	BDL	BDL	BDL


Location			Chiku Wadi	Kumbhava li Village	Salvad Village	
Туре				Bore Well	Bore Well	Bore Well
Date of Sampling				06.06.17	06.06.17	06.06.17
Sr.	Parameter		Std. Limit	Results		
viii	Chlorpyriphos			BDL	BDL	BDL
viii.	Butachlor	µg/L	125	BDL	BDL	BDL
ix.	p,p DDT	µg/L	1	BDL	BDL	BDL
x.	o,p DDT	µg/L	1	BDL	BDL	BDL
xi.	p,p DDE	µg/L	1	BDL	BDL	BDL
xii.	o,p DDE	µg/L	1	BDL	BDL	BDL
xiii.	p,p DDD	µg/L	1	BDL	BDL	BDL
xiv.	o,p DDD	µg/L	1	BDL	BDL	BDL
xv.	Alpha Endosulfan	µg/L	0.4	BDL	BDL	BDL
xvi.	Beta Endosulfan	µg/L	0.4	BDL	BDL	BDL
xvii.	Endosulfan Sulphate	µg/L	0.4	BDL	BDL	BDL
xviii.	Y HCH (Lindane)	µg/L	2.0	BDL	BDL	BDL
31.	Polynuclear aromatic hydrocarbons (as PAH)	µg/L	0.0001	BDL	BDL	BDL
32.	Polychlorinated Biphenyls (PCB)	µg/L	0.0005	BDL	BDL	BDL
33.	Zinc (as Zn)	mg/L	5.0	BDL	BDL	BDL
34.	Nickel (as Ni)	mg/L	0.02	BDL	BDL	BDL
35.	Copper (as Cu)	mg/L	0.05	BDL	BDL	BDL
36.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	1	BDL	BDL	BDL


Location			Chiku Wadi	Kumbhava li Village	Salvad Village		
Type Date of Sampling				Bore Well	Bore Well	Bore Well	
				06.06.17	06.06.17	06.06.17	
Sr.	Parameter		Std. Limit	Results			
37.	Total Chromium (as Cr)	mg/L	0.05	BDL	BDL	BDL	
38.	Total Arsenic (as As)	mg/L	0.01	BDL	BDL	BDL	
39.	Lead (as Pb)	mg/L	0.01	BDL	BDL	BDL	
40.	Cadmium (as Cd)	mg/L	0.003	BDL	BDL	BDL	
41.	Mercury (as Hg)	mg/L	0.001	BDL	BDL	BDL	
42.	Manganese (as Mn)	mg/L	0.1	0.803	BDL	0.189	
43.	Iron (as Fe)	mg/L	0.3	BDL	BDL	BDL	
44.	Vanadium (as V)	mg/L		BDL	BDL	BDL	
45.	Selenium (as Se)	mg/L	0.01	BDL	BDL	BDL	
46.	Boron (as B)	mg/L	1.0-5.0	0.125	BDL	BDL	
47.	Bioassay Test on fish	% survival		60	50	50	
	Dead after 24 h			4	5	5	
	Dead after 48 h			4	5	5	
	Dead after 72 h			4	5	5	
	Dead after 96 h			4	5	5	



Graphs: Ground Water Monitoring Results:

4 Summary of the Results

Based on the study done, the results are summarised and concluded as follows:

4.1 Stack Emission Monitoring:

In Tarapur, seven different stacks were monitored at UPL, Plot No. E-51, Calyx Chemical Ltd., Siyaram Silk Mills Ltd., M/s Angadpal industries Pvt. Ltd., Gini Silk Mills Ltd., Mandhana Industrial Ltd. (Shirting Unit), and Mandhana Industrial Ltd. (Dyeing Unit-II). Results show that particulate matter as well as sulphur dioxide, both are below the standard limits. All the values of Particulate matter are observed below standard limit. It is ranged from 29 to 99 mg/Nm³ and sulphur dioxide in the range of 5.33 to 21.33mg/Nm³. However, the nitrogen dioxide is observed is observed with minimum concentration 382mg/Nm³ at Mandhana Industrial Ltd. (Dyeing Unit-II) and maximum at M/s Angadpal industries Pvt. Ltd (584mg/Nm³).

4.2 Ambient Air Monitoring:

At Tarapur, ambient air quality was monitored at six locations namely: UPL, Plot No. E-51, Calyx Chemical Ltd., Sumitomo Chemical India Pvt. Ltd., Siyaram Silk Mills Ltd., Mandhana Industrial Ltd. (Shirting Unit), Mandhana Industrial Ltd. (Dyeing Unit- II). At all these places 12 parameters of ambient air quality standards were monitored along with Volatile Organic Compounds.

1) **Suphur dioxide (SO₂):** All the results for SO₂ are observed lower than the standard limit of 80 μ g/m³. It is observed below the detection limit (<4 μ g/m³).

2) **Nitrogen Dioxide (NO_x):** All the results for SO₂ are observed lower than the standard limit of 80 μ g/m³. It is observed below the detection limit (<3 μ g/m³).

3) **Particulate Matter (PM₁₀):** It is the most critical parameter as its higher concentration in the air affects ecosystem health a lot. However, all the values of PM10 at all the locations are observed below the standard limit of $100\mu g/m^3$. Minimum of 42 $\mu g/m^3$ is obtained at Sumitomo Chemical India Pvt. Ltd. and maximum of $95\mu g/m^3$ at Calyx Chemical Ltd.

4) **Particulate Matter (PM_{2.5}):** Concentration of $PM_{2.5}$ also shows almost same pattern as PM_{10} . All the values are observed below the standard limit of 60 μ g/m³. It is observed in the range of 12 to 25μ g/m³.

5) **Ozone (O₃):** All values of O₃ recorded below the detection limit i.e.19.8.

6) **Lead (Pb):** Lead is categorised as known human carcinogen by CPCB. In our results, concentration of Lead is found below the standard limit.

7) **Carbon Monoxide (CO):** Values of Carbon Monoxide are also observed below standard limit at all the studied locations. It is observed minimum at BDL at Mandhana Industrial Ltd. (Shirting Unit)and 2.6µg/m³at Mandhana Industrial Ltd. (Dyeing Unit).

8) **Ammonia (NH₃):**All values of O₃ recorded below the detection limit.

9) **Benzene:** Benzene falls under group C category, which includes known carcinogens. Study shows that all the locations has BDL i.e. $<1\mu g/m^3$ benzene concentration i.e. below the standard limit ($5\mu g/m^3$).

10) **Benzo (a) Pyrene (BaP):** All values recorded below the detection limit i.e. <0.2.

11) **Arsenic:** Arsenic values are also observed well below the detection limit i.e. <0.3.

12) **Nickel:** All the values are observed below the standard limit of 20ng/m³.

4.3 Waste Water Quality:

Six samples of ETP outlet and inlet were collected from different industries namely (i) UPL Plot No. E-51 (ii) Calyx Chemical Ltd.(iii) Siyaram Silk Mills Ltd. (iv) Navapur Discharge (CETP Discharge) (iv) CETP Tarapur MIDC(outlet) (v) CETP Tarapur MIDC(Inlet).

1) **pH:** At all the locations, pH of water samples is found well within the range prescribed by CPCB. It is ranged from 6.32 to 7.42.

2) **Oil and Grease:** All values within the acceptable range.

3) **Suspended Solids:** Except Navapur Discharge (200), CETP outlet (200mg/L) and CETP inlet(210mg/L), remaining three samples of different locations are found within the acceptable limits.

4) **Chemical Oxygen Demand:** Chemical Oxygen Demand is found above the standards of 250mg/L at three locations ranging from 892 to 3472mg/L.

5) **Biochemical Oxygen Demand:** Biochemical Oxygen demand also exhibits the same picture as COD. This is recorded highest (1133mg/L) at CETP inlet and minimum at Siyaram Silk Mills Ltd. (7mg/L).

6) **Total Kjeldahl Nitrogen:** CETP inlet (224mg/L) and Navapur CETP Discharge (140mg/L), all four exhibit value of TKN beyond standard limit (100mg/L).

7) **Total Ammonia:** Out of all values of four samples exhibit above standard limit in the range of 7.6 to 24.5 mg/L.

8) **Metals:** All metals like Arsenic, Nickel, Copper, Hexavalent Chromium (Cr^{6+}) are observed either below detection limit or below their standard limits. However, Iron concentration is observed high at 3 locations namely UPL (4.53mg/L), Navapur Discharge (5.49mg/L) and CETP Inlet (5.62mg/L).

9) **Fish Bioassay:** Fish bioassay exhibits 0-100% survival. CETP inlet and Navapur village, these 2 water samples has NIL (0%) survival.

Following parameters meet the criteria as prescribed by CPCB.

- 1) **Total Residual Chlorine**
- 2) Cyanide
- 3) Fluoride
- 4) Sulphide
- 5) **Dissolved Phosphate**
- 6) **Total Ammonical Nitrogen**
- 7) **Phenolic compounds**

4.4 Ground Water Quality:

Six Borewell samples were collected from different locations namely: (i) Ankush Gharatwadi (ii) Dhodi Pooja Area (3) Lala Vajpayee (iv) Chiku Wadi (v) Kumbhavali Village (vi) Salvad Village.

1) **Colour** (Hazen Units): Colour units are below the acceptable standard.

2) **Odour** of the sample is agreeable.

3) **pH:** At all the locations, pH of water samples is found well within the range prescribed by CPCB. It is ranged from 7.09 to 7.84.

4) **Chemical Oxygen Demand:** All the samples were detected above standard limits of 10mg/L set by WHO. It is ranged from 28 to 62mg/L.

5) **Biological Oxygen Demand:** BOD samples also followed the similar pattern as COD samples. All the samples are detected above the standard limit of 6mg/L (WHO, 1993). It is ranged from 9.6 to 22mg/L.

Following are the parameters which are compared with 10500:2012 Drinking water specifications.

1) **Nitrite**: Values of Nitrite are at below detection level.

2) **Nitrate:** Nitrate value ranged between 1.05 mg/L and 6.21mg/L. Nitrate concentrations are below the acceptable standards of IS 10500:2012.

3) **Residual Free Chlorine**: Values are below the acceptable standards.

4) **Total Ammonia**: is within the acceptable range.

5) **Cyanide:** Concentration of cyanide in all the bore well water is very much below the standard.

6) **Fluoride:**All the values are observed below standard limit. It is ranged from 0.08 to 0.52mg/L.

7) **Sulphide:** Analytical values are below the detection limits and below the standards.

8) **Sodium Absorption Ratio:** These values fit within range of water quality criteria of CPCB.

9) **Electrical Conductivity:** As per the water quality criteria of CPCB, water samples exceed the limit of electrical conductivity at all the locations except Dhodi Pooja Pooja area.

10) **Boron:** Chikkuwadi bore well water exceeds the limit showing the concentration of 1.09mg/L.

11) **Metals:** Metals like Copper, Total Chromium, Lead, Arsenic, Cadmium and Mercury are well within the acceptable limits of drinking water standards.

12) **PAH & PCB** are also below the acceptable limits.

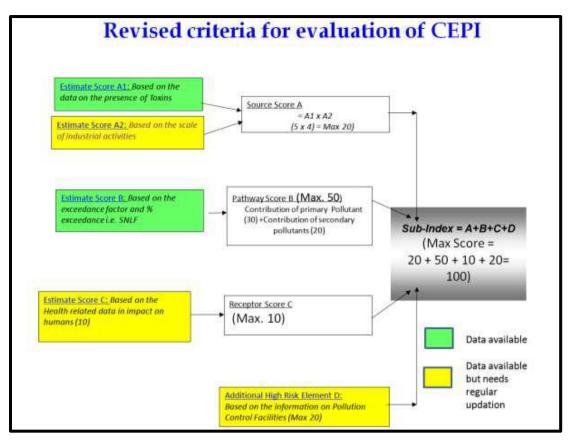
5 CEPI Score:

Comprehensive Environmental Pollution Index (CEPI) is intended to act as early warning tool which helps in categorization of industrial clusters/areas in terms of priority of needing attention.

CPCB had evolved certain methodology to calculate CEPI, in which a score has been fixed for different environmental components based on the level of pollution. The scoring system involves an algorithm that takes into account the basic selection criteria. This approach is based on the basic hazard assessment logic that can be summarized as below.

Hazard = pollutant source, pathways, and receptor

CPCB has calculated CEPI for the identified critically polluted industrial clusters. It is calculated separately for air, water, and land. The basic framework and scoring system of the CEPI – based on three factors namely pollutant, pathway, and receptor – has been described further under this section


To overcome the subjectivity, revised concept is proposed by eliminating the subjective factors as described in the previous section, but retaining the factors which can be measured precisely.

- i. Revised concept is prepared by eliminating the debatable factors but retaining the factors which can be measured precisely.
- ii. It is decided to develop the Comprehensive Environmental Pollution Index (CEPI) retaining the existing algorithm of Source, Pathway and Receptor.
- iii. Health component was also retained in the revised concept in line with the suggestions of Secretary, MoEFCC during the meeting held in MoEF.

Outlines of revised CEPI 2016 criteria

The outlines of the revised CEPI criteria are as follows:

- 1. It is proposed to develop the Comprehensive Environmental Pollution Index (CEPI) based on Sources of pollution, real time observed values of the pollutants in the ambient air, surface water and ground water in & around the industrial cluster and health related statistics.
- 2. For assessment of the environmental quality of the area i.e. CEPI score, the concept of SNLF i.e. a surrogate number which represents the level of exposure (a function of percentage sample exceedance & Exceedance Factor) shall be used.
- 3. Health component to be evaluated based on the health data available from major hospitals in the area was also retained in the revised concept.
- 4. The evaluation criterion of the revised CEPI version 2016 is described in the flowchart given below:

Here, health data collected for Receptor score C is included in Annexure I

Based on Sub-index Score (score of individual environmental component like air, water etc.):

component

Score more than 63: A Critical Level of Pollution in the respective level of environmental component
 Score between 51-63: Severe to critical level of pollution with reference to respective environmental

Cut-off Score

- Score 50: Severely Polluted Industrial Clusters/areas
- Score 60: Critically Polluted Industrial Clusters/areas

Based on Aggregated CEPI Score (score includes sub-index score of all individual environmental components together):

- Aggregated CEPI score >70: Critically polluted areas
- Aggregated CEPI score between 60-70: Severely polluted areas

Since the inception of the programme, MPCB has also formulated Action Plans to mitigate the environmental pollution problems for each of the 8 Critically Polluted Areas (CPAs) in Maharashtra. Based on available information, parameters selected and monitored in continuation with this, CEPI has been calculated and Short-Term Action Plan (STAP) as well as Long Term Action Plan (LTAP) was prepared in 2010.

Subsequently NAAQS 2009 came in force. List of parameters to be considered increased and expanded including more critical and hazardous pollutants like benzene, BaP, Metals, etc. existing in the environment. There was revision of standards (limiting values) as well. In this present report of 2016 prepared by MPCB, CEPI is calculated considering all these revised standards' limiting values, list of parameters and complete scope of monitoring.

The result shows that CEPI score of present report is 53.72. This is quite than the CEPI score of February, 2017 study (67.67).

Results show that, MPCB's efforts through the formulation of action plans decreased the overall concentration of pollutants in all aspects i.e. air, land and water in Tarapur area in past three years. This has also resulted in decreased score of CEPI now.

Comparison of CEPI scores of 2013 and 2017 reports:

Results show that present CEPI score (53.72) of Tarapur city considering all revised standards and parameters has decreased a lot if compared with the CEPI Score of February, 2017 (67.67) report. This clearly indicates the successful application of STAP and LTAP of MPCB which resulted in a cleaner environment of Tarapur city in past three years.

Detailed results of Air, Water and Land are given below:

	A1	A2	Α	B1	B2	В3	В	C1	C2	С3	С	D	СЕРІ
Present Report 2017 (Revised CEPI 2016)	2.5	4	10	-	-	-	0	-	-	-	0	10	20
CEPI Score, February, 2017	2	5	10	6	3	3	12	3	3	5	14	10	46
CEPI Score, 2016	4	5	20	6	3	3	12	3	3	5	14	10	56
CEPI score 2013 (considering all revised standards, scope and limiting values of 2013)	6	5	30	8	3	3	14	3	5	5	20	10	74
CPCB Report 2009	5.75	5.0	28.75	2.0	3	3	8	3	3	5	14	10	60.75

Air:

	A1	A2	A	B1	B2	В3	В	C1	C2	С3	С	D	СЕРІ
Present Report 2017 (Revised CEPI 2016)	3.5	4	14	-	-	-	20	-	-	-	0	15	49
CEPI Score, February, 2017	1	5	5	8	3	3	14	5	5	0	25	15	59
CEPI Score, 2016	1	5	5	8	0	3	11	3	5	0	15	15	46
CEPI score 2013 (considering all revised standards, scope and limiting values of 2013)	4	5	20	8	0	3	11	3	3.75	0	11.25	15	57.25
CPCB Report 2009	3	5	15	8	0	3	11	3	5	0	15	15	56

Land:

	A1	A2	A	B1	B2	В3	В	C1	C2	С3	С	D	CEPI
Present Report 2017 (Revised CEPI 2016)	3.5	4	14	-	-	-	17.25	-	-	-	0	15	46.25
CEPI Score, February, 2017	1	5	5	8	0	3	11	3	5	0	15	15	46
CEPI Score, 2016	1	5	5	6	3	3	12	5	3	0	15	15	47
CEPI score 2013 (considering all revised standards, scope and limiting values of 2013)	4	5	20	8	3	3	14	5	5	0	25	15	74
CPCB Report 2009	3	5	15	7.75	3	3	13.75	5	1.5	0	7.5	15	51.25

Aggregated	CEPI:
------------	-------

	Air index	Water Index	Land Index	CEPI
Present Report 2017 (Revised CEPI 2016)	20	49	46.25	53.72
CEPI Score, February, 2017	46	59	46	67.67
CEPI Score, 2016	56	46	47	65.51
CEPI score 2013 (considering all revised standards, scope and limiting values of 2013)	74	57.25	74	85.01
CPCB Report 2009	60.75	51.25	56	72.01

6 Conclusions

This is an attempt to check the characteristics and status of environment among the different industrial clusters of Tarapur city. Revised CEPI version 2016 includes 2 major modifications in terms of evaluation of data: (1) It includes Contribution of primary as well as secondary pollutants under Factor B (Max Value 50) and (2) Exhaustive collection of health data of people residing in the vicinity of industrial clusters under study, Factor C (Max Value 10). This has changed the entire criteria of calculating CEPI as compared to the previous CEPI version and hence affected the overall CEPI score also. It shows that the concentration of pollutants in air, ground water and surface water is lowered down as compared to past studies, as most of the results are observed below their standards with an exception of one or two parameters.

Parameters of air sampling are observed within the standard limit all the sampling locations. Among waste water samples, BOD and COD of CETP Inlet, CETP outlet and Navapur Discharge samples are found beyond standard limit. Nitrate and nitrogen are also observed higher in these samples. All the ground water samples are found within the limits except BOD and COD of all the water samples, which are observed above standard limits.

Moreover, the lower value (53.72) of Comprehensive Environmental Pollution Index (CEPI) in the present study as compared to past few years study also reveals the fact that the environmental pollution in this city is substantially decreased over the period of times. To achieve this target, improvement in conventional practice and procedures adopted by the industries coupled with initiatives taken by Maharashtra Pollution Control Board played a major role. Although, a decrease in environmental pollution is observed, but still there is lot of scope to improve the environmental quality of the city, for which continuous efforts, strategies, planning and actions are required. Overall CEPI figures are comprised in the table below:

	A1	A2	Α	В	С	D	CEPI			
Air Index	2.5	4	10	0	0	10	20			
Water Index	3.5	4	14	20	0	15	49			
Land Index	3.5	4	14	17.25	0	15	46.25			
Aggregated CEPI										

7 Efforts Taken For the Abatement and Control of Pollution

The regional office of Maharashtra pollution control board has taken various initiatives in reducing the CEPI Score of 67.67 of February, 2017 to 53.2. Below mentioned are some of the efforts:

a) Expansion of TEPS-CETP from existing 25 MLD to 37 MLD

b) Due to various measures taken by the industries solvent recovery improved. And following industries has taken measures

• M/s. Arti Drugs Ltd, Plot No. N-198, MIDCTarapur, Tal.Palghar.This industry has developed new technology for the recovery of ammonium sulphate 2000 Mt/month by unit operation like evaporation, crystallization. Earlier the same was treated in their ETP.

• M/s Camlin Fine Chemicals. Ltd., Plot No. D,MIDC Tarapur has segregated of high COD stream.

• M/s. Arti Industries Ltd., Plot No E-50, has installed zero discharge plant such as incineration high COD.

• M/s Lupin Limited Plt No. T-142 MIDC, Tarapur has provided Anaerobic Digestor for segregated effluents.

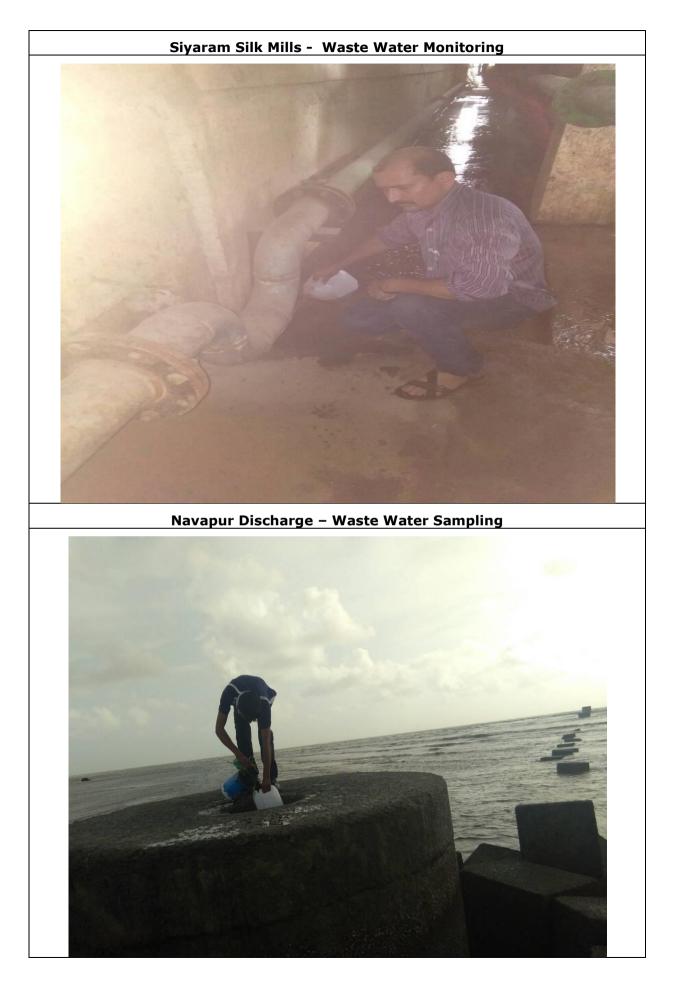
c) Board has informed CHWTSDF to increase the frequency of collecting of HW and its transportation.

d) MIDC is carrying out massive tree plantation program on empty/ reserved plots, and on boundary of MIDC. 4500 nos of trees have been distributed by MIDC to TIMA.

e) Replacement of RCC drainage by HDPE within MIDC area.

f) Five nos of industries has started and recycling 50 % of their treated effluent i.e 1604.5 CMD • 7 No. of Textile industries has provided zero discharge system and recycling about 2434 CMD

8. Photographs



9. References

1. Criteria for Comprehensive Environmental Assessment of Industrial Clusters, December 2009, CPCB, EIAS/4/2009-10

2. Comprehensive Environmental Assessment of Industrial Clusters, December 2009, CPCB, EIAS/5/2009-10

3. Action Plan for Industrial Cluster: Chandrapur, November 2010, MPCB

4. Action Plan for Industrial Cluster: Dombivali, November 2010, MPCB

5. Action Plan for Industrial Cluster: Aurangabad, November 2010, MPCB

6. Action Plan for Industrial Cluster: NaviMumbai, November 2010, MPCB

7. Action Plan for Industrial Cluster: Tarapur, November 2010, MPCB

8. Standard Methods for the Examination of Water and Waste Water, American Public Health Association, 22nd Edition, 2012.

- 9. IS 3025 (various parts)
- 10. <u>www.mpcb.gov.in</u>
- 11. <u>www.cpcb.gov.in</u>

10. Annexures

Annexure I Health related data in impact on humans

C: Receptor

	Component C (Impact on Human Health)								
	10								
M	Main - 10								
% increase in cases	Marks								
<5%	0								
5-10%	5								
>10%	10								

- % increase is evaluated based on the total no. of cases recorded during two consecutive years.
- For Air Environment, total no. of cases related to Asthma, Bronchitis, Cancer, Acute respiratory infections etc. are to be considered.
- For surface water/ ground water Environment, cases related to Gastroenteritis, Diarrhoea, renal (kidney) malfunction, cancer etc are to be considered.
- For the above evaluation, the previous 5 years records of 3-5 major hospitals of the area shall be considered.

Attached below health data collected for the region

MAHARASHTRA POLLUTION CONTROL BOARD Sub Regional Office Tarapur-II

Tel : (02525) 273314 email:srotarapur2@mpcb.gov.in

M.I.D.C. Office Compound, Tarapur,Post-TAPS,Boisar(w). Tal- Palghar, Dist-Thane -401504

Date:- 15 /06/2017

MPCB/SROTR-II/TB-

To.

1. Thunga Hospital, Boisar

2. Anand Hospital, Boisar

3. TAPS Hospital, Boisar

Sub:- Health related data collection for CEPI REV.

Ref:- Request from representative of Ashwamedh Engineers & Consultant C.S.I.

Sir,

Board has the contrasted the work for project on Monitoring Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water and Ground Water Quality in critically polluted areas in Maharashtra including Tarapur for Pre-Mansoon season Vide letter dtd.29.05.2017, further vide mail from JD Air Section dtd.07.06.2017 has asked to collect the Health related data for CEPI revision to Ashwamedh Engineers, accordingly you are requested to give the data in prescribed format for Health related data in respect of discuses for the year 2012, 2013, 2014, 2015, 2016 & 2017 at earliest.

Further as per a direction from CPCB vide letter dtd.26.04.2016 they have mentioned revised CEPI score calculation where is the weight age for Health related study is 10, Hence as per the said directions information is required at the earliest.

(Dr

ajput) Sub-Regional officer, Tarapur-II 9766029991

Critically Polluted Areas: Monitoring, sampling, analysis of Stack, Ambient Air Quality, Surface Water, Ground Water, Waste Water

			Disease	s caused b	y Air pollution	1	Dise	eases ca	used by V	Water polluti	on
Name of Hospital	Year	Asthma	Bronchitis	Pulmonary cancer	Mesothelioma (lung cancer)	Acute respiratory infections	Gøstroenteritis	Typhoid	Diarrhea	Liver damage and even cancer (due to presence of chlorinated solvents in the polluted water)	Kidney damage (because of various harmful chemicals present in the polluted water)
	2012	-	_	-	-	_	-	-	. —	~	_
1	2013	63	56	14	t.	168	126	147	63	2+1	2
1 Thunga Hospital	2014	97	86	15	10	293	195	285	97	2	1
15/6/2017	2015	121	108	13	15	364	243	351	121	4	0
	2016	140	125	14	11	422		453	142	3	J
	2017	48	42	3	5	144	101	154	133	U	0
	2012										
	2013				- H						
1916117	2014										
Anand Hospital. Only Gynaecology	2015										
Only aynaecology & ortho speciality (so above diseased trait cire pat treated	2016		2		4						
(so above diseased	2017					0					
at Anand hiospital)		(11400 ⁻⁰ *)		24							
	2012	1	4 -			T		-	Ι		
•••	2013		-	_	-	-	-	-		2	
	2014	-		-	-	-		-	,		
-TAPS HOSPITAL	2015					-	-	~	-		~
भामीठा जन्मालम् विद्येपर्	2016	- 103	-	-	-	198	30	84-	67		-
19/6/13-	may 2097	42		-		- 63				-	-
		4.2			-			09	37		
1	2012								1		· · · · · · · · · · · · · · · · · · ·
1	2013										
C2062HOSPETA	2014	- 12	*		1	-			1		
Sailecta Huspital	2015	35	10	1	~	74	80	58	-		
Taraque Boisar	2016	39	31	-		68	71	52	-	* -	1. 1

Annexure II: Stack Emission Sampling and Analysis Methodology

Sr.	Parameters	Method References	Techniques	Detection Limit
1.	Acid Mist (as Sulphuric Acid)	US EPA Method no.m-8	Barium thorine titration Method	0.6 mg/Nm ³
2.	Ammonia	IS 11255 (Part 6):1999, Reaffirmed 2003	Titration/Nessler Reagent / Spectrophotometric Method	1 mg/Nm ³
3.	Carbon Monoxide	USEPA Method 10B	GC-FID Method	0.2 mg/Nm ³
4.	Chlorine	US EPA Method 26 for sampling	Titrimetric	0.001 mg/Nm ³
5.	Fluoride (Gaseous)	US EPA Method 13 A	SPADNS Zirconium Lake Spectrophotometric Method	0.025 mg/Nm ³
6.	Fluoride (Particulate)	US EPA Method 13 A	SPADNS Zirconium Lake Spectrophotometric Method	0.005 mg/Nm ³
7.	Hydrogen Chloride	US EPA Method 26 for sampling	Titrimetric	0.25 mg/Nm ³
8.	Hydrogen Sulphide	IS 11255 (Part 4):1985	Titrimetric	1 mg/Nm ³
9.	Oxides of Nitrogen	IS 11255 (Part 7): 2005	PDSA Colorimetric Method	10 mg/Nm ³
10.	Oxygen	IS 13270 : 1992	ORSAT Apparatus	1 %
11.	Poly Aromatic Hydrocarbons (Particulate)	IS 5182 (Part 12) : 2004, Reaffirmed 2009 CPCB Guidelines, May 2011, Page No.39	GC-FID Method	0.25 mg/Nm ³
12.	Suspended Particulate Matter	IS 11255 (Part 1):1985, Reaffirmed 2003	Gravimetric Method	10 mg/Nm ³
10	Culphur Disvida	IS 11255 (Part 2):	Titrimetric IPA thorine	5.0mg/Nm ³
13.	Sulphur Dioxide	1985, Reaffirmed 2003	Method	0.02kg/day

Sr.	Parameters	Method References	Techniques	Detection Limit		
14.	BTX (Benzene, Toluene, Xylene)	NIOSH (NMAM) 1501	Adsorption and Desorption followed by GC-FID analysis	0.001 mg/Nm ³		
15.	VOC (Volatile Organic Compounds)	NIOSH (NMAM) 1501 for sampling	Adsorption and Desorption followed by GC-FID or GC/MS analysis	-		
i	Methyl Isobutyl Ketone	-	-	0.001 mg/Nm ³		
ii	Benzene	-	-	0.001 mg/Nm ³		
iii	Toluene	-	-	0.001 mg/Nm ³		
iv	Xylene	-	-	0.001 mg/Nm ³		
v	Ethyl Benzene	-	-	0.001 mg/Nm ³		
vi	Ethyl Acetate	-	-	0.001 mg/Nm ³		

Sr.	Parameters	Method References	Techniques	Detection Limit
1.	Sulphur Dioxide (SO ₂)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.1	Improved West & Gaeke Method	4 µg/m³
2.	Nitrogen Dioxide (NO ₂)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.7	Modified Jacob & Hochheiser Method	3 μg/m ³
3.	Particulate Matter (size less than 10 μ m) or PM ₁₀	CPCB Guidelines for the Measurement of Ambient Air Pollutants,Volume I, May 2011, Page No.11	Gravimetric Method	2 µg/m ³
4.	Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 15	Gravimetric Method	0.4 µg/m ³
5.	Ozone (O ₃)	APHA, Method No. 820, Page no. 836	Chemical Method	19.6 µg/m ³
6.	Lead (Pb)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	0.02 µg/m ³
7.	Carbon Monoxide (CO)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume II, May 2011, Page No. 16	Non Dispersive Infra Red (NDIR) spectroscopy	0.05 mg/m ³
8.	Ammonia (NH ₃)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 35	Indophenol Blue Method	4.0µg/m ³
9.	Benzene (C ₆ H ₆)	IS 5182 (Part 11):2006	Adsorption and Desorption followed by GC- FID analysis	1.0 µg/m ³
10.	Benzo (a) Pyrene (BaP) – particulate phase only,	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 39	Solvent extraction followed by GC- FID analysis	0.2 ng/m ³
11.	Arsenic (As)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I,	AAS Method	0.3ng/m ³

Annexure III: Ambient Air Sampling and Analysis Methodology

Sr.	Parameters	Method References	Techniques	Detection Limit
		May 2011, Page No. 47		
12.	Nickel (Ni)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	3.0ng/m ³

Sr.	Parameters	Methods References	Techniques	Detection Limit
	Sampling Procedure for Chemical Parameters	IS 3025 (Part 1): 1987, Reaffirmed 1998, Amds.1& APHA, 22 nd Ed., 2012, 1060 B, 1-39	-	-
	Sampling Procedure for Microbiological Parameters	APHA, 22nd Ed., 2012,1060 B, 1-39, 9040, 9-17, and 9060B, 9-35	2012,1060 B, 1-39, 9040, 9-17, and 9060B,	
	Temperature	APHA, 22 nd Ed., 2012, 2550-B, 2-69	By Thermometer	-
	Colour	APHA, 22 nd Ed., 2012 , 2120-B, 2-26	Visible Comparison Method	1 Hazen Unit
	Odour	IS 3025 (Part 5): 1983, Reaffirmed 2006	Qualitative Method	-
	рН	APHA, 22 nd Ed., 2012, 4500-H+- B, 4-92By pH Meter& GreaseAPHA, 22 nd Ed., 2012, 5520-B, 5-40Liquid -liquid Partition- Gravimetric Method		1
	Oil & Grease			1.0 mg/L
	Suspended Solids	IS 3025(Part 17): 1984, Reaffirmed 2006,Amds.1	Filtration /Gravimetric Method	5.0 mg/L
	Dissolved Oxygen	IS 3025(Part 38): 1989, Reaffirmed 2009	Iodometric Method-Azide modification	0.05 mg/L
•	Chemical Oxygen Demand	APHA,22 nd Ed., 2012 , 5220-B, 5-17	Open Reflux Method	5.0 mg/L
•	Biochemical Oxygen Demand	IS 3025(Part 44): 1993,Reaffirmed 2009,Amds.1	.993,Reaffirmed Method	
•	Electrical Conductivity	APHA, 22 nd Ed., 2012, 2510- B, 2-54	By Conductivity Meter	0.1 µmho/cm
•	Nitrite-Nitrogen	APHA, 22 nd Ed., 2012, 4500-NO ₂ -B, 4-120		
•	Nitrate-Nitrogen	APHA 22 nd Ed 2012 UV		0.2 mg/L

Annexure IV: Water/Wastewater Sampling and Analysis Methodology

Sr.	Parameters	arameters Methods References		Detection Limit
			Method	
		APHA, 22 nd Ed., 2012, 4500-NO ₂ -B, 4-120	Colorimetric Method	
	(NO ₂ + NO ₃)- Nitrogen	APHA,22 nd Ed.,2012,4500-NO _{3,} B-4- 122	UV Spectrophotomet er Screening Method	0.2 mg/L
	Free Ammonia	APHA,22 nd Ed.,2012, 4500 NH ₃ , F, 4 -115	Colorimetric Method	0.006 mg/L
	Total Residual Chlorine	IS 3025 (Part 26) :1986 , Reaffirmed 2009, Ed. 2.1(2004-02)	Iodometric Method	0.1 mg/L
	$(\sqrt{2})(d_{0})((N)) = (450)(-(N))(x) + (4-4)(x)$		Colorimetric Method	0.001 mg/L
•	Fluoride (F)	e (F) APHA, 22 nd Ed., 2012, SPADNS Met 4500-F ⁻ , D, 4-87		0.05 mg/L
	Sulphide (S ²⁻)	APHA, 22 nd Ed., 2012, 4500 -S ² , C-4-175, F- 4-178	IodometricMethod	0.08 mg/L
•	Dissolved Phosphate (P)	APHA,22 nd Ed., 2012 , 4500 P,E, 4-155	Ascorbic Acid Method	0.03 mg/L
	Sodium Absorption Ratio	IS11624 :1986, Reaffirmed 2006	By Calculation	0.3
•	Total Phosphorous (P)	APHA,22 nd Ed., 2012 , 4500 P,E, 4-155	Ascorbic Acid Method	0.03 mg/L
	Total Kjeldahl Nitrogen	APHA, 22 nd Ed., 2012, 4500 NH ₃ , B & C, 4 - 110, 4-112	Titrimetric Method	0.1 mg/L
	Total Ammonia $(NH_4 + NH_3)$ - Nitrogen	APHA,22 ^d Ed., 2012, 4500 NH ₃ , F, 4 -115	Colorimetric Method	0.001 mg/L
•	Phenols (C_6H_5OH)	APHA,22 nd Ed., 2012 , 5530- B & C, 5-44 & 5- 47	Chloroform Extraction Method	0.001 mg/L

Sr.	Parameters	Methods References	Techniques	Detection Limit
•	Surface Active Agents	APHA,22 nd Ed., 2012 , 5540-B & C,5-50	Methylene Blue Extraction Method	0.1 mg/L
•	Organo Chlorine Pesticides	APHA, 22 nd Ed., 2012,6410B,6-74	GC MS-MS Method	0.01 µg/L
•	Polynuclear aromatic hydrocarbons (PAH)	APHA, 22 nd Ed., 2012,6410B,6-74	GC MS-MS Method	0.01 µg/L
	Polychlorinated Biphenyls (PCB)	APHA, 22 nd Ed., 2012,6410B,6-74	GC MS-MS Method	0.01 µg/L
•	Zinc (Zn)	IS 3025(Part 2): 2004	ICP Method	0.1 mg/L
•	Nickel (Ni)	IS 3025(Part 2): 2004	ICP Method	0.05 mg/L
•	Copper (Cu)	IS 3025(Part 2): 2004	ICP Method	0.03 mg/L
•	Hexavalent Chromium (Cr ⁶⁺)	APHA, 22 nd Ed., 2012,3500-Cr,B,3-69	Colorimetric Method	0.02 mg/L
•	Total Chromium (Cr)	IS 3025(Part 2): 2004	ICP Method	0.02 mg/L
•	Total Arsenic (As)	IS 3025(Part 2): 2004	ICP Method	0.005 mg/L
•	Lead (Pb)	IS 3025(Part 2): 2004	ICP Method	0.008 mg/L
•	Cadmium (Cd)	IS 3025(Part 2): 2004	ICP Method	0.002 mg/L
•	Mercury (Hg)	IS 3025(Part 2): 2004	ICP Method	0.0008 mg/L
•	Manganese (Mn)	IS 3025(Part 2): 2004	ICP Method	0.02 mg/L
•	Iron (Fe)	IS 3025(Part 2): 2004	ICP Method	0.06 mg/L
•	Vanadium (V)	IS 3025(Part 2): 2004	ICP Method	0.05 mg/L
•	Selenium (Se)	IS 3025(Part 2): 2004	ICP Method	0.005 mg/L
•	Boron (B)	IS 3025(Part 2): 2004	ICP Method	0.1 mg/L
	Total Coliforms	APHA, 22 nd Ed., 2012,9221-B, 9-66	Multiple tube fermentation technique (MPN/100ml)	1.1 MPN/100ml

Sr.	Parameters	Methods References	Techniques	Detection Limit
•	Faecal Coliforms	APHA, 22 nd Ed., 2012,9221-E, 9-74	Multiple tube fermentation technique (MPN/100ml)	1.1 MPN/100ml
•	Bioassay (Zebra Fish) Test	IS 6582, 1971, Reaffirmed 1987	Static Technique	-

Annexure V: National Ambient Air Quality Standards, 2009

The Gazette of India

EXTRAORDINARY PART III-Section 4 PUBLISHED BY AUTHORITY NEW DELHI, WEDNESDAY, NOBEMBER 18, 2009 No. B-29016/20/90/PCI-I

National Ambient Air Quality Standards: Central Pollution Control Board

In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevntion and Control of Pollution) Act, 1981 (Act No.14 of 1981), and in suppression of the Notification No(s). S.O.384(E), dated 11th April, 1994 and S.O.935(E), dated 14th October, 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect, namely:

Sr.	Pollutant		Time		Concentrati	on in Ambient Air
No.			Weighted Average	Industrial, Residential, Rural and Other Areas	Ecologically Sensitive Areas (Notified by Central Government)	Methods of Measurement
(1)	(2)		(3)	(4)	(5)	(6)
1	Sulphur Dioxide (SO ₂)	μg/m ³	Annual *	50	20	– Improved West and Gaeke
-	Sulphu Dionide (502)	μg/m	24 hours **	80	80	 Ultraviolet fluorescence
2	Nitrogen Dioxide (NO ₂)		Annual *	40	30	 Modified Jacob & Hochheiser (Na-Arsenite)
2	Nitrogen Dioxide (NO ₂)	$\mu g/m^3$	24 hours **	80	80	- Chemilminescence
3	Particulate Matter (size		Annual *	60	60	– Gravimetric – TOEM
5	less than 10 $\mu m)$ or PM_{10}	$\mu g/m^3$	24 hours **	100	100	 FOEM Beta attenuation
4	Particulate Matter (size		Annual *	40	40	– Gravimetric – TOEM
4	less than 2.5 $\mu m)$ or $PM_{2.5}$	$\mu g/m^3$	24 hours **	60	60	 Beta attenuation
5	$O_{\text{Topp}}(O_{n})$		8 hours **	100	100	- UV photometric
5	Ozone (O ₃)	$\mu g/m^3$	1 hour **	180	180	 Chemiluminescence Chemical Method
6	Lead (Pb)	μg/m ³	Annual *	0.50	0.50	 AAS/ICP method after sampling on EPM 2000 or
0		µg/m	24 hours **	1.0	1.0	equivalent filter paper – EDXRF using Teflon filter
7	Carbon Monoxide (CO)	mg/m ³	8 hours **	02	02	– Non Dispersive Infra Red
,	carbon Monoxide (CO)	mg/m	1 hour **	04	04	(NDIR) spectroscopy
8	Ammonia (NH3)	μg/m ³	Annual *	100	100	- Chemiluminescence
		10	24 hours **	400	400	 Indophenol blue method
9	Benzene (C ₆ H ₆)	$\mu g/m^3$	Annual *	05	05	 Gas Chromatography based continuous analyzer Adsorption and Desorption followed by GC analysis
10	Benzo (a) Pyrene (BaP) – particulate phase only,	ng/m ³	Annual *	01	01	 Solvent extraction followed by HPLC/GC analysis
11	Arsenic (As)	ng/m ³	Annual *	06	06	 AAS/ICP method after sampling on EPM 2000 or equivalent filter paper.
12	Nickel (Ni)	ng/m ³	Annual *	20	20	 AAS/ICP method after sampling on EPM 2000 or equivalent filter paper.

* Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

* 24 hourly or 08 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2 % of the time, they may exceed the limits but not on two consecutive days of monitoring.

Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

SANT PRASAD GAUTAM, Chairman, Central Pollution Control Board [ADVT-III/4/184/09/Exty.]

Note: The notifications on National Ambient Air Quality Standards were published by the Central Pollution Control Board in the Gazette of India. Extraordinary vide notification No(s). S.O. 384(E), dated 11th April, 1994 and S.O. 935(E), dated 14th October,1998.

µg/m³: micro-gram/m³ i.e. 10⁻⁶gm/m³

ng/m³ : nano-gram/m³ i.e. 10⁻⁹gm/m³

Annexure VI: General Standards for Discharge of Environmental Pollutants, Part A: Effluents (The Environment (Protection) Rules, 1986, Schedule VI)

	Parameter		Stan	dards	
Sr.		Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
1.	Colour and Odour	See Note 1		See Note I	See Note 1
2.	Suspended solids, mg/L, Max.	100	600	200	For process waste water - 100 For cooling water effluent- 10 percent above total suspended mailer of influent cooling water.
3.	Particle size of suspended solids	Shall pass 850 micron IS Sieve			Floatable solids, Max 3 mm Settleable solids Max 850 microns
4.	Dissolved solids (Inorganic), mg/L, Max.	2100	2100	2100	
5.	pH value	5.5 -9.0	5.5 -9.0	5.5 -9.0	5.5-9.0
6.	Temperature °C, Max	Shall not exceed 40 in any section of the stream within 15 mts. Downstream from the effluent outlet	45 at the point of discharge		45 at the point of discharge
7.	Oil and Grease, mg/L, Max	10	20	10	20

			Stan	dards	
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
8.,	Total Residual chlorine, mg/L, Max	1.0			1.0
9.	Ammonical Nitrogen (as N), mg/L, Max	50	50		50
10.	Total Kjeldahl Nitrogen (as N), mg/L, Max.	100			100
11.	Free Ammonia (as NH ₃), mg/L, Max	5.0			5.0
12.	Biochemical oxygen demand (5 days, at 20° c) mg/L, Max	30	350	100	100
13.	Chemical oxygen demand, mg/L, Max	250			250
14.	Arsenic (as As), mg/l, Max	0.2	0.2	0.2	0.2
15.	Mercury (as Hg). Mg/L, Max	0.01	0.01		0.01
16.	Lead (as Pb), mg/L, Max	0.1	1.0	-	1.0
17.	Cadmium (as Cd), mg/L,	2.0	1.0		2.0
18.	Hexavalent Chromium (as Cr ⁺⁶) mg/L, Max	.1	2.0		1.0
19.	Total Chromium (as Cr), mg/L, Max	2.0	2.0		2.0

		Standards				
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas	
20.	Copper (as Cu), mg/L, Max.	3.0	3.0		3.0	
21.	Zinc (as Zn), mg/L, Max.	5.0	15	0	15	
22	Selenium (as Se), mg/l, Max.	0.05	0.05		0.05	
23	Nickel (as Ni), mg/l, Max.	3.0	3.0		5.0	
24	Boron (as B), mg/l, Max.	2.0	2.0	2.0		
25.	Percent Sodium, Max.		60	60		
26.	Residual Sodium carbonate, mg/l, Max.			5.0		
27.	Cyanide (as Cn), mg/L, Max.	0.2	2.0	0.2	0.2	
28.	Chloride (as Cl), mg/L, Max.	1000	1000	600		
29.	Fluoride (as F), mg/IL, Max.	2.0	15		15	
30.	Dissolved Phosphate (as P), mg/L, Max.	5.0				
31.	Sulphate (as SO ₄), mg/L, Max.	1000	1000	1000		
32.	Sulphide (as S), mg/L, Max.	2.0			5.0	
33.	Pesticides	Absent	Absent	Absent	Absent	

		Standards				
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas	
34.	Phenolic compounds (as C ₆ H₅OH), mg/L, Max.	1.0	5.0		5.0	
35.	Radioactive materials:					
	Alpha emitters MC/ml., Max.	10 ⁻⁷	10 ⁻⁷	10 ⁻⁸	10 ⁻⁷	
	Beta emitters µc/ml., Max	10 ⁻⁶	10 ⁻⁶	10 ⁻⁷	10 ⁻⁶	

Annexure VII: Drinking Water Specification-IS 10500:2012

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
Table 1	Organoleptic and Physical Parameters			
1.	Colour	Hazen units	Max 5	Max 15
2.	Odour	-	Agreeable	Agreeable
3.	pH value	-	6.5-8.5	No relaxation
4.	Taste	-	Agreeable	Agreeable
5.	Turbidity	NTU	Max 1	Max 5
6.	Total dissolved solids	mg/L	Max 500	Max 2000
Table 2	General parameters concerning substances undesirable in excessive amounts			
7.	Aluminium (as Al)	mg/L	Max 0.03	Max 0.2
8.	Ammonia (as total ammonia- N)	mg/L	Max 0.5	No relaxation
9.	Anionic detergents (as MBAS)	mg/L	Max 0.2	Max 1.0
10.	Barium (as Ba)	mg/L	Max 0.7	No relaxation
11.	Boron (as B)	mg/L	Max 0.5	Max 1.0
12.	Calcium (as Ca)	mg/L	Max 75	Max 200
13.	Chloramines (as C1 ₂)	mg/L	Max 4.0	No relaxation
14.	Chlorides (as Cl)	mg/L	Max 250	Max 1000
15.	Copper (as Cu)	mg/L	Max 0.05	Max 1.5
16.	Fluoride (as F)	mg/L	Max 1.0	Max 1.5

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
17.	Free residual chlorine	mg/L	Min 0.2	Min 1
18.	Iron (as Fe)	mg/L	Max 0.3	No relaxation
19.	Magnesium (as Mg)	mg/L	Max 30	Max100
20.	Manganese (as Mn)	mg/L	Max 0.1	Max 0.3
21.	Mineral Oil	mg/L	Max 0.5	No relaxation
22.	Nitrate (as NO ₃)	mg/L	Max 45	No relaxation
23.	Phenolic compounds (as C_6H_5OH)	mg/L	Max 0.001	Max 0.002
24.	Selenium (as Se)	mg/L	Max 0.01	No relaxation
25.	Silver (as Ag)	mg/L	Max 0.1	No relaxation
26.	Sulphate (as SO ₄)	mg/L	Max 200	Max 400
27.	Sulphide (as H_2S)	mg/L	Max 0.05	No relaxation
28.	Total Alkalinity as calcium carbonate	mg/L	Max 200	Max600
29.	Total hardness (as CaCO ₃)	mg/L	Max 200	Max 600
30.	Zinc (as Zn)	mg/L	Max 5	Max15
Table 3	Parameters Concerning Toxic Substances			
31.	Cadmium (asCd)	mg/L	Max 0.003	No relaxation
32.	Cyanide (asCN)	mg/L	Max 0.05	No relaxation
33.	Lead (as Pb)	mg/L	Max 0.01	No relaxation
34.	Mercury (asHg)	mg/L	Max 0.001	No relaxation
35.	Molybdenum (as Mo)	mg/L	Max 0.07	No relaxation
36.	Nickel (as Ni)	mg/L	Max 0.02	No relaxation

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
37.	Pesticides	mg/L	See Table 5	No relaxation
38.	Polychlorinatedbiphenyls	mg/L	Max 0.0005	No relaxation
39.	Poly nuclear aromatic Hydrocarbons (as PAH)	mg/L	Max 0.0001	No relaxation
40.	Total Arsenic(as As)	mg/L	Max 0.01	Max0.05
41.	Total Chromium (as Cr)	mg/L	Max 0.05	No relaxation
42.	Trihalomethanes			
a)	Bromoform	mg/L	Max 0.1	No relaxation
b)	DibromochloroMethane	mg/L	Max 0.1	No relaxation
c)	Bromodichloromethane	mg/L	Max 0.06	No relaxation
d)	Chloroform	mg/L	Max 0.2	No relaxation
Table 4	Parameters Concerning Radioactive Substances			
43.	Radioactive Materials			
a)	Alpha emitters	Bq/L	Max 0.1	No relaxation
b)	Beta emitters	Bq/L	Max 1.0	No relaxation
Table 5	Pesticide Residues Limits and Test Method			
i)	Alachor	µg/L	20	No relaxation
ii)	Atrazine	µg/L	2	No relaxation
iii)	Aldrin/ Dieldrin	µg/L	0.03	No relaxation
iv)	Alpha HCH	µg/L	0.01	No relaxation
v)	Beta HCH	µg/L	0.04	No relaxation

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
vi)	Butachlor	µg/L	125	No relaxation
vii)	Chlorpyriphos	µg/L	30	No relaxation
viii)	Delta HCH	µg/L	0.04	No relaxation
ix)	2,4- Dichlorophenoxyacetic acid	µg/L	30	No relaxation
x)	DDT (o,p&p,p — Isomers of DDT, DDE and DDD)	µg/L	1	No relaxation
xi)	Endosulfan (α,β & sulphate)	µg/L	0.4	No relaxation
xii)	Ethion	µg/L	3	No relaxation
xiii)	Gamma - HCH (Lindane)	µg/L	2	No relaxation
xiv)	Isoproturon	µg/L	9	No relaxation
xv)	Malathion	µg/L	190	No relaxation
xvi)	Methyl parathion	µg/L	0.3	No relaxation
xvii)	Monocrotophos	µg/L	1	No relaxation
xviii)	Phorate	µg/L	2	No relaxation
Table 6	Bacteriological Quality of Drinking Water			
44.	E.coli or thermotolerant coliform bacteria	/100	Not detectable	-
45.	Total coliform bacteria	/100 mL	Not detectable	-
	Virological Requirements			
46.	MS2 phage	/1 L	Absent	-
	Biological Requirements			

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
47.	Cryptosporidium	/10 L	Absent	-
48.	Giardia	/10 L	Absent	-
49.	Microscopic organisms such as algae,zooplanktons,flagellates,parasites and toxin producing organisms		Free from microscopic organisms	-

Annexure VIII: CPCB Water Quality Criteria:

Designated best use	Quality Class	Primary Water Quality Criteria
Drinking water source without conventional treatment but with	A	Total coliform organisms (MPN*/100 ml) shall be 50 or less
chlorination		pH between 6.5 and 8.5
		Dissolved Oxygen 6 mg/l or more, and
		Biochemical Oxygen Demand 2 mg/l or less
Outdoor bathing (organized)	В	Total coliform organisms (MPN/100 ml) shall be 500 or less
		pH between 6.5 and 8.5
		Dissolved Oxygen 5 mg/l or more, and
		Biochemical Oxygen Demand 3 mg/l or less
Drinking water source with conventional treatment	С	Total coliform organisms (MPN/100ml) shall be 5000 or less
		pH between 6 and 9
		Dissolved Oxygen 4 mg/l or more, and
		Biochemical Oxygen Demand 3 mg/L or less
Propagation of wildlife and	D	pH between 6.5 and 8.5
fisheries		Dissolved Oxygen 4 mg/l or more, and
		Free ammonia (as N) 1.2 mg/L or less
Irrigation, industrial cooling,	E	pH between 6.0 and 8.5
and controlled disposal		Electrical conductivity less than 2250 micro mhos/cm,
		Sodium Absorption Ratio less than 26,
		and Boron less than 2 mg/l.

Below E	Not Meeting A, B, C, D & E Criteria
---------	--

Annexure IX: Water Quality Parameters Requirements and Classification

Water quality parameters are classified into three categories, given in Table (i), (ii) and (iii) (Source: CPCB, 2002, "Water Quality Criteria and Goals", Monitoring of Indian National aquatic Resources Series: MINARS/17/2001-2002).

Table: Basic Water Quality Requirement and Classification (Surface Water + Ground Water)

i) Simple Parameters:

Sr.	Parameters	Requirement for Waters of Class				
		A-Excellent	B-Desirable	C-Acceptable		
(i)	Sanitary Survey	Very Clean neighborhood and catchment	Reasonably clean neighborhood	Generally clean neighborhood		
(ii)	General Appearance	No floating matter	No floating matter	No floating matter		
(iii)	Colour	Absolutely Colourless	Almost colourless, very light shade if any	No colour of anthropogenic origin		
(iv)	Smell	Odourless	Almost odourless	No unpleasant odour		
(v)	Transparency	>1.0 depth	>0.5 to 0.1m depth	>0.2 to 0.5 m depth		
(vi)	Ecological* (Presence of Animals)	Fish & Insects	Fish & Insects	Fish & Insects		

* Applicable to only surface water

ii) Regular Monitoring Parameters:

Sr.	Parameters	Requirement for Waters of Class			
		A Excellent	B-Desirable	C-Acceptable	
(i)	рН	7.0 to 8.5	6.5 to 9.0	6.5 to 9.0	
(ii)	DO (% Saturation)	90-110	80-120	60-140	
(iii)	BOD, mg/l	Below 2	Below 5	Below 8	
(iv)	EC, µmhos/cm	<1000	<2250	<4000	
(v)	(NO ₂ +NO ₃)- Nitrogen, mg/l	<5	<10	<15	
(vi)	Suspended solid,	<25	<50	<100	

	mg/l			
(vii)	Feacal Coliform, MPN/ 100 ml	<20 per 100 ml	<200 per 100 ml	<2000 per 100 ml
(viii)	Bio-assay (Zebra Fish)	No death in 5 days	No death in 3 days	No death in 2 days

Note:

- 1. Dissolved Oxygen (DO) not applicable for ground waters.
- 2. Dissolved Oxygen in eutrophicated waters should include measurement for diurnal variation.
- 3. Suspended solid limit is applicable only during non-monsoon period.
- 4. Faecal Coliform values should meet for 90% times.
- 5. Static Bio-Assay method may be adopted.

iii) Specific Parameters: (Only in case of need/apprehensions)

Sr.	Parameters	Requirement for Waters of Class		
		A- Excellent	B-Desirable	C-Acceptable
(i)	Total Phosphorous	<0.1 mg/l	< 0.2 mg/l	< 0.3 mg/l
(ii)	T.K.N	< 1.0 mg/l	<2.0 mg/l	<3.0 mg/l
(iii)	Total Ammonia (NH4 + NH3)- Nitrogen	< 0.5 mg/l	< 1.0 mg/l	< 1.5 mg/l
(iv)	Phenols	< 2µg/l	< 5µg/l	<10 µg/l
(v)	Surface Active Agents	<20 µg/l	<100µg/l	< 200µg/I
(vi)	Organo Chlorine Pesticides	< 0.05µg/l	< 0.1µg/l	< 0.2µg/l
(vii)	РАН	< 0.05µg/l	<0.1 µg/l	<0.2 µg/l
(viii)	PCB and PCT	< 0.01µg/l	< 0.01µg/I	< 0.02µg/l
(ix)	Zinc	< 100µg/l	< 200µg/I	<300 µg/l
(x)	Nickel	< 50µg/l	< 100µg/l	< 200µg/l
(xi)	Copper	< 20µg/l	< 50µg/l	<100µg/l
(xii)	Chromium (Total)	< 20µg/l	< 50µg/l	< 100µg/l
(xiii)	Arsenic (Total)	< 20µg/l	<50 µg/l	<100 µg/l

(xiv)	Lead	< 20µg/l	< 50µg/l	< 100µg/l
(xv)	Cadmium	< 1.0µg/l	<2.5 µg/l	< 5.0µg/l
(xvi)	Mercury	< 0.2µg/I	< 0.5µg/l	< 1.0µg/l