


### **Action Plan for Industrial Cluster** in Critically Polluted Areas

Monitoring, sampling, analysis of Stack, Ambient Air Quality, Surface Water, Ground Water, Waste Water

# डोंबिवली Dombivali







Maharashtra Pollution Control Board

महाराष्ट्र प्रदूषण नियंत्रण मंडळ

February, 2019

### Index

| Acknow | wledgement:                                                                                                                             | 3 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|---|
| Abbrev | viations:                                                                                                                               | 4 |
| 1. In  | troduction:                                                                                                                             | 5 |
| 2. Sc  | cope of Work                                                                                                                            | 5 |
| 2.1    | Stack Emission Parameters                                                                                                               | 6 |
| 2.2    | Ambient Air Quality Parameters                                                                                                          | 7 |
| 2.3    | Water/Waste Water Parameters                                                                                                            | 7 |
| 2.4    | Methodology followed in Sampling and Analysis 1                                                                                         | 0 |
| 3. Re  | esult of Analysis:10                                                                                                                    | ) |
| 3.1    | Stack Emission:                                                                                                                         | O |
| 3.2    | Ambient Air Quality:                                                                                                                    | 4 |
| 3.3    | Surface Water/ Waste Water Quality:                                                                                                     | 0 |
| 3.4    | Ground Water Quality:                                                                                                                   | 3 |
| 4. Su  | ımmary and Conclusion43                                                                                                                 | 3 |
| 4.1    | Stack Emission Monitoring:                                                                                                              | 3 |
| 4.2    | Ambient Air Quality Monitoring:                                                                                                         | 3 |
| 4.3    | Surface water/ Waste Water Quality Monitoring: 4-                                                                                       | 4 |
| 4.4    | Ground Water Quality Monitoring:                                                                                                        | 5 |
| 5. CE  | EPI Score40                                                                                                                             | 5 |
| 5.1    | Comparison of CEPI scores:                                                                                                              | 8 |
| 6. Co  | onclusion5:                                                                                                                             | L |
| 7. Ef  | forts taken for the reduction in pollution:52                                                                                           | 2 |
| 8. Ph  | notographs54                                                                                                                            | 1 |
| 9. Re  | eferences52                                                                                                                             | 7 |
| Annex  | cure58                                                                                                                                  | 3 |
| Annexi | ure I Health related data in impact on humans5                                                                                          | 8 |
| Annexi | ure II: Stack Emission Sampling and Analysis Methodology5                                                                               | 9 |
| Annexi | ure III: Ambient Air Sampling and Analysis Methodology 6                                                                                | 1 |
| Annexi | ure IV: Water/Wastewater Sampling and Analysis Methodology 6                                                                            | 3 |
| Annexi | ure V: National Ambient Air Quality Standards, 20096                                                                                    | 7 |
|        | ure VI: General Standards for Discharge of Environmental Pollutants, Part Ants (The Environment (Protection) Rules, 1986, Schedule VI)6 |   |
| Annexi | ure VII: Drinking Water Specification-IS 10500:20127                                                                                    | 2 |
| Annexi | ure VIII: CPCB Water Quality Criteria:                                                                                                  | 5 |
| Annexi | ure IX: Water Quality Parameters Requirements and Classification7                                                                       | 7 |

#### **Acknowledgement:**

We gratefully acknowledge **E. Ravendiran**, Member Secretary, Maharashtra Pollution Control Board, for entrusting this very important and prestigious project to us.

Our special thanks are to Regional and Sub Regional Officer of the concerned areas, for guidance during the sampling. The contribution of **Shri V. M Motghare** (Joint director APC) and Mr. Sameer Hundlekar (Field officer) is appreciated.

We would also like to extend our thanks to the concerned staff of Regional Hospitals, who has provided us the health data, which is the most important component of this revised concept of CEPI.

By undertaking this project and completing in schedule time, we consider ourselves very lucky since we have helped the mankind by giving the data on pollution load and further action by the Board, to bring down the pollution level.

We also thank our associates for working on this project for making the write up, making graphs and feeding the data on computer.

This acknowledgement will be incomplete if we do not thank our laboratory analysts and others who made this project a success by timely analysing the samples.

We also thank our sampling team members for conducting the sampling in this vast area.

#### **Abbreviations:**

**APHA** American Public Health Association

**BDL** Below Detection Limit

**BOD** Biochemical Oxygen Demand

**CEPI** Comprehensive Environmental Pollution Index

**CETP** Common Effluent Treatment Plant

**COD** Chemical Oxygen Demand

**CPA** Critically Polluted Areas

**SPA** Severely Polluted Areas

**DO** Dissolved Oxygen

**ETP** Effluent Treatment Plant

MIBK Methyl Isobutyl Ketone

MPCB Maharashtra Pollution Control Board

**NAAQS** National Ambient Air Quality Standards

**NO**<sub>x</sub> Oxides of Nitrogen

**ND** Not Detected

**PAH** Poly Aromatic Hydrocarbons

**PCB** Poly Chlorinated Biphenyls

**PCT** Poly Chlorinated Terphenyls

**PM<sub>10</sub>** Particulate Matter (size less than 10 μm)

**PM<sub>2.5</sub>** Particulate Matter (size less than 2.5 μm)

**SO<sub>2</sub>** Sulphur Dioxide

**STAP** Short Term Action Plan

**WHO** World Health Organization

#### 1. Introduction:

Although industries contribute significantly to India's economic growth and development, the increase in pollution of land, water, air, noise and resulting degradation of environment that they have caused, cannot be overlooked. Industries are responsible for four types of pollution: a) Air b) water c) land d) noise. Rapid industrialization carries with it the seeds of environmental damage. Pollution of natural environment not only affects people but also have adverse impact on economic growth in the long run. Analysis of pollution load shows that there are few industries in the country which contribute to more than 90percent of the pollution. Hence, scientists are exploring the quantum of pollution load as well as to device certain strategies and technologies so that our sustainable development would not be jeopardized otherwise our long cherished dream of establishing eco-socialism on this watery planet could not come true.

Industrial pollution takes on many faces. It contaminates many sources of drinking water, releases unwanted toxins into the air and reduces the quality of soil all over the world. Every litre of waste water discharged by our industries pollute eight times the quantity of fresh water. The extent of pollution varies with the size of the industry, the nature of the industry, the type of products used and produced etc. In view of this, Central Pollution Control Board (CPCB) has evolved the concept of Comprehensive Environmental Pollution Index (CEPI) during 2009-10 as a tool for comprehensive environmental assessment of prominent industrial clusters and formulation of remedial Action Plans for the identified critically polluted areas. The index captures the various dimensions of environment including air, water and land. Comprehensive Environmental Pollution Index (CEPI), which is a rational number to characterize the environmental quality at a given location following the algorithm of source, pathway and receptor have been developed. Later-on proposals were received from the SPCBs, State Governments, and Industrial Associations and concerned Stake-holders for revisiting the criteria of assessment under CEPI concept. After careful examination and consideration of the suggestions of concerned stake-holders, it was decided to prepare the revised concept of CEPI by eliminating the subjective factors but retaining the factors which can be measured precisely. Hence, revised concept came into existence, which is termed as Revised CEPI Version 2016.

The present report is also based on the revised CEPI version 2016. The results of the application of the Comprehensive Environmental Pollution Index (CEPI) to selected industrial clusters or areas are presented in this report. The main objective of the study is to identify polluted industrial clusters or areas in order to take concerted action and to centrally monitor them at the national level to improve the current status of their environmental components such as air and water quality data, ecological damage, and visual environmental conditions. For the study, Central Pollution Control Board (CPCB) has selected a total of 88 industrial areas or clusters in consultation with the Ministry of Environment & Forests Government of India. Out of these, 5 critically polluted industrial clusters namely Tarapur, Dombivali, Navi Mumbai, Aurangabad and Chandrapur, are identified and 3 severely polluted industrial clusters namely Pimprichinchwad, Nashik and Chembur from Maharashtra are added into this list.

Dombivli MIDC is established in 1964 and is sub-divided in two Phases. Phase I is of approximately 148 Ha. & Phase II approximately 97 Ha. Residential Area is developed in between these two phases, having population approx. 2 lakh soles. Both Phases has a mix of industries, mainly Textile, Chemical & Engineering. Except for 10 large & 9 Medium units, most of the chemical manufacturing units are SSI. Textile Industry generates about 80% of the wastewater by volume, though low strength in terms of concentration of pollutants. CETPs are installed & operative in both phases. Phase I (DBESA) - 16 MLD for textile units and Phase II (DCETP) – 1.5 MLD for Chemical & other units.

#### 2. Scope of Work

The Scope of Work consisted of the following:

Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water, and Ground Water Quality for identified five Critically Polluted areas (CPAs) in Maharashtra i.e. **Chandrapur, Dombivli, Aurangabad, Navi Mumbai,** and **Tarapur** and 3 Severely Polluted areas (SPAs) in Maharashtra i.e. **Chembur, Pimpri-Chinchwad and Nashik** as per standard methods.

- At each of the 5 CPAs and 3 SPAs, 24 hourly ambient air quality monitoring to be carried out.
- Representative samples for surface water quality, waste water quality and ground water quality to be collected from prominent surface and ground water bodies located in and around the clusters/areas.
- Submission of complete monitoring, sampling and analysis reports including the summary of the parameters exceeding the prescribed standards/norms for all the 5 CPAs and 3 SPAs.
- Submission of 3 copies of final report with photographs at prominent locations and the CD (soft copy) on completion of the project for every critically polluted and severely polluted area separately.

## Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water and Ground Water Quality for Dombivli:

- The sampling was carried out in 8 days i.e. on 19<sup>th</sup> to & 28<sup>th</sup> January 2019 for MIDC Phase-I and Phase II.
- In Dombivli MIDC Phase –I, a total of 6 Stack Monitoring Samples, 6 Ambient Air Quality Monitoring Samples, 2 Surface Water Samples, 3 Ground Water Samples and 1 VOC Samples were collected and analyzed.
- In Dombivli MIDC Phase –II, a total of 6 Stack Monitoring Samples, 8 Ambient Air Quality Monitoring Samples, 5 Surface Water Samples, 3 Ground Water Samples and 2 VOC Samples was collected and analyzed.

#### 2.1 Stack Emission Parameters

#### The Stack Emissions were analyzed with the following parameters:

- 1. Acid Mist
- 2. Ammonia
- 3. Carbon Monoxide
- 4. Chlorine
- 5. Fluoride(gaseous)
- 6. Fluoride (particulate)
- 7. Hydrogen Chloride
- 8. Hydrogen Sulphide
- 9. Oxides of Nitrogen

- 10. Oxygen
- 11. Polyaromatic Hydrocarbons (Particulate)
- 12. Suspended Particulate Matter
- 13. Sulphur Dioxide
- 14. Benzene
- 15. Toluene
- 16. Xylene
- 17. Volatile Organic Compounds (VOCs)

#### 2.2 Ambient Air Quality Parameters

#### The Ambient Air Quality was analyzed with the following parameters:

- 1. Sulphur Dioxide (SO<sub>2</sub>)
- 2. Nitrogen Dioxide (NO<sub>2</sub>)
- 3. Particulate Matter (PM<sub>10</sub>)
- 4. Particulate Matter (PM<sub>2.5</sub>)
- 5. Ozone  $(O_3)$
- 6. Lead (Pb)
- 7. Carbon Monoxide (CO)
- 8. Ammonia (NH<sub>3</sub>)
- 9. Benzene (C<sub>6</sub>H<sub>6</sub>)
- 10. Benzo (a) Pyrene (BaP) (Particulate Phase Only)
- 11. Arsenic (As)
- 12. Nickel (Ni)

#### 2.3 Water/Waste Water Parameters

#### The Water / Waste Water was analyzed with the following parameters:

- a. Prominent Surface Water bodies such as outfalls of CETPs, ETPs, treated effluent drainage, river, canal, ponds, lakes and other such water supply resources flowing through the area or flowing adjoining the CPA.
- b. Ground Water Quality data of prominent ground water resources such as observation wells of Central Ground Water Board, drinking water wells, hand pumps, bore wells, hand pumps, bore wells and other such water supply resources located in the industrial cluster/area under consideration or in the peripheral areas.

### as

|     | sic water quality parameters for surface water and ground water both are lows:        |
|-----|---------------------------------------------------------------------------------------|
| i.  | Simple Parameters:                                                                    |
| 1.  | Sanitary Survey                                                                       |
| 2.  | General Appearance                                                                    |
| 3.  | Colour                                                                                |
| 4.  | Smell                                                                                 |
| 5.  | Transparency                                                                          |
| 6.  | Ecological(Presence of animals like fish, insects) (Applicable to only surface water) |
| ii. | Regular Monitoring Parameters:                                                        |
| 7.  | рН                                                                                    |
| 8.  | Oil & Grease                                                                          |
| 9.  | Suspended Solids                                                                      |
| 10. | Dissolved Oxygen (% saturation) (Not applicable for ground waters)                    |
| 11. | Chemical Oxygen Demand                                                                |
| 12. | Biochemical Oxygen Demand                                                             |
| 13. | Electrical Conductivity                                                               |
| 14. | Nitrite-Nitrogen                                                                      |
| 15. | Nitrate-Nitrogen                                                                      |
| 16. | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen                                         |
| 17. | Free Ammonia                                                                          |
| 18. | Total Residual Chlorine                                                               |
| 19. | Cyanide                                                                               |
| 20. | Fluoride                                                                              |

Dombivli 8

21. Sulphide

| 22.    | Dissolved Phosphate                                                 |
|--------|---------------------------------------------------------------------|
| 23.    | Sodium Absorption Ratio (SAR)                                       |
| 24.    | Total Coliforms (MPN/100 ml)                                        |
| 25.    | Faecal Coliforms (MPN/100 ml)                                       |
| iii. S | Special Parameters:                                                 |
| 26.    | Total Phosphorous                                                   |
| 27.    | Total Kjeldahl Nitrogen(TKN)                                        |
| 28.    | Total Ammonia (NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen          |
| 29.    | Phenols                                                             |
| 30.    | Surface Active Agents                                               |
| 31.    | Organo Chlorine Pesticides                                          |
| 32.    | Polynuclear aromatic hydrocarbons (PAH)                             |
| 33.    | Polychlorinated Biphenyls (PCB)and Polychlorinated Terphenyls (PCT) |
| 34.    | Zinc                                                                |
| 35.    | Nickel                                                              |
| 36.    | Copper                                                              |
| 37.    | Hexavalent Chromium                                                 |
| 38.    | Chromium (Total)                                                    |
| 39.    | Arsenic (Total)                                                     |
| 40.    | Lead                                                                |
| 41.    | Cadmium                                                             |
| 42.    | Mercury                                                             |
| 43.    | Manganese                                                           |
| 44.    | Iron                                                                |
|        |                                                                     |

- 45. Vanadium
- 46. Selenium
- 47. Boron

#### iv. Bioassay (Zebra Fish) Test: For specified samples only.

#### 2.4 Methodology followed in Sampling and Analysis

Industries, places and locations that have been chosen for the sampling are representative of the city/area. Sampling has been done at the potential polluted areas so as to arrive at the CEPI. This will further help the authorities to monitor the areas in order to improve the current status of their environmental components such as air and water quality data, ecological damage and visual environmental conditions. Methodology for sampling, preservation and analysis have been done according to the references incorporated. Methodology of various types of parameters is presented under following annexure:

- 1. Stack Emission Sampling and Analysis Methodology Annexure II
- 2. Ambient Air Sampling and Analysis Methodology Annexure III
- 3. Water/Wastewater Sampling and Analysis Methodology Annexure IV

#### 3. Result of Analysis:

Results of Analysis are tabulated below for Stack Emission Monitoring, Ambient Air Quality Monitoring, Waste Water Analysis and Water Analysis. These are followed by their respective graphical representation.

#### \*Kindly note:

- NA specifies the sample is not analysed for the specific parameter.
- BDL specifies that the result obtained is below deductable limit.
- ND specifies the sample is not detectable for the specific parameter

Please Note: Industrial clusters observed with below detection limit parameters are NOT included into the graphs

#### 3.1 Stack Emission:

Stack Emission Monitoring Results are compared against The Environment (Protection) Rules, 1986 General Emission Standard - Part D.

| Sr. | Name of Industry            | Stack<br>Identity | Phase   | Table<br>No. |
|-----|-----------------------------|-------------------|---------|--------------|
| 1.  | Shrijee Lifestyle Pvt. Ltd. | Boiler            | Phase I | I            |
| 2.  | Tirupati Textile Mills      | Boiler            | Phase I | I            |
| 3.  | Auchtel Products Ltd.       | Boiler            | Phase I | I            |
| 4.  | Ulangil Brother             | Boiler            | Phase I | II           |

10

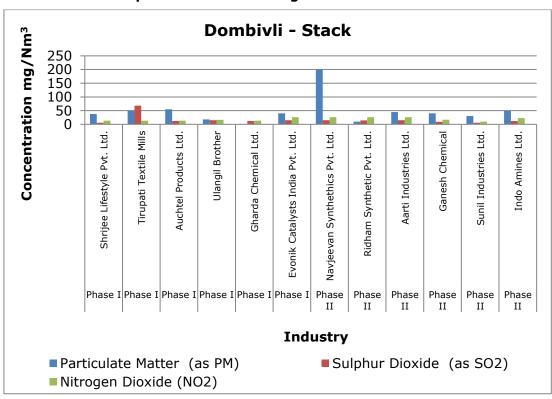
| Sr. | Name of Industry                 | Stack<br>Identity | Phase    | Table<br>No. |
|-----|----------------------------------|-------------------|----------|--------------|
| 5.  | Gharda Chemical Ltd.             | Boiler            | Phase I  | п            |
| 6.  | Evonik Catalysts India Pvt. Ltd. | Boiler            | Phase I  | II           |
| 7.  | Navjeevan Synthethics Pvt. Ltd.  | Boiler            | Phase II | III          |
| 8.  | Ridham Synthetic Pvt. Ltd.       | Boiler            | Phase II | III          |
| 9.  | Aarti Industries Ltd.            | Boiler            | Phase II | III          |
| 10. | Ganesh Chemical                  | Boiler            | Phase II | IV           |
| 11. | Sunil Industries Ltd.            | Boiler            | Phase II | IV           |
| 12. | Indo Amines Ltd.                 | Boiler            | Phase II | IV           |

#### Table No. I

| Name of Industry |                                       |            | Shrijee<br>Lifestyle<br>Pvt. Ltd. | Tirupati<br>Textile<br>Mills | Auchtel<br>Products<br>Ltd. |
|------------------|---------------------------------------|------------|-----------------------------------|------------------------------|-----------------------------|
| Date             | of Sampling                           | 19.01.2019 | 19.01.2019                        | 21.01.2019                   |                             |
| Sr.              | Parameter                             | Unit       | Results                           |                              |                             |
| 1.               | Particulate Matter (as PM)            | mg/Nm³     | 38                                | 50                           | 55                          |
|                  | Std. Limit                            | mg/Nm³     | 150                               | 150                          | 150                         |
| 2                | Culphus Diovida (ag CO )              | mg/Nm³     | 5.92                              | 68.1                         | 12.3                        |
| 2.               | Sulphur Dioxide (as SO <sub>2</sub> ) | kg/day     | 0.042                             | 21.08                        | 2.18                        |
|                  | Std. Limit                            | mg/Nm³     | 100                               | 100                          | 100                         |
| 3.               | Nitrogen Dioxide (NO <sub>2</sub> )   | mg/Nm³     | 13.3                              | 13.1                         | 13                          |
|                  | Std. Limit                            | mg/Nm³     | 50                                | 50                           | 50                          |

Table No. II

| Name of Industry |                                       | Ulangil<br>Brother | Gharda<br>Chemical<br>Ltd. | Evonik<br>Catalysts<br>India Pvt.<br>Ltd. |            |
|------------------|---------------------------------------|--------------------|----------------------------|-------------------------------------------|------------|
| Date             | of Sampling                           |                    | 21.01.2019                 | 21.01.2019                                | 22.01.2019 |
| Sr.              | Parameter                             | Unit               | Results                    |                                           |            |
| 1.               | Particulate Matter (as PM)            | mg/Nm³             | 18                         | BDL                                       | 40         |
|                  | Std. Limit                            | mg/Nm³             | 150                        | 150                                       | 50         |
| 2                | Culphus Diovido (ac CO )              | mg/Nm³             | 14.8                       | 11.8                                      | 14.8       |
| 2.               | Sulphur Dioxide (as SO <sub>2</sub> ) | kg/day             | 1.51                       | 10.7                                      | 2.39       |
|                  | Std. Limit                            | mg/Nm³             | 100                        | 100                                       | 200        |
| 3.               | Nitrogen Dioxide (NO <sub>2</sub> )   | mg/Nm³             | 16.3                       | 13.2                                      | 26.1       |
|                  | Std. Limit                            | mg/Nm³             | 50                         | 50                                        | 50         |


#### Table No. III

| Name of Industry |                                       |            | Navjeevan<br>Synthetics<br>Pvt. Ltd. | Ridham<br>Synthetic<br>Pvt. Ltd. | Aarti<br>Industries<br>Ltd. |
|------------------|---------------------------------------|------------|--------------------------------------|----------------------------------|-----------------------------|
| Date             | of Sampling                           | 24.01.2019 | 24.01.2019                           | 24.01.2019                       |                             |
| Sr.              | Parameter                             | Unit       | Results                              |                                  |                             |
| 1.               | Particulate Matter (as PM)            | mg/Nm³     | 200                                  | 10                               | 45                          |
|                  | Std. Limit                            | mg/Nm³     | 150                                  | 150                              | 50                          |
| 2.               | Sulphur Diovida (as SO-)              | mg/Nm³     | 14.8                                 | 14.2                             | 14.8                        |
| ۷.               | Sulphur Dioxide (as SO <sub>2</sub> ) | kg/day     | 0.925                                | 12.5                             | 1.53                        |
|                  | Std. Limit                            | mg/Nm³     | 100                                  | 100                              | 100                         |
| 3.               | Nitrogen Dioxide (NO <sub>2</sub> )   | mg/Nm³     | 26.1                                 | 26.1                             | 26.1                        |
|                  | Std. Limit                            | mg/Nm³     | 50                                   | 50                               | 50                          |

Table No. IV

| Name of Industry |                                       | Ganesh<br>Chemical | Sunil<br>Industries<br>Ltd. | Indo<br>Amines<br>Ltd. |            |
|------------------|---------------------------------------|--------------------|-----------------------------|------------------------|------------|
| Date             | of Sampling                           |                    | 23.01.2019                  | 23.01.2019             | 22.01.2019 |
| Sr.              | Parameter                             | Unit               | Results                     |                        |            |
| 1.               | Particulate Matter (as PM)            | mg/Nm³             | 40                          | 30                     | 50         |
|                  | Std. Limit                            | mg/Nm³             | 150                         | 150                    | 50         |
| 2.               | Sulphur Diovida (as SO.)              | mg/Nm³             | 8.88                        | 5.93                   | 11.8       |
| ۷.               | Sulphur Dioxide (as SO <sub>2</sub> ) | kg/day             | 1.59                        | 2.77                   | 0.811      |
|                  | Std. Limit                            | mg/Nm³             | 100                         | 100                    | 100        |
| 3.               | Nitrogen Dioxide (NO <sub>2</sub> )   | mg/Nm³             | 16.5                        | 9.90                   | 22.8       |
|                  | Std. Limit                            | mg/Nm³             | 50                          | 50                     | 50         |

#### **Graphs: Stack Monitoring for Dombivli MIDC:**



#### 3.2 Ambient Air Quality:

In order to arrive at conclusions, the Ambient Air Quality Monitoring Results are compared against National Ambient Air Quality Standards, 2009 (**Annexure V**).

| Sr. | Location                                                  | Location detail  | Phase    | Table<br>No. |
|-----|-----------------------------------------------------------|------------------|----------|--------------|
| 1.  | MIDC                                                      | Near Plant area  | Phase I  | I            |
| 2.  | Zenith industrial Rubber Product Pvt.<br>Ltd.             | Near Plant area  | Phase I  | I            |
| 3.  | BKT C-21, Behind vico laboratory                          | Near Plant area  | Phase I  | I            |
| 4.  | Kalyan Ambernath Manufacture<br>Association (KAMA Office) | Near office Gate | Phase I  | II           |
| 5.  | MIDC office                                               | Near MIDC        | Phase I  | II           |
| 6.  | CETP MIDC Phase II                                        | Near Plant       | Phase II | II           |
| 7.  | MIDC Sump Near W226                                       | Near Office      | Phase II | III          |
| 8.  | Suvishrhu Speciality Chemicals Pvt. Ltd.                  | Near Main Gate   | Phase II | III          |
| 9.  | SWC A & T Plot No. P-14                                   | Near Plant       | Phase II | III          |
| 10. | Navjeevan (Parag) Synthetics Pvt Ltd.                     | Near Main Gate   | Phase II | IV           |
| 11. | BRW Engineer Plot No. FE-10                               | Near Plant       | Phase II | IV           |
| 12. | Gharda Chemical Ltd.                                      | Near Plant       | Phase I  | V            |
| 13. | Aarti Industries Ltd.                                     | Near Plant       | Phase II | V            |
| 14. | Indo Amines Ltd.                                          | Near Plant       | Phase II | V            |

<sup>\*</sup> The VOC result of ambient air emission is provided in Table No. V

Table No. I

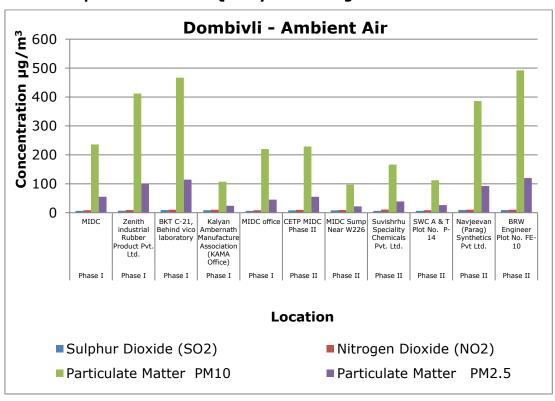
| Location |                                                                       |                   |                                  | MIDC       | Zenith<br>industrial<br>Rubber<br>Product<br>Pvt. Ltd. | BKT C-21   |
|----------|-----------------------------------------------------------------------|-------------------|----------------------------------|------------|--------------------------------------------------------|------------|
| Date     | e of Sampling                                                         |                   |                                  | 19.01.2019 | 19.01.2019                                             | 21.01.2019 |
| Sr.      | Parameters                                                            | Unit              | Std.<br>Limit<br>(NAAQS<br>2009) | Results    |                                                        |            |
| 1.       | Sulphur Dioxide (SO <sub>2</sub> )                                    | μg/m³             | 80                               | 6.46       | 7.04                                                   | 8.87       |
| 2.       | Nitrogen Dioxide<br>(NO <sub>2</sub> )                                | μg/m³             | 80                               | 8.69       | 9.19                                                   | 10.45      |
| 3.       | Particulate Matter<br>(size less than 10<br>µm) or PM <sub>10</sub>   | μg/m³             | 100                              | 236        | 412                                                    | 467        |
| 4.       | Particulate Matter<br>(size less than 2.5<br>µm) or PM <sub>2.5</sub> | μg/m³             | 60                               | 55         | 100                                                    | 114        |
| 5.       | Ozone (O <sub>3</sub> )                                               | μg/m³             | 180                              | BDL        | BDL                                                    | BDL        |
| 6.       | Lead (Pb)                                                             | μg/m³             | 1                                | BDL        | BDL                                                    | BDL        |
| 7.       | Carbon Monoxide (CO)                                                  | mg/m <sup>3</sup> | 4                                | 2.18       | 2.05                                                   | 4.4        |
| 8.       | Ammonia (NH₃)                                                         | μg/m³             | 400                              | BDL        | BDL                                                    | BDL        |
| 9.       | Benzene (C <sub>6</sub> H <sub>6</sub> )                              | μg/m³             | 5                                | 8.47       | 8.46                                                   | BDL        |
| 10.      | Benzo (a) Pyrene<br>(BaP) –<br>particulate phase<br>only              | ng/m³             | 1                                | BDL        | BDL                                                    | BDL        |
| 11.      | Arsenic (As)                                                          | ng/m³             | 6                                | BDL        | BDL                                                    | BDL        |
| 12.      | Nickel (Ni)                                                           | ng/m³             | 20                               | BDL        | BDL                                                    | BDL        |

Table No. II

| Loca | ation                                                                 |       | KAMA<br>Office                   | MIDC office | CETP MIDC  |            |  |
|------|-----------------------------------------------------------------------|-------|----------------------------------|-------------|------------|------------|--|
| Date | e of Sampling                                                         |       |                                  | 21.01.2019  | 28.01.2019 | 22.01.2019 |  |
| Sr.  | Parameters                                                            | Unit  | Std.<br>Limit<br>(NAAQS<br>2009) | Results     |            |            |  |
| 1.   | Sulphur Dioxide (SO <sub>2</sub> )                                    | μg/m³ | 80                               | 8.71        | 6.28       | 8.19       |  |
| 2.   | Nitrogen Dioxide<br>(NO <sub>2</sub> )                                | μg/m³ | 80                               | 9.93        | 8.45       | 9.44       |  |
| 3.   | Particulate Matter<br>(size less than 10<br>µm) or PM <sub>10</sub>   | μg/m³ | 100                              | 107         | 220        | 229        |  |
| 4.   | Particulate Matter<br>(size less than 2.5<br>µm) or PM <sub>2.5</sub> | μg/m³ | 60                               | 24          | 45         | 55         |  |
| 5.   | Ozone (O <sub>3</sub> )                                               | μg/m³ | 180                              | BDL         | BDL        | BDL        |  |
| 6.   | Lead (Pb)                                                             | μg/m³ | 1                                | BDL         | BDL        | BDL        |  |
| 7.   | Carbon Monoxide (CO)                                                  | mg/m³ | 4                                | 4.29        | 1.74       | 3.98       |  |
| 8.   | Ammonia (NH <sub>3</sub> )                                            | μg/m³ | 400                              | BDL         | BDL        | BDL        |  |
| 9.   | Benzene (C <sub>6</sub> H <sub>6</sub> )                              | μg/m³ | 5                                | 6.94        | BDL        | BDL        |  |
| 10.  | Benzo (a) Pyrene<br>(BaP) –<br>particulate phase<br>only              | ng/m³ | 1                                | BDL         | BDL        | BDL        |  |
| 11.  | Arsenic (As)                                                          | ng/m³ | 6                                | BDL         | BDL        | BDL        |  |
| 12.  | Nickel (Ni)                                                           | ng/m³ | 20                               | BDL         | BDL        | BDL        |  |

Table No. III

| Loca                                        | ation                                                                 |       |            | MIDC<br>Sump | Suvishrhu<br>Speciality<br>Chemicals<br>Pvt. Ltd. | SWC A & T |
|---------------------------------------------|-----------------------------------------------------------------------|-------|------------|--------------|---------------------------------------------------|-----------|
| Date                                        | e of Sampling                                                         |       | 22.01.2019 | 23.01.2019   | 23.01.2019                                        |           |
| Sr. Parameters Unit Std. Limit (NAAQS 2009) |                                                                       |       |            | Results      |                                                   |           |
| 1.                                          | Sulphur Dioxide (SO <sub>2</sub> )                                    | μg/m³ | 80         | 7.78         | 6.42                                              | 6.44      |
| 2.                                          | Nitrogen Dioxide<br>(NO <sub>2</sub> )                                | μg/m³ | 80         | 8.94         | 10.9                                              | 8.45      |
| 3.                                          | Particulate Matter<br>(size less than 10<br>µm) or PM <sub>10</sub>   | μg/m³ | 100        | 97           | 166                                               | 112       |
| 4.                                          | Particulate Matter<br>(size less than 2.5<br>µm) or PM <sub>2.5</sub> | μg/m³ | 60         | 22           | 39                                                | 26        |
| 5.                                          | Ozone (O <sub>3</sub> )                                               | μg/m³ | 180        | BDL          | BDL                                               | BDL       |
| 6.                                          | Lead (Pb)                                                             | μg/m³ | 1          | BDL          | BDL                                               | BDL       |
| 7.                                          | Carbon Monoxide (CO)                                                  | mg/m³ | 4          | 3.98         | 2.91                                              | 3.16      |
| 8.                                          | Ammonia (NH₃)                                                         | μg/m³ | 400        | BDL          | BDL                                               | BDL       |
| 9.                                          | Benzene (C <sub>6</sub> H <sub>6</sub> )                              | μg/m³ | 5          | BDL          | 7.6                                               | 7.89      |
| 10.                                         | Benzo (a) Pyrene<br>(BaP) –<br>particulate phase<br>only              | ng/m³ | 1          | BDL          | BDL                                               | BDL       |
| 11.                                         | Arsenic (As)                                                          | ng/m³ | 6          | BDL          | BDL                                               | BDL       |
| 12.                                         | Nickel (Ni)                                                           | ng/m³ | 20         | BDL          | BDL                                               | BDL       |


Table No. IV

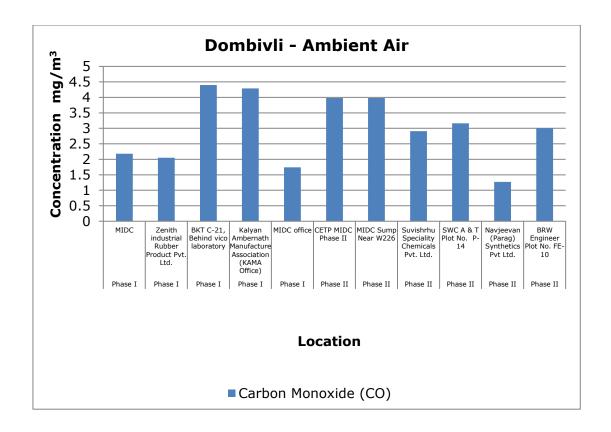

| Loca | tion                                                            | Navjeevan<br>(Parag)<br>Synthetics Pvt<br>Ltd. | BRW Engineer |         |      |  |
|------|-----------------------------------------------------------------|------------------------------------------------|--------------|---------|------|--|
| Date | of Sampling                                                     | 24.01.2019                                     | 24.01.2019   |         |      |  |
| Sr.  | Sr. Parameters Unit Std. Limit (NAAQS 2009)                     |                                                |              | Results |      |  |
| 1.   | Sulphur Dioxide (SO <sub>2</sub> )                              | μg/m³                                          | 80           | 8.82    | 9.05 |  |
| 2.   | Nitrogen Dioxide (NO <sub>2</sub> )                             | μg/m³                                          | 80           | 9.92    | 10.1 |  |
| 3.   | Particulate Matter (size less than 10 µm) or PM <sub>10</sub>   | μg/m³                                          | 100          | 386     | 492  |  |
| 4.   | Particulate Matter (size less than 2.5 µm) or PM <sub>2.5</sub> | μg/m³                                          | 60           | 92      | 120  |  |
| 5.   | Ozone (O <sub>3</sub> )                                         | μg/m³                                          | 180          | BDL     | BDL  |  |
| 6.   | Lead (Pb)                                                       | μg/m³                                          | 1            | BDL     | BDL  |  |
| 7.   | Carbon Monoxide (CO)                                            | mg/m³                                          | 4            | 1.27    | 3    |  |
| 8.   | Ammonia (NH <sub>3</sub> )                                      | μg/m³                                          | 400          | BDL     | BDL  |  |
| 9.   | Benzene (C <sub>6</sub> H <sub>6</sub> )                        | μg/m³                                          | 5            | BDL     | BDL  |  |
| 10.  | Benzo (a) Pyrene (BaP) –<br>particulate phase only              | ng/m³                                          | 1            | BDL     | BDL  |  |
| 11.  | Arsenic (As)                                                    | ng/m³                                          | 6            | BDL     | BDL  |  |
| 12.  | Nickel (Ni)                                                     | ng/m³                                          | 20           | BDL     | BDL  |  |

Table No. V

| Name of Industry |                           |        | Gharda<br>Chemical Ltd. | Aarti<br>Industries<br>Ltd. | Indo Amines<br>Ltd. |
|------------------|---------------------------|--------|-------------------------|-----------------------------|---------------------|
| Date             | of Sampling               |        | 23.01.2019              | 24.01.2019                  | 24.01.2019          |
| Sr.              | Parameter                 | Unit   | Results                 |                             |                     |
| 1.               | VOC                       |        |                         |                             |                     |
| I.               | Methyl Isobutyl<br>Ketone | mg/Nm³ | ND                      | ND                          | ND                  |
| II.              | Benzene                   | mg/Nm³ | ND                      | ND                          | ND                  |
| III.             | Toulene                   | mg/Nm³ | ND                      | ND                          | ND                  |
| IV.              | Xylene                    | mg/Nm³ | ND                      | ND                          | ND                  |
| V.               | Ethyl Benzene             | mg/Nm³ | ND                      | ND                          | ND                  |
| VI.              | Ethyl Acetate             | mg/Nm³ | ND                      | ND                          | ND                  |

**Graphs: Ambient Air Quality Monitoring for Dombivli MIDC:** 





#### 3.3 Surface Water/ Waste Water Quality:

Water Analysis Results are compared against CPCB document on criteria for Comprehensive Environmental Assessment of Industrial Clusters-Water Quality Parameters Requirement and Classification (Annexure IX), CPCB Water Quality Criteria (Annexure VIII) and Drinking Water Specification, IS 10500:2012 (Annexure VII), Wastewater Analysis Results are compared with General Standards for Discharge of Environmental Pollutants Part A: Effluents, The Environment (Protection) Rules, 1986, Schedule VI.

| Sr. | Location            | Source        | Phase    | Table<br>No. |
|-----|---------------------|---------------|----------|--------------|
| 1.  | CETP                | CETP Outlet   | Phase I  | I            |
| 2.  | Khambal Pada        | Surface Water | Phase I  | I            |
| 3.  | CETP                | CETP Outlet   | Phase II | I            |
| 4.  | Gandinagar Nala     | Nallah Water  | Phase II | II           |
| 5.  | Nala Jarimary Talav | Nallah Water  | Phase II | II           |
| 6.  | Vitthalwadi         | Nallah Water  | Phase II | II           |
| 7.  | Chinchpada          | Nallah Water  | Phase II | III          |

Table No. I

| Locati | on                                                |              |               | CETP<br>Phase I  | Khambal<br>Pada  | CETP<br>Phase II |
|--------|---------------------------------------------------|--------------|---------------|------------------|------------------|------------------|
| Date o | f Sampling                                        |              |               | 26.01.2019       | 26.01.2019       | 26.01.2019       |
| Sr.    | Parameters                                        | Unit         | Std.<br>Limit |                  | Results          |                  |
| 1.     | Colour                                            | Hazen        |               | 4                | 5                | 5                |
| 2.     | Smell                                             | -            | Agreeabl<br>e | Disagreeab<br>le | Disagreeab<br>le | Disagreeab<br>le |
| 3.     | рН                                                | -            | 5.5 -9.0      | 6.86             | 7.07             | 7.59             |
| 4.     | Oil & Grease                                      | mg/L         | 10.0          | BDL              | BDL              | BDL              |
| 5.     | Suspended<br>Solids                               | mg/L         | 100.0         | 20               | 42               | 28               |
| 6.     | Dissolved<br>Oxygen<br>(%Saturation)              | %            |               | 37               | 0                | 23               |
| 7.     | Chemical Oxygen<br>Demand                         | mg/L         | 250.0         | 100              | 100              | 100              |
| 8.     | Biochemical<br>Oxygen Demand<br>(3 days, 27°C)    | mg/L         | 30.0          | 34               | 32               | 33               |
| 9.     | Electrical<br>Conductivity<br>(at 25°C)           | μmhos/<br>cm |               | 3980             | 837              | 3520             |
| 10.    | Nitrite Nitrogen<br>(as NO <sub>2</sub> )         | mg/L         |               | BDL              | BDL              | 0.21             |
| 11.    | Nitrate Nitrogen<br>(as NO <sub>3</sub> )         | mg/L         | 10.0          | 5.30             | 17.2             | 5.54             |
| 12.    | (NO <sub>2</sub> + NO <sub>3</sub> )-<br>Nitrogen | mg/L         |               | 5.30             | 17.2             | 5.75             |
| 13.    | Free Ammonia<br>(as NH <sub>3</sub> -N)           | mg/L         | 5.0           | BDL              | BDL              | BDL              |
| 14.    | Total Residual<br>Chlorine                        | mg/L         | 1.0           | BDL              | BDL              | BDL              |
| 15.    | Cyanide (as CN)                                   | mg/L         | 0.2           | BDL              | BDL              | BDL              |
| 16.    | Fluoride (as F)                                   | mg/L         | 2.0           | 1.4              | 1.08             | 0.64             |

| Locati | ion                                                               |                         |               | CETP<br>Phase I | Khambal<br>Pada | CETP<br>Phase II |
|--------|-------------------------------------------------------------------|-------------------------|---------------|-----------------|-----------------|------------------|
| Date o | f Sampling                                                        |                         |               | 26.01.2019      | 26.01.2019      | 26.01.2019       |
| Sr.    | Parameters                                                        | Unit                    | Std.<br>Limit | Results         |                 |                  |
| 17.    | Sulphide (as S <sup>2-</sup> )                                    | mg/L                    | 2.0           | 0.24            | BDL             | BDL              |
| 18.    | Dissolved<br>Phosphate (as P)                                     | mg/L                    | 5.0           | 1.1             | 1.8             | 0.62             |
| 19.    | Sodium<br>Absorption Ratio                                        |                         |               | 7.45            | 2.03            | 7.38             |
| 20.    | Total Coliforms                                                   | MPN<br>index<br>/100 mL | 100.0         | 280             | 170             | 170              |
| 21.    | Faecal Coliforms                                                  | MPN<br>index<br>/100 mL | 1000.0        | 13              | 11              | 20               |
| 22.    | Total Phosphate (as P)                                            | mg/L                    |               | 0.58            | 0.76            | 1.12             |
| 23.    | Total Kjeldahl<br>Nitrogen                                        | mg/L                    | 100.0         | 89.6            | 16.1            | 24.1             |
| 24.    | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | mg/L                    | 50            | 2.38            | 2               | 2.37             |
| 25.    | Phenols<br>(as C <sub>6</sub> H <sub>5</sub> OH)                  | mg/L                    | 1.0           | BDL             | BDL             | BDL              |
| 26.    | Surface Active<br>Agents<br>(as MBAS)                             | mg/L                    |               | BDL             | BDL             | BDL              |
| 27.    | Organo Chlorine<br>Pesticides                                     |                         |               |                 |                 |                  |
| I.     | Alachlor                                                          | μg/L                    | 2.0           | BDL             | BDL             | BDL              |
| II.    | Atrazine                                                          | μg/L                    | 0.2           | BDL             | BDL             | BDL              |
| III.   | Aldrin                                                            | μg/L                    | 0.1           | BDL             | BDL             | BDL              |
| IV.    | Dieldrin                                                          | μg/L                    | 2.0           | BDL             | BDL             | BDL              |
| V.     | Alpha HCH                                                         | μg/L                    | 0.01          | BDL             | BDL             | BDL              |
| VI.    | Beta HCH                                                          | μg/L                    | 2.0           | BDL             | BDL             | BDL              |

| Locati | on                                                  |      | CETP<br>Phase I | Khambal<br>Pada | CETP<br>Phase II |            |
|--------|-----------------------------------------------------|------|-----------------|-----------------|------------------|------------|
| Date o | f Sampling                                          |      |                 | 26.01.2019      | 26.01.2019       | 26.01.2019 |
| Sr.    | Parameters                                          | Unit | Std.<br>Limit   |                 | Results          |            |
| VII.   | Chlorpyriphos                                       | μg/L | 3.0             | BDL             | BDL              | BDL        |
| VIII.  | Butachlor                                           | μg/L |                 | BDL             | BDL              | BDL        |
| IX.    | Delta HCH                                           | μg/L | 0.2             | BDL             | BDL              | BDL        |
| Х.     | p,p DDT                                             | μg/L | 0.05            | BDL             | BDL              | BDL        |
| XI.    | o,p DDT                                             | μg/L | 100.0           | BDL             | BDL              | BDL        |
| XII.   | p,p DDE                                             | μg/L | 250.0           | BDL             | BDL              | BDL        |
| XIII.  | o,p DDE                                             | μg/L | 30.0            | BDL             | BDL              | BDL        |
| XIV.   | p,p DDD                                             | μg/L |                 | BDL             | BDL              | BDL        |
| XV.    | o,p DDD                                             | μg/L |                 | BDL             | BDL              | BDL        |
| XVI.   | Alpha Endosulfan                                    | μg/L | 10.0            | BDL             | BDL              | BDL        |
| XVII.  | Beta Endosulfan                                     | μg/L |                 | BDL             | BDL              | BDL        |
| XVIII. | Endosulfan<br>Sulphate                              | μg/L | 5.0             | BDL             | BDL              | BDL        |
| XIX.   | Y HCH (Lindane)                                     | μg/L | 1.0             | BDL             | BDL              | BDL        |
| 28.    | Polynuclear<br>aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 0.2             | 0.003           | 0.004            | 0.004      |
| 29.    | Polychlorinated<br>Biphenyls (PCB)                  | mg/L | 2.0             | BDL             | BDL              | BDL        |
| 30.    | Zinc (as Zn)                                        | mg/L | 5.0             | BDL             | BDL              | 0.069      |
| 31.    | Nickel (as Ni)                                      | mg/L | 3.0             | 0.037           | 0.02             | 0.029      |
| 32.    | Copper (as Cu)                                      | mg/L | 3.0             | BDL             | BDL              | BDL        |
| 33.    | Hexavalent<br>Chromium<br>(as Cr <sup>6+</sup> )    | mg/L | 0.1             | BDL             | BDL              | BDL        |
| 34.    | Total Chromium<br>(as Cr)                           | mg/L | 2.0             | 0.122           | 0.143            | 0.335      |

| Locati | on                       |               | CETP<br>Phase I                                      | Khambal<br>Pada | CETP<br>Phase II |       |
|--------|--------------------------|---------------|------------------------------------------------------|-----------------|------------------|-------|
| Date o | f Sampling               |               | 26.01.2019                                           | 26.01.2019      | 26.01.2019       |       |
| Sr.    | Sr. Parameters Unit Std. |               |                                                      |                 | Results          |       |
| 35.    | Total Arsenic<br>(as As) | mg/L          | 0.2                                                  | BDL             | BDL              | BDL   |
| 36.    | Lead (as Pb)             | mg/L          | 0.1                                                  | BDL             | 0.022            | BDL   |
| 37.    | Cadmium (as Cd)          | mg/L          | 2.0                                                  | BDL             | BDL              | BDL   |
| 38.    | Mercury (as Hg)          | mg/L          | 0.01                                                 | BDL             | BDL              | BDL   |
| 39.    | Manganese<br>(as Mn)     | mg/L          | 2.0                                                  | 0.190           | 0.318            | 0.079 |
| 40.    | Iron (as Fe)             | mg/L          | 3.0                                                  | BDL             | 1.15             | BDL   |
| 41.    | Vanadium (as V)          | mg/L          | 0.2                                                  | BDL             | BDL              | BDL   |
| 42.    | Selenium (as Se)         | mg/L          | 0.05                                                 | BDL             | BDL              | BDL   |
| 43.    | Boron (as B)             | mg/L          |                                                      | 0.202           | BDL              | 0.993 |
| 44.    | Bioassay Test on fish    | %<br>survival | 90% survival of fish after 96 hours in 100% effluent | 0               | 0                | 0     |

### Table No. II

| Location | on         |       | Gandinag<br>ar Nala | Nala<br>Jarimary<br>Talav | Vitthalwa<br>di  |                  |
|----------|------------|-------|---------------------|---------------------------|------------------|------------------|
| Date of  | f Sampling |       | 26.01.2019          | 26.01.2019                | 26.01.2019       |                  |
| Sr.      | Parameters | Unit  | Std.<br>Limit       | Results                   |                  |                  |
| 1.       | Colour     | Hazen |                     | 5                         | 2                | 4                |
| 2.       | Smell      | -     | Agreeabl<br>e       | Disagreeab<br>le          | Disagreeab<br>le | Disagreeab<br>le |
| 3.       | pH         | -     | 5.5 -9.0            | 7                         | 7.35             | 7.10             |

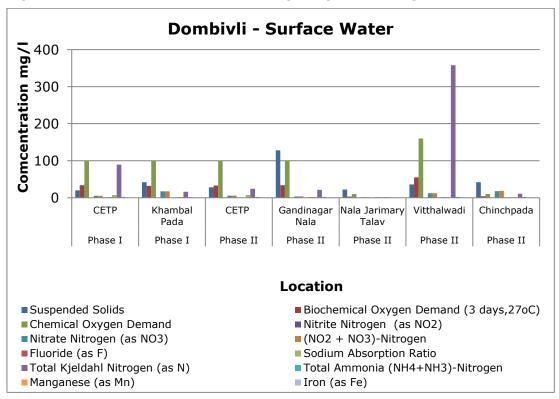
| Locati | on                                                |              |               | Gandinag<br>ar Nala | Nala<br>Jarimary<br>Talav | Vitthalwa<br>di |
|--------|---------------------------------------------------|--------------|---------------|---------------------|---------------------------|-----------------|
| Date o | f Sampling                                        |              |               | 26.01.2019          | 26.01.2019                | 26.01.2019      |
| Sr.    | Parameters                                        | Unit         | Std.<br>Limit |                     | Results                   |                 |
| 4.     | Oil & Grease                                      | mg/L         | 10.0          | BDL                 | BDL                       | BDL             |
| 5.     | Suspended<br>Solids                               | mg/L         | 100.0         | 128                 | 22                        | 36              |
| 6.     | Dissolved<br>Oxygen<br>(%Saturation)              | %            |               | 0                   | 64                        | 0               |
| 7.     | Biochemical<br>Oxygen Demand<br>(3 days, 27°C)    | mg/L         | 30.0          | 34                  | 3                         | 55              |
| 8.     | Chemical Oxygen<br>Demand                         | mg/L         | 250.0         | 100                 | 10                        | 160             |
| 9.     | Electrical<br>Conductivity<br>(at 25°C)           | μmhos/<br>cm |               | 833                 | 1069                      | 810             |
| 10.    | Nitrite Nitrogen<br>(as NO <sub>2</sub> )         | mg/L         |               | BDL                 | BDL                       | BDL             |
| 11.    | Nitrate Nitrogen<br>(as NO <sub>3</sub> )         | mg/L         | 10.0          | 3.387               | 1.2                       | 12.2            |
| 12.    | (NO <sub>2</sub> + NO <sub>3</sub> )-<br>Nitrogen | mg/L         |               | 3.87                | 1.2                       | 12.2            |
| 13.    | Free Ammonia<br>(as NH <sub>3</sub> -N)           | mg/L         | 5.0           | BDL                 | BDL                       | BDL             |
| 14.    | Total Residual<br>Chlorine                        | mg/L         | 1.0           | BDL                 | BDL                       | BDL             |
| 15.    | Cyanide (as CN)                                   | mg/L         | 0.2           | BDL                 | BDL                       | BDL             |
| 16.    | Fluoride (as F)                                   | mg/L         | 2.0           | 1.66                | 1.55                      | 1.27            |
| 17.    | Sulphide (as S <sup>2-</sup> )                    | mg/L         | 2.0           | 0.30                | BDL                       | 0.15            |
| 18.    | Dissolved<br>Phosphate (as P)                     | mg/L         | 5.0           | 0.8                 | 0.52                      | 1.4             |
| 19.    | Sodium<br>Absorption Ratio                        |              |               | 1.8                 | 1.2                       | 1.51            |

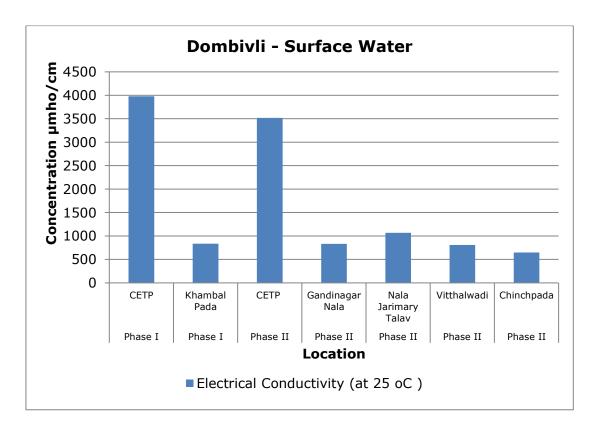
| Locati | on                                                                |                         |               | Gandinag<br>ar Nala | Nala<br>Jarimary<br>Talav | Vitthalwa<br>di |
|--------|-------------------------------------------------------------------|-------------------------|---------------|---------------------|---------------------------|-----------------|
| Date o | f Sampling                                                        |                         |               | 26.01.2019          | 26.01.2019                | 26.01.2019      |
| Sr.    | Parameters                                                        | Unit                    | Std.<br>Limit |                     | Results                   |                 |
| 20.    | Total Coliforms                                                   | MPN<br>index<br>/100 mL | 100.0         | 170                 | 280                       | 280             |
| 21.    | Faecal Coliforms                                                  | MPN<br>index<br>/100 mL | 1000.0        | 14                  | 13                        | 20              |
| 22.    | Total Phosphate (as P)                                            | mg/L                    |               | 1.7                 | 1.04                      | 1.9             |
| 23.    | Total Kjeldahl<br>Nitrogen                                        | mg/L                    | 100.0         | 21.1                | 1.57                      | 358             |
| 24.    | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | mg/L                    | 50            | 2.34                | 1.07                      | 2.4             |
| 25.    | Phenols<br>(as C <sub>6</sub> H <sub>5</sub> OH)                  | mg/L                    | 1.0           | BDL                 | BDL                       | BDL             |
| 26.    | Surface Active<br>Agents<br>(as MBAS)                             | mg/L                    |               | BDL                 | BDL                       | BDL             |
| 27.    | Organo Chlorine<br>Pesticides                                     |                         |               |                     |                           |                 |
| I.     | Alachlor                                                          | μg/L                    | 2.0           | BDL                 | BDL                       | BDL             |
| II.    | Atrazine                                                          | μg/L                    | 0.2           | BDL                 | BDL                       | BDL             |
| III.   | Aldrin                                                            | μg/L                    | 0.1           | BDL                 | BDL                       | BDL             |
| IV.    | Dieldrin                                                          | μg/L                    | 2.0           | BDL                 | BDL                       | BDL             |
| V.     | Alpha HCH                                                         | μg/L                    | 0.01          | BDL                 | BDL                       | BDL             |
| VI.    | Beta HCH                                                          | μg/L                    | 2.0           | BDL                 | BDL                       | BDL             |
| VII.   | Chlorpyriphos                                                     | μg/L                    | 3.0           | BDL                 | BDL                       | BDL             |
| VIII.  | Butachlor                                                         | μg/L                    |               | BDL                 | BDL                       | BDL             |
| IX.    | Delta HCH                                                         | μg/L                    | 0.2           | BDL                 | BDL                       | BDL             |

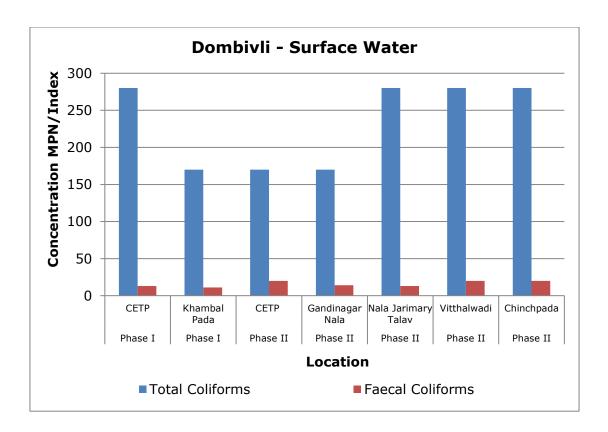
| Locati | on                                                  |               | Gandinag<br>ar Nala | Nala<br>Jarimary<br>Talav | Vitthalwa<br>di |            |
|--------|-----------------------------------------------------|---------------|---------------------|---------------------------|-----------------|------------|
| Date o | f Sampling                                          |               |                     | 26.01.2019                | 26.01.2019      | 26.01.2019 |
| Sr.    | Parameters                                          | Std.<br>Limit |                     | Results                   |                 |            |
| Х.     | p,p DDT                                             | μg/L          | 0.05                | BDL                       | BDL             | BDL        |
| XI.    | o,p DDT                                             | μg/L          | 100.0               | BDL                       | BDL             | BDL        |
| XII.   | p,p DDE                                             | μg/L          | 250.0               | BDL                       | BDL             | BDL        |
| XIII.  | o,p DDE                                             | μg/L          | 30.0                | BDL                       | BDL             | BDL        |
| XIV.   | p,p DDD                                             | μg/L          |                     | BDL                       | BDL             | BDL        |
| XV.    | o,p DDD                                             | μg/L          |                     | BDL                       | BDL             | BDL        |
| XVI.   | Alpha Endosulfan                                    | μg/L          | 10.0                | BDL                       | BDL             | BDL        |
| XVII.  | Beta Endosulfan                                     | μg/L          |                     | BDL                       | BDL             | BDL        |
| XVIII. | Endosulfan<br>Sulphate                              | μg/L          | 5.0                 | BDL                       | BDL             | BDL        |
| XIX.   | Y HCH (Lindane)                                     | μg/L          | 1.0                 | BDL                       | BDL             | BDL        |
| 28.    | Polynuclear<br>aromatic<br>hydrocarbons<br>(as PAH) | mg/L          | 0.2                 | 0.001                     | BDL             | 0.006      |
| 29.    | Polychlorinated<br>Biphenyls (PCB)                  | mg/L          | 2.0                 | BDL                       | BDL             | BDL        |
| 30.    | Zinc (as Zn)                                        | mg/L          | 5.0                 | BDL                       | BDL             | BDL        |
| 31.    | Nickel (as Ni)                                      | mg/L          | 3.0                 | 0.018                     | 0.012           | 0.013      |
| 32.    | Copper (as Cu)                                      | mg/L          | 3.0                 | BDL                       | BDL             | BDL        |
| 33.    | Hexavalent<br>Chromium<br>(as Cr <sup>6+</sup> )    | mg/L          | 0.1                 | BDL                       | BDL             | BDL        |
| 34.    | Total Chromium<br>(as Cr)                           | mg/L          | 2.0                 | 0.066                     | 0.061           | <0.02      |
| 35.    | Total Arsenic<br>(as As)                            | mg/L          | 0.2                 | BDL                       | BDL             | BDL        |
| 36.    | Lead (as Pb)                                        | mg/L          | 0.1                 | BDL                       | 0.04            | BDL        |

| Location |                          |               |                                                      | Gandinag<br>ar Nala | Nala<br>Jarimary<br>Talav | Vitthalwa<br>di |
|----------|--------------------------|---------------|------------------------------------------------------|---------------------|---------------------------|-----------------|
| Date of  | f Sampling               |               |                                                      | 26.01.2019          | 26.01.2019                | 26.01.2019      |
| Sr.      | Sr. Parameters Unit Std. |               |                                                      | Results             |                           |                 |
| 37.      | Cadmium (as Cd)          | mg/L          | 2.0                                                  | BDL                 | BDL                       | BDL             |
| 38.      | Mercury (as Hg)          | mg/L          | 0.01                                                 | BDL                 | BDL                       | BDL             |
| 39.      | Manganese<br>(as Mn)     | mg/L          | 2.0                                                  | 0.375               | 0.046                     | 0.430           |
| 40.      | Iron (as Fe)             | mg/L          | 3.0                                                  | BDL                 | BDL                       | BDL             |
| 41.      | Vanadium (as V)          | mg/L          | 0.2                                                  | BDL                 | BDL                       | BDL             |
| 42.      | Selenium (as Se)         | mg/L          | 0.05                                                 | BDL                 | BDL                       | BDL             |
| 43.      | Boron (as B)             | mg/L          |                                                      | BDL                 | 2.74                      | 0.106           |
| 44.      | Bioassay Test on fish    | %<br>survival | 90% survival of fish after 96 hours in 100% effluent | 80                  | 0                         | 0               |

#### Table No. III


| Locat | tion                              | Chinchpada |            |           |
|-------|-----------------------------------|------------|------------|-----------|
| Date  | of Sampling                       | 26.01.2019 |            |           |
| Sr.   | Parameters                        | Unit       | Std. Limit | Results   |
| 1.    | Colour                            | Hazen      |            | 1         |
| 2.    | Smell                             | -          | Agreeable  | Agreeable |
| 3.    | рН                                | -          | 5.5 -9.0   | 7.41      |
| 4.    | Oil & Grease                      | mg/L       | 10.0       | BDL       |
| 5.    | Suspended Solids                  | mg/L       | 100.0      | 42        |
| 6.    | Dissolved Oxygen<br>(%Saturation) | %          |            | 59        |


| Loca | tion                                                          | Chinchpada           |            |            |
|------|---------------------------------------------------------------|----------------------|------------|------------|
| Date | of Sampling                                                   |                      |            | 26.01.2019 |
| Sr.  | Parameters                                                    | Unit                 | Std. Limit | Results    |
| 7.   | Chemical Oxygen<br>Demand                                     | mg/L                 | 250.0      | 10         |
| 8.   | Biochemical Oxygen<br>Demand<br>(3 days, 27°C)                | mg/L                 | 30.0       | 4          |
| 9.   | Electrical Conductivity (at 25°C )                            | μmhos/cm             |            | 648        |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )                        | mg/L                 |            | 0.70       |
| 11.  | Nitrate Nitrogen<br>(as NO <sub>3</sub> )                     | mg/L                 | 10.0       | 18         |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen                 | mg/L                 |            | 18.7       |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)                       | mg/L                 | 5.0        | BDL        |
| 14.  | Total Residual Chlorine                                       | mg/L                 | 1.0        | BDL        |
| 15.  | Cyanide (as CN)                                               | mg/L                 | 0.2        | BDL        |
| 16.  | Fluoride (as F)                                               | mg/L                 | 2.0        | 0.8        |
| 17.  | Sulphide (as S <sup>2-</sup> )                                | mg/L                 | 2.0        | BDL        |
| 18.  | Dissolved Phosphate (as P)                                    | mg/L                 | 5.0        | 0.58       |
| 19.  | Sodium Absorption<br>Ratio                                    |                      |            | 1.37       |
| 20.  | Total Coliforms                                               | MPN index/<br>100 mL | 100.0      | 280        |
| 21.  | Faecal Coliforms                                              | MPN index/<br>100 mL | 1000.0     | 20         |
| 22.  | Total Phosphate (as P)                                        | mg/L                 |            | 1.08       |
| 23.  | Total Kjeldahl Nitrogen                                       | mg/L                 | 100.0      | 11         |
| 24.  | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                 | 50         | 2.25       |
| 25.  | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                 | 1.0        | BDL        |


| Loca   | tion                                       | Chinchpada |            |            |
|--------|--------------------------------------------|------------|------------|------------|
| Date   | of Sampling                                |            |            | 26.01.2019 |
| Sr.    | Parameters                                 | Unit       | Std. Limit | Results    |
| 26.    | Surface Active Agents (as MBAS)            | mg/L       |            | BDL        |
| 27.    | Organo Chlorine<br>Pesticides              |            |            |            |
| I.     | Alachlor                                   | μg/L       | 2.0        | BDL        |
| II.    | Atrazine                                   | μg/L       | 0.2        | BDL        |
| III.   | Aldrin                                     | μg/L       | 0.1        | BDL        |
| IV.    | Dieldrin                                   | μg/L       | 2.0        | BDL        |
| V.     | Alpha HCH                                  | μg/L       | 0.01       | BDL        |
| VI.    | Beta HCH                                   | μg/L       | 2.0        | BDL        |
| VII.   | Chlorpyriphos                              | μg/L       | 3.0        | BDL        |
| VIII.  | Butachlor                                  | μg/L       |            | BDL        |
| IX.    | Delta HCH                                  | μg/L       | 0.2        | BDL        |
| Χ.     | p,p DDT                                    | μg/L       | 0.05       | BDL        |
| XI.    | o,p DDT                                    | μg/L       | 100.0      | BDL        |
| XII.   | p,p DDE                                    | μg/L       | 250.0      | BDL        |
| XIII.  | o,p DDE                                    | μg/L       | 30.0       | BDL        |
| XIV.   | p,p DDD                                    | μg/L       |            | BDL        |
| XV.    | o,p DDD                                    | μg/L       |            | BDL        |
| XVI.   | Alpha Endosulfan                           | μg/L       | 10.0       | BDL        |
| XVII.  | Beta Endosulfan                            | μg/L       |            | BDL        |
| (VIII. | Endosulfan Sulphate                        | μg/L       | 5.0        | BDL        |
| XIX.   | Y HCH (Lindane)                            | μg/L       | 1.0        | BDL        |
| 28.    | Polynuclear aromatic hydrocarbons (as PAH) | mg/L       | 0.2        | 0.005      |
| 29.    | Polychlorinated<br>Biphenyls (PCB)         | mg/L       | 2.0        | BDL        |

| Loca | tion                                       | Chinchpada |                                                      |            |
|------|--------------------------------------------|------------|------------------------------------------------------|------------|
| Date | of Sampling                                |            |                                                      | 26.01.2019 |
| Sr.  | Parameters                                 | Unit       | Std. Limit                                           | Results    |
| 30.  | Zinc (as Zn)                               | mg/L       | 5.0                                                  | BDL        |
| 31.  | Nickel (as Ni)                             | mg/L       | 3.0                                                  | 0.015      |
| 32.  | Copper (as Cu)                             | mg/L       | 3.0                                                  | BDL        |
| 33.  | Hexavalent Chromium (as Cr <sup>6+</sup> ) | mg/L       | 0.1                                                  | BDL        |
| 34.  | Total Chromium<br>(as Cr)                  | mg/L       | 2.0                                                  | BDL        |
| 35.  | Total Arsenic (as As)                      | mg/L       | 0.2                                                  | BDL        |
| 36.  | Lead (as Pb)                               | mg/L       | 0.1                                                  | BDL        |
| 37.  | Cadmium (as Cd)                            | mg/L       | 2.0                                                  | BDL        |
| 38.  | Mercury (as Hg)                            | mg/L       | 0.01                                                 | BDL        |
| 39.  | Manganese (as Mn)                          | mg/L       | 2.0                                                  | 0.212      |
| 40.  | Iron (as Fe)                               | mg/L       | 3.0                                                  | BDL        |
| 41.  | Vanadium (as V)                            | mg/L       | 0.2                                                  | BDL        |
| 42.  | Selenium (as Se)                           | mg/L       | 0.05                                                 | BDL        |
| 43.  | Boron (as B)                               | mg/L       |                                                      | BDL        |
| 44.  | Bioassay Test on fish                      | % survival | 90% survival of fish after 96 hours in 100% effluent | 0          |

#### **Graphs: Surface Water/ Waste Water Quality Monitoring for Dombivli MIDC:**







#### 3.4 Ground Water Quality:

| Sr. | Location                    | Source             | Phase    | Table<br>No. |
|-----|-----------------------------|--------------------|----------|--------------|
| 1.  | Thakurli Talav (Chole Gaon) | Lake Water (talav) | Phase I  | I            |
| 2.  | Gavdevi Talav               | Well Water         | Phase I  | I            |
| 3.  | Pipleshwar Mandir           | Borewell water     | Phase I  | I            |
| 4.  | Horizon Mall                | Borewell water     | Phase II | II           |
| 5.  | Mhasoba Devstan Talav       | Well Water         | Phase II | II           |
| 6.  | Lodha Vihar                 | Borewell water     | Phase II | II           |

Table No. I

|      | ation                                          |          | Thakurli             | Gavdevi    | Pipleshwa  |                  |
|------|------------------------------------------------|----------|----------------------|------------|------------|------------------|
| Loca |                                                |          |                      | Talav      | Talav      | r Mandir         |
| Date | of Sampling                                    | <u>-</u> | 25.01.2019           | 25.01.2019 | 25.01.2019 |                  |
| Sr.  | Parameters                                     | Unit     | Std.<br>Limit        |            | Results    |                  |
| 1.   | Colour                                         | Hazen    | 5                    | 1          | 1          | 3                |
| 2.   | Smell                                          | -        | Agreeabl<br>e        | Agreeable  | Agreeable  | Disagreeab<br>le |
| 3.   | рН                                             | -        | 6.5-8.5              | 7          | 7.6        | 6.89             |
| 4.   | Oil & Grease                                   | mg/L     |                      | BDL        | BDL        | BDL              |
| 5.   | Suspended Solids                               | mg/L     | 100                  | 36         | 22         | 28               |
| 6.   | Dissolved Oxygen<br>(%Saturation)              | %        |                      | 37         | 85         | 58               |
| 7.   | Chemical Oxygen<br>Demand                      | mg/L     | 10<br>(WHO,<br>1993) | 460        | 180        | 150              |
| 8.   | Biochemical<br>Oxygen Demand<br>(3 days, 27°C) | mg/L     | 6<br>(WHO,<br>1993)  | 154        | 59         | 50               |
| 9.   | Electrical<br>Conductivity<br>(at 25°C)        | μmho/cm  |                      | 1260       | 1770       | 1260             |
| 10.  | Nitrite Nitrogen<br>(as NO <sub>2</sub> )      | mg/L     |                      | BDL        | BDL        | BDL              |
| 11.  | Nitrate Nitrogen<br>(as NO <sub>3</sub> )      | mg/L     | 45                   | 2.13       | 1.45       | 0.51             |
| 12.  | (NO₂ + NO₃)-<br>Nitrogen                       | mg/L     |                      | 2.13       | 1.45       | 0.51             |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)        | mg/L     | 0.5                  | BDL        | BDL        | BDL              |
| 14.  | Total Residual<br>Chlorine                     | mg/L     | 0.2                  | BDL        | BDL        | BDL              |
| 15.  | Cyanide (as CN)                                | mg/L     | 0.05                 | BDL        | BDL        | BDL              |
| 16.  | Fluoride (as F)                                | mg/L     | 1.0                  | 1.9        | 2          | 0.96             |
| 17.  | Sulphide (as S <sup>2-</sup> )                 | mg/L     | 0.05                 | BDL        | BDL        | BDL              |

| Loca | Location                                                          |                         |               |            | Gavdevi<br>Talav | Pipleshwa<br>r Mandir |
|------|-------------------------------------------------------------------|-------------------------|---------------|------------|------------------|-----------------------|
| Date | e of Sampling                                                     |                         | 25.01.2019    | 25.01.2019 | 25.01.2019       |                       |
| Sr.  | Parameters                                                        | Unit                    | Std.<br>Limit |            | Results          |                       |
| 18.  | Dissolved<br>Phosphate (as P)                                     | mg/L                    |               | 0.4        | BDL              | BDL                   |
| 19.  | Sodium<br>Absorption Ratio                                        | mg/L                    |               | 0.32       | 0.47             | 0.67                  |
| 20.  | Total Coliforms                                                   | MPN<br>index/<br>100 ml |               | 280        | 280              | 49                    |
| 21.  | Faecal Coliforms                                                  | MPN<br>index/<br>100 ml |               | 7.8        | 11               | 4.5                   |
| 22.  | Total<br>Phosphorous<br>(as P)                                    | mg/L                    |               | 0.74       | 0.12             | 0.22                  |
| 23.  | Total Kjeldahl<br>Nitrogen                                        | mg/L                    |               | 0.78       | 0.90             | 3.14                  |
| 24.  | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | mg/L                    | 0.5           | 0.12       | BDL              | BDL                   |
| 25.  | Phenols<br>(as C <sub>6</sub> H <sub>5</sub> OH)                  | mg/L                    | 0.001         | BDL        | BDL              | BDL                   |
| 26.  | Surface Active<br>Agents<br>(as MBAS)                             | mg/L                    |               | BDL        | BDL              | BDL                   |
| 27.  | Organo Chlorine<br>Pesticides                                     |                         |               |            |                  |                       |
| I.   | Alachlor                                                          | μg/L                    | 20.0          | BDL        | BDL              | BDL                   |
| II.  | Atrazine                                                          | μg/L                    | 2.0           | BDL        | BDL              | BDL                   |
| III. | Aldrin                                                            | μg/L                    | 0.03          | BDL        | BDL              | BDL                   |
| IV.  | Dieldrin                                                          | μg/L                    | 0.03          | BDL        | BDL              | BDL                   |
| V.   | Alpha HCH                                                         | μg/L                    | 0.01          | BDL        | BDL              | BDL                   |
| VI.  | Beta HCH                                                          | μg/L                    | 0.04          | BDL        | BDL              | BDL                   |

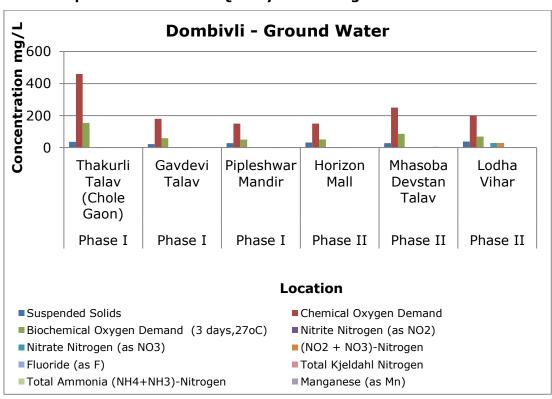
| Location |                                                     |      |               | Thakurli<br>Talav | Gavdevi<br>Talav | Pipleshwa<br>r Mandir |
|----------|-----------------------------------------------------|------|---------------|-------------------|------------------|-----------------------|
| Date     | e of Sampling                                       |      | 25.01.2019    | 25.01.2019        | 25.01.2019       |                       |
| Sr.      | Parameters                                          | Unit | Std.<br>Limit | Results           |                  |                       |
| VII.     | Delta HCH                                           | μg/L | 0.04          | BDL               | BDL              | BDL                   |
| VIII.    | Chlorpyriphos                                       | μg/L | 30.0          | BDL               | BDL              | BDL                   |
| IX.      | Butachlor                                           | μg/L | 125.0         | BDL               | BDL              | BDL                   |
| Χ.       | p,p DDT                                             | μg/L | 1.0           | BDL               | BDL              | BDL                   |
| XI.      | o,p DDT                                             | μg/L | 1.0           | BDL               | BDL              | BDL                   |
| XII.     | p,p DDE                                             | μg/L | 1.0           | BDL               | BDL              | BDL                   |
| XIII.    | o,p DDE                                             | μg/L | 1.0           | BDL               | BDL              | BDL                   |
| XIV.     | p,p DDD                                             | μg/L | 1.0           | BDL               | BDL              | BDL                   |
| XV.      | o,p DDD                                             | μg/L | 1.0           | BDL               | BDL              | BDL                   |
| XVI.     | Alpha Endosulfan                                    | μg/L | 0.4           | BDL               | BDL              | BDL                   |
| KVII.    | Beta Endosulfan                                     | μg/L | 0.4           | BDL               | BDL              | BDL                   |
| VIII.    | Endosulfan<br>Sulphate                              | μg/L | 0.4           | BDL               | BDL              | BDL                   |
| XIX.     | Y HCH (Lindane)                                     | μg/L | 2.0           | BDL               | BDL              | BDL                   |
| 28.      | Polynuclear<br>aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 0.0001        | BDL               | BDL              | BDL                   |
| 29.      | Polychlorinated<br>Biphenyls (PCB)                  | mg/L | 0.0005        | BDL               | BDL              | BDL                   |
| 30.      | Zinc (as Zn)                                        | mg/L | 5.0           | BDL               | BDL              | BDL                   |
| 31.      | Nickel (as Ni)                                      | mg/L | 0.02          | BDL               | BDL              | BDL                   |
| 32.      | Copper (as Cu)                                      | mg/L | 0.05          | BDL               | BDL              | 0.034                 |
| 33.      | Hexavalent<br>Chromium<br>(as Cr <sup>6+)</sup>     | mg/L |               | BDL               | BDL              | BDL                   |
| 34.      | Total Chromium<br>(as Cr)                           | mg/L | 0.05          | BDL               | BDL              | BDL                   |

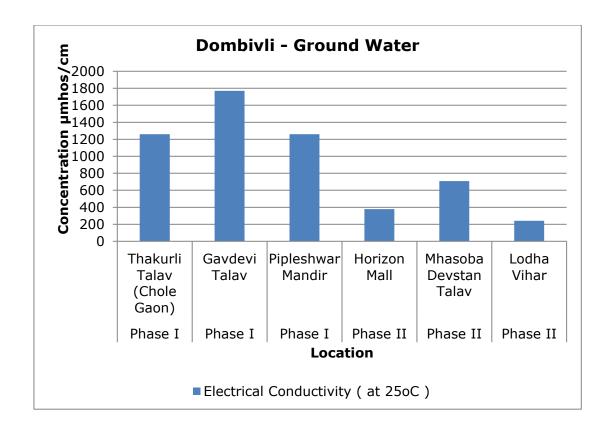
| Loca | ation                    |               |               | Thakurli<br>Talav | Gavdevi<br>Talav | Pipleshwa<br>r Mandir |  |  |  |
|------|--------------------------|---------------|---------------|-------------------|------------------|-----------------------|--|--|--|
| Date | e of Sampling            |               |               | 25.01.2019        | 25.01.2019       | 25.01.2019            |  |  |  |
| Sr.  | Parameters               | Unit          | Std.<br>Limit | Results           |                  |                       |  |  |  |
| 35.  | Total Arsenic<br>(as As) | mg/L          | 0.01          | BDL               | BDL              | BDL                   |  |  |  |
| 36.  | Lead (as Pb)             | mg/L          | 0.01          | BDL               | BDL              | BDL                   |  |  |  |
| 37.  | Cadmium (as Cd)          | mg/L          | 0.003         | BDL               | BDL              | BDL                   |  |  |  |
| 38.  | Mercury (as Hg)          | mg/L          | 0.001         | BDL               | BDL              | BDL                   |  |  |  |
| 39.  | Manganese<br>(as Mn)     | mg/L          | 0.1           | 0.116             | 0.059            | 2.38                  |  |  |  |
| 40.  | Iron (as Fe)             | mg/L          | 0.3           | 0.08              | BDL              | 0.173                 |  |  |  |
| 41.  | Vanadium (as V)          | mg/L          |               | BDL               | BDL              | BDL                   |  |  |  |
| 42.  | Selenium (as Se)         | mg/L          | 0.01          | BDL               | BDL              | BDL                   |  |  |  |
| 43.  | Boron (as B)             | mg/L          | 0.5           | BDL               | 0.117            | BDL                   |  |  |  |
| 44.  | Bioassay Test on fish    | %<br>survival |               | 70                | 70               | 80                    |  |  |  |

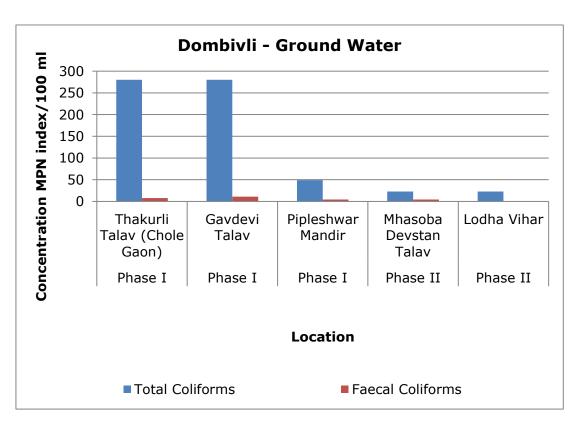
### Table No. II

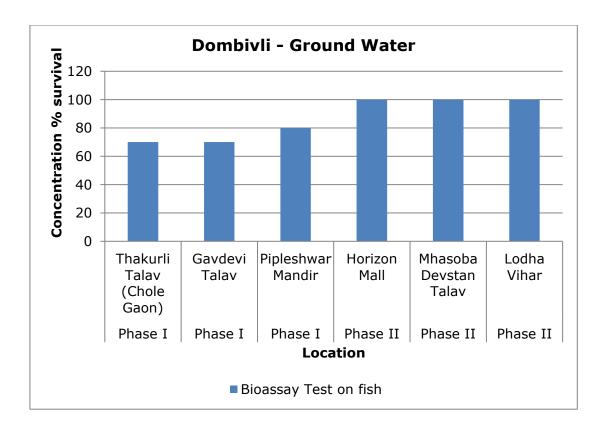
| Loca | ation            |       |               | Horizon<br>Mall | Lodha<br>Vihar |                  |
|------|------------------|-------|---------------|-----------------|----------------|------------------|
| Date | e of Sampling    |       | 25.01.2019    | 25.01.2019      | 26.01.2019     |                  |
| Sr.  | Parameters       | Unit  | Std.<br>Limit |                 | Results        |                  |
| 1.   | Colour           | Hazen | 5             | 1               | 1              | 3                |
| 2.   | Smell            | ı     | Agreeabl<br>e | Agreeable       | Agreeable      | Disagreeab<br>le |
| 3.   | рН               | -     | 6.5-8.5       | 7.17            | 7.98           | 6.83             |
| 4.   | Oil & Grease     | mg/L  |               | BDL             | BDL            | BDL              |
| 5.   | Suspended Solids | mg/L  | 100           | 32              | 28             | 38               |

| Loca | ation                                          |                         |                      | Horizon<br>Mall | Mhasoba<br>Devstan<br>Talav | Lodha<br>Vihar |
|------|------------------------------------------------|-------------------------|----------------------|-----------------|-----------------------------|----------------|
| Date | e of Sampling                                  |                         |                      | 25.01.2019      | 25.01.2019                  | 26.01.2019     |
| Sr.  | Parameters                                     | Unit                    | Std.<br>Limit        |                 | Results                     |                |
| 6.   | Dissolved Oxygen<br>(%Saturation)              | %                       |                      | 66              | 85                          | 38             |
| 7.   | Chemical Oxygen<br>Demand                      | mg/L                    | 10<br>(WHO,<br>1993) | 150             | 250                         | 200            |
| 8.   | Biochemical<br>Oxygen Demand<br>(3 days, 27°C) | mg/L                    | 6<br>(WHO,<br>1993)  | 51              | 86                          | 69             |
| 9.   | Electrical<br>Conductivity<br>(at 25°C)        | µmho/cm                 |                      | 378             | 708                         | 242            |
| 10.  | Nitrite Nitrogen<br>(as NO <sub>2</sub> )      | mg/L                    |                      | 0.17            | BDL                         | BDL            |
| 11.  | Nitrate Nitrogen<br>(as NO <sub>3</sub> )      | mg/L                    | 45                   | 2.52            | 1.29                        | 28.3           |
| 12.  | (NO₂ + NO₃)-<br>Nitrogen                       | mg/L                    |                      | 2.69            | 1.29                        | 28.3           |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)        | mg/L                    | 0.5                  | BDL             | BDL                         | BDL            |
| 14.  | Total Residual<br>Chlorine                     | mg/L                    | 0.2                  | BDL             | BDL                         | BDL            |
| 15.  | Cyanide (as CN)                                | mg/L                    | 0.05                 | BDL             | BDL                         | BDL            |
| 16.  | Fluoride (as F)                                | mg/L                    | 1.0                  | 1.3             | 1.57                        | 0.28           |
| 17.  | Sulphide (as S <sup>2-</sup> )                 | mg/L                    | 0.05                 | 0.21            | BDL                         | BDL            |
| 18.  | Dissolved<br>Phosphate (as P)                  | mg/L                    |                      | 0.35            | 0.16                        | 0.34           |
| 19.  | Sodium<br>Absorption Ratio                     | mg/L                    |                      | 0.42            | 1.08                        | 0.76           |
| 20.  | Total Coliforms                                | MPN<br>index/<br>100 ml |                      | BDL             | 23                          | 23             |


| Loca  | ation                                            |                         |               | Horizon<br>Mall | Mhasoba<br>Devstan<br>Talav | Lodha<br>Vihar |
|-------|--------------------------------------------------|-------------------------|---------------|-----------------|-----------------------------|----------------|
| Date  | e of Sampling                                    |                         |               | 25.01.2019      | 25.01.2019                  | 26.01.2019     |
| Sr.   | Parameters                                       | Unit                    | Std.<br>Limit |                 | Results                     |                |
| 21.   | Faecal Coliforms                                 | MPN<br>index/<br>100 ml |               | BDL             | 4.5                         | BDL            |
| 22.   | Total<br>Phosphorous<br>(as P)                   | mg/L                    |               | 0.66            | 0.40                        | 0.68           |
| 23.   | Total Kjeldahl<br>Nitrogen                       | mg/L                    |               | 0.034           | 4.59                        | 3.36           |
| 24.   | Total Ammonia<br>(NH4+NH3)-<br>Nitrogen          | mg/L                    | 0.5           | 0.27            | BDL                         | 1.6            |
| 25.   | Phenols<br>(as C <sub>6</sub> H <sub>5</sub> OH) | mg/L                    | 0.001         | BDL             | BDL                         | BDL            |
| 26.   | Surface Active<br>Agents<br>(as MBAS)            | mg/L                    |               | BDL             | BDL                         | BDL            |
| 27.   | Organo Chlorine<br>Pesticides                    |                         |               |                 |                             |                |
| XX.   | Alachlor                                         | μg/L                    | 20.0          | BDL             | BDL                         | BDL            |
| XXI.  | Atrazine                                         | μg/L                    | 2.0           | BDL             | BDL                         | BDL            |
| KXII. | Aldrin                                           | μg/L                    | 0.03          | BDL             | BDL                         | BDL            |
| XIII. | Dieldrin                                         | μg/L                    | 0.03          | BDL             | BDL                         | BDL            |
| XIV.  | Alpha HCH                                        | μg/L                    | 0.01          | BDL             | BDL                         | BDL            |
| XXV.  | Beta HCH                                         | μg/L                    | 0.04          | BDL             | BDL                         | BDL            |
| XVI.  | Delta HCH                                        | μg/L                    | 0.04          | BDL             | BDL                         | BDL            |
| KVII. | Chlorpyriphos                                    | μg/L                    | 30.0          | BDL             | BDL                         | BDL            |
| VIII. | Butachlor                                        | μg/L                    | 125.0         | BDL BDL         |                             | BDL            |
| XIX.  | p,p DDT                                          | μg/L                    | 1.0           | BDL             | BDL                         | BDL            |
| xxx.  | o,p DDT                                          | μg/L                    | 1.0           | BDL             | BDL                         | BDL            |


| Loca  | ation                                               |      |               | Horizon<br>Mall | Mhasoba<br>Devstan<br>Talav | Lodha<br>Vihar |  |  |
|-------|-----------------------------------------------------|------|---------------|-----------------|-----------------------------|----------------|--|--|
| Date  | e of Sampling                                       |      |               | 25.01.2019      | 25.01.2019                  | 26.01.2019     |  |  |
| Sr.   | Parameters                                          | Unit | Std.<br>Limit | Results         |                             |                |  |  |
| XXI.  | p,p DDE                                             | μg/L | 1.0           | BDL             | BDL                         | BDL            |  |  |
| KXII. | o,p DDE                                             | μg/L | 1.0           | BDL             | BDL                         | BDL            |  |  |
| XIII. | p,p DDD                                             | μg/L | 1.0           | BDL             | BDL                         | BDL            |  |  |
| XIV.  | o,p DDD                                             | μg/L | 1.0           | BDL             | BDL                         | BDL            |  |  |
| XXV.  | Alpha Endosulfan                                    | μg/L | 0.4           | BDL             | BDL                         | BDL            |  |  |
| XVI.  | Beta Endosulfan                                     | μg/L | 0.4           | BDL             | BDL                         | BDL            |  |  |
| KVII. | Endosulfan<br>Sulphate                              | μg/L | 0.4           | BDL             | BDL                         | BDL            |  |  |
| VIII. | Y HCH (Lindane)                                     | μg/L | 2.0           | BDL             | BDL                         | BDL            |  |  |
| 28.   | Polynuclear<br>aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 0.0001        | BDL             | 0.001                       | BDL            |  |  |
| 29.   | Polychlorinated<br>Biphenyls (PCB)                  | mg/L | 0.0005        | BDL             | BDL                         | BDL            |  |  |
| 30.   | Zinc (as Zn)                                        | mg/L | 5.0           | BDL             | BDL                         | BDL            |  |  |
| 31.   | Nickel (as Ni)                                      | mg/L | 0.02          | BDL             | BDL                         | 0.26           |  |  |
| 32.   | Copper (as Cu)                                      | mg/L | 0.05          | BDL             | BDL                         | BDL            |  |  |
| 33.   | Hexavalent<br>Chromium<br>(as Cr <sup>6+)</sup>     | mg/L |               | BDL             | BDL                         | BDL            |  |  |
| 34.   | Total Chromium<br>(as Cr)                           | mg/L | 0.05          | BDL             | BDL                         | 0.103          |  |  |
| 35.   | Total Arsenic<br>(as As)                            | mg/L | 0.01          | BDL             | BDL                         | BDL            |  |  |
| 36.   | Lead (as Pb)                                        | mg/L | 0.01          | BDL             | BDL                         | BDL            |  |  |
| 37.   | Cadmium (as Cd)                                     | mg/L | 0.003         | BDL             | BDL                         | BDL            |  |  |
| 38.   | Mercury (as Hg)                                     | mg/L | 0.001         | BDL             | BDL                         | BDL            |  |  |


Dambivli 40


| Loca | ation                 |               |               | Horizon<br>Mall | Lodha<br>Vihar |       |  |  |
|------|-----------------------|---------------|---------------|-----------------|----------------|-------|--|--|
| Date | e of Sampling         |               | 25.01.2019    | 25.01.2019      | 26.01.2019     |       |  |  |
| Sr.  | Parameters            | Unit          | Std.<br>Limit | Results         |                |       |  |  |
| 39.  | Manganese<br>(as Mn)  | mg/L          | 0.1           | BDL             | 0.038          | 0.127 |  |  |
| 40.  | Iron (as Fe)          | mg/L          | 0.3           | 0.102           | BDL            | BDL   |  |  |
| 41.  | Vanadium (as V)       | mg/L          |               | BDL             | BDL            | BDL   |  |  |
| 42.  | Selenium (as Se)      | mg/L          | 0.01          | BDL             | BDL            | BDL   |  |  |
| 43.  | Boron (as B)          | mg/L          | 0.5           | BDL             | BDL            | BDL   |  |  |
| 44.  | Bioassay Test on fish | %<br>survival |               | 100             | 100            | 100   |  |  |

### **Graphs: Ground Water Quality Monitoring for Dombivli MIDC:**









### 4. Summary and Conclusion

Based on the study done, the results are summarised and concluded as follows:

#### 4.1 Stack Emission Monitoring:

Five industries from Phase I and six industries from Phase II were selected for Stack emission monitoring.

- 1. Particulate matter (PM): All the results obtained are within the standard emission for the specified industry except at Navjeevan Synthetics Pvt. Ltd. at which had the highest range of Particulate matter was also observed with 200 mg/Nm<sup>3</sup>.
- 2. Sulphur dioxide (SO<sub>2</sub>): All industries result of SO<sub>2</sub> also was within the limits and the highest range was observed at Tirupati Textile Mills. with 68.1 mg/Nm<sup>3</sup>.
- 3. Nitrogen dioxide (NO<sub>2</sub>): All industries result of NO<sub>2</sub> also was well within the limits.

### 4.2 Ambient Air Quality Monitoring:

Five ambient air samples was collected from Phase I and eight samples was collected from Phase II of Dombivli region. Also one VOC sample was collected from Phase I and 2 VOC sample was collected from Phase II. The parameters monitored were studied as per the NAAQ standards. The variations of each parameter within the area under study are discussed below:

1. Sulphur dioxide (SO<sub>2</sub>): All the locations are observed with very low concentrations of SO<sub>2</sub>. The highest level of SO<sub>2</sub> was observed at BRW Engineer with 9.05  $\mu$ g/m<sup>3</sup> which is very much lower than the standard limit of NAAQS i.e. 80  $\mu$ g/m<sup>3</sup>.

- **2. Nitrogen dioxide (NO<sub>2</sub>):** Values of nitrogen dioxide are also observed below the standard limit of 80  $\mu$ g/m³ at all the 11 locations. The highest level of NO<sub>2</sub> was observed at Survishru Synthetics Pvt. Ltd. with a result of 10.9  $\mu$ g/m³.
- 3. Particulate Matter (PM<sub>10</sub>): Out of 11 samples, 10 samples in Dombivli region showed higher level of PM<sub>10</sub> concentration than the standard limit of NAAQS. The level of PM<sub>10</sub> emission ranged from 97  $\mu$ g/m³ at MIDC Sump to 492  $\mu$ g/m³ at BRW Engineer.
- **4. Particulate Matter (PM<sub>2.5</sub>):** Out of 11 samples, 4 samples in Dombivli region showed higher level of PM<sub>2.5</sub> concentration than the standard limit of NAAQS. The level of PM<sub>2.5</sub> emission ranged from 22 μg/m³ at MIDC Sump to 114 μg/m³ at BKT.
- **5. Ozone (O<sub>3</sub>):** At all 11 locations the level of Ozone was observed below the detectable limit.
- **6. Lead (Pb):** At all 11 locations the level of Lead also was observed below the detectable limit.
- **7. Carbon Monoxide (CO):** Concentration of carbon monoxide has exceeded at 2 locations monitored.
- 8. Ammonia (NH<sub>3</sub>): At all 11 locations the level of Lead also was observed below the detectable limit.
- **9. Benzene (C<sub>6</sub>H<sub>6</sub>):** The concentration of Benzene have exceeded the limit at 5 locations monitored and in the remaining 6 locations the values are below the detectable limit.
- **10.Benzo(a)pyrene (BaP), Arsenic (As) and Nickel (Ni)** was below the detectable limit in all 11 locations monitored.
- **11.Volatile Organic Compounds (VOC):** VOC was collected from 3 ambient air samples, and the result was not detectable in any of the samples.

#### 4.3 Surface water/ Waste Water Quality Monitoring:

To understand the quality of treated effluent and surface water, samples were collected from 2 surface water of Phase I and 5 surface water of Phase II Dombivli. Considering the general parameters of all the industries mentioned following are the conclusions:

- **1. Colour:** Colour units are found in the range of 1 to 5 Hazen unit in 7 water sample collected.
- 2. Odour: odour of all the samples is found disagreeable at 7 water samples collected.
- **3.** pH: it is observed in between 6.86 and 7.59 which is well within the range.
- **4. Suspended Solids**: Suspended solids of 6 water sample is well within the limits and the concentration of SS at Ghandhinagar Nalah have exceeded the limit with a concentration of 128 mg/L.
- **5. Chemical Oxygen Demand**: all 7 water sample had COD concentration well within the limits. The highest COD was observed at Vitthalwadi Nalah Phase II with a concentration of 160 mg/L.
- **6. Biochemical Oxygen Demand**: 5 out of the 7 samples collected were exceeding the limit required as per standard of BOD. The highest BOD was observed at Vitthalwadi Nalah Phase II with a concentration of 55 mg/L.
- **7. Sulphide**: Sulphide was detected only at 3 out of 7 locations monitored and the concentration was well within the limit.
- **8. Total Ammoia**: The concentration of total ammonia is well within the standard limit at all 7 locations monitored.

- **9. Total Kjeldahl Nitrogen**: The concentration of TKN exceeded at Vitthalwadi Nalah with 358 mg/L concentration.
- **10.Fish Bioassay**: 80% Survival was attained only at Ghandhinagar Nalah water samples collected for Bioassay test and in the rest of the 6 samples collected no fish survived.
- **11.Heavy metals**: All the heavy metals are found below the standard limits in all the samples.

### 4.4 Ground Water Quality Monitoring:

Three ground water samples were collected from Phase I and three was collected from Phase II of Dombivli.

- **1. Colour** (Hazen Units): Colour units are found in the range of 1 to 3 Hazen unit in 6 water sample collected.
- 2. Odour: Odour of 4 samples is found agreeable out of the 6 samples collected.
- **3. Chemical Oxygen Demand:** The COD of all 6 samples exceeded and was found in the range between 150 mg/L to 460 mg/L.
- **4. Biological Oxygen Demand:** The BOD of all 6 samples also exceeded and was found in the range between 50 mg/L to 154 mg/L.

Following are the parameters which are compared with ISO 10500:2012 Drinking water specifications.

- 1. Nitrite: Values of Nitrite was below detectable limit at all 6 samples collected.
- **2. Nitrate:** Results of Nitrate are also observed below standard limit (45 mg/L). The highest value of Nitrate was observed at Lodha Vihar with 28.3 mg/L.
- **3. Residual Free Chlorine**: Values are below the detectable limit at all 6 locations monitored.
- **4. Total Ammonia**: Values are below the detectable limit in 3 samples collected and at Lodha Vihar the results was beyond the standard limit with 1.6 mg/L.
- **5. Fluoride:** 4 out of 6 samples exceeded the standard limit of Fluride.
- **6. Sulphide:** All the readings of sulphide are observed below the detectable limit.
- **7. Sodium Absorption Ratio:** All the readings of sulphide are observed below the detectable limit.
- **8. Total Kjeldahl nitrogen:** All 6 water sample collected exceeded the standard limit of TKN
- **9. Fish Bioassay**: 100% survival was observed only at 3 locations out of 6 locations monitored.
- **10.\*Boron:** Values are below the acceptable standards.

(\*CPCB Water Quality criteria for Irrigation, Industrial Cooling & Controlled Waste disposal).

- **11.Surface Active Agents:** Values are below the acceptable standards.
- **12.Metals:** All the metals except manganese at few locations are observed within the acceptable limits of drinking water standards.

#### 5. CEPI Score

Comprehensive Environmental Pollution Index (CEPI) is intended to act as early warning tool which helps in categorization of industrial clusters/areas in terms of priority of needing attention.

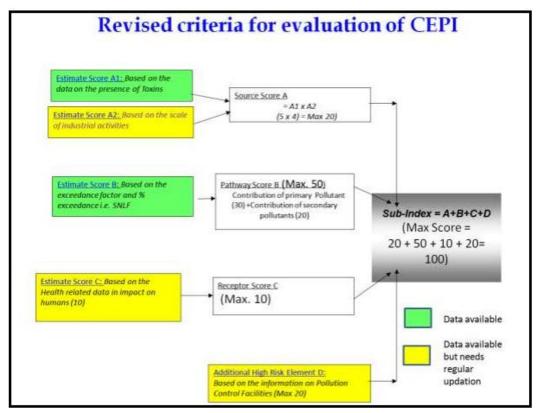
CPCB had evolved certain methodology to calculate CEPI, in which a score has been fixed for different environmental components based on the level of pollution. The scoring system involves an algorithm that takes into account the basic selection criteria. This approach is based on the basic hazard assessment logic that can be summarized as below.

### Hazard = pollutant source, pathways, and receptor

CPCB has calculated CEPI for the identified critically polluted industrial clusters. It is calculated separately for air, water, and land. The basic framework and scoring system of the CEPI – based on three factors namely pollutant, pathway, and receptor – has been described further under this section.

To overcome the subjectivity, revised concept is proposed by eliminating the subjective factors as described in the previous section but retaining the factors which can be measured precisely.

- I. Revised concept is prepared by eliminating the debatable factors but retaining the factors which can be measured precisely.
- II. It is decided to develop the Comprehensive Environmental Pollution Index (CEPI) retaining the existing algorithm of Source, Pathway and Receptor.
- III. Health component was also retained in the revised concept in line with the suggestions of Secretary, MoEFCC during the meeting held in MoEF.


#### **Outlines of revised CEPI 2016 criteria**

The outlines of the revised CEPI criteria are as follows:

- 1. It is proposed to develop the Comprehensive Environmental Pollution Index (CEPI) based on Sources of pollution, real time observed values of the pollutants in the ambient air, surface water and ground water in & around the industrial cluster and health related statistics.
- 2. For assessment of the environmental quality of the area i.e. CEPI score, the concept of SNLF i.e. a surrogate number which represents the level of exposure (a function of percentage sample Exceedance & Exceedance Factor) shall be used.
- 3. Health component to be evaluated based on the health data available from major hospitals in the area was also retained in the revised concept.

**Domhivli** 

The evaluation criterion of the revised CEPI version 2016 is described in the flowchart given below:



Here, health data collected for Receptor Score C is included in Annexure I

Based on Sub-Index Score (score of individual environmental component like air, water etc.):

Score more than 63: A Critical Level of Pollution in the respective level of

environmental component

Score between 51-63: Severe to critical level of pollution with reference to

respective environmental component

**Cut-off Score** 

**Score 50:** Severely Polluted Industrial Clusters/areas

**Score 60:** Critically Polluted Industrial Clusters/areas

Based on Aggregated CEPI Score (score includes sub-index score of all individual environmental components together):

**Aggregated CEPI score >70:** Critically polluted areas

**Aggregated CEPI score between 60-70:** Severely polluted areas

Since the inception of the programme, MPCB has also formulated Action Plans to mitigate the environmental pollution problems for each of the 8 Critically Polluted Areas (CPAs) in Maharashtra. Based on available information, parameters selected and monitored in continuation with this, CEPI has been calculated and Short-Term Action Plan (STAP) as well as Long Term Action Plan (LTAP) was prepared in 2010.

Subsequently NAAQS 2009 came in force. List of parameters to be considered increased and expanded including more critical and hazardous pollutants like benzene, BaP, Metals, etc. existing in the environment. There was revision of standards (limiting values) as well. In this present report of June 2018 prepared by MPCB, CEPI is calculated considering all these revised standards' limiting values, list of parameters and complete scope of monitoring.

#### **5.1** Comparison of CEPI scores:

The result shows that CEPI score of present report is 55.09. The present study is the compilation of post monsoon season, which also regulates the score value. The overall CEPI is observed as 55.09 in Dombivali, which falls below the category of severely polluted areas, according to the revised CEPI guidelines. Hence, it can be concluded that the industries are following environmental rules and regulations laid by MoEF and MPCB to control the pollution and to keep the environment clean and green.

Detailed and Aggregated CEPI score of present report is being compared with the previous year's studies in the tables given below:

Air

|                                   | A1   | A2  | Α     | В1 | В2  | В3 | В     | C1 | C2 | СЗ | С  | D  | CEPI  |
|-----------------------------------|------|-----|-------|----|-----|----|-------|----|----|----|----|----|-------|
| CEPI<br>score<br>February<br>2019 | 2.35 | 4   | 9.4   | 1  | -   | 1  | 11.5  | -  | -  | 1  | 10 | 15 | 45.9  |
| CEPI<br>score<br>June<br>2018     | 2.6  | 3.4 | 8.84  | -  | -   | -  | 12.47 | -  | -  | -  | 10 | 15 | 46.31 |
| CEPI<br>score<br>February<br>2018 | 3.8  | 4.1 | 15.58 | -  | -   | -  | 14.3  | -  | -  | -  | 10 | 15 | 54.88 |
| CEPI<br>score<br>June<br>2017     | 4.3  | 2.2 | 9.46  | -  | -   | -  | 16.2  | -  | -  | -  | 0  | 15 | 40.66 |
| CEPI<br>score<br>February<br>2017 | 2    | 5   | 10    | 5  | 4   | 3  | 12    | 4  | 3  | 0  | 12 | 15 | 49    |
| CEPI<br>score<br>2016             | 4    | 2   | 8     | 3  | 2.3 | 4  | 9.3   | 5  | 2  | 0  | 10 | 10 | 37.3  |
| CEPI<br>score<br>2013             | 6    | 5   | 30    | 6  | 0   | 0  | 6     | 5  | 3  | 0  | 15 | 15 | 66    |
| CPCB<br>Report<br>2009            | 6    | 5   | 30    | 6  | 0   | 0  | 6     | 5  | 3  | 0  | 15 | 15 | 66    |

### Water:

|                                   | A1  | A2  | Α    | В1 | В2  | В3 | В     | C1 | C2  | СЗ | С  | D  | CEPI  |
|-----------------------------------|-----|-----|------|----|-----|----|-------|----|-----|----|----|----|-------|
| CEPI<br>score<br>February<br>2019 | 2.7 | 4   | 10.8 | 1  | -   | 1  | 10.75 | -  | -   | -  | 10 | 10 | 41.55 |
| CEPI<br>score<br>June<br>2018     | 2   | 2.9 | 5.8  | 1  | -   | 1  | 14.8  | -  | -   | 1  | 10 | 10 | 40.6  |
| CEPI<br>score<br>February<br>2018 | 2.6 | 5   | 13   | 1  | -   | 1  | 15.63 | -  | -   | 1  | 10 | 10 | 48.63 |
| CEPI<br>score<br>June<br>2017     | 2   | 3.6 | 7.2  | -  | -   | -  | 12.89 | -  | -   | -  | 5  | 10 | 35.09 |
| CEPI<br>score<br>February<br>2017 | 2   | 5   | 10   | 8  | 3.3 | 0  | 11.3  | 5  | 5   | 5  | 30 | 10 | 61.3  |
| CEPI<br>score<br>2016             | 4   | 2   | 8    | 4  | 0   | 6  | 10    | 5  | 4   | 5  | 25 | 10 | 53    |
| CEPI<br>score<br>2013             | 6   | 5   | 30   | 8  | 0   | 3  | 11    | 5  | 5   | 5  | 30 | 10 | 81    |
| CPCB<br>Report<br>2009            | 3   | 5   | 15   | 8  | 0   | 3  | 11    | 5  | 4.5 | 5  | 27 | 10 | 63.5  |

### Land:

|                                   | A1  | A2  | A     | В1 | B2 | вз | В    | C1 | C2 | СЗ | С  | D  | СЕРІ  |
|-----------------------------------|-----|-----|-------|----|----|----|------|----|----|----|----|----|-------|
| CEPI<br>score<br>February<br>2019 | 2.1 | 4   | 8.4   | -  | -  | -  | 12.5 | 1  | -  | -  | 10 | 10 | 40.9  |
| CEPI<br>score<br>June<br>2018     | 3.5 | 4.2 | 14.7  | -  | -  | -  | 11.5 | -  | -  | -  | 10 | 10 | 46.2  |
| CEPI<br>score<br>February<br>2018 | 4.2 | 3.2 | 13.44 | -  | -  | -  | 12.6 | -  | -  | -  | 10 | 10 | 46.04 |

Dambivli 49

|                                   | <b>A1</b> | A2  | A     | В1   | B2  | В3  | В     | C1 | C2   | С3 | C     | D  | CEPI  |
|-----------------------------------|-----------|-----|-------|------|-----|-----|-------|----|------|----|-------|----|-------|
| CEPI<br>score<br>June<br>2017     | 3.6       | 4.7 | 16.69 | 1    | 1   | ı   | 11.47 | -  | 1    | 1  | 5     | 10 | 43.39 |
| CEPI<br>score<br>February<br>2017 | 2         | 5   | 10    | 7.5  | 1.3 | 0   | 8.8   | 5  | 4    | 5  | 25    | 10 | 53.8  |
| CEPI<br>score<br>2016             | 3         | 2   | 6     | 4    | 0   | 4.1 | 8.1   | 5  | 2    | 4  | 27    | 10 | 38.1  |
| CEPI<br>score<br>2013             | 4         | 5   | 20    | 7.75 | 1.5 | 3   | 12.25 | 5  | 4.75 | 5  | 28.75 | 10 | 71    |
| CPCB<br>Report<br>2009            | 3         | 5   | 15    | 8    | 1.5 | 3   | 12.5  | 5  | 3    | 5  | 20    | 10 | 57.5  |

# Aggregated CEPI:

|                             | Air Index | Water Index | Land Index | CEPI  |
|-----------------------------|-----------|-------------|------------|-------|
| CEPI score<br>February 2019 | 45.9      | 41.55       | 40.9       | 55.09 |
| CEPI score<br>June 2018     | 46.31     | 40.6        | 46.2       | 56.38 |
| CEPI score<br>February 2018 | 54.88     | 48.63       | 46.04      | 64.98 |
| CEPI score<br>June 2017     | 40.66     | 35.09       | 43.39      | 49.69 |
| CEPI score<br>February 2017 | 49        | 61.3        | 53.8       | 65.82 |
| CEPI score<br>2016          | 37.3      | 53          | 38.1       | 49.96 |
| CEPI score<br>2013          | 66        | 81          | 71         | 89.90 |
| CPCB Report<br>2009         | 66        | 63.5        | 57.5       | 78.41 |

#### 6. Conclusion

Dombivli is an important industrial area of the state having an industrial zone lying on the eastern side of the Mumbai highway. It is well known place for its rapid industrial growth having major industries such as dye's, paints, chemicals and heavy metal factories. Some of the popular industries of Dombivli include Vicco Labs, Gharda Chemicals, Deepak fertilizers, Lloyd Steel etc. The Present study has been done according to the revised CEPI Version 2016. It has been an attempt to check the characteristics and status of environment among the different industrial clusters of Dombivli city.

For identification of the source of pollutants, we have analysed stack emission monitoring of 12 stacks in the Dombivli region. All parameters monitored were well within the standard limit and VOCs was not detectable in any samples monitored.

For the study of Air Environment, 12 ambient air samples were collected from different locations in the region. The concentration of  $PM_{10}$  was high at 8 locations sampled. The main reason for the increase in the concentration of Particulate matter is the increase in traffic and industrial activities. Dust suppression techniques have been suggested to be carried out by industries. All other parameters were well within the limit in all locations monitored.

To understand the quality of treated effluent and surface water, samples were collected from 6 surface water and 2 ETP outlet of Phase I and Phase II Dombivli. Parameters like Chemical Oxygen Demand, Biological oxygen demand, and Ammonia was found to have exceeded the limit of surface water characteristics. We have informed the respective industry about the same and actions are taken for improving the quality of treated waste water before disposal.

For carrying out a study on the Land Environment, six ground water samples are collected. Chemical Oxygen Demand, Biological oxygen demand, Nitrate, Total Ammonia, Fluoride and Total Kjeldahl Nitrogen was found in higher concentration in many of the samples collected. The ground water collected is from Borewell and is not used for drinking purpose.

The State Pollution Control Board and Regional Office of SPCB are continuously initiating action against industries for reducing and controlling the pollution caused due the industries. Many industries were issued with closure direction and show cause notice for emission control. Regular compliance of industries is monitored by Board officials for maintain the pollution reduced due to the implementation of action plan.

|                 | A1   | A2 | Α    | В     | С  | D  | CEPI  |  |  |
|-----------------|------|----|------|-------|----|----|-------|--|--|
| Air Index       | 2.35 | 4  | 9.4  | 11.5  | 10 | 15 | 45.9  |  |  |
| Water<br>Index  | 2.7  | 4  | 10.8 | 10.75 | 10 | 10 | 41.55 |  |  |
| Land<br>Index   | 2.1  | 4  | 8.4  | 12.5  | 10 | 10 | 40.9  |  |  |
| Aggregated CEPI |      |    |      |       |    |    |       |  |  |

**Domhivli** 

### 7. Efforts taken for the reduction in pollution:

### **Technological intervention**

- 1. The industries which are using solvents are very few and are small scale therefore the solvent generated from the manufacturing is collected and send to for recovery to the authorized plants.
- 2. However there is a one LSI unit **M/s Gharda Chemical Ltd**. which is having solvent recovery plant for captive consumption and has taken up following initiative for waste reduction

| Sr<br>No | Brief description of the improvement                                                                                                                                                                                                                                                                              | Scenario - Before<br>Improvement                                                                                                                                  | Scenario - After<br>Improvement                                                                                                                                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.       | Change in process:                                                                                                                                                                                                                                                                                                | 600 kg per day of residue was being incinerated.                                                                                                                  | Load on incineration reduced by 80 Kg per day.                                                                                                                  |
| 2.       | Reduction in quantity of residues by recovery of useful products                                                                                                                                                                                                                                                  | 160 kg per day<br>residue was<br>incinerated.                                                                                                                     | 160 kg per day of pure cumidine is recycled in the process.                                                                                                     |
| 3.       | New fractionating column to separate the solvents in pure form from the mixture of solvents.                                                                                                                                                                                                                      | 600 kg per day of<br>Mixed solvents were<br>incinerated.                                                                                                          | Pure solvents, 600 kg per day after recovery are recycled in the process.                                                                                       |
| 4        | Recovery of intermediates and their recycle a) In CMAC process Tetrachloro butyric Acid (TBA) is recovered by selective isolation from the waste stream of 2 -Chloro cyclo Butanone stage. b) In Isoproturon process, Di-methyl Urea (DMU) an intermediate, which is completely recovered, purified and recycled. | 250 kg per day TBA was being incinerated. Only part of the DMU (3.3 MT per day) was recycled and the rest (1.3 MT) of being impure quality was being incinerated. | 250 kg recovered<br>TBA is recycled back<br>in to the process<br>Now all the DMU (4.6<br>MT per day) is being<br>recycled after<br>purifying the impure<br>DMU. |

#### **Water Environment**

#### Water quality monitoring network:-

- a) **Industries:-**The MPC Board is regularly monitoring treated effluent quality of large, medium & small industries. The large and medium industries monitor their effluent quality regularly.
- b) **CETPS:-** The MPC Board fortnightly monitors treated/untreated effluent quality of CETPs. The CETPs monitors their treated/untreated effluent quality on daily basis.
- c) **Nalla:-** There are two nalla viz. Khambalpada Nalla & Bhopar Nalla through which treated effluent is disposed by CETPs and also the untreated domestic effluent of residential area disposed. The MPC Board fortnightly monitors water quality of these nalla.

- d) **Effluent treatment plants:-** All large and medium scale industries have provided full-fledged effluent treatment facility and all small scale industries have provided primary treatment facility and dispose their effluent to CETP for further treatment through MIDC drainage.
- e) **Common Effluent treatment Plants:** There are 2 no. of CETPs functioning in the industrial area. Quantity of Industrial and domestic effluent generated in MIDC industrial Area is about 14 MLD, the treated effluent is finally discharged into the Diva creek
- f) **D CETP Chemical (Phase-II) (1.5MLD):** Intensive efforts were made by chemical manufacturers in Phase-II, Dombivali industrial area to setup CETP in MIDC area of 1.50 MLD capacity, commissioned in March 1999 with capital investment of Rs 3.70 crore, and having 176 user members.
- g) **Dombivali DBESA CETP Textile (Phase-I)(16MLD):-** Was set up by Textile manufactures of phase I, Dombivali in the year in October 2003, of 16.00 MLD capacity, The total capital investment of CETP is 6.6 crore, the user members are 121.

#### **Air Environment**

Dust Collectors Cyclones, Wet scrubbers, and process emissions.

As a case study the major industry M/s Gharda chemical has taken up the following initiative for control of hazardous air pollutants

- a) For scrubbing the gases like HCl, Chlorine, Sulphur Dioxide etc. Caustic solution is used and the strength of the Caustic is monitored so as to ensure that it does not go below 0.5 N. This being chemisorption the efficiency of scrubbing is 100%.
- b) For scrubbing gases like Ammonia, water is used with primary and secondary scrubber system. The secondary system is provided with chilled water-cooling.
- c) Control of Fugitive Emissions / VOC:
- All the agitated reactors having hazardous air pollutants are provided with mechanical seals to ensure no fugitive emissions.
- All the transfer pumps are also provided with mechanical seals.
- Gas sensors (portable and fixed) are available to detect any leakage of the hazardous pollutant.
- Vacuum systems are available to take care of the leakage, if any.

#### **Green Belt**

Necessary follow up for the development of green belt in the industrial cluster as well as in corporation area will be taken with KDMC, KAMA, MIDC as well as local NGOs.

#### **Public Awareness & Training Programmes**

- To Organize Drawing competition in School & Colleges for making clean environment.
- Distribution of hand bills of safety measures to be adopted during accident.
- Posters and Banners displaying environmental awareness.
- To arrange Road Shows at public places.
- Arranging Lectures, Speech, Demonstration of the activities through School, Colleges, etc.

# 8. Photographs

### **Kama office Ambient Air Monitoring**

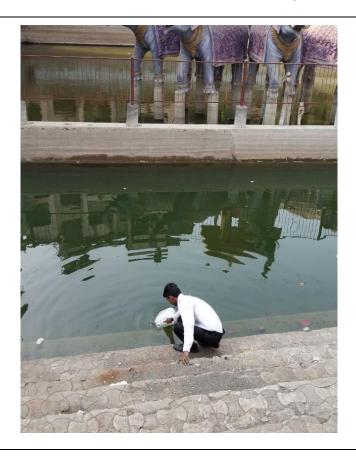


**BKT Ambient Air Monitoring** 



### **Backside Rice mill nalah Surface Water Sample**




**Horizon Mall Borewell Water sample** 



# **Gandhinagar nallah Surface Water Sample**



**Jarimari talav Surface Water Sample** 



### 9. References

- 1) Criteria for Comprehensive Environmental Assessment of Industrial Clusters, December 2009, CPCB, EIAS/4/2009-10
- 2) Comprehensive Environmental Assessment of Industrial Clusters, December 2009, CPCB, EIAS/5/2009-10
- 3) Action Plan for Industrial Cluster: Dombivli, November 2010, MPCB
- 4) Final Document on Revised CEPI Version 2016, CPCB No.B-29012/ ESS(CPA)/ 2015-16
- 5) Standard Methods for the Examination of Water and Waste Water, American Public Health Association, 22nd Edition, 2012.
- 6) IS 3025 (various parts)
- 7) www.mpcb.gov.in
- 8) www.cpcb.gov.in

9)

### **Annexure**

### Annexure I Health related data in impact on humans

### C: Receptor

| Component C<br>(Impact on Human Health)<br>10 |    |  |  |
|-----------------------------------------------|----|--|--|
| Main - 10                                     |    |  |  |
| % increase in cases Marks                     |    |  |  |
| <5%                                           | 0  |  |  |
| 5-10%                                         | 5  |  |  |
| >10%                                          | 10 |  |  |

- % increase is evaluated based on the total no. of cases recorded during two consecutive years.
- For Air Environment, total no. of cases related to Asthma, Bronchitis, Cancer, Acute respiratory infections etc. are to be considered.
- For surface water/ ground water Environment, cases related to Gastroenteritis, Diarrhoea, renal (kidney) malfunction, cancer etc are to be considered.
- For the above evaluation, the previous 5 years records of 3-5 major hospitals of the area shall be considered.

Attached below health data collected for the region

**Annexure II: Stack Emission Sampling and Analysis Methodology** 

| Sr. | Parameters                                     | Method References                                                                        | Techniques                                                     | Detection<br>Limit        |
|-----|------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------|
| 1.  | Acid Mist<br>(as Sulphuric<br>Acid)            | US EPA Method no.m-8                                                                     | Barium thorine<br>titration Method                             | 0.6 mg/Nm <sup>3</sup>    |
| 2.  | Ammonia                                        | IS 11255<br>(Part 6):1999,<br>Reaffirmed 2003                                            | Titration/ Nessler<br>Reagent/<br>Spectrophotometric<br>Method | 1 mg/Nm³                  |
| 3.  | Carbon Monoxide                                | USEPA Method 10B                                                                         | GC-FID Method                                                  | 0.2 mg/Nm <sup>3</sup>    |
| 4.  | Chlorine                                       | US EPA Method 26 for sampling                                                            | Titrimetric                                                    | 0.001 mg/Nm <sup>3</sup>  |
| 5.  | Fluoride<br>(Gaseous)                          | US EPA Method 13 A                                                                       | SPADNS Zirconium<br>Lake<br>Spectrophotometric<br>Method       | 0.025 mg/Nm <sup>3</sup>  |
| 6.  | Fluoride<br>(Particulate)                      | US EPA Method 13 A                                                                       | SPADNS Zirconium<br>Lake<br>Spectrophotometric<br>Method       | 0.005 mg/Nm <sup>3</sup>  |
| 7.  | Hydrogen<br>Chloride                           | US EPA Method 26 for sampling                                                            | Titrimetric                                                    | 0.25 mg/Nm <sup>3</sup>   |
| 8.  | Hydrogen<br>Sulphide                           | IS 11255<br>(Part 4):1985                                                                | Titrimetric                                                    | 1 mg/Nm³                  |
| 9.  | Oxides of<br>Nitrogen                          | IS 11255<br>(Part 7): 2005                                                               | PDSA Colorimetric<br>Method                                    | 10 mg/Nm³                 |
| 10. | Oxygen                                         | IS 13270 : 1992                                                                          | ORSAT Apparatus                                                | 1 %                       |
| 11. | Poly Aromatic<br>Hydrocarbons<br>(Particulate) | IS 5182 (Part 12) :<br>2004, Reaffirmed 2009<br>CPCB Guidelines, May<br>2011, Page No.39 | GC-FID Method                                                  | 0.25 mg/Nm <sup>3</sup>   |
| 12. | Suspended<br>Particulate<br>Matter             | IS 11255<br>(Part 1):1985,<br>Reaffirmed 2003                                            | Gravimetric Method                                             | 10 mg/Nm³                 |
| 13. | Sulphur Dioxide                                | IS 11255 (Part 2):<br>1985, Reaffirmed 2003                                              | Titrimetric IPA<br>thorine Method                              | 5.0 mg/Nm³<br>0.02 kg/day |

| Sr. | Parameters                             | Method References                 | Techniques                                                               | Detection<br>Limit       |
|-----|----------------------------------------|-----------------------------------|--------------------------------------------------------------------------|--------------------------|
| 14. | BTX (Benzene,<br>Toluene, Xylene)      | NIOSH (NMAM) 1501                 | Adsorption and Desorption followed by GC-FID analysis                    | 0.001 mg/Nm <sup>3</sup> |
| 15. | VOC (Volatile<br>Organic<br>Compounds) | NIOSH (NMAM) 1501<br>for sampling | Adsorption and<br>Desorption followed<br>by GC-FID or GC/<br>MS analysis | -                        |
| i   | Methyl Isobutyl<br>Ketone              | -                                 | -                                                                        | 0.001 mg/Nm <sup>3</sup> |
| ii  | Benzene                                | -                                 | -                                                                        | 0.001 mg/Nm <sup>3</sup> |
| iii | Toluene                                | -                                 | -                                                                        | 0.001 mg/Nm <sup>3</sup> |
| iv  | Xylene                                 | -                                 | -                                                                        | 0.001 mg/Nm <sup>3</sup> |
| V   | Ethyl Benzene                          | -                                 | -                                                                        | 0.001 mg/Nm <sup>3</sup> |
| vi  | Ethyl Acetate                          | -                                 | -                                                                        | 0.001 mg/Nm <sup>3</sup> |

# **Annexure III: Ambient Air Sampling and Analysis Methodology**

| Sr. | Parameters                                                            | Method References                                                                                        | Techniques                                               | Detection<br>Limit |
|-----|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------|
| 1.  | Sulphur Dioxide<br>(SO <sub>2</sub> )                                 | CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.1             |                                                          | 4 μg/m³            |
| 2.  | Nitrogen Dioxide<br>(NO <sub>2</sub> )                                | CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.7             |                                                          | 3 μg/m³            |
| 3.  | Particulate Matter<br>(size less than 10<br>µm) or PM <sub>10</sub>   | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No.11   | Gravimetric<br>Method                                    | 2 μg/m³            |
| 4.  | Particulate Matter<br>(size less than 2.5<br>µm) or PM <sub>2.5</sub> | CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 15           |                                                          | 0.4 μg/m³          |
| 5.  | Ozone (O <sub>3</sub> )                                               | APHA, Method No. 820,<br>Page no. 836                                                                    |                                                          | 19.6 μg/m³         |
| 6.  | Lead (Pb)                                                             | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 47  | AAS Method                                               | 0.02 μg/m³         |
| 7.  | Carbon Monoxide<br>(CO)                                               | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume II,<br>May 2011, Page No. 16 | Non Dispersive<br>Infra Red (NDIR)<br>spectroscopy       | 0.05 mg/m³         |
| 8.  | Ammonia (NH₃)                                                         | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 35  | Indophenol Blue<br>Method                                | 4.0 μg/m³          |
| 9.  | Benzene (C <sub>6</sub> H <sub>6</sub> )                              | IS 5182 (Part 11):2006  Adsorption a Desorption followed by 6 FID analys                                 |                                                          | 1.0 μg/m³          |
| 10. | Benzo (a) Pyrene<br>(BaP) – particulate<br>phase only,                | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 39  | Solvent<br>extraction<br>followed by GC-<br>FID analysis | 0.2 ng/m³          |

| Sr. | Parameters   | Method References                                                                                       | Techniques | Detection<br>Limit    |
|-----|--------------|---------------------------------------------------------------------------------------------------------|------------|-----------------------|
| 11. | Arsenic (As) | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 47 | AAS Method | 0.3 ng/m <sup>3</sup> |
| 12. | Nickel (Ni)  | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 47 | AAS Method | 3.0 ng/m <sup>3</sup> |

# Annexure IV: Water/Wastewater Sampling and Analysis Methodology

| Sr. | Parameters                                                 | Methods<br>References                                                                                       | Techniques                                      | Detection<br>Limit |
|-----|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|
| 1.  | Sampling<br>Procedure for<br>Chemical<br>Parameters        | IS 3025 (Part 1):<br>1987, Reaffirmed<br>1998, Amds.1&<br>APHA, 22 <sup>nd</sup> Ed.,<br>2012, 1060 B, 1-39 | -                                               | -                  |
| 2.  | Sampling<br>Procedure for<br>Microbiological<br>Parameters | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 1060 B, 1-39,<br>9040, 9-17, and<br>9060B, 9-35                        | -                                               | -                  |
| 3.  | Temperature                                                | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 2550-B, 2-69                                                           | By Thermometer                                  | -                  |
| 4.  | Colour                                                     | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 2120-B, 2-26                                                           | Visible Comparison<br>Method                    | 1 Hazen<br>Unit    |
| 5.  | Odour                                                      | IS 3025 (Part 5):<br>1983, Reaffirmed<br>2006                                                               | Qualitative Method                              | -                  |
| 6.  | рН                                                         | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500-H <sup>+</sup> - B,<br>4-92                                       | By pH Meter                                     | 1                  |
| 7.  | Oil & Grease                                               | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 5520-B, 5-40                                                           | Liquid -liquid Partition-<br>Gravimetric Method | 1.0 mg/L           |
| 8.  | Suspended Solids                                           | IS 3025 (Part 17):<br>1984, Reaffirmed<br>2006, Amds.1                                                      | Filtration /Gravimetric<br>Method               | 5.0 mg/L           |
| 9.  | Dissolved Oxygen                                           | IS 3025 (Part 38):<br>1989, Reaffirmed<br>2009                                                              | Iodometric Method-Azide<br>modification         | 0.05 mg/L          |
| 10. | Chemical Oxygen<br>Demand                                  | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 5220-B, 5-17                                                           | Open Reflux Method                              | 5.0 mg/L           |
| 11. | Biochemical<br>Oxygen Demand                               | IS 3025 ( Part 44):<br>1993, Reaffirmed<br>2009, Amds.1                                                     | Iodometric Method                               | 5.0 mg/L           |
| 12. | Electrical<br>Conductivity                                 | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 2510- B, 2-54                                                          | By Conductivity Meter                           | 0.1<br>µmho/cm     |
| 13. | Nitrite-Nitrogen                                           | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500-NO <sub>2</sub> -B,<br>4-120                                      | Colorimetric Method                             | 0.006 mg/L         |

| Sr. | Parameters                                                        | Methods<br>References                                                                                                                      | Techniques                                               | Detection<br>Limit |
|-----|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------|
| 14. | Nitrate-Nitrogen                                                  | APHA,22 <sup>nd</sup> Ed.,<br>2012, 4500-NO₃, B-<br>4-122                                                                                  | UV Spectrophotometer<br>Screening Method                 | 0.2 mg/L           |
| 15. | (NO <sub>2</sub> + NO <sub>3</sub> )-<br>Nitrogen                 | APHA, 22 <sup>nd</sup> Ed., 2012,<br>4500-NO <sub>2</sub> -B, 4-120<br>APHA, 22 <sup>nd</sup> Ed., 2012,<br>4500-NO <sub>3</sub> , B-4-122 | Colorimetric Method V Spectrophotometer Screening Method | 0.2 mg/L           |
| 16. | Free Ammonia                                                      | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500 NH₃, F,<br>4 -115                                                                                | Colorimetric Method                                      | 0.006 mg/L         |
| 17. | Total Residual<br>Chlorine                                        | IS 3025 (Part 26):<br>1986, Reaffirmed<br>2009, Ed. 2.1<br>(2004-02)                                                                       | Iodometric Method                                        | 0.1 mg/L           |
| 18. | Cyanide (CN)                                                      | APHA, 22 <sup>nd</sup> Ed.,<br>2012,4500-CN, C &<br>E, 4-41 & 4-43                                                                         | Colorimetric Method                                      | 0.001 mg/L         |
| 19. | Fluoride (F)                                                      | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500-F, D,<br>4-87                                                                                    | SPADNS Method                                            | 0.05 mg/L          |
| 20. | Sulphide (S <sup>2-</sup> )                                       | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500 -S <sup>2</sup> ,<br>C-4-175, F-4-178                                                            | Iodometric Method                                        | 0.08 mg/L          |
| 21. | Dissolved<br>Phosphate (P)                                        | APHA,22 <sup>nd</sup> Ed.,<br>2012, 4500 P,E, 4-<br>155                                                                                    | Ascorbic Acid Method                                     | 0.03 mg/L          |
| 22. | Sodium<br>Absorption Ratio                                        | IS11624: 1986,<br>Reaffirmed 2006                                                                                                          | By Calculation                                           | 0.3                |
| 23. | Total Phosphorous (P)                                             | APHA,22 <sup>nd</sup> Ed.,<br>2012, 4500 P,E, 4-<br>155                                                                                    | Ascorbic Acid Method                                     | 0.03 mg/L          |
| 24. | Total Kjeldahl<br>Nitrogen                                        | APHA, 22 <sup>nd</sup> Ed., 2012,<br>4500 NH <sub>3</sub> , B & C,<br>4 -110, 4-112                                                        | Titrimetric Method                                       | 0.1 mg/L           |
| 25. | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500 NH <sub>3</sub> , F,<br>4 - 115                                                                  | Colorimetric Method                                      | 0.001 mg/L         |
| 26. | Phenols (C <sub>6</sub> H <sub>5</sub> OH)                        | APHA,22 <sup>nd</sup> Ed.,<br>2012, 5530- B & C,<br>5-44 & 5-47                                                                            | Chloroform Extraction<br>Method                          | 0.001 mg/L         |

Dambivli 64

| Sr. | Parameters                                       | Methods<br>References                                    | Techniques                          | Detection<br>Limit |
|-----|--------------------------------------------------|----------------------------------------------------------|-------------------------------------|--------------------|
| 27. | Surface Active<br>Agents                         | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 5540-B & C,<br>5-50 | Methylene Blue<br>Extraction Method | 0.1 mg/L           |
| 28. | Organo Chlorine<br>Pesticides                    | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 6410B, 6-74         | GC MS-MS Method                     | 0.01 µg/L          |
| 29. | Polynuclear<br>aromatic<br>hydrocarbons<br>(PAH) | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 6410B, 6-74         | GC MS-MS Method                     | 0.01 μg/L          |
| 30. | Polychlorinated<br>Biphenyls (PCB)               | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 6410B, 6-74         | GC MS-MS Method                     | 0.01 µg/L          |
| 31. | Zinc (Zn)                                        | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.1 mg/L           |
| 32. | Nickel (Ni)                                      | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.05 mg/L          |
| 33. | Copper (Cu)                                      | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.03 mg/L          |
| 34. | Hexavalent<br>Chromium (Cr <sup>6+</sup> )       | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 3500-Cr, B,<br>3-69 | Colorimetric Method                 | 0.02 mg/L          |
| 35. | Total Chromium<br>(Cr)                           | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.02 mg/L          |
| 36. | Total Arsenic (As)                               | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.005 mg/L         |
| 37. | Lead (Pb)                                        | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.008 mg/L         |
| 38. | Cadmium (Cd)                                     | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.002 mg/L         |
| 39. | Mercury (Hg)                                     | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.0008<br>mg/L     |
| 40. | Manganese (Mn)                                   | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.02 mg/L          |
| 41. | Iron (Fe)                                        | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.06 mg/L          |
| 42. | Vanadium (V)                                     | IS 3025 (Part 2):<br>2004                                | ICP Method                          | 0.05 mg/L          |

| Sr. | Parameters                    | Methods<br>References                             | Techniques                                             | Detection<br>Limit |
|-----|-------------------------------|---------------------------------------------------|--------------------------------------------------------|--------------------|
| 43. | Selenium (Se)                 | IS 3025 (Part 2):<br>2004                         | ICP Method                                             | 0.005 mg/L         |
| 44. | Boron (B)                     | IS 3025 (Part 2):<br>2004                         | ICP Method                                             | 0.1 mg/L           |
| 45. | Total Coliforms               | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 9221-B, 9-66 | Multiple tube<br>fermentation technique<br>(MPN/100ml) | 1.1<br>MPN/100ml   |
| 46. | Faecal Coliforms              | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 9221-E, 9-74 | Multiple tube<br>fermentation technique<br>(MPN/100ml) | 1.1<br>MPN/100ml   |
| 47. | Bioassay<br>(Zebra Fish) Test | IS 6582, 1971,<br>Reaffirmed 1987                 | Static Technique                                       | -                  |

#### Annexure V: National Ambient Air Quality Standards, 2009



# The Gazette of India

EXTRAORDINARY PART III-Section 4 PUBLISHED BY AUTHORITY NEW DELHI, WEDNESDAY, NOBEMBER 18, 2009 No. B-29016/20/90/PCI-I

#### National Ambient Air Quality Standards: Central Pollution Control Board

In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevntion and Control of Pollution) Act, 1981 (Act No.14 of 1981), and in suppression of the Notification No(s). S.O.384(E), dated 11<sup>th</sup> April, 1994 and S.O.935(E), dated 14<sup>th</sup> October, 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect, namely:

| Sr. | Pollutant                                         |                   | Time                | Concentration in Ambient Air                            |                                                                           |                                                                                                                                     |  |
|-----|---------------------------------------------------|-------------------|---------------------|---------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| No. |                                                   |                   | Weighted<br>Average | Industrial,<br>Residential,<br>Rural and<br>Other Areas | Ecologically<br>Sensitive Areas<br>(Notified by<br>Central<br>Government) | Methods of Measurement                                                                                                              |  |
| (1) | (2)                                               |                   | (3)                 | (4)                                                     | (5)                                                                       | (6)                                                                                                                                 |  |
| 1   | Sulphur Dioxide (SO <sub>2</sub> )                | $\mu g/m^3$       | Annual *            | 50                                                      | 20                                                                        | <ul> <li>Improved West and Gaeke</li> </ul>                                                                                         |  |
| Ĺ   | supriu Bromae (802)                               | h8                | 24 hours **         | 80                                                      | 80                                                                        | Ultraviolet fluorescence                                                                                                            |  |
| 2   | Nitrogen Dioxide (NO <sub>2</sub> )               | $\mu g/m^3$       | Annual *            | 40                                                      | 30                                                                        | <ul> <li>Modified Jacob &amp; Hochheiser<br/>(Na-Arsenite)</li> </ul>                                                               |  |
|     | (2)                                               | 7-8               | 24 hours **         | 80                                                      | 80                                                                        | - Chemilminescence                                                                                                                  |  |
| 3   | Particulate Matter (size                          |                   | Annual *            | 60                                                      | 60                                                                        | - Gravimetric                                                                                                                       |  |
| 3   | less than 10 $\mu m$ ) or PM <sub>10</sub>        | $\mu g/m^3$       | 24 hours **         | 100                                                     | 100                                                                       | <ul><li>TOEM</li><li>Beta attenuation</li></ul>                                                                                     |  |
| 4   | Particulate Matter (size                          |                   | Annual *            | 40                                                      | 40                                                                        | - Gravimetric<br>- TOEM                                                                                                             |  |
| 4   | less than 2.5 $\mu m$ ) or PM <sub>2.5</sub>      | $\mu g/m^3$       | 24 hours **         | 60                                                      | 60                                                                        | – Peta attenuation                                                                                                                  |  |
| 5   | Ozone (O <sub>3</sub> )                           | μg/m³             | 8 hours **          | 100                                                     | 100                                                                       | <ul><li>UV photometric</li><li>Chemiluminescence</li></ul>                                                                          |  |
| 3   | Ozone (O <sub>3</sub> )                           | μg/m              | 1 hour **           | 180                                                     | 180                                                                       | - Chemical Method                                                                                                                   |  |
| 6   | Lead (Pb)                                         | μg/m³             | Annual *            | 0.50                                                    | 0.50                                                                      | <ul> <li>AAS/ICP method after<br/>sampling on EPM 2000 or</li> </ul>                                                                |  |
|     | Lead (10)                                         | μg/m              | 24 hours **         | 1.0                                                     | 1.0                                                                       | equivalent filter paper<br>– EDXRF using Teflon filter                                                                              |  |
| 7   | Carbon Monoxide (CO)                              | mg/m <sup>3</sup> | 8 hours **          | 02                                                      | 02                                                                        | – Non Dispersive Infra Red                                                                                                          |  |
|     | Curon Mononiae (CO)                               | mg/m              | 1 hour **           | 04                                                      | 04                                                                        | (NDIR) spectroscopy                                                                                                                 |  |
| 8   | Ammonia (NH <sub>3</sub> )                        | $\mu g/m^3$       | Annual *            | 100                                                     | 100                                                                       | - Chemiluminescence                                                                                                                 |  |
|     |                                                   | 1.8               | 24 hours **         | 400                                                     | 400                                                                       | – Indophenol blue method                                                                                                            |  |
| 9   | Benzene (C <sub>6</sub> H <sub>6</sub> )          | $\mu g/m^3$       | Annual *            | 05                                                      | 05                                                                        | <ul> <li>Gas Chromatography based<br/>continuous analyzer</li> <li>Adsorption and Desorption<br/>followed by GC analysis</li> </ul> |  |
| 10  | Benzo (a) Pyrene (BaP)  – particulate phase only, | ng/m³             | Annual *            | 01                                                      | 01                                                                        | <ul> <li>Solvent extraction followed by<br/>HPLC/GC analysis</li> </ul>                                                             |  |
| 11  | Arsenic (As)                                      | ng/m³             | Annual *            | 06                                                      | 06                                                                        | <ul> <li>AAS/ICP method after<br/>sampling on EPM 2000 or<br/>equivalent filter paper.</li> </ul>                                   |  |
| 12  | Nickel (Ni)                                       | ng/m <sup>3</sup> | Annual *            | 20                                                      | 20                                                                        | <ul> <li>AAS/ICP method after<br/>sampling on EPM 2000 or<br/>equivalent filter paper.</li> </ul>                                   |  |

<sup>\*</sup> Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

SANT PRASAD GAUTAM, Chairman, Central Pollution Control Board [ADVT-III/4/184/09/Exty.]

Note: The notifications on National Ambient Air Quality Standards were published by the Central Pollution Control Board in the Gazette of India. Extraordinary vide notification No(s). S.O. 384(E), dated 11<sup>th</sup> April, 1994 and S.O. 935(E), dated 14<sup>th</sup> October, 1998.

μg/m³: micro-gram/m³ i.e. 10<sup>-6</sup>gm/m³ ng/m³: nano-gram/m³ i.e. 10<sup>-9</sup>gm/m³

<sup>\*\* 24</sup> hourly or 08 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2 % of the time, they may exceed the limits but not on two consecutive days of monitoring.

Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

# Annexure VI: General Standards for Discharge of Environmental Pollutants, Part A: Effluents (The Environment (Protection) Rules, 1986, Schedule VI)

|     |                                                | Standards                                                                                            |                                    |                        |                                                                                                                                    |  |
|-----|------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| Sr. | Parameter                                      | Inland<br>surface<br>Water                                                                           | Public Sewers                      | Land for<br>Irrigation | Marine<br>Coastal Areas                                                                                                            |  |
| 1.  | Colour and Odour                               | See Note 1                                                                                           |                                    | See Note I             | See Note 1                                                                                                                         |  |
| 2.  | Suspended solids,<br>mg/L, Max.                | 100                                                                                                  | 600                                | 200                    | a) For process waste water - 100 b) For cooling water effluent-10 percent above total suspende d mailer of influent cooling water. |  |
| 3.  | Particle size of suspended solids              | Shall pass<br>850<br>micron IS<br>Sieve                                                              |                                    |                        | a. Floatable solids, Max 3 mm b. Settleable solids Max 850 microns                                                                 |  |
| 4.  | Dissolved solids<br>(Inorganic), mg/L,<br>Max. | 2100                                                                                                 | 2100                               | 2100                   |                                                                                                                                    |  |
| 5.  | pH value                                       | 5.5 -9.0                                                                                             | 5.5 -9.0                           | 5.5 -9.0               | 5.5-9.0                                                                                                                            |  |
| 6.  | Temperature °C,<br>Max                         | Shall not exceed 40 in any section of the stream within 15 mts.  Downstream from the effluent outlet | 45 at the<br>point of<br>discharge |                        | 45 at the point of discharge                                                                                                       |  |

|     |                                                                 | Standards                  |               |                        |                         |  |
|-----|-----------------------------------------------------------------|----------------------------|---------------|------------------------|-------------------------|--|
| Sr. | Parameter                                                       | Inland<br>surface<br>Water | Public Sewers | Land for<br>Irrigation | Marine<br>Coastal Areas |  |
| 7.  | Oil and Grease<br>mg/L, Max                                     | 10                         | 20            | 10                     | 20                      |  |
| 8., | Total Residual<br>chlorine, mg/L,<br>Max                        | 1.0                        |               |                        | 1.0                     |  |
| 9.  | Ammonical<br>Nitrogen<br>(as N), mg/L, Max                      | 50                         | 50            |                        | 50                      |  |
| 10. | Total Kjeldahl<br>Nitrogen<br>(as N), mg/L, Max.                | 100                        |               |                        | 100                     |  |
| 11. | Free Ammonia<br>(as NH <sub>3</sub> ), mg/L,<br>Max             | 5.0                        |               |                        | 5.0                     |  |
| 12. | Biochemical<br>oxygen demand<br>(5 days, at 20° c)<br>mg/L, Max | 30                         | 350           | 100                    | 100                     |  |
| 13. | Chemical oxygen<br>demand, mg/L,<br>Max                         | 250                        |               |                        | 250                     |  |
| 14. | Arsenic (as As),<br>mg/L, Max                                   | 0.2                        | 0.2           | 0.2                    | 0.2                     |  |
| 15. | Mercury (as Hg).<br>Mg/L, Max                                   | 0.01                       | 0.01          |                        | 0.01                    |  |
| 16. | Lead (as Pb),<br>mg/L, Max                                      | 0.1                        | 1.0           | -                      | 1.0                     |  |
| 17. | Cadmium (as Cd),<br>mg/L,                                       | 2.0                        | 1.0           |                        | 2.0                     |  |
| 18. | Hexavalent<br>Chromium<br>(as Cr <sup>+6</sup> ) mg/L,<br>Max   | 1                          | 2.0           |                        | 1.0                     |  |
| 19. | Total Chromium (as Cr), mg/L, Max                               | 2.0                        | 2.0           |                        | 2.0                     |  |

|     |                                                                               |                            | Stand         | dards                  |                         |
|-----|-------------------------------------------------------------------------------|----------------------------|---------------|------------------------|-------------------------|
| Sr. | Parameter                                                                     | Inland<br>surface<br>Water | Public Sewers | Land for<br>Irrigation | Marine<br>Coastal Areas |
| 20. | Copper (as Cu),<br>mg/L, Max.                                                 | 3.0                        | 3.0           |                        | 3.0                     |
| 21. | Zinc (as Zn),<br>mg/L, Max.                                                   | 5.0                        | 15            | 0                      | 15                      |
| 22  | Selenium (as Se),<br>mg/L, Max.                                               | 0.05                       | 0.05          |                        | 0.05                    |
| 23  | Nickel (as Ni),<br>mg/L, Max.                                                 | 3.0                        | 3.0           |                        | 5.0                     |
| 24  | Boron (as B),<br>mg/L, Max.                                                   | 2.0                        | 2.0           | 2.0                    |                         |
| 25. | Percent Sodium,<br>Max.                                                       |                            | 60            | 60                     |                         |
| 26. | Residual Sodium carbonate, mg/L, Max.                                         |                            |               | 5.0                    |                         |
| 27. | Cyanide (as Cn),<br>mg/L, Max.                                                | 0.2                        | 2.0           | 0.2                    | 0.2                     |
| 28. | Chloride (as Cl),<br>mg/L, Max.                                               | 1000                       | 1000          | 600                    |                         |
| 29. | Fluoride (as F),<br>mg/L, Max.                                                | 2.0                        | 15            |                        | 15                      |
| 30. | Dissolved<br>Phosphate (as P),<br>mg/L, Max.                                  | 5.0                        |               |                        |                         |
| 31. | Sulphate<br>(as SO <sub>4</sub> ), mg/L,<br>Max.                              | 1000                       | 1000          | 1000                   |                         |
| 32. | Sulphide (as S),<br>mg/L, Max.                                                | 2.0                        |               |                        | 5.0                     |
| 33. | Pesticides                                                                    | Absent                     | Absent        | Absent                 | Absent                  |
| 34. | Phenolic<br>compounds<br>(as C <sub>6</sub> H <sub>5</sub> OH),<br>mg/L, Max. | 1.0                        | 5.0           |                        | 5.0                     |

|     |                                   | Standards                  |               |                        |                         |
|-----|-----------------------------------|----------------------------|---------------|------------------------|-------------------------|
| Sr. | Parameter                         | Inland<br>surface<br>Water | Public Sewers | Land for<br>Irrigation | Marine<br>Coastal Areas |
| 35. | Radioactive materials:            |                            |               |                        |                         |
|     | a. Alpha emitters<br>MC/ml., Max. | 10-7                       | 10-7          | 10-8                   | 10-7                    |
|     | b. Beta emitters<br>μc/ml., Max   | 10-6                       | 10-6          | 10 <sup>-7</sup>       | 10-6                    |

### Annexure VII: Drinking Water Specification-IS 10500:2012

| Sr.     | Characteristic                                                            | Unit           | Requirement<br>(Acceptable<br>Limit) | Permissible<br>Limit in the<br>Absence of<br>Alternate<br>Source |
|---------|---------------------------------------------------------------------------|----------------|--------------------------------------|------------------------------------------------------------------|
| Table 1 | Organoleptic and Physical<br>Parameters                                   |                |                                      |                                                                  |
| 1.      | Colour                                                                    | Hazen<br>units | Max 5                                | Max 15                                                           |
| 2.      | Odour                                                                     | -              | Agreeable                            | Agreeable                                                        |
| 3.      | pH value                                                                  | -              | 6.5-8.5                              | No relaxation                                                    |
| 4.      | Taste                                                                     | -              | Agreeable                            | Agreeable                                                        |
| 5.      | Turbidity                                                                 | NTU            | Max 1                                | Max 5                                                            |
| 6.      | Total dissolved solids                                                    | mg/L           | Max 500                              | Max 2000                                                         |
| Table 2 | General parameters concerning substances undesirable in excessive amounts |                |                                      |                                                                  |
| 7.      | Aluminium (as AI)                                                         | mg/L           | Max 0.03                             | Max 0.2                                                          |
| 8.      | Ammonia<br>(as total ammonia- N)                                          | mg/L           | Max 0.5                              | No relaxation                                                    |
| 9.      | Anionic detergents (as MBAS)                                              | mg/L           | Max 0.2                              | Max 1.0                                                          |
| 10.     | Barium (as Ba)                                                            | mg/L           | Max 0.7                              | No relaxation                                                    |
| 11.     | Boron (as B)                                                              | mg/L           | Max 0.5                              | Max 1.0                                                          |
| 12.     | Calcium (as Ca)                                                           | mg/L           | Max 75                               | Max 200                                                          |
| 13.     | Chloramines (as C1 <sub>2</sub> )                                         | mg/L           | Max 4.0                              | No relaxation                                                    |
| 14.     | Chlorides (as Cl)                                                         | mg/L           | Max 250                              | Max 1000                                                         |
| 15.     | Copper (as Cu)                                                            | mg/L           | Max 0.05                             | Max 1.5                                                          |
| 16.     | Fluoride (as F)                                                           | mg/L           | Max 1.0                              | Max 1.5                                                          |
| 17.     | Free residual chlorine                                                    | mg/L           | Min 0.2                              | Min 1                                                            |
| 18.     | Iron (as Fe)                                                              | mg/L           | Max 0.3                              | No relaxation                                                    |
| 19.     | Magnesium (as Mg)                                                         | mg/L           | Max 30                               | Max100                                                           |

| Sr.     | Characteristic                                           | Unit | Requirement<br>(Acceptable<br>Limit) | Permissible<br>Limit in the<br>Absence of<br>Alternate<br>Source |
|---------|----------------------------------------------------------|------|--------------------------------------|------------------------------------------------------------------|
| 20.     | Manganese (as Mn)                                        | mg/L | Max 0.1                              | Max 0.3                                                          |
| 21.     | Mineral Oil                                              | mg/L | Max 0.5                              | No relaxation                                                    |
| 22.     | Nitrate (as NO <sub>3</sub> )                            | mg/L | Max 45                               | No relaxation                                                    |
| 23.     | Phenolic compounds (as C <sub>6</sub> H <sub>5</sub> OH) | mg/L | Max 0.001                            | Max 0.002                                                        |
| 24.     | Selenium (as Se)                                         | mg/L | Max 0.01                             | No relaxation                                                    |
| 25.     | Silver (as Ag)                                           | mg/L | Max 0.1                              | No relaxation                                                    |
| 26.     | Sulphate (as SO <sub>4</sub> )                           | mg/L | Max 200                              | Max 400                                                          |
| 27.     | Sulphide (as H <sub>2</sub> S)                           | mg/L | Max 0.05                             | No relaxation                                                    |
| 28.     | Total Alkalinity as calcium carbonate                    | mg/L | Max 200                              | Max600                                                           |
| 29.     | Total hardness (as CaCO <sub>3</sub> )                   | mg/L | Max 200                              | Max 600                                                          |
| 30.     | Zinc (as Zn)                                             | mg/L | Max 5                                | Max15                                                            |
| Table 3 | Parameters Concerning Toxic Substances                   |      |                                      |                                                                  |
| 31.     | Cadmium (as Cd)                                          | mg/L | Max 0.003                            | No relaxation                                                    |
| 32.     | Cyanide (as CN)                                          | mg/L | Max 0.05                             | No relaxation                                                    |
| 33.     | Lead (as Pb)                                             | mg/L | Max 0.01                             | No relaxation                                                    |
| 34.     | Mercury (as Hg)                                          | mg/L | Max 0.001                            | No relaxation                                                    |
| 35.     | Molybdenum (as Mo)                                       | mg/L | Max 0.07                             | No relaxation                                                    |
| 36.     | Nickel (as Ni)                                           | mg/L | Max 0.02                             | No relaxation                                                    |
| 37.     | Pesticides                                               | mg/L | See Table 5                          | No relaxation                                                    |
| 38.     | Polychlorinatedbiphenyls                                 | mg/L | Max 0.0005                           | No relaxation                                                    |
| 39.     | Poly nuclear aromatic<br>Hydrocarbons (as PAH)           | mg/L | Max 0.0001                           | No relaxation                                                    |
| 40.     | Total Arsenic(as As)                                     | mg/L | Max 0.01                             | Max0.05                                                          |
| 41.     | Total Chromium (as Cr)                                   | mg/L | Max 0.05                             | No relaxation                                                    |

Dambivli 73

| Sr.     | Characteristic                                  | Unit | Requirement<br>(Acceptable<br>Limit) | Permissible<br>Limit in the<br>Absence of<br>Alternate<br>Source |
|---------|-------------------------------------------------|------|--------------------------------------|------------------------------------------------------------------|
| 42.     | Trihalomethanes                                 |      |                                      |                                                                  |
| a)      | Bromoform                                       | mg/L | Max 0.1                              | No relaxation                                                    |
| b)      | DibromochloroMethane                            | mg/L | Max 0.1                              | No relaxation                                                    |
| c)      | Bromodichloromethane                            | mg/L | Max 0.06                             | No relaxation                                                    |
| d)      | Chloroform                                      | mg/L | Max 0.2                              | No relaxation                                                    |
| Table 4 | Parameters Concerning<br>Radioactive Substances |      |                                      |                                                                  |
| 43.     | Radioactive Materials                           |      |                                      |                                                                  |
| a)      | Alpha emitters                                  | Bq/L | Max 0.1                              | No relaxation                                                    |
| b)      | Beta emitters                                   | Bq/L | Max 1.0                              | No relaxation                                                    |
| Table 5 | Pesticide Residues Limits and<br>Test Method    |      |                                      |                                                                  |
| i)      | Alachor                                         | μg/L | 20                                   | No relaxation                                                    |
| ii)     | Atrazine                                        | μg/L | 2                                    | No relaxation                                                    |
| iii)    | Aldrin/ Dieldrin                                | μg/L | 0.03                                 | No relaxation                                                    |
| iv)     | Alpha HCH                                       | μg/L | 0.01                                 | No relaxation                                                    |
| v)      | Beta HCH                                        | μg/L | 0.04                                 | No relaxation                                                    |
| vi)     | Butachlor                                       | μg/L | 125                                  | No relaxation                                                    |
| vii)    | Chlorpyriphos                                   | μg/L | 30                                   | No relaxation                                                    |
| viii)   | Delta HCH                                       | μg/L | 0.04                                 | No relaxation                                                    |
| ix)     | 2,4- Dichlorophenoxyacetic acid                 | μg/L | 30                                   | No relaxation                                                    |
| x)      | DDT (o,p&p,p — Isomers of DDT, DDE and DDD)     | μg/L | 1                                    | No relaxation                                                    |
| xi)     | Endosulfan (α,β & sulphate)                     | μg/L | 0.4                                  | No relaxation                                                    |
| xii)    | Ethion                                          | μg/L | 3                                    | No relaxation                                                    |
| xiii)   | Gamma - HCH (Lindane)                           | μg/L | 2                                    | No relaxation                                                    |

| Sr.     | Characteristic                                                                                          | Unit    | Requirement<br>(Acceptable<br>Limit)  | Permissible<br>Limit in the<br>Absence of<br>Alternate<br>Source |
|---------|---------------------------------------------------------------------------------------------------------|---------|---------------------------------------|------------------------------------------------------------------|
| xiv)    | Isoproturon                                                                                             | μg/L    | 9                                     | No relaxation                                                    |
| xv)     | Malathion                                                                                               | μg/L    | 190                                   | No relaxation                                                    |
| xvi)    | Methyl parathion                                                                                        | μg/L    | 0.3                                   | No relaxation                                                    |
| xvii)   | Monocrotophos                                                                                           | μg/L    | 1                                     | No relaxation                                                    |
| xviii)  | Phorate                                                                                                 | μg/L    | 2                                     | No relaxation                                                    |
| Table 6 | Bacteriological Quality of<br>Drinking Water                                                            |         |                                       |                                                                  |
| 44.     | E.coli or thermotolerant coliform bacteria                                                              | /100    | Not detectable                        | -                                                                |
| 45.     | Total coliform bacteria                                                                                 | /100 mL | Not detectable                        | -                                                                |
|         | Virological Requirements                                                                                |         |                                       |                                                                  |
| 46.     | MS2 phage                                                                                               | /1 L    | Absent                                | -                                                                |
|         | Biological Requirements                                                                                 |         |                                       |                                                                  |
| 47.     | Cryptosporidium                                                                                         | /10 L   | Absent                                | -                                                                |
| 48.     | Giardia                                                                                                 | /10 L   | Absent                                | -                                                                |
| 49.     | Microscopic organisms such as algae, zooplanktons, flagellates, parasites and toxin producing organisms |         | Free from<br>microscopic<br>organisms | -                                                                |

# **Annexure VIII: CPCB Water Quality Criteria:**

| Designated best use                                                        | Quality<br>Class | Primary Water Quality Criteria                                                                                                                                                                                         |
|----------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drinking water source without conventional treatment but with chlorination | А                | <ul> <li>Total coliform organisms         (MPN*/100 ml) shall be 50 or less</li> <li>pH between 6.5 and 8.5</li> <li>Dissolved Oxygen 6 mg/L or more, and</li> <li>Biochemical Oxygen Demand 2 mg/L or less</li> </ul> |
| Outdoor bathing (organized)                                                | В                | <ul> <li>Total coliform organisms<br/>(MPN/100 ml) shall be 500 or less</li> <li>pH between 6.5 and 8.5</li> <li>Dissolved Oxygen 5 mg/L or more, and</li> <li>Biochemical Oxygen Demand 3 mg/L or less</li> </ul>     |
| Drinking water source with conventional treatment                          | С                | <ul> <li>Total coliform organisms (MPN/100ml) shall be 5000 or less</li> <li>pH between 6 and 9</li> <li>Dissolved Oxygen 4 mg/L or more, and</li> <li>Biochemical Oxygen Demand 3 mg/L or less</li> </ul>             |
| Propagation of wildlife and fisheries                                      | D                | <ul> <li>pH between 6.5 and 8.5</li> <li>Dissolved Oxygen 4 mg/L or more, and</li> <li>Free ammonia (as N) 1.2 mg/L or less</li> </ul>                                                                                 |
| Irrigation, industrial cooling, and controlled disposal                    | E                | <ul> <li>pH between 6.0 and 8.5</li> <li>Electrical conductivity less than 2250 micro mhos/cm,</li> <li>Sodium Absorption Ratio less than 26,</li> <li>and Boron less than 2 mg/l.</li> </ul>                          |
|                                                                            | Below E          | ➤ Not Meeting A, B, C, D & E Criteria                                                                                                                                                                                  |

### **Annexure IX: Water Quality Parameters Requirements and Classification**

Water quality parameters are classified into three categories, given in Table (i), (ii) and (iii) (Source: CPCB, 2002, "Water Quality Criteria and Goals", Monitoring of Indian National aquatic Resources Series: MINARS/17/2001-2002).

Table: Basic Water Quality Requirement and Classification (Surface Water + Ground Water)

### i) Simple Parameters:

| Sr.   | Parameters                              | Requirement for Waters of Class             |                                                  |                                         |  |  |
|-------|-----------------------------------------|---------------------------------------------|--------------------------------------------------|-----------------------------------------|--|--|
|       |                                         | A-Excellent                                 | B-Desirable                                      | C-Acceptable                            |  |  |
| (i)   | Sanitary<br>Survey                      | Very Clean<br>neighborhood and<br>catchment | Reasonably clean<br>neighborhood                 | Generally clean<br>neighborhood         |  |  |
| (ii)  | General<br>Appearance                   | No floating matter                          | No floating matter                               | No floating matter                      |  |  |
| (iii) | Colour                                  | Absolutely Colourless                       | Almost colourless,<br>very light shade if<br>any | No colour of<br>anthropogenic<br>origin |  |  |
| (iv)  | Smell                                   | Odourless                                   | Almost odourless                                 | No unpleasant<br>odour                  |  |  |
| (v)   | Transparency                            | >1.0 depth                                  | >0.5 to 0.1m<br>depth                            | >0.2 to 0.5 m<br>depth                  |  |  |
| (vi)  | Ecological*<br>(Presence of<br>Animals) | Fish & Insects                              | Fish & Insects                                   | Fish & Insects                          |  |  |

<sup>\*</sup> Applicable to only surface water

### ii) Regular Monitoring Parameters:

| Sr.   | Parameters                   | Requirement for Waters of Class |             |              |  |
|-------|------------------------------|---------------------------------|-------------|--------------|--|
|       |                              | A Excellent                     | B-Desirable | C-Acceptable |  |
| (i)   | pH                           | 7.0 to 8.5                      | 6.5 to 9.0  | 6.5 to 9.0   |  |
| (ii)  | DO (% Saturation)            | 90-110                          | 80-120      | 60-140       |  |
| (iii) | BOD, mg/l                    | Below 2                         | Below 5     | Below 8      |  |
| (iv)  | EC, µmhos/cm                 | <1000                           | <2250       | <4000        |  |
| (v)   | (NO₂+NO₃)-<br>Nitrogen, mg/l | <5                              | <10         | <15          |  |
| (vi)  | Suspended solid, mg/l        | <25                             | <50         | <100         |  |

| Sr.    | Parameters                     | Requirement for Waters of Class |                    |                       |  |
|--------|--------------------------------|---------------------------------|--------------------|-----------------------|--|
|        |                                | A Excellent                     | B-Desirable        | C-Acceptable          |  |
| (vii)  | Fecal Coliform,<br>MPN/ 100 ml | <20 per 100 ml                  | <200 per 100 ml    | <2000 per 100<br>ml   |  |
| (viii) | Bio-assay<br>(Zebra Fish)      | No death in 5<br>days           | No death in 3 days | No death in 2<br>days |  |

### Note:

- 1. Dissolved Oxygen (DO) not applicable for ground waters.
- 2. Dissolved Oxygen in eutrophicated waters should include measurement for diurnal variation.
- 3. Suspended solid limit is applicable only during non-monsoon period.
- 4. Faecal Coliform values should meet for 90% times.
- 5. Static Bio-Assay method may be adopted.

### iii) Specific Parameters: (Only in case of need/apprehensions)

| Sr.    | Parameters                                | Requirement for Waters of Class |             |              |  |
|--------|-------------------------------------------|---------------------------------|-------------|--------------|--|
|        |                                           | A- Excellent                    | B-Desirable | C-Acceptable |  |
| (i)    | Total Phosphorous                         | <0.1 mg/l                       | <0.2 mg/l   | <0.3 mg/l    |  |
| (ii)   | T.K.N                                     | <1.0 mg/l                       | <2.0 mg/l   | <3.0 mg/l    |  |
| (iii)  | Total Ammonia<br>(NH4 + NH3)-<br>Nitrogen | <0.5 mg/l                       | <1.0 mg/l   | <1.5 mg/l    |  |
| (iv)   | Phenols                                   | <2 µg/l                         | <5 μg/l     | <10 µg/l     |  |
| (v)    | Surface Active<br>Agents                  | <20 µg/l                        | <100 µg/l   | <200 µg/l    |  |
| (vi)   | Organo Chlorine<br>Pesticides             | <0.05 µg/l                      | <0.1 µg/l   | <0.2 μg/l    |  |
| (vii)  | PAH                                       | <0.05 µg/l                      | <0.1 µg/l   | <0.2 µg/l    |  |
| (viii) | PCB and PCT                               | <0.01 µg/l                      | <0.01 µg/l  | <0.02 µg/l   |  |
| (ix)   | Zinc                                      | <100 µg/l                       | <200 µg/l   | <300 µg/l    |  |
| (x)    | Nickel                                    | <50 µg/l                        | <100 µg/l   | <200 µg/l    |  |
| (xi)   | Copper                                    | <20 µg/l                        | <50 μg/l    | <100 µg/l    |  |
| (xii)  | Chromium (Total)                          | <20 µg/l                        | <50 μg/l    | <100 µg/l    |  |

Dambivli 78

| Sr.    | Parameters      | Requirement for Waters of Class |             |              |
|--------|-----------------|---------------------------------|-------------|--------------|
|        |                 | A- Excellent                    | B-Desirable | C-Acceptable |
| (xiii) | Arsenic (Total) | <20 µg/l                        | <50 µg/l    | <100 µg/l    |
| (xiv)  | Lead            | <20 µg/l                        | <50 µg/l    | <100 µg/l    |
| (xv)   | Cadmium         | <1.0 µg/l                       | <2.5 µg/l   | <5.0 µg/l    |
| (xvi)  | Mercury         | <0.2 µg/l                       | <0.5 µg/l   | <1.0 µg/l    |