# ACTION PLAN FOR INDUSTRIAL CLUSTER IN CRITICALLY POLLUTED AREA

Monitoring, sampling, analysis of Stack, Ambient Air Quality, Surface Water, Ground Water, Waste Water

# चंद्रपूर Chandrapur



### **Maharashtra Pollution Control Board**

Kalptaru Point, Sion East, Mumbai - 400022 June, 2017

## Index

| Ac | kno  | wledgement:3                                                                                                                                   |
|----|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Αb | bre  | viations:4                                                                                                                                     |
| 1. | In   | troduction:5                                                                                                                                   |
| 2. | Sc   | cope of Work6                                                                                                                                  |
| 2  | 2.1  | Stack Emission Parameters                                                                                                                      |
| 2  | 2.2  | Ambient Air Quality Parameters                                                                                                                 |
| 2  | 2.3  | Water/Waste Water Parameters                                                                                                                   |
| 2  | 2.4  | Methodology followed in Sampling and Analysis                                                                                                  |
| 3. | Re   | esult of Analysis:10                                                                                                                           |
|    | 3.1  | Stack Emission:                                                                                                                                |
|    | 3.2  | Ambient Air Quality:                                                                                                                           |
| :  | 3.3  | Water/ Waste Water Quality:                                                                                                                    |
| 4  | 4 (  | Ground Water Quality:81                                                                                                                        |
| 4. | Sı   | ımmary of the results119                                                                                                                       |
| 4  | 4.1  | Stack Emission Monitoring:                                                                                                                     |
| 4  | 1.2  | Ambient Air Quality Monitoring:                                                                                                                |
| 4  | 4.3  | Waste Water Quality Monitoring:                                                                                                                |
| 5. | CE   | EPI Score128                                                                                                                                   |
| į  | 5.1  | Comparison of CEPI scores:                                                                                                                     |
| 6. | Co   | onclusion133                                                                                                                                   |
| 7. | Ef   | forts taken for the reduction in pollution:134                                                                                                 |
| 8. | Pł   | notographsError! Bookmark not defined                                                                                                          |
| 9. | Re   | eferences135                                                                                                                                   |
| 10 | . Ar | nnexure136                                                                                                                                     |
| /  | Anne | exure I: Stack Emission Sampling and Analysis Methodology                                                                                      |
| /  | ٩nn  | exure II: Ambient Air Sampling and Analysis Methodology                                                                                        |
| /  | Anne | exure III: Water/Wastewater Sampling and Analysis Methodology 141                                                                              |
| /  | ٩nn  | exure IV: National Ambient Air Quality Standards, 2009 145                                                                                     |
|    |      | exure V: General Standards for Discharge of Environmental Pollutants, Part A<br>Juents (The Environment (Protection) Rules, 1986, Schedule VI) |
| ,  | ٩nn  | exure VI: Drinking Water Specification-IS 10500:2012 150                                                                                       |
| ,  | ٩nn  | exure VII: CPCB Water Quality Criteria:                                                                                                        |
| ,  | Anne | exure VIII: Water Quality Parameters Requirements and Classification 155                                                                       |

#### **Acknowledgement:**

We gratefully acknowledge **Dr. P. Anbalagan**, Member Secretary, Maharashtra Pollution Control Board, for entrusting this very important and prestigious project to us.

Our special thanks are to Regional and Sub Regional Officer of the concerned areas, for guidance during the sampling. The contribution of Shri V M Motghare (Joint director APC) is appreciated.

We would also like to extend our thanks to the concerned staff of Regional Hospitals, who has provided us the health data, which is the most important component of this revised concept of CEPI.

By undertaking this project and completing in schedule time, we consider ourselves very lucky since we have helped the mankind by giving the data on pollution load and further action by the Board, to bring down the pollution level.

We also thank our associates for working on this project for making the write up, making graphs and feeding the data on computer.

This acknowledgement will be incomplete if we do not thank our laboratory analysts and others who made this project a success by timely analysing the samples.

We also thank our sampling team members for conducting the sampling in this vast area.

#### **Abbreviations:**

**APHA** American Public Health Association

**BDL** Below Detection Limit

**BOD** Biochemical Oxygen Demand

**CEPI** Comprehensive Environmental Pollution Index

**CETP** Common Effluent Treatment Plant

**COD** Chemical Oxygen Demand

**CPA** Critically Polluted Areas

**SPA** Severely Polluted Areas

**DO** Dissolved Oxygen

**ETP** Effluent Treatment Plant

MIBK Methyl Isobutyl Ketone

MPCB Maharashtra Pollution Control Board

**NAAQS** National Ambient Air Quality Standards

**NO<sub>x</sub>** Oxides of Nitrogen

**BDL** Not Detected

**PAH** Poly Aromatic Hydrocarbons

**PCB** Poly Chlorinated Biphenyls

**PCT** Poly Chlorinated Terphenyls

 $PM_{10}$  Particulate Matter (size less than 10 µm)

 $PM_{2.5}$  Particulate Matter (size less than 2.5 µm)

**SO<sub>2</sub>** Sulphur Dioxide

**STAP** Short Term Action Plan

**WHO** World Health Organization

#### 1. Introduction:

Rapid modernization and industrialization worldwide has not only uprooted to the economic development, but has increased pollution of land, air and water. This has also destroyed our habitat and environment too. Pollutants discharged from the industries have widespread implications and one of the unpleasant effects on water bodies and air. Long term exposure to the polluted air and water causes chronic health problems, making the issue industrial pollution into severe one. So, scientists are exploring the quantum of pollution load as well as to device certain strategies and technologies so that our sustainable development would not be jeopardized otherwise our long-cherished dream of establishing eco-socialism on this watery planet could not come true.

In view of this, Central Pollution Control Board (CPCB) has evolved the concept of Comprehensive Environmental Pollution Index (CEPI) during 2009-10 as a tool for comprehensive environmental assessment of prominent industrial clusters and formulation of remedial Action Plans for the identified critically polluted areas. Later-on proposals were received from the SPCBs, State Governments, and Industrial Associations and concerned Stake-holders for revisiting the criteria of assessment under CEPI concept. After careful examination and consideration of the suggestions of concerned stake-holders, it was decided to prepare the revised concept of CEPI by eliminating the subjective factors but retaining the factors which can be measured precisely. Hence, revised concept came into existence, which is termed as Revised CEPI Version 2016.

The present report is also based on the revised CEPI version 2016. The results of the application of the Comprehensive Environmental Pollution Index (CEPI) to selected industrial clusters or areas are presented in this report. The main objective of the study is to identify polluted industrial clusters or areas in order to take concerted action and to centrally monitor them at the national level to improve the current status of their environmental components such as air and water quality data, ecological damage, and visual environmental conditions. A total of 88 industrial areas or clusters have been selected by the Central Pollution Control Board (CPCB) in consultation with the Ministry of Environment & Forests Government of India for the study. The index captures the various dimensions of environment including air, water and land. Comprehensive Environmental Pollution Index (CEPI), which is a rational number to characterize the environmental quality at a given location following the algorithm of source, pathway and receptor have been developed.

About 6000 small, medium and large-scale industries are located at Chandrapur district. Chandrapur has large deposits of coal and lime stone. The mammoth coal mines around the city also contribute to the heavy industrialization of the city. Western Coalfields Limited (WCL), a subsidiary of Coal India, has many mines here. Chandrapur Super Thermal Power Station by Maharashtra State Power Generation Company Limited is its biggest pit head thermal power station. The city houses various cement factories in its vicinity. They are Manikgarh Cement, a division of Century Textile and Industries, part of the BK Birla group of companies, UltraTech Cement (formerly L&T Cement), a division of Grasim Industries, part of the Aditya Birla Group; Chandrapur Cement Works, a division of Associated Cement Companies, part of Holcim Group; and Maratha Cement Works, part of Ambuja Cements Limited. The district also boasts of having Ballarpur Industries Limited, the largest manufacturer and exporter of paper in India. Other major industries include a Chandrapur ferro alloy plant (formerly Maharashtra Elektrosmelt Ltd), a ferromanganese plant, and a silico-manganese plant of Steel Authority of India Limited. Chandrapur's ferro alloy plant is the largest manganese-based ferro alloy producer in the country.

#### 2. Scope of Work

The Scope of Work consisted of the following:

Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water, and Ground Water Quality for identified five Critically Polluted areas (CPAs) in Maharashtra i.e. **Chandrapur, Dombivli, Aurangabad, Navi Mumbai,**and**Tarapur**and 3 Severely Polluted areas (SPAs) in Maharashtra i.e. **Chembur, Pimpri-Chinchwad andNashik**as per standard methods.

- At each of the 5 CPAsand 3 SPAs, 24 hourly ambient air quality monitoring to be carried out.
- Representative samples for surface water quality, waste water quality and Ground Water quality to be collected from prominent surface and Ground Water bodies located in and around the clusters/areas.
- Submission of complete monitoring, sampling and analysis reports including the summary of the parameters exceeding the prescribed standards/norms for all the 5 CPAsand 3 SPAs.
- Submission of 3 copies of final report with photographs at prominent locations and the CD (soft copy) on completion of the project for every critically polluted and severely polluted area separately.

# Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water and Ground Water Quality for Chandrapur:

- The sampling was carried out in 4 days i.e. on 1<sup>st</sup>, 2<sup>nd</sup>, 6<sup>th</sup>, and7<sup>th</sup> June2017 for MIDC Tadali, MIDC Ghuggus, MIDC Chandrapur and MIDC Ballarpur.
- In MIDC Tadali, a total of 6 Stack Monitoring Samples, 3 Ambient Air Quality Monitoring Samples, 5 Waste Water Samples, 4 Ground Water Samples and 2 VOC Samples were collected and analyzed.
- In MIDC Ghuggus, a total of 6 Stack Monitoring Samples, 3 Ambient Air Quality Monitoring Samples, 6 Waste Water Samples, 3 Ground Water Samples and 2 VOC Samples were collected and analyzed.
- In MIDC Chandrapur, a total of 4 Stack Monitoring Samples, 3 Ambient Air Quality Monitoring Samples, 5 Waste Water Samples, 3 Ground Water Samples and 2 VOC Samples were collected and analyzed.
- In MIDC Ballarpur, a total of 6 Stack Monitoring Samples, 3 Ambient Air Quality Monitoring Samples, 6 Waste Water Samples, 3 Ground Water Samples and 2 VOC Samples were collected and analyzed.
- Health data of last 05 years (2011-2016) was collected from the hospitals nearby industrial clusters under study.

#### 2.1 Stack Emission Parameters

#### The Stack Emissions were analyzed with the following parameters:

- 1. Acid Mist
- 2. Ammonia
- 3. Carbon Monoxide
- 4. Chlorine
- 5. Fluoride(gaseous)
- 6. Fluoride (particulate)
- 7. Hydrogen Chloride
- 8. Hydrogen Sulphide
- 9. Oxides of Nitrogen
- 10. Oxygen
- 11. Polyaromatic Hydrocarbons (Particulate)
- 12. Suspended Particulate Matter
- 13. Sulphur Dioxide
- 14. Benzene
- 15. Toluene
- 16. Xylene
- 17. Volatile Organic Compounds (VOCs)

#### 2.2 Ambient Air Quality Parameters

#### The Ambient Air Quality was analyzed with the following parameters:

- 1. Sulphur Dioxide (SO<sub>2</sub>)
- 2. Nitrogen Dioxide (NO<sub>2</sub>)
- 3. Particulate Matter (PM10)
- 4. Particulate Matter (PM2.5)
- 5. Ozone  $(O_3)$
- 6. Lead (Pb)
- 7. Carbon Monoxide (CO)

- 8. Ammonia (NH<sub>3</sub>)
- 9. Benzene (C<sub>6</sub>H<sub>6</sub>)
- 10. Benzo (a) Pyrene (BaP) (Particulate Phase Only)
- 11. Arsenic (As)
- 12. Nickel (Ni)

#### 2.3 Water/Waste Water Parameters

#### The Water/Waste Water wasanalyzed with the following parameters:

- a. Prominent Surface Water bodies such as outfalls of CETPs, ETPs, treated effluent drainage, river, canal, ponds, lakes and other such water supply resources flowing through the area or flowing adjoining the CPA.
- b. Ground Water Quality data of prominent Ground Water resources such as observation wells of Central Ground Water Board, drinking water wells, hand pumps, bore wells, hand pumps, bore wells and other such water supply resources located in the industrial cluster/area under consideration or in the peripheral areas.

# Basic water quality parameters for surface water and Ground Water both are as follows:

#### i. Simple Parameters:

- 1. Sanitary Survey
- 2. General Appearance
- 3. Colour
- 4. Smell
- 5. Transparency
- 6. Ecological (Presence of animals like fish, insects) (Applicable to only surface water)

#### ii. Regular Monitoring Parameters:

- 7. pH
- 8. Oil & Grease
- 9. Suspended Solids
- 10. Dissolved Oxygen (% saturation) (Not applicable for ground waters)
- 11. Chemical Oxygen Demand
- 12. Biochemical Oxygen Demand

- 13. Electrical Conductivity
- 14. Nitrite-Nitrogen
- 15. Nitrate-Nitrogen
- 16.  $(NO_2 + NO_3)$ -Nitrogen
- 17. Free Ammonia
- 18. Total Residual Chlorine
- 19. Cyanide
- 20. Fluoride
- 21. Sulphide
- 22. Dissolved Phosphate
- 23. Sodium Absorption Ratio (SAR)
- 24. Total Coliforms (MPN/100 ml)
- 25. Faecal Coliforms (MPN/100 ml)

#### iii. Special Parameters:

- 26. Total Phosphorous
- 27. Total Kjeldahl Nitrogen(TKN)
- 28. Total Ammonia (NH<sub>4</sub> +NH<sub>3</sub>)-Nitrogen
- 29. Phenols
- 30. Surface Active Agents
- 31. Organo Chlorine Pesticides
- 32. Polynuclear aromatic hydrocarbons (PAH)
- 33. Polychlorinated Biphenyls (PCB) and Polychlorinated Terphenyls (PCT)
- 34. Zinc
- 35. Nickel
- 36. Copper
- 37. Hexavalent Chromium
- 38. Chromium (Total)
- 39. Arsenic (Total)

- 40. Lead
- 41. Cadmium
- 42. Mercury
- 43. Manganese
- 44. Iron
- 45. Vanadium
- 46. Selenium
- 47. Boron

#### iv. Bioassay (Zebra Fish) Test: For specified samples only.

#### 2.4 Methodology followed in Sampling and Analysis

Industries, places and locations that have been chosen for the sampling are representative of the city/area. Sampling has been done at the potential polluted areas to arrive at the CEPI. This will further help the authorities to monitor the areas to improve the status of their environmental components such as air and water quality data, ecological damage and visual environmental conditions. Methodology for sampling, preservation and analysis have been done according to the references incorporated. Methodology of several types of parameters is presented under following annexure:

- 1. Stack Emission Sampling and Analysis Methodology Annexure I
- 2. Ambient Air Sampling and Analysis Methodology Annexure II
- 3. Water/Wastewater Sampling and Analysis Methodology Annexure III

#### 3. Result of Analysis:

Results of Analysis are tabulated below for Stack Emission Monitoring, Ambient Air Quality Monitoring, Waste Water Analysis and Water Analysis. These are followed by their respective graphical representation.

#### \*Kindly note:

- NA specifies the sample is not analysed for the specific parameter.
- BDL specifies that the result obtained is below detection limit.

Please Note: Industrial clusters observed with below detection limit parameters are NOT included into the graphs

#### 3.1 Stack Emission:

Stack Emission Monitoring Results are compared against The Environment (Protection) Rules, 1986 General Emission Standard - Part D.

| Sr. | Name of Industries                    | Stack Identity                    | MIDC       | Table<br>No. |
|-----|---------------------------------------|-----------------------------------|------------|--------------|
| 1.  | Gopani Iron & Power (India) Pvt. Ltd. | 100 TPD Kiln 1 &<br>2-ESP Outlet  | Tadali     | I            |
| 2.  | Gopani Iron & Power (India) Pvt. Ltd. | 100 TPD Kiln 3 &<br>4 -ESP Outlet | Tadali     | I            |
| 3.  | Gopani Iron & Power (India) Pvt. Ltd. | DES-1 100 TPD -<br>Bag Filter     | Tadali     | II           |
| 4.  | Gopani Iron & Power (India) Pvt. Ltd. | SMS (Furnace)<br>3 & 4            | Tadali     | п            |
| 5.  | Grace Industries Ltd.                 | WHRBs Kiln<br>3&4                 | Tadali     | ш            |
| 6.  | Dhariwal Infrastructure Ltd.          | Unit -2,<br>300MW Power<br>Plant  | Tadali     | ш            |
| 7.  | ACC Cement Ltd.                       | Boiler Stack<br>25 MW             | Ghuggus    | IV           |
| 8.  | ACC Cement Ltd.                       | Boiler Stack<br>15 MW             | Ghuggus    | IV           |
| 9.  | ACC Cement Ltd.                       | Kiln RABH -ESP<br>Outlet          | Ghuggus    | V            |
| 10. | Lloyds Metal& Energy Ltd.             | 500TPD Kiln                       | Ghuggus    | V            |
| 11. | Lloyds Metal& Energy Ltd.             | WHRBS 30MW<br>Power Plant         | Ghuggus    | VI           |
| 12. | Lloyds Metal& Energy Ltd.             | DES-7 of 500TPD<br>Kiln           | Ghuggus    | VI           |
| 13. | Superb Hygienic Ltd.                  | Incinerator                       | Chandrapur | VII          |
| 14. | Sourav Oil & Mill                     | Boiler                            | Chandrapur | VII          |
| 15. | Maharashtra Carbon                    | Heater with Bag<br>Filter         | Chandrapur | VIII         |
| 16. | Vinar Ispat Ltd.                      | Reheating<br>Furnace              | Chandrapur | VIII         |

| Sr. | Name of Industries                    | Stack Identity                    | MIDC       | Table<br>No. |
|-----|---------------------------------------|-----------------------------------|------------|--------------|
| 17. | BILT Graphic PPL                      | Recovery Stack<br>Boiler No. 3    | Ballarpur  | IX           |
| 18. | BILT Graphic PPL                      | Coal Fired Boiler<br>No. 8        | Ballarpur  | IX           |
| 19. | BILT Graphic PPL                      | Coal Fired Boiler<br>No. 9        | Ballarpur  | x            |
| 20. | BILT Graphic PPL                      | Lime Kiln II-ESP<br>Outlet        | Ballarpur  | х            |
| 21. | Bamni Proteins                        | Boiler Stack-Dust<br>Collector    | Ballarpur  | ΧI           |
| 22. | Bamni Proteins                        | HTF-Recuperator                   | Ballarpur  | ΧI           |
| 23. | Gopani Iron & Power (India) Pvt. Ltd. | 100 TPD Kiln 3 &<br>4 -ESP Outlet | Tadali     | XII          |
| 24. | Gopani Iron & Power (India) Pvt. Ltd. | SMS (Furnace)<br>3 & 4            | Tadali     | XII          |
| 25. | ACC Cement Ltd.                       | Boiler Stack<br>25 MW             | Ghuggus    | XIII         |
| 26. | Lloyds Metal& Energy Ltd.             | 500TPD Kiln                       | Ghuggus    | XIII         |
| 27. | Superb Hygienic Ltd.                  | Incinerator                       | Chandrapur | XIV          |
| 28. | Sourav Oil & Mill                     | Boiler                            | Chandrapur | XIV          |
| 29. | BILT Graphic PPL                      | Lime Kiln II-ESP<br>Outlet        | Ballarpur  | xv           |
| 30. | Bamni Proteins                        | HTF-Recuperator                   | Ballarpur  | ΧV           |

<sup>\*</sup>The VOC result of stack emission is provided in Table No. XII, XIII, XIV & XV

Table No. I

| Name   | of Industries                        | Gopani Iron & Power (India) Pvt. Ltd. (100 TPD Kiln 1 & 2-ESP Outlet) | Gopani Iron & Power (India) Pvt. Ltd. (100 TPD Kiln 3 & 4-ESP Outlet) |          |
|--------|--------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------|
| Date c | f Sampling                           |                                                                       | 01.06.17                                                              | 01.06.17 |
| Sr.    | Parameter                            | Unit                                                                  | Res                                                                   | ults     |
| 1.     | Particulate Matter(as PM)            | mg/Nm³                                                                | 39 36                                                                 |          |
|        | Std. Limit                           | mg/Nm³                                                                | 100                                                                   | 100      |
| 2.     | Sulphur Dioxide(as SO <sub>2</sub> ) | mg/Nm³                                                                | 463                                                                   | 507      |
|        |                                      | kg/day                                                                | 921                                                                   | 839      |
|        | Std. Limit                           | mg/Nm³                                                                | 200                                                                   | 200      |
| 3.     | Nitrogen Dioxide (NO <sub>2</sub> )  | mg/Nm <sup>3</sup>                                                    | 21.8                                                                  | 24.0     |
|        | Std. Limit                           | mg/Nm³                                                                | 150                                                                   | 150      |
| 4.     | Carbon Monoxide (CO)                 | mg/Nm³                                                                | 88.3                                                                  | 75.8     |

#### Table No. II

| Name   | of Industries                        | Gopani Iron &<br>Power (India)<br>Pvt. Ltd.<br>(DES-1 100 TPD -<br>Bag Filter) | Gopani Iron &<br>Power (India)<br>Pvt. Ltd.<br>(SMS Furnace 3 &<br>4) |     |
|--------|--------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----|
| Date o | f Sampling                           | 01.06.17                                                                       | 01.06.17                                                              |     |
| Sr.    | Parameter                            | Unit                                                                           | Results                                                               |     |
| 1.     | Particulate Matter(as PM)            | mg/Nm³                                                                         | 49                                                                    | BDL |
|        | Std. Limit                           | mg/Nm³                                                                         | 100                                                                   | 100 |
| 2.     | Sulphur Diovido(25 SO.)              | mg/Nm³                                                                         | BDL                                                                   | BDL |
| ۷.     | Sulphur Dioxide(as SO <sub>2</sub> ) | kg/day                                                                         | BDL                                                                   | BDL |
|        | Std. Limit                           | mg/Nm³                                                                         | 200                                                                   | 200 |

| Name of Industries |                                     |                    | Gopani Iron &<br>Power (India)<br>Pvt. Ltd.<br>(DES-1 100 TPD -<br>Bag Filter) | Gopani Iron & Power (India) Pvt. Ltd. (SMS Furnace 3 & 4) |
|--------------------|-------------------------------------|--------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|
| Date o             | of Sampling                         |                    | 01.06.17                                                                       | 01.06.17                                                  |
| 3.                 | Nitrogen Dioxide (NO <sub>2</sub> ) | mg/Nm <sup>3</sup> | BDL                                                                            | BDL                                                       |
|                    | Std. Limit                          | mg/Nm³             | 150                                                                            | 150                                                       |
| 4.                 | Carbon Monoxide (CO)                | mg/Nm³             | NA                                                                             | NA                                                        |

#### Table No. III

| Name   | of Industries                        | Grace<br>Industries Ltd.<br>(WHRBs Kiln 3 & 4) | Dhariwal<br>Infrastructure<br>Ltd.<br>(Unit -2, 300 MW<br>Power Plant) |          |
|--------|--------------------------------------|------------------------------------------------|------------------------------------------------------------------------|----------|
| Date o | of Sampling                          |                                                | 02.06.17                                                               | 02.06.17 |
| Sr.    | Parameter                            | Unit                                           | Res                                                                    | ults     |
| 1.     | Particulate Matter(as PM)            | mg/Nm³                                         | 70                                                                     | 49       |
|        | Std. Limit                           | mg/Nm³                                         | 100                                                                    | 50       |
| 2.     | Sulphur Dioxide(as SO <sub>2</sub> ) | mg/Nm <sup>3</sup>                             | 786                                                                    | 1270     |
|        |                                      | kg/day                                         | 3632                                                                   | 38534    |
|        | Std. Limit                           | mg/Nm³                                         | 200                                                                    | 200      |
| 3.     | Nitrogen Dioxide (NO <sub>2</sub> )  | mg/Nm³                                         | 50                                                                     | 168      |
|        | Std. Limit                           | mg/Nm³                                         | 150                                                                    | 150      |
| 4.     | Carbon Monoxide (CO)                 | mg/Nm³                                         | 125                                                                    | 7.32     |

#### Table No.IV

| Name   | of Industries                        | ACC Cement Ltd<br>(Boiler Stack<br>25 MW) | ACC Cement Ltd<br>(Boiler Stack<br>15 MW) |          |
|--------|--------------------------------------|-------------------------------------------|-------------------------------------------|----------|
| Date o | f Sampling                           |                                           | 01.06.17                                  | 01.06.17 |
| Sr.    | Parameter                            | Unit                                      | Results                                   |          |
| 1.     | Particulate Matter(as PM)            | mg/Nm³                                    | 22 21                                     |          |
|        | Std. Limit                           | mg/Nm³                                    | 50                                        | 50       |
| 2.     | Sulphur Dioxide(as SO <sub>2</sub> ) | mg/Nm <sup>3</sup>                        | 696                                       | 556      |
|        |                                      | kg/day                                    | 2364                                      | 1256     |
|        | Std. Limit                           | mg/Nm³                                    | 100                                       | 100      |
| 3.     | Nitrogen Dioxide (NO <sub>2</sub> )  | mg/Nm <sup>3</sup>                        | 70                                        | 105      |
|        | Std. Limit                           | mg/Nm³                                    | 200                                       | 200      |
| 4.     | Carbon Monoxide (CO)                 | mg/Nm³                                    | 20.5                                      | 30.5     |

#### Table No. V

| Name   | of Industries                        | ACC Cement Ltd (Kiln RABH -ESP Outlet) | Lloyds Metal &<br>Energy Ltd.<br>(500 TPD Kiln) |          |
|--------|--------------------------------------|----------------------------------------|-------------------------------------------------|----------|
| Date o | f Sampling                           |                                        | 01.06.17                                        | 02.06.17 |
| Sr.    | Parameter                            | Unit                                   | Results                                         |          |
| 1.     | Particulate Matter(as PM)            | mg/Nm³                                 | 30                                              | 41       |
|        | Std. Limit                           | mg/Nm³                                 | 50                                              | 50       |
| 2      | Culphur Diovido(pa CO )              | mg/Nm <sup>3</sup>                     | 95                                              | 253      |
| 2.     | Sulphur Dioxide(as SO <sub>2</sub> ) | kg/day                                 | 1339                                            | 443      |
|        | Std. Limit                           | mg/Nm³                                 | 100                                             | 200      |

| Name of Industries |                                     |                    | ACC Cement Ltd (Kiln RABH -ESP Outlet) | Lloyds Metal &<br>Energy Ltd.<br>(500 TPD Kiln) |
|--------------------|-------------------------------------|--------------------|----------------------------------------|-------------------------------------------------|
| Date o             | f Sampling                          | 01.06.17           | 02.06.17                               |                                                 |
| 3.                 | Nitrogen Dioxide (NO <sub>2</sub> ) | mg/Nm³             | 106                                    | 59.5                                            |
|                    | Std. Limit                          | mg/Nm³             | 200                                    | 150                                             |
| 4.                 | Carbon Monoxide (CO)                | mg/Nm <sup>3</sup> | 193                                    | 53                                              |

#### Table No. VI

| Name   | of Industries                        | Lloyds Metal &<br>Energy Ltd.<br>(WHRBS 30MW<br>Power Plant) | Lloyds Metal &<br>Energy Ltd.<br>(DES-7 of 500TPD<br>Kiln) |          |
|--------|--------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|----------|
| Date o | of Sampling                          |                                                              | 02.06.17                                                   | 02.06.17 |
| Sr.    | Parameter                            | Unit                                                         | Res                                                        | ults     |
| 1.     | Particulate Matter(as PM)            | mg/Nm³                                                       | 21                                                         | 35       |
|        | Std. Limit                           | mg/Nm³                                                       | 50                                                         | 50       |
| 2.     | Sulphur Dioxide(as SO <sub>2</sub> ) | mg/Nm³                                                       | 554                                                        | BDL      |
|        |                                      | kg/day                                                       | 4875                                                       | BDL      |
|        | Std. Limit                           | mg/Nm³                                                       | 200                                                        | 200      |
| 3.     | Nitrogen Dioxide (NO <sub>2</sub> )  | mg/Nm³                                                       | 53.1                                                       | 41.4     |
|        | Std. Limit                           | mg/Nm³                                                       | 150                                                        | 150      |
| 4.     | Carbon Monoxide (CO)                 | mg/Nm³                                                       | 0.80                                                       | NA       |

#### Table No. VII

| Name   | of Industries                        | Superb<br>Hygienic Ltd.<br>(Incinerator) | Sourav Oil &<br>Mill<br>(Boiler) |          |
|--------|--------------------------------------|------------------------------------------|----------------------------------|----------|
| Date o | f Sampling                           |                                          | 06.06.17                         | 06.06.17 |
| Sr.    | Parameter                            | Unit                                     | Results                          |          |
| 1.     | Particulate Matter(as PM)            | mg/Nm³                                   | 32                               | 18       |
|        | Std. Limit                           | mg/Nm³                                   | 150                              | 150      |
| 2.     | Sulphur Dioxide(as SO <sub>2</sub> ) | mg/Nm <sup>3</sup>                       | 26.9                             | 337      |
| 2.     |                                      | kg/day                                   | 2.0                              | 6.2      |
|        | Std. Limit                           | mg/Nm³                                   | 100                              | 100      |
| 3.     | Nitrogen Dioxide (NO <sub>2</sub> )  | mg/Nm³                                   | 26                               | 27.7     |
|        | Std. Limit                           | mg/Nm³                                   | 50                               | 50       |
| 4.     | Carbon Monoxide (CO)                 | mg/Nm³                                   | 12.0                             | 4.83     |

#### Table No. VIII

| Name of Industries |                                      | Maharashtra<br>Carbon<br>(Heater with Bag<br>Filter) | Vinar Ispat Ltd. (Reheating Furnace) |          |  |
|--------------------|--------------------------------------|------------------------------------------------------|--------------------------------------|----------|--|
| Date o             | f Sampling                           |                                                      | 06.06.17                             | 06.06.17 |  |
| Sr.                | Parameter                            | Unit                                                 | Results                              |          |  |
| 1.                 | Particulate Matter(as PM)            | mg/Nm³                                               | 55                                   | 65       |  |
|                    | Std. Limit                           | mg/Nm³                                               | 150                                  | 150      |  |
| 2.                 | Sulphur Dioxide(as SO <sub>2</sub> ) | mg/Nm <sup>3</sup>                                   | 110                                  | 280      |  |
|                    |                                      |                                                      | 5.6                                  | 390      |  |
|                    | Std. Limit                           | mg/Nm³                                               | 100                                  | 100      |  |

| Name of Industries |                                     | Maharashtra<br>Carbon<br>(Heater with Bag<br>Filter) | Vinar Ispat Ltd. (Reheating Furnace) |          |
|--------------------|-------------------------------------|------------------------------------------------------|--------------------------------------|----------|
| Date o             | Date of Sampling                    |                                                      | 06.06.17                             | 06.06.17 |
| 3.                 | Nitrogen Dioxide (NO <sub>2</sub> ) | mg/Nm³                                               | 27.7                                 | 38.3     |
|                    | Std. Limit                          | mg/Nm³                                               | 50                                   | 50       |
| 4.                 | Carbon Monoxide (CO)                | mg/Nm <sup>3</sup>                                   | 66.0                                 | 42.0     |

#### Table No. IX

| Name of Industries |                                      | BILT Graphic<br>PPL<br>(Recovery Stack<br>Boiler No. 3) | BILT Graphic<br>PPL<br>(Coal Fired Boiler<br>No. 8) |          |
|--------------------|--------------------------------------|---------------------------------------------------------|-----------------------------------------------------|----------|
| Date o             | of Sampling                          |                                                         | 06.06.17                                            | 06.06.17 |
| Sr.                | Parameter                            | Unit                                                    | Results                                             |          |
| 1.                 | Particulate Matter(as PM)            | mg/Nm³                                                  | BDL 50                                              |          |
|                    | Std. Limit                           | mg/Nm³                                                  | 150                                                 | 150      |
| 2.                 | Sulphur Dioxide(as SO <sub>2</sub> ) | mg/Nm³                                                  | 55.9                                                | 285      |
| 2.                 | Sulphul Bloxide(d3 302)              | kg/day                                                  | 741 1495                                            | 1495     |
|                    | Std. Limit                           | mg/Nm³                                                  | 100                                                 | 100      |
| 3.                 | Nitrogen Dioxide (NO <sub>2</sub> )  | mg/Nm <sup>3</sup>                                      | 83                                                  | 90.4     |
|                    | Std. Limit                           | mg/Nm³                                                  | 50                                                  | 50       |
| 4.                 | Carbon Monoxide (CO)                 | mg/Nm³                                                  | 29.2                                                | 21.7     |

Table No. X

| Name of Industries |                                      | BILT Graphic<br>PPL<br>(Coal Fired Boiler<br>No. 9) | BILT Graphic<br>PPL<br>(Lime Kiln II-ESP<br>Outlet) |          |
|--------------------|--------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------|
| Date               | of Sampling                          |                                                     | 06.06.17                                            | 06.06.17 |
| Sr.                | Parameter                            | Unit                                                | Res                                                 | ults     |
| 1.                 | Particulate Matter(as PM)            | mg/Nm <sup>3</sup>                                  | 56 BDL                                              |          |
|                    | Std. Limit                           | mg/Nm³                                              | 150                                                 | 150      |
| 2.                 | Sulphur Dioxide(as SO <sub>2</sub> ) | mg/Nm³                                              | 574                                                 | 22.4     |
| ۷.                 | Sulphul Bloxide(d3 30 <sub>2</sub> ) | kg/day                                              | 6440                                                | 58.0     |
|                    | Std. Limit                           | mg/Nm³                                              | 100                                                 | 100      |
| 3.                 | Nitrogen Dioxide (NO <sub>2</sub> )  | mg/Nm³                                              | 108                                                 | 31.2     |
|                    | Std. Limit                           | mg/Nm³                                              | 50                                                  | 50       |
| 4.                 | Carbon Monoxide (CO)                 | mg/Nm³                                              | 23.6                                                | 13       |

#### Table No. XI

| Name of Industries |                                      | Bamni Proteins<br>(Boiler Stack-Dust<br>Collector) | Bamni Proteins<br>(HTF-Recuperator) |          |  |
|--------------------|--------------------------------------|----------------------------------------------------|-------------------------------------|----------|--|
| Date               | of Sampling                          |                                                    | 07.06.17                            | 07.06.17 |  |
| Sr.                | Parameter                            | Unit                                               | Results                             |          |  |
| 1.                 | Particulate Matter(as PM)            | mg/Nm³                                             | 48 28                               |          |  |
|                    | Std. Limit                           | mg/Nm³                                             | 100 100                             |          |  |
| 2.                 | Sulphur Dioxide(as SO <sub>2</sub> ) | mg/Nm³                                             | 75.5                                | 55.9     |  |
| 2.                 | Sulphul Bloxide(d3 302)              | kg/day                                             | 16.9                                | 9.6      |  |
|                    | Std. Limit                           | mg/Nm³                                             | 200                                 | 200      |  |

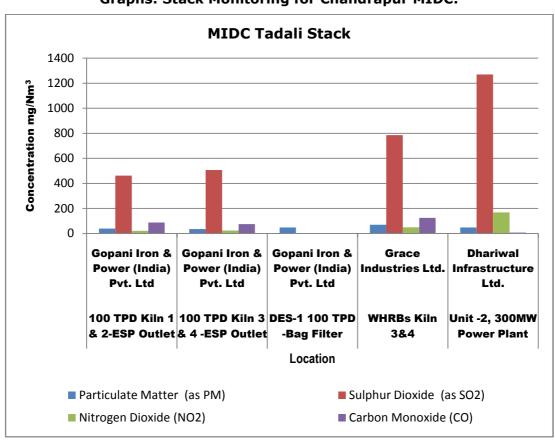
| Name of Industries |                                     | Bamni Proteins<br>(Boiler Stack-Dust<br>Collector) | Bamni Proteins<br>(HTF-Recuperator) |      |
|--------------------|-------------------------------------|----------------------------------------------------|-------------------------------------|------|
| Date of Sampling   |                                     | 07.06.17                                           | 07.06.17                            |      |
| 3.                 | Nitrogen Dioxide (NO <sub>2</sub> ) | mg/Nm³                                             | 22.8                                | 37.4 |
|                    | Std. Limit                          | mg/Nm³                                             | 50                                  | 50   |
| 4.                 | Carbon Monoxide (CO)                | mg/Nm³                                             | 9.88                                | 7.43 |

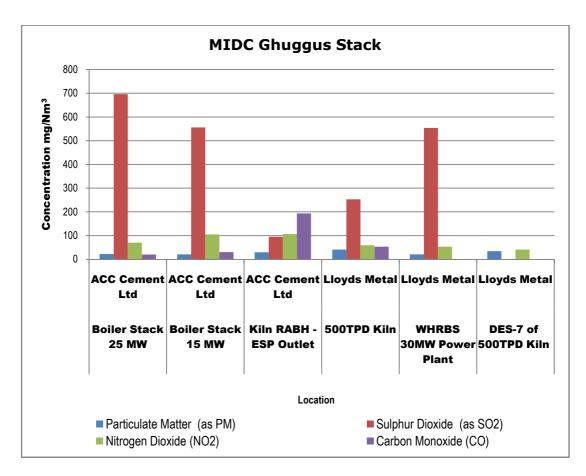
#### Table No. XII

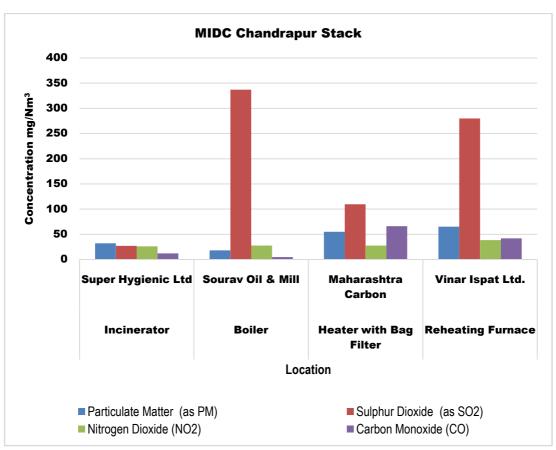
| Name of Industries |                        | Gopani Iron & Power (India) Pvt. Ltd. (100 TPD Kiln 3 & 4 -ESP Outlet) | Gopani Iron & Power (India) Pvt. Ltd. (SMS Furnace 3 & 4) |          |
|--------------------|------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|----------|
| Date               | of Sampling            |                                                                        | 01.06.17                                                  | 01.06.17 |
| Sr.                | Parameter              | Unit                                                                   | Res                                                       | ults     |
| 1.                 | voc                    |                                                                        |                                                           |          |
| I.                 | Methyl Isobutyl Ketone | mg/Nm <sup>3</sup>                                                     | ND                                                        | ND       |
| II.                | Benzene                | mg/Nm³                                                                 | 0.497                                                     | 0.289    |
| III.               | Toulene                | mg/Nm³                                                                 | 0.257                                                     | 0.427    |
| IV.                | Xylene                 | mg/Nm³                                                                 | 0.176                                                     | 0.197    |
| V.                 | Ethyl Benzene          | mg/Nm³                                                                 | ND                                                        | ND       |
| VI.                | Ethyl Acetate          | mg/Nm³                                                                 | ND                                                        | ND       |

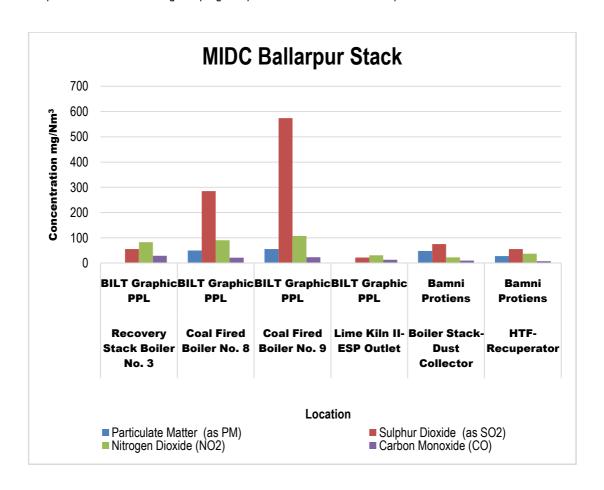
#### Table No. XIII

| Name of Industries |                        | ACC Cement<br>Ltd.<br>(Boiler Stack<br>25 MW) | Lloyds Metal &<br>Energy Ltd.<br>(500 TPD Kiln) |          |
|--------------------|------------------------|-----------------------------------------------|-------------------------------------------------|----------|
| Date               | of Sampling            |                                               | 01.06.17                                        | 02.06.17 |
| Sr.                | Parameter              | Unit                                          | Res                                             | ults     |
| 1.                 | voc                    |                                               |                                                 |          |
| I.                 | Methyl Isobutyl Ketone | mg/Nm³                                        | ND                                              | ND       |
| II.                | Benzene                | mg/Nm³                                        | 0.192                                           | 0.120    |
| III.               | Toulene                | mg/Nm³                                        | 0.265 0.145                                     |          |
| IV.                | Xylene                 | mg/Nm³                                        | ND                                              | ND       |
| V.                 | Ethyl Benzene          | mg/Nm <sup>3</sup>                            | ND                                              | ND       |
| VI.                | Ethyl Acetate          | mg/Nm³                                        | ND                                              | ND       |


#### **Table No. XIV**


| Name of Industries |                        | Superb<br>Hygienic Ltd.<br>(Incinerator) | Sourav Oil &<br>Mill<br>(Boiler) |          |
|--------------------|------------------------|------------------------------------------|----------------------------------|----------|
| Date               | of Sampling            |                                          | 06.06.17                         | 06.06.17 |
| Sr.                | Parameter              | Unit                                     | Res                              | ults     |
| 1.                 | voc                    |                                          |                                  |          |
| I.                 | Methyl Isobutyl Ketone | mg/Nm³                                   | ND                               | ND       |
| II.                | Benzene                | mg/Nm³                                   | 1.87                             | 0.496    |
| III.               | Toulene                | mg/Nm³                                   | 0.282                            | 0.998    |
| IV.                | Xylene                 | mg/Nm³                                   | ND                               | ND       |
| V.                 | Ethyl Benzene          | mg/Nm <sup>3</sup>                       | ND                               | ND       |
| VI.                | Ethyl Acetate          | mg/Nm³                                   | 0.474                            | ND       |


**Table No. XV** 


| Name of Industries |                        | BILT Graphic<br>PPL<br>(Lime Kiln II-ESP<br>Outlet) | Bamni Proteins<br>(HTF-Recuperator) |          |
|--------------------|------------------------|-----------------------------------------------------|-------------------------------------|----------|
| Date               | of Sampling            |                                                     | 06.06.17                            | 07.06.17 |
| Sr.                | Parameter              | Unit                                                | Res                                 | ults     |
| 1.                 | VOC                    |                                                     |                                     |          |
| I.                 | Methyl Isobutyl Ketone | mg/Nm³                                              | ND                                  | ND       |
| II.                | Benzene                | mg/Nm³                                              | 0.5 0.345                           |          |
| III.               | Toulene                | mg/Nm³                                              | 0.490 0.627                         |          |
| IV.                | Xylene                 | mg/Nm³                                              | ND                                  | ND       |
| V.                 | Ethyl Benzene          | mg/Nm³                                              | ND                                  | ND       |
| VI.                | Ethyl Acetate          | mg/Nm³                                              | 0.497                               | ND       |

**Graphs: Stack Monitoring for Chandrapur MIDC:** 









#### 3.2 Ambient AirQuality:

In order to arrive at conclusions, the Ambient Air Quality Monitoring Results are compared against National Ambient Air Quality Standards, 2009 (**Annexure IV**).

| Sr. | Location                        | Location<br>detail       | MIDC       | Table No. |
|-----|---------------------------------|--------------------------|------------|-----------|
| 1.  | MIDC Water Treatment Plant      | Near WTP                 | Tadali     | I         |
| 2.  | Grace Industries Ltd.           | Terrace                  | Tadali     | I         |
| 3.  | Dhariwal Infrastructure Ltd.    | Main Gate                | Tadali     | I         |
| 4.  | Lloyds Colony                   | Mathardevi<br>Village    | Ghuggus    | II        |
| 5.  | Transit Hostel Rajiv Colony WCL | Terrace                  | Ghuggus    | II        |
| 6.  | Lloyds Metal                    | New<br>CAAQMS<br>Station | Ghuggus    | II        |
| 7.  | Green Tech                      | Main Gate                | Chandrapur | III       |
| 8.  | MIDC Office                     | Premises                 | Chandrapur | III       |

| Sr. | Location    | Location<br>detail       | MIDC       | Table No. |
|-----|-------------|--------------------------|------------|-----------|
| 9.  | HPCL        | Main Gate                | Chandrapur | III       |
| 10. | Ram Mandir  | Near Mangal<br>Karyalaya | Ballarpur  | IV        |
| 11. | BILT Colony | Near Guest<br>House      | Ballarpur  | IV        |
| 12. | WCL         | OCM Office               | Ballarpur  | IV        |

#### Table No. I

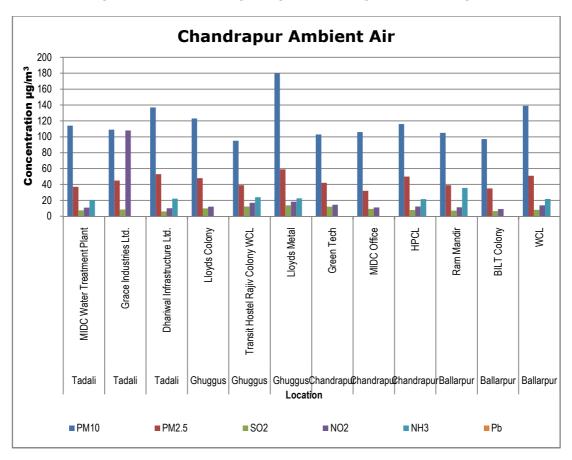
| Loca | ation                                                                    |       |                                  | MIDC<br>Water<br>Treatment<br>Plant | Grace<br>Industries<br>Ltd. | Dhariwal<br>Infrastructure<br>Ltd. |
|------|--------------------------------------------------------------------------|-------|----------------------------------|-------------------------------------|-----------------------------|------------------------------------|
| Date | e of Sampling                                                            |       |                                  | 01.06.17                            | 01.06.17                    | 01.06.17                           |
| Sr.  | Parameters                                                               | Unit  | Std.<br>Limit<br>(NAAQS<br>2009) | Results                             |                             |                                    |
| 1.   | Sulphur Dioxide (SO <sub>2</sub> )                                       | μg/m³ | 80                               | 7.4                                 | 8.5                         | 6.1                                |
| 2.   | Nitrogen<br>Dioxide (NO <sub>2</sub> )                                   | μg/m³ | 80                               | 10.8                                | 108                         | 10                                 |
| 3.   | Particulate<br>Matter<br>(size less than<br>10 µm) or PM <sub>10</sub>   | μg/m³ | 100                              | 114                                 | 109                         | 137                                |
| 4.   | Particulate<br>Matter<br>(size less than<br>2.5 µm) or PM <sub>2.5</sub> | μg/m³ | 60                               | 37                                  | 45                          | 53                                 |
| 5.   | Ozone (O <sub>3</sub> )                                                  | μg/m³ | 180                              | 17.16                               | 13.43                       | 14.14                              |
| 6.   | Lead (Pb)                                                                | μg/m³ | 1                                | 0.026                               | 0.029                       | 0.023                              |
| 7.   | Carbon<br>Monoxide (CO)                                                  | mg/m³ | 4                                | 0.55                                | 0.54                        | 0.54                               |
| 8.   | Ammonia (NH <sub>3</sub> )                                               | μg/m³ | 400                              | 20.5                                | BDL                         | 22.2                               |

| Loca | ation                                                    |       |                                  | Water        |          | Dhariwal<br>Infrastructure<br>Ltd. |  |
|------|----------------------------------------------------------|-------|----------------------------------|--------------|----------|------------------------------------|--|
| Date | e of Sampling                                            |       |                                  | 01.06.17     | 01.06.17 | 01.06.17                           |  |
| Sr.  | Parameters                                               | Unit  | Std.<br>Limit<br>(NAAQS<br>2009) | Results      |          |                                    |  |
| 9.   | Benzene (C <sub>6</sub> H <sub>6</sub> )                 | μg/m³ | 5                                | 3.73         | 1.66     | 4.28                               |  |
| 10.  | Benzo (a)<br>Pyrene (BaP) –<br>particulate<br>phase only | ng/m³ | 1                                | 0.57 BDL BDL |          |                                    |  |
| 11.  | Arsenic (As)                                             | ng/m³ | 6                                | 2.05         | 2.6      | 2.2                                |  |
| 12.  | Nickel (Ni)                                              | ng/m³ | 20                               | 12.2         | 16.9     | 9.1                                |  |

#### Table No. II

| Loca | ation                                                                  |       |                                  | Lloyds<br>Colony | Transit<br>Hostel<br>Rajiv<br>Colony<br>WCL | Lloyds<br>Metal |
|------|------------------------------------------------------------------------|-------|----------------------------------|------------------|---------------------------------------------|-----------------|
| Date | e of Sampling                                                          |       |                                  | 01.06.17         | 01.06.17                                    | 01.06.17        |
| Sr.  | Parameters                                                             | Unit  | Std.<br>Limit<br>(NAAQS<br>2009) |                  | Results                                     |                 |
| 1.   | Sulphur Dioxide (SO <sub>2</sub> )                                     | μg/m³ | 80                               | 9.9              | 12.2                                        | 13.6            |
| 2.   | Nitrogen Dioxide<br>(NO <sub>2</sub> )                                 | μg/m³ | 80                               | 12.1             | 17                                          | 18.3            |
| 3.   | Particulate<br>Matter (size less<br>than 10 µm) or<br>PM <sub>10</sub> | μg/m³ | 100                              | 123              | 95                                          | 180             |

| Loca | ation                                                                    |                   |                                  | Lloyds<br>Colony | Transit<br>Hostel<br>Rajiv<br>Colony<br>WCL | Lloyds<br>Metal |
|------|--------------------------------------------------------------------------|-------------------|----------------------------------|------------------|---------------------------------------------|-----------------|
| Date | e of Sampling                                                            |                   |                                  | 01.06.17         | 01.06.17                                    | 01.06.17        |
| Sr.  | Parameters                                                               | Unit              | Std.<br>Limit<br>(NAAQS<br>2009) | Results          |                                             |                 |
| 4.   | Particulate<br>Matter (size less<br>than 2.5 µm) or<br>PM <sub>2.5</sub> | μg/m³             | 60                               | 48               | 39                                          | 59              |
| 5.   | Ozone (O <sub>3</sub> )                                                  | μg/m³             | 180                              | 13.32            | 14.92                                       | 14.86           |
| 6.   | Lead (Pb)                                                                | μg/m³             | 1                                | 0.053            | 0.040                                       | 0.033           |
| 7.   | Carbon Monoxide<br>(CO)                                                  | mg/m <sup>3</sup> | 4                                | 0.69             | 0.76                                        | 0.99            |
| 8.   | Ammonia (NH <sub>3</sub> )                                               | μg/m³             | 400                              | BDL              | 23.9                                        | 22.6            |
| 9.   | Benzene (C <sub>6</sub> H <sub>6</sub> )                                 | μg/m³             | 5                                | 2.68             | 3.08                                        | 8.04            |
| 10.  | Benzo (a) Pyrene<br>(BaP) –<br>particulate phase<br>only                 | ng/m³             | 1                                | BDL 0.76 BDL     |                                             |                 |
| 11.  | Arsenic (As)                                                             | ng/m³             | 6                                | 2.1              | 1.7                                         | 1.7             |
| 12.  | Nickel (Ni)                                                              | ng/m³             | 20                               | 20.7             | 6.4                                         | 15.7            |


Table No. III

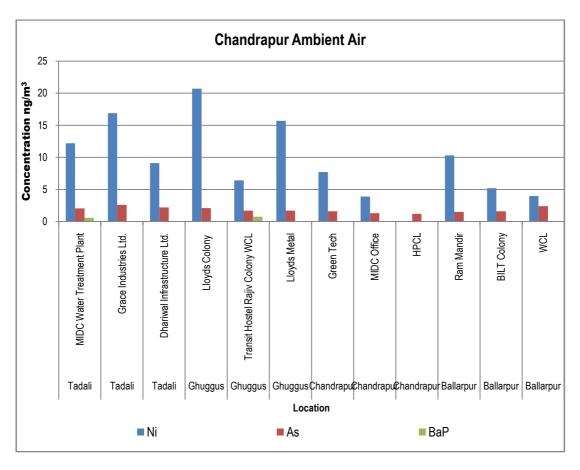

| Loca | ation                                                                    |       | Green<br>Tech                    | MIDC<br>Office | HPCL     |          |
|------|--------------------------------------------------------------------------|-------|----------------------------------|----------------|----------|----------|
| Date | e of Sampling                                                            |       |                                  | 06.06.17       | 06.06.17 | 06.06.17 |
| Sr.  | Parameters                                                               | Unit  | Std.<br>Limit<br>(NAAQS<br>2009) | Results        |          |          |
| 1.   | Sulphur Dioxide (SO <sub>2</sub> )                                       | μg/m³ | 80                               | 12.1           | 9.3      | 7.9      |
| 2.   | Nitrogen Dioxide<br>(NO <sub>2</sub> )                                   | μg/m³ | 80                               | 14.6           | 11       | 12.3     |
| 3.   | Particulate<br>Matter (size less<br>than 10 µm) or<br>PM <sub>10</sub>   | μg/m³ | 100                              | 103            | 106      | 116      |
| 4.   | Particulate<br>Matter (size less<br>than 2.5 µm) or<br>PM <sub>2.5</sub> | μg/m³ | 60                               | 42             | 32       | 50       |
| 5.   | Ozone (O <sub>3</sub> )                                                  | μg/m³ | 180                              | 15.16          | 12.5     | 15.75    |
| 6.   | Lead (Pb)                                                                | μg/m³ | 1                                | BDL            | BDL      | BDL      |
| 7.   | Carbon Monoxide<br>(CO)                                                  | mg/m³ | 4                                | 0.88           | 1.04     | 1.11     |
| 8.   | Ammonia (NH <sub>3</sub> )                                               | μg/m³ | 400                              | BDL            | BDL      | 21.5     |
| 9.   | Benzene (C <sub>6</sub> H <sub>6</sub> )                                 | μg/m³ | 5                                | BDL            | 9.26     | 3.94     |
| 10.  | Benzo (a) Pyrene<br>(BaP) –<br>particulate phase<br>only                 | ng/m³ | 1                                | BDL            | BDL      | BDL      |
| 11.  | Arsenic (As)                                                             | ng/m³ | 6                                | 1.6            | 1.3      | 1.2      |
| 12.  | Nickel (Ni)                                                              | ng/m³ | 20                               | 7.7            | 3.9      | BDL      |

Table No. IV

| Loca | ation                                                                 |                   |                                  | Ram<br>Mandir | BILT<br>Colony | WCL      |
|------|-----------------------------------------------------------------------|-------------------|----------------------------------|---------------|----------------|----------|
| Date | e of Sampling                                                         |                   |                                  | 06.06.17      | 06.06.17       | 06.06.17 |
| Sr.  | Parameters                                                            | Unit              | Std.<br>Limit<br>(NAAQS<br>2009) | Results       |                |          |
| 1.   | Sulphur Dioxide (SO <sub>2</sub> )                                    | μg/m³             | 80                               | 7.1           | 6.4            | 8        |
| 2.   | Nitrogen Dioxide (NO <sub>2</sub> )                                   | μg/m³             | 80                               | 11.2          | 9              | 13.7     |
| 3.   | Particulate Matter<br>(size less than 10<br>µm) or PM <sub>10</sub>   | μg/m³             | 100                              | 105           | 97             | 139      |
| 4.   | Particulate Matter<br>(size less than 2.5<br>µm) or PM <sub>2.5</sub> | μg/m³             | 60                               | 39            | 35             | 51       |
| 5.   | Ozone (O <sub>3</sub> )                                               | μg/m³             | 180                              | 14.07         | 12.25          | 15.27    |
| 6.   | Lead (Pb)                                                             | μg/m³             | 1                                | 0.03          | BDL            | 0.026    |
| 7.   | Carbon Monoxide (CO)                                                  | mg/m <sup>3</sup> | 4                                | 0.99          | 1.16           | 1.25     |
| 8.   | Ammonia (NH₃)                                                         | μg/m³             | 400                              | 35.7          | BDL            | 21.7     |
| 9.   | Benzene (C <sub>6</sub> H <sub>6</sub> )                              | μg/m³             | 5                                | 3.56          | 2.4            | 5.2      |
| 10.  | Benzo (a) Pyrene<br>(BaP) –<br>particulate phase<br>only              | ng/m³             | 1                                | BDL           | BDL            | BDL      |
| 11.  | Arsenic (As)                                                          | ng/m³             | 6                                | 1.5           | 1.6            | 2.4      |
| 12.  | Nickel (Ni)                                                           | ng/m³             | 20                               | 10.3          | 5.2            | 3.96     |

#### **Graphs: Ambient Air Quality Monitoring for Chandrapur:**





#### 3.3 Water/ Waste WaterQuality:

Water Analysis Results are compared against CPCB document on criteria for Comprehensive Environmental Assessment of Industrial Clusters-Water Quality Parameters Requirement and Classification (Annexure VI), CPCB Water Quality Criteria (Annexure V) and Drinking Water Specification, IS 10500:2012 (Annexure IV), Wastewater Analysis Results are compared with General Standards for Discharge of Environmental Pollutants Part A: Effluents, The Environment (Protection) Rules, 1986, Schedule VI.

| Sr. | Location                                                                     | MIDC       | Table No. |
|-----|------------------------------------------------------------------------------|------------|-----------|
| 1.  | GIPL Nallah                                                                  | Tadali     | I         |
| 2.  | Tadali Village Lake                                                          | Tadali     | I         |
| 3.  | Gopani Iron & Power (I) Pvt. Ltd., Colony                                    | Tadali     | I         |
| 4.  | Nallah Adjacent to Grace Industries                                          | Tadali     | II        |
| 5.  | Raw Water of MIDC WTP (Tank)                                                 | Tadali     | II        |
| 6.  | Wardha river near WTP of WCL Ghugus opencast mine                            | Ghuggus    | III       |
| 7.  | Domestic Effluent Nallah near Lokhandi Bridge at WTP of Ghugus opencast mine | Ghuggus    | ш         |
| 8.  | WCL Ghugus opencast mine discharge                                           | Ghuggus    | Ш         |
| 9.  | Wardha River Behind ACC Plant (Mungoli Coal Mine Road)                       | Ghuggus    | IV        |
| 10. | Nallah at Usgaon, Shengaon Road (Behind Gupta<br>Energy Power Ltd)           | Ghuggus    | IV        |
| 11. | Nallah water domestic effluent of ACC LTD., Colony& Ghugusvillage            | Ghuggus    | IV        |
| 12. | Nallha Opposite Manidhari Industries, Plot No. c-2                           | Chandrapur | V         |
| 13. | Gagangiri Village Bridge                                                     | Chandrapur |           |
| 14. | BILT RCC Pipe Outlet                                                         | Chandrapur | V         |
| 15. | ETP Outlet of Multiorganics Pvt. Ltd                                         | Chandrapur | V         |
| 16. | ETP Outlet of Super Hygienic (BMW disposal Unit)                             | Chandrapur | VI        |
| 17. | ETP Outlet of HPCL                                                           | Chandrapur | VI        |
| 18. | Bhagirathi Nallah Bridge, Gondpipri Road, Near Bamni<br>Protiesn             | Ballarpur  | VIII      |
| 19. | Wardha River                                                                 | Ballarpur  | VIII      |

| Sr. | Location                                                         | MIDC      | Table No. |
|-----|------------------------------------------------------------------|-----------|-----------|
| 20. | Nallah Near MSW Municipal Corporation                            | Ballarpur | IX        |
| 21. | Ballarpur Open Cast Mine Discharge                               | Ballarpur | IX        |
| 22. | Nallah of Municipal Council Ballarpur, Besides HP<br>Petrol Pump | Ballarpur | IX        |

#### Table No. I

| Loca | tion                                          | GIPL Nallah | Tadali Village<br>Lake |           |           |
|------|-----------------------------------------------|-------------|------------------------|-----------|-----------|
| Date | of Sampling                                   |             |                        | 01.06.17  | 01.06.17  |
| Sr.  | Parameters                                    | Unit        | Std.<br>Limit          | Res       | ults      |
| 1.   | Colour                                        | Hazen       |                        | <1        | <1        |
| 2.   | Smell                                         | -           |                        | Agreeable | Agreeable |
| 3.   | рН                                            | -           | 5.5 -9.0               | 7.7       | 8.0       |
| 4.   | Oil & Grease                                  | mg/L        | 10.0                   | ND        | ND        |
| 5.   | Suspended Solids                              | mg/L        | 100.0                  | 29        | 36        |
| 6.   | Dissolved Oxygen<br>(% Saturation)            | %           |                        | 60.2      | 93.8      |
| 7.   | Chemical Oxygen<br>Demand                     | mg/L        | 250.0                  | 52        | 40        |
| 8.   | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L        | 30.0                   | 14        | 10        |
| 9.   | Electrical Conductivity (at 25°C)             | µmho/cm     |                        | 4097      | 482       |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L        |                        | 0.081     | BDL       |
| 11.  | Nitrate Nitrogen (as NO <sub>3</sub> )        | mg/L        | 10.0                   | 0.617     | BDL       |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen | mg/L        | 5.0                    | 0.698     | BDL       |

| Loca | tion                                                          | GIPL Nallah             | Tadali Village<br>Lake |       |       |
|------|---------------------------------------------------------------|-------------------------|------------------------|-------|-------|
| Date | of Sampling                                                   | 01.06.17                | 01.06.17               |       |       |
| Sr.  | Parameters                                                    | Unit                    | Std.<br>Limit          | Res   | ults  |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)                       | mg/L                    | 5.0                    | 0.361 | BDL   |
| 14.  | Total Residual<br>Chlorine                                    | mg/L                    | 1.0                    | 0.121 | BDL   |
| 15.  | Cyanide (as CN)                                               | mg/L                    | 0.2                    | ND    | ND    |
| 16.  | Fluoride(as F)                                                | mg/L                    | 2.0                    | 1.15  | 0.574 |
| 17.  | Sulphide (as S <sup>2-</sup> )                                | mg/L                    | 2.0                    | BDL   | BDL   |
| 18.  | Dissolved Phosphate (as P)                                    | mg/L                    | 5.0                    | 0.06  | BDL   |
| 19.  | Sodium Absorption<br>Ratio                                    | mg/L                    |                        | 9.29  | 1.16  |
| 20.  | Total Coliforms                                               | MPN<br>Index/<br>100 ml | 100.0                  | 2200  | 340   |
| 21.  | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml | 1000.0                 | 1100  | 140   |
| 22.  | Total Phosphorous (as P)                                      | mg/L                    | 1.0                    | 0.154 | 0.099 |
| 23.  | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                    | 100.0                  | 4.37  | 0.952 |
| 24.  | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                    | 5.0                    | 1.77  | BDL   |
| 25.  | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                    | 3.0                    | ND    | ND    |
| 26.  | Surface Active Agents (as MBAS)                               | mg/L                    | 3.0                    | ND    | ND    |
| 27.  | Organo Chlorine<br>Pesticides                                 |                         |                        |       |       |
| I.   | Alachlor                                                      | μg/L                    | 2.0                    | BDL   | BDL   |
| II.  | Atrazine                                                      | μg/L                    | 0.2                    | BDL   | BDL   |

| Loca  | tion                                             | GIPL Nallah | Tadali Village<br>Lake |     |      |
|-------|--------------------------------------------------|-------------|------------------------|-----|------|
| Date  | of Sampling                                      | 01.06.17    | 01.06.17               |     |      |
| Sr.   | Parameters                                       | Unit        | Std.<br>Limit          | Res | ults |
| III.  | Aldrin                                           | μg/L        | 0.1                    | BDL | BDL  |
| IV.   | Dieldrin                                         | μg/L        | 2.0                    | BDL | BDL  |
| V.    | Alpha HCH                                        | μg/L        | 0.01                   | BDL | BDL  |
| VI.   | Beta HCH                                         | μg/L        | 2.0                    | BDL | BDL  |
| VII.  | Delta HCH                                        | μg/L        | 0.2                    | BDL | BDL  |
| VIII. | Butachlor                                        | μg/L        |                        | BDL | BDL  |
| IX.   | p,p DDT                                          | μg/L        | 0.05                   | BDL | BDL  |
| X.    | o,p DDT                                          | μg/L        | 100.0                  | BDL | BDL  |
| XI.   | p,p DDE                                          | μg/L        | 250.0                  | BDL | BDL  |
| XII.  | o,p DDE                                          | μg/L        | 30.0                   | BDL | BDL  |
| XIII. | p,p DDD                                          | μg/L        |                        | BDL | BDL  |
| XIV.  | o,p DDD                                          | μg/L        |                        | BDL | BDL  |
| XV.   | Alpha Endosulfan                                 | μg/L        | 10.0                   | BDL | BDL  |
| XVI.  | Beta Endosulfan                                  | μg/L        |                        | BDL | BDL  |
| XVII. | Endosulfan Sulphate                              | μg/L        | 5.0                    | BDL | BDL  |
| VIII. | Y HCH (Lindane)                                  | μg/L        | 1.0                    | BDL | BDL  |
| 28.   | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L        | 0.2                    | ND  | ND   |
| 29.   | Polychlorinated<br>Biphenyls (PCB)               | mg/L        | 2.0                    | BDL | BDL  |
| 30.   | Zinc (as Zn)                                     | mg/L        | 5.0                    | BDL | BDL  |
| 31.   | Nickel (as Ni)                                   | mg/L        | 3.0                    | BDL | BDL  |
| 32.   | Copper (as Cu)                                   | mg/L        |                        | BDL | BDL  |
| 33.   | Hexavalent<br>Chromium (as Cr <sup>6+</sup> )    | mg/L        | 0.1                    | BDL | BDL  |

| Loca | tion                   | GIPL Nallah   | Tadali Village<br>Lake |          |          |
|------|------------------------|---------------|------------------------|----------|----------|
| Date | of Sampling            |               |                        | 01.06.17 | 01.06.17 |
| Sr.  | Parameters             | Unit          | Std.<br>Limit          | Res      | ults     |
| 34.  | Total Chromium (as Cr) | mg/L          | 2.0                    | 0.023    | 0.024    |
| 35.  | Total Arsenic (as As)  | mg/L          | 0.2                    | BDL      | BDL      |
| 36.  | Lead (as Pb)           | mg/L          | 0.1                    | BDL      | BDL      |
| 37.  | Cadmium (as Cd)        | mg/L          | 2.0                    | BDL      | BDL      |
| 38.  | Mercury (as Hg)        | mg/L          | 0.01                   | ND       | ND       |
| 39.  | Manganese(as Mn)       | mg/L          | 2.0                    | 0.021    | 0.17     |
| 40.  | Iron (as Fe)           | mg/L          | 3.0                    | 0.313    | 1.28     |
| 41.  | Vanadium(as V)         | mg/L          | 0.2                    | BDL      | BDL      |
| 42.  | Selenium (as Se)       | mg/L          | 0.05                   | BDL      | BDL      |
| 43.  | Boron (as B)           | mg/L          |                        | 0.426    | 0.154    |
| 44.  | Bioassay Test on fish  | %<br>survival |                        | 100%     | 100%     |

#### Table No. II

| Loca | ition            | Gopani Iron & Power (I) Pvt. Ltd., Colony | Nallah<br>Adjacent to<br>Grace<br>Industries |           |           |
|------|------------------|-------------------------------------------|----------------------------------------------|-----------|-----------|
| Date | of Sampling      | 01.06.17                                  | 01.06.17                                     |           |           |
| Sr.  | Parameters       | Unit                                      | Std.<br>Limit                                | Results   |           |
| 1.   | Colour           | Hazen                                     |                                              | BDL       | BDL       |
| 2.   | Smell            | -                                         |                                              | Agreeable | Agreeable |
| 3.   | рН               | -                                         | 5.5 -9.0                                     | 8.2       | 7.4       |
| 4.   | Oil & Grease     | mg/L                                      | 10.0                                         | ND        | ND        |
| 5.   | Suspended Solids | mg/L                                      | 100.0                                        | BDL       | 22        |

| Loca | ition                                         | Gopani Iron &<br>Power (I)<br>Pvt. Ltd.,<br>Colony | Nallah<br>Adjacent to<br>Grace<br>Industries |         |       |
|------|-----------------------------------------------|----------------------------------------------------|----------------------------------------------|---------|-------|
| Date | of Sampling                                   | 01.06.17                                           | 01.06.17                                     |         |       |
| Sr.  | Parameters                                    | Unit                                               | Std.<br>Limit                                | Results |       |
| 6.   | Dissolved Oxygen<br>(% Saturation)            | %                                                  |                                              | 72.9    | 97.1  |
| 7.   | Chemical Oxygen<br>Demand                     | mg/L                                               | 250.0                                        | 16      | 36    |
| 8.   | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L                                               | 30.0                                         | 4.2     | 9.3   |
| 9.   | Electrical Conductivity (at 25°C)             | µmho/cm                                            |                                              | 649     | 2607  |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L                                               |                                              | BDL     | ND    |
| 11.  | Nitrate Nitrogen (as NO <sub>3</sub> )        | mg/L                                               | 10.0                                         | BDL     | BDL   |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen | mg/L                                               | 5.0                                          | BDL     | BDL   |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)       | mg/L                                               | 5.0                                          | BDL     | BDL   |
| 14.  | Total Residual<br>Chlorine                    | mg/L                                               | 1.0                                          | 0.089   | 0.274 |
| 15.  | Cyanide (as CN)                               | mg/L                                               | 0.2                                          | ND      | ND    |
| 16.  | Fluoride (as F)                               | mg/L                                               | 2.0                                          | 0.335   | 0.710 |
| 17.  | Sulphide (as S <sup>2-</sup> )                | mg/L                                               | 2.0                                          | BDL     | BDL   |
| 18.  | Dissolved Phosphate (as P)                    | mg/L                                               | 5.0                                          | 0.147   | 0.10  |
| 19.  | Sodium Absorption<br>Ratio                    | mg/L                                               |                                              | 1.36    | 6.13  |
| 20.  | Total Coliforms                               | MPN<br>Index/<br>100 ml                            | 100.0                                        | 1100    | 1100  |

| Loca  | ition                                                         | Gopani Iron &<br>Power (I)<br>Pvt. Ltd.,<br>Colony | Nallah<br>Adjacent to<br>Grace<br>Industries |          |          |
|-------|---------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------|----------|
| Date  | of Sampling                                                   |                                                    |                                              | 01.06.17 | 01.06.17 |
| Sr.   | Parameters                                                    | Unit                                               | Std.<br>Limit                                | Res      | ults     |
| 21.   | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml                            | 1000.0                                       | 260      | 260      |
| 22.   | Total Phosphorous (as P)                                      | mg/L                                               | 1.0                                          | 0.168    | 0.187    |
| 23.   | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                                               | 100.0                                        | 1.34     | 1.4      |
| 24.   | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                                               | 5.0                                          | 0.205    | 0.20     |
| 25.   | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                                               | 3.0                                          | ND       | 0.007    |
| 26.   | Surface Active Agents (as MBAS)                               | mg/L                                               | 3.0                                          | ND       | BDL      |
| 27.   | Organo Chlorine<br>Pesticides                                 |                                                    |                                              |          |          |
| I.    | Alachlor                                                      | μg/L                                               | 2.0                                          | BDL      | BDL      |
| II.   | Atrazine                                                      | μg/L                                               | 0.2                                          | BDL      | BDL      |
| III.  | Aldrin                                                        | μg/L                                               | 0.1                                          | BDL      | BDL      |
| IV.   | Dieldrin                                                      | μg/L                                               | 2.0                                          | BDL      | BDL      |
| V.    | Alpha HCH                                                     | μg/L                                               | 0.01                                         | BDL      | BDL      |
| VI.   | Beta HCH                                                      | μg/L                                               | 2.0                                          | BDL      | BDL      |
| VII.  | Delta HCH                                                     | μg/L                                               | 0.2                                          | BDL      | BDL      |
| VIII. | Butachlor                                                     | μg/L                                               |                                              | BDL      | BDL      |
| IX.   | p,p DDT                                                       | μg/L                                               | 0.05                                         | BDL      | BDL      |
| X.    | o,p DDT                                                       | μg/L                                               | 100.0                                        | BDL      | BDL      |
| XI.   | p,p DDE                                                       | μg/L                                               | 250.0                                        | BDL      | BDL      |
| XII.  | o,p DDE                                                       | μg/L                                               | 30.0                                         | BDL      | BDL      |

| Loca  | ition                                            | Gopani Iron &<br>Power (I)<br>Pvt. Ltd.,<br>Colony | Nallah<br>Adjacent to<br>Grace<br>Industries |          |          |
|-------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------|----------|
| Date  | of Sampling                                      |                                                    |                                              | 01.06.17 | 01.06.17 |
| Sr.   | Parameters                                       | Unit                                               | Std.<br>Limit                                | Resi     | ults     |
| XIII. | p,p DDD                                          | μg/L                                               |                                              | BDL      | BDL      |
| XIV.  | o,p DDD                                          | μg/L                                               |                                              | BDL      | BDL      |
| XV.   | Alpha Endosulfan                                 | μg/L                                               | 10.0                                         | BDL      | BDL      |
| XVI.  | Beta Endosulfan                                  | μg/L                                               |                                              | BDL      | BDL      |
| XVII. | Endosulfan Sulphate                              | μg/L                                               | 5.0                                          | BDL      | BDL      |
| VIII. | Y HCH (Lindane)                                  | μg/L                                               | 1.0                                          | BDL      | BDL      |
| 28.   | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L                                               | 0.2                                          | BDL      | 0.73     |
| 29.   | Polychlorinated<br>Biphenyls (PCB)               | mg/L                                               | 2.0                                          | BDL      | BDL      |
| 30.   | Zinc (as Zn)                                     | mg/L                                               | 5.0                                          | BDL      | BDL      |
| 31.   | Nickel (as Ni)                                   | mg/L                                               | 3.0                                          | BDL      | BDL      |
| 32.   | Copper (as Cu)                                   | mg/L                                               |                                              | BDL      | BDL      |
| 33.   | Hexavalent<br>Chromium (as Cr <sup>6+</sup> )    | mg/L                                               | 0.1                                          | BDL      | BDL      |
| 34.   | Total Chromium (as Cr)                           | mg/L                                               | 2.0                                          | 0.026    | 0.022    |
| 35.   | Total Arsenic (as As)                            | mg/L                                               | 0.2                                          | ND       | ND       |
| 36.   | Lead (as Pb)                                     | mg/L                                               | 0.1                                          | BDL      | BDL      |
| 37.   | Cadmium (as Cd)                                  | mg/L                                               | 2.0                                          | BDL      | BDL      |
| 38.   | Mercury (as Hg)                                  | mg/L                                               | 0.01                                         | ND       | 0.0004   |
| 39.   | Manganese(as Mn)                                 | mg/L                                               | 2.0                                          | BDL      | 0.185    |
| 40.   | Iron (as Fe)                                     | mg/L                                               | 3.0                                          | 0.23     | 1        |
| 41.   | Vanadium(as V)                                   | mg/L                                               | 0.2                                          | 0.016    | BDL      |

| Location         |                       |               |               | Gopani Iron &<br>Power (I)<br>Pvt. Ltd.,<br>Colony | Nallah<br>Adjacent to<br>Grace<br>Industries |
|------------------|-----------------------|---------------|---------------|----------------------------------------------------|----------------------------------------------|
| Date of Sampling |                       |               |               | 01.06.17                                           | 01.06.17                                     |
| Sr.              | Parameters            | Unit          | Std.<br>Limit | Results                                            |                                              |
| 42.              | Selenium (as Se)      | mg/L          | 0.05          | ND                                                 | BDL                                          |
| 43.              | Boron (as B)          | mg/L          |               | BDL                                                | 0.337                                        |
| 44.              | Bioassay Test on fish | %<br>survival |               | 100%                                               | 100%                                         |

## Table No. III

| Loca | tion                                          | Raw Water of<br>MIDC WTP<br>(Tank) | Wardha river<br>near WTP of<br>WCL Ghugus<br>opencast<br>mine |           |           |
|------|-----------------------------------------------|------------------------------------|---------------------------------------------------------------|-----------|-----------|
| Date | of Sampling                                   |                                    |                                                               | 01.06.17  | 01.06.17  |
| Sr.  | Parameters                                    | Unit                               | Std.<br>Limit                                                 | Res       | ults      |
| 1.   | Colour                                        | Hazen                              |                                                               | 1         | 2         |
| 2.   | Smell                                         | -                                  |                                                               | Agreeable | Agreeable |
| 3.   | рН                                            | -                                  | 5.5 -9.0                                                      | 8.0       | 8.4       |
| 4.   | Oil & Grease                                  | mg/L                               | 10.0                                                          | ND        | ND        |
| 5.   | Suspended Solids                              | mg/L                               | 100.0                                                         | 16        | 10        |
| 6.   | Dissolved Oxygen<br>(% Saturation)            | %                                  |                                                               | 89.3      | 80.7      |
| 7.   | Chemical Oxygen<br>Demand                     | mg/L                               | 250.0                                                         | 12        | 36        |
| 8.   | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L                               | 30.0                                                          | 2.9       | 9.3       |
| 9.   | Electrical Conductivity (at 25°C)             | µmho/cm                            |                                                               | 602       | 547       |

| Loca | tion                                                          | Raw Water of<br>MIDC WTP<br>(Tank) | Wardha river<br>near WTP of<br>WCL Ghugus<br>opencast<br>mine |          |          |
|------|---------------------------------------------------------------|------------------------------------|---------------------------------------------------------------|----------|----------|
| Date | of Sampling                                                   |                                    |                                                               | 01.06.17 | 01.06.17 |
| Sr.  | Parameters                                                    | Unit                               | Std.<br>Limit                                                 | Res      | ults     |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )                        | mg/L                               |                                                               | BDL      | BDL      |
| 11.  | Nitrate Nitrogen (as NO <sub>3</sub> )                        | mg/L                               | 10.0                                                          | BDL      | BDL      |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen                 | mg/L                               | 5.0                                                           | BDL      | BDL      |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)                       | mg/L                               | 5.0                                                           | ND       | BDL      |
| 14.  | Total Residual<br>Chlorine                                    | mg/L                               | 1.0                                                           | 0.284    | 0.386    |
| 15.  | Cyanide (as CN)                                               | mg/L                               | 0.2                                                           | ND       | ND       |
| 16.  | Fluoride (as F)                                               | mg/L                               | 2.0                                                           | 0.284    | 0.386    |
| 17.  | Sulphide (as S <sup>2-</sup> )                                | mg/L                               | 2.0                                                           | ND       | BDL      |
| 18.  | Dissolved Phosphate<br>(as P)                                 | mg/L                               | 5.0                                                           | 0.0888   | 0.051    |
| 19.  | Sodium Absorption<br>Ratio                                    | mg/L                               |                                                               | 1.41     | 1.58     |
| 20.  | Total Coliforms                                               | MPN<br>Index/<br>100 ml            | 100.0                                                         | 2800     | 20       |
| 21.  | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml            | 1000.0                                                        | 320      | BDL      |
| 22.  | Total Phosphorous (as P)                                      | mg/L                               | 1.0                                                           | 0.165    | 0.103    |
| 23.  | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                               | 100.0                                                         | 0.952    | 1.51     |
| 24.  | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                               | 5.0                                                           | BDL      | BDL      |

| Loca  | ition                                         | Raw Water of<br>MIDC WTP<br>(Tank) | Wardha river<br>near WTP of<br>WCL Ghugus<br>opencast<br>mine |          |          |
|-------|-----------------------------------------------|------------------------------------|---------------------------------------------------------------|----------|----------|
| Date  | of Sampling                                   |                                    |                                                               | 01.06.17 | 01.06.17 |
| Sr.   | Parameters                                    | Unit                               | Std.<br>Limit                                                 | Res      | ults     |
| 25.   | Phenols (as C <sub>6</sub> H <sub>5</sub> OH) | mg/L                               | 3.0                                                           | ND       | ND       |
| 26.   | Surface Active Agents (as MBAS)               | mg/L                               | 3.0                                                           | ND       | ND       |
| 27.   | Organo Chlorine<br>Pesticides                 |                                    |                                                               |          |          |
| I.    | Alachlor                                      | μg/L                               | 2.0                                                           | BDL      | BDL      |
| II.   | Atrazine                                      | μg/L                               | 0.2                                                           | BDL      | BDL      |
| III.  | Aldrin                                        | μg/L                               | 0.1                                                           | BDL      | BDL      |
| IV.   | Dieldrin                                      | μg/L                               | 2.0                                                           | BDL      | BDL      |
| V.    | Alpha HCH                                     | μg/L                               | 0.01                                                          | BDL      | BDL      |
| VI.   | Beta HCH                                      | μg/L                               | 2.0                                                           | BDL      | BDL      |
| VII.  | Delta HCH                                     | μg/L                               | 0.2                                                           | BDL      | BDL      |
| VIII. | Butachlor                                     | μg/L                               |                                                               | BDL      | BDL      |
| IX.   | p,p DDT                                       | μg/L                               | 0.05                                                          | BDL      | BDL      |
| X.    | o,p DDT                                       | μg/L                               | 100.0                                                         | BDL      | BDL      |
| XI.   | p,p DDE                                       | μg/L                               | 250.0                                                         | BDL      | BDL      |
| XII.  | o,p DDE                                       | μg/L                               | 30.0                                                          | BDL      | BDL      |
| XIII. | p,p DDD                                       | μg/L                               |                                                               | BDL      | BDL      |
| XIV.  | o,p DDD                                       | μg/L                               |                                                               | BDL      | BDL      |
| XV.   | Alpha Endosulfan                              | μg/L                               | 10.0                                                          | BDL      | BDL      |
| XVI.  | Beta Endosulfan                               | μg/L                               |                                                               | BDL      | BDL      |
| XVII. | Endosulfan Sulphate                           | μg/L                               | 5.0                                                           | BDL      | BDL      |
| VIII. | Y HCH (Lindane)                               | μg/L                               | 1.0                                                           | BDL      | BDL      |

| Location |                                                  |               |               | Raw Water of<br>MIDC WTP<br>(Tank) | Wardha river<br>near WTP of<br>WCL Ghugus<br>opencast<br>mine |
|----------|--------------------------------------------------|---------------|---------------|------------------------------------|---------------------------------------------------------------|
| Date     | of Sampling                                      |               |               | 01.06.17                           | 01.06.17                                                      |
| Sr.      | Parameters                                       | Unit          | Std.<br>Limit | Res                                | ults                                                          |
| 28.      | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L          | 0.2           | 0.38                               | ND                                                            |
| 29.      | Polychlorinated<br>Biphenyls (PCB)               | mg/L          | 2.0           | BDL                                | BDL                                                           |
| 30.      | Zinc (as Zn)                                     | mg/L          | 5.0           | BDL                                | BDL                                                           |
| 31.      | Nickel (as Ni)                                   | mg/L          | 3.0           | BDL                                | BDL                                                           |
| 32.      | Copper (as Cu)                                   | mg/L          |               | BDL                                | BDL                                                           |
| 33.      | Hexavalent<br>Chromium (as Cr <sup>6+</sup> )    | mg/L          | 0.1           | ND                                 | BDL                                                           |
| 34.      | Total Chromium (as Cr)                           | mg/L          | 2.0           | 0.023                              | 0.03                                                          |
| 35.      | Total Arsenic (as As)                            | mg/L          | 0.2           | ND                                 | ND                                                            |
| 36.      | Lead (as Pb)                                     | mg/L          | 0.1           | BDL                                | BDL                                                           |
| 37.      | Cadmium (as Cd)                                  | mg/L          | 2.0           | BDL                                | BDL                                                           |
| 38.      | Mercury (as Hg)                                  | mg/L          | 0.01          | ND                                 | ND                                                            |
| 39.      | Manganese(as Mn)                                 | mg/L          | 2.0           | 0.03                               | 0.055                                                         |
| 40.      | Iron (as Fe)                                     | mg/L          | 3.0           | 0.5                                | 0.713                                                         |
| 41.      | Vanadium(as V)                                   | mg/L          | 0.2           | 0.017                              | BDL                                                           |
| 42.      | Selenium (as Se)                                 | mg/L          | 0.05          | BDL                                | BDL                                                           |
| 43.      | Boron (as B)                                     | mg/L          |               | 0.178                              | BDL                                                           |
| 44.      | Bioassay Test on fish                            | %<br>survival |               | 100%                               | 100%                                                          |

Table No. IV

| Loca | ition                                         | Domestic<br>Effluent<br>Nallah near<br>Lokhandi<br>Bridge at WTP<br>of Ghugus<br>opencast<br>mine | WCL Ghugus<br>opencast<br>mine<br>discharge |           |           |
|------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|-----------|-----------|
| Date | of Sampling                                   |                                                                                                   |                                             | 01.06.17  | 01.06.17  |
| Sr.  | Parameters                                    | Unit                                                                                              | Std.<br>Limit                               | Res       | ults      |
| 1.   | Colour                                        | Hazen                                                                                             |                                             | 2         | <1        |
| 2.   | Smell                                         | -                                                                                                 |                                             | Agreeable | Agreeable |
| 3.   | рН                                            | -                                                                                                 | 5.5 -9.0                                    | 8.1       | 2.7       |
| 4.   | Oil & Grease                                  | mg/L                                                                                              | 10.0                                        | ND        | ND        |
| 5.   | Suspended Solids                              | mg/L                                                                                              | 100.0                                       | 29        | 61        |
| 6.   | Dissolved Oxygen<br>(% Saturation)            | %                                                                                                 |                                             | 76.9      | 34.5      |
| 7.   | Chemical Oxygen<br>Demand                     | mg/L                                                                                              | 250.0                                       | 36        | 16        |
| 8.   | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L                                                                                              | 30.0                                        | 9.6       | 4.2       |
| 9.   | Electrical Conductivity (at 25°C)             | µmho/cm                                                                                           |                                             | 694       | 5140      |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L                                                                                              |                                             | BDL       | ND        |
| 11.  | Nitrate Nitrogen (as NO <sub>3</sub> )        | mg/L                                                                                              | 10.0                                        | BDL       | BDL       |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen | mg/L                                                                                              | 5.0                                         | BDL       | BDL       |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)       | mg/L                                                                                              | 5.0                                         | BDL       | 0.10      |
| 14.  | Total Residual<br>Chlorine                    | mg/L                                                                                              | 1.0                                         | 0.305     | 0.221     |

| Loca | ition                                                         | Domestic<br>Effluent<br>Nallah near<br>Lokhandi<br>Bridge at WTP<br>of Ghugus<br>opencast<br>mine | WCL Ghugus<br>opencast<br>mine<br>discharge |          |          |
|------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|----------|----------|
| Date | of Sampling                                                   |                                                                                                   |                                             | 01.06.17 | 01.06.17 |
| Sr.  | Parameters                                                    | Unit                                                                                              | Std.<br>Limit                               | Res      | ults     |
| 15.  | Cyanide (as CN)                                               | mg/L                                                                                              | 0.2                                         | ND       | ND       |
| 16.  | Fluoride (as F)                                               | mg/L                                                                                              | 2.0                                         | 0.335    | 0.710    |
| 17.  | Sulphide (as S <sup>2-</sup> )                                | mg/L                                                                                              | 2.0                                         | 0.143    | 0.223    |
| 18.  | Dissolved Phosphate (as P)                                    | mg/L                                                                                              | 5.0                                         | 0.112    | 0.034    |
| 19.  | Sodium Absorption<br>Ratio                                    | mg/L                                                                                              |                                             | 1.89     | 1.22     |
| 20.  | Total Coliforms                                               | MPN<br>Index/<br>100 ml                                                                           | 100.0                                       | 1100     | 20       |
| 21.  | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml                                                                           | 1000.0                                      | 68       | 20       |
| 22.  | Total Phosphorous (as P)                                      | mg/L                                                                                              | 1.0                                         | 0.179    | 0.055    |
| 23.  | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                                                                                              | 100.0                                       | 0.560    | 24.8     |
| 24.  | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                                                                                              | 5.0                                         | BDL      | 22.0     |
| 25.  | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                                                                                              | 3.0                                         | ND       | 0.002    |
| 26.  | Surface Active Agents (as MBAS)                               | mg/L                                                                                              | 3.0                                         | BDL      | ND       |
| 27.  | Organo Chlorine<br>Pesticides                                 |                                                                                                   |                                             |          |          |
| I.   | Alachlor                                                      | μg/L                                                                                              | 2.0                                         | BDL      | BDL      |
| II.  | Atrazine                                                      | μg/L                                                                                              | 0.2                                         | BDL      | BDL      |

| Loca  | ition                                            | Domestic<br>Effluent<br>Nallah near<br>Lokhandi<br>Bridge at WTP<br>of Ghugus<br>opencast<br>mine | WCL Ghugus<br>opencast<br>mine<br>discharge |          |          |
|-------|--------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|----------|----------|
| Date  | of Sampling                                      |                                                                                                   |                                             | 01.06.17 | 01.06.17 |
| Sr.   | Parameters                                       | Unit                                                                                              | Std.<br>Limit                               | Res      | ults     |
| III.  | Aldrin                                           | μg/L                                                                                              | 0.1                                         | BDL      | BDL      |
| IV.   | Dieldrin                                         | μg/L                                                                                              | 2.0                                         | BDL      | BDL      |
| V.    | Alpha HCH                                        | μg/L                                                                                              | 0.01                                        | BDL      | BDL      |
| VI.   | Beta HCH                                         | μg/L                                                                                              | 2.0                                         | BDL      | BDL      |
| VII.  | Delta HCH                                        | μg/L                                                                                              | 0.2                                         | BDL      | BDL      |
| VIII. | Butachlor                                        | μg/L                                                                                              |                                             | BDL      | BDL      |
| IX.   | p,p DDT                                          | μg/L                                                                                              | 0.05                                        | BDL      | BDL      |
| X.    | o,p DDT                                          | μg/L                                                                                              | 100.0                                       | BDL      | BDL      |
| XI.   | p,p DDE                                          | μg/L                                                                                              | 250.0                                       | BDL      | BDL      |
| XII.  | o,p DDE                                          | μg/L                                                                                              | 30.0                                        | BDL      | BDL      |
| XIII. | p,p DDD                                          | μg/L                                                                                              |                                             | BDL      | BDL      |
| XIV.  | o,p DDD                                          | μg/L                                                                                              |                                             | BDL      | BDL      |
| XV.   | Alpha Endosulfan                                 | μg/L                                                                                              | 10.0                                        | BDL      | BDL      |
| XVI.  | Beta Endosulfan                                  | μg/L                                                                                              |                                             | BDL      | BDL      |
| XVII. | Endosulfan Sulphate                              | μg/L                                                                                              | 5.0                                         | BDL      | BDL      |
| VIII. | Y HCH (Lindane)                                  | μg/L                                                                                              | 1.0                                         | BDL      | BDL      |
| 28.   | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L                                                                                              | 0.2                                         | ND       | 1.44     |
| 29.   | Polychlorinated<br>Biphenyls (PCB)               | mg/L                                                                                              | 2.0                                         | BDL      | BDL      |
| 30.   | Zinc (as Zn)                                     | mg/L                                                                                              | 5.0                                         | BDL      | 0.934    |

| Loca | tion                                          | Domestic<br>Effluent<br>Nallah near<br>Lokhandi<br>Bridge at WTP<br>of Ghugus<br>opencast<br>mine | WCL Ghugus<br>opencast<br>mine<br>discharge |          |          |
|------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|----------|----------|
| Date | of Sampling                                   |                                                                                                   |                                             | 01.06.17 | 01.06.17 |
| Sr.  | Parameters                                    | Unit                                                                                              | Std.<br>Limit                               | Res      | ults     |
| 31.  | Nickel (as Ni)                                | mg/L                                                                                              | 3.0                                         | BDL      | 0.441    |
| 32.  | Copper (as Cu)                                | mg/L                                                                                              |                                             | BDL      | BDL      |
| 33.  | Hexavalent<br>Chromium (as Cr <sup>6+</sup> ) | mg/L                                                                                              | 0.1                                         | 0.020    | BDL      |
| 34.  | Total Chromium (as Cr)                        | mg/L                                                                                              | 2.0                                         | 0.028    | 0.024    |
| 35.  | Total Arsenic (as As)                         | mg/L                                                                                              | 0.2                                         | ND       | BDL      |
| 36.  | Lead (as Pb)                                  | mg/L                                                                                              | 0.1                                         | BDL      | BDL      |
| 37.  | Cadmium (as Cd)                               | mg/L                                                                                              | 2.0                                         | BDL      | BDL      |
| 38.  | Mercury (as Hg)                               | mg/L                                                                                              | 0.01                                        | 0.0004   | 0.0005   |
| 39.  | Manganese(as Mn)                              | mg/L                                                                                              | 2.0                                         | 0.188    | 9.57     |
| 40.  | Iron (as Fe)                                  | mg/L                                                                                              | 3.0                                         | 2.63     | 22.2     |
| 41.  | Vanadium(as V)                                | mg/L                                                                                              | 0.2                                         | BDL      | BDL      |
| 42.  | Selenium (as Se)                              | mg/L                                                                                              | 0.05                                        | BDL      | ND       |
| 43.  | Boron (as B)                                  | mg/L                                                                                              |                                             | BDL      | 0.385    |
| 44.  | Bioassay Test on fish                         | %<br>survival                                                                                     |                                             | 100%     | 0%       |

Table No. V

| Loca | ition                                         | Wardha River<br>Behind ACC<br>Plant<br>(Mungoli Coal<br>Mine Road) | Nallah at<br>Usgaon,<br>Shengaon<br>Road (Behind<br>Gupta Energy<br>Power Ltd) |           |           |
|------|-----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|-----------|
| Date | of Sampling                                   |                                                                    |                                                                                | 01.06.17  | 01.06.17  |
| Sr.  | Parameters                                    | Unit                                                               | Std.<br>Limit                                                                  | Res       | ults      |
| 1.   | Colour                                        | Hazen                                                              |                                                                                | <1        | <1        |
| 2.   | Smell                                         | -                                                                  |                                                                                | Agreeable | Agreeable |
| 3.   | рН                                            | -                                                                  | 5.5 -9.0                                                                       | 8.1       | 7.7       |
| 4.   | Oil & Grease                                  | mg/L                                                               | 10.0                                                                           | ND        | ND        |
| 5.   | Suspended Solids                              | mg/L                                                               | 100.0                                                                          | 9         | 9         |
| 6.   | Dissolved Oxygen<br>(% Saturation)            | %                                                                  |                                                                                | 90.5      | 48.6      |
| 7.   | Chemical Oxygen<br>Demand                     | mg/L                                                               | 250.0                                                                          | 24        | 48        |
| 8.   | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L                                                               | 30.0                                                                           | 6.1       | 13        |
| 9.   | Electrical Conductivity (at 25°C)             | μmho/cm                                                            |                                                                                | 567       | 5168      |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L                                                               |                                                                                | BDL       | ND        |
| 11.  | Nitrate Nitrogen (as NO <sub>3</sub> )        | mg/L                                                               | 10.0                                                                           | BDL       | BDL       |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen | mg/L                                                               | 5.0                                                                            | BDL       | BDL       |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)       | mg/L                                                               | 5.0                                                                            | BDL       | BDL       |
| 14.  | Total Residual<br>Chlorine                    | mg/L                                                               | 1.0                                                                            | 0.247     | 0.221     |
| 15.  | Cyanide (as CN)                               | mg/L                                                               | 0.2                                                                            | ND        | ND        |

| Location |                                                               |                         |               | Wardha River<br>Behind ACC<br>Plant<br>(Mungoli Coal<br>Mine Road) | Nallah at<br>Usgaon,<br>Shengaon<br>Road (Behind<br>Gupta Energy<br>Power Ltd) |
|----------|---------------------------------------------------------------|-------------------------|---------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Date     | of Sampling                                                   |                         |               | 01.06.17                                                           | 01.06.17                                                                       |
| Sr.      | Parameters                                                    | Unit                    | Std.<br>Limit | Res                                                                | ults                                                                           |
| 16.      | Fluoride (as F)                                               | mg/L                    | 2.0           | 0.335                                                              | 1.11                                                                           |
| 17.      | Sulphide (as S <sup>2-</sup> )                                | mg/L                    | 2.0           | BDL                                                                | BDL                                                                            |
| 18.      | Dissolved Phosphate<br>(as P)                                 | mg/L                    | 5.0           | 0.056                                                              | 0.090                                                                          |
| 19.      | Sodium Absorption<br>Ratio                                    | mg/L                    |               | 1.66                                                               | 3.94                                                                           |
| 20.      | Total Coliforms                                               | MPN<br>Index/<br>100 ml | 100.0         | 700                                                                | 1100                                                                           |
| 21.      | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml | 1000.0        | 92                                                                 | 68                                                                             |
| 22.      | Total Phosphorous (as P)                                      | mg/L                    | 1.0           | 0.101                                                              | 0.157                                                                          |
| 23.      | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                    | 100.0         | 0.896                                                              | 1.34                                                                           |
| 24.      | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                    | 5.0           | 0.120                                                              | BDL                                                                            |
| 25.      | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                    | 3.0           | ND                                                                 | ND                                                                             |
| 26.      | Surface Active Agents (as MBAS)                               | mg/L                    | 3.0           | ND                                                                 | ND                                                                             |
| 27.      | Organo Chlorine<br>Pesticides                                 |                         |               |                                                                    |                                                                                |
| I.       | Alachlor                                                      | μg/L                    | 2.0           | BDL                                                                | BDL                                                                            |
| II.      | Atrazine                                                      | μg/L                    | 0.2           | BDL                                                                | BDL                                                                            |
| III.     | Aldrin                                                        | μg/L                    | 0.1           | BDL                                                                | BDL                                                                            |
| IV.      | Dieldrin                                                      | μg/L                    | 2.0           | BDL                                                                | BDL                                                                            |

| Location |                                                  |      |               | Wardha River<br>Behind ACC<br>Plant<br>(Mungoli Coal<br>Mine Road) | Nallah at<br>Usgaon,<br>Shengaon<br>Road (Behind<br>Gupta Energy<br>Power Ltd) |
|----------|--------------------------------------------------|------|---------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Date     | of Sampling                                      |      |               | 01.06.17                                                           | 01.06.17                                                                       |
| Sr.      | Parameters                                       | Unit | Std.<br>Limit | Res                                                                | ults                                                                           |
| V.       | Alpha HCH                                        | μg/L | 0.01          | BDL                                                                | BDL                                                                            |
| VI.      | Beta HCH                                         | μg/L | 2.0           | BDL                                                                | BDL                                                                            |
| VII.     | Delta HCH                                        | μg/L | 0.2           | BDL                                                                | BDL                                                                            |
| VIII.    | Butachlor                                        | μg/L |               | BDL                                                                | BDL                                                                            |
| IX.      | p,p DDT                                          | μg/L | 0.05          | BDL                                                                | BDL                                                                            |
| X.       | o,p DDT                                          | μg/L | 100.0         | BDL                                                                | BDL                                                                            |
| XI.      | p,p DDE                                          | μg/L | 250.0         | BDL                                                                | BDL                                                                            |
| XII.     | o,p DDE                                          | μg/L | 30.0          | BDL                                                                | BDL                                                                            |
| XIII.    | p,p DDD                                          | μg/L |               | BDL                                                                | BDL                                                                            |
| XIV.     | o,p DDD                                          | μg/L |               | BDL                                                                | BDL                                                                            |
| XV.      | Alpha Endosulfan                                 | μg/L | 10.0          | BDL                                                                | BDL                                                                            |
| XVI.     | Beta Endosulfan                                  | μg/L |               | BDL                                                                | BDL                                                                            |
| XVII.    | Endosulfan Sulphate                              | μg/L | 5.0           | BDL                                                                | BDL                                                                            |
| VIII.    | Y HCH (Lindane)                                  | μg/L | 1.0           | BDL                                                                | BDL                                                                            |
| 28.      | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 0.2           | ND                                                                 | ND                                                                             |
| 29.      | Polychlorinated<br>Biphenyls (PCB)               | mg/L | 2.0           | BDL                                                                | BDL                                                                            |
| 30.      | Zinc (as Zn)                                     | mg/L | 5.0           | BDL                                                                | BDL                                                                            |
| 31.      | Nickel (as Ni)                                   | mg/L | 3.0           | BDL                                                                | BDL                                                                            |
| 32.      | Copper (as Cu)                                   | mg/L |               | BDL                                                                | BDL                                                                            |
| 33.      | Hexavalent<br>Chromium (as Cr <sup>6+</sup> )    | mg/L | 0.1           | BDL                                                                | BDL                                                                            |

| Loca | tion                   | Wardha River<br>Behind ACC<br>Plant<br>(Mungoli Coal<br>Mine Road) | Nallah at<br>Usgaon,<br>Shengaon<br>Road (Behind<br>Gupta Energy<br>Power Ltd) |          |          |
|------|------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|----------|
| Date | of Sampling            |                                                                    |                                                                                | 01.06.17 | 01.06.17 |
| Sr.  | Parameters             | Unit                                                               | Std.<br>Limit                                                                  | Res      | ults     |
| 34.  | Total Chromium (as Cr) | mg/L                                                               | 2.0                                                                            | 0.022    | BDL      |
| 35.  | Total Arsenic (as As)  | mg/L                                                               | 0.2                                                                            | ND       | ND       |
| 36.  | Lead (as Pb)           | mg/L                                                               | 0.1                                                                            | BDL      | BDL      |
| 37.  | Cadmium (as Cd)        | mg/L                                                               | 2.0                                                                            | BDL      | BDL      |
| 38.  | Mercury (as Hg)        | mg/L                                                               | 0.01                                                                           | ND       | ND       |
| 39.  | Manganese(as Mn)       | mg/L                                                               | 2.0                                                                            | 0.01     | 0.227    |
| 40.  | Iron (as Fe)           | mg/L                                                               | 3.0                                                                            | 0.467    | 0.486    |
| 41.  | Vanadium(as V)         | mg/L                                                               | 0.2                                                                            | BDL      | BDL      |
| 42.  | Selenium (as Se)       | mg/L                                                               | 0.05                                                                           | ND       | ND       |
| 43.  | Boron (as B)           | mg/L                                                               |                                                                                | BDL      | 0.438    |
| 44.  | Bioassay Test on fish  | %<br>survival                                                      |                                                                                | 100%     | 100%     |

Table No. VI

| Loca | ition                                         |         |               | Nallah water<br>domestic<br>effluent of ACC<br>LTD., Colony &<br>Ghugus village | Nallha<br>Opposite<br>Manidhari<br>Industries,<br>Plot No. c-2 |
|------|-----------------------------------------------|---------|---------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|
| Date | of Sampling                                   |         |               | 01.06.17                                                                        | 01.06.17                                                       |
| Sr.  | Parameters                                    | Unit    | Std.<br>Limit | Resul                                                                           | ts                                                             |
| 1.   | Colour                                        | Hazen   |               | 50                                                                              | 150                                                            |
| 2.   | Smell                                         | -       |               | Disagreeable                                                                    | Disagreeable                                                   |
| 3.   | рН                                            | -       | 5.5 -9.0      | 7.5                                                                             | 7.4                                                            |
| 4.   | Oil & Grease                                  | mg/L    | 10.0          | ND                                                                              | ND                                                             |
| 5.   | Suspended Solids                              | mg/L    | 100.0         | 59                                                                              | 48                                                             |
| 6.   | Dissolved Oxygen<br>(% Saturation)            | %       |               | 0.0                                                                             | 95                                                             |
| 7.   | Chemical Oxygen<br>Demand                     | mg/L    | 250.0         | 128                                                                             | 324                                                            |
| 8.   | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L    | 30.0          | 39                                                                              | 103                                                            |
| 9.   | Electrical Conductivity (at 25°C)             | μmho/cm |               | 841                                                                             | 5101                                                           |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L    |               | BDL                                                                             | BDL                                                            |
| 11.  | Nitrate Nitrogen (as NO <sub>3</sub> )        | mg/L    | 10.0          | BDL                                                                             | 4.39                                                           |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen | mg/L    | 5.0           | BDL                                                                             | 4.40                                                           |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)       | mg/L    | 5.0           | 0.10                                                                            | 0.994                                                          |
| 14.  | Total Residual<br>Chlorine                    | mg/L    | 1.0           | 0.247                                                                           | ND                                                             |
| 15.  | Cyanide (as CN)                               | mg/L    | 0.2           | ND                                                                              | BDL                                                            |
| 16.  | Fluoride (as F)                               | mg/L    | 2.0           | 0.386                                                                           | 1.27                                                           |

| Loca | ition                                                         |                         |               | Nallah water<br>domestic<br>effluent of ACC<br>LTD., Colony &<br>Ghugus village | Nallha<br>Opposite<br>Manidhari<br>Industries,<br>Plot No. c-2 |
|------|---------------------------------------------------------------|-------------------------|---------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|
| Date | of Sampling                                                   |                         |               | 01.06.17                                                                        | 01.06.17                                                       |
| Sr.  | Parameters                                                    | Unit                    | Std.<br>Limit | Resul                                                                           | ts                                                             |
| 17.  | Sulphide (as S <sup>2-</sup> )                                | mg/L                    | 2.0           | BDL                                                                             | 0.08                                                           |
| 18.  | Dissolved Phosphate (as P)                                    | mg/L                    | 5.0           | 0.81                                                                            | 0.388                                                          |
| 19.  | Sodium Absorption<br>Ratio                                    | mg/L                    |               | 1.31                                                                            | 7.41                                                           |
| 20.  | Total Coliforms                                               | MPN<br>Index/<br>100 ml | 100.0         | 16x10 <sup>4</sup>                                                              | 3500                                                           |
| 21.  | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml | 1000.0        | 1400                                                                            | 470                                                            |
| 22.  | Total Phosphorous (as P)                                      | mg/L                    | 1.0           | 0.912                                                                           | 0.579                                                          |
| 23.  | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                    | 100.0         | 9.2                                                                             | 10.6                                                           |
| 24.  | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                    | 5.0           | 8.28                                                                            | 8.62                                                           |
| 25.  | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                    | 3.0           | ND                                                                              | 0.063                                                          |
| 26.  | Surface Active Agents (as MBAS)                               | mg/L                    | 3.0           | 0.269                                                                           | 11.7                                                           |
| 27.  | Organo Chlorine<br>Pesticides                                 |                         |               |                                                                                 |                                                                |
| I.   | Alachlor                                                      | μg/L                    | 2.0           | BDL                                                                             | BDL                                                            |
| II.  | Atrazine                                                      | μg/L                    | 0.2           | BDL                                                                             | BDL                                                            |
| III. | Aldrin                                                        | μg/L                    | 0.1           | BDL                                                                             | BDL                                                            |
| IV.  | Dieldrin                                                      | μg/L                    | 2.0           | BDL                                                                             | BDL                                                            |
| V.   | Alpha HCH                                                     | μg/L                    | 0.01          | BDL                                                                             | BDL                                                            |

| Location |                                                  |      | Nallah water<br>domestic<br>effluent of ACC<br>LTD., Colony &<br>Ghugus village | Nallha<br>Opposite<br>Manidhari<br>Industries,<br>Plot No. c-2 |          |
|----------|--------------------------------------------------|------|---------------------------------------------------------------------------------|----------------------------------------------------------------|----------|
| Date     | of Sampling                                      |      |                                                                                 | 01.06.17                                                       | 01.06.17 |
| Sr.      | Parameters                                       | Unit | Std.<br>Limit                                                                   | Resul                                                          | ts       |
| VI.      | Beta HCH                                         | μg/L | 2.0                                                                             | BDL                                                            | BDL      |
| VII.     | Delta HCH                                        | μg/L | 0.2                                                                             | BDL                                                            | BDL      |
| VIII.    | Butachlor                                        | μg/L |                                                                                 | BDL                                                            | BDL      |
| IX.      | p,p DDT                                          | μg/L | 0.05                                                                            | BDL                                                            | BDL      |
| X.       | o,p DDT                                          | μg/L | 100.0                                                                           | BDL                                                            | BDL      |
| XI.      | p,p DDE                                          | μg/L | 250.0                                                                           | BDL                                                            | BDL      |
| XII.     | o,p DDE                                          | μg/L | 30.0                                                                            | BDL                                                            | BDL      |
| XIII.    | p,p DDD                                          | μg/L |                                                                                 | BDL                                                            | BDL      |
| XIV.     | o,p DDD                                          | μg/L |                                                                                 | BDL                                                            | BDL      |
| XV.      | Alpha Endosulfan                                 | μg/L | 10.0                                                                            | BDL                                                            | BDL      |
| XVI.     | Beta Endosulfan                                  | μg/L |                                                                                 | BDL                                                            | BDL      |
| XVII.    | Endosulfan Sulphate                              | μg/L | 5.0                                                                             | BDL                                                            | BDL      |
| VIII.    | Y HCH (Lindane)                                  | μg/L | 1.0                                                                             | BDL                                                            | BDL      |
| 28.      | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 0.2                                                                             | ND                                                             | ND       |
| 29.      | Polychlorinated<br>Biphenyls (PCB)               | mg/L | 2.0                                                                             | BDL                                                            | BDL      |
| 30.      | Zinc (as Zn)                                     | mg/L | 5.0                                                                             | BDL                                                            | BDL      |
| 31.      | Nickel (as Ni)                                   | mg/L | 3.0                                                                             | BDL                                                            | BDL      |
| 32.      | Copper (as Cu)                                   | mg/L |                                                                                 | BDL                                                            | BDL      |
| 33.      | Hexavalent<br>Chromium (as Cr <sup>6+</sup> )    | mg/L | 0.1                                                                             | BDL                                                            | 0.032    |

| Location |                        |               |               | Nallah water<br>domestic<br>effluent of ACC<br>LTD., Colony &<br>Ghugus village | Nallha<br>Opposite<br>Manidhari<br>Industries,<br>Plot No. c-2 |
|----------|------------------------|---------------|---------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|
| Date     | of Sampling            |               |               | 01.06.17                                                                        | 01.06.17                                                       |
| Sr.      | Parameters             | Unit          | Std.<br>Limit | Resul                                                                           | ts                                                             |
| 34.      | Total Chromium (as Cr) | mg/L          | 2.0           | 0.029                                                                           | BDL                                                            |
| 35.      | Total Arsenic (as As)  | mg/L          | 0.2           | BDL                                                                             | BDL                                                            |
| 36.      | Lead (as Pb)           | mg/L          | 0.1           | BDL                                                                             | BDL                                                            |
| 37.      | Cadmium (as Cd)        | mg/L          | 2.0           | BDL                                                                             | BDL                                                            |
| 38.      | Mercury (as Hg)        | mg/L          | 0.01          | 0.0005                                                                          | 0.0002                                                         |
| 39.      | Manganese(as Mn)       | mg/L          | 2.0           | 0.177                                                                           | 0.035                                                          |
| 40.      | Iron (as Fe)           | mg/L          | 3.0           | 3.34                                                                            | BDL                                                            |
| 41.      | Vanadium(as V)         | mg/L          | 0.2           | BDL                                                                             | BDL                                                            |
| 42.      | Selenium (as Se)       | mg/L          | 0.05          | ND                                                                              | ND                                                             |
| 43.      | Boron (as B)           | mg/L          |               | BDL                                                                             | 0.30                                                           |
| 44.      | Bioassay Test on fish  | %<br>survival |               | 0%                                                                              | 80%                                                            |

# Table No. VII

| Loca | tion         | Gagangiri<br>Village Bridge | BILT RCC Pipe<br>Outlet |              |              |  |
|------|--------------|-----------------------------|-------------------------|--------------|--------------|--|
| Date | of Sampling  | 06.07.17                    | 06.07.17                |              |              |  |
| Sr.  | Parameters   | Unit                        | Std.<br>Limit           | Results      |              |  |
| 1.   | Colour       | Hazen                       |                         | 20           | 20           |  |
| 2.   | Smell        | -                           |                         | Disagreeable | Disagreeable |  |
| 3.   | рН           | -                           | 5.5 -9.0                | 7.6          | 7.1          |  |
| 4.   | Oil & Grease | mg/L                        | 10.0                    | ND           | ND           |  |

| Location |                                               |                         |               | Gagangiri<br>Village Bridge | BILT RCC Pipe<br>Outlet |
|----------|-----------------------------------------------|-------------------------|---------------|-----------------------------|-------------------------|
| Date     | Date of Sampling                              |                         |               | 06.07.17                    | 06.07.17                |
| Sr.      | Parameters                                    | Unit                    | Std.<br>Limit | Results                     |                         |
| 5.       | Suspended Solids                              | mg/L                    | 100.0         | 42                          | 24                      |
| 6.       | Dissolved Oxygen<br>(% Saturation)            | %                       |               | 41.2                        | 30.8                    |
| 7.       | Chemical Oxygen<br>Demand                     | mg/L                    | 250.0         | 52                          | 116                     |
| 8.       | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L                    | 30.0          | 14                          | 33                      |
| 9.       | Electrical Conductivity (at 25°C)             | µmho/cm                 |               | 1424                        | 3702                    |
| 10.      | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L                    |               | 0.1076                      | 0.05                    |
| 11.      | Nitrate Nitrogen (as NO <sub>3</sub> )        | mg/L                    | 10.0          | 3.42                        | 2.55                    |
| 12.      | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen | mg/L                    | 5.0           | 3.53                        | 2.60                    |
| 13.      | Free Ammonia<br>(as NH <sub>3</sub> -N)       | mg/L                    | 5.0           | 1.19                        | BDL                     |
| 14.      | Total Residual<br>Chlorine                    | mg/L                    | 1.0           | 0.089                       | 0.079                   |
| 15.      | Cyanide (as CN)                               | mg/L                    | 0.2           | ND                          | ND                      |
| 16.      | Fluoride (as F)                               | mg/L                    | 2.0           | 0.568                       | 0.50                    |
| 17.      | Sulphide (as S <sup>2-</sup> )                | mg/L                    | 2.0           | BDL                         | 0.400                   |
| 18.      | Dissolved Phosphate (as P)                    | mg/L                    | 5.0           | 0.235                       | 0.319                   |
| 19.      | Sodium Absorption<br>Ratio                    | mg/L                    |               | 3.92                        | 5.83                    |
| 20.      | Total Coliforms                               | MPN<br>Index/<br>100 ml | 100.0         | 2800                        | 28000                   |

| Location         |                                                               |                         | Gagangiri<br>Village Bridge | BILT RCC Pipe<br>Outlet |       |
|------------------|---------------------------------------------------------------|-------------------------|-----------------------------|-------------------------|-------|
| Date of Sampling |                                                               |                         | 06.07.17                    | 06.07.17                |       |
| Sr.              | Parameters                                                    | Unit                    | Std.<br>Limit               | Res                     | ults  |
| 21.              | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml | 1000.0                      | 1100                    | 1100  |
| 22.              | Total Phosphorous<br>(as P)                                   | mg/L                    | 1.0                         | 0.355                   | 0.450 |
| 23.              | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                    | 100.0                       | 5.04                    | 0.784 |
| 24.              | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                    | 5.0                         | 0.840                   | BDL   |
| 25.              | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                    | 3.0                         | ND                      | ND    |
| 26.              | Surface Active Agents (as MBAS)                               | mg/L                    | 3.0                         | ND                      | ND    |
| 27.              | Organo Chlorine<br>Pesticides                                 |                         |                             |                         |       |
| I.               | Alachlor                                                      | μg/L                    | 2.0                         | BDL                     | BDL   |
| II.              | Atrazine                                                      | μg/L                    | 0.2                         | BDL                     | BDL   |
| III.             | Aldrin                                                        | μg/L                    | 0.1                         | BDL                     | BDL   |
| IV.              | Dieldrin                                                      | μg/L                    | 2.0                         | BDL                     | BDL   |
| V.               | Alpha HCH                                                     | μg/L                    | 0.01                        | BDL                     | BDL   |
| VI.              | Beta HCH                                                      | μg/L                    | 2.0                         | BDL                     | BDL   |
| VII.             | Delta HCH                                                     | μg/L                    | 0.2                         | BDL                     | BDL   |
| VIII.            | Butachlor                                                     | μg/L                    |                             | BDL                     | BDL   |
| IX.              | p,p DDT                                                       | μg/L                    | 0.05                        | BDL                     | BDL   |
| X.               | o,p DDT                                                       | μg/L                    | 100.0                       | BDL                     | BDL   |
| XI.              | p,p DDE                                                       | μg/L                    | 250.0                       | BDL                     | BDL   |
| XII.             | o,p DDE                                                       | μg/L                    | 30.0                        | BDL                     | BDL   |
| XIII.            | p,p DDD                                                       | μg/L                    |                             | BDL                     | BDL   |

| Loca  | tion                                             | Gagangiri<br>Village Bridge | BILT RCC Pipe<br>Outlet |          |          |
|-------|--------------------------------------------------|-----------------------------|-------------------------|----------|----------|
| Date  | Date of Sampling                                 |                             |                         | 06.07.17 | 06.07.17 |
| Sr.   | Parameters                                       | Unit                        | Std.<br>Limit           | Res      | ults     |
| XIV.  | o,p DDD                                          | μg/L                        |                         | BDL      | BDL      |
| XV.   | Alpha Endosulfan                                 | μg/L                        | 10.0                    | BDL      | BDL      |
| XVI.  | Beta Endosulfan                                  | μg/L                        |                         | BDL      | BDL      |
| XVII. | Endosulfan Sulphate                              | μg/L                        | 5.0                     | BDL      | BDL      |
| VIII. | Y HCH (Lindane)                                  | μg/L                        | 1.0                     | BDL      | BDL      |
| 28.   | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L                        | 0.2                     | ND       | ND       |
| 29.   | Polychlorinated<br>Biphenyls (PCB)               | mg/L                        | 2.0                     | BDL      | BDL      |
| 30.   | Zinc (as Zn)                                     | mg/L                        | 5.0                     | BDL      | BDL      |
| 31.   | Nickel (as Ni)                                   | mg/L                        | 3.0                     | BDL      | BDL      |
| 32.   | Copper (as Cu)                                   | mg/L                        |                         | BDL      | BDL      |
| 33.   | Hexavalent<br>Chromium (as Cr <sup>6+</sup> )    | mg/L                        | 0.1                     | BDL      | BDL      |
| 34.   | Total Chromium (as Cr)                           | mg/L                        | 2.0                     | BDL      | BDL      |
| 35.   | Total Arsenic (as As)                            | mg/L                        | 0.2                     | ND       | BDL      |
| 36.   | Lead (as Pb)                                     | mg/L                        | 0.1                     | BDL      | BDL      |
| 37.   | Cadmium (as Cd)                                  | mg/L                        | 2.0                     | BDL      | BDL      |
| 38.   | Mercury (as Hg)                                  | mg/L                        | 0.01                    | 0.0005   | 0.0005   |
| 39.   | Manganese(as Mn)                                 | mg/L                        | 2.0                     | BDL      | 0.189    |
| 40.   | Iron (as Fe)                                     | mg/L                        | 3.0                     | 0.131    | BDL      |
| 41.   | Vanadium(as V)                                   | mg/L                        | 0.2                     | BDL      | BDL      |
| 42.   | Selenium (as Se)                                 | mg/L                        | 0.05                    | ND       | ND       |
| 43.   | Boron (as B)                                     | mg/L                        |                         | 0.438    | 0.243    |

| Loca | tion                  | Gagangiri<br>Village Bridge | BILT RCC Pipe<br>Outlet |         |      |  |
|------|-----------------------|-----------------------------|-------------------------|---------|------|--|
| Date | of Sampling           | 06.07.17                    | 06.07.17                |         |      |  |
| Sr.  | Parameters            | Unit                        | Std.<br>Limit           | Results |      |  |
| 44.  | Bioassay Test on fish | %<br>survival               |                         | 80%     | 100% |  |

### Table No. VIII

| Loca | ition                                         | ETP Outlet of<br>Multiorganics<br>Pvt. Ltd | ETP Outlet of<br>Super<br>Hygienic<br>(BMW<br>disposal Unit) |              |              |
|------|-----------------------------------------------|--------------------------------------------|--------------------------------------------------------------|--------------|--------------|
| Date | of Sampling                                   |                                            |                                                              | 06.07.17     | 06.07.17     |
| Sr.  | Parameters                                    | Unit                                       | Std.<br>Limit                                                | Res          | ults         |
| 1.   | Colour                                        | Hazen                                      |                                                              | 150          | 20           |
| 2.   | Smell                                         | -                                          |                                                              | Disagreeable | Disagreeable |
| 3.   | рН                                            | -                                          | 5.5 -9.0                                                     | 8.1          | 5.9          |
| 4.   | Oil & Grease                                  | mg/L                                       | 10.0                                                         | ND           | ND           |
| 5.   | Suspended Solids                              | mg/L                                       | 100.0                                                        | 13           | 121          |
| 6.   | Dissolved Oxygen<br>(% Saturation)            | %                                          |                                                              | 69.3         | 0            |
| 7.   | Chemical Oxygen<br>Demand                     | mg/L                                       | 250.0                                                        | 116          | 316          |
| 8.   | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L                                       | 30.0                                                         | 33           | 100          |
| 9.   | Electrical Conductivity (at 25°C)             | µmho/cm                                    |                                                              | 6271         | 2901         |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L                                       |                                                              | BDL          | 0.19         |

| Location |                                                               |                         |               | ETP Outlet of<br>Multiorganics<br>Pvt. Ltd | ETP Outlet of<br>Super<br>Hygienic<br>(BMW<br>disposal Unit) |
|----------|---------------------------------------------------------------|-------------------------|---------------|--------------------------------------------|--------------------------------------------------------------|
| Date     | of Sampling                                                   |                         |               | 06.07.17                                   | 06.07.17                                                     |
| Sr.      | Parameters                                                    | Unit                    | Std.<br>Limit | Res                                        | ults                                                         |
| 11.      | Nitrate Nitrogen (as NO <sub>3</sub> )                        | mg/L                    | 10.0          | 18.3                                       | BDL                                                          |
| 12.      | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen                 | mg/L                    | 5.0           | 18.3                                       | BDL                                                          |
| 13.      | Free Ammonia<br>(as NH <sub>3</sub> -N)                       | mg/L                    | 5.0           | 0.184                                      | 0.12                                                         |
| 14.      | Total Residual<br>Chlorine                                    | mg/L                    | 1.0           | BDL                                        | 0.053                                                        |
| 15.      | Cyanide (as CN)                                               | mg/L                    | 0.2           | ND                                         | BDL                                                          |
| 16.      | Fluoride (as F)                                               | mg/L                    | 2.0           | 1.34                                       | 1.38                                                         |
| 17.      | Sulphide (as S <sup>2-</sup> )                                | mg/L                    | 2.0           | BDL                                        | 0.08                                                         |
| 18.      | Dissolved Phosphate<br>(as P)                                 | mg/L                    | 5.0           | 1.09                                       | 0.161                                                        |
| 19.      | Sodium Absorption<br>Ratio                                    | mg/L                    |               | 43.6                                       | 2.7                                                          |
| 20.      | Total Coliforms                                               | MPN<br>Index/<br>100 ml | 100.0         | 5.4 X10 <sup>4</sup>                       | 4900                                                         |
| 21.      | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml | 1000.0        | 3.5 X 10 <sup>4</sup>                      | 3300                                                         |
| 22.      | Total Phosphorous (as P)                                      | mg/L                    | 1.0           | 1.29                                       | 0.230                                                        |
| 23.      | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                    | 100.0         | 1.0                                        | 52.1                                                         |
| 24.      | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                    | 5.0           | 0.20                                       | 48.8                                                         |
| 25.      | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                    | 3.0           | 0.005                                      | 0.116                                                        |

| Loca  | tion                            | ETP Outlet of<br>Multiorganics<br>Pvt. Ltd | ETP Outlet of<br>Super<br>Hygienic<br>(BMW<br>disposal Unit) |          |          |
|-------|---------------------------------|--------------------------------------------|--------------------------------------------------------------|----------|----------|
| Date  | of Sampling                     |                                            |                                                              | 06.07.17 | 06.07.17 |
| Sr.   | Parameters                      | Unit                                       | Std.<br>Limit                                                | Res      | ults     |
| 26.   | Surface Active Agents (as MBAS) | mg/L                                       | 3.0                                                          | 0.45     | BDL      |
| 27.   | Organo Chlorine<br>Pesticides   |                                            |                                                              |          |          |
| I.    | Alachlor                        | μg/L                                       | 2.0                                                          | BDL      | BDL      |
| II.   | Atrazine                        | μg/L                                       | 0.2                                                          | BDL      | BDL      |
| III.  | Aldrin                          | μg/L                                       | 0.1                                                          | BDL      | BDL      |
| IV.   | Dieldrin                        | μg/L                                       | 2.0                                                          | BDL      | BDL      |
| V.    | Alpha HCH                       | μg/L                                       | 0.01                                                         | BDL      | BDL      |
| VI.   | Beta HCH                        | μg/L                                       | 2.0                                                          | BDL      | BDL      |
| VII.  | Delta HCH                       | μg/L                                       | 0.2                                                          | BDL      | BDL      |
| VIII. | Butachlor                       | μg/L                                       |                                                              | BDL      | BDL      |
| IX.   | p,p DDT                         | μg/L                                       | 0.05                                                         | BDL      | BDL      |
| X.    | o,p DDT                         | μg/L                                       | 100.0                                                        | BDL      | BDL      |
| XI.   | p,p DDE                         | μg/L                                       | 250.0                                                        | BDL      | BDL      |
| XII.  | o,p DDE                         | μg/L                                       | 30.0                                                         | BDL      | BDL      |
| XIII. | p,p DDD                         | μg/L                                       |                                                              | BDL      | BDL      |
| XIV.  | o,p DDD                         | μg/L                                       |                                                              | BDL      | BDL      |
| XV.   | Alpha Endosulfan                | μg/L                                       | 10.0                                                         | BDL      | BDL      |
| XVI.  | Beta Endosulfan                 | μg/L                                       |                                                              | BDL      | BDL      |
| XVII. | Endosulfan Sulphate             | μg/L                                       | 5.0                                                          | BDL      | BDL      |
| VIII. | Y HCH (Lindane)                 | μg/L                                       | 1.0                                                          | BDL      | BDL      |

| Loca | ition                                            | ETP Outlet of<br>Multiorganics<br>Pvt. Ltd | ETP Outlet of<br>Super<br>Hygienic<br>(BMW<br>disposal Unit) |          |          |
|------|--------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|----------|----------|
| Date | of Sampling                                      |                                            |                                                              | 06.07.17 | 06.07.17 |
| Sr.  | Parameters                                       | Unit                                       | Std.<br>Limit                                                | Res      | ults     |
| 28.  | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L                                       | 0.2                                                          | 1.24     | 2.15     |
| 29.  | Polychlorinated<br>Biphenyls (PCB)               | mg/L                                       | 2.0                                                          | BDL      | BDL      |
| 30.  | Zinc (as Zn)                                     | mg/L                                       | 5.0                                                          | BDL      | 5.61     |
| 31.  | Nickel (as Ni)                                   | mg/L                                       | 3.0                                                          | BDL      | 0.582    |
| 32.  | Copper (as Cu)                                   | mg/L                                       |                                                              | BDL      | 0.056    |
| 33.  | Hexavalent<br>Chromium (as Cr <sup>6+</sup> )    | mg/L                                       | 0.1                                                          | BDL      | BDL      |
| 34.  | Total Chromium<br>(as Cr)                        | mg/L                                       | 2.0                                                          | BDL      | 0.097    |
| 35.  | Total Arsenic (as As)                            | mg/L                                       | 0.2                                                          | BDL      | 0.01     |
| 36.  | Lead (as Pb)                                     | mg/L                                       | 0.1                                                          | BDL      | 0.363    |
| 37.  | Cadmium (as Cd)                                  | mg/L                                       | 2.0                                                          | BDL      | 0.016    |
| 38.  | Mercury (as Hg)                                  | mg/L                                       | 0.01                                                         | BDL      | BDL      |
| 39.  | Manganese(as Mn)                                 | mg/L                                       | 2.0                                                          | BDL      | 0.791    |
| 40.  | Iron (as Fe)                                     | mg/L                                       | 3.0                                                          | 0.131    | 10.9     |
| 41.  | Vanadium(as V)                                   | mg/L                                       | 0.2                                                          | BDL      | BDL      |
| 42.  | Selenium (as Se)                                 | mg/L                                       | 0.05                                                         | BDL      | ND       |
| 43.  | Boron (as B)                                     | mg/L                                       |                                                              | 0.254    | 0.198    |
| 44.  | Bioassay Test on fish                            | %<br>survival                              |                                                              | 0%       | 100%     |

Table No. IX

| Loca | tion                                          | ETP Outlet of<br>HPCL | Bhagirathi<br>Nallah Bridge,<br>Gondpipri<br>Road, Near<br>Bamni<br>Protiesn |           |              |
|------|-----------------------------------------------|-----------------------|------------------------------------------------------------------------------|-----------|--------------|
| Date | of Sampling                                   |                       |                                                                              | 06.07.17  | 06.07.17     |
| Sr.  | Parameters                                    | Unit                  | Std.<br>Limit                                                                | Res       | ults         |
| 1.   | Colour                                        | Hazen                 |                                                                              | 2         | 20           |
| 2.   | Smell                                         | -                     |                                                                              | Agreeable | Disagreeable |
| 3.   | рН                                            | -                     | 5.5 -9.0                                                                     | 8.1       | 6.7          |
| 4.   | Oil & Grease                                  | mg/L                  | 10.0                                                                         | ND        | ND           |
| 5.   | Suspended Solids                              | mg/L                  | 100.0                                                                        | BDL       | 80           |
| 6.   | Dissolved Oxygen<br>(% Saturation)            | %                     |                                                                              | 81.0      | 0            |
| 7.   | Chemical Oxygen<br>Demand                     | mg/L                  | 250.0                                                                        | 32        | 284          |
| 8.   | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L                  | 30.0                                                                         | 9.4       | 84           |
| 9.   | Electrical Conductivity (at 25°C)             | µmho/cm               |                                                                              | 1989      | 12182        |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L                  |                                                                              | ND        | BDL          |
| 11.  | Nitrate Nitrogen (as NO <sub>3</sub> )        | mg/L                  | 10.0                                                                         | BDL       | BDL          |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen | mg/L                  | 5.0                                                                          | BDL       | BDL          |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)       | mg/L                  | 5.0                                                                          | BDL       | BDL          |
| 14.  | Total Residual<br>Chlorine                    | mg/L                  | 1.0                                                                          | BDL       | 0.063        |
| 15.  | Cyanide (as CN)                               | mg/L                  | 0.2                                                                          | ND        | BDL          |

| Loca | ition                                                         | ETP Outlet of<br>HPCL   | Bhagirathi<br>Nallah Bridge,<br>Gondpipri<br>Road, Near<br>Bamni<br>Protiesn |          |          |
|------|---------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------|----------|----------|
| Date | of Sampling                                                   |                         |                                                                              | 06.07.17 | 06.07.17 |
| Sr.  | Parameters                                                    | Unit                    | Std.<br>Limit                                                                | Res      | sults    |
| 16.  | Fluoride (as F)                                               | mg/L                    | 2.0                                                                          | 1.17     | 0.097    |
| 17.  | Sulphide (as S <sup>2-</sup> )                                | mg/L                    | 2.0                                                                          | 0.08     | 0.160    |
| 18.  | Dissolved Phosphate<br>(as P)                                 | mg/L                    | 5.0                                                                          | BDL      | 0.381    |
| 19.  | Sodium Absorption<br>Ratio                                    | mg/L                    |                                                                              | 13.2     | 0.567    |
| 20.  | Total Coliforms                                               | MPN<br>Index/<br>100 ml | 100.0                                                                        | 2300     | 260      |
| 21.  | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml | 1000.0                                                                       | 1300     | 170      |
| 22.  | Total Phosphorous (as P)                                      | mg/L                    | 1.0                                                                          | 0.099    | 0.58     |
| 23.  | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                    | 100.0                                                                        | 5.38     | 58.6     |
| 24.  | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                    | 5.0                                                                          | 3.85     | 40.0     |
| 25.  | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                    | 3.0                                                                          | ND       | ND       |
| 26.  | Surface Active Agents (as MBAS)                               | mg/L                    | 3.0                                                                          | ND       | BDL      |
| 27.  | Organo Chlorine<br>Pesticides                                 |                         |                                                                              |          |          |
| I.   | Alachlor                                                      | μg/L                    | 2.0                                                                          | BDL      | BDL      |
| II.  | Atrazine                                                      | μg/L                    | 0.2                                                                          | BDL      | BDL      |
| III. | Aldrin                                                        | μg/L                    | 0.1                                                                          | BDL      | BDL      |
| IV.  | Dieldrin                                                      | μg/L                    | 2.0                                                                          | BDL      | BDL      |

| Loca  | ition                                         |      |               | ETP Outlet of<br>HPCL | Bhagirathi<br>Nallah Bridge,<br>Gondpipri<br>Road, Near<br>Bamni<br>Protiesn |
|-------|-----------------------------------------------|------|---------------|-----------------------|------------------------------------------------------------------------------|
| Date  | of Sampling                                   |      |               | 06.07.17              | 06.07.17                                                                     |
| Sr.   | Parameters                                    | Unit | Std.<br>Limit | Res                   | ults                                                                         |
| V.    | Alpha HCH                                     | μg/L | 0.01          | BDL                   | BDL                                                                          |
| VI.   | Beta HCH                                      | μg/L | 2.0           | BDL                   | BDL                                                                          |
| VII.  | Delta HCH                                     | μg/L | 0.2           | BDL                   | BDL                                                                          |
| VIII. | Butachlor                                     | μg/L |               | BDL                   | BDL                                                                          |
| IX.   | p,p DDT                                       | μg/L | 0.05          | BDL                   | BDL                                                                          |
| X.    | o,p DDT                                       | μg/L | 100.0         | BDL                   | BDL                                                                          |
| XI.   | p,p DDE                                       | μg/L | 250.0         | BDL                   | BDL                                                                          |
| XII.  | o,p DDE                                       | μg/L | 30.0          | BDL                   | BDL                                                                          |
| XIII. | p,p DDD                                       | μg/L |               | BDL                   | BDL                                                                          |
| XIV.  | o,p DDD                                       | μg/L |               | BDL                   | BDL                                                                          |
| XV.   | Alpha Endosulfan                              | μg/L | 10.0          | BDL                   | BDL                                                                          |
| XVI.  | Beta Endosulfan                               | μg/L |               | BDL                   | BDL                                                                          |
| XVII. | Endosulfan Sulphate                           | μg/L | 5.0           | BDL                   | BDL                                                                          |
| VIII. | Y HCH (Lindane)                               | μg/L | 1.0           | BDL                   | BDL                                                                          |
| 28.   | Polynuclear aromatic hydrocarbons (as PAH)    | mg/L | 0.2           | ND                    | ND                                                                           |
| 29.   | Polychlorinated<br>Biphenyls (PCB)            | mg/L | 2.0           | BDL                   | BDL                                                                          |
| 30.   | Zinc (as Zn)                                  | mg/L | 5.0           | BDL                   | BDL                                                                          |
| 31.   | Nickel (as Ni)                                | mg/L | 3.0           | BDL                   | BDL                                                                          |
| 32.   | Copper (as Cu)                                | mg/L |               | BDL                   | BDL                                                                          |
| 33.   | Hexavalent<br>Chromium (as Cr <sup>6+</sup> ) | mg/L | 0.1           | BDL                   | 0.039                                                                        |

| Loca | tion                   | ETP Outlet of<br>HPCL | Bhagirathi<br>Nallah Bridge,<br>Gondpipri<br>Road, Near<br>Bamni<br>Protiesn |          |          |
|------|------------------------|-----------------------|------------------------------------------------------------------------------|----------|----------|
| Date | of Sampling            |                       |                                                                              | 06.07.17 | 06.07.17 |
| Sr.  | Parameters             | Unit                  | Std.<br>Limit                                                                | Res      | ults     |
| 34.  | Total Chromium (as Cr) | mg/L                  | 2.0                                                                          | BDL      | BDL      |
| 35.  | Total Arsenic (as As)  | mg/L                  | 0.2                                                                          | ND       | BDL      |
| 36.  | Lead (as Pb)           | mg/L                  | 0.1                                                                          | 0.10     | BDL      |
| 37.  | Cadmium (as Cd)        | mg/L                  | 2.0                                                                          | BDL      | BDL      |
| 38.  | Mercury (as Hg)        | mg/L                  | 0.01                                                                         | ND       | 0.0005   |
| 39.  | Manganese(as Mn)       | mg/L                  | 2.0                                                                          | 0.093    | 0.123    |
| 40.  | Iron (as Fe)           | mg/L                  | 3.0                                                                          | 0.373    | 0.256    |
| 41.  | Vanadium(as V)         | mg/L                  | 0.2                                                                          | BDL      | BDL      |
| 42.  | Selenium (as Se)       | mg/L                  | 0.05                                                                         | BDL      | ND       |
| 43.  | Boron (as B)           | mg/L                  |                                                                              | 0.127    | 0.18     |
| 44.  | Bioassay Test on fish  | %<br>survival         |                                                                              | 0%       | 100%     |

## Table No. X

| Location |             |       | Wardha River,<br>Rajura Bridge | Nallah Near<br>MSW<br>Municipal<br>Corporation,<br>Near Railway<br>Line |              |  |
|----------|-------------|-------|--------------------------------|-------------------------------------------------------------------------|--------------|--|
| Date     | of Sampling |       |                                | 06.07.17                                                                | 06.07.17     |  |
| Sr.      | Parameters  | Unit  | Std.<br>Limit                  | Results                                                                 |              |  |
| 1.       | Colour      | Hazen |                                | 2                                                                       | 20           |  |
| 2.       | Smell       | -     |                                | Agreeable                                                               | Disagreeable |  |

| Loca | ition                                         |         |               | Wardha River,<br>Rajura Bridge | Nallah Near<br>MSW<br>Municipal<br>Corporation,<br>Near Railway<br>Line |
|------|-----------------------------------------------|---------|---------------|--------------------------------|-------------------------------------------------------------------------|
| Date | of Sampling                                   |         |               | 06.07.17                       | 06.07.17                                                                |
| Sr.  | Parameters                                    | Unit    | Std.<br>Limit | Res                            | ults                                                                    |
| 3.   | рН                                            | -       | 5.5 -9.0      | 8.1                            | 7.3                                                                     |
| 4.   | Oil & Grease                                  | mg/L    | 10.0          | ND                             | ND                                                                      |
| 5.   | Suspended Solids                              | mg/L    | 100.0         | 13                             | 27                                                                      |
| 6.   | Dissolved Oxygen<br>(% Saturation)            | %       |               | 89.3                           | 17.3                                                                    |
| 7.   | Chemical Oxygen<br>Demand                     | mg/L    | 250.0         | 48                             | 92                                                                      |
| 8.   | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L    | 30.0          | 13                             | 26                                                                      |
| 9.   | Electrical Conductivity (at 25°C)             | µmho/cm |               | 875                            | 3499                                                                    |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L    |               | BDL                            | 0.066                                                                   |
| 11.  | Nitrate Nitrogen (as NO <sub>3</sub> )        | mg/L    | 10.0          | 0.55                           | 7.50                                                                    |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen | mg/L    | 5.0           | 0.575                          | 7.57                                                                    |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)       | mg/L    | 5.0           | 0.210                          | 0.543                                                                   |
| 14.  | Total Residual<br>Chlorine                    | mg/L    | 1.0           | BDL                            | 0.074                                                                   |
| 15.  | Cyanide (as CN)                               | mg/L    | 0.2           | ND                             | BDL                                                                     |
| 16.  | Fluoride (as F)                               | mg/L    | 2.0           | 0.50                           | 0.50                                                                    |
| 17.  | Sulphide (as S <sup>2-</sup> )                | mg/L    | 2.0           | ND                             | 0.08                                                                    |

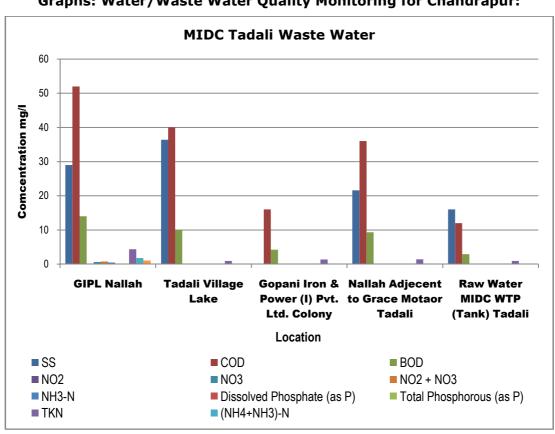
| Loca | ition                                                         |                         |               | Wardha River,<br>Rajura Bridge | Nallah Near<br>MSW<br>Municipal<br>Corporation,<br>Near Railway<br>Line |
|------|---------------------------------------------------------------|-------------------------|---------------|--------------------------------|-------------------------------------------------------------------------|
| Date | of Sampling                                                   |                         |               | 06.07.17                       | 06.07.17                                                                |
| Sr.  | Parameters                                                    | Unit                    | Std.<br>Limit | Res                            | ults                                                                    |
| 18.  | Dissolved Phosphate (as P)                                    | mg/L                    | 5.0           | 0.062                          | 0.319                                                                   |
| 19.  | Sodium Absorption<br>Ratio                                    | mg/L                    |               | 2.61                           | 4.47                                                                    |
| 20.  | Total Coliforms                                               | MPN<br>Index/<br>100 ml | 100.0         | 1400                           | 2200                                                                    |
| 21.  | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml | 1000.0        | 390                            | 1100                                                                    |
| 22.  | Total Phosphorous (as P)                                      | mg/L                    | 1.0           | 0.103                          | 0.491                                                                   |
| 23.  | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                    | 100.0         | 1.06                           | 2.41                                                                    |
| 24.  | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                    | 5.0           | 0.271                          | 0.677                                                                   |
| 25.  | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                    | 3.0           | ND                             | 0.0104                                                                  |
| 26.  | Surface Active Agents (as MBAS)                               | mg/L                    | 3.0           | BDL                            | ND                                                                      |
| 27.  | Organo Chlorine<br>Pesticides                                 |                         |               |                                |                                                                         |
| I.   | Alachlor                                                      | μg/L                    | 2.0           | BDL                            | BDL                                                                     |
| II.  | Atrazine                                                      | μg/L                    | 0.2           | BDL                            | BDL                                                                     |
| III. | Aldrin                                                        | μg/L                    | 0.1           | BDL                            | BDL                                                                     |
| IV.  | Dieldrin                                                      | μg/L                    | 2.0           | BDL                            | BDL                                                                     |
| V.   | Alpha HCH                                                     | μg/L                    | 0.01          | BDL                            | BDL                                                                     |
| VI.  | Beta HCH                                                      | μg/L                    | 2.0           | BDL                            | BDL                                                                     |

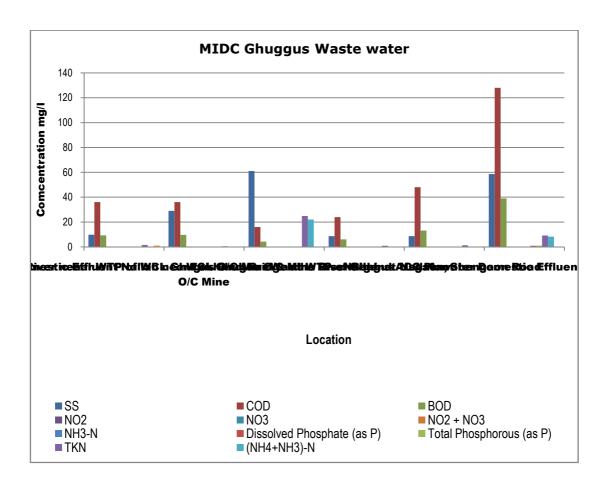
| Loca  | ition                                            |      |               | Wardha River,<br>Rajura Bridge | Nallah Near<br>MSW<br>Municipal<br>Corporation,<br>Near Railway<br>Line |
|-------|--------------------------------------------------|------|---------------|--------------------------------|-------------------------------------------------------------------------|
| Date  | of Sampling                                      |      |               | 06.07.17                       | 06.07.17                                                                |
| Sr.   | Parameters                                       | Unit | Std.<br>Limit | Res                            | ults                                                                    |
| VII.  | Delta HCH                                        | μg/L | 0.2           | BDL                            | BDL                                                                     |
| VIII. | Butachlor                                        | μg/L |               | BDL                            | BDL                                                                     |
| IX.   | p,p DDT                                          | μg/L | 0.05          | BDL                            | BDL                                                                     |
| X.    | o,p DDT                                          | μg/L | 100.0         | BDL                            | BDL                                                                     |
| XI.   | p,p DDE                                          | μg/L | 250.0         | BDL                            | BDL                                                                     |
| XII.  | o,p DDE                                          | μg/L | 30.0          | BDL                            | BDL                                                                     |
| XIII. | p,p DDD                                          | μg/L |               | BDL                            | BDL                                                                     |
| XIV.  | o,p DDD                                          | μg/L |               | BDL                            | BDL                                                                     |
| XV.   | Alpha Endosulfan                                 | μg/L | 10.0          | BDL                            | BDL                                                                     |
| XVI.  | Beta Endosulfan                                  | μg/L |               | BDL                            | BDL                                                                     |
| XVII. | Endosulfan Sulphate                              | μg/L | 5.0           | BDL                            | BDL                                                                     |
| VIII. | Y HCH (Lindane)                                  | μg/L | 1.0           | BDL                            | BDL                                                                     |
| 28.   | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 0.2           | ND                             | ND                                                                      |
| 29.   | Polychlorinated<br>Biphenyls (PCB)               | mg/L | 2.0           | BDL                            | BDL                                                                     |
| 30.   | Zinc (as Zn)                                     | mg/L | 5.0           | BDL                            | BDL                                                                     |
| 31.   | Nickel (as Ni)                                   | mg/L | 3.0           | BDL                            | BDL                                                                     |
| 32.   | Copper (as Cu)                                   | mg/L |               | BDL                            | BDL                                                                     |
| 33.   | Hexavalent<br>Chromium (as Cr <sup>6+</sup> )    | mg/L | 0.1           | BDL                            | BDL                                                                     |
| 34.   | Total Chromium<br>(as Cr)                        | mg/L | 2.0           | BDL                            | BDL                                                                     |

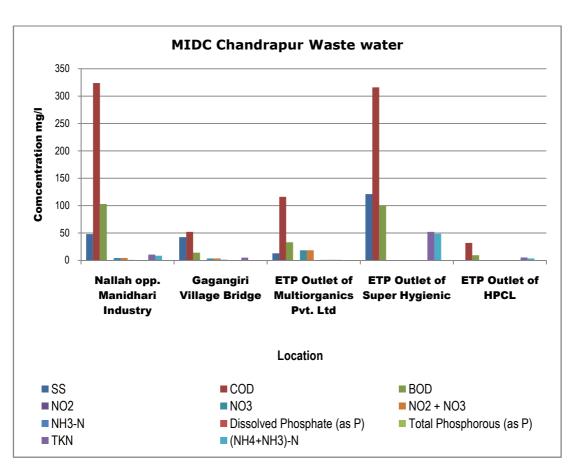
| Location |                       |               |               | Wardha River,<br>Rajura Bridge | Nallah Near<br>MSW<br>Municipal<br>Corporation,<br>Near Railway<br>Line |  |
|----------|-----------------------|---------------|---------------|--------------------------------|-------------------------------------------------------------------------|--|
| Date     | of Sampling           | 06.07.17      | 06.07.17      |                                |                                                                         |  |
| Sr.      | Parameters            | Unit          | Std.<br>Limit | Res                            | Results                                                                 |  |
| 35.      | Total Arsenic (as As) | mg/L          | 0.2           | ND                             | BDL                                                                     |  |
| 36.      | Lead (as Pb)          | mg/L          | 0.1           | BDL                            | BDL                                                                     |  |
| 37.      | Cadmium (as Cd)       | mg/L          | 2.0           | BDL                            | BDL                                                                     |  |
| 38.      | Mercury (as Hg)       | mg/L          | 0.01          | ND                             | 0.0004                                                                  |  |
| 39.      | Manganese(as Mn)      | mg/L          | 2.0           | 0.042                          | 0.156                                                                   |  |
| 40.      | Iron (as Fe)          | mg/L          | 3.0           | 0.264                          | 0.085                                                                   |  |
| 41.      | Vanadium(as V)        | mg/L          | 0.2           | BDL                            | BDL                                                                     |  |
| 42.      | Selenium (as Se)      | mg/L          | 0.05          | BDL                            | ND                                                                      |  |
| 43.      | Boron (as B)          | mg/L          |               | 0.216                          | 0.231                                                                   |  |
| 44.      | Bioassay Test on fish | %<br>survival |               | 0%                             | 0%                                                                      |  |

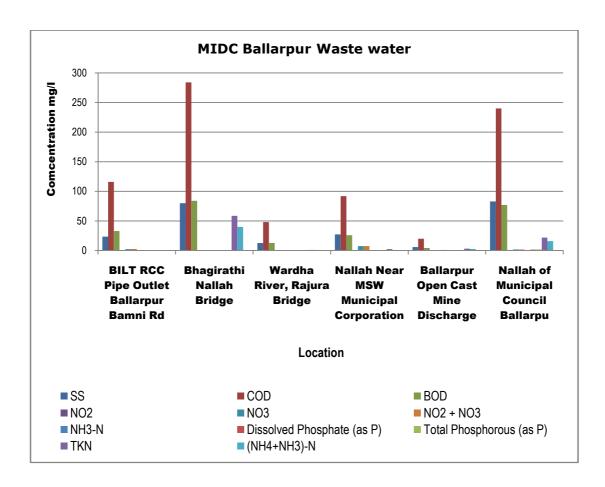
## Table No. XI

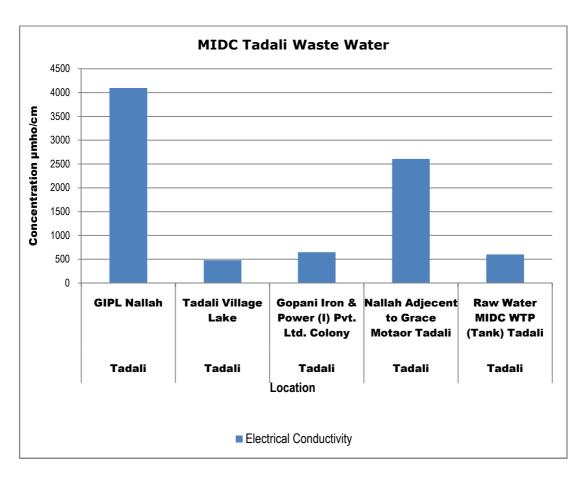
| Location         |              |       | Ballarpur<br>Open Cast<br>Mine<br>Discharge | Nallah of<br>Municipal<br>Council<br>Ballarpur,<br>Besides HP<br>Petrol Pump |              |
|------------------|--------------|-------|---------------------------------------------|------------------------------------------------------------------------------|--------------|
| Date of Sampling |              |       | 06.07.17                                    | 06.07.17                                                                     |              |
| Sr.              | Parameters   | Unit  | Std.<br>Limit                               | Results                                                                      |              |
| 1.               | Colour       | Hazen |                                             | <1                                                                           | 50           |
| 2.               | Smell        | -     |                                             | Agreeable                                                                    | Disagreeable |
| 3.               | рН           | -     | 5.5 -9.0                                    | 7.6                                                                          | 7.3          |
| 4.               | Oil & Grease | mg/L  | 10.0                                        | ND                                                                           | ND           |

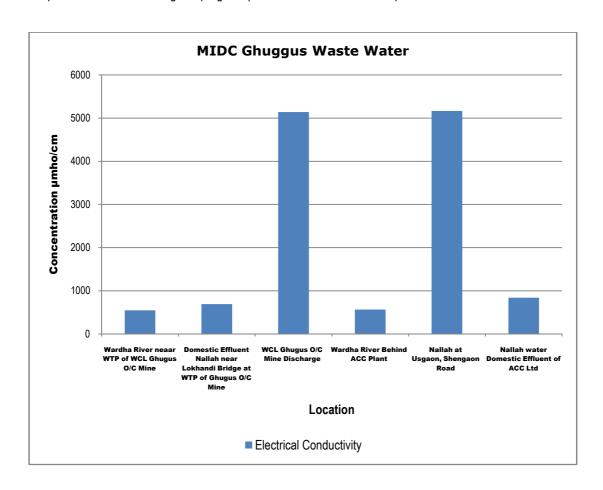

| Location |                                               |         |       | Ballarpur<br>Open Cast<br>Mine<br>Discharge | Nallah of<br>Municipal<br>Council<br>Ballarpur,<br>Besides HP<br>Petrol Pump |
|----------|-----------------------------------------------|---------|-------|---------------------------------------------|------------------------------------------------------------------------------|
| Date     | of Sampling                                   |         |       | 06.07.17                                    | 06.07.17                                                                     |
| Sr.      | r. Parameters Unit Std.                       |         |       | Results                                     |                                                                              |
| 5.       | Suspended Solids                              | mg/L    | 100.0 | 6                                           | 83                                                                           |
| 6.       | Dissolved Oxygen<br>(% Saturation)            | %       |       | 91                                          | 0.0                                                                          |
| 7.       | Chemical Oxygen<br>Demand                     | mg/L    | 250.0 | 20                                          | 240                                                                          |
| 8.       | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L    | 30.0  | 4.3                                         | 77                                                                           |
| 9.       | Electrical Conductivity (at 25°C)             | µmho/cm |       | 1662                                        | 1136                                                                         |
| 10.      | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L    |       | 0.254                                       | BDL                                                                          |
| 11.      | Nitrate Nitrogen (as NO <sub>3</sub> )        | mg/L    | 10.0  | 0.76                                        | 1.84                                                                         |
| 12.      | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen | mg/L    | 5.0   | 1.02                                        | 1.87                                                                         |
| 13.      | Free Ammonia<br>(as NH <sub>3</sub> -N)       | mg/L    | 5.0   | 0.699                                       | 0.367                                                                        |
| 14.      | Total Residual<br>Chlorine                    | mg/L    | 1.0   | ND                                          | 0.542                                                                        |
| 15.      | Cyanide (as CN)                               | mg/L    | 0.2   | ND                                          | BDL                                                                          |
| 16.      | Fluoride (as F)                               | mg/L    | 2.0   | 0.591                                       | 0.57                                                                         |
| 17.      | Sulphide (as S <sup>2-</sup> )                | mg/L    | 2.0   | ND                                          | 0.240                                                                        |
| 18.      | Dissolved Phosphate (as P)                    | mg/L    | 5.0   | 0.040                                       | 1.40                                                                         |
| 19.      | Sodium Absorption<br>Ratio                    | mg/L    |       | 1.18                                        | 3.48                                                                         |

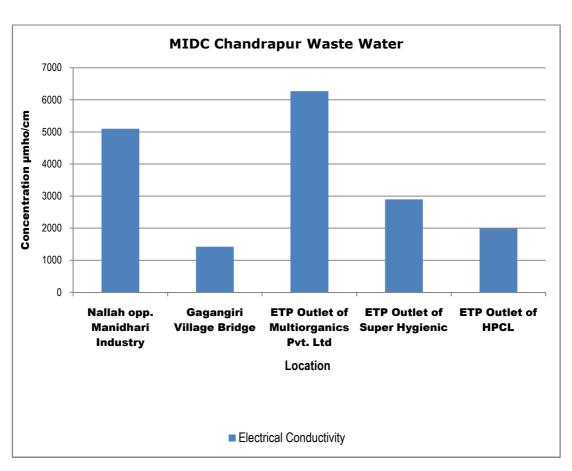

| Location |                                                               |                         |        | Ballarpur<br>Open Cast<br>Mine<br>Discharge | Nallah of<br>Municipal<br>Council<br>Ballarpur,<br>Besides HP<br>Petrol Pump |
|----------|---------------------------------------------------------------|-------------------------|--------|---------------------------------------------|------------------------------------------------------------------------------|
| Date     | of Sampling                                                   |                         |        | 06.07.17                                    | 06.07.17                                                                     |
| Sr.      | Parameters Unit Std.<br>Limit                                 |                         |        | Results                                     |                                                                              |
| 20.      | Total Coliforms                                               | MPN<br>Index/<br>100 ml | 100.0  | 790                                         | 2800                                                                         |
| 21.      | Faecal Coliforms                                              | MPN<br>Index/<br>100 ml | 1000.0 | 490                                         | 1400                                                                         |
| 22.      | Total Phosphorous (as P)                                      | mg/L                    | 1.0    | 0.055                                       | 1.64                                                                         |
| 23.      | Total Kjeldahl<br>Nitrogen (as TKN)                           | mg/L                    | 100.0  | 3.20                                        | 21.8                                                                         |
| 24.      | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                    | 5.0    | 2.73                                        | 16.0                                                                         |
| 25.      | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                 | mg/L                    | 3.0    | ND                                          | 0.014                                                                        |
| 26.      | Surface Active Agents (as MBAS)                               | mg/L                    | 3.0    | ND                                          | 13.1                                                                         |
| 27.      | Organo Chlorine<br>Pesticides                                 |                         |        |                                             |                                                                              |
| I.       | Alachlor                                                      | μg/L                    | 2.0    | BDL                                         | BDL                                                                          |
| II.      | Atrazine                                                      | μg/L                    | 0.2    | BDL                                         | BDL                                                                          |
| III.     | Aldrin                                                        | μg/L                    | 0.1    | BDL                                         | BDL                                                                          |
| IV.      | Dieldrin                                                      | μg/L                    | 2.0    | BDL                                         | BDL                                                                          |
| V.       | Alpha HCH                                                     | μg/L                    | 0.01   | BDL                                         | BDL                                                                          |
| VI.      | Beta HCH                                                      | μg/L                    | 2.0    | BDL                                         | BDL                                                                          |
| VII.     | Delta HCH                                                     | μg/L                    | 0.2    | BDL                                         | BDL                                                                          |
| VIII.    | Butachlor                                                     | μg/L                    |        | BDL                                         | BDL                                                                          |
| IX.      | p,p DDT                                                       | μg/L                    | 0.05   | BDL                                         | BDL                                                                          |

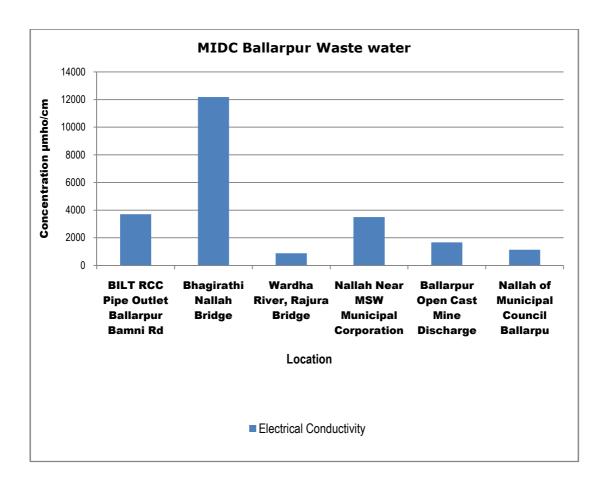

| Location |                                                  |          |          | Ballarpur<br>Open Cast<br>Mine<br>Discharge | Nallah of<br>Municipal<br>Council<br>Ballarpur,<br>Besides HP<br>Petrol Pump |
|----------|--------------------------------------------------|----------|----------|---------------------------------------------|------------------------------------------------------------------------------|
| Date     | of Sampling                                      | 06.07.17 | 06.07.17 |                                             |                                                                              |
| Sr.      | Parameters Unit Std.<br>Limit                    |          |          | Results                                     |                                                                              |
| X.       | o,p DDT                                          | μg/L     | 100.0    | BDL                                         | BDL                                                                          |
| XI.      | p,p DDE                                          | μg/L     | 250.0    | BDL                                         | BDL                                                                          |
| XII.     | o,p DDE                                          | μg/L     | 30.0     | BDL                                         | BDL                                                                          |
| XIII.    | p,p DDD                                          | μg/L     |          | BDL                                         | BDL                                                                          |
| XIV.     | o,p DDD                                          | μg/L     |          | BDL                                         | BDL                                                                          |
| XV.      | Alpha Endosulfan                                 | μg/L     | 10.0     | BDL                                         | BDL                                                                          |
| XVI.     | Beta Endosulfan                                  | μg/L     |          | BDL                                         | BDL                                                                          |
| XVII.    | Endosulfan Sulphate                              | μg/L     | 5.0      | BDL                                         | BDL                                                                          |
| VIII.    | Y HCH (Lindane)                                  | μg/L     | 1.0      | BDL                                         | BDL                                                                          |
| 28.      | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L     | 0.2      | ND                                          | ND                                                                           |
| 29.      | Polychlorinated<br>Biphenyls (PCB)               | mg/L     | 2.0      | BDL                                         | BDL                                                                          |
| 30.      | Zinc (as Zn)                                     | mg/L     | 5.0      | BDL                                         | BDL                                                                          |
| 31.      | Nickel (as Ni)                                   | mg/L     | 3.0      | BDL                                         | BDL                                                                          |
| 32.      | Copper (as Cu)                                   | mg/L     |          | BDL                                         | BDL                                                                          |
| 33.      | Hexavalent<br>Chromium (as Cr <sup>6+</sup> )    | mg/L     | 0.1      | ND                                          | BDL                                                                          |
| 34.      | Total Chromium<br>(as Cr)                        | mg/L     | 2.0      | BDL                                         | BDL                                                                          |
| 35.      | Total Arsenic (as As)                            | mg/L     | 0.2      | ND                                          | BDL                                                                          |
| 36.      | Lead (as Pb)                                     | mg/L     | 0.1      | BDL                                         | BDL                                                                          |
| 37.      | Cadmium (as Cd)                                  | mg/L     | 2.0      | BDL                                         | BDL                                                                          |

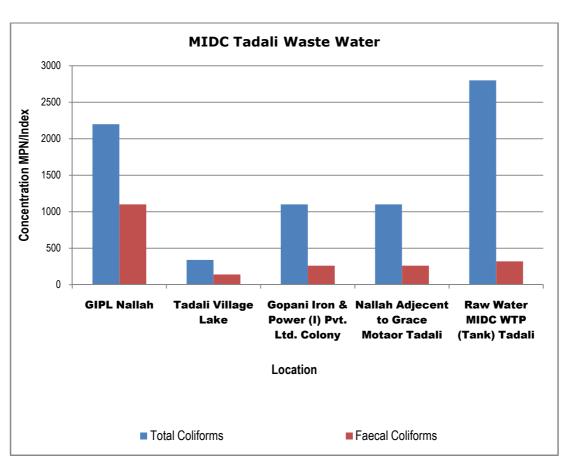

| Loca | tion                  | Ballarpur<br>Open Cast<br>Mine<br>Discharge | Nallah of<br>Municipal<br>Council<br>Ballarpur,<br>Besides HP<br>Petrol Pump |          |          |  |
|------|-----------------------|---------------------------------------------|------------------------------------------------------------------------------|----------|----------|--|
| Date | of Sampling           |                                             |                                                                              | 06.07.17 | 06.07.17 |  |
| Sr.  | Parameters            | Unit                                        | Std.<br>Limit                                                                | Results  |          |  |
| 38.  | Mercury (as Hg)       | mg/L                                        | 0.01                                                                         | ND       | 0.0005   |  |
| 39.  | Manganese(as Mn)      | mg/L                                        | 2.0                                                                          | 0.282    | 0.123    |  |
| 40.  | Iron (as Fe)          | mg/L                                        | 3.0                                                                          | 0.08     | 0.256    |  |
| 41.  | Vanadium(as V)        | mg/L                                        | 0.2                                                                          | BDL      | BDL      |  |
| 42.  | Selenium (as Se)      | mg/L                                        | 0.05                                                                         | ND       | ND       |  |
| 43.  | Boron (as B)          | mg/L                                        |                                                                              | 0.257    | 0.18     |  |
| 44.  | Bioassay Test on fish | %<br>survival                               |                                                                              | 0%       | 100%     |  |

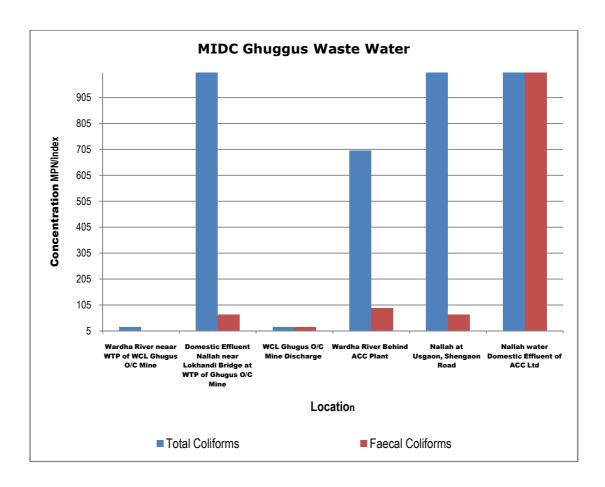

#### Graphs: Water/Waste Water Quality Monitoring for Chandrapur:

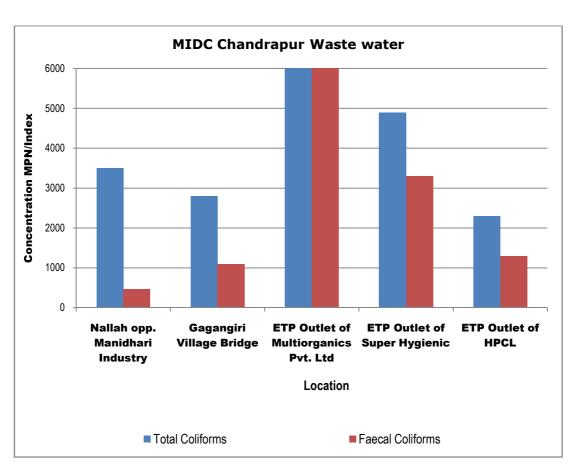


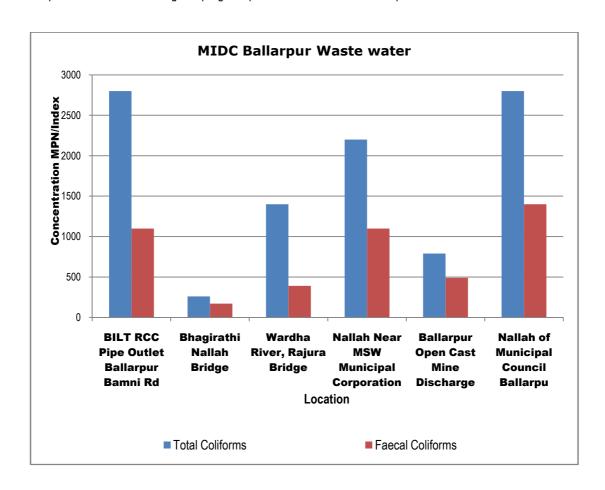



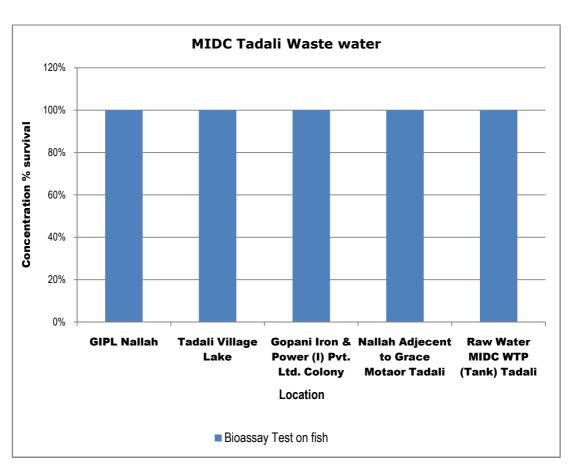



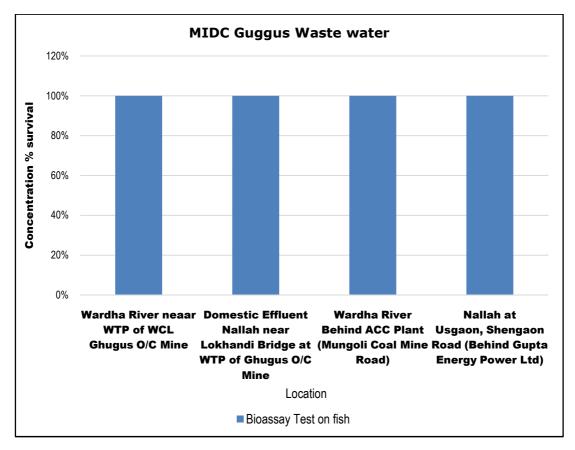



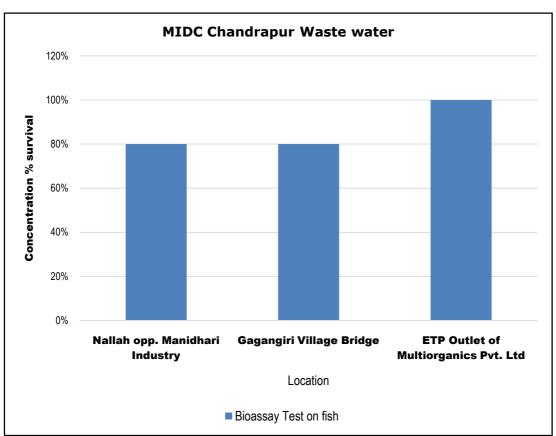



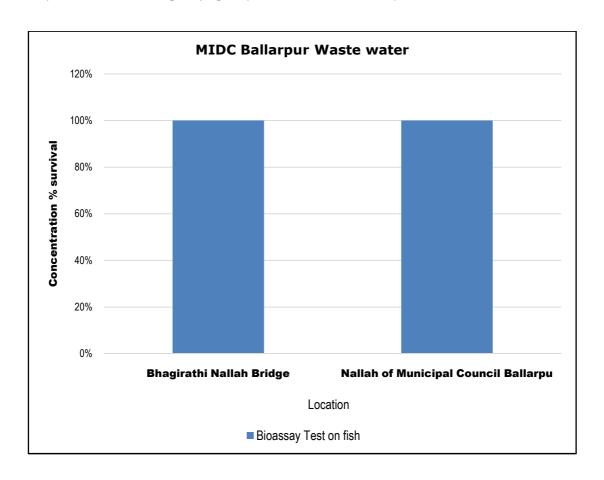














# 4 Ground WaterQuality:

| Sr. | Location                                                | MIDC       | Table No. |
|-----|---------------------------------------------------------|------------|-----------|
| 1.  | Dugwell of Tadali Village Near Primary School           | Tadali     | I         |
| 2.  | Borewell of Yerur Village                               | Tadali     | I         |
| 3.  | Dugwell near Tadali Lake & Janata School                | Tadali     | I         |
| 4.  | Dugwell of Yerur Village                                | Tadali     | I         |
| 5.  | Borewell water taken of Tukdoji Nagar Ghugus<br>Village | Ghuggus    | 11        |
| 6.  | Borewell Water taken from Nakoda Village                | Ghuggus    | II        |
| 7.  | Dugwell water from Usgaon Village                       | Ghuggus    | II        |
| 8.  | Dugwell Water Gagangiri Village                         | Chandrapur | III       |
| 9.  | Borewell Water from Mhada Colony                        | Chandrapur | III       |
| 10. | Borewell Water from Datala Gram Panchayat               | Chandrapur | III       |
| 11. | Borewell water at Gramin Rugnalaya Ballarpur            | Ballarpur  | IV        |

| Sr. | Location                                                            | MIDC      | Table No. |
|-----|---------------------------------------------------------------------|-----------|-----------|
| 12. | Borewell Water at Nagar Parishad Near New<br>Fire Station Ballarpur | Ballarpur | IV        |
| 13. | Borewell Water at Visapur Vill                                      | Ballarpur | IV        |

#### Table No. I

| Loca | tion                                          |         | Dugwell of<br>Tadali Village<br>Near Primary<br>School | Borewell of<br>Yerur Village |           |
|------|-----------------------------------------------|---------|--------------------------------------------------------|------------------------------|-----------|
| Date | of Sampling                                   |         |                                                        | 01.06.17                     | 01.06.17  |
| Sr.  | Parameters                                    | Unit    | Std. Limit                                             | Res                          | ults      |
| 1.   | Colour                                        | Hazen   | 5                                                      | BDL                          | BDL       |
| 2.   | Smell                                         | -       |                                                        | Agreeable                    | Agreeable |
| 3.   | рН                                            | -       | 6.5-8.5                                                | 7.4                          | 7.6       |
| 4.   | Oil & Grease                                  | mg/L    |                                                        | ND                           | ND        |
| 5.   | Suspended<br>Solids                           | mg/L    | 100                                                    | BDL                          | BDL       |
| 6.   | Dissolved<br>Oxygen<br>(%Saturation)          | %       |                                                        | NA                           | NA        |
| 7.   | Chemical<br>Oxygen Demand                     | mg/L    | 250                                                    | 8                            | 8         |
| 8.   | Biochemical<br>Oxygen Demand<br>(3 days,27°C) | mg/L    | 30                                                     | 2.1                          | 2.2       |
| 9.   | Electrical<br>Conductivity<br>(at 25°C)       | µmho/cm |                                                        | 1607                         | 1307      |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )        | mg/L    | 45                                                     | BDL                          | BDL       |
| 11.  | Nitrate Nitrogen<br>(as NO <sub>3</sub> )     | mg/L    |                                                        | 6.85                         | 4.57      |

| Loca | tion                                                              |                         | Dugwell of<br>Tadali Village<br>Near Primary<br>School | Borewell of<br>Yerur Village |          |
|------|-------------------------------------------------------------------|-------------------------|--------------------------------------------------------|------------------------------|----------|
| Date | of Sampling                                                       |                         |                                                        | 01.06.17                     | 01.06.17 |
| Sr.  | Parameters                                                        | Unit                    | Std. Limit                                             | Res                          | ults     |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-<br>Nitrogen                 | mg/L                    |                                                        | 6.85                         | 4.57     |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)                           | mg/L                    | 0.5                                                    | BDL                          | BDL      |
| 14.  | Total Residual<br>Chlorine                                        | mg/L                    | 0.2                                                    | 0.168                        | BDL      |
| 15.  | Cyanide<br>(as CN)                                                | mg/L                    | 0.05                                                   | ND                           | ND       |
| 16.  | Fluoride (as F)                                                   | mg/L                    | 1.0                                                    | 0.591                        | 0.795    |
| 17.  | Sulphide<br>(asS <sup>2-</sup> )                                  | mg/L                    | 1.0                                                    | ND                           | BDL      |
| 18.  | Dissolved<br>Phosphate<br>(as P)                                  | mg/L                    | 0.05                                                   | 0.078                        | 0.110    |
| 19.  | Sodium<br>Absorption Ratio                                        | mg/L                    |                                                        | 2.46                         | 6.20     |
| 20.  | Total Coliforms                                                   | MPN<br>Index/<br>100 ml |                                                        | 2.2                          | 23       |
| 21.  | Faecal Coliforms                                                  | MPN<br>Index/<br>100 ml | BDL                                                    | BDL                          | 12       |
| 22.  | Total<br>Phosphorous<br>(as P)                                    | mg/L                    | BDL                                                    | 0.099                        | 0.136    |
| 23.  | Total Kjeldahl<br>Nitrogen                                        | mg/L                    | 0.5                                                    | 0.448                        | 0.896    |
| 24.  | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | mg/L                    | 0.001                                                  | BDL                          | BDL      |

| Loca  | tion                                             |      | Dugwell of<br>Tadali Village<br>Near Primary<br>School | Borewell of<br>Yerur Village |          |
|-------|--------------------------------------------------|------|--------------------------------------------------------|------------------------------|----------|
| Date  | of Sampling                                      |      |                                                        | 01.06.17                     | 01.06.17 |
| Sr.   | Parameters                                       | Unit | Std. Limit                                             | Res                          | ults     |
| 25.   | Phenols<br>(as C <sub>6</sub> H <sub>5</sub> OH) | mg/L | 0.5                                                    | ND                           | ND       |
| 26.   | Surface Active<br>Agents<br>(as MBAS)            | mg/L | 0.001                                                  | ND                           | ND       |
| 27.   | Organo Chlorine<br>Pesticides                    |      |                                                        |                              |          |
| I.    | Alachlor                                         | μg/L | 0.05                                                   | BDL                          | BDL      |
| II.   | Atrazine                                         | μg/L | 20                                                     | BDL                          | BDL      |
| III.  | Aldrin                                           | μg/L | 2                                                      | BDL                          | BDL      |
| IV.   | Dieldrin                                         | μg/L | 0.03                                                   | BDL                          | BDL      |
| V.    | Alpha HCH                                        | μg/L | 0.03                                                   | BDL                          | BDL      |
| VI.   | Beta HCH                                         | μg/L | 0.01                                                   | BDL                          | BDL      |
| VII.  | Delta HCH                                        | μg/L | 0.04                                                   | BDL                          | BDL      |
| VIII. | Butachlor                                        | μg/L | 125                                                    | BDL                          | BDL      |
| IX.   | p,p DDT                                          | μg/L | 0.04                                                   | BDL                          | BDL      |
| X.    | o,p DDT                                          | μg/L | 1.0                                                    | BDL                          | BDL      |
| XI.   | p,p DDE                                          | μg/L | 1.0                                                    | BDL                          | BDL      |
| XII.  | o,p DDE                                          | μg/L | 1.0                                                    | BDL                          | BDL      |
| XIII. | p,p DDD                                          | μg/L | 1.0                                                    | BDL                          | BDL      |
| XIV.  | o,p DDD                                          | μg/L | 1.0                                                    | BDL                          | BDL      |
| XV.   | Alpha<br>Endosulfan                              | μg/L | 1.0                                                    | BDL                          | BDL      |
| XVI.  | Beta Endosulfan                                  | μg/L | 0.4                                                    | BDL                          | BDL      |
| XVII. | Endosulfan<br>Sulphate                           | μg/L | 0.4                                                    | BDL                          | BDL      |

| Loca  | tion                                                |      | Dugwell of<br>Tadali Village<br>Near Primary<br>School | Borewell of<br>Yerur Village |          |
|-------|-----------------------------------------------------|------|--------------------------------------------------------|------------------------------|----------|
| Date  | of Sampling                                         |      |                                                        | 01.06.17                     | 01.06.17 |
| Sr.   | Parameters                                          | Unit | Std. Limit                                             | Res                          | ults     |
| VIII. | Y HCH (Lindane)                                     | μg/L | 0.4                                                    | BDL                          | BDL      |
| 28.   | Polynuclear<br>aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 2.0                                                    | ND                           | ND       |
| 29.   | Polychlorinated<br>Biphenyls (PCB)                  | mg/L | 0.0001                                                 | BDL                          | BDL      |
| 30.   | Zinc (as Zn)                                        | mg/L | 0.0005                                                 | BDL                          | BDL      |
| 31.   | Nickel (as Ni)                                      | mg/L | 5.0                                                    | BDL                          | BDL      |
| 32.   | Copper<br>(as Cu)                                   | mg/L | 0.02                                                   | BDL                          | BDL      |
| 33.   | Hexavalent<br>Chromium<br>(as Cr <sup>6+</sup> )    | mg/L | 0.05                                                   | ND                           | ND       |
| 34.   | Total Chromium (as Cr)                              | mg/L | 1                                                      | BDL                          | BDL      |
| 35.   | Total Arsenic<br>(as As)                            | mg/L | 0.05                                                   | ND                           | ND       |
| 36.   | Lead (as Pb)                                        | mg/L | 0.01                                                   | BDL                          | BDL      |
| 37.   | Cadmium<br>(as Cd)                                  | mg/L | 0.01                                                   | BDL                          | BDL      |
| 38.   | Mercury<br>(as Hg)                                  | mg/L | 0.003                                                  | N.D.                         | N.D.     |
| 39.   | Manganese<br>(as Mn)                                | mg/L | 0.001                                                  | 0.035                        | BDL      |
| 40.   | Iron (as Fe)                                        | mg/L | 0.1                                                    | BDL                          | BDL      |
| 41.   | Vanadium<br>(as V)                                  | mg/L | 0.3                                                    | BDL                          | BDL      |

| Loca | tion                  |               | Dugwell of<br>Tadali Village<br>Near Primary<br>School | Borewell of<br>Yerur Village |          |  |
|------|-----------------------|---------------|--------------------------------------------------------|------------------------------|----------|--|
| Date | of Sampling           |               |                                                        | 01.06.17                     | 01.06.17 |  |
| Sr.  | Parameters            | Unit          | Std. Limit                                             | Results                      |          |  |
| 42.  | Selenium<br>(as Se)   | mg/L          |                                                        | BDL                          | N.D.     |  |
| 43.  | Boron (as B)          | mg/L          | 0.01                                                   | 0.213                        | 0.299    |  |
| 44.  | Bioassay Test on fish | %<br>survival |                                                        | 100%                         | 100%     |  |

# Table No. II

| Locat | tion                                          |       | Dugwell near<br>Tadali Lake s&<br>Janata School | Dugwell of<br>Yerur Village |           |
|-------|-----------------------------------------------|-------|-------------------------------------------------|-----------------------------|-----------|
| Date  | of Sampling                                   |       |                                                 | 01.06.17                    | 01.06.17  |
| Sr.   | Parameters                                    | Unit  | Std. Limit                                      | Res                         | ults      |
| 1.    | Colour                                        | Hazen | 5                                               | BDL                         | BDL       |
| 2.    | Smell                                         | -     |                                                 | Agreeable                   | Agreeable |
| 3.    | рН                                            | -     | 6.5-8.5                                         | 7.3                         | 7.5       |
| 4.    | Oil & Grease                                  | mg/L  |                                                 | ND                          | ND        |
| 5.    | Suspended<br>Solids                           | mg/L  | 100                                             | BDL                         | 6         |
| 6.    | Dissolved<br>Oxygen<br>(%Saturation)          | %     |                                                 | NA                          | NA        |
| 7.    | Chemical<br>Oxygen Demand                     | mg/L  | 250                                             | 16                          | 16        |
| 8.    | Biochemical<br>Oxygen Demand<br>(3 days,27°C) | mg/L  | 30                                              | 4.1                         | 4.1       |

| Loca | tion                                              |                         | Dugwell near<br>Tadali Lake s&<br>Janata School | Dugwell of<br>Yerur Village |       |
|------|---------------------------------------------------|-------------------------|-------------------------------------------------|-----------------------------|-------|
| Date | of Sampling                                       |                         | 01.06.17                                        | 01.06.17                    |       |
| Sr.  | Parameters                                        | Unit                    | Std. Limit                                      | Res                         | ults  |
| 9.   | Electrical<br>Conductivity<br>(at 25°C)           | μmho/cm                 |                                                 | 929                         | 1179  |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )            | mg/L                    | 45                                              | BDL                         | 0.053 |
| 11.  | Nitrate Nitrogen<br>(as NO <sub>3</sub> )         | mg/L                    |                                                 | 4.73                        | 3.44  |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-<br>Nitrogen | mg/L                    |                                                 | 4.74                        | 3.49  |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)           | mg/L                    | 0.5                                             | BDL                         | BDL   |
| 14.  | Total Residual<br>Chlorine                        | mg/L                    | 0.2                                             | 0.053                       | 0.132 |
| 15.  | Cyanide<br>(as CN)                                | mg/L                    | 0.05                                            | ND                          | ND    |
| 16.  | Fluoride (as F)                                   | mg/L                    | 1.0                                             | 0.574                       | 0.915 |
| 17.  | Sulphide (asS <sup>2-</sup> )                     | mg/L                    | 1.0                                             | ND                          | ND    |
| 18.  | Dissolved<br>Phosphate<br>(as P)                  | mg/L                    | 0.05                                            | 0.056                       | 0.066 |
| 19.  | Sodium<br>Absorption Ratio                        | mg/L                    |                                                 | 0.70                        | 4.70  |
| 20.  | Total Coliforms                                   | MPN<br>Index/<br>100 ml |                                                 | 16                          | 23    |
| 21.  | Faecal Coliforms                                  | MPN<br>Index/<br>100 ml | BDL                                             | 9.2                         | 12    |

| Loca  | tion                                                              |      | Dugwell near<br>Tadali Lake s&<br>Janata School | Dugwell of<br>Yerur Village |       |
|-------|-------------------------------------------------------------------|------|-------------------------------------------------|-----------------------------|-------|
| Date  | of Sampling                                                       |      | 01.06.17                                        | 01.06.17                    |       |
| Sr.   | Parameters                                                        | Unit | Std. Limit                                      | Res                         | ults  |
| 22.   | Total<br>Phosphorous<br>(as P)                                    | mg/L | BDL                                             | 0.066                       | 0.077 |
| 23.   | Total Kjeldahl<br>Nitrogen                                        | mg/L | 0.5                                             | 0.784                       | 0.504 |
| 24.   | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | mg/L | 0.001                                           | 0.157                       | BDL   |
| 25.   | Phenols<br>(as C <sub>6</sub> H <sub>5</sub> OH)                  | mg/L | 0.5                                             | ND                          | ND    |
| 26.   | Surface Active<br>Agents<br>(as MBAS)                             | mg/L | 0.001                                           | ND                          | ND    |
| 27.   | Organo Chlorine<br>Pesticides                                     |      |                                                 |                             |       |
| I.    | Alachlor                                                          | μg/L | 0.05                                            | BDL                         | BDL   |
| II.   | Atrazine                                                          | μg/L | 20                                              | BDL                         | BDL   |
| III.  | Aldrin                                                            | μg/L | 2                                               | BDL                         | BDL   |
| IV.   | Dieldrin                                                          | μg/L | 0.03                                            | BDL                         | BDL   |
| V.    | Alpha HCH                                                         | μg/L | 0.03                                            | BDL                         | BDL   |
| VI.   | Beta HCH                                                          | μg/L | 0.01                                            | BDL                         | BDL   |
| VII.  | Delta HCH                                                         | μg/L | 0.04                                            | BDL                         | BDL   |
| VIII. | Butachlor                                                         | μg/L | 125                                             | BDL                         | BDL   |
| IX.   | p,p DDT                                                           | μg/L | 0.04                                            | BDL                         | BDL   |
| Χ.    | o,p DDT                                                           | μg/L | 1.0                                             | BDL                         | BDL   |
| XI.   | p,p DDE                                                           | μg/L | 1.0                                             | BDL                         | BDL   |
| XII.  | o,p DDE                                                           | μg/L | 1.0                                             | BDL                         | BDL   |
| XIII. | p,p DDD                                                           | μg/L | 1.0                                             | BDL                         | BDL   |

| Loca   | tion                                                |      | Dugwell near<br>Tadali Lake s&<br>Janata School | Dugwell of<br>Yerur Village |       |
|--------|-----------------------------------------------------|------|-------------------------------------------------|-----------------------------|-------|
| Date   | of Sampling                                         |      | 01.06.17                                        | 01.06.17                    |       |
| Sr.    | Parameters                                          | Unit | Std. Limit                                      | Res                         | ults  |
| XIV.   | o,p DDD                                             | μg/L | 1.0                                             | BDL                         | BDL   |
| XV.    | Alpha<br>Endosulfan                                 | μg/L | 1.0                                             | BDL                         | BDL   |
| XVI.   | Beta Endosulfan                                     | μg/L | 0.4                                             | BDL                         | BDL   |
| XVII.  | Endosulfan<br>Sulphate                              | μg/L | 0.4                                             | BDL                         | BDL   |
| (VIII. | Y HCH (Lindane)                                     | μg/L | 0.4                                             | BDL                         | BDL   |
| 28.    | Polynuclear<br>aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 2.0                                             | ND                          | ND    |
| 29.    | Polychlorinated<br>Biphenyls (PCB)                  | mg/L | 0.0001                                          | BDL                         | BDL   |
| 30.    | Zinc (as Zn)                                        | mg/L | 0.0005                                          | 0.07                        | BDL   |
| 31.    | Nickel (as Ni)                                      | mg/L | 5.0                                             | BDL                         | BDL   |
| 32.    | Copper<br>(as Cu)                                   | mg/L | 0.02                                            | BDL                         | BDL   |
| 33.    | Hexavalent<br>Chromium<br>(as Cr <sup>6+</sup> )    | mg/L | 0.05                                            | ND                          | BDL   |
| 34.    | Total Chromium<br>(as Cr)                           | mg/L | 1                                               | 0.02                        | 0.021 |
| 35.    | Total Arsenic<br>(as As)                            | mg/L | 0.05                                            | ND                          | ND    |
| 36.    | Lead (as Pb)                                        | mg/L | 0.01                                            | BDL                         | BDL   |
| 37.    | Cadmium<br>(as Cd)                                  | mg/L | 0.01                                            | 0.006                       | BDL   |
| 38.    | Mercury<br>(as Hg)                                  | mg/L | 0.003                                           | ND                          | ND    |

| Locat | tion                  |               | Dugwell near<br>Tadali Lake s&<br>Janata School | Dugwell of<br>Yerur Village |          |
|-------|-----------------------|---------------|-------------------------------------------------|-----------------------------|----------|
| Date  | of Sampling           |               |                                                 | 01.06.17                    | 01.06.17 |
| Sr.   | Parameters            | Unit          | Std. Limit                                      | Res                         | ults     |
| 39.   | Manganese<br>(as Mn)  | mg/L          | 0.001                                           | 0.076                       | 0.038    |
| 40.   | Iron (as Fe)          | mg/L          | 0.1                                             | 0.116                       | 0.24     |
| 41.   | Vanadium<br>(as V)    | mg/L          | 0.3                                             | BDL                         | BDL      |
| 42.   | Selenium<br>(as Se)   | mg/L          |                                                 | ND                          | ND       |
| 43.   | Boron (as B)          | mg/L          | 0.01                                            | 0.263                       | 0.343    |
| 44.   | Bioassay Test on fish | %<br>survival |                                                 | 100%                        | 100%     |

# Table No. III

| Locat | tion                                 |       | Borewell<br>water taken of<br>Tukdoji Nagar | Borewell<br>Water taken<br>from Nakoda |           |
|-------|--------------------------------------|-------|---------------------------------------------|----------------------------------------|-----------|
| Date  | of Sampling                          |       |                                             | 01.06.17                               | 01.06.17  |
| Sr.   | Parameters                           | Unit  | Std. Limit                                  | Res                                    | ults      |
| 1.    | Colour                               | Hazen | 5                                           | BDL                                    | 8         |
| 2.    | Smell                                | -     |                                             | Agreeable                              | Agreeable |
| 3.    | pH                                   | -     | 6.5-8.5                                     | 7.7                                    | 7.1       |
| 4.    | Oil & Grease                         | mg/L  |                                             | ND                                     | ND        |
| 5.    | Suspended<br>Solids                  | mg/L  | 100                                         | BDL                                    | 20        |
| 6.    | Dissolved<br>Oxygen<br>(%Saturation) | %     |                                             | NA                                     | NA        |
| 7.    | Chemical<br>Oxygen Demand            | mg/L  | 250                                         | 12                                     | 24        |

| Loca | tion                                              |                         | Borewell<br>water taken of<br>Tukdoji Nagar | Borewell<br>Water taken<br>from Nakoda |          |
|------|---------------------------------------------------|-------------------------|---------------------------------------------|----------------------------------------|----------|
| Date | of Sampling                                       |                         |                                             | 01.06.17                               | 01.06.17 |
| Sr.  | Parameters                                        | Unit                    | Std. Limit                                  | Res                                    | ults     |
| 8.   | Biochemical<br>Oxygen Demand<br>(3 days,27°C)     | mg/L                    | 30                                          | 2.8                                    | 6.1      |
| 9.   | Electrical<br>Conductivity<br>(at 25°C)           | µmho/cm                 |                                             | 1773                                   | 682      |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )            | mg/L                    | 45                                          | BDL                                    | BDL      |
| 11.  | Nitrate Nitrogen (as NO <sub>3</sub> )            | mg/L                    |                                             | 7.46                                   | BDL      |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-<br>Nitrogen | mg/L                    |                                             | 7.49                                   | BDL      |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)           | mg/L                    | 0.5                                         | BDL                                    | BDL      |
| 14.  | Total Residual<br>Chlorine                        | mg/L                    | 0.2                                         | BDL                                    | BDL      |
| 15.  | Cyanide<br>(as CN)                                | mg/L                    | 0.05                                        | ND                                     | ND       |
| 16.  | Fluoride (as F)                                   | mg/L                    | 1.0                                         | 1.06                                   | 0.528    |
| 17.  | Sulphide (asS <sup>2-</sup> )                     | mg/L                    | 1.0                                         | ND                                     | ND       |
| 18.  | Dissolved<br>Phosphate<br>(as P)                  | mg/L                    | 0.05                                        | 0.051                                  | 0.048    |
| 19.  | Sodium<br>Absorption Ratio                        | mg/L                    |                                             | 15.3                                   | 1.78     |
| 20.  | Total Coliforms                                   | MPN<br>Index/<br>100 ml |                                             | BDL                                    | BDL      |

| Locat | tion                                                              |                         | Borewell<br>water taken of<br>Tukdoji Nagar | Borewell<br>Water taken<br>from Nakoda |          |
|-------|-------------------------------------------------------------------|-------------------------|---------------------------------------------|----------------------------------------|----------|
| Date  | Date of Sampling                                                  |                         |                                             | 01.06.17                               | 01.06.17 |
| Sr.   | Parameters                                                        | Unit                    | Std. Limit                                  | Res                                    | ults     |
| 21.   | Faecal Coliforms                                                  | MPN<br>Index/<br>100 ml | BDL                                         | BDL                                    | BDL      |
| 22.   | Total<br>Phosphorous<br>(as P)                                    | mg/L                    | BDL                                         | 0.059                                  | 0.059    |
| 23.   | Total Kjeldahl<br>Nitrogen                                        | mg/L                    | 0.5                                         | 0.616                                  | 0.784    |
| 24.   | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | mg/L                    | 0.001                                       | BDL                                    | BDL      |
| 25.   | Phenols<br>(as C <sub>6</sub> H <sub>5</sub> OH)                  | mg/L                    | 0.5                                         | ND                                     | ND       |
| 26.   | Surface Active<br>Agents<br>(as MBAS)                             | mg/L                    | 0.001                                       | ND                                     | ND       |
| 27.   | Organo Chlorine<br>Pesticides                                     |                         |                                             |                                        |          |
| I.    | Alachlor                                                          | μg/L                    | 0.05                                        | BDL                                    | BDL      |
| II.   | Atrazine                                                          | μg/L                    | 20                                          | BDL                                    | BDL      |
| III.  | Aldrin                                                            | μg/L                    | 2                                           | BDL                                    | BDL      |
| IV.   | Dieldrin                                                          | μg/L                    | 0.03                                        | BDL                                    | BDL      |
| V.    | Alpha HCH                                                         | μg/L                    | 0.03                                        | BDL                                    | BDL      |
| VI.   | Beta HCH                                                          | μg/L                    | 0.01                                        | BDL                                    | BDL      |
| VII.  | Delta HCH                                                         | μg/L                    | 0.04                                        | BDL                                    | BDL      |
| VIII. | Butachlor                                                         | μg/L                    | 125                                         | BDL                                    | BDL      |
| IX.   | p,p DDT                                                           | μg/L                    | 0.04                                        | BDL                                    | BDL      |
| X.    | o,p DDT                                                           | μg/L                    | 1.0                                         | BDL                                    | BDL      |
| XI.   | p,p DDE                                                           | μg/L                    | 1.0                                         | BDL                                    | BDL      |

| Loca  | tion                                                |      | Borewell<br>water taken of<br>Tukdoji Nagar | Borewell<br>Water taken<br>from Nakoda |          |
|-------|-----------------------------------------------------|------|---------------------------------------------|----------------------------------------|----------|
| Date  | Date of Sampling                                    |      |                                             | 01.06.17                               | 01.06.17 |
| Sr.   | Parameters                                          | Unit | Std. Limit                                  | Res                                    | ults     |
| XII.  | o,p DDE                                             | μg/L | 1.0                                         | BDL                                    | BDL      |
| XIII. | p,p DDD                                             | μg/L | 1.0                                         | BDL                                    | BDL      |
| XIV.  | o,p DDD                                             | μg/L | 1.0                                         | BDL                                    | BDL      |
| XV.   | Alpha<br>Endosulfan                                 | μg/L | 1.0                                         | BDL                                    | BDL      |
| XVI.  | Beta Endosulfan                                     | μg/L | 0.4                                         | BDL                                    | BDL      |
| XVII. | Endosulfan<br>Sulphate                              | μg/L | 0.4                                         | BDL                                    | BDL      |
| VIII. | Y HCH (Lindane)                                     | μg/L | 0.4                                         | BDL                                    | BDL      |
| 28.   | Polynuclear<br>aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 2.0                                         | ND                                     | ND       |
| 29.   | Polychlorinated<br>Biphenyls (PCB)                  | mg/L | 0.0001                                      | BDL                                    | BDL      |
| 30.   | Zinc (as Zn)                                        | mg/L | 0.0005                                      | 0.45                                   | 0.52     |
| 31.   | Nickel (as Ni)                                      | mg/L | 5.0                                         | BDL                                    | BDL      |
| 32.   | Copper<br>(as Cu)                                   | mg/L | 0.02                                        | BDL                                    | BDL      |
| 33.   | Hexavalent<br>Chromium<br>(as Cr <sup>6+</sup> )    | mg/L | 0.05                                        | BDL                                    | BDL      |
| 34.   | Total Chromium (as Cr)                              | mg/L | 1                                           | BDL                                    | BDL      |
| 35.   | Total Arsenic<br>(as As)                            | mg/L | 0.05                                        | ND                                     | ND       |
| 36.   | Lead (as Pb)                                        | mg/L | 0.01                                        | BDL                                    | BDL      |
| 37.   | Cadmium<br>(as Cd)                                  | mg/L | 0.01                                        | BDL                                    | BDL      |

| Locat | tion                  |               | Borewell<br>water taken of<br>Tukdoji Nagar | Borewell<br>Water taken<br>from Nakoda |          |
|-------|-----------------------|---------------|---------------------------------------------|----------------------------------------|----------|
| Date  | of Sampling           |               |                                             | 01.06.17                               | 01.06.17 |
| Sr.   | Parameters            | Unit          | Std. Limit                                  | Res                                    | ults     |
| 38.   | Mercury<br>(as Hg)    | mg/L          | 0.003                                       | ND                                     | ND       |
| 39.   | Manganese<br>(as Mn)  | mg/L          | 0.001                                       | BDL                                    | 0.074    |
| 40.   | Iron (as Fe)          | mg/L          | 0.1                                         | 0.22                                   | 8.36     |
| 41.   | Vanadium<br>(as V)    | mg/L          | 0.3                                         | BDL                                    | BDL      |
| 42.   | Selenium<br>(as Se)   | mg/L          |                                             | BDL                                    | BDL      |
| 43.   | Boron (as B)          | mg/L          | 0.01                                        | 0.195                                  | 0.207    |
| 44.   | Bioassay Test on fish | %<br>survival |                                             | 100%                                   | 100%     |

## Table No. III

| Locat | tion                           |       | Dugwell water<br>from Usgaon<br>Village | DugWell<br>Water<br>Gagangiri<br>Village |           |  |
|-------|--------------------------------|-------|-----------------------------------------|------------------------------------------|-----------|--|
| Date  | of Sampling                    |       | 01.06.17                                | 06.06.17                                 |           |  |
| Sr.   | Sr. Parameters Unit Std. Limit |       |                                         | Results                                  |           |  |
| 1.    | Colour                         | Hazen | 5                                       | BDL                                      | BDL       |  |
| 2.    | Smell                          | -     |                                         | Agreeable                                | Agreeable |  |
| 3.    | рН                             | -     | 6.5-8.5                                 | 7.5                                      | 7.3       |  |
| 4.    | Oil & Grease                   | mg/L  |                                         | ND                                       | ND        |  |
| 5.    | Suspended<br>Solids            | mg/L  | 100                                     | BDL                                      | BDL       |  |

| Loca | tion                                              |         | Dugwell water<br>from Usgaon<br>Village | DugWell<br>Water<br>Gagangiri<br>Village |          |
|------|---------------------------------------------------|---------|-----------------------------------------|------------------------------------------|----------|
| Date | of Sampling                                       |         |                                         | 01.06.17                                 | 06.06.17 |
| Sr.  | Parameters                                        | Unit    | Std. Limit                              | Res                                      | ults     |
| 6.   | Dissolved<br>Oxygen<br>(%Saturation)              | %       |                                         | NA                                       | NA       |
| 7.   | Chemical<br>Oxygen Demand                         | mg/L    | 250                                     | 16                                       | 8        |
| 8.   | Biochemical<br>Oxygen Demand<br>(3 days,27°C)     | mg/L    | 30                                      | 4.1                                      | 2.1      |
| 9.   | Electrical<br>Conductivity<br>(at 25°C)           | µmho/cm |                                         | 1678                                     | 1165     |
| 10.  | Nitrite Nitrogen (as NO <sub>2</sub> )            | mg/L    | 45                                      | BDL                                      | BDL      |
| 11.  | Nitrate Nitrogen (as NO <sub>3</sub> )            | mg/L    |                                         | 9.20                                     | 3.03     |
| 12.  | (NO <sub>2</sub> + NO <sub>3</sub> )-<br>Nitrogen | mg/L    |                                         | 9.22                                     | 3.08     |
| 13.  | Free Ammonia<br>(as NH <sub>3</sub> -N)           | mg/L    | 0.5                                     | BDL                                      | BDL      |
| 14.  | Total Residual<br>Chlorine                        | mg/L    | 0.2                                     | 0.079                                    | ND       |
| 15.  | Cyanide<br>(as CN)                                | mg/L    | 0.05                                    | ND                                       | ND       |
| 16.  | Fluoride (as F)                                   | mg/L    | 1.0                                     | 0.483                                    | 0.466    |
| 17.  | Sulphide<br>(asS <sup>2-</sup> )                  | mg/L    | 1.0                                     | ND                                       | ND       |
| 18.  | Dissolved<br>Phosphate<br>(as P)                  | mg/L    | 0.05                                    | 0.043                                    | BDL      |

| Locat | tion                                                              |                         | Dugwell water<br>from Usgaon<br>Village | DugWell<br>Water<br>Gagangiri<br>Village |          |
|-------|-------------------------------------------------------------------|-------------------------|-----------------------------------------|------------------------------------------|----------|
| Date  | of Sampling                                                       |                         |                                         | 01.06.17                                 | 06.06.17 |
| Sr.   | Parameters                                                        | Unit                    | Std. Limit                              | Resi                                     | ılts     |
| 19.   | Sodium<br>Absorption Ratio                                        | mg/L                    |                                         | 3.04                                     | 2.69     |
| 20.   | Total Coliforms                                                   | MPN<br>Index/<br>100 ml |                                         | 12                                       | 23       |
| 21.   | Faecal Coliforms                                                  | MPN<br>Index/<br>100 ml | BDL                                     | 9.2                                      | 16       |
| 22.   | Total<br>Phosphorous<br>(as P)                                    | mg/L                    | BDL                                     | 0.056                                    | 0.033    |
| 23.   | Total Kjeldahl<br>Nitrogen                                        | mg/L                    | 0.5                                     | 0.616                                    | 0.840    |
| 24.   | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | mg/L                    | 0.001                                   | BDL                                      | BDL      |
| 25.   | Phenols (as C <sub>6</sub> H <sub>5</sub> OH)                     | mg/L                    | 0.5                                     | ND                                       | ND       |
| 26.   | Surface Active<br>Agents<br>(as MBAS)                             | mg/L                    | 0.001                                   | ND                                       | ND       |
| 27.   | Organo Chlorine<br>Pesticides                                     |                         |                                         |                                          |          |
| I.    | Alachlor                                                          | μg/L                    | 0.05                                    | BDL                                      | BDL      |
| II.   | Atrazine                                                          | μg/L                    | 20                                      | BDL                                      | BDL      |
| III.  | Aldrin                                                            | μg/L                    | 2                                       | BDL                                      | BDL      |
| IV.   | Dieldrin                                                          | μg/L                    | 0.03                                    | BDL                                      | BDL      |
| V.    | Alpha HCH                                                         | μg/L                    | 0.03                                    | BDL                                      | BDL      |
| VI.   | Beta HCH                                                          | μg/L                    | 0.01                                    | BDL                                      | BDL      |
| VII.  | Delta HCH                                                         | μg/L                    | 0.04                                    | BDL                                      | BDL      |

| Locat | tion                                                |      | Dugwell water<br>from Usgaon<br>Village | DugWell<br>Water<br>Gagangiri<br>Village |          |
|-------|-----------------------------------------------------|------|-----------------------------------------|------------------------------------------|----------|
| Date  | of Sampling                                         |      |                                         | 01.06.17                                 | 06.06.17 |
| Sr.   | Parameters                                          | Unit | Std. Limit                              | Resi                                     | ults     |
| VIII. | Butachlor                                           | μg/L | 125                                     | BDL                                      | BDL      |
| IX.   | p,p DDT                                             | μg/L | 0.04                                    | BDL                                      | BDL      |
| X.    | o,p DDT                                             | μg/L | 1.0                                     | BDL                                      | BDL      |
| XI.   | p,p DDE                                             | μg/L | 1.0                                     | BDL                                      | BDL      |
| XII.  | o,p DDE                                             | μg/L | 1.0                                     | BDL                                      | BDL      |
| XIII. | p,p DDD                                             | μg/L | 1.0                                     | BDL                                      | BDL      |
| XIV.  | o,p DDD                                             | μg/L | 1.0                                     | BDL                                      | BDL      |
| XV.   | Alpha<br>Endosulfan                                 | μg/L | 1.0                                     | BDL                                      | BDL      |
| XVI.  | Beta Endosulfan                                     | μg/L | 0.4                                     | BDL                                      | BDL      |
| XVII. | Endosulfan<br>Sulphate                              | μg/L | 0.4                                     | BDL                                      | BDL      |
| VIII. | Y HCH (Lindane)                                     | μg/L | 0.4                                     | BDL                                      | BDL      |
| 28.   | Polynuclear<br>aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 2.0                                     | ND                                       | ND       |
| 29.   | Polychlorinated<br>Biphenyls (PCB)                  | mg/L | 0.0001                                  | BDL                                      | BDL      |
| 30.   | Zinc (as Zn)                                        | mg/L | 0.0005                                  | BDL                                      | BDL      |
| 31.   | Nickel (as Ni)                                      | mg/L | 5.0                                     | 0.011                                    | BDL      |
| 32.   | Copper<br>(as Cu)                                   | mg/L | 0.02                                    | BDL                                      | BDL      |
| 33.   | Hexavalent<br>Chromium<br>(as Cr <sup>6+</sup> )    | mg/L | 0.05                                    | ND                                       | BDL      |
| 34.   | Total Chromium<br>(as Cr)                           | mg/L | 1                                       | 0.052                                    | BDL      |

| Locat | tion                     |               | Dugwell water<br>from Usgaon<br>Village | DugWell<br>Water<br>Gagangiri<br>Village |          |
|-------|--------------------------|---------------|-----------------------------------------|------------------------------------------|----------|
| Date  | of Sampling              |               |                                         | 01.06.17                                 | 06.06.17 |
| Sr.   | Parameters               | Unit          | Std. Limit                              | Res                                      | ults     |
| 35.   | Total Arsenic<br>(as As) | mg/L          | 0.05                                    | ND                                       | ND       |
| 36.   | Lead (as Pb)             | mg/L          | 0.01                                    | 0.22                                     | 0.11     |
| 37.   | Cadmium<br>(as Cd)       | mg/L          | 0.01                                    | BDL                                      | BDL      |
| 38.   | Mercury<br>(as Hg)       | mg/L          | 0.003                                   | ND                                       | ND       |
| 39.   | Manganese<br>(as Mn)     | mg/L          | 0.001                                   | BDL                                      | 0.02     |
| 40.   | Iron (as Fe)             | mg/L          | 0.1                                     | 0.33                                     | BDL      |
| 41.   | Vanadium<br>(as V)       | mg/L          | 0.3                                     | 0.011                                    | BDL      |
| 42.   | Selenium<br>(as Se)      | mg/L          |                                         | BDL                                      | ND       |
| 43.   | Boron (as B)             | mg/L          | 0.01                                    | BDL                                      | 0.107    |
| 44.   | Bioassay Test on fish    | %<br>survival |                                         | 100%                                     | 100%     |

## Table No. IV

| Locat | tion        |       | Borewell<br>Water from<br>Mhada Colony | Borewell<br>Water from<br>Datala Gram<br>Panchayat |           |
|-------|-------------|-------|----------------------------------------|----------------------------------------------------|-----------|
| Date  | of Sampling |       | 06.06.17                               | 06.06.17                                           |           |
| Sr.   | Parameters  | Unit  | Std. Limit                             | Results                                            |           |
| 1.    | Colour      | Hazen | 5                                      | BDL                                                | BDL       |
| 2.    | Smell       | -     |                                        | Agreeable                                          | Agreeable |

| Location |                                                   |         | Borewell<br>Water from<br>Mhada Colony | Borewell<br>Water from<br>Datala Gram<br>Panchayat |          |
|----------|---------------------------------------------------|---------|----------------------------------------|----------------------------------------------------|----------|
| Date     | of Sampling                                       |         |                                        | 06.06.17                                           | 06.06.17 |
| Sr.      | Parameters                                        | Unit    | Std. Limit                             | Res                                                | ults     |
| 3.       | рН                                                | -       | 6.5-8.5                                | 8                                                  | 7.6      |
| 4.       | Oil & Grease                                      | mg/L    |                                        | ND                                                 | ND       |
| 5.       | Suspended<br>Solids                               | mg/L    | 100                                    | BDL                                                | BDL      |
| 6.       | Dissolved<br>Oxygen<br>(%Saturation)              | %       |                                        | NA                                                 | NA       |
| 7.       | Chemical<br>Oxygen Demand                         | mg/L    | 250                                    | 8                                                  | 24       |
| 8.       | Biochemical<br>Oxygen Demand<br>(3 days,27°C)     | mg/L    | 30                                     | 1.9                                                | 6.4      |
| 9.       | Electrical<br>Conductivity<br>(at 25°C)           | μmho/cm |                                        | 3711                                               | 1126     |
| 10.      | Nitrite Nitrogen (as NO <sub>2</sub> )            | mg/L    | 45                                     | BDL                                                | ND       |
| 11.      | Nitrate Nitrogen<br>(as NO <sub>3</sub> )         | mg/L    |                                        | BDL                                                | 6.63     |
| 12.      | (NO <sub>2</sub> + NO <sub>3</sub> )-<br>Nitrogen | mg/L    |                                        | BDL                                                | 6.63     |
| 13.      | Free Ammonia<br>(as NH <sub>3</sub> -N)           | mg/L    | 0.5                                    | BDL                                                | BDL      |
| 14.      | Total Residual<br>Chlorine                        | mg/L    | 0.2                                    | ND                                                 | BDL      |
| 15.      | Cyanide<br>(as CN)                                | mg/L    | 0.05                                   | ND                                                 | ND       |
| 16.      | Fluoride (as F)                                   | mg/L    | 1.0                                    | 1.92                                               | 0.903    |

| Locat | tion                                                              |                         | Borewell<br>Water from<br>Mhada Colony | Borewell<br>Water from<br>Datala Gram<br>Panchayat |          |
|-------|-------------------------------------------------------------------|-------------------------|----------------------------------------|----------------------------------------------------|----------|
| Date  | of Sampling                                                       |                         |                                        | 06.06.17                                           | 06.06.17 |
| Sr.   | Parameters                                                        | Unit                    | Std. Limit                             | Res                                                | ults     |
| 17.   | Sulphide (asS <sup>2-</sup> )                                     | mg/L                    | 1.0                                    | ND                                                 | ND       |
| 18.   | Dissolved<br>Phosphate<br>(as P)                                  | mg/L                    | 0.05                                   | 0.034                                              | 0.067    |
| 19.   | Sodium<br>Absorption Ratio                                        | mg/L                    |                                        | 28.3                                               | 4.91     |
| 20.   | Total Coliforms                                                   | MPN<br>Index/<br>100 ml |                                        | 12                                                 | 9.2      |
| 21.   | Faecal Coliforms                                                  | MPN<br>Index/<br>100 ml | BDL                                    | 6.9                                                | 6.9      |
| 22.   | Total<br>Phosphorous<br>(as P)                                    | mg/L                    | BDL                                    | 0.045                                              | 0.073    |
| 23.   | Total Kjeldahl<br>Nitrogen                                        | mg/L                    | 0.5                                    | 0.504                                              | 0.448    |
| 24.   | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | mg/L                    | 0.001                                  | BDL                                                | 0.101    |
| 25.   | Phenols<br>(as C <sub>6</sub> H <sub>5</sub> OH)                  | mg/L                    | 0.5                                    | ND                                                 | ND       |
| 26.   | Surface Active<br>Agents<br>(as MBAS)                             | mg/L                    | 0.001                                  | ND                                                 | ND       |
| 27.   | Organo Chlorine<br>Pesticides                                     |                         |                                        |                                                    |          |
| I.    | Alachlor                                                          | μg/L                    | 0.05                                   | BDL                                                | BDL      |
| II.   | Atrazine                                                          | μg/L                    | 20                                     | BDL                                                | BDL      |
| III.  | Aldrin                                                            | μg/L                    | 2                                      | BDL                                                | BDL      |

| Locat  | tion                                                |      | Borewell<br>Water from<br>Mhada Colony | Borewell<br>Water from<br>Datala Gram<br>Panchayat |          |
|--------|-----------------------------------------------------|------|----------------------------------------|----------------------------------------------------|----------|
| Date   | of Sampling                                         |      |                                        | 06.06.17                                           | 06.06.17 |
| Sr.    | Parameters                                          | Unit | Std. Limit                             | Res                                                | ults     |
| IV.    | Dieldrin                                            | μg/L | 0.03                                   | BDL                                                | BDL      |
| V.     | Alpha HCH                                           | μg/L | 0.03                                   | BDL                                                | BDL      |
| VI.    | Beta HCH                                            | μg/L | 0.01                                   | BDL                                                | BDL      |
| VII.   | Delta HCH                                           | μg/L | 0.04                                   | BDL                                                | BDL      |
| VIII.  | Butachlor                                           | μg/L | 125                                    | BDL                                                | BDL      |
| IX.    | p,p DDT                                             | μg/L | 0.04                                   | BDL                                                | BDL      |
| Х.     | o,p DDT                                             | μg/L | 1.0                                    | BDL                                                | BDL      |
| XI.    | p,p DDE                                             | μg/L | 1.0                                    | BDL                                                | BDL      |
| XII.   | o,p DDE                                             | μg/L | 1.0                                    | BDL                                                | BDL      |
| XIII.  | p,p DDD                                             | μg/L | 1.0                                    | BDL                                                | BDL      |
| XIV.   | o,p DDD                                             | μg/L | 1.0                                    | BDL                                                | BDL      |
| XV.    | Alpha<br>Endosulfan                                 | μg/L | 1.0                                    | BDL                                                | BDL      |
| XVI.   | Beta Endosulfan                                     | μg/L | 0.4                                    | BDL                                                | BDL      |
| XVII.  | Endosulfan<br>Sulphate                              | μg/L | 0.4                                    | BDL                                                | BDL      |
| (VIII. | Y HCH (Lindane)                                     | μg/L | 0.4                                    | BDL                                                | BDL      |
| 28.    | Polynuclear<br>aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 2.0                                    | BDL                                                | ND       |
| 29.    | Polychlorinated<br>Biphenyls (PCB)                  | mg/L | 0.0001                                 | BDL                                                | BDL      |
| 30.    | Zinc (as Zn)                                        | mg/L | 0.0005                                 | BDL                                                | BDL      |
| 31.    | Nickel (as Ni)                                      | mg/L | 5.0                                    | BDL                                                | BDL      |
| 32.    | Copper<br>(as Cu)                                   | mg/L | 0.02                                   | BDL                                                | BDL      |

| Locat | Location                                         |               |            | Borewell<br>Water from<br>Mhada Colony | Borewell<br>Water from<br>Datala Gram<br>Panchayat |
|-------|--------------------------------------------------|---------------|------------|----------------------------------------|----------------------------------------------------|
| Date  | of Sampling                                      |               |            | 06.06.17                               | 06.06.17                                           |
| Sr.   | Parameters                                       | Unit          | Std. Limit | Res                                    | ults                                               |
| 33.   | Hexavalent<br>Chromium<br>(as Cr <sup>6+</sup> ) | mg/L          | 0.05       | ND                                     | BDL                                                |
| 34.   | Total Chromium (as Cr)                           | mg/L          | 1          | BDL                                    | BDL                                                |
| 35.   | Total Arsenic<br>(as As)                         | mg/L          | 0.05       | ND                                     | ND                                                 |
| 36.   | Lead (as Pb)                                     | mg/L          | 0.01       | BDL                                    | BDL                                                |
| 37.   | Cadmium<br>(as Cd)                               | mg/L          | 0.01       | BDL                                    | BDL                                                |
| 38.   | Mercury<br>(as Hg)                               | mg/L          | 0.003      | ND                                     | ND                                                 |
| 39.   | Manganese<br>(as Mn)                             | mg/L          | 0.001      | BDL                                    | BDL                                                |
| 40.   | Iron (as Fe)                                     | mg/L          | 0.1        | 0.13                                   | 0.1                                                |
| 41.   | Vanadium<br>(as V)                               | mg/L          | 0.3        | BDL                                    | BDL                                                |
| 42.   | Selenium<br>(as Se)                              | mg/L          |            | ND                                     | ND                                                 |
| 43.   | Boron (as B)                                     | mg/L          | 0.01       | 0.305                                  | 0.284                                              |
| 44.   | Bioassay Test on fish                            | %<br>survival |            | 100%                                   | 100%                                               |

Table No. V

| Location |                                                   |         |            | Borewell<br>water at<br>Gramin<br>Rugnalaya | Borewell<br>Water at<br>Nagar<br>Parishad Near<br>New Fire<br>Station |
|----------|---------------------------------------------------|---------|------------|---------------------------------------------|-----------------------------------------------------------------------|
| Date     | of Sampling                                       |         |            | 06.06.17                                    | 06.06.17                                                              |
| Sr.      | Parameters                                        | Unit    | Std. Limit | Res                                         | ults                                                                  |
| 1.       | Colour                                            | Hazen   | 5          | BDL                                         | BDL                                                                   |
| 2.       | Smell                                             | -       |            | Agreeable                                   | Agreeable                                                             |
| 3.       | рН                                                | -       | 6.5-8.5    | 7.8                                         | 6.8                                                                   |
| 4.       | Oil & Grease                                      | mg/L    |            | ND                                          | ND                                                                    |
| 5.       | Suspended<br>Solids                               | mg/L    | 100        | BDL                                         | BDL                                                                   |
| 6.       | Dissolved<br>Oxygen<br>(%Saturation)              | %       |            | NA                                          | NA                                                                    |
| 7.       | Chemical<br>Oxygen Demand                         | mg/L    | 250        | 32                                          | 12                                                                    |
| 8.       | Biochemical<br>Oxygen Demand<br>(3 days,27°C)     | mg/L    | 30         | 8.5                                         | 3.1                                                                   |
| 9.       | Electrical<br>Conductivity<br>(at 25°C)           | μmho/cm |            | 568                                         | 917                                                                   |
| 10.      | Nitrite Nitrogen<br>(as NO <sub>2</sub> )         | mg/L    | 45         | BDL                                         | BDL                                                                   |
| 11.      | Nitrate Nitrogen<br>(as NO <sub>3</sub> )         | mg/L    |            | 2.30                                        | 6.57                                                                  |
| 12.      | (NO <sub>2</sub> + NO <sub>3</sub> )-<br>Nitrogen | mg/L    |            | 2.30                                        | 6.57                                                                  |
| 13.      | Free Ammonia<br>(as NH <sub>3</sub> -N)           | mg/L    | 0.5        | BDL                                         | BDL                                                                   |
| 14.      | Total Residual<br>Chlorine                        | mg/L    | 0.2        | BDL                                         | BDL                                                                   |

| Location |                                                                   |                         |            | Borewell<br>water at<br>Gramin<br>Rugnalaya | Borewell<br>Water at<br>Nagar<br>Parishad Near<br>New Fire<br>Station |
|----------|-------------------------------------------------------------------|-------------------------|------------|---------------------------------------------|-----------------------------------------------------------------------|
| Date     | of Sampling                                                       |                         |            | 06.06.17                                    | 06.06.17                                                              |
| Sr.      | Parameters                                                        | Unit                    | Std. Limit | Res                                         | ults                                                                  |
| 15.      | Cyanide<br>(as CN)                                                | mg/L                    | 0.05       | ND                                          | ND                                                                    |
| 16.      | Fluoride (as F)                                                   | mg/L                    | 1.0        | 0.375                                       | 0.278                                                                 |
| 17.      | Sulphide (asS <sup>2-</sup> )                                     | mg/L                    | 1.0        | ND                                          | ND                                                                    |
| 18.      | Dissolved<br>Phosphate<br>(as P)                                  | mg/L                    | 0.05       | 0.077                                       | 0.099                                                                 |
| 19.      | Sodium<br>Absorption Ratio                                        | mg/L                    |            | 1.77                                        | 1.43                                                                  |
| 20.      | Total Coliforms                                                   | MPN<br>Index/<br>100 ml |            | BDL                                         | BDL                                                                   |
| 21.      | Faecal Coliforms                                                  | MPN<br>Index/<br>100 ml | BDL        | BDL                                         | BDL                                                                   |
| 22.      | Total<br>Phosphorous<br>(as P)                                    | mg/L                    | BDL        | 0.088                                       | 0.128                                                                 |
| 23.      | Total Kjeldahl<br>Nitrogen                                        | mg/L                    | 0.5        | 0.84                                        | 0.952                                                                 |
| 24.      | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | mg/L                    | 0.001      | 0.10                                        | BDL                                                                   |
| 25.      | Phenols<br>(as C <sub>6</sub> H <sub>5</sub> OH)                  | mg/L                    | 0.5        | ND                                          | ND                                                                    |
| 26.      | Surface Active<br>Agents<br>(as MBAS)                             | mg/L                    | 0.001      | ND                                          | ND                                                                    |

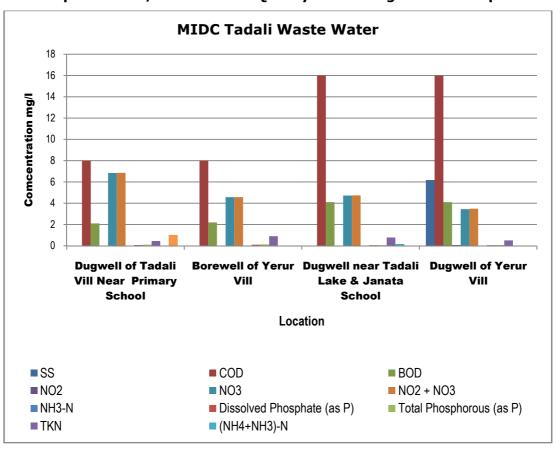
| Location |                               |      |            | Borewell<br>water at<br>Gramin<br>Rugnalaya | Borewell<br>Water at<br>Nagar<br>Parishad Near<br>New Fire<br>Station |
|----------|-------------------------------|------|------------|---------------------------------------------|-----------------------------------------------------------------------|
| Date     | of Sampling                   |      |            | 06.06.17                                    | 06.06.17                                                              |
| Sr.      | Parameters                    | Unit | Std. Limit | Res                                         | ults                                                                  |
| 27.      | Organo Chlorine<br>Pesticides |      |            |                                             |                                                                       |
| I.       | Alachlor                      | μg/L | 0.05       | BDL                                         | BDL                                                                   |
| II.      | Atrazine                      | μg/L | 20         | BDL                                         | BDL                                                                   |
| III.     | Aldrin                        | μg/L | 2          | BDL                                         | BDL                                                                   |
| IV.      | Dieldrin                      | μg/L | 0.03       | BDL                                         | BDL                                                                   |
| V.       | Alpha HCH                     | μg/L | 0.03       | BDL                                         | BDL                                                                   |
| VI.      | Beta HCH                      | μg/L | 0.01       | BDL                                         | BDL                                                                   |
| VII.     | Delta HCH                     | μg/L | 0.04       | BDL                                         | BDL                                                                   |
| VIII.    | Butachlor                     | μg/L | 125        | BDL                                         | BDL                                                                   |
| IX.      | p,p DDT                       | μg/L | 0.04       | BDL                                         | BDL                                                                   |
| X.       | o,p DDT                       | μg/L | 1.0        | BDL                                         | BDL                                                                   |
| XI.      | p,p DDE                       | μg/L | 1.0        | BDL                                         | BDL                                                                   |
| XII.     | o,p DDE                       | μg/L | 1.0        | BDL                                         | BDL                                                                   |
| XIII.    | p,p DDD                       | μg/L | 1.0        | BDL                                         | BDL                                                                   |
| XIV.     | o,p DDD                       | μg/L | 1.0        | BDL                                         | BDL                                                                   |
| XV.      | Alpha<br>Endosulfan           | μg/L | 1.0        | BDL                                         | BDL                                                                   |
| XVI.     | Beta Endosulfan               | μg/L | 0.4        | BDL                                         | BDL                                                                   |
| XVII.    | Endosulfan<br>Sulphate        | μg/L | 0.4        | BDL                                         | BDL                                                                   |
| (VIII.   | Y HCH (Lindane)               | μg/L | 0.4        | BDL                                         | BDL                                                                   |

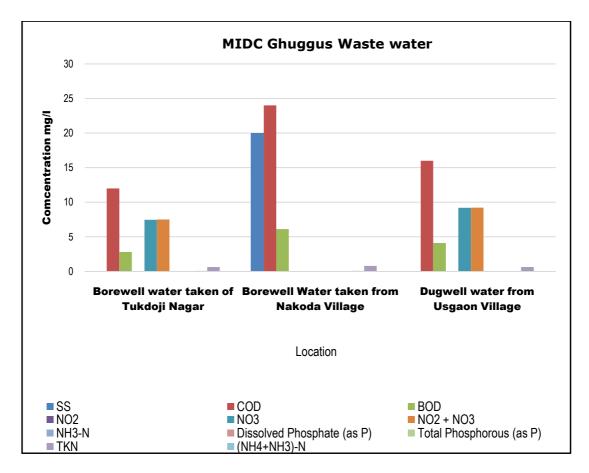
| Location |                                                     |      |            | Borewell<br>water at<br>Gramin<br>Rugnalaya | Borewell<br>Water at<br>Nagar<br>Parishad Near<br>New Fire<br>Station |
|----------|-----------------------------------------------------|------|------------|---------------------------------------------|-----------------------------------------------------------------------|
| Date     | of Sampling                                         |      |            | 06.06.17                                    | 06.06.17                                                              |
| Sr.      | Parameters                                          | Unit | Std. Limit | Res                                         | ults                                                                  |
| 28.      | Polynuclear<br>aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 2.0        | ND                                          | ND                                                                    |
| 29.      | Polychlorinated<br>Biphenyls (PCB)                  | mg/L | 0.0001     | BDL                                         | BDL                                                                   |
| 30.      | Zinc (as Zn)                                        | mg/L | 0.0005     | BDL                                         | 0.20                                                                  |
| 31.      | Nickel (as Ni)                                      | mg/L | 5.0        | BDL                                         | BDL                                                                   |
| 32.      | Copper<br>(as Cu)                                   | mg/L | 0.02       | BDL                                         | BDL                                                                   |
| 33.      | Hexavalent<br>Chromium<br>(as Cr <sup>6+</sup> )    | mg/L | 0.05       | ND                                          | BDL                                                                   |
| 34.      | Total Chromium (as Cr)                              | mg/L | 1          | BDL                                         | BDL                                                                   |
| 35.      | Total Arsenic<br>(as As)                            | mg/L | 0.05       | ND                                          | ND                                                                    |
| 36.      | Lead (as Pb)                                        | mg/L | 0.01       | BDL                                         | BDL                                                                   |
| 37.      | Cadmium<br>(as Cd)                                  | mg/L | 0.01       | BDL                                         | BDL                                                                   |
| 38.      | Mercury<br>(as Hg)                                  | mg/L | 0.003      | ND                                          | ND                                                                    |
| 39.      | Manganese<br>(as Mn)                                | mg/L | 0.001      | BDL                                         | 0.05                                                                  |
| 40.      | Iron (as Fe)                                        | mg/L | 0.1        | BDL                                         | BDL                                                                   |
| 41.      | Vanadium<br>(as V)                                  | mg/L | 0.3        | BDL                                         | BDL                                                                   |

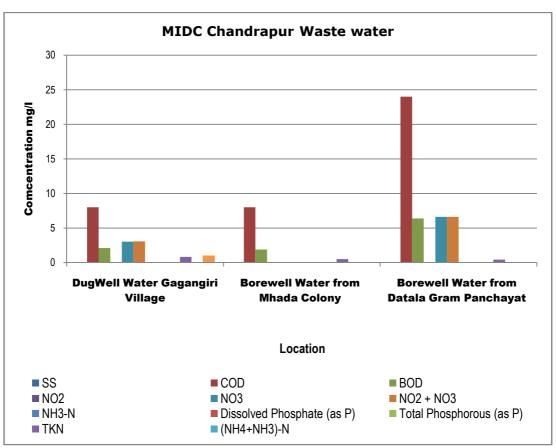
| Location |                       |               | Borewell<br>water at<br>Gramin<br>Rugnalaya | Borewell<br>Water at<br>Nagar<br>Parishad Near<br>New Fire<br>Station |          |
|----------|-----------------------|---------------|---------------------------------------------|-----------------------------------------------------------------------|----------|
| Date     | of Sampling           |               |                                             | 06.06.17                                                              | 06.06.17 |
| Sr.      | Parameters            | Unit          | Std. Limit                                  | Res                                                                   | ults     |
| 42.      | Selenium<br>(as Se)   | mg/L          |                                             | BDL                                                                   | ND       |
| 43.      | Boron (as B)          | mg/L          | 0.01                                        | 0.101 0.104                                                           |          |
| 44.      | Bioassay Test on fish | %<br>survival |                                             | 100%                                                                  | 100%     |

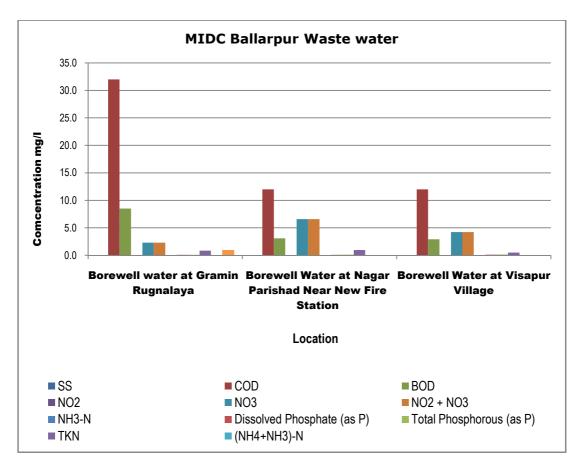
## Table No. VI

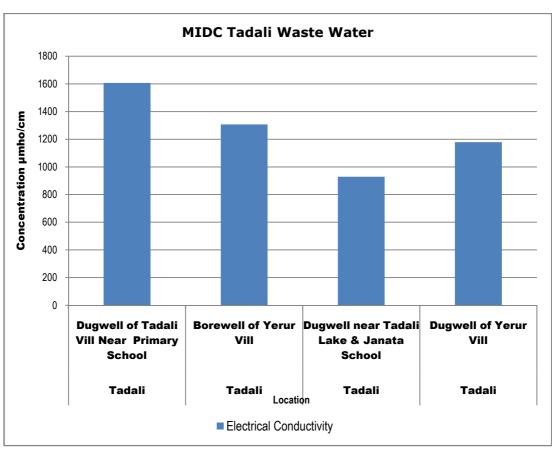
| Locati | on                                            | Borewell Water at<br>Visapur Village |            |           |
|--------|-----------------------------------------------|--------------------------------------|------------|-----------|
| Date o | f Sampling                                    | 06.06.17                             |            |           |
| Sr.    | Parameters                                    | Unit                                 | Std. Limit | Results   |
| 1.     | Colour                                        | Hazen                                | 5          | BDL       |
| 2.     | Smell                                         | -                                    |            | Agreeable |
| 3.     | pH                                            | -                                    | 6.5-8.5    | 7.8       |
| 4.     | Oil & Grease                                  | mg/L                                 |            | ND        |
| 5.     | Suspended Solids                              | mg/L                                 | 100        | BDL       |
| 6.     | Dissolved Oxygen<br>(%Saturation)             | %                                    |            | NA        |
| 7.     | Chemical Oxygen<br>Demand                     | mg/L                                 | 250        | 12        |
| 8.     | Biochemical Oxygen<br>Demand<br>(3 days,27°C) | mg/L                                 | 30         | 2.9       |
| 9.     | Electrical Conductivity (at 25°C)             | μmho/cm                              |            | 603       |

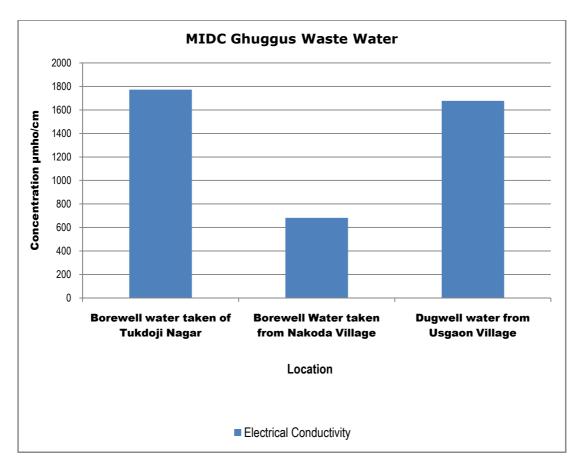

| Locati | ion                                                           | Borewell Water at<br>Visapur Village |            |          |
|--------|---------------------------------------------------------------|--------------------------------------|------------|----------|
| Date o | f Sampling                                                    |                                      |            | 06.06.17 |
| Sr.    | Parameters                                                    | Unit                                 | Std. Limit | Results  |
| 10.    | Nitrite Nitrogen (as NO <sub>2</sub> )                        | mg/L                                 | 45         | BDL      |
| 11.    | Nitrate Nitrogen (as NO <sub>3</sub> )                        | mg/L                                 |            | 4.22     |
| 12.    | (NO <sub>2</sub> + NO <sub>3</sub> )-Nitrogen                 | mg/L                                 |            | 4.23     |
| 13.    | Free Ammonia<br>(as NH <sub>3</sub> -N)                       | mg/L                                 | 0.5        | BDL      |
| 14.    | Total Residual<br>Chlorine                                    | mg/L                                 | 0.2        | BDL      |
| 15.    | Cyanide<br>(as CN)                                            | mg/L                                 | 0.05       | ND       |
| 16.    | Fluoride (as F)                                               | mg/L                                 | 1.0        | 0.205    |
| 17.    | Sulphide (asS2-)                                              | mg/L                                 | 1.0        | ND       |
| 18.    | Dissolved Phosphate (as P)                                    | mg/L                                 | 0.05       | 0.112    |
| 19.    | Sodium Absorption<br>Ratio                                    | mg/L                                 |            | 1.14     |
| 20.    | Total Coliforms                                               | MPN Index/<br>100 ml                 |            | 16       |
| 21.    | Faecal Coliforms                                              | MPN Index/<br>100 ml                 | BDL        | 12       |
| 22.    | Total Phosphorous (as P)                                      | mg/L                                 | BDL        | 0.139    |
| 23.    | Total Kjeldahl<br>Nitrogen                                    | mg/L                                 | 0.5        | 0.504    |
| 24.    | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-Nitrogen | mg/L                                 | 0.001      | BDL      |

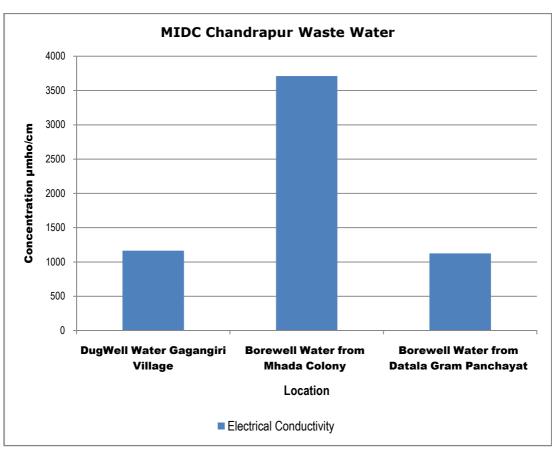

| Locati | on                                            |      |            | Borewell Water at<br>Visapur Village |
|--------|-----------------------------------------------|------|------------|--------------------------------------|
| Date o | f Sampling                                    |      |            | 06.06.17                             |
| Sr.    | Parameters                                    | Unit | Std. Limit | Results                              |
| 25.    | Phenols (as C <sub>6</sub> H <sub>5</sub> OH) | mg/L | 0.5        | ND                                   |
| 26.    | Surface Active Agents (as MBAS)               | mg/L | 0.001      | ND                                   |
| 27.    | Organo Chlorine<br>Pesticides                 |      |            |                                      |
| I.     | Alachlor                                      | μg/L | 0.05       | BDL                                  |
| II.    | Atrazine                                      | μg/L | 20         | BDL                                  |
| III.   | Aldrin                                        | μg/L | 2          | BDL                                  |
| IV.    | Dieldrin                                      | μg/L | 0.03       | BDL                                  |
| V.     | Alpha HCH                                     | μg/L | 0.03       | BDL                                  |
| VI.    | Beta HCH                                      | μg/L | 0.01       | BDL                                  |
| VII.   | Delta HCH                                     | μg/L | 0.04       | BDL                                  |
| VIII.  | Butachlor                                     | μg/L | 125        | BDL                                  |
| IX.    | p,p DDT                                       | μg/L | 0.04       | BDL                                  |
| X.     | o,p DDT                                       | μg/L | 1.0        | BDL                                  |
| XI.    | p,p DDE                                       | μg/L | 1.0        | BDL                                  |
| XII.   | o,p DDE                                       | μg/L | 1.0        | BDL                                  |
| XIII.  | p,p DDD                                       | μg/L | 1.0        | BDL                                  |
| XIV.   | o,p DDD                                       | μg/L | 1.0        | BDL                                  |
| XV.    | Alpha Endosulfan                              | μg/L | 1.0        | BDL                                  |
| XVI.   | Beta Endosulfan                               | μg/L | 0.4        | BDL                                  |
| XVII.  | Endosulfan Sulphate                           | μg/L | 0.4        | BDL                                  |
| XVIII. | Y HCH (Lindane)                               | μg/L | 0.4        | BDL                                  |

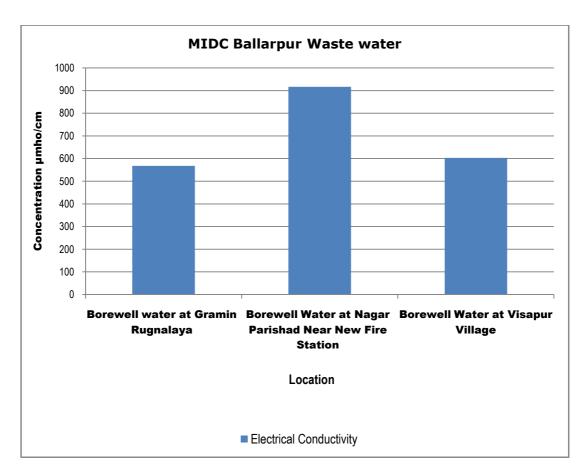

| Locati | on                                               |      |            | Borewell Water at<br>Visapur Village |
|--------|--------------------------------------------------|------|------------|--------------------------------------|
| Date o | f Sampling                                       |      |            | 06.06.17                             |
| Sr.    | Parameters                                       | Unit | Std. Limit | Results                              |
| 28.    | Polynuclear aromatic<br>hydrocarbons<br>(as PAH) | mg/L | 2.0        | BDL                                  |
| 29.    | Polychlorinated<br>Biphenyls (PCB)               | mg/L | 0.0001     | BDL                                  |
| 30.    | Zinc (as Zn)                                     | mg/L | 0.0005     | BDL                                  |
| 31.    | Nickel (as Ni)                                   | mg/L | 5.0        | BDL                                  |
| 32.    | Copper (as Cu)                                   | mg/L | 0.02       | BDL                                  |
| 33.    | Hexavalent<br>Chromium<br>(as Cr <sup>6+</sup> ) | mg/L | 0.05       | BDL                                  |
| 34.    | Total Chromium (as Cr)                           | mg/L | 1          | BDL                                  |
| 35.    | Total Arsenic<br>(as As)                         | mg/L | 0.05       | ND                                   |
| 36.    | Lead (as Pb)                                     | mg/L | 0.01       | BDL                                  |
| 37.    | Cadmium<br>(as Cd)                               | mg/L | 0.01       | BDL                                  |
| 38.    | Mercury<br>(as Hg)                               | mg/L | 0.003      | ND                                   |
| 39.    | Manganese<br>(as Mn)                             | mg/L | 0.001      | 0.03                                 |
| 40.    | Iron (as Fe)                                     | mg/L | 0.1        | 0.13                                 |
| 41.    | Vanadium<br>(as V)                               | mg/L | 0.3        | BDL                                  |
| 42.    | Selenium<br>(as Se)                              | mg/L |            | ND                                   |

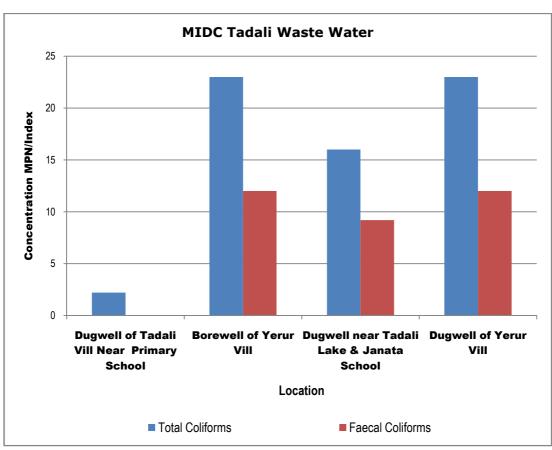

| Locati | on                    | Borewell Water at<br>Visapur Village |            |         |
|--------|-----------------------|--------------------------------------|------------|---------|
| Date o | f Sampling            | 06.06.17                             |            |         |
| Sr.    | Parameters            | Unit                                 | Std. Limit | Results |
| 43.    | Boron (as B)          | mg/L                                 | 0.01       | 0.104   |
| 44.    | Bioassay Test on fish | % survival                           |            | 100%    |

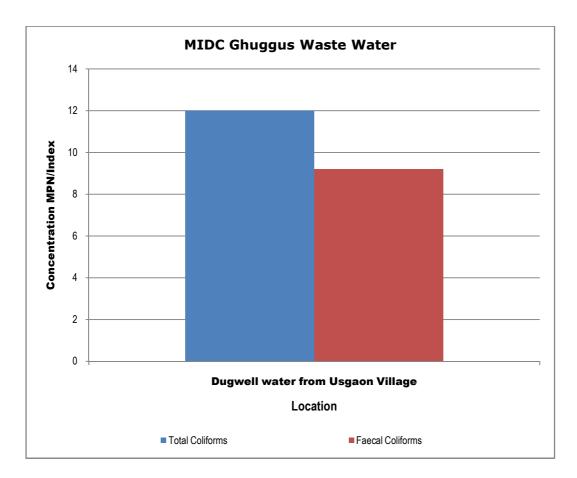

## Graphs: Water/Waste Water Quality Monitoring for Chandrapur:

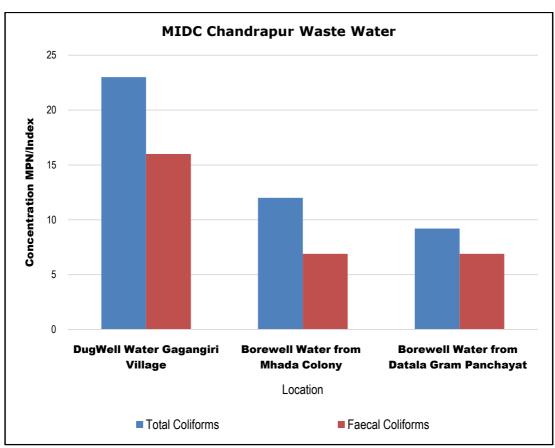


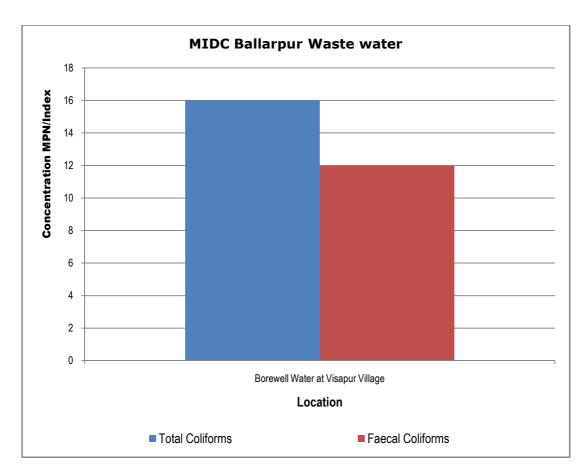



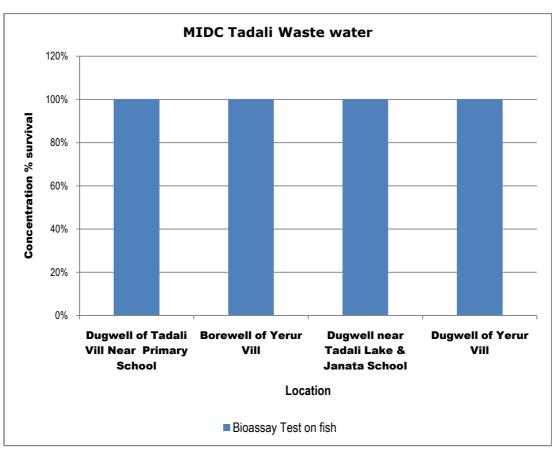



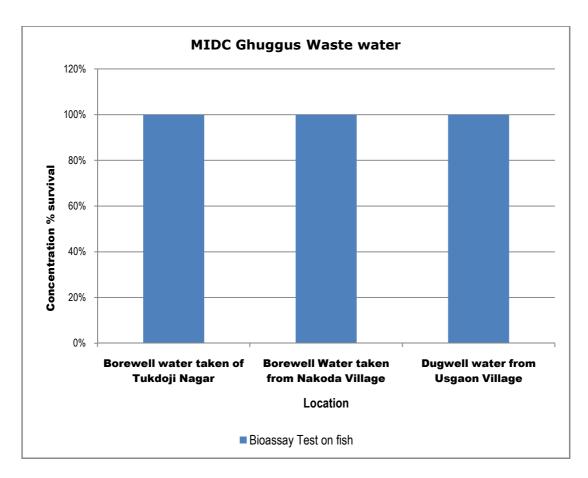



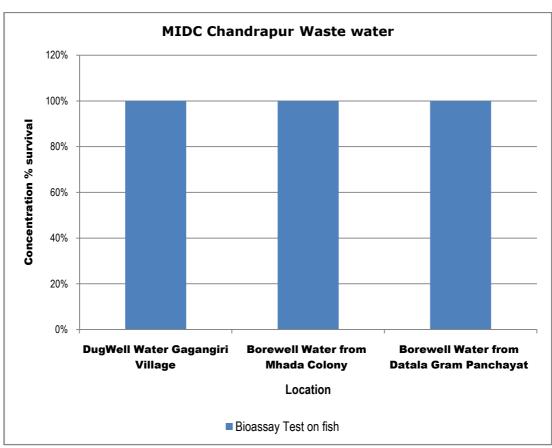



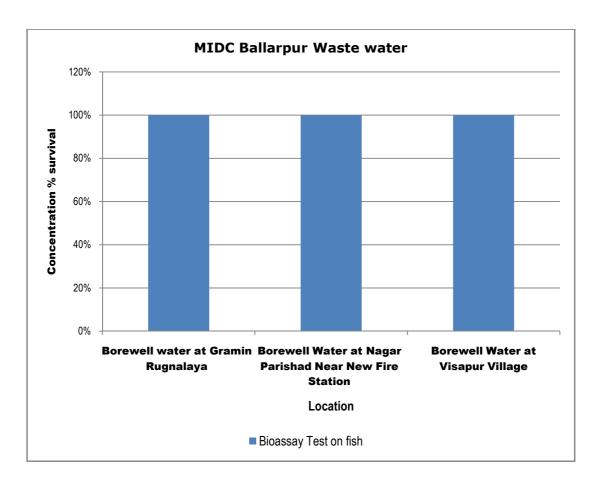














## 4. Summary of the results

Based on the study done, the results are summarised and concluded as follows:

### 4.1 Stack Emission Monitoring:

#### A) Tadali MIDC

At Tadali MIDC, sixstack samples were collected from different industries.

- 1. Particulate Matter: At all locations monitored, particulate matter was within the limit.
- **2. Sulphur Dioxide:** The concentration of sulfur dioxide varied between minimum of 463 mg/Nm³ to 1270 mg/Nm³. This however, will depend on the fuel used and load allotted in the consent. Maximum concentration was found at Dhariwal Infra.
- 3. Nitrogen Dioxide: Values range between 21.8 mg/Nm<sup>3</sup> to 168 mg/Nm<sup>3</sup>.
- **4. Carbon Monoxide**: At Grace Industries Highest range of 125 mg/Nm³ was observed.
- **5. Volatile Organic Compounds:** At Tadali MIDC, VOCs were monitored from two stacks of Gopani Iron & Power (India) Pvt. Ltd. Benzene, Toulene and xylene was only detected at both the stacks.

#### **B)** Chandrapur MIDC:

At Chandrapur MIDC, fourstack samples were collected from different industries.

- **1. Particulate Matter**: At all locations monitored, particulate matter was within the limit.
- **2. Sulphur Dioxide**: The concentration of SO<sub>2</sub> ranged in between 26.9 mg/Nm<sup>3</sup> to 337 mg/Nm<sup>3</sup>.
- **3. Nitrogen Dioxide:**Nitrogen dioxide was well within the limit at all six locations monitored.
- **4. Carbon Monoxide:** Values varied between minimum of 4.83 mg/Nm³ and maximum of 66 mg/Nm³.
- **5. Volatile Organic Compounds**: Two stacks of Chandrapur MIDC were monitored for VOC and Benzene and Toulene was detected from both the stack with Ethyl Acetate was also detected from Superb Hygienic Ltd.

### C) Ghugus MIDC:

Six different industries were selected for stack monitoring at Ghugus MIDC.

- Particulate Matter: At all locations monitored, particulate matter was within the limit.
- **2. Sulphur Dioxide**: At the Stack of Lloyds Metal & Energy Ltd.DES-7 500 TPD Kiln, Sulphur dioxide was not detectable and the highest concentration of SO<sub>2</sub> was observed at ACC Cement Boiler Stack 15 MW with 556 mg/Nm<sup>3</sup>.
- **3. Nitrogen Dioxide:**Nitrogen dioxide was well within the limit at all six locations monitored.
- **4. Carbon Monoxide:** Values varied between minimum of 0.80 mg/Nm³ and maximum of 193 mg/Nm³.
- **5. Volatile Organic Compounds**: Two stacks of Ghuggus MIDC were monitored for VOC and only Benzene and Toulene have been detected.

## D) Ballarpur MIDC:

Six different stacks of Ballarpur MIDC were monitored for the aforesaid parameters.

- **1. Particulate Matter:** Concentration of Particulate matter was well within the range not exceeding at any one of the stacks.
- **2. Sulphur Dioxide:** Out of six stacks monitored of Ballarpur, two stacks of Ballarpur Graphic PPL exceeded the standard limit with value of285mg/Nm³ and 574 mg/Nm³and remaining four stacks had sulfur dioxide values were well within the standard limits prescribed.
- 3. Nitrogen Dioxide: Emission level varied between 22.8 mg/Nm<sup>3</sup> and 108 mg/Nm<sup>3</sup>.

- **4. Carbon Monoxide:**Values varied between minimum of 7.43 mg/Nm³ and maximum of 29.2 mg/Nm³.
- **5. Volatile Organic Compounds:** Two stacks of Chandrapur MIDC were monitored for VOC and Benzene and Toulene was detected from both the stack with Ethyl Acetate was also detected from BILT Graphic PPL.

#### 4.2 Ambient Air Quality Monitoring:

- **A) MIDC Tadali:** In this industrial cluster the following locations were monitored namely MIDC water treatment plant, Grace Industries Ltd. and Dhariwal Infrastructure Ltd. Each location was monitored for 12 parameters as per NAAQS.
- 1. **Sulphur Dioxide (SO<sub>2</sub>):** Concentration of Sulphur dioxide in Tadali MIDC Area varied between lowest of  $6.1~\mu g/m^3$  to maximum of  $8.5~\mu g/m^3$ . This area displaced a clear picture of Sulfur Dioxide concentration.
- 2. **Nitrogen Dioxide (NOx):** Concentration varied between 10  $\mu$ g/m³ and 10.8  $\mu$ g/m³ which is well below the standard laid down by CPCB.
- 3. **Particulate Matter (PM<sub>10</sub>)**: Particulate matter in this area has exceeded at all three locations monitored ranging from  $109 \mu g/m^3$  to  $137 \mu g/m^3$ .
- 4. **Particulate Matter (PM<sub>2.5</sub>):** Concentration of PM<sub>2.5</sub>was well within the limits at all three regions monitored and thehighest value of 53  $\mu$ g/m³was at Dhariwal Infrastructure Ltd.
- 5. **Ozone** (O<sub>3</sub>): Ozone concentration was well within the limit in all three regions monitored.
- 6. **Lead (Pb):** Concentration of Lead was also below the limit varying between 0.023 and 0.029  $\mu g/m^3$ .
- 7. **Carbon Monoxide (CO):** Concentration of Carbon Monoxide ranges between 0.54 mg/m³ and 0.55 mg/m³.
- 8. **Ammonia (NH<sub>3</sub>):** Concentration of Ammonia was lower than the limit at all two locations monitored and at Grace Industry Ltd. It was below the detectable limit.
- 9. **Benzene** ( $C_6H_6$ ): Sampling and analysis at all three locations show, Benzene value has not exceeded at any locations monitored and the values ranged from 1.66  $\mu$ g/m<sup>3</sup> to 4.28  $\mu$ g/m<sup>3</sup>.
- 10. **Benzo (a) Pyrene (BaP):** BaP was detected only at MIDC water treatment plant location with 0.57 ng/m<sup>3</sup>.
- 11. **Arsenic (As):** Concentration of Arsenic was well below the standard prescribed by CPCB.
- 12. **Nickel (Ni):**Concentration of Nickel also was well below the standard prescribed by CPCB.
- **B) MIDC Chandrapur**: At Chandrapur MIDC, following locations were monitored namely Green tech, MIDC Office and Hindustan Petroleum. Following are the findings based on the analytical values:

- **1. Sulphur Dioxide (SO<sub>2</sub>):** Values ranged between minimum of 7.9  $\mu$ g/m³ at HPCL and 12.1 $\mu$ g/m³ at Green Tech.
- **2. Nitrogen Dioxide (NOx):** The highest value of  $NO_2$  was observed at Green tech with 14.6  $\mu$ g/m<sup>3</sup> which was well within the limit as per NAAQS.
- **3. Particulate Matter (PM<sub>10</sub>):** PM<sub>10</sub> values were ranging between 103  $\mu$ g/m<sup>3</sup>at Green Tech and 116  $\mu$ g/m<sup>3</sup> at Hindustan Petroleum.
- **4. Particulate Matter (PM<sub>2.5</sub>):** PM<sub>2.5</sub> values were well within the limits as per NAAQS.
- **5. Ozone (O\_3):** Ozone concentration was well within the limit in all three regions monitored.
- **6. Lead (Pb):** Value of Lead was well below the detectable limit in all three regions monitored.
- **7. Carbon Monoxide (CO):** Two values of Carbon monoxide were as per the standard value or very near to the standard and ranged between 0.69 mg/m³to 0.99 mg/m³.
- 8. Ammonia (NH<sub>3</sub>): Values are below detectable limit at two locations monitored and at HPCL it was 21.5µg/m<sup>3</sup>.
- **9. Benzene** ( $C_6H_6$ ): At MIDC office, value exceeded exhibiting 9.6 $\mu$ g/m³ as against 5  $\mu$ g/m³ standard value.
- **10.Benzo (a) Pyrene (BaP):** At all three locations, the concentration of BaP was below detectable limit.
- **11.Arsenic (As):** Concentration in the ambient air at all the three locations of Chandrapur MIDC is within the stipulated limits.
- **12.Nickel (Ni):** Concentration in the ambient air at all the three locations of Chandrapur MIDC is within the stipulated limits.
- **C) MIDC Ghugus:** At MIDC Ghugus three locations of ambient air quality were monitored.
- **1. Sulphur Dioxide (SO<sub>2</sub>):** Values were well within the range, highest being 13.6  $\mu g/m^3$  at Lloyds Metal and lowest being at Lloyds Metal Colony i.e. 9.9  $\mu g/m^3$ .
- 2. Nitrogen Dioxide (NOx): Values of Nitrogen dioxide ranged between 12.1  $\mu g/m^3$  and 18.3  $\mu g/m^3$ at Lloyd Metal and at Lloyd Metal Colony respectively.
- **3. Particulate Matter (PM<sub>10</sub>):** With reference to the concentration of PM10 values, it seems Transit Hostel WCL and Tukdoji Nagar values are above 700μg/m³where as at Lloyds Metal Colony concentration of PM 10 is 235μg/m³
- **4. Particulate Matter (PM<sub>2.5</sub>):** At one place i.e. Tukdoji Nagar, value slightly exceeds the limit i.e.  $101~\mu g/m^3$ .
- **5. Ozone (O<sub>3</sub>):** Concentration of Ozone ranged between  $28.2\mu g/m^3$  at Tukdoiji Nagar and  $70.8\mu g/m^3$  at Lloyd Metal Colony.
- **6. Lead (Pb)**: Values are between below detectable level and  $0.13 \mu g/m^3$ .

- **7. Carbon Monoxide (CO):** Values at Transit Hostel and Tukdoji Nagar, exceeded the standard value.
- **8. Ammonia (NH<sub>3</sub>):** Values are well within the range lowest being 6.3  $\mu$ g/m<sup>3</sup> and highest being 25.6  $\mu$ g/m<sup>3</sup>.
- **9. Benzene** ( $C_6H_6$ ). Values are either near to the standard value or have exceeded as seen clearly at Transit Hostel WLC.
- **10.Benzo (a) Pyrene (BaP):** At Tukdoji Nagar, value is lower than the standard value. Two values are above the limit.
- **11.Arsenic (As) and Nickel (As):** Values of both metals are below the standard values although one value of Arsenic exceeded Transit Hostel WCL.
- **D) MIDC Ballarpur**: MIDC Ballarpur area was monitored at three following locations (i) Main Gate Bamni Proteins Ltd (ii) Ballarpur Paper Mill Guest house and (iii) Mangal Karyalaya near lime dumping.
- 1. Sulphur Dioxide (SO<sub>2</sub>): Values are below the standard values.
- 2. Nitrogen Dioxide (NO<sub>x</sub>): All the values are within limit.
- **3. Particulate Matter (PM<sub>10</sub>):** As generally observed PM10 values also exceed in the area, ranging between 96 μg/m³ and 272 μg/m³.
- **4. Particulate Matter (PM <sub>2.5</sub>):**At Ballarpur Paper Mill Guest house area, values of PM 2.5 exceeded (73μg/m³). Whereas at other two places they were below the standards.
- 5. Ozone (O<sub>3</sub>): At one location i.e., Ballarpur Paper Mill guest house, value is as low as 22.6µg/m³ whereas at two places either it is near the limit or exceeded the limit.
- **6. Lead (Pb):** Very low values are observed.
- 7. Carbon Monoxide(CO): Values are below the standard value ranging between 1.3 mg/m<sup>3</sup> and 1.9  $\mu$ g/m<sup>3</sup>.
- **8. Ammonia (NH<sub>3</sub>)**: Values of ammonia are below the standard value ranging between 5.7μg/m³ at Ballarpur Paper Mills Guest house and 21.0μg/m³ at Bamni Proteins Ltd.
- **9.** Benzene( $C_6H_6$ ): Concentration of Benzene exceeds at one place i.e. near Mangal Karyalaya.
- **10.Benzo (a) Pyrene (BaP):** At two locations BaP values exceeded the standard limit of ng/m<sup>3</sup>.
- 11.Arsenic(As): Values are below the standard values.
- **12.Nickel (Ni)**:At Ballarpur Paper Mill guest house and Mangal Karyalaya, values are on the higher side ranging between 23.80 ng/m<sup>3</sup> and 33.90 ng/m<sup>3</sup>.

If 4 MIDC areas in Chandrapur district are compared with NAAQS, 2009 the following conclusion can be drawn.

At Ghugus area they are the highest. There is a large variation in PM 2.5, but higher value PM10 is above limit at all the locations of Ghugus MIDC and Ballarpur. Other parameter which appears to be culprit are the Benzene, BaP with respect to other parameters. District appears to be clearer.

#### 4.3 Waste Water Quality Monitoring:

- (i) Shreesurya Dairy MIDC Chandrapur (ii) Superhygenic (BMW) (iii) HPCL Bottling Plant MIDC Chandrapur (iv) Borewell Water at Gramin Rugnalaya Ballarpur (v) Multiorganic Ltd Chandrapur.
- **Suspended solids:** At two industries namely Shreesurya Dairy and Super Hygenic (BMW) have exceeded the limits of 100 mg/L max.
- **pH:** pH Value in case of Shreesurya Daily has exceeded the value beyond the general standard.
- **Oil & Grease**: Oil and Grease in case of Shree Suraya Dairy is 23 mg/L which is beyond the standard discharge limit.
- Total Residual Chlorine: It is well below the standard discharge limit.
- **Total Ammonia**: Exceeds the limit of Super Hygenic, having the concentration of 30.3 mg/L.
- Total Kjeldhal Nitrogen: It is well within the limit.
- **Free Ammonia**: In case of Super Hygenic (BMW) the concentration is 7.11 mg/L as against 5.0 mg/L of standard discharge value.
- Biochemical Oxygen Demand: Exceeding at all places.
- **Chemical Oxygen Demand:** Exceeding the limit of 250 mg/L at all places expect HPCL Bottling Plant.
- Mercury: Concentration of Mercury is well below the limit at all places.
- **Lead:** Lead exceeds the value of 0.1 mg/L at Super Hygenic.
- Cadmium Chromium Hexa and Total Chromium: Values are below the prescribed limit.
- Copper & Zinc: Values of both metals are below the standard limit.
- **Nickel:** Concentration of Nickel is below the limit and ranges between 0.06 mg/L and 1.08 mg/L
- Cyanide: Values of Cyanide are either above or below the detection limit.
- Fluoride: Value of fluoride exceeds at Super Hygenic.
- **Dissolved Phosphorus**: Values are well below the standard limits.

- **Sulphide:** At all places sulfide is not detectable.
- Manganese: Well within the limits at all places.

**Iron:** At two places, namely Shreesuraya Dairy and HPCL Bottling Plant, concentration of Iron is within the range, however at Super Hygienic and at Bore well water at Gramin Rugnalaya the values have exceeded. Apart samples of ETP outlet effluent, surface water samples were also collected.

Each MIDC area has been segregated for collection of surface and bore well water samples. They are as follows:

### A) Tadali MIDC:

- 1. **Colour**: Colour in the range 1 to 15 Hazen units, maximum being at Nalla near railway crossing and at well water near Primary School Tadali.
- 2. **pH**: Is in the range of 7 and 8.2. As per IS 10500-2012, it is acceptable.
- 3. **Suspended Solids**. Values range between less than 5 mg/L and maximum of 124 mg/L in case of Lake water, Tadali Village.
- 4. **COD**: Chemical oxygen demand varies between minimum of 13 mg/L in case of well water at Tadali village and maximum of 32 mg/L at Wardha river.
- 5. **BOD:** Values range between 3.9 mg/L at well water near Primary school, Tadali.
- 6. Nitrates: Within the acceptable standard of drinking water IS 10500:2012.
- 7. **Surface Active Agent:** Well below the acceptable value as per IS 10500:2012.
- 8. **Residual Chlorine:** It is below the detectable level (DL 0.1 mg/L)
- 9. **Sulphide**: Less than 0.08 mg/L
- 10. **Metals**: All metals like Zinc, Nickel, Copper, Hexavalent Chromium, Total Chromium, Lead, Cadmium, Mercury are below the prescribed limits.
- 11. Cyanide and Phenol: Are all within the prescribed limits.
- 12. **Pesticides:** All analysed pesticides concentration are below the standards.
- 13. PAH & PCBs: Also lie below the standard.

#### **B) Chandrapur MIDC:**

All analytical values are compared with General standards for discharge of Environment pollutants.

- **Suspended Solids**: Values range between, minimum of 19 mg/L at Nalla on Yeur road and maximum of 32mg/L at Nalla on backside of Gopani Iron.
- **pH**: pH Values lie between 6.5 at Nalla outside Grace Industry and maximum of 7.9 at Nalla near Madhuban Board mill.

- **Oil and Grease**: Values are at below detectable level BDL (1.0 mg/L).
- **Residual Chlorine**: Values are at BDL Level (0.1 mg/L).
- **Biochemical Oxygen Demand**: Varies between minimum of 19 mg/L at Nalla outside Grace Industry and maximum of 438 mg/L. Except two values of BOD, all are beyond the standard value.
- **Chemical Oxygen Demand:** Values are as high as 1320 mg/L at Nalla near Madhuban Board and 1152 mg/L at Dhanora Bridge River.
- **Metals:** Metals like Arsenic, Mercury, Lead, Cadmium, Hexavalent Chromium, Copper, and Zinc all within the acceptable range. Cyanide, Fluoride and Phenol are within the acceptable range.
- **Sulphide:** Values range between 0.08 mg/L at Nallah at Yeur village and 2.2 mg/L at Nallah at backside of Gopani Iron.
- **Iron:** Values range between 0.08 mg/L at Nalla on Yeur village road 1.641 at Nalla at Grace Industry.
- PAH & PCB: Below the standard limit.
- **Pesticides**: All pesticides analysed, individually below the general standards.

## C) Ghugus MIDC

- **Suspended Solids**: Values range between minimum of 8 mg/L at River water near intake well WCL OCM and maximum of 54 mg/L at Nalla water.
- **pH**: Variation of pH range is within the narrow range between 7 and 8. At all places pH is within the acceptable range.
- **Oil and Grease:** Values are below the detectable level of 1.0 mg/L.
- **Total Residual Chlorine:** It is below 0.1 mg/L as against the acceptable standard of 0.1 mg/L.
- Ammonical Nitrogen, Total Kjeldhal Nitrogen and Free Ammonia: All Values are within the acceptable limits.
- **Chemical Oxygen Demand:** Values lie between minimum of 16 mg/L at River water near intake well WCL OCM and maximum of 168 mg/L at Nallah water
- **Biochemical Oxygen Demand**: Values are between 6.5 mg/L at Wardha River near AC Ltd, Coal Mines Road.
- **Metals**: All values of metals are within the acceptable range.
- **Cyanide and Fluoride**: Values of these two parameters are within the acceptable standards.

• **Phenol**: Meets the requirement of standard.

- **Dissolved Phosphate:** All the values of dissolved phosphate at all locations are within the acceptable standards.
- PAH and PCB: are within the acceptable range of standard values.
- **Pesticides**: analysed show their analytical values within the range.

#### D) Ballarpur MIDC

- **Suspended Solids**: Values range between minimum of 0.5 mg/L at Bore well water near Nagar Parishad and maximum of 482 mg/L at Bore well water, Visapur village. Thus, there is wide variation in the values.
- **pH**: At all the locations pH is in the range of 5.6 and 8 lowest value being observed at Bore well water at Visapur village Bore well while the maximum at Wardha river, Rajura bridge. This pH variation fits into the standard for discharge of Environment pollutants.
- **Oil and Grease**: All values are below the detection limit of 1.0 mg/L.
- **Total Residual Chlorine**: Values are below the detection limit of 0.1 mg/L.
- Ammonical Nitrogen, Total Kjeldhal Nitrogen and free ammonia: Values are within the acceptable concentrations.
- **Biochemical Oxygen Demand:** It exceeds at Nalla near MSW, Municipal Corporation. At other places, it is in acceptable range.
- Chemical Oxygen Demand: Values range between minimum of 12 mg/L at Bore well water near Nagar Parishad water supply and maximum of 236 mg/L at Nalla near MSW, Municipal Corporation.
- **Metals**: Metals like Arsenic, Mercury, Lead, Cadmium, Chromium hexavalent, Total Chromium, Copper, Zinc all within the acceptable range.
- Cyanide, Fluoride and Phenol: All are within the acceptable values.
- **Dissolved Phosphate**:Values are within the acceptable range.
- Nitrate: Values of Nitrates are below the standard discharge values.

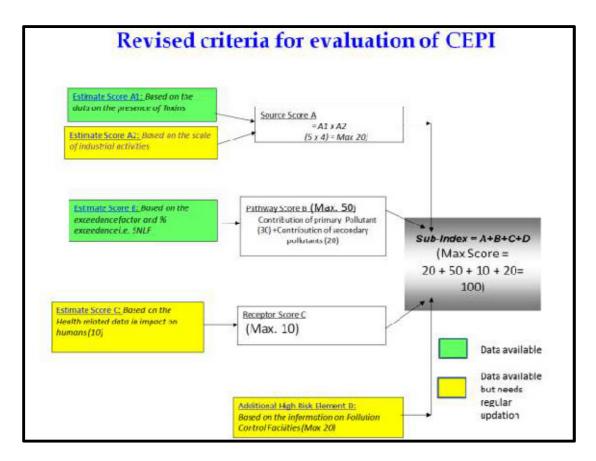
#### 5. CEPI Score

Comprehensive Environmental Pollution Index (CEPI) is intended to act as early warning tool which helps in categorization of industrial clusters/areas in terms of priority of needing attention.

CPCB had evolved certain methodology to calculate CEPI, in which a score has been fixed for different environmental components based on the level of pollution. The scoring system involves an algorithm that takes into account the basic selection criteria. This approach is based on the basic hazard assessment logic that can be summarized as below.

## Hazard = pollutant source, pathways, and receptor

CPCB has calculated CEPI for the identified critically polluted industrial clusters. It is calculated separately for air, water, and land. The basic framework and scoring system of the CEPI – based on three factors namely pollutant, pathway, and receptor – has been described further under this section


To overcome the subjectivity, revised concept is proposed by eliminating the subjective factors as described in the previous section, but retaining the factors which can be measured precisely.

- i. Revised concept is prepared by eliminating the debatable factors but retaining the factors which can be measured precisely.
- ii. It is decided to develop the Comprehensive Environmental Pollution Index (CEPI) retaining the existing algorithm of Source, Pathway and Receptor.
- iii. Health component was also retained in the revised concept in line with the suggestions of Secretary, MoEFCC during the meeting held in MoEF.

#### **Outlines of revised CEPI 2016 criteria**

The outlines of the revised CEPI criteria are as follows:

- 1. It is proposed to develop the Comprehensive Environmental Pollution Index (CEPI) based on Sources of pollution, real time observed values of the pollutants in the ambient air, surface water and ground water in & around the industrial cluster and health related statistics.
- 2. For assessment of the environmental quality of the area i.e. CEPI score, the concept of SNLF i.e. a surrogate number which represents the level of exposure (a function of percentage sample exceedance & Exceedance Factor) shall be used.
- 3. Health component to be evaluated based on the health data available from major hospitals in the area was also retained in the revised concept.
- 4. The evaluation criterion of the revised CEPI version 2016 is described in the flowchart given below:



Here, health data collected for Receptor score C is included in Annexure I

Based on Sub-index Score (score of individual environmental component like air, water etc.):

• Score more than 63: A Critical Level of Pollution in the respective level of

environmental component

• Score between 51-63: Severe to critical level of pollution with reference to

respective environmental component

#### **Cut-off Score**

Score 50: Severely Polluted Industrial Clusters/areas

• Score 60: Critically Polluted Industrial Clusters/areas

Based on Aggregated CEPI Score (score includes sub-index score of all individual environmental components together):

• **Aggregated CEPI score >70:** Critically polluted areas

Aggregated CEPI score between 60-70: Severely polluted areas

Since the inception of the programme, MPCB has also formulated Action Plans to mitigate the environmental pollution problems for each of the 8 Critically Polluted Areas (CPAs) in Maharashtra. Based on available information, parameters selected and monitored in continuation with this, CEPI has been calculated and Short-Term Action Plan (STAP) as well as Long Term Action Plan (LTAP) was prepared in 2010.

Subsequently NAAQS 2009 came in force. List of parameters to be considered increased and expanded including more critical and hazardous pollutants like benzene, BaP, Metals, etc. existing in the environment. There was revision of standards (limiting values) as well. In this present report of 2016 prepared by MPCB, CEPI is calculated considering all these revised standards' limiting values, list of parameters and complete scope of monitoring.

The result shows that CEPI score of present report is 50.77. The present study is the compilation of pre-monsoon season, which also affects the score value. It should be noticed here that MPCB's efforts through the formulation of action plans decreased the overall concentration of pollutants in all aspects i.e. air, land and water in Chembur area in past three years. This has also resulted in decreased score of CEPI.

## **5.1** Comparison of CEPI scores:

Results show that present CEPI score (50.77) of Chandrapur considering all revised standards is lesser tan the CEPI Score of February 2017 (62.3) report.

Detailed results of Air, Water and Land are given below:

#### Air

|                                                                         | A1   | A2  | Α     | B1 | B2 | В3 | В     | C1 | C2  | С3 | С    | D  | CEPI  |
|-------------------------------------------------------------------------|------|-----|-------|----|----|----|-------|----|-----|----|------|----|-------|
| Present<br>Report<br>CEPI Score<br>June, 2017<br>(Revised<br>CEPI 2016) | 2.9  | 3.3 | 9.57  | -  | -  | -  | 14.36 | -  | -   | -  | 5    | 15 | 43.93 |
| CEPI Score<br>February,<br>2017                                         | 3    | 2   | 6     | 6  | 0  | 2  | 8     | 4  | 3.8 | 0  | 15.2 | 15 | 44.2  |
| CEPI score,<br>August,<br>2016                                          |      |     |       |    |    |    |       |    |     |    |      |    |       |
| CEPI score<br>2013                                                      | 2    | 5   | 10    | 6  | 3  | 3  | 12    | 5  | 3   | 0  | 15   | 10 | 47    |
| CPCB<br>Report<br>2009                                                  | 5.75 | 5   | 28.75 | 6  | 3  | 3  | 12    | 5  | 4   | 0  | 20   | 10 | 70.75 |

# Water:

|                                                                         | A1  | A2  | Α     | B1  | B2  | В3 | В     | C1 | C2  | С3  | С    | D  | CEPI  |
|-------------------------------------------------------------------------|-----|-----|-------|-----|-----|----|-------|----|-----|-----|------|----|-------|
| Present<br>Report<br>CEPI Score<br>June, 2017<br>(Revised<br>CEPI 2016) | 3.7 | 4.8 | 17.76 | -   | -   | -  | 10.85 | -  | -   | -   | 0    | 10 | 38.61 |
| CEPI Score<br>February,<br>2017                                         | 3   | 4.8 | 14.4  | 1.6 | 0   | 3  | 4.6   | 5  | 5   | 2.3 | 27.3 | 10 | 56.3  |
| CEPI score,<br>August,<br>2016                                          |     |     |       |     |     |    |       |    |     |     |      |    |       |
| CEPI score<br>2013                                                      | 1   | 5   | 5     | 6   | 0   | 3  | 9     | 5  | 1.5 | 4   | 11.5 | 3  | 28.5  |
| CPCB<br>Report<br>2009                                                  | 3   | 5   | 15    | 8   | 1.5 | 3  | 12.5  | 5  | 4   | 5   | 25   | 15 | 67.5  |

## Land:

|                                                                         | A1  | A2  | Α     | B1  | B2 | В3  | В    | C1 | C2 | С3  | С    | D  | CEPI  |
|-------------------------------------------------------------------------|-----|-----|-------|-----|----|-----|------|----|----|-----|------|----|-------|
| Present<br>Report<br>CEPI Score<br>June, 2017<br>(Revised<br>CEPI 2016) | 3.1 | 4.2 | 13.02 | -   | -  | -   | 8.6  | -  | -  | -   | 0    | 10 | 31.62 |
| CEPI Score<br>February,<br>2017                                         | 3   | 4.8 | 14.4  | 1.6 | 0  | 3   | 4.6  | 5  | 5  | 2.3 | 26.5 | 10 | 57.5  |
| CEPI score,<br>August,<br>2016                                          |     |     |       |     |    |     |      |    |    |     |      |    |       |
| CEPI score<br>2013                                                      | 1   | 5   | 5     | 8   | 0  | 3   | 11   | 5  | 5  | 4   | 29   | 10 | 55    |
| CPCB<br>Report<br>2009                                                  | 3   | 5   | 15    | 4   | 3  | 4.5 | 11.5 | 5  | 4  | 5   | 25   | 15 | 66.5  |

# Aggregated CEPI:

|                                                                      | Air Index | Water Index | LandIndex | CEPI  |
|----------------------------------------------------------------------|-----------|-------------|-----------|-------|
| Present Report<br>CEPI Score<br>June, 2017<br>(Revised CEPI<br>2016) | 43.93     | 38.61       | 31.62     | 50.77 |
| CEPI Score<br>February, 2017                                         | 44.2      | 56.3        | 57.5      | 62.3  |
| CEPI score,<br>August, 2016                                          |           |             |           |       |
| CEPI score<br>2013                                                   | 77        | 62          | 60        | 85.56 |
| CPCB Report<br>2009                                                  | 70.75     | 67.5        | 66.5      | 83.88 |

#### 6. Conclusion

The status of pollution load in Chandrapur is improving year by year as per the CEPI study carried out. The score of post monsoon CEPI score of February 2017 was 62.3 which have again reduced to 50.77 in the Pre-monsoon CEPI study. The efforts taken by the Pollution Control Board officials is clearly visible in the score. The region has been moved from Critically Polluted Industrial Clusters/areas to Severely Polluted Industrial Clusters/areas

In the 22 stack emissions monitored, few of them had higher concentration of  $SO_2$ . All other parameters monitored were well within the standard provided to specific industries.

Twelve locations were monitored for ambient air concentration. Only  $PM_{10}$ level was exceeding in few locations as per NAAQS. This is due to the increase in the vehicles and vehicular emissions.

Out of the 22 waste water samples, few samples were detected with higher concentration of Total coliform and Faecal coliform. This will be complied as already the specified industry have been notified and asked to take necessary action.

13 Ground water samples were collected from different Dug well, well and Bore well in the region. In the ground water samples collected, Electrical Conductivity, Nitrogen, Total coliform and Faecal coliform was found in higher concentration.

Collective efforts of MPCB, administration and environmental organizations have finally paid off and pollution levels in Chandrapur are on the decline. Cumulative CEPI score which was initially 88.83 in 2009 has declined to 81.90 by 2013. In this report the CEPI score have even more reduced to 50.77.

|                | A1              | A2  | Α     | В     | С | D  | CEPI  |  |  |  |  |
|----------------|-----------------|-----|-------|-------|---|----|-------|--|--|--|--|
| Air Index      | 2.9             | 3.3 | 9.57  | 14.36 | 5 | 15 | 43.93 |  |  |  |  |
| Water<br>Index | 3.7             | 4.8 | 17.76 | 10.85 | 0 | 10 | 38.61 |  |  |  |  |
| Land<br>Index  | 3.1             | 4.2 | 13.02 | 8.6   | 0 | 10 | 31.62 |  |  |  |  |
|                | Aggregated CEPI |     |       |       |   |    |       |  |  |  |  |

## 7. Efforts taken for the reduction in pollution:

The regional office of Maharashtra pollution control board has taken various initiatives in reducing the CEPI Score of 85.56 of 2013 to 79.07 of 2017. Below mentioned are some of the efforts:

- A monitoring committee was formed under the Chairman of District Collector for effective implementation of the Action Plan.
- M/s. BILT Graphics paper products Ltd., a pulp and paper mill has adopted new environmental friendly technology based on ECF i.e. Elemental Chlorine Free technology and Board has granted consent to establish Plant is under stabilization since May- 2013.
- The Thermal Power plant is the single largest contributor in the air pollution in Chandrapur. The MAHAGENCO, which operates this plant, has taken steps to control air emissions from this coal based power plant and the efficiency of the air pollution control equipment is rated to be good. There is need for improvement. In spite of the air pollution prevention and control measures in place, sporadic complaints of the air emissions are received by the Board.
- MPCB is operating three stations under National Air Monitoring Programe (NAMP) at Chandrapur and nearby industrial area. Automatic Continuous ambient air quality monitoring station is also operational at Chandrapur. Board has initiated steps to set up additional ambient air quality monitoring (AAQM) stations under NAMP and State air monitoring program (SAMP) particularly at the coal mine sites.
- The generation of mine discharge, excavation of top soil during the mining activities is an example of degradation of natural resources. It is necessary to initiate serious attempts to conserve these natural resources while the exploitation of minerals on a sustainable basis. Generation of fly ash from the power station is also a similar example. There are incidences of air and water pollution due to improper handling of fly ash. Maximum utilization of the fly ash in brick making, construction and cement industry is considered as priority. The efforts of the Board to generate awareness about the fly ash utilization by various stake holders have yielded positive results. However, there is a more potential to utilise fly ash for the reclamation of the coal mines and also use it as a micronutrient supplement for crops.

### 8. References

- 1) Criteria for Comprehensive Environmental Assessment of Industrial Clusters, December 2009, CPCB, EIAS/4/2009-10
- 2) Comprehensive Environmental Assessment of Industrial Clusters, December 2009, CPCB, EIAS/5/2009-10
- 3) Action Plan for Industrial Cluster: Chandrapur, November 2010, MPCB
- 4) Action Plan for Industrial Cluster: Dombivali, November 2010, MPCB
- 5) Action Plan for Industrial Cluster: Aurangabad, November 2010, MPCB
- 6) Action Plan for Industrial Cluster: Navi Mumbai, November 2010, MPCB
- 7) Action Plan for Industrial Cluster: Navi Mumbai, November 2010, MPCB
- 8) Standard Methods for the Examination of Water and Waste Water, American Public Health Association, 22<sup>nd</sup> Edition, 2012.
- 9) IS 3025 (various parts)
- 10) www.mpcb.gov.in
- 11) www.cpcb.gov.in

#### 9. Annexure

## Annexure I: Health related data in impact on humans

### C: Receptor

| (Impact on H        | onent C<br>luman Health)<br>10 |
|---------------------|--------------------------------|
| Mair                | ı - 10                         |
| % increase in cases | Marks                          |
| <5%                 | 0                              |
| 5-10%               | 5                              |
| >10%                | 10                             |

- % increase is evaluated based on the total no. of cases recorded during two consecutive years.
- For Air Environment, total no. of cases related to Asthma, Bronchitis, Cancer, Acute respiratory infections etc. are to be considered.
- For surface water/ ground water Environment, cases related to Gastroenteritis, Diarrhoea, renal (kidney)malfunction, cancer etc are to be considered.
- For the above evaluation, the previous 5 years records of 3-5 major hospitals of the area shall be considered.

Attached below health data collected for the Chandrapur region

|      |                                                                                      | Diseases                                                                                                                | caused by                                                                                                                                                        | y Air pollution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diseases caused by Water pollution                                                                                               |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Year | Asthma                                                                               | Bronchitis                                                                                                              | Pulmonary<br>cancer                                                                                                                                              | Mesothelioma<br>(lung cancer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acute<br>respiratory<br>infections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gastroenteritis                                                                                                                  | Typhoid                                                                                                                                      | Diarrhea                                                                                                                                                                                                   | Liver damage and even cancer (due to presence of chlorinated solvents in the polluted water)                                                                                                           | Kidney<br>damage<br>(because of<br>various harmful<br>chemicals<br>present in the<br>polluted water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 2012 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2013 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2014 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2015 | 685                                                                                  | 80                                                                                                                      | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2715                                                                                                                             | 49                                                                                                                                           | 769                                                                                                                                                                                                        | 0                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2016 | 1542                                                                                 | 224                                                                                                                     |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2017 |                                                                                      |                                                                                                                         | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              | 360                                                                                                                                                                                                        | 0                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2012 |                                                                                      |                                                                                                                         | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2013 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2014 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2015 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2016 |                                                                                      |                                                                                                                         |                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2017 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2012 | 21                                                                                   | 0                                                                                                                       | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73                                                                                                                               | 100                                                                                                                                          | 24                                                                                                                                                                                                         | 0                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2013 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2014 | 30                                                                                   | 35.                                                                                                                     | n                                                                                                                                                                | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40                                                                                                                               | 30                                                                                                                                           | 25                                                                                                                                                                                                         | n                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 2015 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2016 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 2017 |                                                                                      |                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|      | 2012 2013 2014 2015 2016 2017 2012 2013 2014 2015 2016 2017 2012 2013 2014 2015 2016 | 2012 2013 2014 2015 685 2016 1542 2017 466 2012 0 2013 0 2014 0 2015 0 2016 0 2017 21 2012 2013 2014 30 2015 35 2016 25 | 2012 2013 2014 2015 685 89 2016 1542 2017 466 242 2012 0 0 0 2013 0 0 2014 0 0 2015 0 0 2016 0 0 2017 21 6 2012 2013 2014 30 35 2014 30 35 2015 35 20 2016 25 30 | 2012         Standa         Bronchitis         cancer           2013         Cancer         Cancer           2014         Cancer         Cancer           2015         685         89         O           2016         1542         224         O           2017         466         242         O           2013         O         O         O           2014         O         O         O           2015         O         O         O           2017         O         O         O           2012         O         O         O           2013         O         O         O           2014         O         O         O           2013         O         O         O           2014         O         O         O           2015         O         O         O           2016         O         O         O           2016         O         O         O           2017         O         O         O           2013         O         O         O           2016         O         O | Year         Astnma         Bronchits         cancer         (lung cancer)           2012         2013         2014         2014         2015         2016         2016         2016         2016         2017         2016         2017         2018         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019         2019 </td <td>Year         Ashma         Bronchitis         Pulmonary cancer value (lung cancer)         Respiratory infections           2012        </td> <td>Year         Asthma         Bronchitis         Pulmonary cancer cancer         respiratory infections         Castroenteritis           2012                                                                                             </td> <td>Year         Asthma         Bronchitis         Pulmonary cancer (lung cancer) (lung cancer) (lung cancer) infections         respiratory infections         Gastroenteritis         Typhold           2012        </td> <td>Year         Asthma         Bronchitis         Pulmonary (lung cancer) (lung cancer) infections         respiratory infections         Castroenteritis         Typhoid         Diarrhea           2012        </td> <td>Year         Asthmal Pronchitis         Pulmonary Cancer (June to ancer) (June to ancer)         Mesotheliomal repiratory infections         Gastroenteritis         Typhoid         Diarrhes of even cancer (June to ancer) (Jun</td> | Year         Ashma         Bronchitis         Pulmonary cancer value (lung cancer)         Respiratory infections           2012 | Year         Asthma         Bronchitis         Pulmonary cancer cancer         respiratory infections         Castroenteritis           2012 | Year         Asthma         Bronchitis         Pulmonary cancer (lung cancer) (lung cancer) (lung cancer) infections         respiratory infections         Gastroenteritis         Typhold           2012 | Year         Asthma         Bronchitis         Pulmonary (lung cancer) (lung cancer) infections         respiratory infections         Castroenteritis         Typhoid         Diarrhea           2012 | Year         Asthmal Pronchitis         Pulmonary Cancer (June to ancer) (June to ancer)         Mesotheliomal repiratory infections         Gastroenteritis         Typhoid         Diarrhes of even cancer (June to ancer) (Jun |  |  |

|                      |      |        | Diseases caused by Air pollution |                     |                               |                                    |                 | Diseases caused by Water pollution |          |                                                                                              |                                                                                                      |  |  |  |
|----------------------|------|--------|----------------------------------|---------------------|-------------------------------|------------------------------------|-----------------|------------------------------------|----------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Name of Hospital     | Year | Asthma | Bronchitis                       | Pulmonary<br>cancer | Mesothelioma<br>(lung cancer) | Acute<br>respiratory<br>infections | Gastroenteritis | Typhoid                            | Diarrhea | Liver damage and even cancer (due to presence of chlorinated solvents in the polluted water) | Kidney<br>damage<br>(because of<br>various harmful<br>chemicals<br>present in the<br>polluted water) |  |  |  |
|                      | 2012 | 50     | 25                               | Nil                 | Nil                           | 200                                | 200             | 150                                | 200      | Nil                                                                                          | Nil                                                                                                  |  |  |  |
|                      | 2013 | 55     | 30                               | Nil                 | Nil                           | 230                                | 242             | 160                                | 210      | Nil                                                                                          | Nil                                                                                                  |  |  |  |
| Dajiy Datan Hasaital | 2014 | 40     | 20                               | Nil                 | Nil                           | 96                                 | 110             | 130                                | 200      | Nil                                                                                          | Nil                                                                                                  |  |  |  |
| Rajiv Ratan Hospital | 2015 | 42     | 28                               | Nil                 | Nil                           | 100                                | 100             | 80                                 | 150      | Nil                                                                                          | Nil                                                                                                  |  |  |  |
|                      | 2016 | 34     |                                  | Nil                 | Nil                           | 110                                | 120             | 100                                | 120      |                                                                                              | Nil                                                                                                  |  |  |  |
|                      | 2017 | 20     | 30                               | Nil                 | 1                             | 84                                 | 190             | 95                                 |          | Nil                                                                                          | Nil                                                                                                  |  |  |  |
|                      | 2012 |        |                                  |                     |                               |                                    |                 |                                    |          |                                                                                              |                                                                                                      |  |  |  |
|                      | 2013 |        |                                  |                     |                               |                                    |                 |                                    |          |                                                                                              |                                                                                                      |  |  |  |
|                      | 2014 |        |                                  |                     |                               |                                    |                 |                                    |          |                                                                                              |                                                                                                      |  |  |  |
| Bilt Hospital        | 2015 | 5      | 105                              | Nil                 | Nil                           | 4600                               | 1350            | 12                                 | 1560     | Nil                                                                                          | Nil                                                                                                  |  |  |  |
|                      | 2016 | 5      |                                  |                     | Nil                           | 5200                               | 1270            | 14                                 | 1340     |                                                                                              | Nil                                                                                                  |  |  |  |
|                      | 2017 | 5      |                                  |                     | Nil                           | 1960                               | 340             | 4                                  | 770      |                                                                                              | Nil                                                                                                  |  |  |  |

# **Annexure II: Stack Emission Sampling and Analysis Methodology**

| Sr. | Parameters                                     | Method References                                                                        | Techniques                                                     | Detection<br>Limit       |
|-----|------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------|
| 1.  | Acid Mist<br>(as Sulphuric<br>Acid)            | US EPA Method no.m-<br>8                                                                 | Barium thorine titration Method                                | 0.6 mg/Nm <sup>3</sup>   |
| 2.  | Ammonia                                        | IS 11255 (Part<br>6):1999, Reaffirmed<br>2003                                            | Titration/Nessler<br>Reagent /<br>Spectrophotometric<br>Method | 1 mg/Nm³                 |
| 3.  | Carbon Monoxide                                | USEPA Method 10B                                                                         | GC-FID Method                                                  | 0.2 mg/Nm <sup>3</sup>   |
| 4.  | Chlorine                                       | US EPA Method 26 for sampling                                                            | Titrimetric                                                    | 0.001 mg/Nm <sup>3</sup> |
| 5.  | Fluoride<br>(Gaseous)                          | US EPA Method 13 A                                                                       | SPADNS Zirconium<br>Lake<br>Spectrophotometric<br>Method       | 0.025 mg/Nm <sup>3</sup> |
| 6.  | Fluoride<br>(Particulate)                      | US EPA Method 13 A                                                                       | SPADNS Zirconium<br>Lake<br>Spectrophotometric<br>Method       | 0.005 mg/Nm <sup>3</sup> |
| 7.  | Hydrogen<br>Chloride                           | US EPA Method 26 for sampling                                                            | Titrimetric                                                    | 0.25 mg/Nm <sup>3</sup>  |
| 8.  | Hydrogen<br>Sulphide                           | IS 11255 (Part<br>4):1985                                                                | Titrimetric                                                    | 1 mg/Nm³                 |
| 9.  | Oxides of<br>Nitrogen                          | IS 11255 (Part 7):<br>2005                                                               | PDSA Colorimetric<br>Method                                    | 10 mg/Nm³                |
| 10. | Oxygen                                         | IS 13270 : 1992                                                                          | ORSAT Apparatus                                                | 1 %                      |
| 11. | Poly Aromatic<br>Hydrocarbons<br>(Particulate) | IS 5182 (Part 12) :<br>2004, Reaffirmed 2009<br>CPCB Guidelines, May<br>2011, Page No.39 | GC-FID Method                                                  | 0.25 mg/Nm <sup>3</sup>  |
| 12. | Suspended<br>Particulate<br>Matter             | IS 11255 (Part<br>1):1985, Reaffirmed<br>2003                                            | Gravimetric Method                                             | 10 mg/Nm <sup>3</sup>    |
| 13. | Sulphur Dioxide                                | IS 11255 (Part 2):<br>1985, Reaffirmed 2003                                              | Titrimetric IPA<br>thorine Method                              | 5.0mg/Nm <sup>3</sup>    |

| Sr. | Parameters                             | Method References                 | Techniques                                                              | Detection<br>Limit       |
|-----|----------------------------------------|-----------------------------------|-------------------------------------------------------------------------|--------------------------|
|     |                                        |                                   |                                                                         | 0.02kg/day               |
| 14. | BTX (Benzene,<br>Toluene, Xylene)      | NIOSH (NMAM) 1501                 | Adsorption and<br>Desorption<br>followed by GC-FID<br>analysis          | 0.001 mg/Nm <sup>3</sup> |
| 15. | VOC (Volatile<br>Organic<br>Compounds) | NIOSH (NMAM) 1501<br>for sampling | Adsorption and<br>Desorption<br>followed by GC-FID<br>or GC/MS analysis | -                        |
| i   | Methyl Isobutyl<br>Ketone              | -                                 | -                                                                       | 0.001 mg/Nm <sup>3</sup> |
| ii  | Benzene                                | -                                 | -                                                                       | 0.001 mg/Nm <sup>3</sup> |
| iii | Toluene                                | -                                 | -                                                                       | 0.001 mg/Nm <sup>3</sup> |
| iv  | Xylene                                 | -                                 | -                                                                       | 0.001 mg/Nm <sup>3</sup> |
| ٧   | Ethyl Benzene                          | -                                 | -                                                                       | 0.001 mg/Nm <sup>3</sup> |
| vi  | Ethyl Acetate                          | -                                 | -                                                                       | 0.001 mg/Nm <sup>3</sup> |

# **Annexure III: Ambient Air Sampling and Analysis Methodology**

| Sr. | Parameters                                                            | Method References                                                                                        | Techniques                                                      | Detection<br>Limit     |
|-----|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------|
| 1.  | Sulphur Dioxide<br>(SO <sub>2</sub> )                                 | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No.1    | Improved West &<br>Gaeke Method                                 | 4 μg/m³                |
| 2.  | Nitrogen Dioxide<br>(NO <sub>2</sub> )                                | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No.7    | Modified Jacob &<br>Hochheiser<br>Method                        | 3 μg/m³                |
| 3.  | Particulate Matter<br>(size less than 10<br>µm) or PM <sub>10</sub>   | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No.11   | Gravimetric<br>Method                                           | 2 μg/m³                |
| 4.  | Particulate Matter<br>(size less than 2.5<br>µm) or PM <sub>2.5</sub> | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 15  | Gravimetric<br>Method                                           | 0.4 μg/m³              |
| 5.  | Ozone (O <sub>3</sub> )                                               | APHA, Method No. 820,<br>Page no. 836                                                                    | Chemical Method                                                 | 19.6 μg/m³             |
| 6.  | Lead (Pb)                                                             | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 47  | AAS Method                                                      | 0.02 μg/m³             |
| 7.  | Carbon Monoxide<br>(CO)                                               | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume II,<br>May 2011, Page No. 16 | Non Dispersive<br>Infra Red<br>(BDLIR)<br>spectroscopy          | 0.05 mg/m <sup>3</sup> |
| 8.  | Ammonia (NH <sub>3</sub> )                                            | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 35  | Indophenol Blue<br>Method                                       | 4.0μg/m³               |
| 9.  | Benzene (C <sub>6</sub> H <sub>6</sub> )                              | IS 5182 (Part 11):2006                                                                                   | Adsorption and<br>Desorption<br>followed by GC-<br>FID analysis | 1.0 μg/m³              |
| 10. | Benzo (a) Pyrene<br>(BaP) – particulate<br>phase only,                | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 39  | Solvent<br>extraction<br>followed by GC-<br>FID analysis        | 0.2 ng/m <sup>3</sup>  |

| Sr. | Parameters   | Method References                                                                                       | Techniques | Detection<br>Limit   |
|-----|--------------|---------------------------------------------------------------------------------------------------------|------------|----------------------|
| 11. | Arsenic (As) | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 47 | AAS Method | 0.3ng/m <sup>3</sup> |
| 12. | Nickel (Ni)  | CPCB Guidelines for the<br>Measurement of Ambient<br>Air Pollutants, Volume I,<br>May 2011, Page No. 47 | AAS Method | 3.0ng/m <sup>3</sup> |

# Annexure IV: Water/Wastewater Sampling and Analysis Methodology

| Sr. | Parameters                                                 | Methods<br>References                                                                                       | Techniques                                      | Detection<br>Limit |
|-----|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|
| 1.  | Sampling<br>Procedure for<br>Chemical<br>Parameters        | IS 3025 (Part 1):<br>1987, Reaffirmed<br>1998, Amds.1&<br>APHA, 22 <sup>nd</sup> Ed.,<br>2012, 1060 B, 1-39 | -                                               | -                  |
| 2.  | Sampling<br>Procedure for<br>Microbiological<br>Parameters | APHA, 22nd Ed.,<br>2012,1060 B, 1-39,<br>9040, 9-17, and<br>9060B, 9-35                                     | -                                               | -                  |
| 3.  | Temperature                                                | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 2550-B, 2-69                                                           | By Thermometer                                  | -                  |
| 4.  | Colour                                                     | APHA, 22 <sup>nd</sup> Ed., 2012, 2120-B, 2-26                                                              | Visible Comparison<br>Method                    | 1 Hazen<br>Unit    |
| 5.  | Odour                                                      | IS 3025 (Part 5):<br>1983, Reaffirmed<br>2006                                                               | Qualitative Method                              | -                  |
| 6.  | рН                                                         | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500-H <sup>+</sup> - B,<br>4-92                                       | By pH Meter                                     | 1                  |
| 7.  | Oil & Grease                                               | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 5520-B, 5-40                                                           | Liquid -liquid Partition-<br>Gravimetric Method | 1.0 mg/L           |
| 8.  | Suspended Solids                                           | IS 3025 (Part 17):<br>1984, Reaffirmed<br>2006,Amds.1                                                       | Filtration /Gravimetric<br>Method               | 5.0 mg/L           |
| 9.  | Dissolved Oxygen                                           | IS 3025 (Part 38):<br>1989, Reaffirmed<br>2009                                                              | Iodometric Method-Azide modification            | 0.05 mg/L          |
| 10. | Chemical Oxygen<br>Demand                                  | APHA,22 <sup>nd</sup> Ed., 2012, 5220-B, 5-17                                                               | Open Reflux Method                              | 5.0 mg/L           |
| 11. | Biochemical<br>Oxygen Demand                               | IS 3025 (Part 44):<br>1993,Reaffirmed<br>2009,Amds.1                                                        | Iodometric Method                               | 5.0 mg/L           |
| 12. | Electrical<br>Conductivity                                 | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 2510- B, 2-54                                                          | By Conductivity Meter                           | 0.1<br>µmho/cm     |
| 13. | Nitrite-Nitrogen                                           | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500-NO <sub>2</sub> -B,<br>4-120                                      | Colorimetric Method                             | 0.006 mg/L         |

| Sr. | Parameters                                                        | Methods<br>References                                                                                                                      | Techniques                                               | Detection<br>Limit |
|-----|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------|
| 14. | Nitrate-Nitrogen                                                  | APHA,22 <sup>nd</sup> Ed.,<br>2012,4500-NO <sub>3,</sub> B-4-<br>122                                                                       | UV Spectrophotometer<br>Screening Method                 | 0.2 mg/L           |
| 15. | (NO <sub>2</sub> + NO <sub>3</sub> )-<br>Nitrogen                 | APHA, 22 <sup>nd</sup> Ed., 2012,<br>4500-NO <sub>2</sub> -B, 4-120<br>APHA,22 <sup>nd</sup><br>Ed.,2012,4500-<br>NO <sub>3</sub> ,B-4-122 | Colorimetric Method V Spectrophotometer Screening Method | 0.2 mg/L           |
| 16. | Free Ammonia                                                      | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500 NH <sub>3</sub> , F,<br>4 -115                                                                   | Colorimetric Method                                      | 0.006 mg/L         |
| 17. | Total Residual<br>Chlorine                                        | IS 3025 (Part<br>26):1986,<br>Reaffirmed 2009,<br>Ed. 2.1(2004-02)                                                                         | Iodometric Method                                        | 0.1 mg/L           |
| 18. | Cyanide (CN)                                                      | APHA, 22 <sup>nd</sup> Ed.,<br>2012,4500-CN, C &<br>E, 4-41 & 4-43                                                                         | Colorimetric Method                                      | 0.001 mg/L         |
| 19. | Fluoride (F)                                                      | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500-F, D, 4-<br>87                                                                                   | SPADNS Method                                            | 0.05 mg/L          |
| 20. | Sulphide (S <sup>2-</sup> )                                       | APHA, 22 <sup>nd</sup> Ed.,<br>2012, 4500 -S <sup>2</sup> , C-<br>4-175, F-4-178                                                           | IodometricMethod                                         | 0.08 mg/L          |
| 21. | Dissolved<br>Phosphate (P)                                        | APHA,22 <sup>nd</sup> Ed., 2012,<br>4500 P,E, 4-155                                                                                        | Ascorbic Acid Method                                     | 0.03 mg/L          |
| 22. | Sodium<br>Absorption Ratio                                        | IS11624 :1986,<br>Reaffirmed 2006                                                                                                          | By Calculation                                           | 0.3                |
| 23. | Total Phosphorous (P)                                             | APHA,22 <sup>nd</sup> Ed., 2012,<br>4500 P,E, 4-155                                                                                        | Ascorbic Acid Method                                     | 0.03 mg/L          |
| 24. | Total Kjeldahl<br>Nitrogen                                        | APHA, 22 <sup>nd</sup> Ed., 2012,<br>4500 NH <sub>3</sub> , B & C, 4 -<br>110, 4-112                                                       | Titrimetric Method                                       | 0.1 mg/L           |
| 25. | Total Ammonia<br>(NH <sub>4</sub> +NH <sub>3</sub> )-<br>Nitrogen | APHA,22 <sup>d</sup> Ed., 2012,<br>4500 NH <sub>3</sub> , F, 4 -115                                                                        | Colorimetric Method                                      | 0.001 mg/L         |
| 26. | Phenols (C <sub>6</sub> H <sub>5</sub> OH)                        | APHA,22 <sup>nd</sup> Ed.,<br>2012,5530- B & C,<br>5-44 & 5-47                                                                             | Chloroform Extraction<br>Method                          | 0.001 mg/L         |

| Sr. | Parameters                                       | Methods<br>References                                  | Techniques                          | Detection<br>Limit |
|-----|--------------------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------|
| 27. | Surface Active<br>Agents                         | APHA,22 <sup>nd</sup> Ed.,<br>2012,5540-B & C,5-<br>50 | Methylene Blue<br>Extraction Method | 0.1 mg/L           |
| 28. | Organo Chlorine<br>Pesticides                    | APHA, 22 <sup>nd</sup> Ed.,<br>2012,6410B,6-74         | GC MS-MS Method                     | 0.01 μg/L          |
| 29. | Polynuclear<br>aromatic<br>hydrocarbons<br>(PAH) | APHA, 22 <sup>nd</sup> Ed.,<br>2012,6410B,6-74         | GC MS-MS Method                     | 0.01 μg/L          |
| 30. | Polychlorinated<br>Biphenyls (PCB)               | APHA, 22 <sup>nd</sup> Ed.,<br>2012,6410B,6-74         | GC MS-MS Method                     | 0.01 μg/L          |
| 31. | Zinc (Zn)                                        | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.1 mg/L           |
| 32. | Nickel (Ni)                                      | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.05 mg/L          |
| 33. | Copper (Cu)                                      | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.03 mg/L          |
| 34. | Hexavalent<br>Chromium (Cr <sup>6+</sup> )       | APHA, 22 <sup>nd</sup> Ed.,<br>2012,3500-Cr,B,3-<br>69 | Colorimetric Method                 | 0.02 mg/L          |
| 35. | Total Chromium<br>(Cr)                           | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.02 mg/L          |
| 36. | Total Arsenic (As)                               | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.005 mg/L         |
| 37. | Lead (Pb)                                        | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.008 mg/L         |
| 38. | Cadmium (Cd)                                     | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.002 mg/L         |
| 39. | Mercury (Hg)                                     | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.0008<br>mg/L     |
| 40. | Manganese (Mn)                                   | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.02 mg/L          |
| 41. | Iron (Fe)                                        | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.06 mg/L          |
| 42. | Vanadium (V)                                     | IS 3025(Part 2):<br>2004                               | ICP Method                          | 0.05 mg/L          |

| Sr. | Parameters                    | Methods<br>References                            | Techniques                                             | Detection<br>Limit |
|-----|-------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------|
| 43. | Selenium (Se)                 | IS 3025(Part 2):<br>2004                         | ICP Method                                             | 0.005 mg/L         |
| 44. | Boron (B)                     | IS 3025(Part 2):<br>2004                         | ICP Method                                             | 0.1 mg/L           |
| 45. | Total Coliforms               | APHA, 22 <sup>nd</sup> Ed.,<br>2012,9221-B, 9-66 | Multiple tube<br>fermentation technique<br>(MPN/100ml) | 1.1<br>MPN/100ml   |
| 46. | Faecal Coliforms              | APHA, 22 <sup>nd</sup> Ed.,<br>2012,9221-E, 9-74 | Multiple tube<br>fermentation technique<br>(MPN/100ml) | 1.1<br>MPN/100ml   |
| 47. | Bioassay Test<br>(Zebra Fish) | IS 6582, 1971,<br>Reaffirmed 1987                | Static Technique                                       | -                  |

#### Annexure V: National Ambient Air Quality Standards, 2009



The Gazette of India New Delhi, Wednesday, Nobember 18, 2009 No. B-29016/20/90/PCI-I EXTRAORDINARY PART III-Section 4 PUBLISHED BY AUTHORITY

#### National Ambient Air Quality Standards: Central Pollution Control Board

In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevntion and Control of Pollution) Act, 1981 (Act No.14 of 1981), and in suppression of the Notification No(s). S.O.384(E), dated 11th April, 1994 and S.O.935(E), dated 14th October, 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect, namely:

| Sr. | Pollutant                                         |             | Time                |                                                         | Concentrati                                                               | on in Ambient Air                                                                                                                   |
|-----|---------------------------------------------------|-------------|---------------------|---------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| No. |                                                   |             | Weighted<br>Average | Industrial,<br>Residential,<br>Rural and<br>Other Areas | Ecologically<br>Sensitive Areas<br>(Notified by<br>Central<br>Government) | Methods of Measurement                                                                                                              |
| (1) | (2)                                               |             | (3)                 | (4)                                                     | (5)                                                                       | (6)                                                                                                                                 |
| 1   | Sulphur Dioxide (SO <sub>2</sub> )                | μg/m³       | Annual *            | 50                                                      | 20                                                                        | <ul> <li>Improved West and Gaeke</li> </ul>                                                                                         |
|     | Sulphur Blokide (502)                             | μg/III      | 24 hours **         | 80                                                      | 80                                                                        | Ultraviolet fluorescence                                                                                                            |
| 2   | Nitrogen Dioxide (NO <sub>2</sub> )               | μg/m³       | Annual *            | 40                                                      | 30                                                                        | <ul> <li>Modified Jacob &amp; Hochheiser<br/>(Na-Arsenite)</li> </ul>                                                               |
|     | Nitrogen Dioxide (NO <sub>2</sub> )               | μg/m        | 24 hours **         | 80                                                      | 80                                                                        | - Chemilminescence                                                                                                                  |
|     | Particulate Matter (size                          |             | Annual *            | 60                                                      | 60                                                                        | - Gravimetric                                                                                                                       |
| 3   | less than 10 μm) or PM <sub>10</sub>              | $\mu g/m^3$ | 24 hours **         | 100                                                     | 100                                                                       | <ul><li>TOEM</li><li>Beta attenuation</li></ul>                                                                                     |
| ,   | Particulate Matter (size                          |             | Annual *            | 40                                                      | 40                                                                        | - Gravimetric                                                                                                                       |
| 4   | less than 2.5 $\mu m$ ) or PM <sub>2.5</sub>      | $\mu g/m^3$ | 24 hours **         | 60                                                      | 60                                                                        | <ul><li>TOEM</li><li>Beta attenuation</li></ul>                                                                                     |
| 5   | 0(0)                                              | , 3         | 8 hours **          | 100                                                     | 100                                                                       | – UV photometric                                                                                                                    |
| 3   | Ozone (O <sub>3</sub> )                           | $\mu g/m^3$ | 1 hour **           | 180                                                     | 180                                                                       | <ul><li>Chemiluminescence</li><li>Chemical Method</li></ul>                                                                         |
| 6   | Lead (Pb)                                         | μg/m³       | Annual *            | 0.50                                                    | 0.50                                                                      | - AAS/ICP method after<br>sampling on EPM 2000 or                                                                                   |
| 0   | Lead (FU)                                         | μg/m        | 24 hours **         | 1.0                                                     | 1.0                                                                       | equivalent filter paper<br>– EDXRF using Teflon filter                                                                              |
| 7   | Carbon Monoxide (CO)                              | $mg/m^3$    | 8 hours **          | 02                                                      | 02                                                                        | – Non Dispersive Infra Red                                                                                                          |
| Ĺ   | Carbon Monoxide (CO)                              | mg/m        | 1 hour **           | 04                                                      | 04                                                                        | (NDIR) spectroscopy                                                                                                                 |
| 8   | Ammonia (NH <sub>3</sub> )                        | $\mu g/m^3$ | Annual *            | 100                                                     | 100                                                                       | - Chemiluminescence                                                                                                                 |
|     |                                                   | r-8         | 24 hours **         | 400                                                     | 400                                                                       | – Indophenol blue method                                                                                                            |
| 9   | Benzene (C <sub>6</sub> H <sub>6</sub> )          | μg/m³       | Annual *            | 05                                                      | 05                                                                        | <ul> <li>Gas Chromatography based<br/>continuous analyzer</li> <li>Adsorption and Desorption<br/>followed by GC analysis</li> </ul> |
| 10  | Benzo (a) Pyrene (BaP)  – particulate phase only, | $ng/m^3$    | Annual *            | 01                                                      | 01                                                                        | <ul> <li>Solvent extraction followed by<br/>HPLC/GC analysis</li> </ul>                                                             |
| 11  | Arsenic (As)                                      | ng/m³       | Annual *            | 06                                                      | 06                                                                        | <ul> <li>AAS/ICP method after<br/>sampling on EPM 2000 or<br/>equivalent filter paper.</li> </ul>                                   |
| 12  | Nickel (Ni)                                       | ng/m³       | Annual *            | 20                                                      | 20                                                                        | <ul> <li>AAS/ICP method after<br/>sampling on EPM 2000 or<br/>equivalent filter paper.</li> </ul>                                   |

Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals

SANT PRASAD GAUTAM, Chairman, Central Pollution Control Board [ADVT-III/4/184/09/Extv.]

Note: The notifications on National Ambient Air Quality Standards were published by the Central Pollution Control Board in the Gazette of India. Extraordinary vide notification No(s). S.O. 384(E), dated 11th April, 1994 and S.O. 935(E), dated 14th October, 1998.

μg/m³: micro-gram/m³ i.e. 10-6 gm/m³ ng/m<sup>3</sup>: nano-gram/m<sup>3</sup> i.e. 10<sup>-9</sup>gm/m<sup>3</sup>

<sup>24</sup> hourly or 08 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2 % of the time, they may exceed the limits but not on two consecutive days of monitoring.

Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

# Annexure VI: General Standards for Discharge of Environmental Pollutants, Part A: Effluents (The Environment (Protection) Rules, 1986, Schedule VI)

|     |                                                | Standards                               |                  |                        |                                                                                                    |
|-----|------------------------------------------------|-----------------------------------------|------------------|------------------------|----------------------------------------------------------------------------------------------------|
| Sr. | Parameter                                      | Inland<br>surface<br>Water              | Public<br>Sewers | Land for<br>Irrigation | Marine<br>Coastal<br>Areas                                                                         |
| 1.  | Colour and<br>Odour                            | See Note 1                              |                  | See Note I             | See Note 1                                                                                         |
| 2.  | Suspended<br>solids, mg/L,<br>Max.             | 100                                     | 600              | 200                    | a. For process waste water - 100                                                                   |
|     |                                                |                                         |                  |                        | b. For cooling water effluent- 10 percent above total Suspende d mailer of influent cooling water. |
| 3.  | Particle size of<br>Suspended<br>solids        | Shall pass<br>850<br>micron IS<br>Sieve |                  |                        | a. Floatable<br>solids,<br>Max 3 mm                                                                |
|     |                                                | Sieve                                   |                  |                        | b. Settleable<br>solids Max<br>850<br>microns                                                      |
| 4.  | Dissolved solids<br>(Inorganic),<br>mg/L, Max. | 2100                                    | 2100             | 2100                   |                                                                                                    |
| 5.  | pH value                                       | 5.5 -9.0                                | 5.5 -9.0         | 5.5 -9.0               | 5.5-9.0                                                                                            |

|     |                                                                 |                                                                                                     | Stand                        | dards                  |                                    |
|-----|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------|------------------------|------------------------------------|
| Sr. | Parameter                                                       | Inland<br>surface<br>Water                                                                          | Public<br>Sewers             | Land for<br>Irrigation | Marine<br>Coastal<br>Areas         |
| 6.  | Temperature °C,<br>Max                                          | Shall not exceed 40 in any section of the stream within 15 mts. Downstream from the effluent outlet | 45 at the point of discharge |                        | 45 at the<br>point of<br>discharge |
| 7.  | Oil and Grease,<br>mg/L, Max                                    | 10                                                                                                  | 20                           | 10                     | 20                                 |
| 8., | Total Residual<br>chlorine, mg/L,<br>Max                        | 1.0                                                                                                 |                              |                        | 1.0                                |
| 9.  | Ammonical<br>Nitrogen (as N),<br>mg/L, Max                      | 50                                                                                                  | 50                           |                        | 50                                 |
| 10. | Total Kjeldahl<br>Nitrogen (as N),<br>mg/L, Max.                | 100                                                                                                 |                              |                        | 100                                |
| 11. | Free Ammonia<br>(as NH <sub>3</sub> ), mg/L,<br>Max             | 5.0                                                                                                 |                              |                        | 5.0                                |
| 12. | Biochemical<br>oxygen demand<br>(5 days, at 20°<br>c) mg/L, Max | 30                                                                                                  | 350                          | 100                    | 100                                |
| 13. | Chemical<br>oxygen demand,<br>mg/L, Max                         | 250                                                                                                 |                              |                        | 250                                |
| 14. | Arsenic (as As),<br>mg/l, Max                                   | 0.2                                                                                                 | 0.2                          | 0.2                    | 0.2                                |
| 15. | Mercury<br>(as Hg). Mg/L,<br>Max                                | 0.01                                                                                                | 0.01                         |                        | 0.01                               |
| 16. | Lead (as Pb),<br>mg/L, Max                                      | 0.1                                                                                                 | 1.0                          | -                      | 1.0                                |
| 17. | Cadmium<br>(as Cd), mg/L,                                       | 2.0                                                                                                 | 1.0                          |                        | 2.0                                |

|     |                                                               |                            | Stan             | dards                  |                            |
|-----|---------------------------------------------------------------|----------------------------|------------------|------------------------|----------------------------|
| Sr. | Parameter                                                     | Inland<br>surface<br>Water | Public<br>Sewers | Land for<br>Irrigation | Marine<br>Coastal<br>Areas |
| 18. | Hexavalent<br>Chromium<br>(as Cr <sup>+6</sup> ) mg/L,<br>Max | .1                         | 2.0              |                        | 1.0                        |
| 19. | Total Chromium<br>(as Cr), mg/L,<br>Max                       | 2.0                        | 2.0              |                        | 2.0                        |
| 20. | Copper (as Cu),<br>mg/L, Max.                                 | 3.0                        | 3.0              |                        | 3.0                        |
| 21. | Zinc (as Zn),<br>mg/L, Max.                                   | 5.0                        | 15               | 0                      | 15                         |
| 22  | Selenium (as<br>Se), mg/l, Max.                               | 0.05                       | 0.05             |                        | 0.05                       |
| 23  | Nickel (as Ni),<br>mg/l, Max.                                 | 3.0                        | 3.0              |                        | 5.0                        |
| 24  | Boron (as B),<br>mg/l, Max.                                   | 2.0                        | 2.0              | 2.0                    |                            |
| 25. | Percent Sodium,<br>Max.                                       |                            | 60               | 60                     |                            |
| 26. | Residual Sodium carbonate, mg/l, Max.                         |                            |                  | 5.0                    |                            |
| 27. | Cyanide<br>(as Cn), mg/L,<br>Max.                             | 0.2                        | 2.0              | 0.2                    | 0.2                        |
| 28. | Chloride<br>(as Cl), mg/L,<br>Max.                            | 1000                       | 1000             | 600                    |                            |
| 29. | Fluoride (as F),<br>mg/IL, Max.                               | 2.0                        | 15               |                        | 15                         |
| 30. | Dissolved<br>Phosphate<br>(as P), mg/L,<br>Max.               | 5.0                        |                  |                        |                            |

|     |                                                                               | Standards                  |                  |                        |                            |
|-----|-------------------------------------------------------------------------------|----------------------------|------------------|------------------------|----------------------------|
| Sr. | Parameter                                                                     | Inland<br>surface<br>Water | Public<br>Sewers | Land for<br>Irrigation | Marine<br>Coastal<br>Areas |
| 31. | Sulphate<br>(as SO <sub>4</sub> ), mg/L,<br>Max.                              | 1000                       | 1000             | 1000                   |                            |
| 32. | Sulphide (as S),<br>mg/L, Max.                                                | 2.0                        |                  |                        | 5.0                        |
| 33. | Pesticides                                                                    | Absent                     | Absent           | Absent                 | Absent                     |
| 34. | Phenolic<br>Compounds<br>(as C <sub>6</sub> H <sub>5</sub> OH),<br>mg/L, Max. | 1.0                        | 5.0              |                        | 5.0                        |
| 35. | Radioactive materials:                                                        |                            |                  |                        |                            |
|     | a. Alpha<br>emitters<br>MC/ml., Max.                                          | 10 <sup>-7</sup>           | 10 <sup>-7</sup> | 10 <sup>-8</sup>       | 10 <sup>-7</sup>           |
|     | b. Beta emitters μc/ml., Max                                                  | 10 <sup>-6</sup>           | 10 <sup>-6</sup> | 10 <sup>-7</sup>       | 10 <sup>-6</sup>           |

# Annexure VII: Drinking Water Specification-IS 10500:2012

| Sr.     | Characteristic                                                            | Unit           | Requirement<br>(Acceptable<br>Limit) | Permissible Limit in the Absence of Alternate Source |
|---------|---------------------------------------------------------------------------|----------------|--------------------------------------|------------------------------------------------------|
| Table 1 | Organoleptic and Physical<br>Parameters                                   |                |                                      |                                                      |
| 1.      | Colour                                                                    | Hazen<br>units | Max 5                                | Max 15                                               |
| 2.      | Odour                                                                     | -              | Agreeable                            | Agreeable                                            |
| 3.      | pH value                                                                  | -              | 6.5-8.5                              | No relaxation                                        |
| 4.      | Taste                                                                     | -              | Agreeable                            | Agreeable                                            |
| 5.      | Turbidity                                                                 | NTU            | Max 1                                | Max 5                                                |
| 6.      | Total dissolved solids                                                    | mg/L           | Max 500                              | Max 2000                                             |
| Table 2 | General parameters concerning substances undesirable in excessive amounts |                |                                      |                                                      |
| 7.      | Aluminium (as Al)                                                         | mg/L           | Max 0.03                             | Max 0.2                                              |
| 8.      | Ammonia<br>(as total ammonia- N)                                          | mg/L           | Max 0.5                              | No relaxation                                        |
| 9.      | Anionic detergents (as MBAS)                                              | mg/L           | Max 0.2                              | Max 1.0                                              |
| 10.     | Barium (as Ba)                                                            | mg/L           | Max 0.7                              | No relaxation                                        |
| 11.     | Boron (as B)                                                              | mg/L           | Max 0.5                              | Max 1.0                                              |
| 12.     | Calcium (as Ca)                                                           | mg/L           | Max 75                               | Max 200                                              |
| 13.     | Chloramines (as C1 <sub>2</sub> )                                         | mg/L           | Max 4.0                              | No relaxation                                        |
| 14.     | Chlorides (as Cl)                                                         | mg/L           | Max 250                              | Max 1000                                             |
| 15.     | Copper (as Cu)                                                            | mg/L           | Max 0.05                             | Max 1.5                                              |
| 16.     | Fluoride (as F)                                                           | mg/L           | Max 1.0                              | Max 1.5                                              |
| 17.     | Free residual chlorine                                                    | mg/L           | Min 0.2                              | Min 1                                                |

| Sr.     | Characteristic                                           | Unit | Requirement<br>(Acceptable<br>Limit) | Permissible<br>Limit in the<br>Absence of<br>Alternate<br>Source |
|---------|----------------------------------------------------------|------|--------------------------------------|------------------------------------------------------------------|
| 18.     | Iron (as Fe)                                             | mg/L | Max 0.3                              | No relaxation                                                    |
| 19.     | Magnesium (as Mg)                                        | mg/L | Max 30                               | Max100                                                           |
| 20.     | Manganese (as Mn)                                        | mg/L | Max 0.1                              | Max 0.3                                                          |
| 21.     | Mineral Oil                                              | mg/L | Max 0.5                              | No relaxation                                                    |
| 22.     | Nitrate (as NO <sub>3</sub> )                            | mg/L | Max 45                               | No relaxation                                                    |
| 23.     | Phenolic compounds (as C <sub>6</sub> H <sub>5</sub> OH) | mg/L | Max 0.001                            | Max 0.002                                                        |
| 24.     | Selenium (as Se)                                         | mg/L | Max 0.01                             | No relaxation                                                    |
| 25.     | Silver (as Ag)                                           | mg/L | Max 0.1                              | No relaxation                                                    |
| 26.     | Sulphate (as SO <sub>4</sub> )                           | mg/L | Max 200                              | Max 400                                                          |
| 27.     | Sulphide (as H <sub>2</sub> S)                           | mg/L | Max 0.05                             | No relaxation                                                    |
| 28.     | Total Alkalinity as calcium carbonate                    | mg/L | Max 200                              | Max600                                                           |
| 29.     | Total hardness (as CaCO <sub>3</sub> )                   | mg/L | Max 200                              | Max 600                                                          |
| 30.     | Zinc (as Zn)                                             | mg/L | Max 5                                | Max15                                                            |
| Table 3 | Parameters Concerning<br>Toxic Substances                |      |                                      |                                                                  |
| 31.     | Cadmium (asCd)                                           | mg/L | Max 0.003                            | No relaxation                                                    |
| 32.     | Cyanide (asCN)                                           | mg/L | Max 0.05                             | No relaxation                                                    |
| 33.     | Lead (as Pb)                                             | mg/L | Max 0.01                             | No relaxation                                                    |
| 34.     | Mercury (asHg)                                           | mg/L | Max 0.001                            | No relaxation                                                    |
| 35.     | Molybdenum (as Mo)                                       | mg/L | Max 0.07                             | No relaxation                                                    |
| 36.     | Nickel (as Ni)                                           | mg/L | Max 0.02                             | No relaxation                                                    |
| 37.     | Pesticides                                               | mg/L | See Table 5                          | No relaxation                                                    |
| 38.     | Polychlorinatedbiphenyls                                 | mg/L | Max 0.0005                           | No relaxation                                                    |

| Sr.     | Characteristic                                  | Unit | Requirement<br>(Acceptable<br>Limit) | Permissible Limit in the Absence of Alternate Source |
|---------|-------------------------------------------------|------|--------------------------------------|------------------------------------------------------|
| 39.     | Poly nuclear aromatic<br>Hydrocarbons (as PAH)  | mg/L | Max 0.0001                           | No relaxation                                        |
| 40.     | Total Arsenic(as As)                            | mg/L | Max 0.01                             | Max0.05                                              |
| 41.     | Total Chromium (as Cr)                          | mg/L | Max 0.05                             | No relaxation                                        |
| 42.     | Trihalomethanes                                 |      |                                      |                                                      |
| a)      | Bromoform                                       | mg/L | Max 0.1                              | No relaxation                                        |
| b)      | DibromochloroMethane                            | mg/L | Max 0.1                              | No relaxation                                        |
| c)      | Bromodichloromethane                            | mg/L | Max 0.06                             | No relaxation                                        |
| d)      | Chloroform                                      | mg/L | Max 0.2                              | No relaxation                                        |
| Table 4 | Parameters Concerning<br>Radioactive Substances |      |                                      |                                                      |
| 43.     | Radioactive Materials                           |      |                                      |                                                      |
| a)      | Alpha emitters                                  | mg/L | Max 0.1                              | No relaxation                                        |
| b)      | Beta emitters                                   | mg/L | Max 1.0                              | No relaxation                                        |
| Table 5 | Pesticide Residues Limits and Test Method       |      |                                      |                                                      |
| i)      | Alachor                                         | μg/L | 20                                   | No relaxation                                        |
| ii)     | Atrazine                                        | μg/L | 2                                    | No relaxation                                        |
| iii)    | Aldrin/ Dieldrin                                | μg/L | 0.03                                 | No relaxation                                        |
| iv)     | Alpha HCH                                       | μg/L | 0.01                                 | No relaxation                                        |
| v)      | Beta HCH                                        | μg/L | 0.04                                 | No relaxation                                        |
| vi)     | Butachlor                                       | μg/L | 125                                  | No relaxation                                        |
| vii)    | Chlorpyriphos                                   | μg/L | 30                                   | No relaxation                                        |
| viii)   | Delta HCH                                       | μg/L | 0.04                                 | No relaxation                                        |
| ix)     | 2,4- Dichlorophenoxyacetic acid                 | μg/L | 30                                   | No relaxation                                        |

| Sr.     | Characteristic                                                                                        | Unit    | Requirement<br>(Acceptable<br>Limit)  | Permissible<br>Limit in the<br>Absence of<br>Alternate<br>Source |
|---------|-------------------------------------------------------------------------------------------------------|---------|---------------------------------------|------------------------------------------------------------------|
| x)      | DDT (o,p&p,p — Isomers of DDT, DDE and DDD)                                                           | μg/L    | 1                                     | No relaxation                                                    |
| xi)     | Endosulfan (α,β& sulphate)                                                                            | μg/L    | 0.4                                   | No relaxation                                                    |
| xii)    | Ethion                                                                                                | μg/L    | 3                                     | No relaxation                                                    |
| xiii)   | Gamma - HCH (Lindane)                                                                                 | μg/L    | 2                                     | No relaxation                                                    |
| xiv)    | Isoproturon                                                                                           | μg/L    | 9                                     | No relaxation                                                    |
| xv)     | Malathion                                                                                             | μg/L    | 190                                   | No relaxation                                                    |
| xvi)    | Methyl parathion                                                                                      | μg/L    | 0.3                                   | No relaxation                                                    |
| xvii)   | Monocrotophos                                                                                         | μg/L    | 1                                     | No relaxation                                                    |
| xviii)  | Phorate                                                                                               | μg/L    | 2                                     | No relaxation                                                    |
| Table 6 | Bacteriological Quality of<br>Drinking Water                                                          |         |                                       |                                                                  |
| 44.     | E.coli or thermotolerant coliform bacteria                                                            | /100    | Not detectable                        | -                                                                |
| 45.     | Total coliform bacteria                                                                               | /100 mL | Not detectable                        | -                                                                |
|         | Virological Requirements                                                                              |         |                                       |                                                                  |
| 46.     | MS2 phage                                                                                             | /1 L    | Absent                                | -                                                                |
|         | Biological Requirements                                                                               |         |                                       |                                                                  |
| 47.     | Cryptosporidium                                                                                       | /10 L   | Absent                                | -                                                                |
| 48.     | Giardia                                                                                               | /10 L   | Absent                                | -                                                                |
| 49.     | Microscopic organisms such as algae,zooplanktons,flagellate s,parasites and toxin producing organisms |         | Free from<br>microscopic<br>organisms | -                                                                |

# **Annexure VIII: CPCB Water Quality Criteria:**

| Designated best use                                                        | Quality<br>Class | Primary Water Quality Criteria                                  |
|----------------------------------------------------------------------------|------------------|-----------------------------------------------------------------|
| Drinking water source without conventional treatment but with chlorination | А                | > Total coliform organisms (MPN*/100 ml) shall be 50 or less    |
| with thornation                                                            |                  | > pH between 6.5 and 8.5                                        |
|                                                                            |                  | Dissolved Oxygen 6 mg/Lor more,<br>and                          |
|                                                                            |                  | ➤ Biochemical Oxygen Demand 2 mg/Lor less                       |
| Outdoor bathing (organized)                                                | В                | > Total coliform organisms (MPN/100 ml) shall be 500 or less    |
|                                                                            |                  | ➤ pH between 6.5 and 8.5                                        |
|                                                                            |                  | Dissolved Oxygen 5 mg/Lor more,<br>and                          |
|                                                                            |                  | <ul><li>Biochemical Oxygen Demand 3<br/>mg/Lor less</li></ul>   |
| Drinking water source with conventional treatment                          | С                | > Total coliform organisms<br>(MPN/100ml) shall be 5000 or less |
|                                                                            |                  | > pH between 6 and 9                                            |
|                                                                            |                  | Dissolved Oxygen 4 mg/Lor more,<br>and                          |
|                                                                            |                  | ➤ Biochemical Oxygen Demand 3 mg/Lor less                       |
| Propagation of wildlife and                                                | D                | > pH between 6.5 and 8.5                                        |
| fisheries                                                                  |                  | Dissolved Oxygen 4 mg/Lor more,<br>and                          |
|                                                                            |                  | > Free ammonia (as N) 1.2 mg/Lor less                           |
| Irrigation, industrial cooling,                                            | E                | > pH between 6.0 and 8.5                                        |
| and controlled disposal                                                    |                  | > Electrical Conductivity less than 2250 micro mhos/cm,         |
|                                                                            |                  | > Sodium Absorption Ratio less than 26,                         |
|                                                                            |                  | ➤ and Boron less than 2 mg/l.                                   |
|                                                                            | Below E          | > Not Meeting A, B, C, D & E Criteria                           |

### **Annexure IX: Water Quality Parameters Requirements and Classification**

Water quality parameters are classified into three categories, given in Table (i), (ii) and (iii) (Source: CPCB, 2002, "Water Quality Criteria and Goals", Monitoring of Indian National aquatic Resources Series: MINARS/17/2001-2002).

Table: Basic Water Quality Requirement and Classification (Surface Water + Ground Water)

## i) Simple Parameters:

| Sr.   | Parameters                              | Requirement for Waters of Class             |                                                  |                                         |
|-------|-----------------------------------------|---------------------------------------------|--------------------------------------------------|-----------------------------------------|
|       |                                         | A-Excellent                                 | B-Desirable                                      | C-Acceptable                            |
| (i)   | Sanitary<br>Survey                      | Very Clean<br>neighborhood and<br>catchment | Reasonably clean<br>neighborhood                 | Generally clean<br>neighborhood         |
| (ii)  | General<br>Appearance                   | No floating matter                          | No floating matter                               | No floating matter                      |
| (iii) | Colour                                  | Absolutely Colourless                       | Almost colourless,<br>very light shade if<br>any | No colour of<br>anthropogenic<br>origin |
| (iv)  | Smell                                   | Odourless                                   | Almost odourless                                 | No unpleasant<br>odour                  |
| (v)   | Transparency                            | >1.0 depth                                  | >0.5 to 0.1m<br>depth                            | >0.2 to 0.5 m<br>depth                  |
| (vi)  | Ecological*<br>(Presence of<br>Animals) | Fish & Insects                              | Fish & Insects                                   | Fish & Insects                          |

<sup>\*</sup> Applicable to only surface water

## ii) Regular Monitoring Parameters:

| Sr.   | Parameters                   | Requirement for Waters of Class |             |              |
|-------|------------------------------|---------------------------------|-------------|--------------|
|       |                              | A Excellent                     | B-Desirable | C-Acceptable |
| (i)   | pH                           | 7.0 to 8.5                      | 6.5 to 9.0  | 6.5 to 9.0   |
| (ii)  | DO (% Saturation)            | 90-110                          | 80-120      | 60-140       |
| (iii) | BOD, mg/l                    | Below 2                         | Below 5     | Below 8      |
| (iv)  | EC, µmhos/cm                 | <1000                           | <2250       | <4000        |
| (v)   | (NO₂+NO₃)-<br>Nitrogen, mg/l | <5                              | <10         | <15          |
| (vi)  | Suspended solid, mg/l        | <25                             | <50         | <100         |

| Sr.    | Parameters                     | Requirement for Waters of Class |                    |                       |
|--------|--------------------------------|---------------------------------|--------------------|-----------------------|
|        |                                | A Excellent                     | B-Desirable        | C-Acceptable          |
| (vii)  | Fecal Coliform,<br>MPN/ 100 ml | <20 per 100 ml                  | <200 per 100 ml    | <2000 per 100<br>ml   |
| (viii) | Bio-assay<br>(Zebra Fish)      | No death in 5<br>days           | No death in 3 days | No death in 2<br>days |

#### Note:

- 1. Dissolved Oxygen (DO) not applicable for Ground Waters.
- 2. Dissolved Oxygen in eutrophicated waters should include measurement for diurnal variation.
- 3. Suspended solid limit is applicable only during non-monsoon period.
- 4. Faecal Coliform values should meet for 90% times.
- 5. Static Bio-Assay method may be adopted.

### iii) Specific Parameters: (Only in case of need/apprehensions)

| Sr.    | Parameters                                | Requirement for Waters of Class |             |              |
|--------|-------------------------------------------|---------------------------------|-------------|--------------|
|        |                                           | A- Excellent                    | B-Desirable | C-Acceptable |
| (i)    | Total Phosphorous                         | <0.1 mg/l                       | < 0.2 mg/l  | < 0.3 mg/l   |
| (ii)   | T.K.N                                     | < 1.0 mg/l                      | <2.0 mg/l   | <3.0 mg/l    |
| (iii)  | Total Ammonia<br>(NH4 + NH3)-<br>Nitrogen | < 0.5 mg/l                      | < 1.0 mg/l  | < 1.5 mg/l   |
| (iv)   | Phenols                                   | < 2µg/l                         | < 5µg/l     | <10 µg/l     |
| (v)    | Surface Active<br>Agents                  | <20 μg/l                        | <100µg/l    | < 200µg/l    |
| (vi)   | Organo Chlorine<br>Pesticides             | < 0.05µg/l                      | < 0.1µg/l   | < 0.2µg/l    |
| (vii)  | PAH                                       | < 0.05µg/l                      | <0.1 µg/l   | <0.2 µg/l    |
| (viii) | PCB and PCT                               | < 0.01µg/l                      | < 0.01µg/l  | < 0.02µg/l   |
| (ix)   | Zinc                                      | < 100µg/l                       | < 200µg/l   | <300 µg/l    |
| (x)    | Nickel                                    | < 50µg/l                        | < 100µg/l   | < 200µg/l    |
| (xi)   | Copper                                    | < 20µg/l                        | < 50µg/l    | <100µg/l     |

| Sr.    | Parameters       | Requirement for Waters of Class |             |              |
|--------|------------------|---------------------------------|-------------|--------------|
|        |                  | A- Excellent                    | B-Desirable | C-Acceptable |
| (xii)  | Chromium (Total) | < 20µg/l                        | < 50µg/l    | < 100µg/l    |
| (xiii) | Arsenic (Total)  | < 20µg/l                        | <50 µg/l    | <100 µg/l    |
| (xiv)  | Lead             | < 20µg/l                        | < 50µg/l    | < 100µg/l    |
| (xv)   | Cadmium          | < 1.0µg/l                       | <2.5 μg/l   | < 5.0µg/l    |
| (xvi)  | Mercury          | < 0.2µg/l                       | < 0.5µg/l   | < 1.0µg/l    |