ACTION PLAN FOR INDUSTRIAL CLUSTER IN CRITICALLY POLLUTED AREA

Monitoring, sampling, analysis of Stack, Ambient Air Quality, Surface Water, Ground Water, Waste Water

डोंबीवली Dombivli

Maharashtra Pollution Control Board

Kalptaru Point, Sion East, Mumbai - 400022 February, 2017

Index

Ac	knov	vledgement:
Ab	brev	iations: 4
1.	Int	roduction:5
2.	Sco	ope of Work5
	2.1	Stack Emission Parameters6
	2.2	Ambient Air Quality Parameters7
	2.3	Water/Waste Water Parameters7
	2.4	Methodology followed in Sampling and Analysis9
3.	Re	sult of Analysis:10
	3.1	Stack Emission:
	3.2	Ambient AirQuality:
	3.3	Water/ Waste WaterQuality: 22
	3.4	Ground WaterQuality: 44
4.	Su	mmary of the results60
4	4.1	Stack Emission Monitoring:
4	4.2	Ambient Air Quality Monitoring:
4	4.3	Waste Water Quality Monitoring:
4	4.3	Ground Water Quality Monitoring:
5.	CE	PI Score63
!	5.1	Comparison of CEPI scores:
6.	Со	nclusion67
7.	Eff	orts taken for the reduction in pollution:68
8.	Re	ferences69
9.	An	nexure
1	Anne	xure I: Health related data in impact on humans
1	Anne	xure II: Stack Emission Sampling and Analysis Methodology
1	Anne	xure III: Ambient Air Sampling and Analysis Methodology
1	Anne	xure IV: Water/Wastewater Sampling and Analysis Methodology
1	Anne	xure V: National Ambient Air Quality Standards, 2009
		xure VI: General Standards for Discharge of Environmental Pollutants, Part A: ents (The Environment (Protection) Rules, 1986, Schedule VI)
,	Anne	xure VII: Drinking Water Specification-IS 10500:2012
,	Anne	xure VIII: CPCB Water Quality Criteria:
	Anne	xure IX: Water Quality Parameters Requirements and Classification

Acknowledgement:

We gratefully acknowledge Dr. P. Anbalagan, Member Secretary, Maharashtra Pollution Control Board, for entrusting this very important and prestigious project to us.

Our special thanks are to Regional and Sub Regional Officer of the concerned areas, for guidance during the sampling. The contribution of Shri V.M Motghare (Joint director APC) is appreciated.

We would also like to extend our thanks to the concerned staff of Regional Hospitals, who has provided us the health data, which is the most important component of this revised concept of CEPI.

By undertaking this project and completing in schedule time, we consider ourselves very lucky since we have helped the mankind by giving the data on pollution load and further action by the Board, to bring down the pollution level.

We also thank our associates for working on this project for making the write up, making graphs and feeding the data on computer.

This acknowledgement will be incomplete if we do not thank our laboratory analysts and others who made this project a success by timely analysing the samples.

We also thank our sampling team members for conducting the sampling in this vast area.

Abbreviations:

АРНА	American Public Health Association
BDL	Below Detection Limit
BOD	Biochemical Oxygen Demand
CEPI	Comprehensive Environmental Pollution Index
СЕТР	Common Effluent Treatment Plant
COD	Chemical Oxygen Demand
СРА	Critically Polluted Areas
SPA	Severely Polluted Areas
DO	Dissolved Oxygen
ETP	Effluent Treatment Plant
МІВК	Methyl Isobutyl Ketone
МРСВ	Maharashtra Pollution Control Board
NAAQS	National Ambient Air Quality Standards
NO _x	Oxides of Nitrogen
ND	Not Detected
РАН	Poly Aromatic Hydrocarbons
РСВ	Poly Chlorinated Biphenyls
РСТ	Poly Chlorinated Terphenyls
PM ₁₀	Particulate Matter (size less than 10 $\mu\text{m})$
PM _{2.5}	Particulate Matter (size less than 2.5 $\mu m)$
SO ₂	Sulphur Dioxide
STAP	Short Term Action Plan
wно	World Health Organization

1. Introduction:

Rapid modernization and industrialization worldwide has not only uprooted to the economic development, but has increased pollution of land, air and water. This has also destroyed our habitat and environment too. Pollutants discharged from the industries have widespread implications and one of the unpleasant effects on water bodies and air. Long term exposure to the polluted air and water causes chronic health problems, making the issue industrial pollution into severe one. So, scientists are exploring the quantum of pollution load as well as to device certain strategies and technologies so that our sustainable development would not be jeopardized otherwise our long-cherished dream of establishing eco-socialism on this watery planet could not come true.

In view of this, Central Pollution Control Board (CPCB) has evolved the concept of Comprehensive Environmental Pollution Index (CEPI) during 2009-10 as a tool for comprehensive environmental assessment of prominent industrial clusters and formulation of remedial Action Plans for the identified critically polluted areas. Later-on proposals were received from the SPCBs, State Governments, and Industrial Associations and concerned Stake-holders for revisiting the criteria of assessment under CEPI concept. After careful examination and consideration of the suggestions of concerned stake-holders, it was decided to prepare the revised concept of CEPI by eliminating the subjective factors but retaining the factors which can be measured precisely. Hence, revised concept came into existence, which is termed as Revised CEPI Version 2016.

The present report is also based on the revised CEPI version 2016. The results of the application of the Comprehensive Environmental Pollution Index (CEPI) to selected industrial clusters or areas are presented in this report. The main objective of the study is to identify polluted industrial clusters or areas in order to take concerted action and to centrally monitor them at the national level to improve the current status of their environmental components such as air and water quality data, ecological damage, and visual environmental conditions. A total of 88 industrial areas or clusters have been selected by the Central Pollution Control Board (CPCB) in consultation with the Ministry of Environment & Forests Government of India for the study. The index captures the various dimensions of environment including air, water and land. Comprehensive Environmental quality at a given location following the algorithm of source, pathway and receptor have been developed.

Dombivli MIDC is established in 1964 and is sub-divided in two Phases. Phase I is of approximately 148 Ha. & Phase II approximately 97 Ha. Residential Area is developed in between these two phases, having population approx. 2 lakh soles. Both Phases has a mix of industries, mainly Textile, Chemical & Engineering. Except for 10 large & 9 Medium units, most of the chemical manufacturing units are SSI. Textile Industry generates about 80% of the wastewater by volume, though low strength in terms of concentration of pollutants. CETPs are installed & operative in both phases. Phase I (DBESA) - 16 MLD for textile units and Phase II (DCETP) – 1.5 MLD for Chemical & other units.

2. Scope of Work

The Scope of Work consisted of the following:

Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water, and Ground Water Quality for identified five Critically Polluted areas (CPAs) in Maharashtra i.e. **Chandrapur, Dombivli, Aurangabad, Navi Mumbai**, and **Tarapur**and 3 Severely Polluted areas (SPAs) in Maharashtra i.e. **Chembur, Pimpri-Chinchwad and Nashik**as per standard methods.

- At each of the 5 CPAs and 3 SPAs, 24 hourly ambient air quality monitoring to be carried out.
- Representative samples for surface water quality, waste water quality and ground water quality to be collected from prominent surface and ground water bodies located in and around the clusters/areas.
- Submission of complete monitoring, sampling and analysis reports including the summary of the parameters exceeding the prescribed standards/norms for all the 5 CPAs and 3 SPAs.
- Submission of 3 copies of final report with photographs at prominent locations and the CD (soft copy) on completion of the project for every critically polluted and severely polluted area separately.

Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water and Ground Water Quality for Dombivli:

- The sampling was carried out in 9 days i.e. on 5th to 13th June 2017 for MIDC Phase-I and Phase II.
- In Dombivli MIDC Phase –I, a total of 6 Stack Monitoring Samples, 6 Ambient Air Quality Monitoring Samples, 7 Waste Water Samples, 3 Ground Water Samples and2 VOC Samples were collected and analyzed.
- In MIDC Phase –II, a total of 7 Stack Monitoring Samples, 6 Ambient Air Quality Monitoring Samples, 6 Waste Water Samples, 4 Ground Water Samples and 2 VOC Samples was collected and analyzed.
- Health data of last 05 years (2011-2016) was collected from the hospitals nearby industrial clusters under study.

2.1 Stack Emission Parameters

The Stack Emissions were analyzed with the following parameters:

- 1. Acid Mist
- 2. Ammonia
- 3. Carbon Monoxide
- 4. Chlorine
- 5. Fluoride(gaseous)
- 6. Fluoride (particulate)
- 7. Hydrogen Chloride
- 8. Hydrogen Sulphide
- 9. Oxides of Nitrogen
- 10. Oxygen

- 11. Polyaromatic Hydrocarbons (Particulate)
- 12. Suspended Particulate Matter
- 13. Sulphur Dioxide
- 14. Benzene
- 15. Toluene
- 16. Xylene
- 17. Volatile Organic Compounds (VOCs)

2.2 Ambient Air Quality Parameters

The Ambient Air Quality was analyzed with the following parameters:

- 1. Sulphur Dioxide (SO₂)
- 2. Nitrogen Dioxide (NO₂)
- 3. Particulate Matter (PM₁₀)
- 4. Particulate Matter (PM_{2.5})
- 5. Ozone (O₃)
- 6. Lead (Pb)
- 7. Carbon Monoxide (CO)
- 8. Ammonia (NH₃)
- 9. Benzene (C_6H_6)
- 10. Benzo (a) Pyrene (BaP) (Particulate Phase Only)
- 11. Arsenic (As)
- 12. Nickel (Ni)

2.3 Water/Waste Water Parameters

The Water/Waste Water wasanalyzed with the following parameters:

- a. Prominent Surface Water bodies such as outfalls of CETPs, ETPs, treated effluent drainage, river, canal, ponds, lakes and other such water supply resources flowing through the area or flowing adjoining the CPA.
- b. Ground Water Quality data of prominent ground water resources such as observation wells of Central Ground Water Board, drinking water wells, hand pumps, bore wells and other such water supply resources located in the industrial cluster/area under consideration or in the peripheral areas.

Basic water quality parameters for surface water and ground water both are as follows:

i. Simple Parameters:

- 1. Sanitary Survey
- 2. General Appearance
- 3. Colour
- 4. Smell
- 5. Transparency
- 6. Ecological(Presence of animals like fish, insects) (Applicable to only surface water)

ii. Regular Monitoring Parameters:

- 7. pH
- 8. Oil & Grease
- 9. Suspended Solids
- 10. Dissolved Oxygen (% saturation) (Not applicable for ground waters)
- 11. Chemical Oxygen Demand
- 12. Biochemical Oxygen Demand
- 13. Electrical Conductivity
- 14. Nitrite-Nitrogen
- 15. Nitrate-Nitrogen
- 16. $(NO_2 + NO_3)$ -Nitrogen
- 17. Free Ammonia
- 18. Total Residual Chlorine
- 19. Cyanide
- 20. Fluoride
- 21. Sulphide
- 22. Dissolved Phosphate
- 23. Sodium Absorption Ratio (SAR)
- 24. Total Coliforms (MPN/100 ml)

25. Faecal Coliforms (MPN/100 ml)

iii. Special Parameters:

- 26. Total Phosphorous
- 27. Total Kjeldahl Nitrogen(TKN)
- 28. Total Ammonia (NH₄ +NH₃)-Nitrogen
- 29. Phenols
- 30. Surface Active Agents
- 31. Organo Chlorine Pesticides
- 32. Polynuclear aromatic hydrocarbons (PAH)
- 33. Polychlorinated Biphenyls (PCB) and Polychlorinated Terphenyls (PCT)
- 34. Zinc
- 35. Nickel
- 36. Copper
- 37. Hexavalent Chromium
- 38. Chromium (Total)
- 39. Arsenic (Total)
- 40. Lead
- 41. Cadmium
- 42. Mercury
- 43. Manganese
- 44. Iron
- 45. Vanadium
- 46. Selenium
- 47. Boron

iv. Bioassay (Zebra Fish) Test: For specified samples only.

2.4 Methodology followed in Sampling and Analysis

Industries, places and locations that have been chosen for the sampling are representative of the city/area. Sampling has been done at the potential polluted areas so as to arrive at the CEPI. This will further help the authorities to monitor the areas in order to improve the current status of their environmental components such as air and water quality data, ecological damage and visual environmental conditions. Methodology for sampling, preservation and analysis have been done according to the references incorporated. Methodology of various types of parameters is presented under following annexure:

- 1. Stack Emission Sampling and Analysis Methodology Annexure I
- 2. Ambient Air Sampling and Analysis Methodology Annexure II
- 3. Water/Wastewater Sampling and Analysis Methodology Annexure III

3. Result of Analysis:

Results of Analysis are tabulated below for Stack Emission Monitoring, Ambient Air Quality Monitoring, Waste Water Analysis and Water Analysis. These are followed by their respective graphical representation.

Kindly note:

- NA specifies the sample is not analysed for the specific parameter.
- BDL specifies that the result obtained is below detection limit.

Please Note: Industrial clusters observed with below detection limit parameters are NOT included into the graphs

3.1 Stack Emission:

Stack Emission Monitoring Results are compared against The Environment (Protection) Rules, 1986 General Emission Standard - Part D.

Sr.	Name of Industry	Stack Identity	Phase	Table No.
1.	Shrijee Lifestyle	Boiler	Phase I	I
2.	Evonik Catalysts India Pvt. Ltd.	Process Stack	Phase I	I
3.	Zenith Industrial Rubber Products Pvt. Ltd.	Boiler	Phase I	I
4.	Auchtel Products Ltd.	Boiler	Phase I	II
5.	Western Chemical Industries (P) Limited	Boiler	Phase I	II
6.	Sudevi Chemicals	Boiler	Phase I	II
7.	Ravi Raj Knit Processing Pvt. Ltd.	Boiler	Phase II	III
8.	Pako Hindustan	Boiler	Phase II	III
9.	Aarti Industries Ltd.	Process Stack	Phase II	III
10.	Metropolitan Eximchem Ltd.	Boiler	Phase II	IV

Sr.	Name of Industry	Stack Identity	Phase	Table No.
11.	Metropolitan Eximchem Ltd.	Process Stack	Phase II	IV
12.	Arch Pharmalabs Ltd.	Boiler	Phase II	IV
13.	Dhanlakshmi Fabrics Ltd.	Process Stack	Phase II	VI

*The VOC result of stack emission is provided in Table No. V & VI

Table No. I

Nam	Name of Industry			Evonik Catalysts India Pvt. Ltd.	Zenith Industrial Rubber Products Pvt. Ltd.
Date	of Sampling		10.06.17	12.06.17	12.06.17
Sr.	Parameter	Unit		Results	
1.	Particulate Matter (as PM)	mg/Nm ³	78	NA	53
	Std. Limit	mg/Nm ³	150	-	150
2.	Sulphur Dioxide (as SO ₂)	mg/Nm ³	10.6	NA	10.6
		kg/day	4.1	NA	3.18
	Std. Limit	mg/Nm ³	100	-	100
3.	Nitrogen Dioxide (NO_2)	mg/Nm ³	381	NA	340
	Std. Limit	mg/Nm ³	250	-	250
4.	Hydrogen Chloride (HCL)	mg/Nm ³	NA	17.5	NA

Name of Industry			Auchtel Products Ltd.	Western Chemical Industries (P) Limited	Sudevi Chemicals
Date	of Sampling		11.06.17	12.06.17	12.06.17
Sr.	Parameter	Unit		Results	
1.	Particulate Matter (as PM)	mg/Nm ³	NA	85	95
	Std. Limit	mg/Nm ³	150	150	150
2.	Sulphur Dioxide (as SO_2)	mg/Nm ³	NA	10.7	5.33
		kg/day	NA	1.3	0.63
	Std. Limit	mg/Nm ³	-	100	100
3.	Nitrogen Dioxide (NO_2)	mg/Nm ³	NA	239	170
	Std. Limit	mg/Nm ³	-	250	250
4.	Hydrogen Chloride (HCL)	mg/Nm ³	8.83	NA	NA

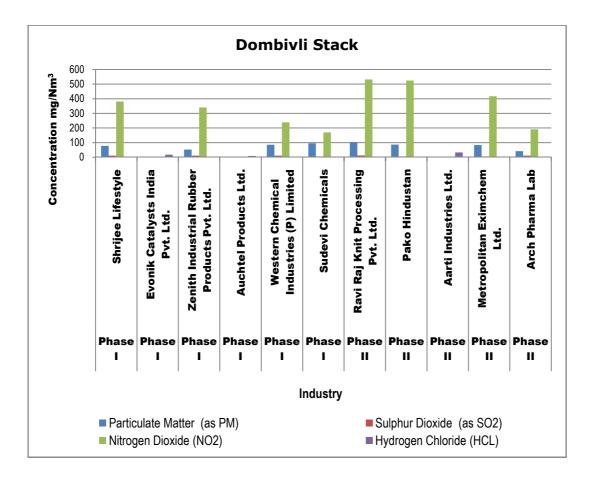
Table No. III

Name of Industry			Ravi Raj Knit Processing Pvt. Ltd.	Pako Hindustan	Aarti Industries Ltd.
Date	of Sampling		08.06.17	08.06.17	06.06.17
Sr.	Parameter	Unit		Results	
1.	Particulate Matter (as PM)	mg/Nm ³	103	87	NA
	Std. Limit	mg/Nm ³	150	150	-
2	Sulphur Dioxide	mg/Nm ³	11.8	5.33	NA
2.	(as SO ₂)	kg/day	1.36	1.34	NA
	Std. Limit	mg/Nm ³	100	100	-

Name of Industry		Ravi Raj Knit Pako Processing Hindustan Pvt. Ltd.		Aarti Industries Ltd.	
Date	of Sampling		08.06.17	08.06.17	06.06.17
Sr.	Parameter	Unit		Results	
3.	Nitrogen Dioxide (NO_2)	mg/Nm ³	532	524	NA
	Std. Limit	mg/Nm ³	250	250	-
4.	Hydrogen Chloride (HCL)	mg/Nm ³	NA	NA	32.4

Table No. IV

Name of Industry			Metropolitan Eximchem Ltd.	Metropolitan Eximchem Ltd.	Arch Pharmalabs Ltd.
Date	e of Sampling		10.06.17	12.06.17	09.06.17
Sr.	Parameter	Unit		Results	
1.	Particulate Matter (as PM)	mg/Nm ³	42	NA	42
	Std. Limit	mg/Nm ³	150	150	150
2.	Sulphur Dioxide (as SO ₂)	mg/Nm ³	10.6	BDL	NA
		kg/day	1.84	BDL	NA
	Std. Limit	mg/Nm ³	100	100	-
3.	Nitrogen Dioxide (NO_2)	mg/Nm ³	191	NA	NA
	Std. Limit	mg/Nm ³	250	250	-
4.	Hydrogen Chloride (HCL)	mg/Nm ³	NA	NA	NA


Table No. V

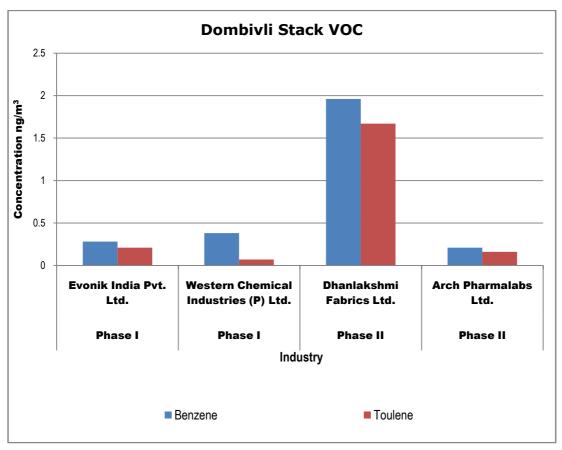

Name of Industries			Evonik India Pvt. Ltd.	Western Chemical Industries (P) Ltd.
Date o	of Sampling		12.06.17	17.06.17
Sr.	Parameter	Unit	Res	ults
1.	VOC			
I.	Methyl Isobutyl Ketone	mg/Nm ³	BDL	BDL
II.	Benzene	mg/Nm ³	0.28	0.38
III.	Toulene	mg/Nm ³	0.21	0.07
IV.	Xylene	mg/Nm ³	BDL	BDL
V.	Ethyl Benzene	mg/Nm ³	BDL	BDL
VI.	Ethyl Acetate	mg/Nm ³	BDL	BDL

Table No. VI

Name	of Industries	Dhanlakshmi Fabrics Ltd.	Arch Pharmalabs Ltd.	
Date o	of Sampling		07.06.17	09.06.17
Sr.	Parameter	Unit	Res	sults
1.	VOC			
I.	Methyl Isobutyl Ketone	mg/Nm ³	BDL	BDL
II.	Benzene	mg/Nm ³	1.96	0.21
III.	Toulene	mg/Nm ³	1.67	0.16
IV.	Xylene	mg/Nm ³	BDL	BDL
V.	Ethyl Benzene	mg/Nm ³	BDL	BDL
VI.	Ethyl Acetate	mg/Nm ³	BDL	BDL

Graphs: Stack Monitoring for Dombivli MIDC:

3.2 Ambient AirQuality:

In order to arrive at conclusions, the Ambient Air Quality Monitoring Results are compared against National Ambient Air Quality Standards, 2009 (**Annexure IV**).

Sr	Location	Location detail	Phase	Table No.
1.	CETP MIDC Phase I	Near Main Gate	Phase I	I
2.	Zenith Industrial Rubber Products Pvt. Ltd.	Near Main Gate	Phase I	I
3.	Nilamber Dyeing & Bleaching Mills Pvt. Ltd.	Near Main Gate	Phase I	I
4.	Gopal Print Processors Pvt. Ltd.	Near Main Gate	Phase I	II
5.	Kalyan Ambernath Manufacture Association (KAMA Office)	Near Main Gate	Phase I	п
6.	Innovative OrganochemPvt. Ltd.	Near Main Gate	Phase I	II
7.	VNS Industries Pvt. Ltd.	Near Main Gate	Phase II	III
8.	Aarti Industries Ltd.	Near Main Gate	Phase II	III
9.	Dhanlaxmi Fabrics Ltd.	Near Main Gate	Phase II	III
10.	CETP MIDC Phase II	Near Main Gate	Phase II	IV
11.	Arch Pharma Lab Ltd.	Near Main Gate	Phase II	IV
12.	Suvishrhu Speciality Chemicals Pvt. Ltd.	Near Main Gate	Phase II	IV

Table No. I

Location				CETP MIDC Phase I	Zenith Industrial Rubber Products Pvt. Ltd.	Nilamber Dyeing & Bleaching Mills Pvt. Ltd.
Date	of Sampling			10.06.17	10.06.17	10.06.17
Sr.	Parameters	Unit	Std. Limit (NAAQS 2009)	Results		
1.	Sulphur Dioxide (SO ₂)	µg/m³	80	8.92	9.72	14.4
2.	Nitrogen Dioxide (NO ₂)	µg/m³	80	7.4	5.68	8.3

Loca	tion			CETP MIDC Phase I	Zenith Industrial Rubber Products Pvt. Ltd.	Nilamber Dyeing & Bleaching Mills Pvt. Ltd.
Date	of Sampling			10.06.17	10.06.17	10.06.17
Sr.	Parameters	Unit	Std. Limit (NAAQS 2009)	Results		
3.	Particulate Matter (size less than 10 μ m) or PM_{10}	µg/m³	100	127	87	58
4.	Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	µg/m³	60	32	24	16
5.	Ozone (O ₃)	µg/m³	180	BDL	24.2	BDL
6.	Lead (Pb)	µg/m³	1	BDL	BDL	BDL
7.	Carbon Monoxide (CO)	mg/m ³	4	1.1	0.5	BDL
8.	Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL
9.	Benzene (C_6H_6)	µg/m³	5	BDL	BDL	BDL
10.	Benzo (a) Pyrene (BaP) – particulate phase only	ng/m³	1	BDL	BDL	BDL
11.	Arsenic (As)	ng/m ³	6	BDL	BDL	BDL
12.	Nickel (Ni)	ng/m ³	20	BDL	BDL	BDL

Table No. II

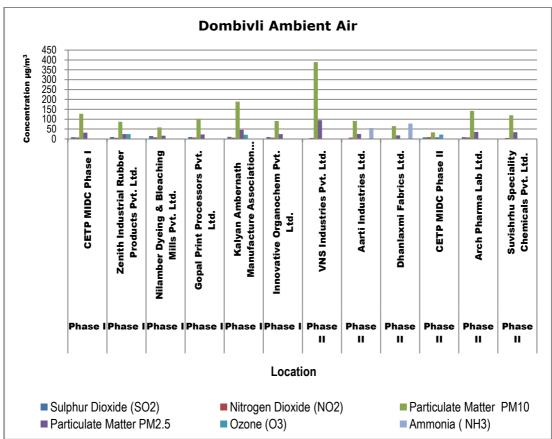

Loca	tion		Gopal Print Processors Pvt. Ltd.	KAMA Office	Innovative Organochem Pvt. Ltd.	
Date	of Sampling			09.06.17	12.06.17	09.06.17
Sr.	Sr. Parameters Unit (NAAQS 2009)				Results	
1.	Sulphur Dioxide (SO_2)	µg/m³	80	10	10.5	9.72
2.	Nitrogen Dioxide (NO_2)	µg/m³	80	7.48	6.47	6.49
3.	Particulate Matter (size less than 10 μ m) or PM ₁₀	µg/m³	100	101	189	91
4.	Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	µg/m³	60	23	46	24
5.	Ozone (O ₃)	µg/m³	180	BDL	BDL	BDL
6.	Lead (Pb)	µg/m³	1	BDL	BDL	BDL
7.	Carbon Monoxide (CO)	mg/m ³	4	1.79	0.91	1.05
8.	Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL
9.	Benzene (C_6H_6)	µg/m³	5	BDL	BDL	BDL
10.	Benzo (a) Pyrene (BaP) – particulate phase only	ng/m ³	1	BDL	BDL	BDL
11.	Arsenic (As)	ng/m ³	6	BDL	BDL	BDL
12.	Nickel (Ni)	ng/m ³	20	BDL	BDL	BDL

Table	No.	III
-------	-----	-----

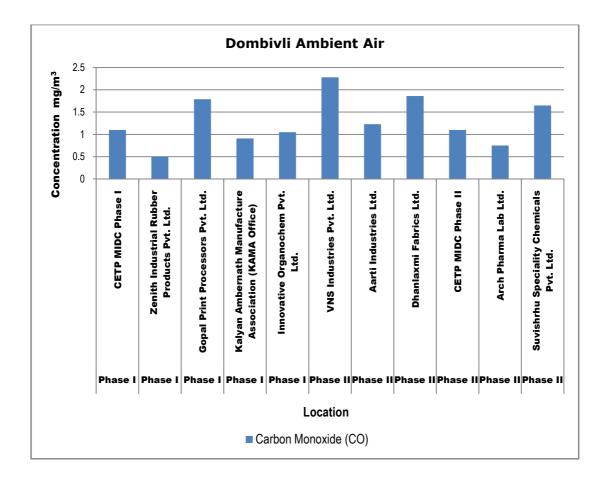

Loca	tion		VNS Industries Pvt. Ltd.	Aarti Industries Ltd.	Dhanlaxmi Fabrics Ltd.	
Date	of Sampling			01.06.17	01.06.17	01.06.17
Sr.	Parameters	Unit	Std. Limit (NAAQS 2009)	Results		
1.	Sulphur Dioxide (SO ₂)	µg/m³	80	BDL	BDL	BDL
2.	Nitrogen Dioxide (NO_2)	µg/m³	80	4.67	6.88	<3
3.	Particulate Matter (size less than 10 μ m) or PM ₁₀	µg/m³	100	389	91	65
4.	Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	µg/m³	60	95	25	18
5.	Ozone (O ₃)	µg/m³	180	BDL	BDL	BDL
6.	Lead (Pb)	µg/m³	1	BDL	BDL	BDL
7.	Carbon Monoxide (CO)	mg/m ³	4	2.28	1.23	1.86
8.	Ammonia (NH ₃)	µg/m³	400	BDL	55.4	77.6
9.	Benzene (C_6H_6)	µg/m³	5	BDL	BDL	BDL
10.	Benzo (a) Pyrene (BaP) – particulate phase only	ng/m ³	1	BDL	BDL	BDL
11.	Arsenic (As)	ng/m ³	6	BDL	BDL	BDL
12.	Nickel (Ni)	ng/m ³	20	BDL	BDL	BDL

Table N	lo. IV
---------	--------

Loca	tion		CETP MIDC Phase II	Arch Pharma Lab Ltd.	Suvishrhu Speciality Chemicals Pvt. Ltd.	
Date	of Sampling			08.06.17	08.06.17	08.06.17
Sr.	Parameters	Unit	Std. Limit (NAAQS 2009)	Results		
1.	Sulphur Dioxide (SO ₂)	µg/m³	80	7.96	8.76	<4
2.	Nitrogen Dioxide (NO_2)	µg/m³	80	8.71	7.08	4.86
3.	Particulate Matter (size less than 10 μ m) or PM ₁₀	µg/m³	100	33	142	120
4.	Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	µg/m³	60	8	36	34
5.	Ozone (O ₃)	µg/m³	180	22	BDL	BDL
6.	Lead (Pb)	µg/m³	1	BDL	BDL	BDL
7.	Carbon Monoxide (CO)	mg/m ³	4	1.1	0.75	1.65
8.	Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL
9.	Benzene (C_6H_6)	µg/m³	5	BDL	BDL	BDL
10.	Benzo (a) Pyrene (BaP) – particulate phase only	ng/m ³	1	BDL	BDL	BDL
11.	Arsenic (As)	ng/m ³	6	BDL	BDL	BDL
12.	Nickel (Ni)	ng/m ³	20	BDL	BDL	BDL

Graphs: Ambient Air Quality Monitoring for Dombivli MIDC:

3.3 Water/ Waste WaterQuality:

Water Analysis Results are compared against CPCB document on criteria for Comprehensive Environmental Assessment of Industrial Clusters-Water Quality Parameters Requirement and Classification (Annexure VI), CPCB Water Quality Criteria (Annexure V) and Drinking Water Specification, IS 10500:2012 (Annexure IV), Wastewater Analysis Results are compared with General Standards for Discharge of Environmental Pollutants Part A: Effluents, The Environment (Protection) Rules, 1986, Schedule VI.

Sr.	Location	Source	Phase	Table No.
1.	Padmavati Synthesis	ETP Outlet	Phase I	Ι
2.	Sharda Processors	ETP Outlet	Phase I	I
3.	Piyuesh Industries	ETP Outlet	Phase I	I
4.	CETP Phase I	CETP Inlet	Phase I	II
5.	CETP Phase I	CETP Outlet	Phase I	II
6.	Auchtel Chemical	ETP Outlet	Phase I	II
7.	Western Chemical Industries (P) Ltd.	ETP Outlet	Phase I	III
8.	Metropolitan EximchemPvt. Ltd.	ETP Outlet	Phase II	III
9.	Shree Mahabir Dying	ETP Outlet	Phase II	III
10.	Ridham SyntheticPvt. Ltd.	ETP Outlet	Phase II	IV
11.	CETP Phase II	CETP Inlet	Phase II	IV
12.	CETP Phase II	CETP Outlet	Phase II	IV
13.	Safe A & T TechnologyPvt. Ltd.	ETP Outlet	Phase II	v

Table No. I

Locati	on		Padmavati Synthesis	Sharda Processors	Piyuesh Industries	
Date o	f Sampling		09.06.17	10.06.17	10.06.17	
Sr.	Parameters	Unit	Std. Limit	Results		
1.	Colour	Hazen		1	1	1
2.	Smell	-		Agreeable	Agreeable	Agreeable
3.	рН	-	5.5 -9.0	6.69	6.9	6.76

Locati	ion			Padmavati Synthesis	Sharda Processors	Piyuesh Industries
Date o	f Sampling		09.06.17	10.06.17	10.06.17	
Sr.	Parameters	Unit	Std. Limit		Results	
4.	Oil & Grease	mg/L	10.0	BDL	BDL	BDL
5.	Suspended Solids	mg/L	100.0	56	80	200
6.	Dissolved Oxygen (%Saturation)	%		33	75	43
7.	Chemical Oxygen Demand	mg/L	250.0	220	60	100
8.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	75	21	35
9.	Electrical Conductivity (at 25°C)	µmhos/cm		869	461	3320
10.	Nitrite Nitrogen (as NO ₂)	mg/L		0.014	BDL	0.09
11.	Nitrate Nitrogen $(as NO_3)$	mg/L	10.0	7.65	3.84	166
12.	(NO ₂ + NO ₃)- Nitrogen	mg/L	5.0	7.65	3.84	166
13.	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL	BDL	BDL
14.	Total Residual Chlorine	mg/L	1.0	BDL	BDL	BDL
15.	Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL
16.	Fluoride (as F)	mg/L	2.0	0.9	0.76	0.52
17.	Sulphide (as S ²⁻)	mg/L	2.0	BDL	BDL	BDL
18.	Dissolved Phosphate (as P)	mg/L	5.0	0.32	0.17	0.52

Locat	ion			Padmavati Synthesis	Sharda Processors	Piyuesh Industries
Date o	Date of Sampling				10.06.17	10.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
19.	Sodium Absorption Ratio	-		3.54	1.96	13.7
20.	Total Coliforms	MPN index/100 mL	100.0	920	20	140
21.	Faecal Coliforms	MPN index/100 mL	1000.0	110	17	32
22.	Total Phosphate (as P)	mg/L	1.0	1.02	0.29	1.51
23.	Total Kjeldahl Nitrogen	mg/L	100.0	4.37	4.25	33
24.	Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	5.0	BDL	BDL	18.4
25.	Phenols (as C_6H_5OH)	mg/L	3.0	BDL	BDL	BDL
26.	Surface Active Agents (as MBAS)	mg/L	3.0	BDL	BDL	BDL
27.	Organo Chlorine Pesticides					
I.	Alachlor	µg/L	2.0	BDL	BDL	BDL
II.	Atrazine	µg/L	0.2	BDL	BDL	BDL
III.	Aldrin	µg/L	0.1	BDL	BDL	BDL
IV.	Dieldrin	µg/L	2.0	BDL	BDL	BDL
۷.	Alpha HCH	µg/L	0.01	BDL	BDL	BDL
VI.	Beta HCH	µg/L	2.0	BDL	BDL	BDL
VII.	Chlorpyriphos	µg/L	3.0	BDL	BDL	BDL
VIII.	Butachlor	µg/L		BDL	BDL	BDL

Locat	ion			Padmavati Synthesis	Sharda Processors	Piyuesh Industries
Date c	of Sampling			09.06.17	10.06.17	10.06.17
Sr.	Parameters	Unit	Std. Limit	Results		
IX.	Delta HCH	µg/L	0.2	BDL	BDL	BDL
х.	p,p DDT	µg/L	0.05	BDL	BDL	BDL
XI.	o,p DDT	µg/L	100.0	BDL	BDL	BDL
XII.	p,p DDE	µg/L	250.0	BDL	BDL	BDL
XIII.	o,p DDE	µg/L	30.0	BDL	BDL	BDL
XIV.	p,p DDD	µg/L		BDL	BDL	BDL
XV.	o,p DDD	µg/L		BDL	BDL	BDL
XVI.	Alpha Endosulfan	µg/L	10.0	BDL	BDL	BDL
XVII.	Beta Endosulfan	µg/L		BDL	BDL	BDL
XVIII.	Endosulfan Sulphate	µg/L	5.0	BDL	BDL	BDL
28.	Y HCH (Lindane)	µg/L	1.0	BDL	BDL	BDL
29.	Polynuclear aromatic hydrocarbons (as PAH)	mg/L	0.2	BDL	BDL	BDL
30.	Polychlorinated Biphenyls (PCB)	mg/L	2.0	BDL	BDL	BDL
31.	Zinc (as Zn)	mg/L	5.0	0.082	BDL	0.166
32.	Nickel (as Ni)	mg/L	3.0	BDL	BDL	BDL
33.	Copper (as Cu)	mg/L		BDL	BDL	0.184
34.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL	BDL	BDL
35.	Total Chromium (as Cr)	mg/L	2.0	BDL	BDL	0.097
36.	Total Arsenic (as As)	mg/L	0.2	BDL	BDL	BDL

Locati	on			Padmavati Synthesis	Sharda Processors	Piyuesh Industries
Date o	f Sampling		09.06.17	10.06.17	10.06.17	
Sr.	Parameters	Unit	Std. Limit		Results	
37.	Lead (as Pb)	mg/L	0.1	BDL	BDL	BDL
38.	Cadmium (as Cd)	mg/L	2.0	BDL	BDL	BDL
39.	Mercury (as Hg)	mg/L	0.01	BDL	BDL	BDL
40.	Manganese (as Mn)	mg/L	2.0	0.027	0.083	0.218
41.	Iron (as Fe)	mg/L	3.0	0.819	0.294	3.46
42.	Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL
43.	Selenium (as Se)	mg/L	0.05	BDL	BDL	BDL
44.	Boron (as B)	mg/L		BDL	BDL	BDL
45.	Bioassay Test on fish	% survival		100	100	100

Table No. II

Locati	on		CETP Phase I (Inlet)	CETP Phase I (Outlet)	AuchtelC hemical	
Date o	f Sampling		10.06.17	10.06.17	11.06.17	
Sr.	Parameters	Unit	Std. Limit	Results		
1.	Colour	Hazen		30	10	10
2.	Smell	-		Agreeable	Agreeable	Agreeable
3.	рН	-	5.5 -9.0	6.86	7.25	6.96
4.	Oil & Grease	mg/L	10.0	BDL	1.2	BDL
5.	Suspended Solids	mg/L	100.0	330	100	27
6.	Dissolved Oxygen (%Saturation)	%		50	0	40

Locati	on			CETP Phase I (Inlet)	CETP Phase I (Outlet)	AuchtelC hemical
Date o	f Sampling			10.06.17	10.06.17	11.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
7.	Chemical Oxygen Demand	mg/L	250.0	400	1000	220
8.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	138	336	75
9.	Electrical Conductivity (at 25°C)	µmhos/cm		8330	5860	1555
10.	Nitrite Nitrogen (as NO ₂)	mg/L		0.06	BDL	BDL
11.	Nitrate Nitrogen (as NO ₃)	mg/L	10.0	42	9.41	13.7
12.	(NO ₂ + NO ₃)- Nitrogen	mg/L	5.0	42.1	9.41	13.7
13.	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL	BDL	BDL
14.	Total Residual Chlorine	mg/L	1.0	BDL	BDL	BDL
15.	Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL
16.	Fluoride (as F)	mg/L	2.0	0.34	0.74	0.28
17.	Sulphide (as S ²⁻)	mg/L	2.0	BDL	BDL	BDL
18.	Dissolved Phosphate (as P)	mg/L	5.0	0.35	BDL	BDL
19.	Sodium Absorption Ratio	-		2.13	7.65	3.24
20.	Total Coliforms	MPN index/100 mL	100.0	39	130	280

Locati	ion			CETP Phase I (Inlet)	CETP Phase I (Outlet)	AuchtelC hemical
Date o	f Sampling			10.06.17	10.06.17	11.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
21.	Faecal Coliforms	MPN index/100 mL	1000.0	5.5	6.1	140
22.	Total Phosphate (as P)	mg/L	1.0	0.77	BDL	BDL
23.	Total Kjeldahl Nitrogen	mg/L	100.0	93.7	79.2	15.9
24.	Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	5.0	58	20	4.38
25.	Phenols (as C ₆ H₅OH)	mg/L	3.0	BDL	BDL	BDL
26.	Surface Active Agents (as MBAS)	mg/L	3.0	BDL	BDL	BDL
27.	Organo Chlorine Pesticides					
I.	Alachlor	µg/L	2.0	BDL	BDL	BDL
II.	Atrazine	µg/L	0.2	BDL	BDL	BDL
III.	Aldrin	µg/L	0.1	BDL	BDL	BDL
IV.	Dieldrin	µg/L	2.0	BDL	BDL	BDL
V.	Alpha HCH	µg/L	0.01	BDL	BDL	BDL
VI.	Beta HCH	µg/L	2.0	BDL	BDL	BDL
VII.	Chlorpyriphos	µg/L	3.0	BDL	BDL	BDL
VIII.	Butachlor	µg/L		BDL	BDL	BDL
IX.	Delta HCH	µg/L	0.2	BDL	BDL	BDL
Х.	p,p DDT	µg/L	0.05	BDL	BDL	BDL
XI.	o,p DDT	µg/L	100.0	BDL	BDL	BDL

Locat	ion			CETP Phase I (Inlet)	CETP Phase I (Outlet)	AuchtelC hemical
Date o	of Sampling			10.06.17	10.06.17	11.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
XII.	p,p DDE	µg/L	250.0	BDL	BDL	BDL
XIII.	o,p DDE	µg/L	30.0	BDL	BDL	BDL
XIV.	p,p DDD	µg/L		BDL	BDL	BDL
XV.	o,p DDD	µg/L		BDL	BDL	BDL
XVI.	Alpha Endosulfan	µg/L	10.0	BDL	BDL	BDL
XVII.	Beta Endosulfan	µg/L		BDL	BDL	BDL
XVIII.	Endosulfan Sulphate	µg/L	5.0	BDL	BDL	BDL
28.	Y HCH (Lindane)	µg/L	1.0	BDL	BDL	BDL
29.	Polynuclear aromatic hydrocarbons (as PAH)	mg/L	0.2	BDL	BDL	BDL
30.	Polychlorinated Biphenyls (PCB)	mg/L	2.0	BDL	BDL	BDL
31.	Zinc (as Zn)	mg/L	5.0	3.43	0.51	0.129
32.	Nickel (as Ni)	mg/L	3.0	BDL	BDL	BDL
33.	Copper (as Cu)	mg/L		0.542	0.048	BDL
34.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL	BDL	BDL
35.	Total Chromium (as Cr)	mg/L	2.0	0.494	0.023	BDL
36.	Total Arsenic (as As)	mg/L	0.2	BDL	BDL	BDL
37.	Lead (as Pb)	mg/L	0.1	0.054	BDL	0.01
38.	Cadmium (as Cd)	mg/L	2.0	BDL	BDL	BDL

Locati	on		CETP Phase I (Inlet)	CETP Phase I (Outlet)	AuchtelC hemical	
Date o	f Sampling		10.06.17	10.06.17	11.06.17	
Sr.	Parameters	Unit	Std. Limit	Results		
39.	Mercury (as Hg)	mg/L	0.01	BDL	BDL	BDL
40.	Manganese (as Mn)	mg/L	2.0	0.779	0.13	0.028
41.	Iron (as Fe)	mg/L	3.0	16.5	2.44	1.1
42.	Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL
43.	Selenium (as Se)	mg/L	0.05	BDL	BDL	BDL
44.	Boron (as B)	mg/L		0.172	0.12	BDL
45.	Bioassay Test on fish	% survival		0	80	90

Table No. III

Locati	on		Western Chemical Industrie s (P) Ltd.	Metropoli tan Eximche mPvt. Ltd.	Shree Mahabir Dying	
Date o	f Sampling			07.06.17	05.06.17	07.06.17
Sr.	Parameters	Unit	Std. Limit	Results		
1.	Colour	Hazen		1	1	1
2.	Smell	-		Agreeable	Agreeable	Agreeable
3.	рН	-	5.5 -9.0	7.81	4.9	6.57
4.	Oil & Grease	mg/L	10.0	BDL	BDL	BDL
5.	Suspended Solids	mg/L	100.0	9	22	35
6.	Dissolved Oxygen (%Saturation)	%		60	37	40

Locati	on		Western Chemical Industrie s (P) Ltd.	Metropoli tan Eximche mPvt. Ltd.	Shree Mahabir Dying	
Date o	f Sampling		07.06.17	05.06.17	07.06.17	
Sr.	Parameters	Unit	Std. Limit		Results	
7.	Chemical Oxygen Demand	mg/L	250.0	40	149	198
8.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	14	51	68
9.	Electrical Conductivity (at 25°C)	µmhos/cm		994	915	2100
10.	Nitrite Nitrogen $(as NO_2)$	mg/L		0.07	0.11	BDL
11.	Nitrate Nitrogen (as NO ₃)	mg/L	10.0	7.63	80.8	1.09
12.	(NO ₂ + NO ₃)- Nitrogen	mg/L	5.0	7.7	30.9	1.09
13.	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL	BDL	BDL
14.	Total Residual Chlorine	mg/L	1.0	BDL	BDL	BDL
15.	Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL
16.	Fluoride (as F)	mg/L	2.0	BDL	0.06	0.64
17.	Sulphide (as S ²⁻)	mg/L	2.0	BDL	BDL	BDL
18.	Dissolved Phosphate (as P)	mg/L	5.0	BDL	BDL	BDL
19.	Sodium Absorption Ratio	-		1.22	1.73	4.89
20.	Total Coliforms	MPN index/100 mL	100.0	130	350	350

Locati	ion		Western Chemical Industrie s (P) Ltd.	Metropoli tan Eximche mPvt. Ltd.	Shree Mahabir Dying	
Date o	f Sampling			07.06.17	05.06.17	07.06.17
Sr.	Parameters	Unit		Results		
21.	Faecal Coliforms	MPN index/100 mL	1000.0	4	280	110
22.	Total Phosphate (as P)	mg/L	1.0	BDL	BDL	BDL
23.	Total Kjeldahl Nitrogen	mg/L	100.0	1.35	18.9	2.26
24.	Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	5.0	BDL	3.76	BDL
25.	Phenols (as C_6H_5OH)	mg/L	3.0	BDL	BDL	BDL
26.	Surface Active Agents (as MBAS)	mg/L	3.0	BDL	BDL	BDL
27.	Organo Chlorine Pesticides					
I.	Alachlor	µg/L	2.0	BDL	BDL	BDL
II.	Atrazine	µg/L	0.2	BDL	BDL	BDL
III.	Aldrin	µg/L	0.1	BDL	BDL	BDL
IV.	Dieldrin	µg/L	2.0	BDL	BDL	BDL
V.	Alpha HCH	µg/L	0.01	BDL	BDL	BDL
VI.	Beta HCH	µg/L	2.0	BDL	BDL	BDL
VII.	Chlorpyriphos	µg/L	3.0	BDL	BDL	BDL
VIII.	Butachlor	µg/L		BDL	BDL	BDL
IX.	Delta HCH	µg/L	0.2	BDL	BDL	BDL
Х.	p,p DDT	µg/L	0.05	BDL	BDL	BDL

Locati	ion		Western Chemical Industrie s (P) Ltd.	Metropoli tan Eximche mPvt. Ltd.	Shree Mahabir Dying	
Date o	of Sampling		07.06.17	05.06.17	07.06.17	
Sr.	Parameters	Unit	Std. Limit		Results	
XI.	o,p DDT	µg/L	100.0	BDL	BDL	BDL
XII.	p,p DDE	µg/L	250.0	BDL	BDL	BDL
XIII.	o,p DDE	µg/L	30.0	BDL	BDL	BDL
XIV.	p,p DDD	µg/L		BDL	BDL	BDL
XV.	o,p DDD	µg/L		BDL	BDL	BDL
XVI.	Alpha Endosulfan	µg/L	10.0	BDL	BDL	BDL
XVII.	Beta Endosulfan	µg/L		BDL	BDL	BDL
XVIII.	Endosulfan Sulphate	µg/L	5.0	BDL	BDL	BDL
28.	Y HCH (Lindane)	µg/L	1.0	BDL	BDL	BDL
29.	Polynuclear aromatic hydrocarbons (as PAH)	mg/L	0.2	BDL	350	BDL
30.	Polychlorinated Biphenyls (PCB)	mg/L	2.0	BDL	280	BDL
31.	Zinc (as Zn)	mg/L	5.0	BDL	0.309	BDL
32.	Nickel (as Ni)	mg/L	3.0	BDL	BDL	BDL
33.	Copper (as Cu)	mg/L		BDL	BDL	BDL
34.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL	BDL	BDL
35.	Total Chromium (as Cr)	mg/L	2.0	BDL	BDL	BDL
36.	Total Arsenic (as As)	mg/L	0.2	BDL	BDL	BDL

Locati	on		Western Chemical Industrie s (P) Ltd.	Metropoli tan Eximche mPvt. Ltd.	Shree Mahabir Dying	
Date o	f Sampling			07.06.17	05.06.17	07.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
37.	Lead (as Pb)	mg/L	0.1	0.017	BDL	BDL
38.	Cadmium (as Cd)	mg/L	2.0	BDL	BDL	BDL
39.	Mercury (as Hg)	mg/L	0.01	BDL	BDL	BDL
40.	Manganese (as Mn)	mg/L	2.0	BDL	0.032	BDL
41.	Iron (as Fe)	mg/L	3.0	0.32	0.073	0.594
42.	Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL
43.	Selenium (as Se)	mg/L	0.05	BDL	BDL	BDL
44.	Boron (as B)	mg/L		0.202	BDL	BDL
45.	Bioassay Test on fish	% survival		100	100	100

Table I	No. IV
---------	--------

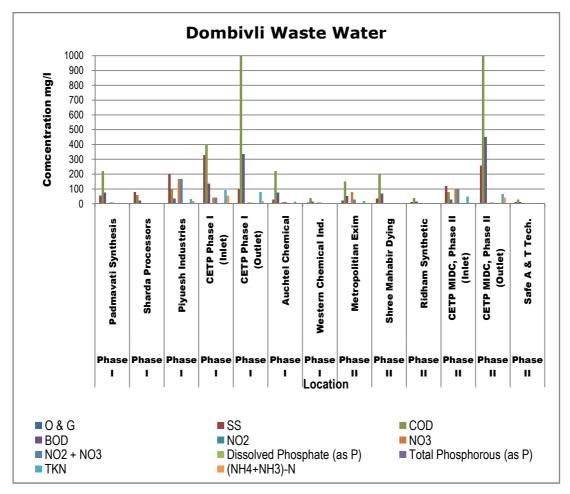
Location				Ridham Synthetic Pvt. Ltd.	CETP Phase II (Inlet)	CETP Phase II (Outlet)
Date of Sampling			07.06.17	09.06.17	09.06.17	
Sr.	Parameters	Unit	Std. Limit	Results		
1.	Colour	Hazen		1	10	20
2.	Smell	-		Agreeable	Agreeable	Agreeable
3.	рН	-	5.5 -9.0	7.4	7	8.35
4.	Oil & Grease	mg/L	10.0	BDL	BDL	BDL
5.	Suspended Solids	mg/L	100.0	13	120	260
6.	Dissolved Oxygen (%Saturation)	%		50	55	0
7.	Chemical Oxygen Demand	mg/L	250.0	40	80	1300
8.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	14	29	450
9.	Electrical Conductivity (at 25°C)	µmhos/cm		135.7	3700	6400
10.	Nitrite Nitrogen (as NO ₂)	mg/L		BDL	0.03	BDL
11.	Nitrate Nitrogen (as NO ₃)	mg/L	10.0	2.07	103	9.29
12.	(NO ₂ + NO ₃)- Nitrogen	mg/L	5.0	2.07	103	9.3
13.	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL	BDL	BDL
14.	Total Residual Chlorine	mg/L	1.0	BDL	BDL	BDL
15.	Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL

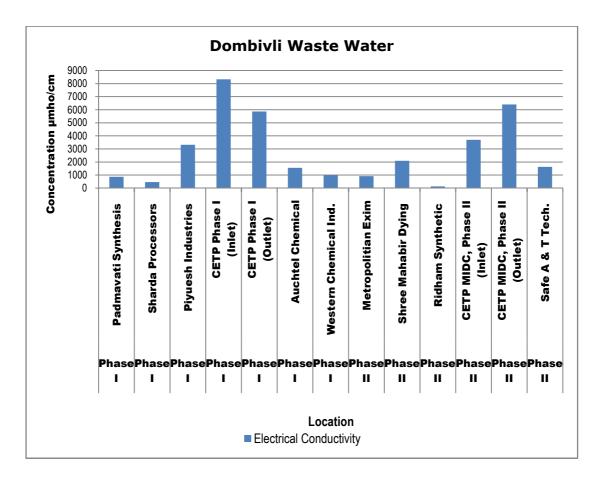
Location				Ridham Synthetic Pvt. Ltd.	CETP Phase II (Inlet)	CETP Phase II (Outlet)
Date of Sampling			07.06.17	09.06.17	09.06.17	
Sr.	Parameters	Unit	Std. Limit	Results		
16.	Fluoride (as F)	mg/L	2.0	0.52	0.84	0.64
17.	Sulphide (as S ²⁻)	mg/L	2.0	BDL	BDL	BDL
18.	Dissolved Phosphate (as P)	mg/L	5.0	BDL	0.3	BDL
19.	Sodium Absorption Ratio	-		5.75	2.87	8.67
20.	Total Coliforms	MPN index/100 mL	100.0	BDL	17	140
21.	Faecal Coliforms	MPN index/100 mL	1000.0	BDL	4.5	6.8
22.	Total Phosphate (as P)	mg/L	1.0	BDL	1.25	0.27
23.	Total Kjeldahl Nitrogen	mg/L	100.0	1.9	50.1	65.7
24.	Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	5.0	BDL	3.74	43.5
25.	Phenols (as C_6H_5OH)	mg/L	3.0	BDL	BDL	BDL
26.	Surface Active Agents (as MBAS)	mg/L	3.0	BDL	BDL	BDL
27.	Organo Chlorine Pesticides					
I.	Alachlor	µg/L	2.0	BDL	BDL	BDL
II.	Atrazine	µg/L	0.2	BDL	BDL	BDL
III.	Aldrin	µg/L	0.1	BDL	BDL	BDL

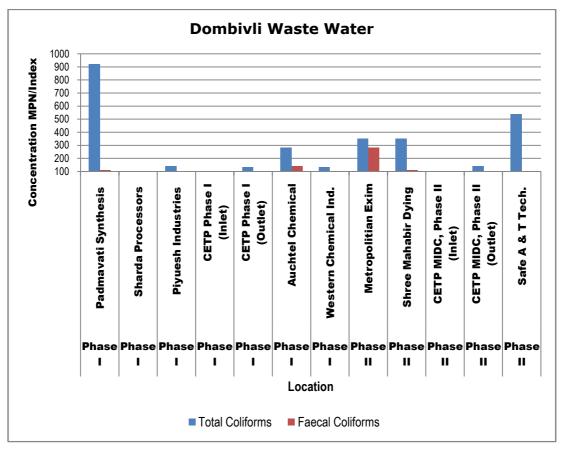
Locat	Location				CETP Phase II (Inlet)	CETP Phase II (Outlet)
Date c	of Sampling			07.06.17	09.06.17	09.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
IV.	Dieldrin	µg/L	2.0	BDL	BDL	BDL
V.	Alpha HCH	µg/L	0.01	BDL	BDL	BDL
VI.	Beta HCH	µg/L	2.0	BDL	BDL	BDL
VII.	Chlorpyriphos	µg/L	3.0	BDL	BDL	BDL
VIII.	Butachlor	µg/L		BDL	BDL	BDL
IX.	Delta HCH	µg/L	0.2	BDL	BDL	BDL
Х.	p,p DDT	µg/L	0.05	BDL	BDL	BDL
XI.	o,p DDT	µg/L	100.0	BDL	BDL	BDL
XII.	p,p DDE	µg/L	250.0	BDL	BDL	BDL
XIII.	o,p DDE	µg/L	30.0	BDL	BDL	BDL
XIV.	p,p DDD	µg/L		BDL	BDL	BDL
XV.	o,p DDD	µg/L		BDL	BDL	BDL
XVI.	Alpha Endosulfan	µg/L	10.0	BDL	BDL	BDL
XVII.	Beta Endosulfan	µg/L		BDL	BDL	BDL
XVIII.	Endosulfan Sulphate	µg/L	5.0	BDL	BDL	BDL
28.	Y HCH (Lindane)	µg/L	1.0	BDL	BDL	BDL
29.	Polynuclear aromatic hydrocarbons (as PAH)	mg/L	0.2	BDL	BDL	BDL
30.	Polychlorinated Biphenyls (PCB)	mg/L	2.0	BDL	BDL	BDL
31.	Zinc (as Zn)	mg/L	5.0	BDL	BDL	0.347
32.	Nickel (as Ni)	mg/L	3.0	BDL	BDL	0.07

Location				Ridham Synthetic Pvt. Ltd.	CETP Phase II (Inlet)	CETP Phase II (Outlet)
Date o	f Sampling			07.06.17	09.06.17	09.06.17
Sr.	Parameters	Unit	Std. Limit	Results		
33.	Copper (as Cu)	mg/L		BDL	BDL	0.092
34.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL	BDL	BDL
35.	Total Chromium (as Cr)	mg/L	2.0	BDL	BDL	0.05
36.	Total Arsenic (as As)	mg/L	0.2	BDL	BDL	BDL
37.	Lead (as Pb)	mg/L	0.1	BDL	BDL	0.076
38.	Cadmium (as Cd)	mg/L	2.0	BDL	BDL	BDL
39.	Mercury (as Hg)	mg/L	0.01	BDL	BDL	BDL
40.	Manganese (as Mn)	mg/L	2.0	BDL	0.086	0.173
41.	Iron (as Fe)	mg/L	3.0	0.178	1.22	4.56
42.	Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL
43.	Selenium (as Se)	mg/L	0.05	BDL	BDL	BDL
44.	Boron (as B)	mg/L		BDL	0.701	0.663
45.	Bioassay Test on fish	% survival		100	100	0

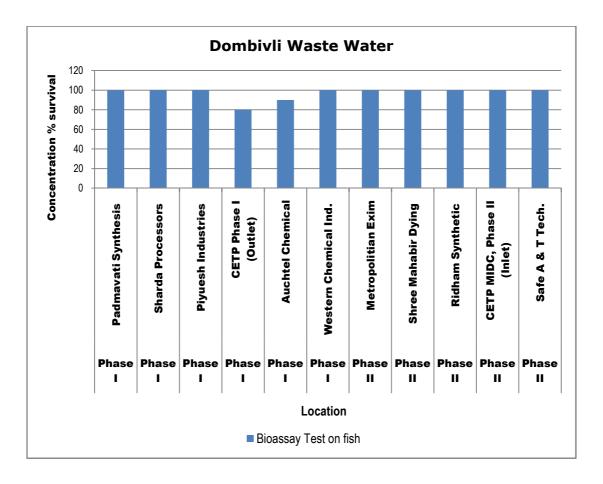
Table No. V


Locatio	Safe A & T Technology Pvt. Ltd.						
Date of	Date of Sampling						
Sr.	Parameters	Unit	Std. Limit	Results			
1.	Colour	Hazen		1			
2.	Smell	-		Agreeable			
3.	рН	-	5.5 -9.0	6.46			
4.	Oil & Grease	mg/L	10.0	BDL			
5.	Suspended Solids	mg/L	100.0	13			
6.	Dissolved Oxygen (%Saturation)	%		60			
7.	Chemical Oxygen Demand	mg/L	250.0	30			
8.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	11			
9.	Electrical Conductivity (at 25°C)	µmhos/cm		1632			
10.	Nitrite Nitrogen $(as NO_2)$	mg/L		BDL			
11.	Nitrate Nitrogen (as NO_3)	mg/L	10.0	4.25			
12.	(NO ₂ + NO ₃)-Nitrogen	mg/L	5.0	4.25			
13.	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL			
14.	Total Residual Chlorine	mg/L	1.0	BDL			
15.	Cyanide (as CN)	mg/L	0.2	BDL			
16.	Fluoride (as F)	mg/L	2.0	0.2			
17.	Sulphide (as S ²⁻)	mg/L	2.0	BDL			


Locatio	Safe A & T Technology Pvt. Ltd.			
Date of	12.06.17			
Sr.	Parameters	Unit	Std. Limit	Results
18.	Dissolved Phosphate (as P)	mg/L	5.0	BDL
19.	Sodium Absorption Ratio	-		8.16
20.	Total Coliforms	MPN index/100 mL	100.0	540
21.	Faecal Coliforms	MPN index/100 mL	1000.0	49
22.	Total Phosphate (as P)	mg/L	1.0	bdl
23.	Total Kjeldahl Nitrogen	mg/L	100.0	1.79
24.	Total Ammonia (NH₄+NH₃)-Nitrogen	mg/L	5.0	BDL
25.	Phenols (as C_6H_5OH)	mg/L	3.0	BDL
26.	Surface Active Agents (as MBAS)	mg/L	3.0	BDL
27.	Organo Chlorine Pesticides			
I.	Alachlor	µg/L	2.0	BDL
II.	Atrazine	µg/L	0.2	BDL
III.	Aldrin	µg/L	0.1	BDL
IV.	Dieldrin	µg/L	2.0	BDL
V.	Alpha HCH	µg/L	0.01	BDL
VI.	Beta HCH	µg/L	2.0	BDL
VII.	Chlorpyriphos	µg/L	3.0	BDL
VIII.	Butachlor	µg/L		BDL
IX.	Delta HCH	µg/L	0.2	BDL
Х.	p,p DDT	µg/L	0.05	BDL


Locatio	n			Safe A & T Technology Pvt. Ltd.
Date of	Sampling			12.06.17
Sr.	Parameters	Unit	Std. Limit	Results
XI.	o,p DDT	µg/L	100.0	BDL
XII.	p,p DDE	µg/L	250.0	BDL
XIII.	o,p DDE	µg/L	30.0	BDL
XIV.	p,p DDD	µg/L		BDL
XV.	o,p DDD	µg/L		BDL
XVI.	Alpha Endosulfan	µg/L	10.0	BDL
XVII.	Beta Endosulfan	µg/L		BDL
XVIII.	Endosulfan Sulphate	µg/L	5.0	BDL
28.	Y HCH (Lindane)	µg/L	1.0	BDL
29.	Polynuclear aromatic hydrocarbons (as PAH)	mg/L	0.2	BDL
30.	Polychlorinated Biphenyls (PCB)	mg/L	2.0	BDL
31.	Zinc (as Zn)	mg/L	5.0	0.101
32.	Nickel (as Ni)	mg/L	3.0	BDL
33.	Copper (as Cu)	mg/L		BDL
34.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL
35.	Total Chromium (as Cr)	mg/L	2.0	BDL
36.	Total Arsenic (as As)	mg/L	0.2	BDL
37.	Lead (as Pb)	mg/L	0.1	BDL
38.	Cadmium (as Cd)	mg/L	2.0	BDL
39.	Mercury (as Hg)	mg/L	0.01	BDL
40.	Manganese (as Mn)	mg/L	2.0	BDL
41.	Iron (as Fe)	mg/L	3.0	0.112
	•			•

Locatior	Safe A & T Technology Pvt. Ltd.			
Date of S	Sampling			12.06.17
Sr.	Parameters	Unit	Std. Limit	Results
42.	Vanadium (as V)	mg/L	0.2	BDL
43.	Selenium (as Se)	mg/L	0.05	BDL
44.	Boron (as B)	mg/L		BDL
45.	Bioassay Test on fish	% survival		100



Dombivli

3.4 Ground WaterQuality:

Sr.	Location	Source	Phase	Table No.
1.	Gaondevi Village Synthesis	Well Water	Phase I	I
2.	ThakurliTalavThakurli	Lake Water	Phase I	I
3.	MhasobaDevasthan Lake	Ground Water	Phase I	I
4.	Horizon Mall	Borewell water	Phase II	п
5.	Lodha Residency	Borewell water	Phase II	п
6.	Near AltraChemBhoparGoan	Ground Water	Phase II	п
7.	Pimpleswar Mandir	Well water	Phase II	III

Locati	Location				ThakurliT alavThak urli	Mhasoba Devastha n Lake
Date of	f Sampling			10.06.17	12.06.17	17.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
1.	Colour	Hazen		1	1	1
2.	Smell	-	Agreeable	Agreeable	Agreeable	Agreeable
3.	рН	-	6.5-8.5	7.46	7.1	8.32
4.	Oil & Grease	mg/L		BDL	BDL	BDL
5.	Suspended Solids	mg/L	100	11	9	BDL
6.	Dissolved Oxygen (%Saturation)	%		44	61	85
7.	Chemical Oxygen Demand	mg/L	500	40	11	BDL
8.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	10 (WHO, 1993)	14	3.9	BDL
9.	Electrical Conductivity (at 25°C)	µmho/cm	6 (WHO, 1993)	1636	851	1022
10.	Nitrite Nitrogen (as NO ₂)	mg/L	0.3 (WHO, 1993)	BDL	BDL	0.02
11.	Nitrate Nitrogen (as NO ₃)	mg/L		4.81	2.05	2.7
12.	(NO ₂ + NO ₃)- Nitrogen	mg/L	45	4.81	2.05	2.72
13.	Free Ammonia (as NH ₃ -N)	mg/L	1.0	BDL	BDL	BDL

Locati	Location				ThakurliT alavThak urli	Mhasoba Devastha n Lake
Date of	Date of Sampling				12.06.17	17.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
14.	Total Residual Chlorine	mg/L	0.5	BDL	BDL	0.13
15.	Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL
16.	Fluoride (as F)	mg/L		0.14	0.14	BDL
17.	Sulphide (asS ²⁻)	mg/L	1	BDL	BDL	BDL
18.	Dissolved Phosphate (as P)	mg/L	0.05	BDL	BDL	BDL
19.	Sodium Absorption Ratio	mg/L		1.13	0.52	1.23
20.	Total Coliforms	MPN index/ 100 ml		24	1600	220
21.	Faecal Coliforms	MPN index/ 100 ml	ND	9.2	49	130
22.	Total Phosphorous (as P)	mg/L	ND	BDL	BDL	BDL
23.	Total Kjeldahl Nitrogen	mg/L	0.5	2.02	2.91	0.79
24.	Total Ammonia (NH₄+NH₃)- Nitrogen	mg/L	0.001	BDL	0.72	<0.1
25.	Phenols (as C_6H_5OH)	mg/L	0.5	BDL	BDL	BDL
26.	Surface Active Agents (as MBAS)	mg/L	0.001	BDL	BDL	BDL

Locati	on		Gaondevi Village Syn.	ThakurliT alavThak urli	Mhasoba Devastha n Lake	
Date o	f Sampling			10.06.17	12.06.17	17.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
27.	Organo Chlorine Pesticides					
I.	Alachlor	µg/L	0.05	BDL	BDL	BDL
II.	Atrazine	µg/L	20	BDL	BDL	BDL
III.	Aldrin	µg/L	2	BDL	BDL	BDL
IV.	Dieldrin	µg/L	0.03	BDL	BDL	BDL
V.	Alpha HCH	µg/L	0.03	BDL	BDL	BDL
VI.	Beta HCH	µg/L	0.01	BDL	BDL	BDL
VII.	Delta HCH	µg/L	0.04	BDL	BDL	BDL
VIII.	Butachlor	µg/L	125	BDL	BDL	BDL
IX.	p,p DDT	µg/L	0.04	BDL	BDL	BDL
Х.	o,p DDT	µg/L	1	BDL	BDL	BDL
XI.	p,p DDE	µg/L	1	BDL	BDL	BDL
XII.	o,p DDE	µg/L	1	BDL	BDL	BDL
XIII.	p,p DDD	µg/L	1	BDL	BDL	BDL
XIV.	o,p DDD	µg/L	1	BDL	BDL	BDL
XV.	Alpha Endosulfan	µg/L	1	BDL	BDL	BDL
XVI.	Beta Endosulfan	µg/L	0.4	BDL	BDL	BDL
XVII.	Endosulfan Sulphate	µg/L	0.4	BDL	BDL	BDL
XVIII.	Y HCH (Lindane)	µg/L	0.4	BDL	BDL	BDL

Locati	on		Gaondevi Village Syn.	ThakurliT alavThak urli	Mhasoba Devastha n Lake	
Date o	Date of Sampling				12.06.17	17.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
28.	Polynuclear aromatic hydrocarbons (as PAH)	mg/L	2.0	BDL	BDL	BDL
29.	Polychlorinated Biphenyls (PCB)	mg/L	0.0001	BDL	BDL	BDL
30.	Zinc (as Zn)	mg/L	0.0005	BDL	BDL	BDL
31.	Nickel (as Ni)	mg/L	5.0	BDL	BDL	BDL
32.	Copper (as Cu)	mg/L	0.02	BDL	BDL	BDL
33.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.05	BDL	BDL	BDL
34.	Total Chromium (as Cr)	mg/L	1	BDL	BDL	BDL
35.	Total Arsenic (as As)	mg/L	0.05	BDL	BDL	BDL
36.	Lead (as Pb)	mg/L	0.01	BDL	BDL	BDL
37.	Cadmium (as Cd)	mg/L	0.01	BDL	BDL	BDL
38.	Mercury (as Hg)	mg/L	0.003	BDL	BDL	BDL
39.	Manganese (as Mn)	mg/L	0.001	BDL	BDL	0.027
40.	Iron (as Fe)	mg/L	0.1	BDL	BDL	BDL
41.	Vanadium (as V)	mg/L	0.3	BDL	BDL	BDL

Locatio	on		Gaondevi Village Syn.	Mhasoba Devastha n Lake				
Date of	Sampling		10.06.17	12.06.17	17.06.17			
Sr.	Parameters	Unit	Std. Limit	Results				
42.	Selenium (as Se)	mg/L		BDL	BDL	BDL		
43.	Boron (as B)	mg/L	0.01	BDL	BDL	0.82		
44.	Bioassay Test on fish	% survival		100	100	100		

Table No. II

Locati	on			Horizon Mall	Near AltraChe mBhopar Goan	
Date of	f Sampling			07.06.17	08.06.17	12.06.17
Sr.	Parameters	Unit		Results		
1.	Colour	Hazen		1	1	1
2.	Smell	-	Agreeable	Agreeable	Agreeable	Agreeable
3.	рН	-	6.5-8.5	7.69	7.5	6.86
4.	Oil & Grease	mg/L		BDL	BDL	BDL
5.	Suspended Solids	mg/L	100	7	7	14
6.	Dissolved Oxygen (%Saturation)	%		75	70	40
7.	Chemical Oxygen Demand	mg/L	500	12	99	32
8.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	10 (WHO, 1993)	4.3	35	9

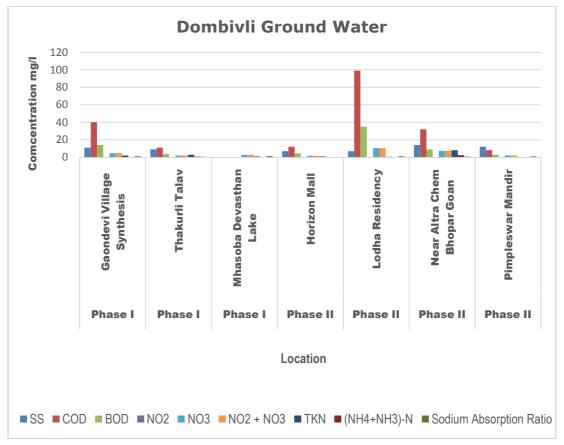
Dombivli

Locati	on			Horizon Mall	Lodha Residenc Y	Near AltraChe mBhopar Goan
Date o	f Sampling			07.06.17	08.06.17	12.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
9.	Electrical Conductivity (at 25°C)	µmho/cm	6 (WHO, 1993)	113.6	1763	1920
10.	Nitrite Nitrogen (as NO ₂)	mg/L	0.3 (WHO, 1993)	BDL	BDL	BDL
11.	Nitrate Nitrogen (as NO ₃)	mg/L		1.58	10.5	7.23
12.	(NO ₂ + NO ₃)- Nitrogen	mg/L	45	1.58	10.5	7.23
13.	Free Ammonia (as NH ₃ -N)	mg/L	1.0	BDL	BDL	BDL
14.	Total Residual Chlorine	mg/L	0.5	BDL	BDL	BDL
15.	Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL
16.	Fluoride (as F)	mg/L		0.5	0.74	0.4
17.	Sulphide (asS ²⁻)	mg/L	1	BDL	BDL	BDL
18.	Dissolved Phosphate (as P)	mg/L	0.05	BDL	BDL	BDL
19.	Sodium Absorption Ratio	mg/L		0.35	1.08	0.78
20.	Total Coliforms	MPN index/ 100 ml		79	7.8	540

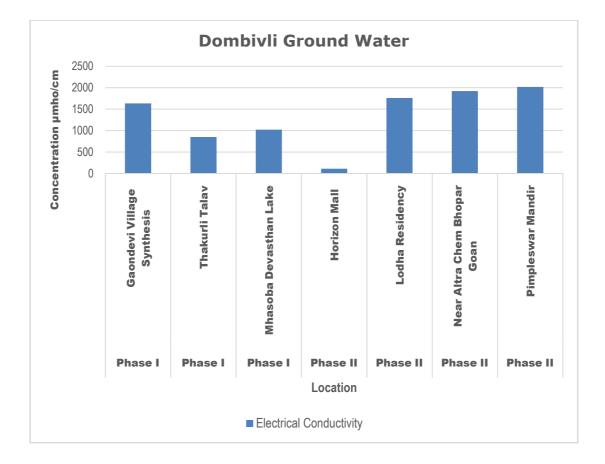
Locati	on			Horizon Mall	Lodha Residenc Y	Near AltraChe mBhopar Goan
Date o	f Sampling			07.06.17	08.06.17	12.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
21.	Faecal Coliforms	MPN index/ 100 ml	ND	22	4.5	240
22.	Total Phosphorous (as P)	mg/L	ND	BDL	BDL	BDL
23.	Total Kjeldahl Nitrogen	mg/L	0.5	0.78	0.56	8.06
24.	Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	0.001	BDL	BDL	2.4
25.	Phenols (as C_6H_5OH)	mg/L	0.5	BDL	BDL	BDL
26.	Surface Active Agents (as MBAS)	mg/L	0.001	BDL BDL		BDL
27.	Organo Chlorine Pesticides					
I.	Alachlor	µg/L	0.05	BDL	BDL	BDL
II.	Atrazine	µg/L	20	BDL	BDL	BDL
III.	Aldrin	µg/L	2	BDL	BDL	BDL
IV.	Dieldrin	µg/L	0.03	BDL	BDL	BDL
V.	Alpha HCH	µg/L	0.03	BDL	BDL	BDL
VI.	Beta HCH	µg/L	0.01	BDL	BDL	BDL
VII.	Delta HCH	µg/L	0.04	BDL	BDL	BDL
VIII.	Butachlor	µg/L	125	BDL	BDL	BDL
IX.	p,p DDT	µg/L	0.04	BDL	BDL	BDL
Х.	o,p DDT	µg/L	1	BDL	BDL	BDL

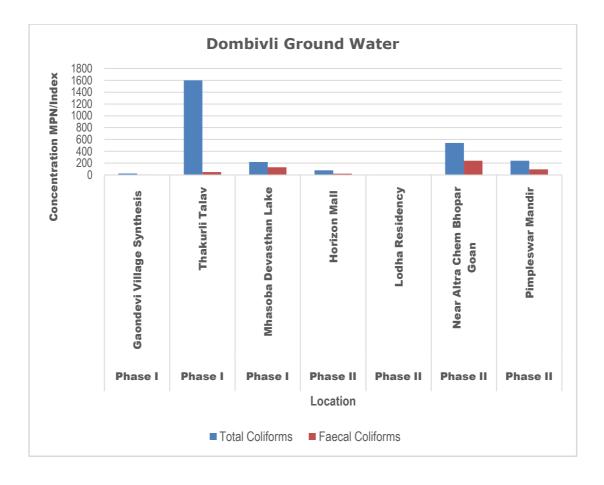
Locati	on			Horizon Mall	Lodha Residenc Y	Near AltraChe mBhopar Goan
Date o	f Sampling			07.06.17	08.06.17	12.06.17
Sr.	Parameters	Unit	Std. Limit		Results	
XI.	p,p DDE	µg/L	1	BDL	BDL	BDL
XII.	o,p DDE	µg/L	1	BDL	BDL	BDL
XIII.	p,p DDD	µg/L	1	BDL	BDL	BDL
XIV.	o,p DDD	µg/L	1	BDL	BDL	BDL
xv.	Alpha Endosulfan	µg/L	1	BDL	BDL	BDL
XVI.	Beta Endosulfan	µg/L	0.4	BDL	BDL	BDL
XVII.	Endosulfan Sulphate	µg/L	0.4	BDL	BDL	BDL
XVIII.	Y HCH (Lindane)	µg/L	0.4	BDL	BDL	BDL
28.	Polynuclear aromatic hydrocarbons (as PAH)	mg/L	2.0	BDL	BDL	BDL
29.	Polychlorinated Biphenyls (PCB)	mg/L	0.0001	BDL	BDL	BDL
30.	Zinc (as Zn)	mg/L	0.0005	BDL	BDL	BDL
31.	Nickel (as Ni)	mg/L	5.0	BDL	BDL	BDL
32.	Copper (as Cu)	mg/L	0.02	BDL	BDL	BDL
33.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.05	BDL	BDL	BDL
34.	Total Chromium (as Cr)	mg/L	1	BDL	BDL	BDL

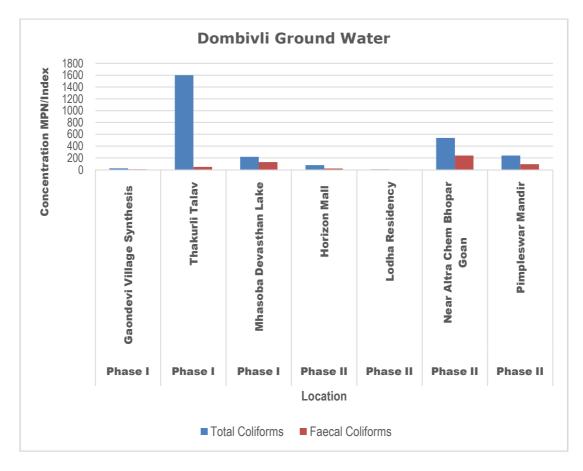
Locati	on			Horizon Mall	Lodha Residenc Y	Near AltraChe mBhopar Goan		
Date of	f Sampling			07.06.17	08.06.17	12.06.17		
Sr.	Parameters	Unit	Std. Limit	Results				
35.	Total Arsenic (as As)	mg/L	0.05	BDL	BDL	BDL		
36.	Lead (as Pb)	mg/L	0.01	BDL	BDL	BDL		
37.	Cadmium (as Cd)	mg/L	0.01	BDL	BDL	BDL		
38.	Mercury (as Hg)	mg/L	0.003	BDL	BDL	BDL		
39.	Manganese (as Mn)	mg/L	0.001	0.2	BDL	7.12		
40.	Iron (as Fe)	mg/L	0.1	BDL	BDL	0.145		
41.	Vanadium (as V)	mg/L	0.3	BDL	BDL	BDL		
42.	Selenium (as Se)	mg/L		BDL	BDL	BDL		
43.	Boron (as B)	mg/L	0.01	BDL	BDL	BDL		
44.	Bioassay Test on fish	% survival		100	100	100		


Table No. III

Locatio	n			Pimpleswar Mandir
Date of	Sampling			12.06.17
Sr.	Parameters	Unit	Std. Limit	Results
1.	Colour	Hazen		1
2.	Smell	-	Agreeable	Agreeable
3.	рН	-	6.5-8.5	6.83
4.	Oil & Grease	mg/L		BDL
5.	Suspended Solids	mg/L	100	12
6.	Dissolved Oxygen (%Saturation)	%		70
7.	Chemical Oxygen Demand	mg/L	500	8
8.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	10 (WHO, 1993)	2.9
9.	Electrical Conductivity (at 25°C)	µmho/cm	6 (WHO, 1993)	2020
10.	Nitrite Nitrogen $(as NO_2)$	mg/L	0.3 (WHO, 1993)	BDL
11.	Nitrate Nitrogen (as NO ₃)	mg/L		1.94
12.	(NO ₂ + NO ₃)- Nitrogen	mg/L	45	1.94
13.	Free Ammonia (as NH ₃ -N)	mg/L	1.0	BDL
14.	Total Residual Chlorine	mg/L	0.5	BDL
15.	Cyanide (as CN)	mg/L	0.2	BDL
16.	Fluoride (as F)	mg/L		0.14


Locatio	n			Pimpleswar Mandir
Date of	Sampling			12.06.17
Sr.	Parameters	Unit	Std. Limit	Results
17.	Sulphide (asS ²⁻)	mg/L	1	BDL
18.	Dissolved Phosphate (as P)	mg/L	0.05	BDL
19.	Sodium Absorption Ratio	mg/L		0.85
20.	Total Coliforms	MPN index/ 100 ml		240
21.	Faecal Coliforms	MPN index/ 100 ml	ND	94
22.	Total Phosphorous (as P)	mg/L	ND	BDL
23.	Total Kjeldahl Nitrogen	mg/L	0.5	0.11
24.	Total Ammonia (NH₄+NH₃)-Nitrogen	mg/L	0.001	BDL
25.	Phenols (as C_6H_5OH)	mg/L	0.5	BDL
26.	Surface Active Agents (as MBAS)	mg/L	0.001	0.85
27.	Organo Chlorine Pesticides			
I.	Alachlor	µg/L	0.05	BDL
II.	Atrazine	µg/L	20	BDL
III.	Aldrin	µg/L	2	BDL
IV.	Dieldrin	µg/L	0.03	BDL
V.	Alpha HCH	µg/L	0.03	BDL
VI.	Beta HCH	µg/L	0.01	BDL


Locatio	n			Pimpleswar Mandir
Date of	Sampling			12.06.17
Sr.	Parameters	Unit	Std. Limit	Results
VII.	Delta HCH	µg/L	0.04	BDL
VIII.	Butachlor	µg/L	125	BDL
IX.	p,p DDT	µg/L	0.04	BDL
Х.	o,p DDT	µg/L	1	BDL
XI.	p,p DDE	µg/L	1	BDL
XII.	o,p DDE	µg/L	1	BDL
XIII.	p,p DDD	µg/L	1	BDL
XIV.	o,p DDD	µg/L	1	BDL
XV.	Alpha Endosulfan	µg/L	1	BDL
XVI.	Beta Endosulfan	µg/L	0.4	BDL
XVII.	Endosulfan Sulphate	µg/L	0.4	BDL
XVIII.	Y HCH (Lindane)	µg/L	0.4	BDL
28.	Polynuclear aromatic hydrocarbons (as PAH)	mg/L	2.0	BDL
29.	Polychlorinated Biphenyls (PCB)	mg/L	0.0001	BDL
30.	Zinc (as Zn)	mg/L	0.0005	BDL
31.	Nickel (as Ni)	mg/L	5.0	BDL
32.	Copper (as Cu)	mg/L	0.02	BDL
33.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.05	BDL
34.	Total Chromium (as Cr)	mg/L	1	BDL


Locatio	n			Pimpleswar Mandir
Date of	Sampling			12.06.17
Sr.	Parameters	Unit	Std. Limit	Results
35.	Total Arsenic (as As)	mg/L	0.05	BDL
36.	Lead (as Pb)	mg/L	0.01	BDL
37.	Cadmium (as Cd)	mg/L	0.01	BDL
38.	Mercury (as Hg)	mg/L	0.003	BDL
39.	Manganese (as Mn)	mg/L	0.001	3.94
40.	Iron (as Fe)	mg/L	0.1	0.178
41.	Vanadium (as V)	mg/L	0.3	BDL
42.	Selenium (as Se)	mg/L		BDL
43.	Boron (as B)	mg/L	0.01	BDL
44.	Bioassay Test on fish	% survival		100

Graphs: Ground Water Quality Monitoring for Dombivli MIDC:

Dombivli

4. Summary of the results

Based on the study done, the results are summarised and concluded as follows:

4.1 Stack Emission Monitoring:

Six industries from Phase I and seven industries from Phase II were selected for Stack emission monitoring. Also, VOC sample of two stack of Phase I and two stacks of Phase II was collected.

- **1. Particulate matter (PM):** Out the 13stacks; Particulate matter was collected only from 8 stacks. All theresults obtained are within the standard emission for the specified industry. The highest range of Particulate matter was observed at Ravi Raj Knit Processing Pvt. Ltd. with 103 mg/Nm³.
- **2. Sulphur dioxide (SO₂):** SO₂ was sampled from 9 stacks out of the 13 stacks, in which the result of one stack was below the detectable limit. All industries result is within the limits and the highest range was observed at Ravi Raj Knit Processing Pvt. Ltd. with 11.8mg/Nm³.
- **3. Nitrogen dioxide (NO₂):** NO₂ was sampled from 8 stacks out of the 13 stacks. The concentration of NO₂ of six industries was beyond the prescribed standard limit of the respective type of industry.
- **4. Hydrogen Chloride (HCL):** HCL sample was collected only for 3 stacks. Arti Industries Ltd. was found have highest concentration of HCL with 32.4mg/Nm³.
- **5. VOC:** Only Benzene and Toulene was detected in the 4 stacks monitored. The range of benzene was observed between 0.21mg/Nm³to 1.96mg/Nm³ and that of Toulene was observed between 0.07mg/Nm³to 1.67 mg/Nm³

4.2 Ambient Air Quality Monitoring:

Six ambient air samples were collected from Phase I and six samples was collected from Phase II of Dombivli region. The parameters monitored were studied as per the NAAQ standards. The variations of each parameter within the area under study are discussed below:

- **1. Sulphur dioxide(SO₂):** All the locations are observed with very low concentrations of SO₂, with 4 stacks out of the 12 stacks showed results below the detection limit. The highest level of SO₂was observed at Nilamber Dyingwith 14.4 μ g/m³ which is very much lower than the standard limit of NAAQS i.e. 80 μ g/m³.
- **2. Nitrogen dioxide (NO₂):** Values of nitrogen dioxide are also observed below the standard limit of $80\mu g/m^3$ at all the 12 locations. The highest level of NO₂ was observed at Dombivli Better Environment System Association CETP with a result of 32.4 $\mu g/m^3$.
- **3. Particulate Matter (PM₁₀):** Out of12 sampled locations, 6 in Dombivli region showed higher level of PM₁₀ concentration than the standard limit of NAAQS. The level of PM₁₀emission ranged from 301 μ g/m³at CETP MIDC Phase II to 491 μ g/m³ at KAMA Office.
- **4. Particulate Matter (PM_{2.5}):** Like PM_{2.5}, all 12 sampled locations in Dombivli region showed higher level of PM_{2.5} concentration than the standard limit of NAAQS.The level of PM_{2.5} emission ranged from 70 μ g/m3 both atArch Pharma Lab Ltd. and Dhanlaxmi Fabrics Ltd. to 123 μ g/m³ at KAMA Office.

- **5. Ozone (O₃):** Out of the 12 locations monitored, only one location was detected with O_3 of 30.5 μ g/m³ which is well within the standard limit of 180 μ g/m³ as per NAAQS.
- 6. Lead (Pb):The standard limit of Pb is 1 μg/m³as per NAAQS. Two location out of 12 location monitored was observed exceeding limit of Pb concentration with 1.44 μg/m³and 1.54 μg/m³at Aarti Industries Ltd. and SuvishrhuSpeciality Chemicals Pvt. Ltd. respectively
- **7. Carbon Monoxide (CO):** Concentration of carbon monoxide has been found to well within the limits in all 12 locations monitored.
- 8. Ammonia (NH₃):Ammonia was below the detectable limit in 7 locations out of the 12 locations monitored. The level of NH₃ ranged in between 60.5 μ g/m³ to 225 μ g/m³.
- **9. Benzene** (C_6H_6): Out of 12 locations monitored, 5 locations was having benzene below the detection limit. But Dombivli Better Environment System Association CETP, Auchtel Products Ltd., Zenith industrial Rubber Product Pvt. Ltd. and Dhanlaxmi Fabrics Ltd. the level of Benzene exceeded with 13.5 µg/m³, 5.91 µg/m³, 18.2 µg/m³ and 25.7 µg/m³recpected
- **10.Benzo(a)pyrene (BaP):**BaP was below detectable limit in all 12 locations monitored.
- **11.Arsenic (As):**As was also below detectable limit in all 12 locations monitored.
- **12.Nickel (Ni):** Concentration of Nickel was higher than its permissible limit of 20ng/m³ at 4 locations monitored.

4.3 Waste Water Quality Monitoring:

To understand the quality of treated effluent, samples were collected from 7 industries of Phase I and 6 industries of Phase II Dombivli. Considering the general parameters of all the industries mentioned, following are the conclusions:

- **1. Colour:** Colour units are found high with more than 100 Hazen unit in 9 water sample collected.
- 2. Odour: odour of all the samples is found disagreeable at 6 water samples collected.
- **3. pH**: it is observed in between 5.75 and 7.88 which is well within the range.
- **4. Suspended Solids**: Suspended solids of all 13 water sample is well within the limits and ranged in between 9 mg/L to 64 mg/l.
- **5. Chemical Oxygen Demand**: Out of all samples collected, 8 samples exceeded the limit required as per standard. The highest COD was observed at Dombivli common inletwith 6000 mg/L concentration.
- **6. Biochemical Oxygen Demand**: 10 out of the 13 samples collected was exceeding the limit required as per standard of BOD. The highest BOD was observed at Dombivli common outlet with 1886 mg/L concentration.
- **7. Sulphide**: 7 samples collected detected high level of Sulphide ranging in between 11.2 mg/L to 77.6 mg/L. The remaining 6 locations had Sulphide concentration lesser than the detectable range.

Dombivli

- **8. Total Ammoia**: 4 water samples collected had high concentration of Ammonia ranging in between 30 mg/L to 115 mg/L.
- **9. Total Kjeldahl Nitrogen**: 4 water samples collected had high concentration of TKN ranging in between 127 mg/L to 260 mg/L.
- **10.Fish Bioassay**: 100% Survival was attained in 8 water samples collected for Bioassay test and in 4 water samples, no fishes survived at all.
- **11.Heavy metals**: All the heavy metals are found below the standard limits in all the samples.

4.3 Ground Water Quality Monitoring:

Three ground water samples were collected from Phase I and three was collected from Phase II of Dombivli.

- **1) Colour** (Hazen Units): Colour units are below the acceptable standard of all water samples collected.
- 2) Odour: odour of all the samples is found agreeable.
- **3) Chemical Oxygen Demand:** The COD of all 6 samples exceeded and was found in the range between 28 mg/L to 77 mg/L.
- **4) Biological Oxygen Demand:** BOD of all 6 samples also exceeded and was found in the range between 8.53 mg/L to 23.4 mg/L.

Following are the parameters which are compared with ISO 10500:2012 Drinking water specifications.

- 1) Nitrite: Values of Nitrite are at below detection level except for Horizon Mall Borewell water sample.
- 2) Nitrate: Results of Nitrate are also observed below standard limit (45mg/l). It is observed in the range of 1.27 mg/L to 3.43 mg/L.
- 3) Residual Free Chlorine: Values are below the acceptable standards.
- **4) Total Ammonia**: Values are below the acceptable standards in all regions except for ThakurliTalav lake water which showed 0.53 mg/L concentration.
- 5) Fluoride: Values are below the acceptable standards, below <0.05mg/L.
- 6) Sulphide: All the readings of sulphide are observed below the detectable limit.
- **7) Sodium Absorption Ratio:** These values fit within range of water quality criteria of CPCB.
- **8) Total Kjeldahl nitrogen:** All 6 water sample collected exceeded the standard limit of TKN and ranged in between 0.92 mg/L to 2.08 mg/L concentration.
- **9) Fish Bioassay**: The Horizon mall borewell water sample 0% survival was obtained and at LodhaVihar borewell water sample 80% survival was observed. Remaining all location 100% survival was observed.

Dombivli

10) *Boron: Values are below the acceptable standards.

(* CPCB Water Quality criteria for Irrigation, Industrial Cooling & Controlled Waste disposal).

- **11)** Surface Active Agents: It exceeds the standard of drinking water.
- **12) Metals:** All the metals except manganese at few locations are observed within the acceptable limits of drinking water standards.

5. CEPI Score

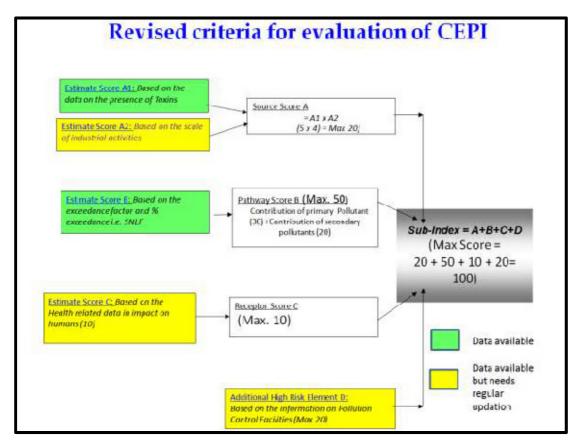
Comprehensive Environmental Pollution Index (CEPI) is intended to act as early warning tool which helps in categorization of industrial clusters/areas in terms of priority of needing attention.

CPCB had evolved certain methodology to calculate CEPI, in which a score has been fixed for different environmental components based on the level of pollution. The scoring system involves an algorithm that takes into account the basic selection criteria. This approach is based on the basic hazard assessment logic that can be summarized as below.

Hazard = pollutant source, pathways, and receptor

CPCB has calculated CEPI for the identified critically polluted industrial clusters. It is calculated separately for air, water, and land. The basic framework and scoring system of the CEPI – based on three factors namely pollutant, pathway, and receptor – has been described further under this section.

To overcome the subjectivity, revised concept is proposed by eliminating the subjective factors as described in the previous section, but retaining the factors which can be measured precisely.


- i. Revised concept is prepared by eliminating the debatable factors but retaining the factors which can be measured precisely.
- ii. It is decided to develop the Comprehensive Environmental Pollution Index (CEPI) retaining the existing algorithm of Source, Pathway and Receptor.
- iii. Health component was also retained in the revised concept in line with the suggestions of Secretary, MoEFCC during the meeting held in MoEF.

Outlines of revised CEPI 2016 criteria

The outlines of the revised CEPI criteria are as follows:

- 1. It is proposed to develop the Comprehensive Environmental Pollution Index (CEPI) based on Sources of pollution, real time observed values of the pollutants in the ambient air, surface water and ground water in & around the industrial cluster and health related statistics.
- 2. For assessment of the environmental quality of the area i.e. CEPI score, the concept of SNLF i.e. a surrogate number which represents the level of exposure (a function of percentage sample Exceedance & Exceedance Factor) shall be used.
- 3. Health component to be evaluated based on the health data available from major hospitals in the area was also retained in the revised concept.

4. The evaluation criterion of the revised CEPI version 2016 is described in the flowchart given below:

Here, health data collected for Receptor Score C is included in Annexure I

Based on Sub-index Score (score of individual environmental component like air, water etc.):

- Score more than 63: A Critical Level of Pollution in the respective level of environmental component
- Score between 51-63: Severe to critical level of pollution with reference to respective environmental component

Cut-off Score

- Score 50: Severely Polluted Industrial Clusters/areas
- Score 60: Critically Polluted Industrial Clusters/areas

Based on Aggregated CEPI Score(score includes sub-index score of all individual environmental components together):

- Aggregated CEPI score >70: Critically polluted areas
- Aggregated CEPI score between 60-70: Severely polluted areas

Since the inception of the programme, MPCB has also formulated Action Plans to mitigate the environmental pollution problems for each of the 8 Critically Polluted Areas

Dombivli

(CPAs) in Maharashtra. Based on available information, parameters selected and monitored in continuation with this, CEPI has been calculated and Short-Term Action Plan (STAP) as well as Long Term Action Plan (LTAP) was prepared in 2010.

Subsequently NAAQS 2009 came in force. List of parameters to be considered increased and expanded including more critical and hazardous pollutants like benzene, BaP, Metals, etc. existing in the environment. There was revision of standards (limiting values) as well. In this present report of 2016 prepared by MPCB, CEPI is calculated considering all these revised standards' limiting values, list of parameters and complete scope of monitoring.

The result shows that CEPI score of present report is 49.69. The present study is the compilation of pre-monsoon season, which also affects the score value. It should be noticed here that MPCB's efforts through the formulation of action plans decreased the overall concentration of pollutants in all aspects i.e. air, land and water in Chembur area in past three years. This has also resulted in decreased score of CEPI.

5.1 Comparison of CEPI scores:

Results show that present CEPI score (49.69) of Dombivli considering all revised standards is lesser tan the CEPI Score of February 2017 (65.2) report.

Detailed results of Air, Water and Land are given below:

	A1	A2	Α	B1	B2	В3	В	C1	C2	С3	С	D	СЕРІ
Present Report June 2017 (Revised CEPI 2016)	4.3	2.2	9.46	-	-	-	16.2	-	-	-	0	15	40.66
February, 2017	2	5	10	5	4	3	12	4	3	0	12	15	49
CEPI score 2016	4	2	8	3	2.3	4	9.3	5	2	0	10	10	37.3
CEPI score 2013	6	5	30	6	0	0	6	5	3	0	15	15	66
CPCB Report 2009	6	5	30	6	0	0	6	5	3	0	15	15	66

Air

Water:

	A1	A2	Α	B1	B2	В3	В	C1	C2	С3	С	D	CEPI
Present Report June 2017 (Revised CEPI 2016)	2	3.6	7.2	-	-	-	12.89	-	-	-	5	10	35.09
February, 2017	2	5	10	8	3.3	0	11.3	5	5	5	30	10	61.3
CEPI score 2016	4	2	8	4	0	6	10	5	4	5	25	10	53
CEPI score 2013	6	5	30	8	0	3	11	5	5	5	30	10	81
CPCB Report 2009	3	5	15	8	0	3	11	5	4.5	5	27	10	63.5

Land:

	A1	A2	A	B1	B2	B3	В	C1	C2	С3	С	D	СЕРІ
Present Report June 2017 (Revised CEPI 2016)	3.6	4.7	16.92	-	-	-	11.47	-	-	-	5	10	43.39
February, 2017	2	5	10	7.5	1.3	0	8.8	5	4	5	25	10	53.8
CEPI score 2016	3	2	6	4	0	4.1	8.1	5	2	4	27	10	38.1
CEPI score 2013	4	5	20	7.75	1.5	3	12.25	5	4.75	5	28.75	10	71
CPCB Report 2009	3	5	15	8	1.5	3	12.5	5	3	5	20	10	57.5

	Air Index	Water Index	Land Index	СЕРІ	
Present Report 2017	- 40.66		43.39	49.69	
CEPI score February, 2017	49	61.3	53.8	65.82	
CEPI score 2016	37.3	53	38.1	49.96	
CEPI score 2013	66	81	71	89.90	
CPCB Report 2009	- 00		57.5	78.41	

Aggregated CEPI:

6. Conclusion

The industrial part of Dombivli has a number of factories manufacturing dyes, paints, and industrial and agricultural chemicals. Heavy metal factories manufacturing a wide variety of equipment are also based in this region. A few nationally prominent industrial establishments that have manufacturing plants in Dombivli are Gharda Chemicals, Vicco Labs, Lloyd Steel and Deepak Fertilizers.

The samples taken from 12 stacks from different industries in the region, only Nitrogen Dioxide have been found to have exceeded the prescribed limit. The main reason of the increase in nitrogen dioxide in the region is due to fossil fuel combustion processes. We will be taking necessary steps for controlling and reducing its exposure.

12 ambient air samples were collected from different locations in the region. The concentration of PM_{10} was high at all 12 locations sampled and $PM_{2.5}$ was high at 9 locations sampled. The main reason for the increase in the concentration of Particulate matter is the increase in traffic and crowd. The concentration of Benzene was also increased in two locations monitored which is also from vehicle exhaust and other combustion processes of the industries nearby. The Nickel concentration in four locations monitored was also found to be high. The Nickel in ambient air is produced mainly due to municipal waste incineration, combustion of coal and heavy fuel oil in industries and windblown dust also as Nickel is found naturally in the earth's crust (in various forms such as nickel sulphides and oxides), and is present in small quantities in soils, aquatic environments, and vegetation.

Thirteen waste water samples were collected from different ETP outlets in various industries located in the region and also from CEPT inlet and outlet of both Phase I and Phase II were collected. Parameters like Oil & Grease, Chemical Oxygen Demand, Biological oxygen demand, Nitrogen, Sulphide, Total Coliforms, Faecal Coliforms and Total Kjeldhal Nitrogen was found to have exceeded the limit of disposal of treated waste water. We have informed the respective industry about the same and actions are taken for improving the quality of treated waste water before disposal.

In the ground water samples collected, Electrical Conductivity, Total Kjeldahl Nitrogen and BOD was found in higher concentration. The ground water collected is from Borewell and is not used for drinking purpose.

The State Pollution Control Board and Regional Office of SPCB are continuously initiating action against industries for reducing and controlling the pollution caused due the industries. Many industries were issued with closure direction and show cause notice for emission control. Regular compliance of industries is monitored by Board officials for maintain the pollution reduced due to the implementation of action plan.

	A1	A2	Α	В	С	D	CEPI
Air Index	4.3	2.2	9.46	16.2	0	15	40.66
Water Index	2	3.6	7.2	12.89	5	10	35.09
Land Index	3.6	4.7	16.92	11.47	5	10	43.39
Aggregated CEPI							49.69

7. Efforts taken for the reduction in pollution:

The regional office of Maharashtra pollution control board has taken various initiatives in reducing the CEPI Score of 89.90 of 2013 to 77.88 of 2017. Below mentioned are some of the efforts:

- CETP has carried performance evaluation study.On the basis of analysis report and visit, the Board has issued directions for the up gradation of CETP.
- Based on the performance evaluation of air pollution control measures in the industrial units, Board had issued closer direction & show cause notice to industry and regular compliance is monitored by Board officials.
- All industries are member of CHWTSDF & regular collection and transportation is done by CHWTSDF, Taloja. Also regular monitoring carried out by MPCB.
- For awareness of Environment pollution reduction, seminar on zero discharge from textile industry, seminar on Emission Trading Scheme etc. was carried out by Regional offices of MPCB.
- Installation of CAAQM stations and online display of AQQM data work is in process.

8. References

- 1) Criteria for Comprehensive Environmental Assessment of Industrial Clusters, December 2009, CPCB, EIAS/4/2009-10
- 2) Comprehensive Environmental Assessment of Industrial Clusters, December 2009, CPCB, EIAS/5/2009-10
- 3) Action Plan for Industrial Cluster: Chandrapur, November 2010, MPCB
- 4) Action Plan for Industrial Cluster: Dombivli, November 2010, MPCB
- 5) Action Plan for Industrial Cluster: Aurangabad, November 2010, MPCB
- 6) Action Plan for Industrial Cluster: NaviMumbai, November 2010, MPCB
- 7) Action Plan for Industrial Cluster: Navi Mumbai, November 2010, MPCB
- 8) Standard Methods for the Examination of Water and Waste Water, American Public Health Association, 22nd Edition, 2012.
- 9) IS 3025 (various parts)
- 10)www.mpcb.gov.in
- 11)www.cpcb.gov.in

9. Annexure

Annexure I: Health related data in impact on humans

C: Receptor

Component C (Impact on Human Health)				
10				
Main - 10				
% increase in cases	Marks			
<5%	0			
5-10%	5			
>10%	10			

- % increase is evaluated based on the total no. of cases recorded during two consecutive years.
- For Air Environment, total no. of cases related to Asthma, Bronchitis, Cancer, Acute respiratory infections etc. are to be considered.
- For surface water/ ground water Environment, cases related to Gastroenteritis, Diarrhoea, renal (kidney) malfunction, cancer etc are to be considered.
- For the above evaluation, the previous 5 years records of 3-5 major hospitals of the area shall be considered.

Attached below health data collected for the Dombivli region

MAHARASHTRA POLLUTION CONTROL BOARD SUB REGIONAL OFFICE KALYAN -1

Tel: 95-251-2310167/212 Fax: 2310192 Website: <u>http://mpcb.gov.in</u> E-mail: <u>rokalyan@mpcb.gov.in</u>

Sidhivinayak Sankul 3rd & 4th Floor, Near Oak Baug, Kalyan (West), Dist. Thane

Date: 16 / 06 /2017.

No. MPCB/SROK-1/ 1292

To,

- 1) Mamata Hospital, Dombivali.
- 2) Hambarde Hospital, Dombivali.
- 3 Municipal Hospital, Shastri Nagar, Dombivali.

Sub: Health related data collection for CEPI REV.

Ref: Request from representative of Ashwamedh Engineers & Consultants C. S. I.

Sir,

As per the CPCB monitoring in the 2009 the Domnbivali area comes under the comprehensive Environmental Pollution Index (CEPI). The Board has taken various initiatives to reduce the pollution level in Dombivali area and the CEPI index is reduced.

As per the CPCB new guidelines for the monitoring of CEPI area the health related study has been given weightage. The Board has appointed M/s. Ashwamedh Engineers & Consultants to collect this data regarding health study in the Dombivali area from major Health Care Establishment. Therefore you are requested to give the health related data in respect of diseases in a prescribed format for the year 2012, 2013, 2014, 2015, 2016 at earliest.

(Amar Durgule) Sub Regional Officer, Kalyan -1

Copy submitted for information:-Regional Officer, M. P. C. Board, Kalyan. कल्याण डोंबिवली महानगरपालिका,शास्त्रीनगर सामान्य रुग्णालय,डोंबिवली विभाग जा.क.कडोंमपा/सारु/मुका/ ७९५ दिनांक:- २७/६/१७

प्रति, मा.अधिक्षक, महाराष्ट्र पोल्युक्ष कट्रोल बोर्ड, सिर्ध्वविनायक संकुल, इरा व ४ था मजला, ओकबाग,कल्याण प.

विषय:-- आरोग्य विषयक माहिती देणेबाबत

संदर्भ:-No.MPCB/SROK-/1292, DATE-16/6/2017

उपरोक्त संदर्भिय विषयान्वये शास्त्रीनगर सामान्य रुग्णलयश्नी संबंधीत असलेली माहिती आपण मागणी केल्यानुसार मागील **ट्र्**वर्षाचे आरोग्य विषयक माहिती आपणाकडे पाठविण्यात येत आहे.

सोबत तक्ता जोडला आहे.

मुख्य वैद्यकीय अधिकारी, शारत्रीनगर सामान्य रुग्णालय,डोंबिवली विभाग कल्याण डोंबिवली महानगरपालिका.

2			Disease	s caused b	y Air pollution)	Diseases caused by Water pollution				on
• Name of Hospital	Year	Asthma	Bronchitis	Pulmonary cancer	Mesothelioma (lung cancer)	Acute respiratory infections	Gastroenteritis	Typhoid	Diarrhea	Liver damage and even cancer (due to presence of chlorinated solvents in the polluted water)	Kidney damage (because of varioùs harmfu chemicals present in the polluted water
	2012	9	3)	Ø	14	68	11	2	7	32
	2013	27	١5	0	0	0	45	2	10	13	19
Mamata Hospital	2014	10	Б	O	0	9	38	2	5	7	44
CAROSPINI	2015	15	1	0	0	0	10	Ο	4	U	2
A property and	2016	3	I P	0	0	9	31	١	0	11	6
I. M	2017	6	0	0	0	3	9	0	1	4	4
	2012						197	1	- : 19		
	2013										
Hambardo Hospital	2014										t'
Hambarde Hospital	2015										
	2016			2							
	2017							1			

			Disease	s caused b	y Air pollution	ı	Dis	eases ca	used by \	Water polluti	on
Name of Hospital	Year	Asthma	Bronchitis	Pulmonary cancer	Mesothelioma (lung cancer)	Acute respiratory infections	Gastroenteritis	Typhoid	Diarrhea	Liver damage and even cancer (due to presence of chlorinated solvents in the polluted water)	Kidney damage (because of various harmfu chemicals present in the polluted water
	2012				÷.						
	2013										
	2014		6								
Mamata Hospital	2015								Ň		
	2016					Ľ.					
	2017										
	2012			_		2					
	2013										
Hambarde Hospitalugeon	2014										
Rejty Hamberge Hospital 1920 1970 - Rejty Hamberge Hospital 1920 1970 - SSGSS 1970	2015					-					
	2016	20	7			2	45	3	2,	-	-
Reg. No. A. M. Opp. Sort	2017	6	yre 20	-	E.	-	32,	1	1	(-

DISEASES CAUSED BY AIR POLUTION -

DISEASES CAUSED BY WATER POLLUTION

MUDIKUD	YEAR	ASTHMA	BRONGHTTIS	PULMONARY CANCER	MESOTHELTOMA (LUNG CANCER	ACUTE RESPIRATORY INEECTION	GASTROENERITIS	Түрноір	DIARRHEA	LIVER DAMAGE AND EVERS	KIDNEY DAMAGE
MUNICIPA L	2012	05	27	-	_	01	+			CANCER	1. N. N.
HOSPITAL SHASTRI	2013	07	26	-		01	13	57	128		
NAGAR	2014	05	38	1		01	24	150	146	_	
DOMBIVLI (W)	2015	02	08	•		01	23	77	164		
	2016	05			· · · ·	04	51	91	163		-
	2017		27		-	03	65	109	240	•	<u> </u>
	2017	06	10	•		03	50	24	90		•

DESEASES	(AUSED BY	AIRPOLLUTION
----------	-----------	--------------

DISEASES CAUSED BY WATER POIL ... TU

				- 100 T	6 .		-			
YEAR	ASTHMA	SEDNICHTTS	CANCER	MESOTHELLON LUNA CANCER	AUST ANDA	CASTROENTER 3139	LIDHOLD	DIRRANE DIR	LIVER CATLE	TRANGUE
2012	20	27	-	-	01	13	57	128	-	_
2013	07	26	-	-	01	24	150	146	-	
2014	05	38	_	-	01	23	้ๆๅ	164		
2015	02	08		_	04	SI	91	163	-	
2016	05	27			03	65	109	240	_	
2017	06	10	-	-	03	50	24	90		
	2012 2013 2014 2015 2016	2012 0.5 2013 0.7 2014 0.5 2015 0.2 2016 0.5	2012 0.5 2.7 2013 0.7 2.6 2014 0.5 3.8 2015 0.2 0.8 2016 0.5 2.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Sr.	Parameters	Method References	Techniques	Detection Limit
1.	Acid Mist (as Sulphuric Acid)	US EPA Method no.m- 8	Barium thorine titration Method	0.6 mg/Nm ³
2.	Ammonia	IS 11255 (Part 6):1999, Reaffirmed 2003	Titration/Nessler Reagent / Spectrophotometric Method	1 mg/Nm ³
3.	Carbon Monoxide	USEPA Method 10B	GC-FID Method	0.2 mg/Nm ³
4.	Chlorine	US EPA Method 26 for sampling	Titrimetric	0.001 mg/Nm ³
5.	Fluoride (Gaseous)	US EPA Method 13 A	SPADNS Zirconium Lake Spectrophotometric Method	0.025 mg/Nm ³
6.	Fluoride (Particulate)	US EPA Method 13 A	SPADNS Zirconium Lake Spectrophotometric Method	0.005 mg/Nm ³
7.	Hydrogen Chloride	US EPA Method 26 for sampling	Titrimetric	0.25 mg/Nm ³
8.	Hydrogen Sulphide	IS 11255 (Part 4):1985	Titrimetric	1 mg/Nm ³
9.	Oxides of Nitrogen	IS 11255 (Part 7): 2005	PDSA Colorimetric Method	10 mg/Nm ³
10.	Oxygen	IS 13270 : 1992	ORSAT Apparatus	1 %
11.	Poly Aromatic Hydrocarbons (Particulate)	IS 5182 (Part 12) : 2004, Reaffirmed 2009 CPCB Guidelines, May 2011, Page No.39	GC-FID Method	0.25 mg/Nm ³
12.	Suspended Particulate Matter	IS 11255 (Part 1):1985, Reaffirmed 2003	Gravimetric Method	10 mg/Nm ³
13.	Sulphur Dioxide	IS 11255 (Part 2): 1985, Reaffirmed 2003	Titrimetric IPA thorine Method	5.0mg/Nm ³

Annexure II: Stack Emission Sampling and Analysis Methodology

Sr.	Parameters	Method References	Techniques	Detection Limit
				0.02kg/day
14.	BTX (Benzene, Toluene, Xylene)	NIOSH (NMAM) 1501	Adsorption and Desorption followed by GC-FID analysis	0.001 mg/Nm ³
15.	VOC (Volatile Organic Compounds)	NIOSH (NMAM) 1501 for sampling	Adsorption and Desorption followed by GC-FID or GC/MS analysis	-
i	Methyl Isobutyl Ketone	-	-	0.001 mg/Nm ³
ii	Benzene	-	-	0.001 mg/Nm ³
iii	Toluene	-	-	0.001 mg/Nm ³
iv	Xylene	-	-	0.001 mg/Nm ³
v	Ethyl Benzene	-	-	0.001 mg/Nm ³
vi	Ethyl Acetate	-	-	0.001 mg/Nm ³

Sr.	Parameters	Method References	Techniques	Detection Limit
1.	Sulphur Dioxide (SO ₂)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.1	Improved West &Gaeke Method	4 µg/m³
2.	Nitrogen Dioxide (NO_2)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.7	Modified Jacob &Hochheiser Method	3 µg/m³
3.	Particulate Matter (size less than 10 μ m) or PM ₁₀	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.11	Gravimetric Method	2 µg/m ³
4.	Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 15	Gravimetric Method	0.4 µg/m ³
5.	Ozone (O ₃)	APHA, Method No. 820, Page no. 836	Chemical Method	19.6 µg/m³
6.	Lead (Pb)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	0.02 µg/m ³
7.	Carbon Monoxide (CO)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume II, May 2011, Page No. 16	Non Dispersive Infra Red (NDIR) spectroscopy	0.05 mg/m ³
8.	Ammonia (NH ₃)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 35	Indophenol Blue Method	4.0µg/m ³
9.	Benzene (C_6H_6)	IS 5182 (Part 11):2006	Adsorption and Desorption followed by GC- FID analysis	1.0 µg/m ³
10.	Benzo (a) Pyrene (BaP) – particulate phase only,	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 39	Solvent extraction followed by GC- FID analysis	0.2 ng/m ³

Annexure III: Ambient Air Sampling and Analysis Methodology

Sr.	Parameters	Method References	Techniques	Detection Limit
11.	Arsenic (As)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	0.3ng/m ³
12.	Nickel (Ni)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	3.0ng/m ³

Sr.	Parameters	Methods References	Techniques	Detection Limit
1.	Sampling Procedure for Chemical Parameters	IS 3025 (Part 1): 1987, Reaffirmed 1998, Amds.1& APHA, 22 nd Ed., 2012, 1060 B, 1-39	_	_
2.	Sampling Procedure for Microbiological Parameters	APHA, 22nd Ed., 2012,1060 B, 1-39, 9040, 9-17, and 9060B, 9-35	-	-
3.	Temperature	APHA, 22 nd Ed., 2012, 2550-B, 2-69	By Thermometer	-
4.	Colour	APHA, 22 nd Ed., 2012 , 2120-B, 2-26	Visible Comparison Method	1 Hazen Unit
5.	Odour	IS 3025 (Part 5): 1983, Reaffirmed 2006	Qualitative Method	-
6.	рН	APHA, 22 nd Ed., 2012, 4500-H ⁺ - B, 4-92	By pH Meter	1
7.	Oil & Grease	APHA, 22 nd Ed., 2012, 5520-B, 5-40	Liquid -liquid Partition- Gravimetric Method	1.0 mg/L
8.	Suspended Solids	IS 3025(Part 17): 1984, Reaffirmed 2006,Amds.1	Filtration /Gravimetric Method	5.0 mg/L
9.	Dissolved Oxygen	IS 3025(Part 38): 1989, Reaffirmed 2009	Iodometric Method-Azide modification	0.05 mg/L
10.	Chemical Oxygen Demand	APHA,22 nd Ed., 2012 , 5220-B, 5-17	Open Reflux Method	5.0 mg/L
11.	Biochemical Oxygen Demand	IS 3025(Part 44): 1993,Reaffirmed 2009,Amds.1	Iodometric Method	5.0 mg/L
12.	Electrical Conductivity	APHA, 22 nd Ed., 2012, 2510- B, 2-54	By Conductivity Meter	0.1 µmho/cm
13.	Nitrite-Nitrogen	APHA, 22 nd Ed., 2012, 4500-NO ₂ -B, 4-120	Colorimetric Method	0.006 mg/L

Annexure IV: Water/Wastewater Sampling and Analysis Methodology

Sr.	Parameters	Methods References	Techniques	Detection Limit
14.	Nitrate-Nitrogen	APHA,22 nd Ed.,2012 ,4500-NO _{3,} B-4-122	UV Spectrophotometer Screening Method	0.2 mg/L
15.	(NO ₂ + NO ₃)- Nitrogen	APHA, 22 nd Ed., 2012, 4500-NO ₂ -B, 4-120 APHA,22 nd Ed.,2012,4500- NO ₃ ,B-4-122	Colorimetric Method V Spectrophotometer Screening Method	0.2 mg/L
16.	Free Ammonia	APHA, 22 nd Ed., 2012 , 4500 NH ₃ , F, 4 -115	Colorimetric Method	0.006 mg/L
17.	Total Residual Chlorine	IS 3025 (Part 26) :1986 , Reaffirmed 2009, Ed. 2.1(2004- 02)	Iodometric Method	0.1 mg/L
18.	Cyanide (CN)	APHA, 22 nd Ed., 2012 ,4500-CN, C & E, 4-41 & 4-43	Colorimetric Method	0.001 mg/L
19.	Fluoride (F)	APHA, 22 nd Ed., 2012, 4500-F ⁻ , D, 4- 87	SPADNS Method	0.05 mg/L
20.	Sulphide (S ²⁻)	APHA, 22 nd Ed., 2012, 4500 -S ² , C- 4-175, F-4-178	IodometricMethod	0.08 mg/L
21.	Dissolved Phosphate (P)	APHA,22 nd Ed., 2012 , 4500 P,E, 4- 155	Ascorbic Acid Method	0.03 mg/L
22.	Sodium Absorption Ratio	IS11624 :1986, Reaffirmed 2006	By Calculation	0.3
23.	Total Phosphorous (P)	APHA,22 nd Ed., 2012,4500 P,E,4- 155	Ascorbic Acid Method	0.03 mg/L
24.	Total Kjeldahl Nitrogen	APHA, 22 nd Ed., 2012, 4500 NH ₃ , B & C, 4 - 110, 4-112	Titrimetric Method	0.1 mg/L
25.	Total Ammonia (NH ₄ +NH ₃)- Nitrogen	APHA,22 ^d Ed., 2012 , 4500 NH ₃ , F, 4 - 115	Colorimetric Method	0.001 mg/L
26.	Phenols (C_6H_5OH)	APHA,22 nd Ed., 2012 , 5530- B & C, 5-44 & 5-47	Chloroform Extraction Method	0.001 mg/L

Sr.	Parameters	Methods References	Techniques	Detection Limit
27.	Surface Active Agents	APHA,22 nd Ed., 2012 , 5540-B & C,5-50	Methylene Blue Extraction Method	0.1 mg/L
28.	Organo Chlorine Pesticides	APHA, 22 nd Ed., 2012,6410B,6-74	GC MS-MS Method	0.01 µg/L
29.	Polynuclear aromatic hydrocarbons (PAH)	APHA, 22 nd Ed., 2012,6410B,6-74	GC MS-MS Method	0.01 µg/L
30.	Polychlorinated Biphenyls (PCB)	APHA, 22 nd Ed., 2012,6410B,6-74	GC MS-MS Method	0.01 µg/L
31.	Zinc (Zn)	IS 3025(Part 2): 2004	ICP Method	0.1 mg/L
32.	Nickel (Ni)	IS 3025(Part 2): 2004	ICP Method	0.05 mg/L
33.	Copper (Cu)	IS 3025(Part 2): 2004	ICP Method	0.03 mg/L
34.	Hexavalent Chromium (Cr ⁶⁺)	APHA, 22 nd Ed., 2012,3500-Cr,B,3- 69	Colorimetric Method	0.02 mg/L
35.	Total Chromium (Cr)	IS 3025(Part 2): 2004	ICP Method	0.02 mg/L
36.	Total Arsenic (As)	IS 3025(Part 2): 2004	ICP Method	0.005 mg/L
37.	Lead (Pb)	IS 3025(Part 2): 2004	ICP Method	0.008 mg/L
38.	Cadmium (Cd)	IS 3025(Part 2): 2004	ICP Method	0.002 mg/L
39.	Mercury (Hg)	IS 3025(Part 2): 2004	ICP Method	0.0008 mg/L
40.	Manganese (Mn)	IS 3025(Part 2): 2004	ICP Method	0.02 mg/L
41.	Iron (Fe)	IS 3025(Part 2): 2004	ICP Method	0.06 mg/L
42.	Vanadium (V)	IS 3025(Part 2): 2004	ICP Method	0.05 mg/L
43.	Selenium (Se)	IS 3025(Part 2): 2004	ICP Method	0.005 mg/L

Sr.	Parameters	Methods References	Techniques	Detection Limit
44.	Boron (B)	IS 3025(Part 2): 2004	ICP Method	0.1 mg/L
45.	Total Coliforms	APHA, 22 nd Ed., 2012,9221-B, 9-66	Multiple tube fermentation technique (MPN/100ml)	1.1 MPN/100ml
46.	Faecal Coliforms	APHA, 22 nd Ed., 2012,9221-E, 9-74	Multiple tube fermentation technique (MPN/100ml)	1.1 MPN/100ml
47.	Bioassay (Zebra Fish) Test	IS 6582, 1971, Reaffirmed 1987	Static Technique	-

Annexure V: National Ambient Air Quality Standards, 2009

The Gazette of India New DELHI, WEDNESDAY, NOBEMBER 18, 2009 No. B-29016/20/90/PCI-I EXTRAORDINARY PART III-Section 4 PUBLISHED BY AUTHORITY

National Ambient Air Quality Standards: Central Pollution Control Board

In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevntion and Control of Pollution) Act, 1981 (Act No.14 of 1981), and in suppression of the Notification No(s). S.O.384(E), dated 11th April, 1994 and S.O.935(E), dated 14th October, 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect, namely:

Sr.	Pollutant		Time		Concentrati	on in Ambient Air
No.			Weighted Average	Industrial, Residential, Rural and Other Areas	Ecologically Sensitive Areas (Notified by Central Government)	Methods of Measurement
(1)	(2)		(3)	(4)	(5)	(6)
1	Sulphur Dioxide (SO ₂)	μg/m ³	Annual *	50	20	– Improved West and Gaeke
1	Sulphu Dioxide (502)	µg/m	24 hours **	80	80	 Ultraviolet fluorescence
2	Nitrogen Dioxide (NO ₂)	μg/m ³	Annual *	40	30	 Modified Jacob & Hochheiser (Na-Arsenite)
2	Nilogen Dioxide (1002)	μg/m	24 hours **	80	80	 Chemilminescence
3	Particulate Matter (size		Annual *	60	60	– Gravimetric – TOEM
3	less than 10 $\mu m)$ or PM_{10}	$\mu g/m^3$	24 hours **	100	100	– TOEM – Beta attenuation
	Particulate Matter (size		Annual *	40	40	- Gravimetric
4	less than 2.5 $\mu m)$ or $PM_{2.5}$	$\mu g/m^3$	24 hours **	60	60	 TOEM Beta attenuation
~		. 3	8 hours **	100	100	– UV photometric
5	Ozone (O ₃)	$\mu g/m^3$	1 hour **	180	180	 Chemiluminescence Chemical Method
6	Lead (Pb)	μg/m ³	Annual *	0.50	0.50	 AAS/ICP method after sampling on EPM 2000 or
0	Lead (PU)	µg/m	24 hours **	1.0	1.0	equivalent filter paper – EDXRF using Teflon filter
7	Carbon Monoxide (CO)	mg/m ³	8 hours **	02	02	– Non Dispersive Infra Red
ŕ	carbon Monoxide (CO)	mg/m	1 hour **	04	04	(NDIR) spectroscopy
8	Ammonia (NH3)	μg/m ³	Annual *	100	100	 Chemiluminescence
		P.B	24 hours **	400	400	 Indophenol blue method
9	Benzene (C ₆ H ₆)	$\mu g/m^3$	Annual *	05	05	 Gas Chromatography based continuous analyzer Adsorption and Desorption followed by GC analysis
10	Benzo (a) Pyrene (BaP) – particulate phase only,	ng/m ³	Annual *	01	01	 Solvent extraction followed by HPLC/GC analysis
11	Arsenic (As)	ng/m ³	Annual *	06	06	 AAS/ICP method after sampling on EPM 2000 or equivalent filter paper.
12	Nickel (Ni)	ng/m ³	Annual *	20	20	 AAS/ICP method after sampling on EPM 2000 or equivalent filter paper.

Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals

24 hourly or 08 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2 % of the time, they may exceed 44 the limits but not on two consecutive days of monitoring.

Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

SANT PRASAD GAUTAM, Chairman, Central Pollution Control Board [ADVT-III/4/184/09/Extv.]

Note: The notifications on National Ambient Air Quality Standards were published by the Central Pollution Control Board in the Gazette of India. Extraordinary vide notification No(s). S.O. 384(E), dated 11th April, 1994 and S.O. 935(E), dated 14th October, 1998.

µg/m³: micro-gram/m³ i.e. 10⁻⁶gm/m³

ng/m³ : nano-gram/m³ i.e. 10⁻⁹gm/m³

Dombivli

Annexure VI: General Standards for Discharge of Environmental Pollutants, Part A: Effluents (The Environment (Protection) Rules, 1986, Schedule VI)

			Stand	dards	
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
1.	Colour and Odour	See Note 1		See Note I	See Note 1
2.	Suspended solids, mg/L, Max.	100	600	200	 a. For process waste water - 100 b. For cooling water effluent- 10 percent above total suspended mailer of influent cooling water.
3.	Particle size of suspended solids	Shall pass 850 micron IS Sieve			 a. Floatable solids, Max 3 mm b. Settleable solids Max 850 microns
4.	Dissolved solids (Inorganic), mg/L, Max.	2100	2100	2100	
5.	pH value	5.5 -9.0	5.5 -9.0	5.5 -9.0	5.5-9.0

			Stand	dards	
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
6.	Temperature °C, Max	Shall not exceed 40 in any section of the stream within 15 mts. Downstream from the effluent outlet	45 at the point of discharge		45 at the point of discharge
7.	Oil and Grease, mg/L, Max	10	20	10	20
8.,	Total Residual chlorine, mg/L, Max	1.0			1.0
9.	Ammonical Nitrogen (as N), mg/L, Max	50	50		50
10.	Total Kjeldahl Nitrogen (as N), mg/L, Max.	100			100
11.	Free Ammonia (as NH ₃), mg/L, Max	5.0			5.0
12.	Biochemical oxygen demand (5 days, at 20° c) mg/L, Max	30	350	100	100
13.	Chemical oxygen demand, mg/L, Max	250			250
14.	Arsenic (as As), mg/l, Max	0.2	0.2	0.2	0.2
15.	Mercury (as Hg). Mg/L, Max	0.01	0.01		0.01
16.	Lead (as Pb), mg/L, Max	0.1	1.0	-	1.0
17.	Cadmium (as Cd), mg/L,	2.0	1.0		2.0

			Stan	dards	
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
18.	Hexavalent Chromium (as Cr ⁺⁶) mg/L, Max	.1	2.0		1.0
19.	Total Chromium (as Cr), mg/L, Max	2.0	2.0		2.0
20.	Copper (as Cu), mg/L, Max.	3.0	3.0		3.0
21.	Zinc (as Zn), mg/L, Max.	5.0	15	0	15
22	Selenium (as Se), mg/l, Max.	0.05	0.05		0.05
23	Nickel (as Ni), mg/l, Max.	3.0	3.0		5.0
24	Boron (as B), mg/l, Max.	2.0	2.0	2.0	
25.	Percent Sodium, Max.		60	60	
26.	Residual Sodium carbonate, mg/l, Max.			5.0	
27.	Cyanide (as Cn), mg/L, Max.	0.2	2.0	0.2	0.2
28.	Chloride (as Cl), mg/L, Max.	1000	1000	600	
29.	Fluoride (as F), mg/IL, Max.	2.0	15		15
30.	Dissolved Phosphate (as P), mg/L, Max.	5.0			
31.	Sulphate (as SO ₄), mg/L, Max.	1000	1000	1000	
32.	Sulphide (as S), mg/L, Max.	2.0			5.0

Dombivli

	Standards				
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
33.	Pesticides	Absent	Absent	Absent	Absent
34.	Phenolic compounds (as C_6H_5OH), mg/L, Max.	1.0	5.0		5.0
35.	Radioactive materials:				
	a. Alpha emitters MC/ml., Max.	10-7	10-7	10 ⁻⁸	10 ⁻⁷
	b. Beta emitters μc/ml., Max	10 ⁻⁶	10 ⁻⁶	10 ⁻⁷	10 ⁻⁶

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
Table 1	Organoleptic and Physical Parameters			
1.	Colour	Hazen units	Max 5	Max 15
2.	Odour	-	Agreeable	Agreeable
3.	pH value	-	6.5-8.5	No relaxation
4.	Taste	-	Agreeable	Agreeable
5.	Turbidity	NTU	Max 1	Max 5
6.	Total dissolved solids	mg/L	Max 500	Max 2000
Table 2	General parameters concerning substances undesirable in excessive amounts			
7.	Aluminium (as Al)	mg/L	Max 0.03	Max 0.2
8.	Ammonia (as total ammonia- N)	mg/L	Max 0.5	No relaxation
9.	Anionic detergents (as MBAS)	mg/L	Max 0.2	Max 1.0
10.	Barium (as Ba)	mg/L	Max 0.7	No relaxation
11.	Boron (as B)	mg/L	Max 0.5	Max 1.0
12.	Calcium (as Ca)	mg/L	Max 75	Max 200
13.	Chloramines (as C1 ₂)	mg/L	Max 4.0	No relaxation
14.	Chlorides (as Cl)	mg/L	Max 250	Max 1000
15.	Copper (as Cu)	mg/L	Max 0.05	Max 1.5
16.	Fluoride (as F)	mg/L	Max 1.0	Max 1.5
17.	Free residual chlorine	mg/L	Min 0.2	Min 1

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
18.	Iron (as Fe)	mg/L	Max 0.3	No relaxation
19.	Magnesium (as Mg)	mg/L	Max 30	Max100
20.	Manganese (as Mn)	mg/L	Max 0.1	Max 0.3
21.	Mineral Oil	mg/L	Max 0.5	No relaxation
22.	Nitrate (as NO ₃)	mg/L	Max 45	No relaxation
23.	Phenolic compounds (as C_6H_5OH)	mg/L	Max 0.001	Max 0.002
24.	Selenium (as Se)	mg/L	Max 0.01	No relaxation
25.	Silver (as Ag)	mg/L	Max 0.1	No relaxation
26.	Sulphate (as SO ₄)	mg/L	Max 200	Max 400
27.	Sulphide (as H_2S)	mg/L	Max 0.05	No relaxation
28.	Total Alkalinity as calcium carbonate	mg/L	Max 200	Max600
29.	Total hardness (as CaCO ₃)	mg/L	Max 200	Max 600
30.	Zinc (as Zn)	mg/L	Max 5	Max15
Table 3	Parameters Concerning Toxic Substances			
31.	Cadmium (asCd)	mg/L	Max 0.003	No relaxation
32.	Cyanide (asCN)	mg/L	Max 0.05	No relaxation
33.	Lead (as Pb)	mg/L	Max 0.01	No relaxation
34.	Mercury (asHg)	mg/L	Max 0.001	No relaxation
35.	Molybdenum (as Mo)	mg/L	Max 0.07	No relaxation
36.	Nickel (as Ni)	mg/L	Max 0.02	No relaxation
37.	Pesticides	mg/L	See Table 5	No relaxation
38.	Polychlorinatedbiphenyls	mg/L	Max 0.0005	No relaxation

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
39.	Poly nuclear aromatic Hydrocarbons (as PAH)	mg/L	Max 0.0001	No relaxation
40.	Total Arsenic(as As)	mg/L	Max 0.01	Max0.05
41.	Total Chromium (as Cr)	mg/L	Max 0.05	No relaxation
42.	Trihalomethanes			
a)	Bromoform	mg/L	Max 0.1	No relaxation
b)	DibromochloroMethane	mg/L	Max 0.1	No relaxation
c)	Bromodichloromethane	mg/L	Max 0.06	No relaxation
d)	Chloroform	mg/L	Max 0.2	No relaxation
Table 4	Parameters Concerning Radioactive Substances			
43.	Radioactive Materials			
a)	Alpha emitters	Bq/L	Max 0.1	No relaxation
b)	Beta emitters	Bq/L	Max 1.0	No relaxation
Table 5	Pesticide Residues Limits and Test Method			
i)	Alachor	µg/L	20	No relaxation
ii)	Atrazine	µg/L	2	No relaxation
iii)	Aldrin/ Dieldrin	µg/L	0.03	No relaxation
iv)	Alpha HCH	µg/L	0.01	No relaxation
v)	Beta HCH	µg/L	0.04	No relaxation
vi)	Butachlor	µg/L	125	No relaxation
vii)	Chlorpyriphos	µg/L	30	No relaxation
viii)	Delta HCH	µg/L	0.04	No relaxation
ix)	2,4- Dichlorophenoxyacetic acid	µg/L	30	No relaxation

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
x)	DDT (o,p&p,p — Isomers of DDT, DDE and DDD)	µg/L	1	No relaxation
xi)	Endosulfan (α,β& sulphate)	µg/L	0.4	No relaxation
xii)	Ethion	µg/L	3	No relaxation
xiii)	Gamma - HCH (Lindane)	µg/L	2	No relaxation
xiv)	Isoproturon	µg/L	9	No relaxation
xv)	Malathion	µg/L	190	No relaxation
xvi)	Methyl parathion	µg/L	0.3	No relaxation
xvii)	Monocrotophos	µg/L	1	No relaxation
xviii)	Phorate	µg/L	2	No relaxation
Table 6	Bacteriological Quality of Drinking Water			
44.	E.coli or thermotolerant coliform bacteria	/100	Not detectable	-
45.	Total coliform bacteria	/100 mL	Not detectable	-
	Virological Requirements			
46.	MS2 phage	/1 L	Absent	-
	Biological Requirements			
47.	Cryptosporidium	/10 L	Absent	-
48.	Giardia	/10 L	Absent	-
49.	Microscopic organisms such as algae,zooplanktons,flagellate s,parasites and toxin producing organisms		Free from microscopic organisms	-

Annexure VIII: CPCB Water Quality Criteria:

Designated best use	Quality Class	Primary Water Quality Criteria
Drinking water source without conventional treatment but with chlorination	А	 Total coliform organisms (MPN*/100 ml) shall be 50 or less
		> pH between 6.5 and 8.5
		Dissolved Oxygen 6 mg/Lor more, and
		 Biochemical Oxygen Demand 2 mg/Lor less
Outdoor bathing (organized)	В	 Total coliform organisms (MPN/100 ml) shall be 500 or less
		> pH between 6.5 and 8.5
		Dissolved Oxygen 5 mg/Lor more, and
		 Biochemical Oxygen Demand 3 mg/Lor less
Drinking water source with conventional treatment	С	 Total coliform organisms (MPN/100ml) shall be 5000 or less
		> pH between 6 and 9
		Dissolved Oxygen 4 mg/Lor more, and
		 Biochemical Oxygen Demand 3 mg/Lor less
Propagation of wildlife and	D	> pH between 6.5 and 8.5
fisheries		Dissolved Oxygen 4 mg/Lor more, and
		Free ammonia (as N) 1.2 mg/Lor less
Irrigation, industrial cooling,	E	> pH between 6.0 and 8.5
and controlled disposal		 Electrical conductivity less than 2250 micro mhos/cm,
		 Sodium Absorption Ratio less than 26,
		> and Boron less than 2 mg/l.
	Below E	> Not Meeting A, B, C, D & E Criteria

Annexure IX: Water Quality Parameters Requirements and Classification

Water quality parameters are classified into three categories, given in Table (i), (ii) and (iii) (Source: CPCB, 2002, "Water Quality Criteria and Goals", Monitoring of Indian National aquatic Resources Series: MINARS/17/2001-2002).

Table: Basic Water Quality Requirement and Classification (Surface Water + Ground Water)

Sr.	Parameters	Requirement for Waters of Class		
		A-Excellent	B-Desirable	C-Acceptable
(i)	Sanitary Survey	Very Clean neighborhood and catchment	Reasonably clean neighborhood	Generally clean neighborhood
(ii)	General Appearance	No floating matter	No floating matter	No floating matter
(iii)	Colour	Absolutely Colourless	Almost colourless, very light shade if any	No colour of anthropogenic origin
(iv)	Smell	Odourless	Almost odourless	No unpleasant odour
(v)	Transparency	>1.0 depth	>0.5 to 0.1m depth	>0.2 to 0.5 m depth
(vi)	Ecological* (Presence of Animals)	Fish & Insects	Fish & Insects	Fish & Insects

i) Simple Parameters:

* Applicable to only surface water

ii) Regular Monitoring Parameters:

Sr.	Parameters	Requirement for Waters of Class		
		A Excellent	B-Desirable	C-Acceptable
(i)	рН	7.0 to 8.5	6.5 to 9.0	6.5 to 9.0
(ii)	DO (% Saturation)	90-110	80-120	60-140
(iii)	BOD, mg/l	Below 2	Below 5	Below 8
(iv)	EC, µmhos/cm	<1000	<2250	<4000
(v)	(NO ₂ +NO ₃)- Nitrogen, mg/l	<5	<10	<15
(vi)	Suspended solid, mg/l	<25	<50	<100

Sr.	Parameters	Requirement for Waters of Class		
		A Excellent	B-Desirable	C-Acceptable
(vii)	Fecal Coliform, MPN/ 100 ml	<20 per 100 ml	<200 per 100 ml	<2000 per 100 ml
(viii)	Bio-assay (Zebra Fish)	No death in 5 days	No death in 3 days	No death in 2 days

Note:

- 1. Dissolved Oxygen (DO) not applicable for ground waters.
- 2. Dissolved Oxygen in eutrophicated waters should include measurement for diurnal variation.
- 3. Suspended solid limit is applicable only during non-monsoon period.
- 4. Faecal Coliform values should meet for 90% times.
- 5. Static Bio-Assay method may be adopted.

iii) Specific Parameters: (Only in case of need/apprehensions)

Sr.	Parameters	Requirement for Waters of Class		
		A- Excellent	B-Desirable	C-Acceptable
(i)	Total Phosphorous	<0.1 mg/l	< 0.2 mg/l	< 0.3 mg/l
(ii)	T.K.N	< 1.0 mg/l	<2.0 mg/l	<3.0 mg/l
(iii)	Total Ammonia (NH4 + NH3)- Nitrogen	< 0.5 mg/l	< 1.0 mg/l	< 1.5 mg/l
(iv)	Phenols	< 2µg/I	< 5µg/l	<10 µg/l
(v)	Surface Active Agents	<20 µg/l	<100µg/l	< 200µg/l
(vi)	Organo Chlorine Pesticides	< 0.05µg/l	< 0.1µg/l	< 0.2µg/l
(vii)	РАН	< 0.05µg/l	<0.1 µg/l	<0.2 µg/l
(viii)	PCB and PCT	< 0.01µg/l	< 0.01µg/l	< 0.02µg/l
(ix)	Zinc	< 100µg/l	< 200µg/I	<300 µg/l
(x)	Nickel	< 50µg/I	< 100µg/l	< 200µg/I
(xi)	Copper	< 20µg/l	< 50µg/I	<100µg/l

Sr.	Parameters	Requirement for Waters of Class		
		A- Excellent	B-Desirable	C-Acceptable
(xii)	Chromium (Total)	< 20µg/l	< 50µg/I	< 100µg/I
(xiii)	Arsenic (Total)	< 20µg/l	<50 µg/l	<100 µg/l
(xiv)	Lead	< 20µg/l	< 50µg/I	< 100µg/l
(xv)	Cadmium	< 1.0µg/l	<2.5 µg/l	< 5.0µg/l
(xvi)	Mercury	< 0.2µg/l	< 0.5µg/l	< 1.0µg/l