MONITORING, SAMPLING AND ANALYSIS FOR AMBIENT AIR QUALITY, SURFACE WATER QUALITY AND GROUND WATER QUALITY IN 100 POLLUTED INDUSTRIAL AREAS

DURING DECEMBER 2019- FEBRUARY 2020

Environmental Quality Monitoring Report For

Chembur, Maharashtra

Maharashtra Pollution Control Board Kalptaru Point, Sion East, Mumbai – 400 022

March, 2020

Acl	Acknowledgement:				
Ab	bre	eviations:4			
1.	In	troduction:5			
2.	So	cope of Work6			
2	.1	Frequency of Sampling:7			
2	.2	Methodology followed in Sampling and Analysis7			
3.	M	onitoring Locations at Chembur8			
3.1		Mapping of the locations monitored10			
4.	Re	esult of Analysis:12			
4	.1	Stack Emission:			
4	.2	Ambient Air Quality:			
4	.3	Surface Water Quality: 22			
4	.4	Ground Water Quality:			
5.	Sι	ummary of the results59			
5	.1	Stack Emission Monitoring:			
5	.2	Ambient Air Quality Monitoring: 59			
5	.3	Surface Water Quality Monitoring:			
5	.4	Ground Water Quality Monitoring: 60			
6.	CE	EPI Score62			
6	.1	Comparison of CEPI scores:			
7.	Co	onclusion65			
8.	A	nnexure66			
An	ne	xure I Health related data in impact on humans			
An	ne	xure II: Stack Emission Sampling and Analysis Methodology			
An	ne	xure III: Ambient Air Sampling and Analysis Methodology			
An	ne	xure IV: Water/Wastewater Sampling and Analysis Methodology			
An	ne	xure V: National Ambient Air Quality Standards, 2009			
		xure VI: General Standards for Discharge of Environmental Pollutants, Part A: ents (The Environment (Protection) Rules, 1986, Schedule VI)			
An	ne	xure VII: Drinking Water Specification-IS 10500:2012			
An	ne	xure VIII: CPCB Water Quality Criteria:			
An	ne	xure IX: Water Quality Parameters Requirements and Classification			

Index

Acknowledgement:

We gratefully acknowledge **Ashok Shingare**, Member Secretary, Maharashtra Pollution Control Board, for entrusting this very important and prestigious project to us.

Our special thanks to Regional and Sub Regional Officer of the concerned areas, for guidance during the sampling. The contribution of **Shri V. M Motghare** (Joint director APC) and **Mr. Sameer Hundlekar** (Field officer) is appreciated.

We would also like to extend our thanks to the concerned staff of Regional Hospitals, who has provided us the health data, which is the most important component of this revised concept of CEPI.

By undertaking this project and completing in schedule time, we consider ourselves very lucky since we have helped the mankind by giving the data on pollution load and further action by the Board, to bring down the pollution level.

We also thank our associates for working on this project for making the write up, making graphs and feeding the data on computer.

This acknowledgement will be incomplete if we do not thank our laboratory analysts and others who made this project a success by timely analyzing the samples.

We also thank our sampling team members for conducting the sampling in this vast area.

Abbreviations:

АРНА	American Public Health Association
BDL	Below Detection Limit
BOD	Biochemical Oxygen Demand
CEPI	Comprehensive Environmental Pollution Index
СЕТР	Common Effluent Treatment Plant
COD	Chemical Oxygen Demand
СРА	Critically Polluted Areas
SPA	Severely Polluted Areas
DO	Dissolved Oxygen
ETP	Effluent Treatment Plant
МІВК	Methyl Isobutyl Ketone
МРСВ	Maharashtra Pollution Control Board
NAAQS	National Ambient Air Quality Standards
NOx	Oxides of Nitrogen
ND	Not Detected
РАН	Poly Aromatic Hydrocarbons
РСВ	Poly Chlorinated Biphenyls
РСТ	Poly Chlorinated Terphenyls
PM 10	Particulate Matter (size less than 10 $\mu m)$
PM _{2.5}	Particulate Matter (size less than 2.5 $\mu m)$
SO ₂	Sulphur Dioxide
STAP	Short Term Action Plan
WHO	World Health Organization

1. Introduction:

Over the years, urbanization and industrialization have led to major pollution-related issues due to increased human activities. Lack of planning and a basic understanding of the ecology affects its balance leading to pollution of water, air, soil, and other natural resources. The pollution load in respect of air quality is of relatively high order in metropolitan cities. It is associated with higher rates of several health disorders too. The development of manufacturing, especially near cities and industrial zones, is changing the environment and the natural composition of water. Pollution of natural environment not only affects people but also have adverse impact on economic growth in the long run. Analysis of pollution load shows that there are few industries in the country which contribute to more than 90percent of the pollution. Hence, scientists are exploring the quantum of pollution load as well as to device certain strategies and technologies so that our sustainable development would not be jeopardized otherwise our long cherished dream of establishing eco-socialism on this watery planet could not come true.

Industrial pollution takes on many faces. It contaminates many sources of drinking water, releases unwanted toxins into the air and reduces the quality of soil all over the world. Every liter of waste water discharged by our industries pollutes eight times the quantity of fresh water. The extent of pollution varies with the size of the industry, the nature of the industry, the type of products used and produced etc. In view of this, Central Pollution Control Board (CPCB) has evolved the concept of Comprehensive Environmental Pollution Index (CEPI) during 2009-10 as a tool for comprehensive environmental assessment of prominent industrial clusters and formulation of remedial Action Plans for the identified critically polluted areas.

CEPI bridges the perceptive gap between experts, public, and government departments by simplifying the complexity of environmental issues. It aims at categorizing critically polluted industrial areas based on scientific criteria, so as to ascertain various dimensions of pollution. This is a combined framework used to evaluate the impacts caused by industrial clusters on the nearby environment, as a numerical value.

The index captures the various dimensions of environment including air, water and land. Comprehensive Environmental Pollution Index (CEPI), which is a rational number to characterize the environmental quality at a given location following the algorithm of source, pathway and receptor have been developed. Later-on proposals were received from the SPCBs, State Governments, and Industrial Associations and concerned Stakeholders for revisiting the criteria of assessment under CEPI concept. After careful examination and consideration of the suggestions of concerned stake-holders, it was decided to prepare the revised concept of CEPI by eliminating the subjective factors but retaining the factors which can be measured precisely. Hence, revised concept came into existence, which is termed as Revised CEPI Version 2016.

The present report is also based on the revised CEPI version 2016. The results of the application of the Comprehensive Environmental Pollution Index (CEPI) to selected industrial clusters or areas are presented in this report. The main objective of the study is to identify polluted industrial clusters or areas in order to take concerted action and to centrally monitor them at the national level to improve the current status of their environmental components such as air and water quality data, ecological damage, and visual environmental conditions. A total of 88 industrial areas or clusters have been selected by the Central Pollution Control Board (CPCB) in consultation with the Ministry of Environment & Forests Government of India for the study. The index captures the various dimensions of environment including air, water and land. Comprehensive Environmental Pollution Index (CEPI), which is a rational number to characterize the environmental quality at a given location following the algorithm of source, pathway and receptor have been developed.

2. Scope of Work

The Scope of Work consisted of the following:

Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water and Ground Water Quality at identified locations in Chembur, Maharashtra with a gap of one or two days.

Industrial Cluster/ Area	No. of Stack sites	Parameter of Stack	No. of AAQM sites	Parameter of AAQM	Numbers of water quality monitoring site		f AAQM water quality	ality	Parameter of Water
	sites				Surface water	Ground water			
Chembur	5	PM, SO ₂	8	PM ₁₀ , PM _{2.5} ,	4	6	(i) Simple Parameters		
		and NO ₂		SO ₂ , NO ₂ , NH ₃ , O ₃ , C ₆ H ₆ , CO, BAP, Pb, Ni, As			Sanitary Survey, General Appearance, Colour, Smell, Transparency and Ecological		
							(ii) Regular Monitoring Parameters		
							pH, O & G, Suspended Solids, DO, COD, BOD, Electrical Conductivity, Total Dissolved Solids, Nitrite–Nitrogen, Nitrate- Nitrogen, (NO ₂ +NO ₃) total nitrogen, Free Ammonia, Total Residual Chlorine, Cyanide, Fluoride, Chloride, Sulphate, Sulphides, Total Hardness, Dissolved Phosphates, SAR, Total Coliforms, Faecal Coliform,		
							(iii) Special Parameters		
							Total Phosphorous, TKN, Total Ammonia (NH4+NH3)-Nitrogen, Phenols, Surface Active Agents, Anionic detergents, Organo- Chlorine Pesticides, PAH, PCB and PCT, Zinc, Nickel, Copper, Hexa-valent Chromium, Chromium (Total), Arsenic (Total), Lead, Cadmium, Mercury, Manganese, Iron, Vanadium, Selenium, Boron		
							(iv) Bio-assay (zebra Fish) Test - For specified samples only.		

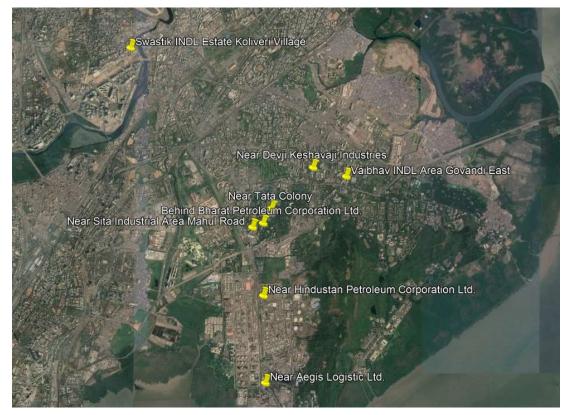
Details regarding the works are provided as below:

2.1 Frequency of Sampling:

Parameter	Round of Sampling	Frequency on each Round
Ambient Air Quality Monitoring		
Particulate Matter (size less than 10 $\mu m)$ or PM_{10}	03	3 Shifts of 8 hrs each
Particulate Matter (size less than 2.5 $\mu m)$ or $PM_{2.5}$	03	1 Shifts of 24 hr
Sulphur Dioxide (SO ₂)	03	6 Shifts of 4 hrs each
Nitrogen Dioxide (NO2)	03	6 Shifts of 4 hrs each
Ammonia (NH ₃)	03	6 Shifts of 4 hrs each
Ozone (O ₃)	03	24 Shifts of 1 hr each
Benzene (C ₆ H ₆)	03	1 Shifts of 24 hr
Carbon Monoxide (CO)	03	24 Shifts of 1 hr each
Benzo (a) Pyrene (BaP) – particulate phase only	03	3 Shifts of 8 hrs each
Lead (Pb)	03	3 Shifts of 8 hrs each
Arsenic (As)	03	3 Shifts of 8 hrs each
Nickel (Ni)	03	3 Shifts of 8 hrs each
Ground Water		
As Mentioned Above	03	01 samples at each round
Surface Water		
As Mentioned Above	03	01 samples at each round

2.2 Methodology followed in Sampling and Analysis

Industries, places and locations that have been chosen for the sampling are representative of the city/ area. Sampling has been done at the potential polluted areas so as to arrive at the CEPI. This will further help the authorities to monitor the areas in order to improve the current status of their environmental components such as air and water quality data, ecological damage and visual environmental conditions. Methodology for sampling, preservation and analysis have been done according to the references incorporated. Methodology of various types of parameters is presented under following annexure:


- 1. Stack Emission Sampling and Analysis Methodology Annexure I
- 2. Ambient Air Sampling and Analysis Methodology $\ensuremath{\textbf{Annexure II}}$
- 3. Surface Water/ Ground water Sampling and Analysis Methodology Annexure III

3. Monitoring Locations at Chembur

Sr.	Name of			Da	te of Sampli	oling			
No.	Monitoring Location	Latitude	Longitude	Round-1	Round-2	Round-3			
		AAQM	1 Stations at C	hembur					
1.	Near Aegis Logistic Ltd.	19° 0'15.65"N	72°53'55.66"E	17.02.2020	19.02.2020	21.02.2020			
2.	Near Tata Colony	19° 2'21.30"N	72°53'59.96"E	17.02.2020	19.02.2020	21.02.2020			
3.	Near Hindustan Petroleum Corporation Ltd.	19° 1'18.33"N	72°53'53.98"E	17.02.2020	19.02.2020	21.02.2020			
4.	Behind Bharat Petroleum Corporation Ltd.	19° 2'10.68"N	72°53'53.57"E	17.02.2020	19.02.2020	21.02.2020			
5.	Swastik INDL Estate Koliveri Village	19° 4'18.99"N	72°52'10.75"E	18.02.2020	20.02.2020	22.02.2020			
6.	Near Devji Keshavaji Industries	19° 2'51.20"N	72°54'31.76"E	18.02.2020	20.02.2020	22.02.2020			
7.	Near Sita Industrial Area Mahul Road	19° 2'7.75"N	72°53'45.48"E	18.02.2020	20.02.2020	22.02.2020			
8.	Vaibhav INDL Area Govandi East	19° 2'44.67"N	72°54'57.27"E	18.02.2020	20.02.2020	22.02.2020			
	Surface Water Sampling Locations at Chembur								
1.	RCF Near Ashish Talkies	19° 2'20.67"N	72°53'42.39"E	22.02.2020	24.02.2020	26.02.2020			
2.	Downstream Near Mahul Jetty	19° 0'51.03"N	72°53'5.86"E	22.02.2020	24.02.2020	26.02.2020			
3.	Middle Stream, Near Mahul,	19° 1'21.48"N	72°53'0.56"E	22.02.2020	24.02.2020	26.02.2020			
4.	Cherry Talab, Near Chembur Police Station	19° 3'3.52"N	72°53'34.93"E	22.02.2020	24.02.2020	26.02.2020			

Sr.	Name of			Date of Sampling			
No.	Monitoring Location	Latitude	Longitude	Round-1	Round-2	Round-3	
	(Ground Water	Sampling Loca	tions at Che	mbur		
1.	Well Water at Prayag Nagar	19° 1'11.20"N	72°54'31.49"E	22.02.2020	24.02.2020	26.02.2020	
2.	Well Water at Ambapada	19° 0'53.88"N	72°53'18.96"E	22.02.2020	24.02.2020	26.02.2020	
3.	Hand Pump Prayag Nagar	19° 1'14.65"N	72°54'36.84"E	22.02.2020	24.02.2020	26.02.2020	
4.	Well Water at Prayag Nagar, Tabela	19° 1'12.49"N	72°54'30.13"E	22.02.2020	24.02.2020	26.02.2020	
5.	Well Water at Laxmi Nagar	19° 1'46.66"N	72°53'46.11"E	22.02.2020	24.02.2020	26.02.2020	
6.	Well Water at Mahul Gaon	19° 1'54.67"N	72°53'57.14"E	22.02.2020	24.02.2020	26.02.2020	
		Stack Emis	sion monitorin	g at Chembu	ir		
1.	Hindustan Petroleum Refinery (NSU 101-F-1001)	19° 1'3.04"N	72°54'4.12"E	17.02.2020	20.02.2020	22.02.2020	
2.	Hindustan Petroleum Refinery (CCR Furnace)	19° 1'15.16"N	72°54'5.09"E	17.02.2020	20.02.2020	22.02.2020	
3.	Tata Power Ltd.	19° 0'11.98"N	72°53'52.94"E	18.02.2020	20.02.2020	22.02.2020	
4.	RCF Mahul Village	19° 2'4.10"N	72°53'29.73"E	20.02.2020	22.02.2020	24.02.2020	
5.	Bharat Petrolium Corporation Ltd.	19° 1'6.90"N	72°53'30.43"E	20.02.2020	22.02.2020	24.02.2020	
		VOCs Emiss	sion monitoring	g at Chembu	r		
1.	Tata Power Ltd.	19° 0'11.98"N	72°53'52.94"E	18.02.2020	20.02.2020	22.02.2020	

3.1 Mapping of the locations monitored

AAQM Stations at Chembur

Surface water sampling locations at Chembur

Ground water sampling locations at Chembur

4. Result of Analysis:

Results of Analysis are tabulated below for Stack Emission Monitoring, Ambient Air Quality Monitoring, Waste Water Analysis and Water Analysis. These are followed by their respective graphical representation.

*Kindly note:

- *N.A specifies the sample is not analyzed for the specific parameter.*
- BDL specifies that the result obtained is below detection limit.
- Also, industrial clusters observed with below detection limit parameters are NOT included into the graphs

4.1 Stack Emission:

Stack Emission Monitoring Results are compared against The Environment (Protection) Rules, 1986 General Emission Standard - Part D. The limits are represented on the graphical representation.

		Results				
Parameters	Units	Round-1 (17.02.2020)	Round-2 (20.02.2020)	Round-3 (22.02.2020)		
Particulate Matter	mg/Nm ³	17	24	23		
Sulphur Diovido (SO-)	mg/Nm ³	186	BDL	BDL		
Sulphur Dioxide (SO2)	kg/day	718	BDL	BDL		
Nitrogen dioxide (NO2)	mg/Nm ³	BDL	12.4	12.5		

Name of the Industry: Hindustan Petroleum Refinery (NSU 101-F-1001)

Name of the Industry: Hindustan Petroleum Refinery (CCR Furnace)

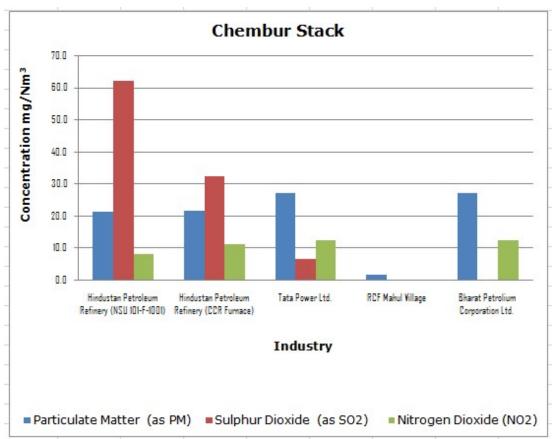
		Results				
Parameters	Units	Round-1 (17.02.2020)	Round-2 (20.02.2020)	Round-3 (22.02.2020)		
Particulate Matter	mg/Nm ³	17	28	20		
Culphur Diovida (CO.)	mg/Nm ³	85.7	11.4	BDL		
Sulphur Dioxide (SO ₂)	kg/day	119.4	44.4	BDL		
Nitrogen dioxide (NO ₂)	mg/Nm ³	BDL	21.8	12.5		

Name of the Industry: Tata Power Ltd.

		Results				
Parameters	Units	Round-1 (18.02.2020)	Round-2 (20.02.2020)	Round-3 (22.02.2020)		
Particulate Matter	mg/Nm ³	35	25	22		
Sulphur Dioxida (CO.)	mg/Nm ³	BDL	8.57	11.4		
Sulphur Dioxide (SO ₂)	kg/day	BDL	35.2	4.58		
Nitrogen dioxide (NO2)	mg/Nm ³	BDL	15.6	21.9		

Name of the Industry: RCF Mahul Village

		Results				
Parameters	Units	Round-1 (20.02.2020)	Round-2 (22.02.2020)	Round-3 (24.02.2020)		
Particulate Matter	mg/Nm ³	BDL	BDL	5.51		
Culphur Disuida (CO.)	mg/Nm ³	BDL	BDL	BDL		
Sulphur Dioxide (SO ₂)	kg/day	BDL	BDL	BDL		
Nitrogen dioxide (NO ₂)	mg/Nm ³	BDL	BDL	BDL		


Name of the Industry: Bharat Petroleum Corporation Ltd.

		Results			
Parameters	Units	Round-1 (20.02.2020)	Round-2 (22.02.2020)	Round-3 (24.02.2020)	
Particulate Matter	mg/Nm ³	43	20	19	
Culphur Diovida (CO.)	mg/Nm ³	BDL	BDL	BDL	
Sulphur Dioxide (SO ₂)	kg/day	BDL	BDL	BDL	
Nitrogen dioxide (NO ₂)	mg/Nm ³	12.4	12.4	12.4	

VOCs Results

Name of the Industry: Tata Power Ltd	Name o	f the	Industry:	Tata	Power	Ltd.
--------------------------------------	--------	-------	-----------	------	-------	------

		Results				
Parameters	Units	Round-1 (18.02.2020)	Round-2 (20.02.2020)	Round-3 (22.02.2020)		
Methyl Isobutyl Ketone	mg/Nm ³	BDL	BDL	BDL		
Benzene	mg/Nm ³	BDL	BDL	BDL		
Toulene	mg/Nm ³	BDL	BDL	BDL		
Xylene	mg/Nm ³	BDL	BDL	BDL		
Ethyl Benzene	mg/Nm ³	BDL	BDL	BDL		
Ethyl Acetate	mg/Nm ³	BDL	BDL	BDL		
Isopropyl Alcohol	mg/Nm ³	BDL	BDL	BDL		

Graphs: Stack Monitoring for Chembur:

4.2 Ambient Air Quality:

In order to arrive at conclusions, the Ambient Air Quality Monitoring Results are compared against National Ambient Air Quality Standards, 2009 (**Annexure IV**).

		Std. Limit	Results				
Parameters	Unit	(NAAQS 2009)	Round-1 (17.02.2020)	Round-2 (19.02.2020)	Round-3 (21.02.2020)		
Sulphur Dioxide (SO ₂)	µg/m³	80	BDL	BDL	BDL		
Nitrogen Dioxide (NO2)	µg/m³	80	BDL	BDL	BDL		
Particulate Matter (size less than 10 μm) or PM_{10}	µg/m³	100	121	94	72		
Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	µg/m³	60	33	25	16		
Ozone (O ₃)	µg/m³	100	BDL	BDL	BDL		
Lead (Pb)	µg/m³	1	BDL	BDL	BDL		
Carbon Monoxide (CO)	mg/m ³	4	BDL	BDL	3.8		
Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL		
Benzene (C ₆ H ₆)	µg/m³	5	7.28	13.3	12.4		
Benzo (a) Pyrene (BaP) - particulate phase only	ng/m³	1	BDL	BDL	BDL		
Arsenic (As)	ng/m ³	6	0.444	1.1	BDL		
Nickel (Ni)	ng/m ³	20	BDL	11.4	8.07		

Location: Near Aegis Logistic Ltd.

Location: Near Tata Colony

	e	Std. Limit	Results			
Parameters	Unit	(NAAQS 2009)	Round-1 (17.02.2020)	Round-2 (19.02.2020)	Round-3 (21.02.2020)	
Sulphur Dioxide (SO ₂)	µg/m³	80	BDL	BDL	BDL	
Nitrogen Dioxide (NO2)	µg/m³	80	BDL	BDL	BDL	
Particulate Matter (size less than 10 μm) or PM_{10}	µg/m³	100	158	121	67	

	Unit	Std. Limit (NAAQS 2009)	Results			
Parameters			Round-1 (17.02.2020)	Round-2 (19.02.2020)	Round-3 (21.02.2020)	
Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	µg/m³	60	38	32	16	
Ozone (O ₃)	µg/m³	100	BDL	BDL	BDL	
Lead (Pb)	µg/m³	1	BDL	BDL	0.03	
Carbon Monoxide (CO)	mg/m ³	4	BDL	BDL	3.95	
Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL	
Benzene (C ₆ H ₆)	µg/m³	5	4.74	11.9	BDL	
Benzo (a) Pyrene (BaP) – particulate phase only	ng/m ³	1	BDL	BDL	BDL	
Arsenic (As)	ng/m ³	6	0.686	0.616	35.5	
Nickel (Ni)	ng/m ³	20	3.77	6.28	46.1	

Location: Near Hindustan Petroleum Corporation Ltd.

		Std. Limit	Results			
Parameters	Unit	(NAAQS 2009)	Round-1 (17.02.2020)	Round-2 (19.02.2020)	Round-3 (21.02.2020)	
Sulphur Dioxide (SO ₂)	µg/m³	80	BDL	BDL	BDL	
Nitrogen Dioxide (NO2)	µg/m³	80	6.84	BDL	BDL	
Particulate Matter (size less than 10 μm) or PM_{10}	µg/m³	100	153	74	81	
Particulate Matter (size less than 2.5 $\mu m)$ or $PM_{2.5}$	µg/m³	60	37	20	21	
Ozone (O ₃)	µg/m³	100	BDL	BDL	BDL	
Lead (Pb)	µg/m³	1	BDL	BDL	BDL	
Carbon Monoxide (CO)	mg/m ³	4	BDL	BDL	3.45	
Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL	
Benzene (C ₆ H ₆)	µg/m³	5	2.3	10	4.96	
Benzo (a) Pyrene (BaP) – particulate phase only	ng/m³	1	BDL	BDL	BDL	

	Unit (NAA	Std. Limit	Results		
Parameters		(NAAQS 2009)	Round-1 (17.02.2020)	Round-2 (19.02.2020)	Round-3 (21.02.2020)
Arsenic (As)	ng/m ³	6	BDL	0.834	BDL
Nickel (Ni)	ng/m ³	20	BDL	7.46	13.9

Location: Behind Bharat Petroleum Corporation Ltd.

		Std. Limit	-			
Parameters	Unit	(NAAQS 2009)	Round-1 (17.02.2020)	Round-2 (19.02.2020)	Round-3 (21.02.2020)	
Sulphur Dioxide (SO ₂)	µg/m³	80	BDL	BDL	BDL	
Nitrogen Dioxide (NO2)	µg/m³	80	BDL	BDL	BDL	
Particulate Matter (size less than 10 μm) or PM_{10}	µg/m³	100	275	78	66	
Particulate Matter (size less than 2.5 μm) or $PM_{2.5}$	µg/m³	60	70	22	17	
Ozone (O ₃)	µg/m³	100	BDL	BDL	BDL	
Lead (Pb)	µg/m³	1	BDL	BDL	BDL	
Carbon Monoxide (CO)	mg/m ³	4	BDL	BDL	3.02	
Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL	
Benzene (C ₆ H ₆)	µg/m³	5	BDL	6.8	1.93	
Benzo (a) Pyrene (BaP) - particulate phase only	ng/m³	1	BDL	BDL	BDL	
Arsenic (As)	ng/m³	6	BDL	1.1	BDL	
Nickel (Ni)	ng/m ³	20	BDL	3.86	13.8	

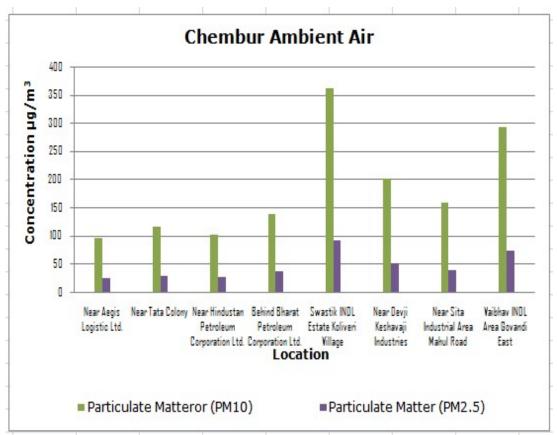
Location: Swastik INDL Estate Koliveri Village

		Std. Limit	Results		
Parameters	Unit	(NAAQS 2009)	Round-1 (18.02.2020)	Round-2 (20.02.2020)	Round-3 (22.02.2020)
Sulphur Dioxide (SO ₂)	µg/m³	80	BDL	BDL	BDL
Nitrogen Dioxide (NO2)	µg/m³	80	BDL	BDL	BDL

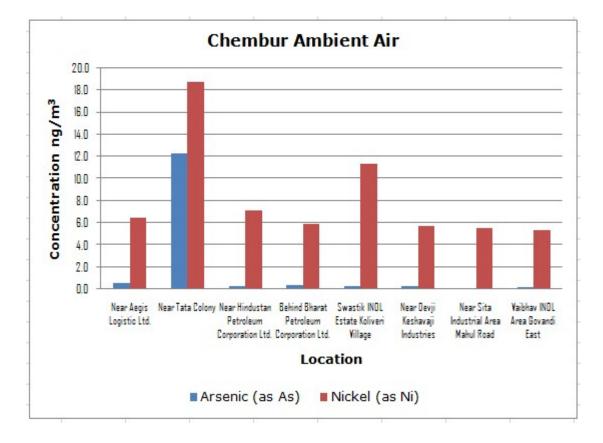
	Std. I	Std. Limit	Results		
Parameters	Unit	(NAAQS 2009)	Round-1 (18.02.2020)	Round-2 (20.02.2020)	Round-3 (22.02.2020)
Particulate Matter (size less than 10 μm) or PM_{10}	µg/m³	100	948	73	63
Particulate Matter (size less than 2.5 $\mu m)$ or $PM_{2.5}$	µg/m³	60	240	21	17
Ozone (O ₃)	µg/m³	100	21	BDL	BDL
Lead (Pb)	µg/m³	1	BDL	BDL	BDL
Carbon Monoxide (CO)	mg/m ³	4	BDL	BDL	3.72
Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL
Benzene (C ₆ H ₆)	µg/m³	5	10.4	7.9	9.14
Benzo (a) Pyrene (BaP) – particulate phase only	ng/m ³	1	BDL	BDL	BDL
Arsenic (As)	ng/m ³	6	BDL	0.713	BDL
Nickel (Ni)	ng/m³	20	20.2	3.99	9.64

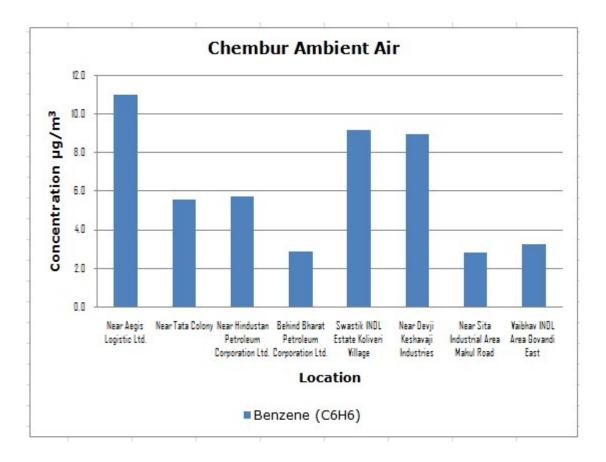
Location: Near Devji Keshavaji Industries

	s	Std. Limit	Results			
Parameters	Unit	(NAAQS 2009)	Round-1 (18.02.2020)	Round-2 (20.02.2020)	Round-3 (22.02.2020)	
Sulphur Dioxide (SO ₂)	µg/m³	80	BDL	BDL	BDL	
Nitrogen Dioxide (NO ₂)	µg/m³	80	BDL	BDL	BDL	
Particulate Matter (size less than 10 μm) or PM_{10}	µg/m³	100	487	71	51	
Particulate Matter (size less than 2.5 μm) or $PM_{2.5}$	µg/m³	60	120	20	12	
Ozone (O ₃)	µg/m³	100	BDL	BDL	BDL	
Lead (Pb)	µg/m³	1	BDL	BDL	BDL	
Carbon Monoxide (CO)	mg/m ³	4	BDL	BDL	2.74	
Ammonia (NH3)	µg/m³	400	BDL	BDL	BDL	
Benzene (C ₆ H ₆)	µg/m³	5	3.2	13.9	9.67	


		Std. Limit	Results			
Parameters	Unit	(NAAQS 2009)	Round-1 (18.02.2020)	Round-2 (20.02.2020)	Round-3 (22.02.2020)	
Benzo (a) Pyrene (BaP) – particulate phase only	ng/m³	1	BDL	BDL	BDL	
Arsenic (As)	ng/m ³	6	BDL	0.729	BDL	
Nickel (Ni)	ng/m ³	20	4.19	3.82	9.03	

Location: Near Sita Industrial Area Mahul Road


		Std. Limit			
Parameters	Unit	(NAAQS 2009)	Round-1 (18.02.2020)	Round-2 (20.02.2020)	Round-3 (22.02.2020)
Sulphur Dioxide (SO ₂)	µg/m³	80	BDL	BDL	BDL
Nitrogen Dioxide (NO2)	µg/m³	80	BDL	BDL	BDL
Particulate Matter (size less than 10 μm) or PM_{10}	µg/m³	100	338	96	44
Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	µg/m³	60	80	25	13
Ozone (O ₃)	µg/m³	100	22.4	BDL	BDL
Lead (Pb)	µg/m³	1	BDL	BDL	BDL
Carbon Monoxide (CO)	mg/m ³	4	BDL	BDL	2.92
Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL
Benzene (C ₆ H ₆)	µg/m³	5	BDL	4.83	3.72
Benzo (a) Pyrene (BaP) – particulate phase only	ng/m³	1	BDL	BDL	BDL
Arsenic (As)	ng/m³	6	BDL	0.396	BDL
Nickel (Ni)	ng/m ³	20	3.36	6.47	6.62


|--|

	e	Std. Limit	Results			
Parameters	Unit	(NAAQS 2009)	Round-1 (18.02.2020)	Round-2 (20.02.2020)	Round-3 (22.02.2020)	
Sulphur Dioxide (SO ₂)	µg/m³	80	BDL	BDL	BDL	
Nitrogen Dioxide (NO2)	µg/m³	80	BDL	BDL	BDL	
Particulate Matter (size less than 10 μm) or PM_{10}	µg/m³	100	764	64	49	
Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	µg/m³	60	187	18	14	
Ozone (O ₃)	µg/m³	100	BDL	BDL	BDL	
Lead (Pb)	µg/m³	1	BDL	BDL	BDL	
Carbon Monoxide (CO)	mg/m ³	4	BDL	BDL	2.64	
Ammonia (NH ₃)	µg/m³	400	BDL	BDL	BDL	
Benzene (C ₆ H ₆)	µg/m³	5	5.5	BDL	4.31	
Benzo (a) Pyrene (BaP) - particulate phase only	ng/m³	1	BDL	BDL	BDL	
Arsenic (As)	ng/m³	6	BDL	0.517	BDL	
Nickel (Ni)	ng/m ³	20	8.65	BDL	7.46	

Graphs: Ambient Air Quality Monitoring for Chembur:

4.3 Surface Water Quality:

Water Analysis Results are compared against CPCB document on criteria for Comprehensive Environmental Assessment of Industrial Clusters-Water Quality Parameters Requirement and Classification (Annexure IX), CPCB Water Quality Criteria (Annexure VIII) and Drinking Water Specification, IS 10500:2012 (Annexure VII), Wastewater Analysis Results are compared with General Standards for Discharge of Environmental Pollutants Part A: Effluents, The Environment (Protection) Rules, 1986, Schedule VI (Annexure V).

Parameters			Results			
	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Colour	Hazen		1	1	1	
Smell	-		Agreeable	Agreeable	Agreeable	
рН	-	5.5 -9.0	7.52	7.4	7.43	
Oil & Grease	mg/L	10	BDL	BDL	BDL	

Location: RCF Near Ashish Talkies

			Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Suspended Solids	mg/L	100	93	18	22	
Dissolved Oxygen (% Saturation)	%	60-140	65	75	90	
Chemical Oxygen Demand	mg/L	250	9	11	5	
Biochemical Oxygen Demand (3 days, 27°C)	mg/L	30	2	5	1	
Electrical Conductivity (at 25°C)	µmho/cm	4000	538	900	505	
Nitrite Nitrogen (as NO_2)	mg/L	5	BDL	BDL	BDL	
Nitrate Nitrogen (as NO3)	mg/L	10	3.05	15	2.9	
(NO ₂ + NO ₃)-Nitrogen	mg/L	15	3.05	15	2.9	
Free Ammonia (as NH ₃ -N)	mg/L	5	BDL	BDL	BDL	
Total Residual Chlorine	mg/L	1	BDL	BDL	BDL	
Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL	
Fluoride (as F)	mg/L	2	0.5	0.44	0.3	
Sulphide (as S ²⁻)	mg/L	2	BDL	BDL	BDL	
Dissolved Phosphate (as P)	mg/L	5	BDL	0.52	BDL	
Sodium Absorption Ratio	-		0.55	2.28	1.16	
Total Coliforms	MPN index/ 100 mL		1600	9.2 x 10 ³	5.4 x 10 ³	
Faecal Coliforms	MPN index/ 100 mL		540	2.4 x 10 ³	3.5 x 10 ³	
Total Phosphorous (as P)	mg/L		BDL	0.8	BDL	

			Results			
Parameters	meters Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Total Kjeldahl Nitrogen (as N)	mg/L	100	8.10	4.36	4.3	
Total Ammonia (NH₄+NH₃)- Nitrogen	mg/L	1.5	BDL	2.5	BDL	
Phenols (as C ₆ H ₅ OH)	mg/L	10	BDL	BDL	BDL	
Surface Active Agents (as MBAS)	mg/L	200	BDL	BDL	BDL	
Organo Chlorine Pesticides						
Alachlor	µg/L		BDL	BDL	BDL	
Atrazine	µg/L		BDL	BDL	BDL	
Aldrin	µg/L		BDL	BDL	BDL	
Dieldrin	µg/L		BDL	BDL	BDL	
Alpha HCH	µg/L		BDL	BDL	BDL	
Beta HCH	µg/L		BDL	BDL	BDL	
Delta HCH	µg/L		BDL	BDL	BDL	
Chlorpyriphos	µg/L		BDL	BDL	BDL	
Butachlor	µg/L		BDL	BDL	BDL	
p,p DDT	µg/L		BDL	BDL	BDL	
o,p DDT	µg/L		BDL	BDL	BDL	
p,p DDE	µg/L		BDL	BDL	BDL	
o,p DDE	µg/L		BDL	BDL	BDL	
p,p DDD	µg/L		BDL	BDL	BDL	
o,p DDD	µg/L		BDL	BDL	BDL	

			Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Alpha Endosulfan	µg/L		BDL	BDL	BDL	
Beta Endosulfan	µg/L		BDL	BDL	BDL	
Endosulfan Sulphate	µg/L		BDL	BDL	BDL	
Y HCH (Lindane)	µg/L		BDL	BDL	BDL	
Polynuclear aromatic hydrocarbons (PAH)	µg/L	0.2	BDL	BDL	BDL	
Polychlorinated Biphenyls (PCB)	µg/L	0.02	BDL	BDL	BDL	
Zinc (as Zn)	mg/L	300	BDL	BDL	BDL	
Nickel (as Ni)	mg/L	200	BDL	BDL	BDL	
Copper (as Cu)	mg/L	100	BDL	BDL	BDL	
Hexavalent Chromium (as Cr ⁶⁺)	mg/L		BDL	BDL	BDL	
Total Chromium (as Cr)	mg/L	100	BDL	BDL	BDL	
Total Arsenic (as As)	mg/L	100	BDL	BDL	BDL	
Lead (as Pb)	mg/L	100	BDL	BDL	BDL	
Cadmium (as Cd)	mg/L	5	BDL	BDL	BDL	
Mercury (as Hg)	mg/L	1	BDL	BDL	BDL	
Manganese (as Mn)	mg/L	2	BDL	BDL	0.022	
Iron (as Fe)	mg/L	3	BDL	BDL	BDL	
Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL	
Selenium (as Se)	mg/L	0.05	0.008	0.005	0.01	
Boron (as B)	mg/L		BDL	BDL	BDL	

Parameters		Std. Limit	Results			
	Unit		Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Total Nitrogen	mg/L		8.77	7.66	4.93	
Bioassay Test on fish	% survival	90% survival of fish after 96 hours in 100% effluent	50	70	60	

Location: Downstream Near Mahul Jetty

			Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Colour	Hazen		2	1	1	
Smell	-		Disagreeable	Agreeable	Agreeable	
рН	-	5.5 -9.0	7.24	7.39	6.93	
Oil & Grease	mg/L	10	BDL	BDL	BDL	
Suspended Solids	mg/L	100	22	32	18	
Dissolved Oxygen (% Saturation)	%	60-140	75	85	37	
Chemical Oxygen Demand	mg/L	250	40	9	57	
Biochemical Oxygen Demand (3 days, 27°C)	mg/L	30	14	3	20	
Electrical Conductivity (at 25°C)	µmho/cm	4000	16330	830	24600	
Nitrite Nitrogen (as NO ₂)	mg/L	5	BDL	BDL	BDL	
Nitrate Nitrogen (as NO3)	mg/L	10	6.87	4.37	20	

			Results			
Parameters	arameters Unit		Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
(NO ₂ + NO ₃)-Nitrogen	mg/L	15	6.87	4.37	20	
Free Ammonia (as NH3-N)	mg/L	5	BDL	BDL	BDL	
Total Residual Chlorine	mg/L	1	BDL	BDL	BDL	
Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL	
Fluoride (as F)	mg/L	2	1.2	0.64	1.5	
Sulphide (as S ²⁻)	mg/L	2	BDL	BDL	BDL	
Dissolved Phosphate (as P)	mg/L	5	0.86	0.4	0.12	
Sodium Absorption Ratio	-		47.5	1.61	7.39	
Total Coliforms	MPN index/ 100 mL		350	1600	350	
Faecal Coliforms	MPN index/ 100 mL		140	350	280	
Total Phosphorous (as P)	mg/L		0.88	0.72	0.24	
Total Kjeldahl Nitrogen (as N)	mg/L	100	7.6	4.03	4.03	
Total Ammonia (NH4+NH3)-Nitrogen	mg/L	1.5	BDL	2	BDL	
Phenols (as C ₆ H ₅ OH)	mg/L	10	BDL	BDL	BDL	
Surface Active Agents (as MBAS)	mg/L	200	BDL	BDL	BDL	
Organo Chlorine Pesticides						
Alachlor	µg/L		BDL	BDL	BDL	
Atrazine	µg/L		BDL	BDL	BDL	

			Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Aldrin	µg/L		BDL	BDL	BDL	
Dieldrin	µg/L		BDL	BDL	BDL	
Alpha HCH	µg/L		BDL	BDL	BDL	
Beta HCH	µg/L		BDL	BDL	BDL	
Delta HCH	µg/L		BDL	BDL	BDL	
Chlorpyriphos	µg/L		BDL	BDL	BDL	
Butachlor	µg/L		BDL	BDL	BDL	
p,p DDT	µg/L		BDL	BDL	BDL	
o,p DDT	µg/L		BDL	BDL	BDL	
p,p DDE	µg/L		BDL	BDL	BDL	
o,p DDE	µg/L		BDL	BDL	BDL	
p,p DDD	µg/L		BDL	BDL	BDL	
o,p DDD	µg/L		BDL	BDL	BDL	
Alpha Endosulfan	µg/L		BDL	BDL	BDL	
Beta Endosulfan	µg/L		BDL	BDL	BDL	
Endosulfan Sulphate	µg/L		BDL	BDL	BDL	
Y HCH (Lindane)	µg/L		BDL	BDL	BDL	
Polynuclear aromatic hydrocarbons (PAH)	µg/L	0.2	BDL	BDL	BDL	
Polychlorinated Biphenyls (PCB)	µg/L	0.02	BDL	BDL	BDL	
Zinc (as Zn)	mg/L	300	BDL	BDL	BDL	

			Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Nickel (as Ni)	mg/L	200	BDL	BDL	BDL	
Copper (as Cu)	mg/L	100	BDL	BDL	BDL	
Hexavalent Chromium (as Cr ⁶⁺)	mg/L		BDL	BDL	BDL	
Total Chromium (as Cr)	mg/L	100	BDL	BDL	BDL	
Total Arsenic (as As)	mg/L	100	BDL	0.014	BDL	
Lead (as Pb)	mg/L	100	BDL	BDL	BDL	
Cadmium (as Cd)	mg/L	5	BDL	BDL	BDL	
Mercury (as Hg)	mg/L	1	BDL	BDL	BDL	
Manganese (as Mn)	mg/L	2	0.227	0.196	0.036	
Iron (as Fe)	mg/L	3	0.124	0.081	BDL	
Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL	
Selenium (as Se)	mg/L	0.05	0.013	0.018	0.015	
Boron (as B)	mg/L		1.44	1.5	2.64	
Total Nitrogen	mg/L		9.11	4.99	8.43	
Bioassay Test on fish	% survival	90% survival of fish after 96 hours in 100% effluent	70	70	50	

Location:	Middle	Stream,	Near	Mah	ul,

Parameters		Std. Limit	Results			
	Unit		Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Colour	Hazen		1	1	1	
Smell	-		Disagreeable	Agreeable	Agreeable	
рН	-	5.5 -9.0	7.18	7.25	7.09	
Oil & Grease	mg/L	10	BDL	BDL	BDL	
Suspended Solids	mg/L	100	32	12	14	
Dissolved Oxygen (% Saturation)	%	60-140	75	80	38	
Chemical Oxygen Demand	mg/L	250	18	35	40	
Biochemical Oxygen Demand (3 days, 27°C)	mg/L	30	4	13	14	
Electrical Conductivity (at 25°C)	µmho/cm	4000	11540	1900	24600	
Nitrite Nitrogen (as NO2)	mg/L	5	BDL	BDL	BDL	
Nitrate Nitrogen (as NO3)	mg/L	10	7.48	4.05	16.7	
(NO ₂ + NO ₃)-Nitrogen	mg/L	15	7.48	4.05	16.7	
Free Ammonia (as NH ₃ -N)	mg/L	5	BDL	BDL	BDL	
Total Residual Chlorine	mg/L	1	BDL	BDL	BDL	
Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL	
Fluoride (as F)	mg/L	2	1	0.32	1.4	
Sulphide (as S ²⁻)	mg/L	2	BDL	BDL	BDL	
Dissolved Phosphate (as P)	mg/L	5	1.96	0.12	2.1	
Sodium Absorption Ratio	-		40.3	2.16	8.02	

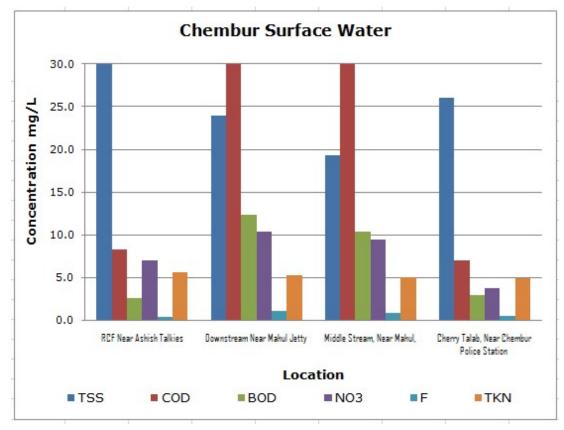
Parameters			Results		
	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)
Total Coliforms	MPN index/ 100 mL		140	240	1600
Faecal Coliforms	MPN index/ 100 mL		39	130	350
Total Phosphorous (as P)	mg/L		2.04	0.3	4.7
Total Kjeldahl Nitrogen (as N)	mg/L	100	5.82	7.61	1.8
Total Ammonia (NH4+NH3)-Nitrogen	mg/L	1.5	2.47	BDL	BDL
Phenols (as C ₆ H ₅ OH)	mg/L	10	BDL	BDL	BDL
Surface Active Agents (as MBAS)	mg/L	200	BDL	BDL	BDL
Organo Chlorine Pesticides					
Alachlor	µg/L		BDL	BDL	BDL
Atrazine	µg/L		BDL	BDL	BDL
Aldrin	µg/L		BDL	BDL	BDL
Dieldrin	µg/L		BDL	BDL	BDL
Alpha HCH	µg/L		BDL	BDL	BDL
Beta HCH	µg/L		BDL	BDL	BDL
Delta HCH	µg/L		BDL	BDL	BDL
Chlorpyriphos	µg/L		BDL	BDL	BDL
Butachlor	µg/L		BDL	BDL	BDL
p,p DDT	µg/L		BDL	BDL	BDL

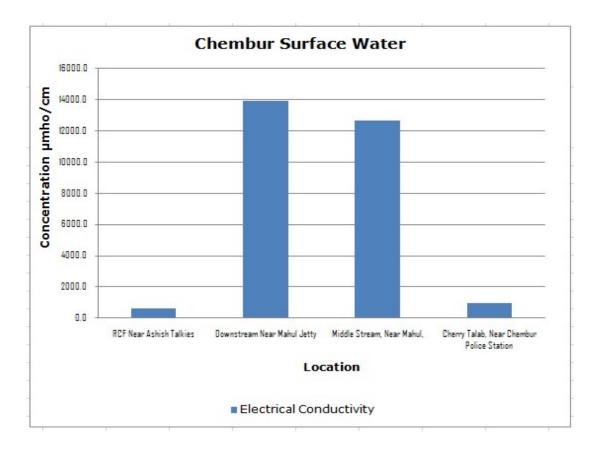
			Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
o,p DDT	µg/L		BDL	BDL	BDL	
p,p DDE	µg/L		BDL	BDL	BDL	
o,p DDE	µg/L		BDL	BDL	BDL	
p,p DDD	µg/L		BDL	BDL	BDL	
o,p DDD	µg/L		BDL	BDL	BDL	
Alpha Endosulfan	µg/L		BDL	BDL	BDL	
Beta Endosulfan	µg/L		BDL	BDL	BDL	
Endosulfan Sulphate	µg/L		BDL	BDL	BDL	
Y HCH (Lindane)	µg/L		BDL	BDL	BDL	
Polynuclear aromatic hydrocarbons (PAH)	µg/L	0.2	BDL	BDL	BDL	
Polychlorinated Biphenyls (PCB)	µg/L	0.02	BDL	BDL	BDL	
Zinc (as Zn)	mg/L	300	BDL	BDL	BDL	
Nickel (as Ni)	mg/L	200	BDL	BDL	BDL	
Copper (as Cu)	mg/L	100	BDL	BDL	BDL	
Hexavalent Chromium (as Cr ⁶⁺)	mg/L		BDL	BDL	BDL	
Total Chromium (as Cr)	mg/L	100	BDL	BDL	0.082	
Total Arsenic (as As)	mg/L	100	0.009	BDL	BDL	
Lead (as Pb)	mg/L	100	BDL	BDL	BDL	
Cadmium (as Cd)	mg/L	5	BDL	BDL	BDL	
Mercury (as Hg)	mg/L	1	BDL	BDL	BDL	

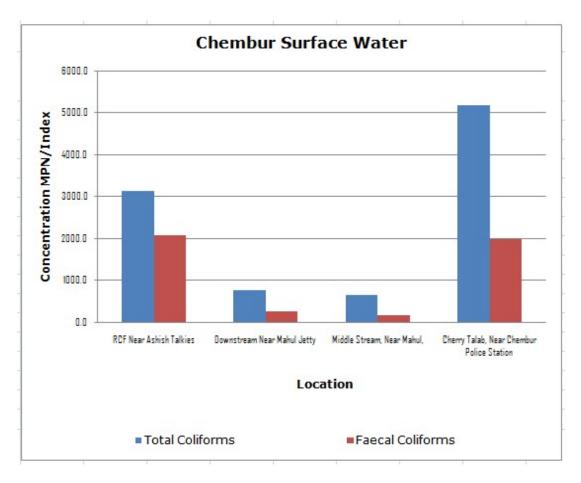
Parameters	Unit	Std. Limit	Results			
			Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Manganese (as Mn)	mg/L	2	0.249	BDL	0.049	
Iron (as Fe)	mg/L	3	0.12	BDL	BDL	
Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL	
Selenium (as Se)	mg/L	0.05	0.009	BDL	0.015	
Boron (as B)	mg/L		BDL	BDL	2.65	
Total Nitrogen	mg/L		7.46	8.49	5.47	
Bioassay Test on fish	% survival	90% survival of fish after 96 hours in 100% effluent	80	60	50	

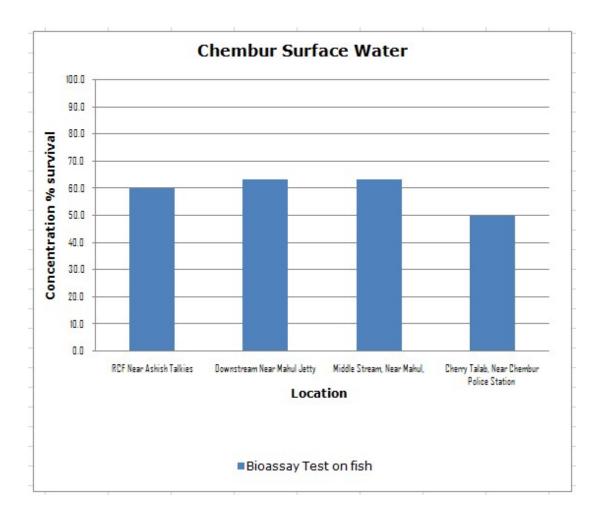
Location: Cherry Talab, Near Chembur Police Station

Parameters			Results			
	Unit	Std. Limit	Round-1	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Colour	Hazen		1	1	1	
Smell	-		Agreeable	Agreeable	Agreeable	
рН	-	5.5 -9.0	7.4	7.57	7.34	
Oil & Grease	mg/L	10	BDL	BDL	BDL	
Suspended Solids	mg/L	100	46	22	10	
Dissolved Oxygen (% Saturation)	%	60-140	90	80	79.1	
Chemical Oxygen Demand	mg/L	250	5	11	5	


Parameters				Results		
	Unit	Std. Limit	nit Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Biochemical Oxygen Demand (3 days, 27°C)	mg/L	30	2	5	2	
Electrical Conductivity (at 25°C)	µmho/cm	4000	1931	520	505	
Nitrite Nitrogen (as NO ₂)	mg/L	5	BDL	BDL	BDL	
Nitrate Nitrogen (as NO3)	mg/L	10	4.76	3.53	2.9	
(NO ₂ + NO ₃)-Nitrogen	mg/L	15	4.76	3.53	2.9	
Free Ammonia (as NH ₃ -N)	mg/L	5	BDL	BDL	BDL	
Total Residual Chlorine	mg/L	1	BDL	BDL	BDL	
Cyanide (as CN)	mg/L	0.2	BDL	BDL	BDL	
Fluoride (as F)	mg/L	2	0.72	0.54	0.2	
Sulphide (as S ²⁻)	mg/L	2	BDL	BDL	BDL	
Dissolved Phosphate (as P)	mg/L	5	0.11	BDL	BDL	
Sodium Absorption Ratio	-		0.89	1.31	1.21	
Total Coliforms	MPN index/ 100 mL		920	5.4 x 10 ³	9.2 x 10 ³	
Faecal Coliforms	MPN index/ 100 mL		240	3.5 x 10 ³	2.2 x 10 ³	
Total Phosphorous (as P)	mg/L		0.15	0.1	BDL	
Total Kjeldahl Nitrogen (as N)	mg/L	100	5.4	6.72	2.68	
Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	1.5	BDL	0.27	<0.1	
Phenols (as C ₆ H ₅ OH)	mg/L	10	BDL	BDL	BDL	


			Results		
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)
Surface Active Agents (as MBAS)	mg/L	200	BDL	BDL	BDL
Organo Chlorine Pesticides					
Alachlor	µg/L		BDL	BDL	BDL
Atrazine	µg/L		BDL	BDL	BDL
Aldrin	µg/L		BDL	BDL	BDL
Dieldrin	µg/L		BDL	BDL	BDL
Alpha HCH	µg/L		BDL	BDL	BDL
Beta HCH	µg/L		BDL	BDL	BDL
Delta HCH	µg/L		BDL	BDL	BDL
Chlorpyriphos	µg/L		BDL	BDL	BDL
Butachlor	µg/L		BDL	BDL	BDL
p,p DDT	µg/L		BDL	BDL	BDL
o,p DDT	µg/L		BDL	BDL	BDL
p,p DDE	µg/L		BDL	BDL	BDL
o,p DDE	µg/L		BDL	BDL	BDL
p,p DDD	µg/L		BDL	BDL	BDL
o,p DDD	µg/L		BDL	BDL	BDL
Alpha Endosulfan	µg/L		BDL	BDL	BDL
Beta Endosulfan	µg/L		BDL	BDL	BDL
Endosulfan Sulphate	µg/L		BDL	BDL	BDL


Parameters				Results	Results	
	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Y HCH (Lindane)	µg/L		BDL	BDL	BDL	
Polynuclear aromatic hydrocarbons (PAH)	µg/L	0.2	BDL	BDL	BDL	
Polychlorinated Biphenyls (PCB)	µg/L	0.02	BDL	BDL	BDL	
Zinc (as Zn)	mg/L	300	BDL	BDL	BDL	
Nickel (as Ni)	mg/L	200	BDL	BDL	BDL	
Copper (as Cu)	mg/L	100	BDL	BDL	BDL	
Hexavalent Chromium (as Cr ⁶⁺)	mg/L		BDL	BDL	BDL	
Total Chromium (as Cr)	mg/L	100	BDL	BDL	BDL	
Total Arsenic (as As)	mg/L	100	BDL	BDL	BDL	
Lead (as Pb)	mg/L	100	BDL	BDL	BDL	
Cadmium (as Cd)	mg/L	5	BDL	BDL	BDL	
Mercury (as Hg)	mg/L	1	BDL	BDL	BDL	
Manganese (as Mn)	mg/L	2	0.173	BDL	0.026	
Iron (as Fe)	mg/L	3	0.346	BDL	BDL	
Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL	
Selenium (as Se)	mg/L	0.05	0.014	0.01	0.007	
Boron (as B)	mg/L		BDL	BDL	BDL	
Total Nitrogen	mg/L		6.44	7.49	3.31	


Parameters	Unit	Std. Limit	Results			
			Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Bioassay Test on fish	% survival	90% survival of fish after 96 hours in 100% effluent	60	60	30	

4.4 Ground Water Quality:

|--|

	Unit	Std. Limit	Results			
Parameters			Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Colour	Hazen		1	1	1	
Smell	-		Agreeable	Agreeable	Agreeable	
рН	-	6.5-9.0	6.89	6.82	7.27	
Oil & Grease	mg/L		BDL	BDL	BDL	
Suspended Solids	mg/L	100	58	6	8	
Chemical Oxygen Demand	mg/L		7	7	BDL	
Biochemical Oxygen Demand (3 days,27°C)	mg/L		2	3	BDL	

Parameters		C L1	Results			
	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Electrical Conductivity (at 25°C)	µmho/cm	4000	740	74.6	85.7	
Nitrite Nitrogen (as NO ₂)	mg/L		0.02	BDL	BDL	
Nitrate Nitrogen (as NO3)	mg/L		13.6	BDL	BDL	
(NO ₂ + NO ₃)-Nitrogen	mg/L	15	13.6	BDL	BDL	
Free Ammonia (as NH ₃ -N)	mg/L		BDL	BDL	BDL	
Total Residual Chlorine	mg/L		BDL	BDL	BDL	
Cyanide (as CN)	mg/L		BDL	BDL	BDL	
Fluoride (as F)	mg/L		0.62	0.22	BDL	
Sulphide (as S ²⁻)	mg/L		BDL	BDL	BDL	
Dissolved Phosphate (as P)	mg/L		0.48	BDL	0.26	
Sodium Absorption Ratio	-		1.89	0.51	0.4	
Total Coliforms	MPN index/ 100 mL		5.4 x 10 ³	23	BDL	
Faecal Coliforms	MPN index/ 100 mL		1.3 x 10 ³	13	BDL	
Total Phosphorous (as P)	mg/L	0.3	0.52	BDL	0.28	
Total Kjeldahl Nitrogen (as N)	mg/L	3	4.48	4.14	3.25	
Total Ammonia (NH4+NH3)- Nitrogen	mg/L	1.5	2	0.15	BDL	
Phenols (as C ₆ H ₅ OH)	mg/L	10	BDL	BDL	BDL	
Surface Active Agents (as MBAS)	mg/L	200	BDL	BDL	BDL	
Organo Chlorine Pesticides						
Alachlor	µg/L		BDL	BDL	BDL	
Atrazine	µg/L		BDL	BDL	BDL	

Parameters			Results			
	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Aldrin	µg/L		BDL	BDL	BDL	
Dieldrin	µg/L		BDL	BDL	BDL	
Alpha HCH	µg/L		BDL	BDL	BDL	
Beta HCH	µg/L		BDL	BDL	BDL	
Delta HCH	µg/L		BDL	BDL	BDL	
Butachlor	µg/L		BDL	BDL	BDL	
Chlorpyriphos	µg/L		BDL	BDL	BDL	
p,p DDT	µg/L		BDL	BDL	BDL	
o,p DDT	µg/L		BDL	BDL	BDL	
p,p DDE	µg/L		BDL	BDL	BDL	
o,p DDE	µg/L		BDL	BDL	BDL	
p,p DDD	µg/L		BDL	BDL	BDL	
o,p DDD	µg/L		BDL	BDL	BDL	
Alpha Endosulfan	µg/L		BDL	BDL	BDL	
Beta Endosulfan	µg/L		BDL	BDL	BDL	
Endosulfan Sulphate	µg/L		BDL	BDL	BDL	
Y HCH (Lindane)	µg/L		BDL	BDL	BDL	
Polynuclear aromatic hydrocarbons (PAH)	µg/L	0.2	BDL	BDL	BDL	
Polychlorinated Biphenyls (PCB)	µg/L	0.02	BDL	BDL	BDL	
Zinc (as Zn)	mg/L	300	BDL	0.151	0.141	
Nickel (as Ni)	mg/L	200	0.026	BDL	BDL	
Copper (as Cu)	mg/L	100	BDL	BDL	BDL	
Hexavalent Chromium (as Cr ⁶⁺)	mg/L		BDL	BDL	BDL	
Total Chromium (as Cr)	mg/L	100	BDL	BDL	BDL	

		Std.	Results			
Parameters	Unit	Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Total Arsenic (as As)	mg/L	100	BDL	BDL	BDL	
Lead (as Pb)	mg/L	100	BDL	BDL	BDL	
Cadmium (as Cd)	mg/L	5	BDL	BDL	BDL	
Mercury (as Hg)	mg/L	1	BDL	BDL	BDL	
Manganese (as Mn)	mg/L		3.09	BDL	BDL	
Iron (as Fe)	mg/L		BDL	BDL	BDL	
Vanadium (as V)	mg/L		BDL	BDL	BDL	
Selenium (as Se)	mg/L		0.01	BDL	BDL	
Total Nitrogen	mg/L		BDL	BDL	BDL	
Boron (as B)	mg/L		7.48	4.14	3.25	
Bioassay Test on fish	% survival		40	70	70	

Name of the Location: Well Water at Ambapada

		Std.	Results			
Parameters	Unit	Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Colour	Hazen		1	1	1	
Smell	-		Agreeable	Agreeable	Agreeable	
рН	-	6.5-9.0	7.71	6.93	7.28	
Oil & Grease	mg/L		BDL	BDL	BDL	
Suspended Solids	mg/L	100	123	8	10	
Chemical Oxygen Demand	mg/L		9	11	BDL	
Biochemical Oxygen Demand (3 days,27°C)	mg/L		2	4	BDL	
Electrical Conductivity (at 25°C)	µmho/cm	4000	903	761	191	
Nitrite Nitrogen (as NO ₂)	mg/L		BDL	BDL	BDL	

Parameters		Std.	Results			
	Unit	Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Nitrate Nitrogen (as NO ₃)	mg/L		6.83	29.7	0.41	
(NO ₂ + NO ₃)-Nitrogen	mg/L	15	6.83	29.7	0.41	
Free Ammonia (as NH ₃ -N)	mg/L		BDL	BDL	BDL	
Total Residual Chlorine	mg/L		BDL	BDL	BDL	
Cyanide (as CN)	mg/L		BDL	BDL	BDL	
Fluoride (as F)	mg/L		0.5	0.74	BDL	
Sulphide (as S ²⁻)	mg/L		BDL	BDL	BDL	
Dissolved Phosphate (as P)	mg/L		BDL	BDL	BDL	
Sodium Absorption Ratio	-		2.02	1.6	0.27	
Total Coliforms	MPN index/ 100 mL		23	BDL	BDL	
Faecal Coliforms	MPN index/ 100 mL		13	BDL	BDL	
Total Phosphorous (as P)	mg/L	0.3	0.54	BDL	BDL	
Total Kjeldahl Nitrogen (as N)	mg/L	3	1	3.92	3.69	
Total Ammonia (NH4+NH3)- Nitrogen	mg/L	1.5	BDL	BDL	BDL	
Phenols (as C ₆ H ₅ OH)	mg/L	10	BDL	BDL	BDL	
Surface Active Agents (as MBAS)	mg/L	200	BDL	BDL	BDL	
Organo Chlorine Pesticides						
Alachlor	µg/L		BDL	BDL	BDL	
Atrazine	µg/L		BDL	BDL	BDL	
Aldrin	µg/L		BDL	BDL	BDL	
Dieldrin	µg/L		BDL	BDL	BDL	
Alpha HCH	µg/L		BDL	BDL	BDL	

Parameters			Results			
	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Beta HCH	µg/L		BDL	BDL	BDL	
Delta HCH	µg/L		BDL	BDL	BDL	
Butachlor	µg/L		BDL	BDL	BDL	
Chlorpyriphos	µg/L		BDL	BDL	BDL	
p,p DDT	µg/L		BDL	BDL	BDL	
o,p DDT	µg/L		BDL	BDL	BDL	
p,p DDE	µg/L		BDL	BDL	BDL	
o,p DDE	µg/L		BDL	BDL	BDL	
p,p DDD	µg/L		BDL	BDL	BDL	
o,p DDD	µg/L		BDL	BDL	BDL	
Alpha Endosulfan	µg/L		BDL	BDL	BDL	
Beta Endosulfan	µg/L		BDL	BDL	BDL	
Endosulfan Sulphate	µg/L		BDL	BDL	BDL	
Y HCH (Lindane)	µg/L		BDL	BDL	BDL	
Polynuclear aromatic hydrocarbons (PAH)	µg/L	0.2	BDL	BDL	BDL	
Polychlorinated Biphenyls (PCB)	µg/L	0.02	BDL	BDL	BDL	
Zinc (as Zn)	mg/L	300	BDL	0.159	0.135	
Nickel (as Ni)	mg/L	200	BDL	BDL	BDL	
Copper (as Cu)	mg/L	100	BDL	BDL	BDL	
Hexavalent Chromium (as Cr ⁶⁺)	mg/L		BDL	BDL	BDL	
Total Chromium (as Cr)	mg/L	100	BDL	BDL	BDL	
Total Arsenic (as As)	mg/L	100	BDL	BDL	BDL	
Lead (as Pb)	mg/L	100	BDL	BDL	BDL	
Cadmium (as Cd)	mg/L	5	BDL	BDL	BDL	

	Unit	Std. Limit	Results			
Parameters			Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Mercury (as Hg)	mg/L	1	BDL	BDL	BDL	
Manganese (as Mn)	mg/L		0.027	BDL	BDL	
Iron (as Fe)	mg/L		0.258	BDL	BDL	
Vanadium (as V)	mg/L		BDL	BDL	BDL	
Selenium (as Se)	mg/L		0.008	BDL	BDL	
Total Nitrogen	mg/L		BDL	BDL	BDL	
Boron (as B)	mg/L		2.5	25.5	3.78	
Bioassay Test on fish	% survival		70	80	70	

Name of the Location: Hand Pump Prayag Nagar

		Std.	Results			
Parameters	Unit	Sta. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Colour	Hazen		1	1	1	
Smell	-		Agreeable	Agreeable	Agreeable	
рН	-	6.5-9.0	8.37	7	7.79	
Oil & Grease	mg/L		BDL	BDL	BDL	
Suspended Solids	mg/L	100	8	6	6	
Chemical Oxygen Demand	mg/L		BDL	6	BDL	
Biochemical Oxygen Demand (3 days,27°C)	mg/L		BDL	2	BDL	
Electrical Conductivity (at 25°C)	µmho/cm	4000	3120	76.2	77	
Nitrite Nitrogen (as NO ₂)	mg/L		BDL	BDL	BDL	
Nitrate Nitrogen (as NO ₃)	mg/L		15.8	13.3	0.2	
(NO ₂ + NO ₃)-Nitrogen	mg/L	15	15.8	13.3	0.2	
Free Ammonia (as NH ₃ -N)	mg/L		BDL	BDL	BDL	

Parameters		Std.	Results			
	Unit	Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Total Residual Chlorine	mg/L		BDL	BDL	BDL	
Cyanide (as CN)	mg/L		BDL	BDL	BDL	
Fluoride (as F)	mg/L		1.3	0.26	0.1	
Sulphide (as S ²⁻)	mg/L		BDL	BDL	BDL	
Dissolved Phosphate (as P)	mg/L		BDL	BDL	BDL	
Sodium Absorption Ratio	-		4.71	0.32	0.78	
Total Coliforms	MPN index/ 100 mL		1600	BDL	BDL	
Faecal Coliforms	MPN index/ 100 mL		350	BDL	BDL	
Total Phosphorous (as P)	mg/L	0.3	0.12	BDL	BDL	
Total Kjeldahl Nitrogen (as N)	mg/L	3	5.15	4.48	4	
Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	1.5	BDL	BDL	BDL	
Phenols (as C ₆ H ₅ OH)	mg/L	10	BDL	BDL	BDL	
Surface Active Agents (as MBAS)	mg/L	200	BDL	BDL	BDL	
Organo Chlorine Pesticides						
Alachlor	µg/L		BDL	BDL	BDL	
Atrazine	µg/L		BDL	BDL	BDL	
Aldrin	µg/L		BDL	BDL	BDL	
Dieldrin	µg/L		BDL	BDL	BDL	
Alpha HCH	µg/L		BDL	BDL	BDL	
Beta HCH	µg/L		BDL	BDL	BDL	
Delta HCH	µg/L		BDL	BDL	BDL	
Butachlor	µg/L		BDL	BDL	BDL	

			Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 Round-2 BDL BDL	Round-3 (26.02.2020)	
Chlorpyriphos	µg/L		BDL	BDL	BDL	
p,p DDT	µg/L		BDL	BDL	BDL	
o,p DDT	µg/L		BDL	BDL	BDL	
p,p DDE	µg/L		BDL	BDL	BDL	
o,p DDE	µg/L		BDL	BDL	BDL	
p,p DDD	µg/L		BDL	BDL	BDL	
o,p DDD	µg/L		BDL	BDL	BDL	
Alpha Endosulfan	µg/L		BDL	BDL	BDL	
Beta Endosulfan	µg/L		BDL	BDL	BDL	
Endosulfan Sulphate	µg/L		BDL	BDL	BDL	
Y HCH (Lindane)	µg/L		BDL	BDL	BDL	
Polynuclear aromatic hydrocarbons (PAH)	µg/L	0.2	BDL	BDL	BDL	
Polychlorinated Biphenyls (PCB)	µg/L	0.02	BDL	BDL	BDL	
Zinc (as Zn)	mg/L	300	BDL	0.15	0.138	
Nickel (as Ni)	mg/L	200	BDL	BDL	BDL	
Copper (as Cu)	mg/L	100	BDL	BDL	BDL	
Hexavalent Chromium (as Cr ⁶⁺)	mg/L		BDL	BDL	BDL	
Total Chromium (as Cr)	mg/L	100	BDL	BDL	BDL	
Total Arsenic (as As)	mg/L	100	BDL	BDL	BDL	
Lead (as Pb)	mg/L	100	BDL	BDL	BDL	
Cadmium (as Cd)	mg/L	5	BDL	BDL	BDL	
Mercury (as Hg)	mg/L	1	BDL	BDL	BDL	
Manganese (as Mn)	mg/L		BDL	BDL	BDL	
Iron (as Fe)	mg/L		BDL	BDL	BDL	

		Results			
Parameters	Unit	Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)
Vanadium (as V)	mg/L		0.032	BDL	BDL
Selenium (as Se)	mg/L		0.007	BDL	BDL
Total Nitrogen	mg/L		0.133	BDL	BDL
Boron (as B)	mg/L		8.62	7.4	0.71
Bioassay Test on fish	% survival		50	80	80

Name of the Location: Well Water at Prayag Nagar, Tabela

		Chi		Results	
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)
Colour	Hazen		1	1	1
Smell	-		Agreeable	Agreeable	Agreeable
рН	-	6.5-9.0	7.21	6.82	7
Oil & Grease	mg/L		BDL	BDL	BDL
Suspended Solids	mg/L	100	12	BDL	6
Chemical Oxygen Demand	mg/L		5	10	BDL
Biochemical Oxygen Demand (3 days,27°C)	mg/L		2	4	BDL
Electrical Conductivity (at 25°C)	µmho/cm	4000	624	81.6	73.2
Nitrite Nitrogen (as NO ₂)	mg/L		BDL	BDL	BDL
Nitrate Nitrogen (as NO ₃)	mg/L		5.09	BDL	1.57
(NO ₂ + NO ₃)-Nitrogen	mg/L	15	5.09	BDL	1.57
Free Ammonia (as NH ₃ -N)	mg/L		BDL	BDL	BDL
Total Residual Chlorine	mg/L		BDL	BDL	BDL
Cyanide (as CN)	mg/L		BDL	BDL	BDL
Fluoride (as F)	mg/L		0.65	BDL	0.1

				Results	
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)
Sulphide (as S ²⁻)	mg/L		BDL	BDL	BDL
Dissolved Phosphate (as P)	mg/L		BDL	0.38	BDL
Sodium Absorption Ratio	-		1.39	0.46	0.21
Total Coliforms	MPN index/ 100 mL		17	BDL	BDL
Faecal Coliforms	MPN index/ 100 mL		11	BDL	BDL
Total Phosphorous (as P)	mg/L	0.3	BDL	0.72	BDL
Total Kjeldahl Nitrogen (as N)	mg/L	3	6.16	6.16	0.78
Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	1.5	BDL	0.12	BDL
Phenols (as C ₆ H ₅ OH)	mg/L	10	BDL	BDL	BDL
Surface Active Agents (as MBAS)	mg/L	200	BDL	BDL	BDL
Organo Chlorine Pesticides					
Alachlor	µg/L		BDL	BDL	BDL
Atrazine	µg/L		BDL	BDL	BDL
Aldrin	µg/L		BDL	BDL	BDL
Dieldrin	µg/L		BDL	BDL	BDL
Alpha HCH	µg/L		BDL	BDL	BDL
Beta HCH	µg/L		BDL	BDL	BDL
Delta HCH	µg/L		BDL	BDL	BDL
Butachlor	µg/L		BDL	BDL	BDL
Chlorpyriphos	µg/L		BDL	BDL	BDL
p,p DDT	µg/L		BDL	BDL	BDL
o,p DDT	µg/L		BDL	BDL	BDL

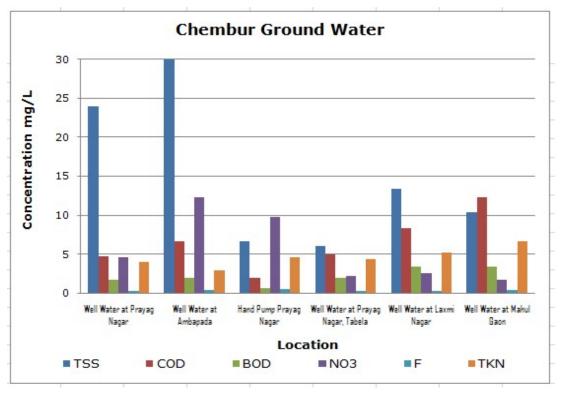
			Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
p,p DDE	µg/L		BDL	BDL	BDL	
o,p DDE	µg/L		BDL	BDL	BDL	
p,p DDD	µg/L		BDL	BDL	BDL	
o,p DDD	µg/L		BDL	BDL	BDL	
Alpha Endosulfan	µg/L		BDL	BDL	BDL	
Beta Endosulfan	µg/L		BDL	BDL	BDL	
Endosulfan Sulphate	µg/L		BDL	BDL	BDL	
Y HCH (Lindane)	µg/L		BDL	BDL	BDL	
Polynuclear aromatic hydrocarbons (PAH)	µg/L	0.2	BDL	BDL	BDL	
Polychlorinated Biphenyls (PCB)	µg/L	0.02	BDL	BDL	BDL	
Zinc (as Zn)	mg/L	300	BDL	0.142	0.132	
Nickel (as Ni)	mg/L	200	BDL	BDL	BDL	
Copper (as Cu)	mg/L	100	BDL	BDL	BDL	
Hexavalent Chromium (as Cr ⁶⁺)	mg/L		BDL	BDL	BDL	
Total Chromium (as Cr)	mg/L	100	BDL	BDL	BDL	
Total Arsenic (as As)	mg/L	100	BDL	BDL	BDL	
Lead (as Pb)	mg/L	100	BDL	BDL	BDL	
Cadmium (as Cd)	mg/L	5	BDL	BDL	BDL	
Mercury (as Hg)	mg/L	1	BDL	BDL	BDL	
Manganese (as Mn)	mg/L		0.721	BDL	BDL	
Iron (as Fe)	mg/L		0.445	BDL	BDL	
Vanadium (as V)	mg/L		BDL	BDL	BDL	
Selenium (as Se)	mg/L		0.007	BDL	BDL	
Total Nitrogen	mg/L		BDL	BDL	BDL	

		644		Results		
Parameters	Unit	Std. Limit	(22.02.2020) (24.02.20	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Boron (as B)	mg/L		7.27	6.16	1.12	
Bioassay Test on fish	% survival		70	80	80	

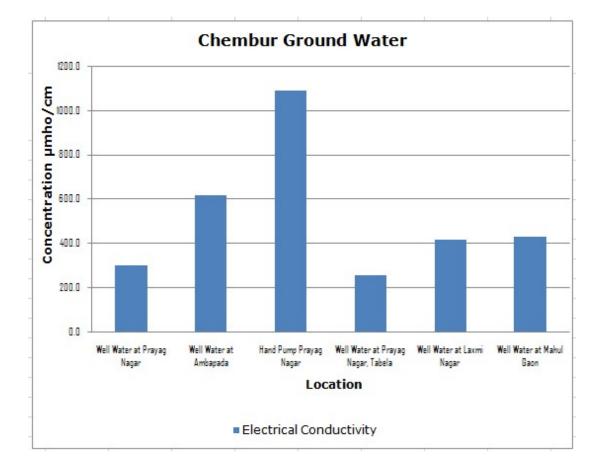
Name of the Location: Well Water at Laxmi Nagar

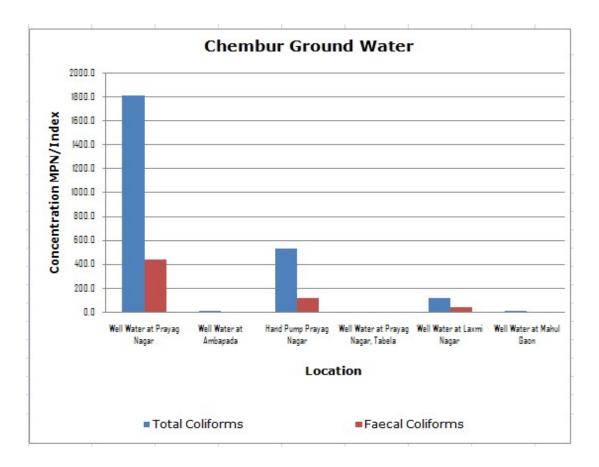
		Std.	Results			
Parameters	Unit	Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Colour	Hazen		1	1	1	
Smell	-		Agreeable	Agreeable	Agreeable	
рН	-	6.5-9.0	7.09	7.89	7.08	
Oil & Grease	mg/L		BDL	BDL	BDL	
Suspended Solids	mg/L	100	34	6	BDL	
Chemical Oxygen Demand	mg/L		5	20	BDL	
Biochemical Oxygen Demand (3 days,27°C)	mg/L		2	8	BDL	
Electrical Conductivity (at 25°C)	µmho/cm	4000	311	870	72.5	
Nitrite Nitrogen (as NO2)	mg/L		BDL	BDL	BDL	
Nitrate Nitrogen (as NO3)	mg/L		3.96	3.58	BDL	
(NO ₂ + NO ₃)-Nitrogen	mg/L	15	3.96	3.58	BDL	
Free Ammonia (as NH ₃ -N)	mg/L		BDL	BDL	BDL	
Total Residual Chlorine	mg/L		BDL	BDL	BDL	
Cyanide (as CN)	mg/L		BDL	BDL	BDL	
Fluoride (as F)	mg/L		0.32	0.3	BDL	
Sulphide (as S ²⁻)	mg/L		BDL	BDL	BDL	
Dissolved Phosphate (as P)	mg/L		BDL	BDL	BDL	
Sodium Absorption Ratio	-		1.08	1.75	0.69	

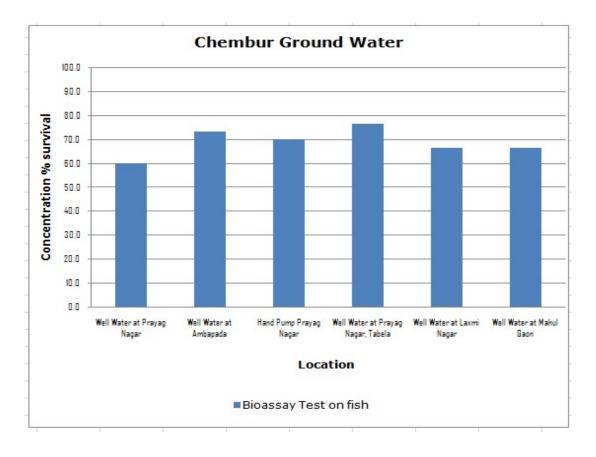
		Ch d		Results	
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)
Total Coliforms	MPN index/ 100 mL		350	BDL	BDL
Faecal Coliforms	MPN index/ 100 mL		130	BDL	BDL
Total Phosphorous (as P)	mg/L	0.3	BDL	BDL	BDL
Total Kjeldahl Nitrogen (as N)	mg/L	3	7.2	2.24	6.16
Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	1.5	0.23	BDL	BDL
Phenols (as C ₆ H ₅ OH)	mg/L	10	BDL	BDL	BDL
Surface Active Agents (as MBAS)	mg/L	200	BDL	BDL	BDL
Organo Chlorine Pesticides					
Alachlor	µg/L		BDL	BDL	BDL
Atrazine	µg/L		BDL	BDL	BDL
Aldrin	µg/L		BDL	BDL	BDL
Dieldrin	µg/L		BDL	BDL	BDL
Alpha HCH	µg/L		BDL	BDL	BDL
Beta HCH	µg/L		BDL	BDL	BDL
Delta HCH	µg/L		BDL	BDL	BDL
Butachlor	µg/L		BDL	BDL	BDL
Chlorpyriphos	µg/L		BDL	BDL	BDL
p,p DDT	µg/L		BDL	BDL	BDL
o,p DDT	µg/L		BDL	BDL	BDL
p,p DDE	µg/L		BDL	BDL	BDL
o,p DDE	µg/L		BDL	BDL	BDL
p,p DDD	µg/L		BDL	BDL	BDL


		Ch J	Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
o,p DDD	µg/L		BDL	BDL	BDL	
Alpha Endosulfan	µg/L		BDL	BDL	BDL	
Beta Endosulfan	µg/L		BDL	BDL	BDL	
Endosulfan Sulphate	µg/L		BDL	BDL	BDL	
Y HCH (Lindane)	µg/L		BDL	BDL	BDL	
Polynuclear aromatic hydrocarbons (PAH)	µg/L	0.2	BDL	BDL	BDL	
Polychlorinated Biphenyls (PCB)	µg/L	0.02	BDL	BDL	BDL	
Zinc (as Zn)	mg/L	300	BDL	0.144	0.14	
Nickel (as Ni)	mg/L	200	BDL	BDL	BDL	
Copper (as Cu)	mg/L	100	BDL	BDL	BDL	
Hexavalent Chromium (as Cr ⁶⁺)	mg/L		BDL	BDL	BDL	
Total Chromium (as Cr)	mg/L	100	BDL	BDL	0.02	
Total Arsenic (as As)	mg/L	100	BDL	BDL	BDL	
Lead (as Pb)	mg/L	100	BDL	BDL	BDL	
Cadmium (as Cd)	mg/L	5	BDL	BDL	BDL	
Mercury (as Hg)	mg/L	1	BDL	BDL	BDL	
Manganese (as Mn)	mg/L		BDL	BDL	BDL	
Iron (as Fe)	mg/L		0.064	BDL	BDL	
Vanadium (as V)	mg/L		0.011	BDL	BDL	
Selenium (as Se)	mg/L		0.008	BDL	BDL	
Total Nitrogen	mg/L		BDL	BDL	BDL	
Boron (as B)	mg/L		8.07	3.02	6.16	
Bioassay Test on fish	% survival		50	80	70	

Name of the Location: Well Water at Mahul Gaon


		C14	Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Colour	Hazen		1	1	1	
Smell	-		Agreeable	Agreeable	Agreeable	
рН	-	6.5-9.0	7.4	7.39	7	
Oil & Grease	mg/L		BDL	BDL	BDL	
Suspended Solids	mg/L	100	23	8	BDL	
Chemical Oxygen Demand	mg/L		26	11	BDL	
Biochemical Oxygen Demand (3 days,27°C)	mg/L		7	3	BDL	
Electrical Conductivity (at 25°C)	µmho/cm	4000	688	412	190	
Nitrite Nitrogen (as NO2)	mg/L		BDL	BDL	BDL	
Nitrate Nitrogen (as NO ₃)	mg/L		2.29	1.4	1.31	
(NO ₂ + NO ₃)-Nitrogen	mg/L	15	2.29	1.4	1.31	
Free Ammonia (as NH ₃ -N)	mg/L		BDL	BDL	BDL	
Total Residual Chlorine	mg/L		BDL	BDL	BDL	
Cyanide (as CN)	mg/L		BDL	BDL	BDL	
Fluoride (as F)	mg/L		0.3	0.8	0.2	
Sulphide (as S ²⁻)	mg/L		BDL	BDL	BDL	
Dissolved Phosphate (as P)	mg/L		BDL	BDL	BDL	
Sodium Absorption Ratio	-		2.73	1.66	0.84	
Total Coliforms	MPN index/ 100 mL		23	BDL	BDL	
Faecal Coliforms	MPN index/ 100 mL		13	BDL	BDL	
Total Phosphorous (as P)	mg/L	0.3	BDL	0.10	0.10	


		GLI	Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Total Kjeldahl Nitrogen (as N)	mg/L	3	9.10	3.24	7.50	
Total Ammonia (NH4+NH3)- Nitrogen	mg/L	1.5	BDL	BDL	BDL	
Phenols (as C_6H_5OH)	mg/L	10	BDL	BDL	BDL	
Surface Active Agents (as MBAS)	mg/L	200	BDL	BDL	BDL	
Organo Chlorine Pesticides						
Alachlor	µg/L		BDL	BDL	BDL	
Atrazine	µg/L		BDL	BDL	BDL	
Aldrin	µg/L		BDL	BDL	BDL	
Dieldrin	µg/L		BDL	BDL	BDL	
Alpha HCH	µg/L		BDL	BDL	BDL	
Beta HCH	µg/L		BDL	BDL	BDL	
Delta HCH	µg/L		BDL	BDL	BDL	
Butachlor	µg/L		BDL	BDL	BDL	
Chlorpyriphos	µg/L		BDL	BDL	BDL	
p,p DDT	µg/L		BDL	BDL	BDL	
o,p DDT	µg/L		BDL	BDL	BDL	
p,p DDE	µg/L		BDL	BDL	BDL	
o,p DDE	µg/L		BDL	BDL	BDL	
p,p DDD	µg/L		BDL	BDL	BDL	
o,p DDD	µg/L		BDL	BDL	BDL	
Alpha Endosulfan	µg/L		BDL	BDL	BDL	
Beta Endosulfan	µg/L		BDL	BDL	BDL	
Endosulfan Sulphate	µg/L		BDL	BDL	BDL	
Y HCH (Lindane)	µg/L		BDL	BDL	BDL	


		C L1	Results			
Parameters	Unit	Std. Limit	Round-1 (22.02.2020)	Round-2 (24.02.2020)	Round-3 (26.02.2020)	
Polynuclear aromatic hydrocarbons (PAH)	µg/L	0.2	BDL	BDL	BDL	
Polychlorinated Biphenyls (PCB)	µg/L	0.02	BDL	BDL	BDL	
Zinc (as Zn)	mg/L	300	BDL	0.156	0.06	
Nickel (as Ni)	mg/L	200	BDL	BDL	0.01	
Copper (as Cu)	mg/L	100	BDL	BDL	BDL	
Hexavalent Chromium (as Cr ⁶⁺)	mg/L		BDL	BDL	BDL	
Total Chromium (as Cr)	mg/L	100	BDL	BDL	BDL	
Total Arsenic (as As)	mg/L	100	BDL	BDL	BDL	
Lead (as Pb)	mg/L	100	BDL	BDL	BDL	
Cadmium (as Cd)	mg/L	5	BDL	BDL	BDL	
Mercury (as Hg)	mg/L	1	BDL	BDL	BDL	
Manganese (as Mn)	mg/L		BDL	BDL	BDL	
Iron (as Fe)	mg/L		BDL	BDL	BDL	
Vanadium (as V)	mg/L		0.015	BDL	BDL	
Selenium (as Se)	mg/L		BDL	BDL	BDL	
Total Nitrogen	mg/L		BDL	BDL	BDL	
Boron (as B)	mg/L		9.6	3.54	7.78	
Bioassay Test on fish	% survival		60	70	70	

Graphs: Ground Water Quality Monitoring for Chembur:

5. Summary of the results

Based on the study done, the results are summarised and concluded as follows:

5.1 Stack Emission Monitoring:

Five industries from Chembur were selected for Stack emission monitoring.

- **1. Particulate matter (PM):** Particulate matter was collected from all 5 stacks are within the standard emission for the specified industry.
- **2.** Sulphur dioxide (SO₂): 3 stacks out of the 5 stacks results is within the limits. two stack the result obtained was below the detectable limit.
- **3. Nitrogen dioxide (NO₂):** The higher concentration of NO₂ was observed at Tata Power Ltd. with 12.5 mg/Nm³.

5.2 Ambient Air Quality Monitoring:

Eight ambient air samples were collected from Chembur region. The parameters monitored were studied as per the NAAQ standards. The variations of each parameter within the area under study are discussed below:

- 1. Sulphur dioxide (SO₂): All 8 locations results showed below the detection limit.
- 2. Nitrogen dioxide (NO₂): All 8 locations results showed below the detection limit.
- **3. Particulate Matter (PM₁₀):** 7 sampled locations in Chembur region showed higher level of PM₁₀ concentration than the standard limit of NAAQS.
- **4. Particulate Matter (PM_{2.5}):** 2 sampled locations in Chembur region showed higher level of PM_{2.5} concentration than the standard limit of NAAQS.
- **5.** Ozone (O_3) : Ozone was found to be below detectable limit in all 8 locations monitored.
- 6. Lead (Pb): Lead was also found to be below detectable limit in all 8 locations monitored.
- **7. Carbon Monoxide (CO):** Concentration of carbon monoxide was found to be below detectable limit in all 8 locations monitored.
- 8. Ammonia (NH₃): Ammonia was below the detectable limit in all 8 locations monitored.
- **9. Benzene (C₆H₆):** Out of 8 locations monitored, 5 locations was having benzene concentration higher than $5 \mu g/m^3$ which is the standard limit as per NAAQS.
- **10.Benzo(a)pyrene (BaP):** BaP was below detectable limit in all 8 locations monitored.
- **11.Arsenic (As):** Concentration of Arsenic was within the permissible limit at all 8 locations monitored.
- **12.Nickel (Ni):** Concentration of Nickel was within the permissible limit at 8 locations monitored.

5.3 Surface Water Quality Monitoring:

To understand the quality of treated effluent, samples were collected from four surface water of Chembur. Considering the general parameters of all the industries mentioned, following are the conclusions:

- **1.** Colour: Colour units was found well within the limits at all 4 locations monitored.
- 2. Odour: odour of all waste water samples collected is found agreeable.
- **3. pH**: it is observed in between 6.9 and 7.57 which is well within the range.
- **4. Suspended Solids**: Suspended solids of all 4 water sample is well within the limits and ranged in between 19.3 mg/L to 44.3 mg/l.
- **5. Chemical Oxygen Demand**: All samples collected, were well within the limit required as per standard.
- **6. Biochemical Oxygen Demand**: The concentration of BOD was well within the limit at all 4 locations monitored.
- 7. Sulphide: 4 samples collected were found to have below detectable limit.
- **8. Total Ammoia**: The concentration of Total ammonia was well within the limit at all 4 locations monitored.
- **9. Total Kjeldahl Nitrogen**: All 4 water samples collected had TKN concentration well, within the limit of 100 mg/L.
- **10.Fish Bioassay**: 100% Survival was not attained in 4 water samples collected for Bioassay test.
- **11.Heavy metals**: All the heavy metals are found below the standard limits in all the samples.

5.4 Ground Water Quality Monitoring:

Six ground water samples were collected from Chembur region.

- **1) Colour** (Hazen Units): Colour units are below the acceptable standard of all water samples collected.
- 2) Odour: odour of all the samples is found agreeable.
- **3) Chemical Oxygen Demand:** The COD of all six samples was found in the range between 2 mg/L to 12.3 mg/L.
- **4) Biological Oxygen Demand:** BOD of all 6 samples was found in the range between 0.7 mg/L to 3.3 mg/L.

Following are the parameters which are compared with ISO 10500:2012 Drinking water specifications.

- 1) Nitrite: Values of Nitrite at all location was well within the standard.
- 2) Nitrate: Results of Nitrate are also observed below standard limit (45mg/l).

- **3) Residual Free Chlorine**: Values are below the detectable limit in all 6 samples collected.
- 4) Total Ammonia: Values are below the detectable limit in all 6 samples collected.
- 5) Fluoride: Values are below the acceptable standards, below <1 mg/L.
- **6) Sulphide:** All the readings of sulphide are below detectable limit in all 6 samples collected.
- **7) Sodium Absorption Ratio:** These values fit within range of water quality criteria of CPCB.
- 8) Total Kjeldahl nitrogen: All 6 water samples collected was well within the standard.
- 9) Fish Bioassay: 100% survival was not attained in any samples collected.
- **10) Boron:** Values are below the acceptable standards.
- **11)** Surface Active Agents: All 6 samples showed below detectable limit.

6. CEPI Score

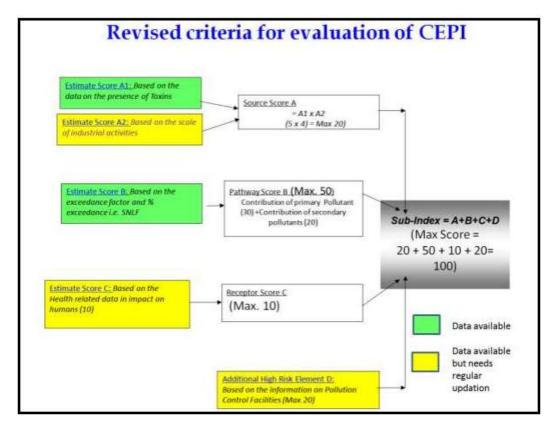
Comprehensive Environmental Pollution Index (CEPI) is intended to act as early warning tool which helps in categorization of industrial clusters/areas in terms of priority of needing attention.

CPCB had evolved certain methodology to calculate CEPI, in which a score has been fixed for different environmental components based on the level of pollution. The scoring system involves an algorithm that takes into account the basic selection criteria. This approach is based on the basic hazard assessment logic that can be summarized as below.

Hazard = pollutant source, pathways, and receptor

CPCB has calculated CEPI for the identified critically polluted industrial clusters. It is calculated separately for air, water, and land. The basic framework and scoring system of the CEPI – based on three factors namely pollutant, pathway, and receptor – has been described further under this section.

To overcome the subjectivity, revised concept is proposed by eliminating the subjective factors as described in the previous section but retaining the factors which can be measured precisely.


- I. Revised concept is prepared by eliminating the debatable factors but retaining the factors which can be measured precisely.
- II. It is decided to develop the Comprehensive Environmental Pollution Index (CEPI) retaining the existing algorithm of Source, Pathway and Receptor.
- III. Health component was also retained in the revised concept in line with the suggestions of Secretary, MoEFCC during the meeting held in MoEF.

Outlines of revised CEPI 2016 criteria

The outlines of the revised CEPI criteria are as follows:

- 1. It is proposed to develop the Comprehensive Environmental Pollution Index (CEPI) based on Sources of pollution, real time observed values of the pollutants in the ambient air, surface water and ground water in & around the industrial cluster and health related statistics.
- 2. For assessment of the environmental quality of the area i.e. CEPI score, the concept of SNLF i.e. a surrogate number which represents the level of exposure (a function of percentage sample Exceedance & Exceedance Factor) shall be used.
- 3. Health component to be evaluated based on the health data available from major hospitals in the area was also retained in the revised concept.

The evaluation criterion of the revised CEPI version 2016 is described in the flowchart given below:

Here, health data collected for Receptor Score C is included in Annexure I

Based on Sub-Index Score (score of individual environmental component like air, water etc.):

- **Score more than 63:** A Critical Level of Pollution in the respective level of environmental component
- **Score between 51-63:** Severe to critical level of pollution with reference to respective environmental component

Cut-off Score	
Score 50:	Severely Polluted Industrial Clusters/areas
Score 60:	Critically Polluted Industrial Clusters/areas

Based on Aggregated CEPI Score (score includes sub-index score of all individual environmental components together):

Aggregated CEPI score >70:	Critically polluted areas
Aggregated CEPI score between 60-70:	Severely polluted areas

Since the inception of the programme, MPCB has also formulated Action Plans to mitigate the environmental pollution problems for each of the 8 Critically Polluted Areas (CPAs) in Maharashtra. Based on available information, parameters selected and monitored in continuation with this, CEPI has been calculated and Short-Term Action Plan (STAP) as well as Long Term Action Plan (LTAP) was prepared in 2010 and every year review was taken on the same.

Subsequently NAAQS 2009 came in force. List of parameters to be considered increased and expanded including more critical and hazardous pollutants like benzene, BaP, Metals, etc. existing in the environment. There was revision of standards (limiting values) as well. In this present report of June 2019 prepared by MPCB, CEPI is calculated considering all these revised standards' limiting values, list of parameters and complete scope of monitoring.

6.1 Comparison of CEPI scores:

The result shows that CEPI score of present report is 47. The present study is the compilation of post monsoon season, which also affects the score value. This time CEPI is observed lower than the CPCB CEPI score February 2018.

	Air Index	Water Index	Land Index	СЕРІ
CEPI score March 2020	44.8	18.8	21	47
CPCB CEPI score Feb 2018	52.25	50.75	10	54.67

Aggregated CEPI

7. Conclusion

Eight ambient air samples were also collected in checking the ambient air quality of the region. PM_{10} , $PM_{2.5}$ and Benzene was found to have exceeded the limit as per NAAQS in only some regions monitored. Automobile exhaust accounts for the concentration of Benzene and PM_{10} in the area. The Concentration of Benzene is also high due to the presence of refinery plant and Power plant.

The surface water samples were collected from different surface water bodies in the region. Only the concentration of nitrogen was found to be beyond the limit in some of the samples identified. We can correct this by taking better measures in the treatment plant so that the outlet water is in the prescribed limit for disposal.

In the ground water samples collected, Electrical Conductivity, Total Kjeldahl Nitrogen and Manganese was found in higher concentration. The ground water collected is from Borewell and is not used for drinking purpose.

The overall pollution load in the region is reduced and continuous efforts have been inputted by the Regional pollution control board and state pollution control board in bringing the pollution lesser.

	A1	A2	Α	В	С	D	CEPI
Air Index	1.25	4	5	39.75	0	0	44.8
Water Index	1	4	4	14.75	0	0	18.8
Land Index	2.75	4	11	10	0	0	21
Aggregated CEPI						47	

8. Annexure

Annexure I Health related data in impact on humans

C: Receptor

Component C (Impact on Human Health)					
1	10				
Main	Main - 10				
% increase in cases	Marks				
<5%	0				
5-10%	5				
>10%	10				

- % increase is evaluated based on the total no. of cases recorded during two consecutive years.
- For Air Environment, total no. of cases related to Asthma, Bronchitis, Cancer, Acute respiratory infections etc. are to be considered.
- For surface water/ ground water Environment, cases related to Gastroenteritis, Diarrhoea, renal (kidney) malfunction, cancer etc are to be considered.
- For the above evaluation, the previous 5 years records of 3-5 major hospitals of the area shall be considered.

Attached below health data collected for the region

INFORMATION ON HEALTH STATISTICS IN PIA

- 1. Name of the Polluted Industrial Area (PIA):
- 2. Name of the major health centre/ organization: SUCHA SETHIA HUSPITHIC & CL.
- 3. Name and designation of the contact person: PR. DIPEN DESLE
- 4. Address: Suman Namae, sion Trumpay Manway chemaur.

5. Year of Establishment: 2007

1		No. of patients reported for the years				
0.	Diseases	2018-2017	2017-2016	2016-2015	2015-2014	2014-2013
	Air Borne Diseases					
L.	Asthma	82	95	92	73	
2.	Acute Respiratory Infection	62	93	93	97	9
3.	Bronchitis	75	85	102	85	SCARDE
4.	Cancer	2)	18	10	10	ISCA
	Water Borne Diseases					9
5.	Gastroenteritis	87	92	96	91	97A
6.	Diarrhea	73	102	93	85	à
7.	Renal diseases	93	95	87	92	
8.	Cancer					

INFORMATION ON HEALTH STATISTICS IN PLA

- 2. Anarrow of this Pollutioni Industrial Areas (FEA):
- Name of the major health centre/ organization: Scal HeSfithal 8.

Manua and Analymation of the contact persons Dr. Abd sayyed Manua Chevrolen Malea No Blebarbu O Prvode Farling un Chevroler : 3.

6...

	No. of patients reported for the years				
Neerees	2518-2517	2017-2018	2014-2015	2015-2014	2014-2013
Air Barns Diseases	-		-		
Asthma	40	41	45	So	36
Acute Acute Acute Actacitors					
Aramabilities	-				
Cancar	22	28	20	19	15
Water Barns Diseases	-				
Kastrosoferitia	15	20	18	12	14
Restricts		-			
Renal documen					
Garrison	-				
	Antions Antions Acube Researchers Enternisten Mater Barris Mater Barris Mater Barris Mater Barris Mater Barris	2018-2017 Antenne Ante	2518-2017 2017-2016 Arrite Barres - Anthena 440 Anthena 440 Anthena - Anthena 400 Anthena - Anthena <	2518-2517 2517-2518 2018-2013 Antona - - - Antona 40 41 45 Antona 40 41 45 Antona 55 28 20 Naturalitie - - - Kannakilie - - - Kantronakilie - - -	2018-2017 2017-2016 2018-2015 2018-2014 Automa - - - - Automa - - - - Automa 40 41 415 50 Automa 40 41 415 50 Automa - - - - Automa 40 41 415 50 Automa 40 41 415 50 Automa - - - - Automa - - - - Automa - - - - Nature Matter - - - - Research - - - -

18 ×

ANNEXURE B

INFORMATION ON HEALTH STATISTICS IN PIA

1. Name of the Polluted Industrial Area (PIA): Chillion book

2. Name of the major health centre/ organization: Mangal Ananci Hospila/

3. Name and designation of the contact person: Jg Manfeel L. parita

4. Address:

+ DE LARMO HOSPITA 48. Swastik Park, Chembur Mumbai - 400 071.

5. Year of Establishment: 8-6-1982

SI No.	Diseases	No. of patients reported for the years				
		2018-2017	2017-2016	2016-2015	2015-2014	2014-2013
	Air Borne Diseases			1	-	3
1.	Asthma	a	5	1	2	2
2.	Acute Respiratory Infection	1	3	I	4	ч
3.	Bronchitis	-		-	1	
4.	Cancer 🦏	-	-	-	-	-
	Water Borne Diseases	-	-	-	-	-
5.	Gastroenteritis	4	4	6	7	12
6.	Diarrhea	-	-	-	1	-
7.	Renal diseases		1	*	2	1
8.	Cancer					The state

Dr. MANGALL PARIHAR M.S. (Ott.) Flag. No. 54544 Chief Executive Officer Manselainte

Signature of the Hospital Head/ Superintend

MANGAL ANAND HOSPITA 48, Swastik Park, Chembur Mumbei - 400 071.

Sr.	Parameters	Method References	Techniques	Detection Limit
1.	Acid Mist (as Sulphuric Acid)	US EPA Method no.m-8	Barium thorine titration Method	0.6 mg/Nm ³
2.	Ammonia	IS 11255 (Part 6):1999, Reaffirmed 2003	Titration/ Nessler Reagent/ Spectrophotometric Method	1 mg/Nm ³
3.	Carbon Monoxide	USEPA Method 10B	GC-FID Method	0.2 mg/Nm ³
4.	Chlorine	US EPA Method 26 for sampling	Titrimetric	0.001 mg/Nm ³
5.	Fluoride (Gaseous)	US EPA Method 13 A	SPADNS Zirconium Lake Spectrophotometric Method	0.025 mg/Nm ³
6.	Fluoride (Particulate)	US EPA Method 13 A	SPADNS Zirconium Lake Spectrophotometric Method	0.005 mg/Nm ³
7.	Hydrogen Chloride	US EPA Method 26 for sampling	Titrimetric	0.25 mg/Nm ³
8.	Hydrogen Sulphide	IS 11255 (Part 4):1985	Titrimetric	1 mg/Nm ³
9.	Oxides of Nitrogen	IS 11255 (Part 7): 2005	PDSA Colorimetric Method	10 mg/Nm ³
10.	Oxygen	IS 13270 : 1992	ORSAT Apparatus	1 %
11.	Poly Aromatic Hydrocarbons (Particulate)	IS 5182 (Part 12) : 2004, Reaffirmed 2009 CPCB Guidelines, May 2011, Page No.39	GC-FID Method	0.25 mg/Nm ³
12.	Suspended Particulate Matter	IS 11255 (Part 1):1985, Reaffirmed 2003	Gravimetric Method	10 mg/Nm ³
13.	Sulphur Dioxide	IS 11255 (Part 2): 1985, Reaffirmed 2003	Titrimetric IPA thorine Method	5.0 mg/Nm ³ 0.02 kg/day

Annexure II: Stack Emission Sampling and Analysis Methodology

Sr.	Parameters	Method References	Techniques	Detection Limit
14.	BTX (Benzene, Toluene, Xylene)	NIOSH (NMAM) 1501	Adsorption and Desorption followed by GC-FID analysis	0.001 mg/Nm ³
15.	VOC (Volatile Organic Compounds)	NIOSH (NMAM) 1501 for sampling	Adsorption and Desorption followed by GC-FID or GC/ MS analysis	-
i	Methyl Isobutyl Ketone	-	-	0.001 mg/Nm ³
ii	Benzene	-	-	0.001 mg/Nm ³
iii	Toluene	-	-	0.001 mg/Nm ³
iv	Xylene	-	-	0.001 mg/Nm ³
v	Ethyl Benzene	-	-	0.001 mg/Nm ³
vi	Ethyl Acetate	-	-	0.001 mg/Nm ³

Sr.	Parameters	Method References	Techniques	Detection Limit
1.	Sulphur Dioxide (SO2)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.1	Improved West & Gaeke Method	4 µg/m³
2.	Nitrogen Dioxide (NO2)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.7	Modified Jacob & Hochheiser Method	3 µg/m³
3.	Particulate Matter (size less than 10 μ m) or PM ₁₀	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.11	Gravimetric Method	2 µg/m ³
4.	Particulate Matter (size less than 2.5 μ m) or PM _{2.5}	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 15	Gravimetric Method	0.4 µg/m ³
5.	Ozone (O3)	APHA, Method No. 820, Page no. 836	Chemical Method	19.6 µg/m³
6.	Lead (Pb)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	0.02 µg/m³
7.	Carbon Monoxide (CO)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume II, May 2011, Page No. 16	Non Dispersive Infra Red (NDIR) spectroscopy	0.05 mg/m ³
8.	Ammonia (NH₃)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 35	Indophenol Blue Method	4.0 µg/m ³
9.	Benzene (C ₆ H ₆)	IS 5182 (Part 11):2006	Adsorption and Desorption followed by GC- FID analysis	1.0 µg/m³
10.	Benzo (a) Pyrene (BaP) – particulate phase only,	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 39	Solvent extraction followed by GC- FID analysis	0.2 ng/m ³

Annexure III: Ambient Air Sampling and Analysis Methodology

Sr.	Parameters	Method References	Techniques	Detection Limit
11.	Arsenic (As)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	0.3 ng/m ³
12.	Nickel (Ni)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	3.0 ng/m ³

Sr.	Parameters	Methods References	Techniques	Detection Limit
1.	Sampling Procedure for Chemical Parameters	IS 3025 (Part 1): 1987, Reaffirmed 1998, Amds.1& APHA, 22 nd Ed., 2012, 1060 B, 1-39	-	-
2.	Sampling Procedure for Microbiological Parameters	APHA, 22 nd Ed., 2012, 1060 B, 1-39, 9040, 9-17, and 9060B, 9-35	-	_
3.	Temperature	APHA, 22 nd Ed., 2012, 2550-B, 2-69	By Thermometer	-
4.	Colour	APHA, 22 nd Ed., 2012, 2120-B, 2-26	Visible Comparison Method	1 Hazen Unit
5.	Odour	IS 3025 (Part 5): 1983, Reaffirmed 2006	Qualitative Method	_
6.	рН	APHA, 22 nd Ed., 2012, 4500-H ⁺ - B, 4-92	By pH Meter	1
7.	Oil & Grease	APHA, 22 nd Ed., 2012, 5520-B, 5-40	Liquid -liquid Partition- Gravimetric Method	1.0 mg/l
8.	Suspended Solids	IS 3025 (Part 17): 1984, Reaffirmed 2006, Amds.1	Filtration /Gravimetric Method	5.0 mg/l
9.	Dissolved Oxygen	IS 3025 (Part 38): 1989, Reaffirmed 2009	Iodometric Method-Azide modification	0.05 mg/l
10.	Chemical Oxygen Demand	APHA, 22 nd Ed., 2012, 5220-B, 5-17	Open Reflux Method	5.0 mg/l
11.	Biochemical Oxygen Demand	IS 3025 (Part 44): 1993, Reaffirmed 2009, Amds.1	Iodometric Method	5.0 mg/l
12.	Electrical Conductivity	APHA, 22 nd Ed., 2012, 2510- B, 2-54	By Conductivity Meter	0.1 µmho/cm
13.	Nitrite-Nitrogen	APHA, 22 nd Ed., 2012, 4500-NO ₂ -B, 4-120	Colorimetric Method	0.006 mg/l

Annexure IV: Water/Wastewater Sampling and Analysis Methodology

Sr.	Parameters	Methods References	Techniques	Detection Limit
14.	Nitrate-Nitrogen	APHA, 22 nd Ed., 2012, 4500-NO ₃ , B- 4-122	UV Spectrophotometer Screening Method	0.2 mg/l
15.	(NO2 + NO3)- Nitrogen	APHA, 22 nd Ed., 2012, 4500-NO ₂ -B, 4-120 APHA, 22 nd Ed., 2012, 4500-NO ₃ , B-4-122	Colorimetric Method V Spectrophotometer Screening Method	0.2 mg/l
16.	Free Ammonia	APHA, 22 nd Ed., 2012, 4500 NH ₃ , F, 4 -115	Colorimetric Method	0.006 mg/l
17.	Total Residual Chlorine	IS 3025 (Part 26): 1986, Reaffirmed 2009, Ed. 2.1 (2004-02)	Iodometric Method	0.1 mg/l
18.	Cyanide (CN)	APHA, 22 nd Ed., 2012,4500-CN, C & E, 4-41 & 4-43	Colorimetric Method	0.001 mg/l
19.	Fluoride (F)	APHA, 22 nd Ed., 2012, 4500-F, D, 4-87	SPADNS Method	0.05 mg/l
20.	Sulphide (S ²⁻)	APHA, 22 nd Ed., 2012, 4500 –S ² , C-4-175, F-4-178	Iodometric Method	0.08 mg/l
21.	Dissolved Phosphate (P)	APHA, 22 nd Ed., 2012, 4500 P,E, 4- 155	Ascorbic Acid Method	0.03 mg/l
22.	Sodium Absorption Ratio	IS11624: 1986, Reaffirmed 2006	By Calculation	0.3
23.	Total Phosphorous (P)	APHA,22 nd Ed., 2012, 4500 P,E, 4- 155	Ascorbic Acid Method	0.03 mg/l
24.	Total Kjeldahl Nitrogen	APHA, 22 nd Ed., 2012, 4500 NH ₃ , B & C, 4 -110, 4-112	Titrimetric Method	0.1 mg/l
25.	Total Ammonia (NH4 +NH3)- Nitrogen	APHA, 22 nd Ed., 2012, 4500 NH ₃ , F, 4 - 115	Colorimetric Method	0.001 mg/l
26.	Phenols (C ₆ H₅OH)	APHA, 22 nd Ed., 2012, 5530- B & C, 5-44 & 5-47	Chloroform Extraction Method	0.001 mg/l

Sr.	Parameters	Methods References	Techniques	Detection Limit
27.	Surface Active Agents	APHA, 22 nd Ed., 2012, 5540-B & C, 5-50	Methylene Blue Extraction Method	0.1 mg/l
28.	Organo Chlorine Pesticides	APHA, 22 nd Ed., 2012, 6410B, 6-74	GC MS-MS Method	0.01 µg/L
29.	Polynuclear aromatic hydrocarbons (PAH)	APHA, 22 nd Ed., 2012, 6410B, 6-74	GC MS-MS Method	0.01 µg/L
30.	Polychlorinated Biphenyls (PCB)	APHA, 22 nd Ed., 2012, 6410B, 6-74	GC MS-MS Method	0.01 µg/L
31.	Zinc (Zn)	IS 3025 (Part 2): 2004	ICP Method	0.1 mg/l
32.	Nickel (Ni)	IS 3025 (Part 2): 2004	ICP Method	0.05 mg/l
33.	Copper (Cu)	IS 3025 (Part 2): 2004	ICP Method	0.03 mg/l
34.	Hexavalent Chromium (Cr ⁶⁺)	APHA, 22 nd Ed., 2012, 3500-Cr, B, 3-69	Colorimetric Method	0.02 mg/l
35.	Total Chromium (Cr)	IS 3025 (Part 2): 2004	ICP Method	0.02 mg/l
36.	Total Arsenic (As)	IS 3025 (Part 2): 2004	ICP Method	0.005 mg/l
37.	Lead (Pb)	IS 3025 (Part 2): 2004	ICP Method	0.008 mg/l
38.	Cadmium (Cd)	IS 3025 (Part 2): 2004	ICP Method	0.002 mg/l
39.	Mercury (Hg)	IS 3025 (Part 2): 2004	ICP Method	0.0008 mg/l
40.	Manganese (Mn)	IS 3025 (Part 2): 2004	ICP Method	0.02 mg/l
41.	Iron (Fe)	IS 3025 (Part 2): 2004	ICP Method	0.06 mg/l
42.	Vanadium (V)	IS 3025 (Part 2): 2004	ICP Method	0.05 mg/l

Sr.	Parameters	Methods References	Techniques	Detection Limit
43.	Selenium (Se)	IS 3025 (Part 2): 2004	ICP Method	0.005 mg/l
44.	Boron (B)	IS 3025 (Part 2): 2004	ICP Method	0.1 mg/l
45.	Total Coliforms	APHA, 22 nd Ed., 2012, 9221-B, 9-66	Multiple tube fermentation technique (MPN/100ml)	1.1 MPN/100ml
46.	Faecal Coliforms	APHA, 22 nd Ed., 2012, 9221-E, 9-74	Multiple tube fermentation technique (MPN/100ml)	1.1 MPN/100ml
47.	Bioassay (Zebra Fish) Test	IS 6582, 1971, Reaffirmed 1987	Static Technique	-

Annexure V: National Ambient Air Quality Standards, 2009

The Gazette of India

EXTRAORDINARY PART III-Section 4 PUBLISHED BY AUTHORITY NEW DELHI, WEDNESDAY, NOBEMBER 18, 2009 No. B-29016/20/90/PCI-I

National Ambient Air Quality Standards: Central Pollution Control Board

In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevntion and Control of Pollution) Act, 1981 (Act No.14 of 1981), and in suppression of the Notification No(s). S.O.384(E), dated 11th April, 1994 and S.O.935(E), dated 14th October, 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect, namely:

Sr.	Pollutant		Time		Concentratio	on in Ambient Air
No.			Weighted Average	Industrial, Residential, Rural and Other Areas	Ecologically Sensitive Areas (Notified by Central Government)	Methods of Measurement
(1)	(2)		(3)	(4)	(5)	(6)
1	Sulphur Dioxide (SO ₂)	$\mu g/m^3$	Annual *	50	20	– Improved West and Gaeke
<u> </u>	Sulphu Dioxide (502)	µg/m	24 hours **	80	80	 Ultraviolet fluorescence
2	Nitrogen Dioxide (NO ₂)	µg/m ³	Annual *	40	30	 Modified Jacob & Hochheiser (Na-Arsenite)
2	Nillogen Dioxide (NO ₂)	µg/m	24 hours **	80	80	- Chemilminescence
3	Particulate Matter (size		Annual *	60	60	 Gravimetric TOEM
5	less than 10 $\mu m)$ or PM_{10}	$\mu g/m^3$	24 hours **	100	100	 Beta attenuation
4	Particulate Matter (size		Annual *	40	40	– Gravimetric – TOEM
4	less than 2.5 $\mu m)$ or $PM_{2.5}$	$\mu g/m^3$	24 hours **	60	60	 Beta attenuation
5	$O_{\text{Topp}}(O_{\tau})$		8 hours **	100	100	 UV photometric Chemiluminescence
5	Ozone (O ₃)	$\mu g/m^3$	1 hour **	180	180	 Chemical Method
6	Lead (Pb)	µg/m ³	Annual *	0.50	0.50	 AAS/ICP method after sampling on EPM 2000 or
0	Lead (PD)	µg∕m	24 hours **	1.0	1.0	equivalent filter paper – EDXRF using Teflon filter
7	Carbon Monoxide (CO)	mg/m ³	8 hours **	02	02	– Non Dispersive Infra Red
<i>'</i>	carbon wonoxide (CO)	mg/m	1 hour **	04	04	(NDIR) spectroscopy
8	Ammonia (NH3)	$\mu g/m^3$	Annual *	100	100	 Chemiluminescence
		1.8	24 hours **	400	400	 Indophenol blue method
9	Benzene (C ₆ H ₆)	$\mu g/m^3$	Annual *	05	05	 Gas Chromatography based continuous analyzer Adsorption and Desorption followed by GC analysis
10	Benzo (a) Pyrene (BaP) – particulate phase only,	ng/m ³	Annual *	01	01	 Solvent extraction followed by HPLC/GC analysis
11	Arsenic (As)	ng/m ³	Annual *	06	06	 AAS/ICP method after sampling on EPM 2000 or equivalent filter paper.
12	Nickel (Ni)	ng/m ³	Annual *	20	20	 AAS/ICP method after sampling on EPM 2000 or equivalent filter paper.

* Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

* 24 hourly or 08 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

SANT PRASAD GAUTAM, Chairman, Central Pollution Control Board [ADVT-III/4/184/09/Exty.]

Note: The notifications on National Ambient Air Quality Standards were published by the Central Pollution Control Board in the Gazette of India. Extraordinary vide notification No(s). S.O. 384(E), dated 11th April, 1994 and S.O. 935(E), dated 14th October,1998.

µg/m³: micro-gram/m³ i.e. 10⁻⁶gm/m³

ng/m³ : nano-gram/m³ i.e. 10⁻⁹gm/m³

Annexure VI: General Standards for Discharge of Environmental Pollutants, Part A: Effluents (The Environment (Protection) Rules, 1986, Schedule VI)

			Stand	dards	
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
1.	Colour and Odour	See Note 1		See Note I	See Note 1
2.	Suspended solids, mg/l, Max.	100	600	200	a) For process waste water - 100 b) For cooling water effluent- 10 percent above total suspende d mailer of influent cooling water.
3.	Particle size of suspended solids	Shall pass 850 micron IS Sieve			 a. Floatable solids, Max 3 mm b. Settleable solids Max 850 microns
4.	Dissolved solids (Inorganic), mg/l, Max.	2100	2100	2100	
5.	pH value	5.5 -9.0	5.5 -9.0	5.5 -9.0	5.5-9.0
6.	Temperature °C, Max	Shall not exceed 40 in any section of the stream within 15 mts. Downstream from the effluent outlet	45 at the point of discharge		45 at the point of discharge

		Standards			
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
7.	Oil and Grease mg/l, Max	10	20	10	20
8.,	Total Residual chlorine, mg/l, Max	1.0			1.0
9.	Ammonical Nitrogen (as N), mg/l, Max	50	50		50
10.	Total Kjeldahl Nitrogen (as N), mg/l, Max.	100			100
11.	Free Ammonia (as NH ₃), mg/l, Max	5.0			5.0
12.	Biochemical oxygen demand (5 days, at 20° c) mg/l, Max	30	350	100	100
13.	Chemical oxygen demand, mg/l, Max	250			250
14.	Arsenic (as As), mg/l, Max	0.2	0.2	0.2	0.2
15.	Mercury (as Hg). Mg/l, Max	0.01	0.01		0.01
16.	Lead (as Pb), mg/l, Max	0.1	1.0	-	1.0
17.	Cadmium (as Cd), mg/l,	2.0	1.0		2.0
18.	Hexavalent Chromium (as Cr ⁺⁶) mg/l, Max	1	2.0		1.0
19.	Total Chromium (as Cr), mg/l, Max	2.0	2.0		2.0

		Standards			
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
20.	Copper (as Cu), mg/l, Max.	3.0	3.0		3.0
21.	Zinc (as Zn), mg/l, Max.	5.0	15	0	15
22	Selenium (as Se), mg/l, Max.	0.05	0.05		0.05
23	Nickel (as Ni), mg/l, Max.	3.0	3.0		5.0
24	Boron (as B), mg/l, Max.	2.0	2.0	2.0	
25.	Percent Sodium, Max.		60	60	
26.	Residual Sodium carbonate, mg/l, Max.			5.0	
27.	Cyanide (as Cn), mg/l, Max.	0.2	2.0	0.2	0.2
28.	Chloride (as Cl), mg/l, Max.	1000	1000	600	
29.	Fluoride (as F), mg/l, Max.	2.0	15		15
30.	Dissolved Phosphate (as P), mg/l, Max.	5.0			
31.	Sulphate (as SO4), mg/l, Max.	1000	1000	1000	
32.	Sulphide (as S), mg/l, Max.	2.0			5.0
33.	Pesticides	Absent	Absent	Absent	Absent
34.	Phenolic compounds (as C ₆ H₅OH), mg/l, Max.	1.0	5.0		5.0

		Standards			
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
35.	Radioactive materials:				
	a. Alpha emitters MC/ml., Max.	10-7	10-7	10 ⁻⁸	10-7
	b. Beta emitters μc/ml., Max	10 ⁻⁶	10 ⁻⁶	10-7	10 ⁻⁶

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
Table 1	Organoleptic and Physical Parameters			
1.	Colour	Hazen units	Max 5	Max 15
2.	Odour	-	Agreeable	Agreeable
3.	pH value	-	6.5-8.5	No relaxation
4.	Taste	-	Agreeable	Agreeable
5.	Turbidity	NTU	Max 1	Max 5
6.	Total dissolved solids	mg/l	Max 500	Max 2000
Table 2	General parameters concerning substances undesirable in excessive amounts			
7.	Aluminium (as Al)	mg/l	Max 0.03	Max 0.2
8.	Ammonia (as total ammonia- N)	mg/l	Max 0.5	No relaxation
9.	Anionic detergents (as MBAS)	mg/l	Max 0.2	Max 1.0
10.	Barium (as Ba)	mg/l	Max 0.7	No relaxation
11.	Boron (as B)	mg/l	Max 0.5	Max 1.0
12.	Calcium (as Ca)	mg/l	Max 75	Max 200
13.	Chloramines (as C12)	mg/l	Max 4.0	No relaxation
14.	Chlorides (as Cl)	mg/l	Max 250	Max 1000
15.	Copper (as Cu)	mg/l	Max 0.05	Max 1.5
16.	Fluoride (as F)	mg/l	Max 1.0	Max 1.5
17.	Free residual chlorine	mg/l	Min 0.2	Min 1
18.	Iron (as Fe)	mg/l	Max 0.3	No relaxation
19.	Magnesium (as Mg)	mg/l	Max 30	Max100

Annexure VII: Drinking Water Specification-IS 10500:2012

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
20.	Manganese (as Mn)	mg/l	Max 0.1	Max 0.3
21.	Mineral Oil	mg/l	Max 0.5	No relaxation
22.	Nitrate (as NO ₃)	mg/l	Max 45	No relaxation
23.	Phenolic compounds (as C_6H_5OH)	mg/l	Max 0.001	Max 0.002
24.	Selenium (as Se)	mg/l	Max 0.01	No relaxation
25.	Silver (as Ag)	mg/l	Max 0.1	No relaxation
26.	Sulphate (as SO ₄)	mg/l	Max 200	Max 400
27.	Sulphide (as H ₂ S)	mg/l	Max 0.05	No relaxation
28.	Total Alkalinity as calcium carbonate	mg/l	Max 200	Max600
29.	Total hardness (as CaCO ₃)	mg/l	Max 200	Max 600
30.	Zinc (as Zn)	mg/l	Max 5	Max15
Table 3	Parameters Concerning Toxic Substances			
31.	Cadmium (as Cd)	mg/l	Max 0.003	No relaxation
32.	Cyanide (as CN)	mg/l	Max 0.05	No relaxation
33.	Lead (as Pb)	mg/l	Max 0.01	No relaxation
34.	Mercury (as Hg)	mg/l	Max 0.001	No relaxation
35.	Molybdenum (as Mo)	mg/l	Max 0.07	No relaxation
36.	Nickel (as Ni)	mg/l	Max 0.02	No relaxation
37.	Pesticides	mg/l	See Table 5	No relaxation
38.	Polychlorinated biphenyls	mg/l	Max 0.0005	No relaxation
39.	Poly nuclear aromatic Hydrocarbons (as PAH)	mg/l	Max 0.0001	No relaxation
40.	Total Arsenic(as As)	mg/l	Max 0.01	Max0.05
41.	Total Chromium (as Cr)	mg/l	Max 0.05	No relaxation

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
42.	Trihalomethanes			
a)	Bromoform	mg/l	Max 0.1	No relaxation
b)	Dibromochloro Methane	mg/l	Max 0.1	No relaxation
c)	Bromodichloromethane	mg/l	Max 0.06	No relaxation
d)	Chloroform	mg/l	Max 0.2	No relaxation
Table 4	Parameters Concerning Radioactive Substances			
43.	Radioactive Materials			
a)	Alpha emitters	Bq/L	Max 0.1	No relaxation
b)	Beta emitters	Bq/L	Max 1.0	No relaxation
Table 5	Pesticide Residues Limits and Test Method			
i)	Alachor	µg/L	20	No relaxation
ii)	Atrazine	µg/L	2	No relaxation
iii)	Aldrin/ Dieldrin	µg/L	0.03	No relaxation
iv)	Alpha HCH	µg/L	0.01	No relaxation
v)	Beta HCH	µg/L	0.04	No relaxation
vi)	Butachlor	µg/L	125	No relaxation
vii)	Chlorpyriphos	µg/L	30	No relaxation
viii)	Delta HCH	µg/L	0.04	No relaxation
ix)	2,4- Dichlorophenoxyacetic acid	µg/L	30	No relaxation
x)	DDT (o,p & p,p — Isomers of DDT, DDE and DDD)	µg/L	1	No relaxation
xi)	Endosulfan (a, β & sulphate)	µg/L	0.4	No relaxation
xii)	Ethion	µg/L	3	No relaxation
xiii)	Gamma - HCH (Lindane)	µg/L	2	No relaxation

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
xiv)	Isoproturon	µg/L	9	No relaxation
xv)	Malathion	µg/L	190	No relaxation
xvi)	Methyl parathion	µg/L	0.3	No relaxation
xvii)	Monocrotophos	µg/L	1	No relaxation
xviii)	Phorate	µg/L	2	No relaxation
Table 6	Bacteriological Quality of Drinking Water			
44.	E.coli or thermotolerant coliform bacteria	/100	Not detectable	-
45.	Total coliform bacteria	/100 mL	Not detectable	-
	Virological Requirements			
46.	MS2 phage	/1 L	Absent	-
	Biological Requirements			
47.	Cryptosporidium	/10 L	Absent	-
48.	Giardia	/10 L	Absent	-
49.	Microscopic organisms such as algae, zooplanktons, flagellates, parasites and toxin producing organisms		Free from microscopic organisms	-

Annexure VIII: CPCB Water Quality Criteria:

Designated best use	Quality Class	Primary Water Quality Criteria
Drinking water source without conventional treatment but with chlorination	A	 Total coliform organisms (MPN*/100 ml) shall be 50 or less pH between 6.5 and 8.5 Dissolved Oxygen 6 mg/l or more, and Biochemical Oxygen Demand 2 mg/l or less
Outdoor bathing (organized)	В	 Total coliform organisms (MPN/100 ml) shall be 500 or less pH between 6.5 and 8.5 Dissolved Oxygen 5 mg/l or more, and Biochemical Oxygen Demand 3 mg/l or less
Drinking water source with conventional treatment	С	 Total coliform organisms (MPN/100ml) shall be 5000 or less pH between 6 and 9 Dissolved Oxygen 4 mg/l or more, and Biochemical Oxygen Demand 3 mg/l or less
Propagation of wildlife and fisheries	D	 pH between 6.5 and 8.5 Dissolved Oxygen 4 mg/l or more, and Free ammonia (as N) 1.2 mg/l or less
Irrigation, industrial cooling, and controlled disposal	E	 pH between 6.0 and 8.5 Electrical conductivity less than 2250 micro mhos/cm, Sodium Absorption Ratio less than 26, and Boron less than 2 mg/l.
	Below E	> Not Meeting A, B, C, D & E Criteria

Annexure IX: Water Quality Parameters Requirements and Classification

Water quality parameters are classified into three categories, given in Table (i), (ii) and (iii) (Source: CPCB, 2002, "Water Quality Criteria and Goals", Monitoring of Indian National aquatic Resources Series: MINARS/17/2001-2002).

Table: Basic Water Quality Requirement and Classification (Surface Water + Ground Water)

i) Simple Parameters:

Sr.	Parameters	Requirement for Waters of Class		
		A-Excellent	B-Desirable	C-Acceptable
(i)	Sanitary Survey	Very Clean neighborhood and catchment	Reasonably clean neighborhood	Generally clean neighborhood
(ii)	General Appearance	No floating matter	No floating matter	No floating matter
(iii)	Colour	Absolutely Colourless	Almost colourless, very light shade if any	No colour of anthropogenic origin
(iv)	Smell	Odourless	Almost odourless	No unpleasant odour
(v)	Transparency	>1.0 depth	>0.5 to 0.1m depth	>0.2 to 0.5 m depth
(vi)	Ecological* (Presence of Animals)	Fish & Insects	Fish & Insects	Fish & Insects

* Applicable to only surface water

ii) Regular Monitoring Parameters:

Sr.	Parameters	Requirement for Waters of Class			
		A Excellent	B-Desirable	C-Acceptable	
(i)	рН	7.0 to 8.5	6.5 to 9.0	6.5 to 9.0	
(ii)	DO (% Saturation)	90-110	80-120	60-140	
(iii)	BOD, mg/l	Below 2	Below 5	Below 8	
(iv)	EC, µmhos/cm	<1000	<2250	<4000	
(v)	(NO ₂ +NO ₃)- Nitrogen, mg/l	<5	<10	<15	
(vi)	Suspended solid, mg/l	<25	<50	<100	

Sr.	Parameters	Requirement for Waters of Class		
		A Excellent	B-Desirable	C-Acceptable
(vii)	Fecal Coliform, MPN/ 100 ml	<20 per 100 ml	<200 per 100 ml	<2000 per 100 ml
(viii)	Bio-assay (Zebra Fish)	No death in 5 days	No death in 3 days	No death in 2 days

Note:

- 1. Dissolved Oxygen (DO) not applicable for ground waters.
- 2. Dissolved Oxygen in eutrophicated waters should include measurement for diurnal variation.
- 3. Suspended solid limit is applicable only during non-monsoon period.
- 4. Faecal Coliform values should meet for 90% times.
- 5. Static Bio-Assay method may be adopted.

iii) Specific Parameters: (Only in case of need/apprehensions)

Sr.	Parameters	Requirement for Waters of Class			
		A- Excellent	B-Desirable	C-Acceptable	
(i)	Total Phosphorous	<0.1 mg/l	<0.2 mg/l	<0.3 mg/l	
(ii)	T.K.N	<1.0 mg/l	<2.0 mg/l	<3.0 mg/l	
(iii)	Total Ammonia (NH4 + NH3)- Nitrogen	<0.5 mg/l	<1.0 mg/l	<1.5 mg/l	
(iv)	Phenols	<2 µg/l	<5 µg/l	<10 µg/l	
(v)	Surface Active Agents	<20 µg/l	<100 µg/l	<200 µg/l	
(vi)	Organo Chlorine Pesticides	<0.05 µg/l	<0.1 µg/l	<0.2 µg/l	
(vii)	РАН	<0.05 µg/I	<0.1 µg/l	<0.2 µg/l	
(viii)	PCB and PCT	<0.01 µg/l	<0.01 µg/l	<0.02 µg/l	
(ix)	Zinc	<100 µg/l	<200 µg/l	<300 µg/l	
(x)	Nickel	<50 µg/l	<100 µg/l	<200 µg/l	
(xi)	Copper	<20 µg/l	<50 µg/l	<100 µg/l	
(xii)	Chromium (Total)	<20 µg/l	<50 µg/l	<100 µg/l	
(xiii)	Arsenic (Total)	<20 µg/l	<50 µg/l	<100 µg/l	

Sr.	Parameters	Requirement for Waters of Class			
		A- Excellent	B-Desirable	C-Acceptable	
(xiv)	Lead	<20 µg/l	<50 µg/l	<100 µg/l	
(xv)	Cadmium	<1.0 µg/l	<2.5 µg/l	<5.0 µg/l	
(xvi)	Mercury	<0.2 µg/l	<0.5 µg/l	<1.0 µg/l	