ACTION PLAN FOR INDUSTRIAL CLUSTER IN CRITICALLY POLLUTED AREA

Monitoring, Sampling, Analysis of Stack, Ambient Air Quality, Surface Water, Ground Water, Waste Water

औरंगाबाद Aurangabad

Maharashtra Pollution Control Board Kalptaru Point, Sion East, Mumbai - 400022 February, 2017

INDEX

Ack	NOWLEDGEMENT
Авв	REVIATIONS:4
1.	Introduction:5
2.	Scope of Work5
2.1	STACK EMISSION PARAMETERS6
2.2	Ambient Air Quality Parameters
2.3	WATER/WASTE WATER PARAMETERS
2.4	METHODOLOGY FOLLOWED IN SAMPLING AND ANALYSIS
3.	Result of Analysis:11
3.1	STACK EMISSION MONITORING:
3.2	Ambient Air Quality:
3.3	WATER/WASTE WATER ANALYSIS RESULTS:
3.3.	1 Waste Water Analysis:
3.3.	2 Ground Water Analysis
4	Summary and Conclusions:89
4.1	STACK EMISSION MONITORING:
4.2	Ambient Air Quality:
4.3	WATER AND WASTE WATER QUALITY:
5.	CEPI Score:
5.1.	Comparison of CEPI Scores:
6.	Conclusions101
7.	Efforts Taken For the Abatement of Pollution101
8.	Photographs103
9.	References
10.	Annexures110
Ann	EXURE I: STACK EMISSION SAMPLING AND ANALYSIS METHODOLOGY
Ann	EXURE II: AMBIENT AIR SAMPLING AND ANALYSIS METHODOLOGY
Ann	EXURE III: WATER/WASTEWATER SAMPLING AND ANALYSIS METHODOLOGY
Ann	exure IV: National Ambient Air Quality Standards, 2009 115
	exure V: General Standards for Discharge of Environmental Pollutants, Part A: uents (The Environment (Protection) Rules, 1986, Schedule VI)
Ann	exure VI: Drinking Water Specification-IS 10500:2012119
Ann	exure VII: CPCB Water Quality Criteria:
Ann	exure VIII: Water Quality Parameters Requirements and Classification

Acknowledgement

We gratefully acknowledge **Dr. P. Anbalagan**, Member Secretary, Maharashtra Pollution Control Board, for entrusting this very important and prestigious project to us.

Our special thanks are to Regional and Sub Regional Officer of the concerned areas, for guidance during the sampling. The contribution of Shri V.M Motghare (Joint director APC) is appreciated.

By undertaking this project and completing in schedule time, we consider ourselves very lucky since we have helped the mankind by giving the data on pollution load and further action by the Board, to bring down the pollution level.

We also thank our associates for working on this project for making the write up, making graphs and feeding the data on computer.

This acknowledgement will be incomplete if we do not thank our laboratory analysts and others who made this project a success by timely analyzing the samples.

We also thank our sampling team members for conducting the sampling in this vast area.

Abbreviations:

APHA American Public Health Association

BDL Below Detection Limit

BOD Biochemical Oxygen Demand

CEPI Comprehensive Environmental Pollution Index

CETP Common Effluent Treatment Plant

CPA Chemical Oxygen Demand
CPA Critically Polluted Areas

DO Dissolved Oxygen

ETP Effluent Treatment Plant

MIBK Methyl Isobutyl Ketone

MPCB Maharashtra Pollution Control Board

NAAQS National Ambient Air Quality Standards

NO_x Oxides of Nitrogen

ND Not Detected

PAH Poly Aromatic HydrocarbonsPCB Poly Chlorinated BiphenylsPCT Poly Chlorinated Terphenyls

PM10 Particulate Matter (size less than 10 μm)
PM2.5 Particulate Matter (size less than 2.5 μm)

SO₂ Sulphur Dioxide

STAP Short Term Action Plan **WHO** World Health Organization

1. Introduction:

Industrial pollution is the contamination of the environment by businesses, particularly plants and factories that dump waste products into the air and water. Industrial waste is one of the largest contributors to the global pollution problem endangering people and the environment. The Central Pollution Control Board (CPCB) has developed a Comprehensive Environmental Pollution Index (CEPI). The main objective of the study is to identify polluted industrial clusters or areas in order to take concerted action and to centrally monitor them at the national level to improve the current status of their environmental components such as air and water quality data, ecological damage, and visual environmental conditions.

The concept of Comprehensive Environmental Pollution Index (CEPI) was evolved by Central Pollution Control Board (CPCB) during 2009-10 as a tool for comprehensive environmental assessment of prominent industrial clusters and formulation of remedial Action Plans for the identified critically polluted areas. Later-on proposals were received from the SPCBs, State Governments, and Industrial Associations and concerned Stakeholders for revisiting the criteria of assessment under CEPI concept. After careful examination and consideration of the suggestions of concerned stake-holders, it was decided to prepare the revised concept of CEPI by eliminating the subjective factors but retaining the factors which can be measured precisely.

The results of the application of the Comprehensive Environmental Pollution Index (CEPI) to selected industrial clusters or areas are presented in this report. The main objective of the study is to identify polluted industrial clusters or areas in order to take concerted action and to centrally monitor them at the national level to improve the current status of their environmental components such as air and water quality data, ecological damage, and visual environmental conditions. A total of 88 industrial areas or clusters have been selected by the Central Pollution Control Board (CPCB) in consultation with the Ministry of Environment & Forests Government of India for the study. The index captures the various dimensions of environment including air, water and land. Comprehensive Environmental Pollution Index (CEPI), which is a rational number to characterize the environmental quality at a given location following the algorithm of source, pathway and receptor have been developed.

Aurangabad city is located in the northern part of the state of Maharashtra, in the western region of India. It is 375 km from Mumbai. The city is surrounded by hills. Aurangabad is famous for the World Heritage Sites Ajanta and Ellora. Named after Aurangzeb, the last of the great Mughal Emperors, Aurangabad acquired plenty of monuments and a rich culture as its heritage from the middle ages. Aurangabad is also famous for its silk and cotton textiles. The Shendra, Chikalthana and Waluj MIDC Industrial Areas are prominent industrial zones on the outskirts of the city, with various major multinational groups having set up manufacturing or processing plant in and around the city. Many firms have their manufacturing bases in Aurangabad in the sectors of automotive and auto components, pharmaceuticals and breweries, consumer durables, plastic processing, aluminum processing, agriculture and biotech. Among Pharmaceutical there is Recombinant Insulin Manufacturing plant of Wockhardt (Wockhardt Biotech Park) in Aurangabad, which is Largest Biopharmaceutical plant in India.

2. Scope of Work

The Scope of Work consisted of the following:

Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water, and Ground Water Quality for identified five Critically Polluted areas (CPAs) in Maharashtra i.e. **Chandrapur**, **Dombivali**, **Aurangabad**, **Navi Mumbai**, and **Tarapur**

and 3 Severely Polluted areas (SPAs) in Maharashtra i.e. **Chembur, Pimpri-Chinchwad and Nashik** as per standard methods.

- At each of the 5 CPAs and 3 SPAs, 24 hourly ambient air quality monitoring to be carried out.
- Representative samples for surface water quality, waste water quality and ground water quality to be collected from prominent surface and ground water bodies located in and around the clusters/areas.
- Submission of complete monitoring, sampling and analysis reports including the summary of the parameters exceeding the prescribed standards/norms for all the 5 CPAs and 3 SPAs.
- Submission of 3 copies of final report with photographs at prominent locations and the CD (soft copy) on completion of the project for every critically polluted and severely polluted area separately.

Monitoring, Sampling, Analysis for Stack, Ambient Air Quality, Surface Water, Waste Water and Ground Water Quality for Aurangabad:

- The sampling was carried out in 7 days at various locations i.e. from 22nd February to 28th February, 2017 for 4 MIDCs namely: Chikalthana, Waluj, Shendra and Paithan Road.
- **MIDC Chikalthana**: It comprises of a total of 6 Stack Monitoring Samples, 3 Ambient Air Quality Monitoring Samples, 6 Waste Water Samples and 3 Ground Water Samples were collected and analyzed.
- **MIDC Waluj**: It includes of a total of 6 Stack Monitoring Samples, 3 Ambient Air Quality Monitoring Samples, 6 Waste Water Samples and 3 Ground Water Samples were collected and analyzed.
- **MIDC Shendra**: It comprises of a total of 6 Stack Monitoring Samples, 3 Ambient Air Quality Monitoring Samples, 6 Waste Water Samples and 3 Ground Water Samples were collected and analyzed.
- **MIDC Paithan Road**: It includes of a total of 6 Stack Monitoring Samples, 3 Ambient Air Quality Monitoring Samples, 6 Waste Water Samples and 3 Ground Water Samples were collected and analyzed.

2.1 Stack Emission Parameters

The Stack Emissions were analyzed with the following parameters:

- 1) Acid Mist
- 2) Ammonia
- 3) Carbon Monoxide
- 4) Chlorine

5)	Fluoride(gaseous)
6)	Fluoride (particulate)
7)	Hydrogen Chloride
8)	Hydrogen Sulphide
9)	Oxides of Nitrogen
10)	Oxygen
11)	Polyaromatic Hydrocarbons (Particulate)
12)	Suspended Particulate Matter
13)	Sulphur Dioxide
14)	Benzene
15)	Toluene
16)	Xylene
17)	Volatile Organic Compounds (VOCs)
2.2	Ambient Air Quality Parameters
The A	mbient Air Quality was analyzed with the following parameters:
1)	Sulphur Dioxide (SO ₂)
2)	Nitrogen Dioxide (NO ₂)
3)	Particulate Matter (PM10)
4)	Particulate Matter (PM2.5)
5)	Ozone (O ₃)

6)	Lead (Pb)
7)	Carbon Monoxide (CO)
8)	Ammonia (NH ₃)
9)	Benzene (C ₆ H ₆)
10)	Benzo (a) Pyrene (BaP) (Particulate Phase Only)

Water/Waste Water Parameters

Arsenic (As)

Nickel (Ni)

11)

12)

2.3

The Water/Waste Water was analyzed with the following parameters:

- a. Prominent Surface Water bodies such as outfalls of CETPs, ETPs, treated effluent drainage, river, canal, ponds, lakes and other such water supply resources flowing through the area or flowing adjoining the CPA.
- b. Ground Water Quality data of prominent ground water resources such as observation wells of Central Ground Water Board, drinking water wells, hand pumps, bore wells, hand pumps, bore wells and other such water supply resources located in the industrial cluster/area under consideration or in the peripheral areas.

Basic water quality parameters for surface water and ground water both are as follows:

i. Simple Parameters:

- 1) Sanitary Survey
- 2) General Appearance
- 3) Colour
- 4) Smell
- 5) Transparency

Ecological(Presence of animals like fish, insects) (Applicable to only surface 6) water)

ii. Regular Monitoring Parameters:

21)

22)

Sulphide

Dissolved Phosphate

7)	рН
8)	Oil & Grease
9)	Suspended Solids
10)	Dissolved Oxygen (% saturation) (Not applicable for ground waters)
11)	Chemical Oxygen Demand
12)	Biochemical Oxygen Demand
13)	Electrical Conductivity
14)	Nitrite-Nitrogen
15)	Nitrate-Nitrogen
16)	(NO ₂ + NO ₃)-Nitrogen
17)	Free Ammonia
18)	Total Residual Chlorine
19)	Cyanide
20)	Fluoride

23	3)	Sodium Absorption Ratio (SAR)
24	·)	Total Coliforms (MPN/100 ml)
25	5)	Faecal Coliforms (MPN/100 ml)
iii.	Sp	ecial Parameters:
26	5)	Total Phosphorous
27	')	Total Kjeldahl Nitrogen(TKN)
28	3)	Total Ammonia (NH ₄ +NH ₃)-Nitrogen
29))	Phenols
30))	Surface Active Agents
31	.)	Organo Chlorine Pesticides
32	2)	Polynuclear aromatic hydrocarbons (PAH)
33	3)	Polychlorinated Biphenyls (PCB)and Polychlorinated Terphenyls (PCT)
34	·)	Zinc
35	5)	Nickel
36	5)	Copper
37	')	Hexavalent Chromium
38	3)	Chromium (Total)
39))	Arsenic (Total)
40))	Lead

- 41) Cadmium
- 42) Mercury
- 43) Manganese
- 44) Iron
- 45) Vanadium
- 46) Selenium
- 47) Boron

2.4 Methodology followed in Sampling and Analysis

Industries, places and locations that have been chosen for the sampling are representative of the city/area. Sampling has been done at the potential polluted areas so as to arrive at the CEPI. This will further help the authorities to monitor the areas in order to improve the current status of their environmental components such as air and water quality data, ecological damage and visual environmental conditions. Methodology for sampling, preservation and analysis have been done according to the references incorporated. Methodology of various types of parameters is presented under following annexure:

- 1. Stack Emission Sampling and Analysis Methodology ANNEXURE I
- 2. Ambient Air Sampling and Analysis Methodology ANNEXURE II
- 3. Water/Wastewater Sampling and Analysis Methodology **ANNEXURE III**

3. Result of Analysis:

Results of Analysis are tabulated below for Stack Emission Monitoring, Ambient Air Quality Monitoring, Waste Water Analysis and Water Analysis. These are followed by their respective graphical representation. *Kindly note:

- NA specifies the sample is not analysed for the specific parameter.
- ND specifies that even though the sample was analysed for the parameter, it was not detected.
- BDL specifies that the result obtained is below deductable limit.

3.1 Stack Emission Monitoring:

Stack Emission Monitoring Results are compared against The Environment (Protection) Rules, 1986 General Emission Standard - Part D. The limits are represented on the graphical representation. In all the 4 MIDC areas Flouride, Poly Aromatic Hydrocarbons,

Hydrogen Sulphide, Ammonia, Hydrogen Chloride, Benzene, Toluene, Zylene and Volatile Organic Carbons are not detected.

a) Chikalthana MIDC:

Sr.	Name of Industry	Included in
1.	NRB Bearing Ltd.	Table No. I
2.	Wockhardt Ltd. L-1	Table No. I
3.	M/s Lupin Ltd.	Table No. I
4.	United Spirits Ltd.	Table No. I
5.	Radiant Indus Chem Pvt. Ltd	Table No. I
6.	Harman Finochem Ltd.	Table No. I

Table No. I:

Name of Industry	NRB Bearing Ltd.	Wockh ardt Ltd.	M/s Lupin Ltd.	Unite d Spirit s Ltd	Radiant Indus Chem Pvt. Ltd	Harman Finoche m Ltd	
Date of Sampling(XX/02/2	22	22	23	23	23	23	
Parameters	Units			Resu	ults		
Particulate Matter	mg/Nm³	82.3	52.5	70.2	118.4	76.5	68.8
Std. Limit	mg/Nm³	150	100	150	150	150	150
Sulphur Dioxide	mg/Nm³	16.8	112.2	BDL	135.6	120.8	162.8
(SO ₂)	kg/day	4.46	103.03	BDL	111.7	226.86	224.64
Std. Limit	kg/day		90		400	160	741
Oxides of Nitrogen (NO ₂)	mg/Nm³	35.7	537	28.5	186.4	153.7	215.6
Std. Limit	mg/m³					150	
Carbon Monoxide (CO)	mg/m³	326	637	380	539	442	328

Name of Industry		NRB Bearing Ltd.	Wockh ardt Ltd.	M/s Lupin Ltd.	Unite d Spirit s Ltd	Indus	Harman Finoche m Ltd
Date of Sampling(XX/02/2	22	22	23	23	23	23	
Parameters	Results						
Oxygen (O ₂)	%	11.2	12.2	16.5	10.8	11.7	14.2
Flouride (F)	mg/Nm ³	BDL	BDL	BDL	BDL	BDL	BDL
Acid Mist	mg/Nm ³	BDL	BDL	BDL	BDL	BDL	BDL
Std. Limit mg/Nm ³		35	35	35	35	35	35
Volatile Organic Compound (VOC)	mg/Nm³	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

b) Waluj MIDC:

Sr.	Name of Industry	Included in
1.	Garware Polyester Ltd.	Table No. II
2.	Bajaj Auto Ltd.	Table No. II
3.	Carlsberg Ltd.	Table No. II
4.	IPCA (Paschim Chem)	Table No. II
5.	Pfizer India Ltd.	Table No. II
6.	J.K. Ansell Ltd.	Table No. II

Table No. II

Name of Industry	Garware Polyester Ltd.	Bajaj Auto Ltd.	Carlsberg Ltd.	IPCA (Paschim Chem)	Pfizer India Ltd.	J.K. Ansell Ltd.	
Date of Sampling(XX/0	2/2017)	27	27	27	27	27	28
Parameters	Units			Resu	ılts		
Particulate Matter	mg/Nm ³	42.7	58.6	115.3	128.5	58.9	45.2
Std. Limit	mg/Nm³	150	150	150	150	150	150
	mg/Nm ³	5.4	2.1	112.6	56.2	103.2	1.2
Sulphur Dioxide (SO ₂)	kg/day	4.73	0.36	85.71	23.69	335.29	0.037
Std. Limit	kg/day	3070		336	50	33	
Oxides of Nitrogen (NO ₂)	mg/Nm ³	142.8	26.5	121.2	128.6	151.2	23.1
Std. Limit	mg/Nm³				50		
Carbon Monoxide (CO)	mg/m³	528	474	615	509	578	386
Oxygen (O ₂)	%	10.6	11.9	9.8	10.2	10.9	14.3
Flouride (F)	mg/Nm ³	BDL	BDL	BDL	BDL	BDL	BDL
Acid Mist	mg/Nm ³	BDL	1.17	BDL	0.93	BDL	BDL
Std. Limit	mg/Nm³	35	35	35	35	35	35
Volatile Organic Compound (VOC)	mg/Nm³	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

c) Shendra MIDC:

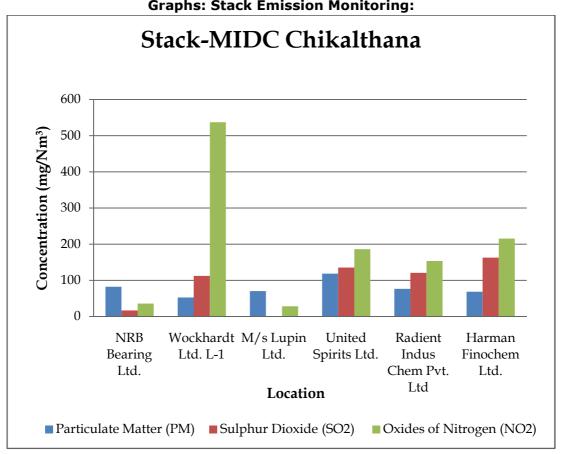
Sr.	Name of Industry	Included in
1.	Radico NV Distilleries Maharashtra Ltd.	Table No. III
2.	Harman Finochem Ltd.	Table No. III
3.	Wockhardt Ltd.	Table No. III
4.	Skoda Auto India Pvt. Ltd.	Table No. III

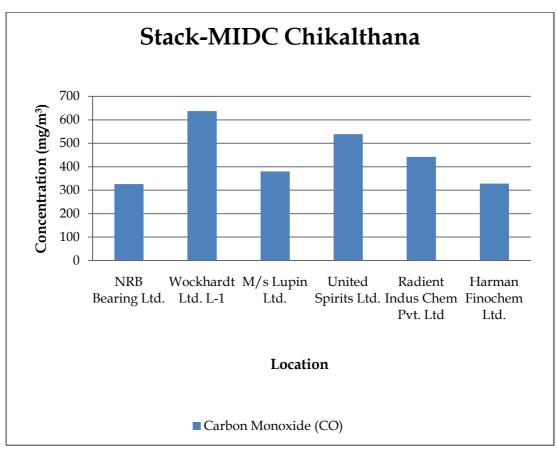
5.	Glenmark Pharmaceuticals Lab	Table No. III
6.	NRB Bearings Ltd.	Table No. III

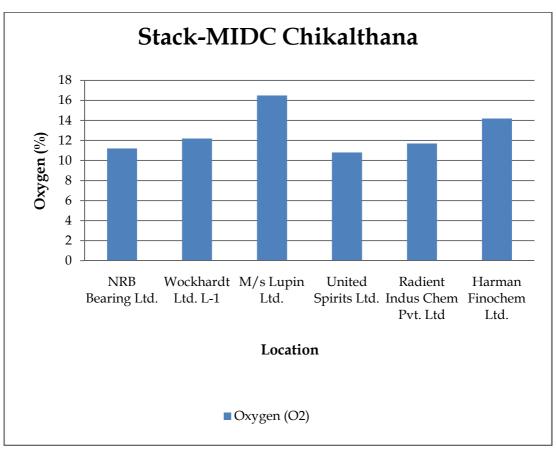
Table No. III

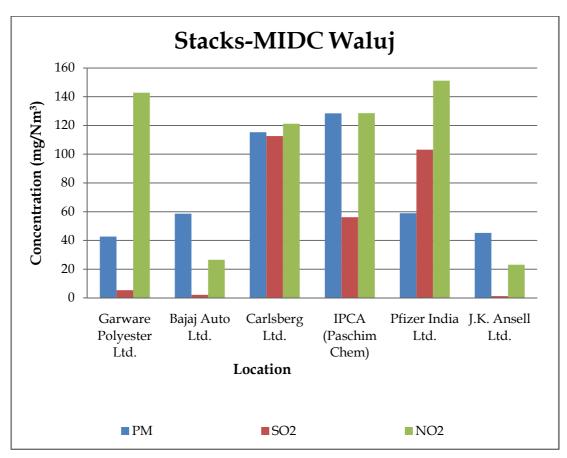
Table No. III		1				T	
Name of Industry	Radico NV Distillerie s	Harman Finoche m Ltd.	Wockhar dt Ltd.	Auto	Glenmar k Pharma. Lab	NRB Bearing s Ltd.	
Date of Sampling(XX/02/20	17)	23	24	24	24	24	26
Parameters	Units			Result	S		
Particulate Matter	mg/Nm³	128.8	41.9	51.6	55.2	61.4	76.7
Std. Limit	mg/Nm³	150	150	150	150	150	150
Culphus Diovido (CO.)	mg/Nm³	25.5	BDL	2.32	1.09	109.2	2.1
Sulphur Dioxide (SO ₂)	kg/day	214.92	BDL	0.66	0.044	118.37	0.054
Std. Limit	kg/day		1593				
Oxides of Nitrogen (NO ₂)	mg/Nm ³	136.5	BDL	132.4	112.1	147.2	88.5
Carbon Monoxide (CO)	mg/m³	553	216	620	505	563	285
Oxygen (O ₂)	%	11.3	15.6	11.4	12.1	11.5	11.3
Flouride (F)	mg/Nm³	BDL	BDL	BDL	BDL	BDL	BDL
Acid Mist	mg/Nm ³	BDL	1.32	BDL	BDL	BDL	BDL
Std. Limit	mg/Nm³	35	35	35	35	35	35
Volatile Organic Compound (VOC)	mg/Nm³	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

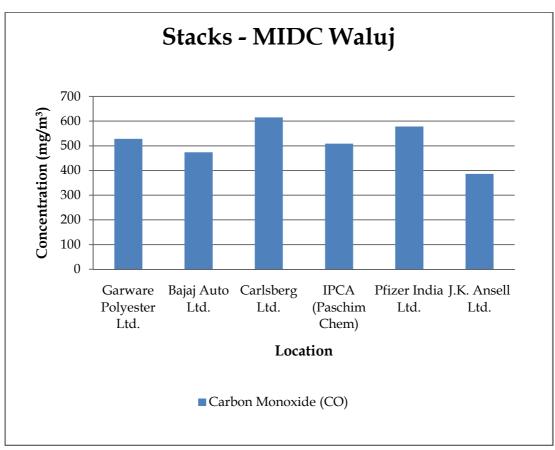
d) Paithan Road MIDC:

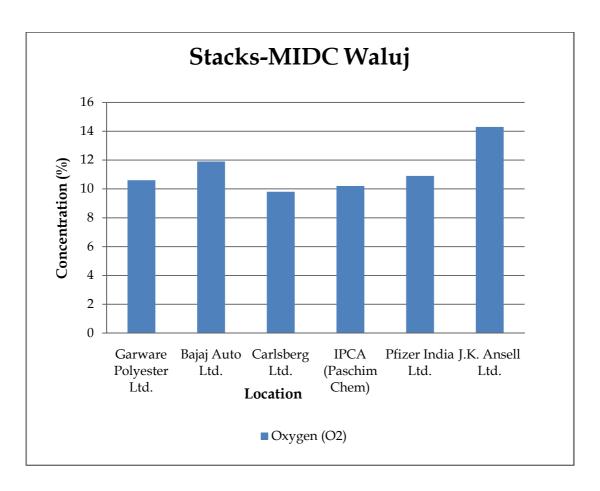

Sr.	Name of Industry	Included in
1.	Frigorifico Allana Ltd.	Table No. IV
2.	Encore Laboratories	Table No. IV
3.	Jai Laxmi Casting Pvt. Ltd.	Table No. IV
4.	Pepsico India Ltd.	Table No. IV
5.	Badve Engineering	Table No. IV
6.	Ajanta Pharma	Table No. IV

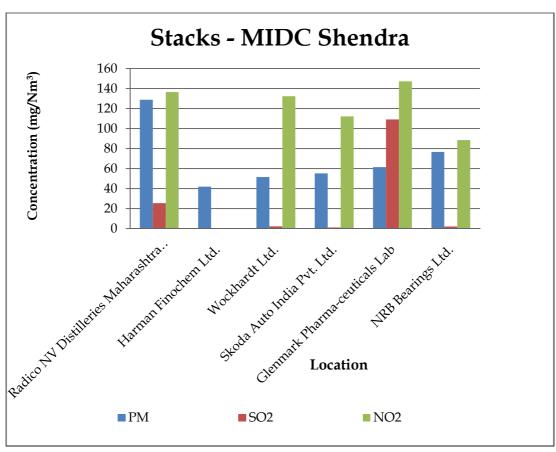

Table No. IV

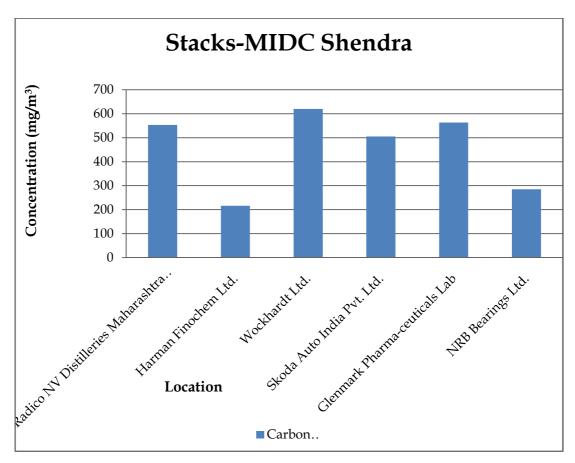

Name of Industry	Frigorifico Allana Ltd.	Encore Lab.	Jai Laxmi Casting Pvt. Ltd.	Pepsico India Ltd.	Baave	Ajanta Pharma.			
Date of Sampling(XX	(/02/2017)	14	14 14 14 13 14						
Parameters	Units			Resu	ılts				
Particulate Matter	mg/Nm ³	49.5	42.8	78.2	132.6	51.6	36.7		
Std. Limit	mg/Nm³	150	150	150	150	150	150		
	mg/Nm ³	132.1	105.6	BDL	12.2	BDL	96.5		
Sulphur Dioxide (SO ₂)	kg/day	169.78	28.2	BDL	11.11	BDL	19.43		
Std. Limit	kg/day					58.02	201		
Oxides of Nitrogen (NO ₂)	mg/Nm³	156.8	143.1	252.7	25.4	85.4	118.7		
Carbon Monoxide (CO)	mg/m³	667	318	397	587	452	437		
Oxygen (O₂)	%	10.9	11.3	12.8	11.5	11.9	12.3		
Flouride (F)	mg/Nm ³	BDL	BDL	BDL	BDL	BDL	BDL		
Acid Mist	mg/Nm ³	BDL	BDL	BDL	BDL	BDL	BDL		

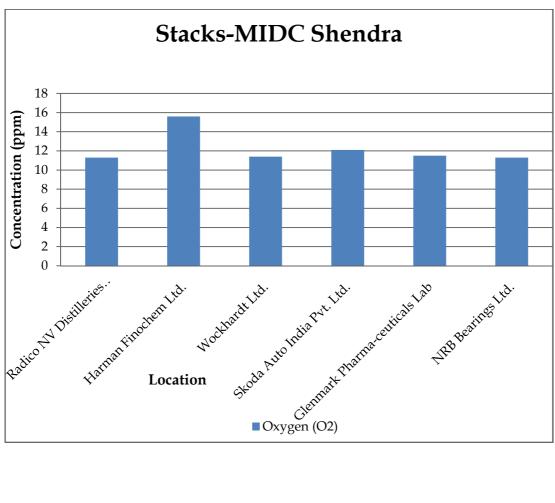

Name of Industry	Frigorifico Allana Ltd.	Encore Lab.	Jai Laxmi Casting Pvt. Ltd.	Pepsico India Ltd.	bauve	Ajanta Pharma.		
Date of Sampling(X)	(/02/2017)	14	14	14	13	14	13	
Parameters	Units		Results					
Std. Limit mg/Nm ³		35	35	35	35	35	35	
Volatile Organic Compound (VOC)	mg/Nm³	BDL	BDL	BDL	BDL	BDL	BDL	

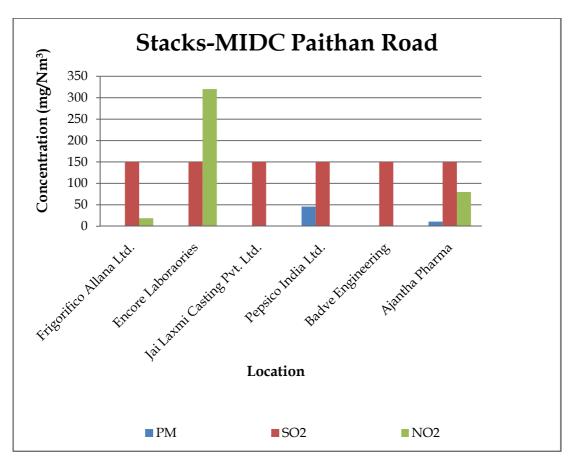

Graphs: Stack Emission Monitoring:

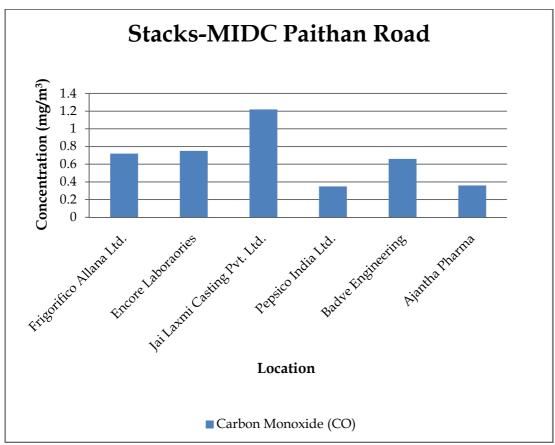


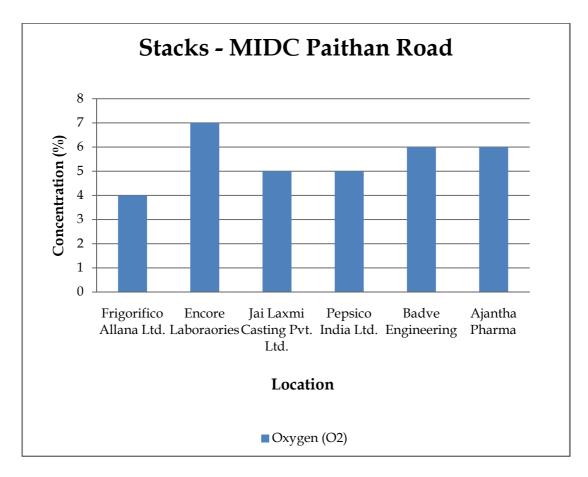












3.2 Ambient Air Quality:

In order to arrive at conclusions, the Ambient Air Quality Monitoring Results are compared against National Ambient Air Quality Standards, 2009 (Annexure IV). The limits are represented on the graphical representation

A. MIDC Chikalthana and Waluj

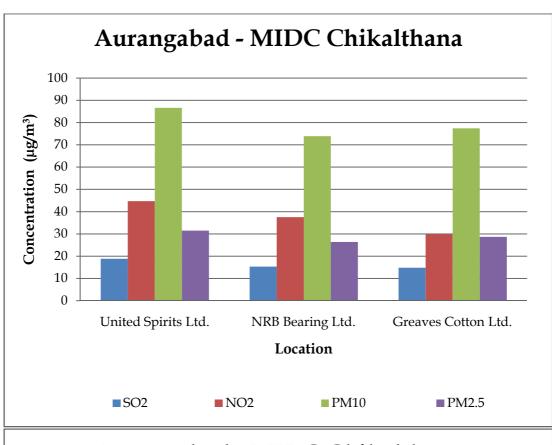
Sr.	Name of Industry	MIDC	Included in
1.	United Spirits Ltd.	Chikhalthana	Table No. I
2.	NRB Bearing Ltd.	Chikhalthana	Table No. I
3.	Greaves Cotton Ltd.	Chikhalthana	Table No. I
4.	Garware Polyester Ltd.	Waluj	Table No. I
5.	Pfizer India Ltd.	Waluj	Table No. I
6.	SAB Miller I(I) Ltd. (Pals).	Waluj	Table No. I

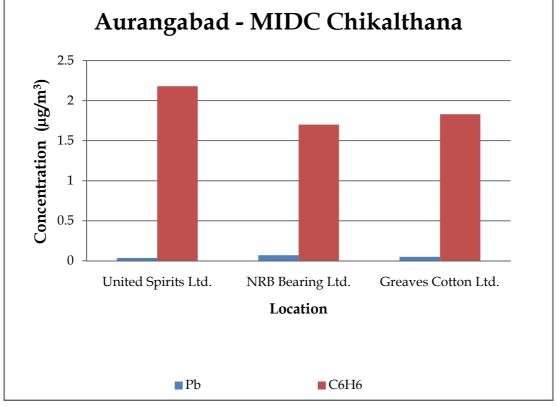
Table No. I

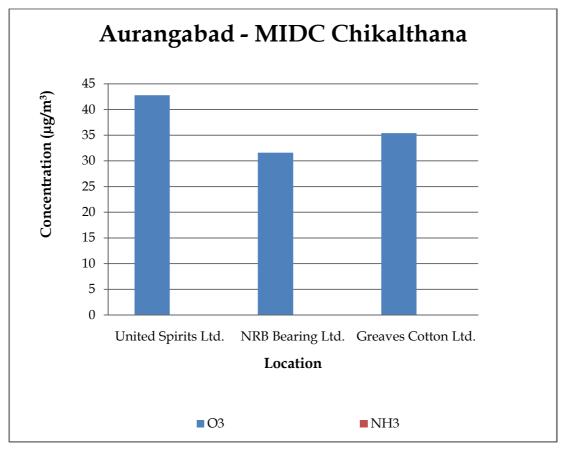
Name of Industry	,		United Spirits Ltd.	NRB Beari ng Ltd.	es	re	Pfizer India Ltd.	SAB Miller I(I) Ltd.		
Parameters	Units	Std. Limit	Results							
Sulphur Dioxide (SO ₂)	μg/m³	80	18.8	15.3	14.8	18.5	16.34	17.12		
Nitrogen Dioxide (NO ₂)	μg/m³	80	44.7	37.5	29.9	45.6	38.3	41.1		
Particulate Matter (size less than 10 µm) or PM ₁₀	μg/m³	100	57	60	69	61	60	58		
Particulate Matter (size less than 2.5 µm) or PM _{2.5}	μg/m³	60	31.5	26.4	28.7	29.5	24.1	25.3		
Ozone (O ₃)	μg/m³	180	42.8	31.6	35.4	48.6	44.7	45.3		
Lead (Pb)	μg/m³	1	0.036	0.07	0.05	0.026	0.02	0.04		
Carbon Monoxide (CO)	mg/m³	04	0.636	0.507	0.539	0.712	0.668	0.612		
Ammonia (NH ₃)	μg/m³	400	BDL	BDL	BDL	BDL	BDL	BDL		
Benzene (C ₆ H ₆)	μg/m³	5	2.18	1.70	1.83	2.24	1.98	1.85		
Benzo (a) Pyrene (BaP) – particulate phase only	ng/m³	1	BDL	BDL	BDL	BDL	BDL	BDL		
Arsenic (As)	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL		
Nickel (Ni)	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL		
	Parameters Sulphur Dioxide (SO ₂) Nitrogen Dioxide (NO ₂) Particulate Matter (size less than 10 µm) or PM ₁₀ Particulate Matter (size less than 2.5 µm) or PM _{2.5} Ozone (O ₃) Lead (Pb) Carbon Monoxide (CO) Ammonia (NH ₃) Benzene (C ₆ H ₆) Benzo (a) Pyrene (BaP) – particulate phase only Arsenic (As)	Sulphur Dioxide (SO ₂) µg/m³ Nitrogen Dioxide (NO ₂) µg/m³ Particulate Matter (size less than 10 µm) or PM ₁₀ Particulate Matter (size less than 2.5 µm) or PM _{2.5} Ozone (O ₃) µg/m³ Lead (Pb) µg/m³ Carbon Monoxide (CO) mg/m³ Ammonia (NH ₃) µg/m³ Benzene (C ₆ H ₆) µg/m³ Benzo (a) Pyrene (BaP) – particulate phase only Arsenic (As) ng/m³	Parameters Units Std.Limit Sulphur Dioxide (SO ₂) Nitrogen Dioxide (NO ₂) Particulate Matter (size less than 10 μg/m³ 180 Particulate Matter (size less than 2.5 μg/m³ μg/m³ μg/m³ 180 Particulate Matter (size less than 2.5 μg/m³ μg/m³ 180 Carloon (O ₃) μg/m³ 1 μg/m³ 1 Carbon Monoxide (CO) μg/m³ 5 Benzene (C ₆ H ₆) μg/m³ 5 Benzene (C ₆ H ₆) μg/m³ 5 Benzo (a) Pyrene (BaP) – particulate phase only Arsenic (As) ng/m³ 6	Name of IndustrySpirits Ltd.ParametersUnitsStd. LimitSulphur Dioxide (SO2)μg/m³8018.8Nitrogen Dioxide (NO2)μg/m³8044.7Particulate Matter (size less than 10 μm) or PM10μg/m³10057Particulate Matter (size less than 2.5 μm) or PM2.5μg/m³6031.5Ozone (O3)μg/m³18042.8Lead (Pb)μg/m³10.036Carbon Monoxide (CO)mg/m³040.636Ammonia (NH3)μg/m³400BDLBenzene (C6H6)μg/m³52.18Benzo (a) Pyrene (BaP) – particulate phase onlyng/m³1BDLArsenic (As)ng/m³6BDL	Name of Industry Spirits Ltd. Bearing Ltd. Parameters Units Std. Limit Sulphur Dioxide (SO ₂) μg/m³ 80 18.8 15.3 Nitrogen Dioxide (NO ₂) μg/m³ 80 44.7 37.5 Particulate Matter (size less than 10 μg/m³ μg/m³ 100 57 60 Particulate Matter (size less than 2.5 μm) or PM _{2.5} μg/m³ 60 31.5 26.4 Ozone (O₃) μg/m³ 180 42.8 31.6 Lead (Pb) μg/m³ 1 0.036 0.07 Carbon Monoxide (CO) mg/m³ 04 0.636 0.507 Ammonia (NH₃) μg/m³ 400 BDL BDL Benzo (a) Pyrene (BaP) – particulate phase only ng/m³ 1 BDL BDL Arsenic (As) ng/m³ 6 BDL BDL	Name of Industry Spirits Ltd. Bearing Ltd. es Cotto n Ltd. Parameters Units Std. Limit Fees Sulphur Dioxide (SO ₂) μg/m³ 80 18.8 15.3 14.8 Nitrogen Dioxide (NO ₂) μg/m³ 80 44.7 37.5 29.9 Particulate Matter (size less than 10 μg/m³ μg/m³ 100 57 60 69 Particulate Matter (size less than 2.5 μg/m³ or PM ₁₀ μg/m³ 60 31.5 26.4 28.7 Ozone (O ₃) μg/m³ 180 42.8 31.6 35.4 Lead (Pb) μg/m³ 1 0.036 0.07 0.05 Carbon Monoxide (CO) mg/m³ 04 0.636 0.507 0.539 Ammonia (NH ₃) μg/m³ 400 BDL BDL BDL Benzene (C ₆ H ₆) μg/m³ 5 2.18 1.70 1.83 Benzo (a) Pyrene (BaP) – particulate phase only ng/m³ 6 BDL BDL BDL Arsenic (As) <td>Name of Industry Spirits Ltd. Bearing Ltd. cest Cotto Ltd. re Cotto Ltd. Polye Ster Ltd. Parameters Units Std. Limit Std. Limit 15.3 14.8 18.5 Sulphur Dioxide (SO₂) μg/m³ 80 18.8 15.3 14.8 18.5 Nitrogen Dioxide (NO₂) μg/m³ 80 44.7 37.5 29.9 45.6 Particulate Matter (size less than 10 μg/m³ μg/m³ 60 31.5 26.4 28.7 29.5 Ozone (O₃) μg/m³ 180 42.8 31.6 35.4 48.6 Lead (Pb) μg/m³ 1 0.036 0.507 0.539 0.712 Ammonia (NH₃) μg/m³ 400 BDL BDL BDL BDL Benzene (C₀H₀) μg/m³ 5 2.18 1.70 1.83 2.24 Benzo (a) Pyrene (BaP) – particulate phase only ng/m³ 6 BDL BDL BDL BDL BDL</td> <td>Name of Industry Spirits Ltd. Bearing Ltd. es Cotto Polye Ltd. repoly Extent Ltd. Parameters Units Std. Limit Free Ltd. Free Ltd. India Step Ltd. Sulphur Dioxide (SO₂) μg/m³ 80 18.8 15.3 14.8 18.5 16.34 Nitrogen Dioxide (NO₂) μg/m³ 80 44.7 37.5 29.9 45.6 38.3 Particulate Matter (size less than 10 μg/m³ 100 57 60 69 61 60 Particulate Matter (size less than 2.5 μm) or PM_{2.5} μg/m³ 60 31.5 26.4 28.7 29.5 24.1 Ozone (O₃) μg/m³ 180 42.8 31.6 35.4 48.6 44.7 Lead (Pb) μg/m³ 1 0.036 0.07 0.05 0.026 0.02 Carbon Monoxide (CO) mg/m³ 40 BDL BDL</td>	Name of Industry Spirits Ltd. Bearing Ltd. cest Cotto Ltd. re Cotto Ltd. Polye Ster Ltd. Parameters Units Std. Limit Std. Limit 15.3 14.8 18.5 Sulphur Dioxide (SO ₂) μg/m³ 80 18.8 15.3 14.8 18.5 Nitrogen Dioxide (NO ₂) μg/m³ 80 44.7 37.5 29.9 45.6 Particulate Matter (size less than 10 μg/m³ μg/m³ 60 31.5 26.4 28.7 29.5 Ozone (O₃) μg/m³ 180 42.8 31.6 35.4 48.6 Lead (Pb) μg/m³ 1 0.036 0.507 0.539 0.712 Ammonia (NH₃) μg/m³ 400 BDL BDL BDL BDL Benzene (C₀H₀) μg/m³ 5 2.18 1.70 1.83 2.24 Benzo (a) Pyrene (BaP) – particulate phase only ng/m³ 6 BDL BDL BDL BDL BDL	Name of Industry Spirits Ltd. Bearing Ltd. es Cotto Polye Ltd. repoly Extent Ltd. Parameters Units Std. Limit Free Ltd. Free Ltd. India Step Ltd. Sulphur Dioxide (SO ₂) μg/m³ 80 18.8 15.3 14.8 18.5 16.34 Nitrogen Dioxide (NO ₂) μg/m³ 80 44.7 37.5 29.9 45.6 38.3 Particulate Matter (size less than 10 μg/m³ 100 57 60 69 61 60 Particulate Matter (size less than 2.5 μm) or PM _{2.5} μg/m³ 60 31.5 26.4 28.7 29.5 24.1 Ozone (O ₃) μg/m³ 180 42.8 31.6 35.4 48.6 44.7 Lead (Pb) μg/m³ 1 0.036 0.07 0.05 0.026 0.02 Carbon Monoxide (CO) mg/m³ 40 BDL BDL		

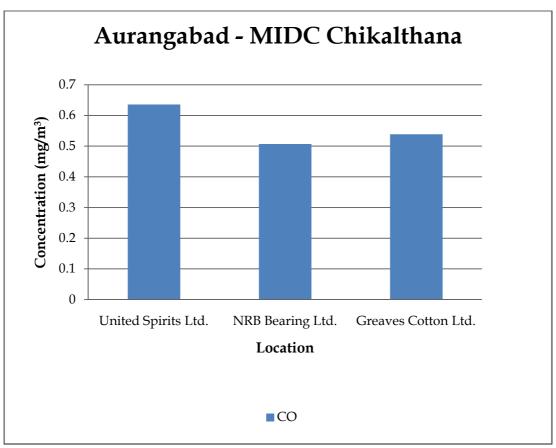
B. MIDC Shendra and Paithan Road

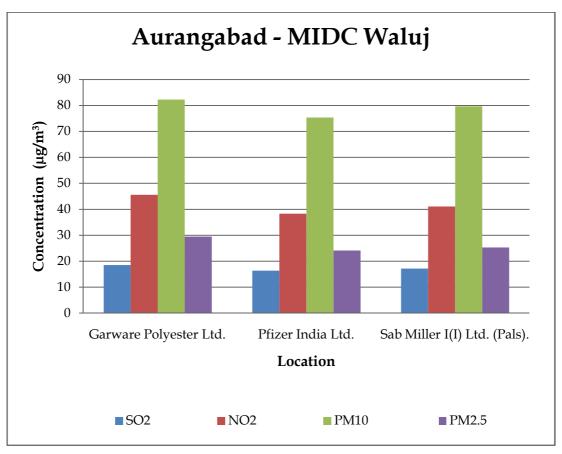
Sr.	Name of Industry	MIDC	Included in	
1.	Radico NV Distilleries Maharashtra Ltd.	Shendra	Table II	
2.	Metalyst Forgings Ltd.	Shendra	Table II	
3.	Perkins India Pvt. Ltd.	Shendra	Table II	
4.	Encore Laboraories	Paithan Road	Table II	
5.	Pepsico India Ltd.	Paithan Road	Table II	
6.	Videocon India Ltd.	Paithan Road	Table II	

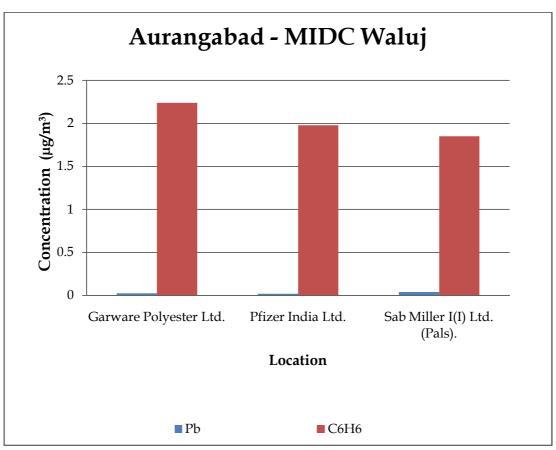

Table No. II

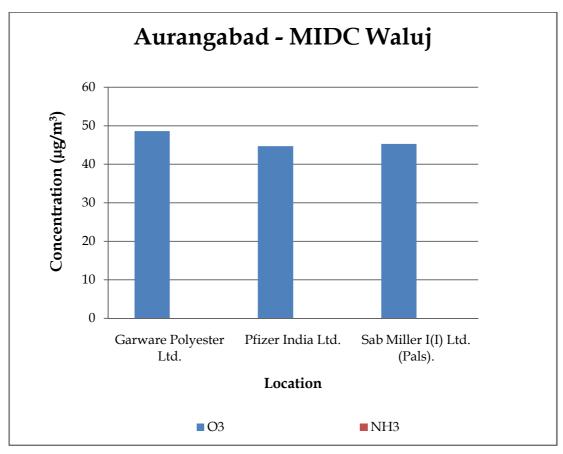

Name of Industry				Radico NV Distille ries	st	Perkin s India Pvt. Ltd.	Encore Labora ories	Pepsico India Ltd.	Videoco n India Ltd.
Sr.	Parameters	Units	Std. Limit			Res	sults		
1	Sulphur Dioxide (SO ₂)	μg/m³	80	17.5	16.4	15.7	16.7	17.3	13.8
2	Nitrogen Dioxide (NO ₂)	µg/m³	80	33.8	27.4	22.5	30.4	32.9	28.6
3	Particulate Matter (size less than 10 µm) or PM ₁₀	μg/m³	100	60	51	53	60	58	59
4	Particulate Matter (size less than 2.5 µm) or PM _{2.5}	μg/m³	60	28.1	22.6	23.3	26.4	28.2	25.1
5	Ozone (O ₃)	μg/m³	180	39.4	30.7	26.1	40.5	47.7	38.4
6	Lead (Pb)	μg/m³	1	BDL	0.08	0.03	0.05	BDL	0.07

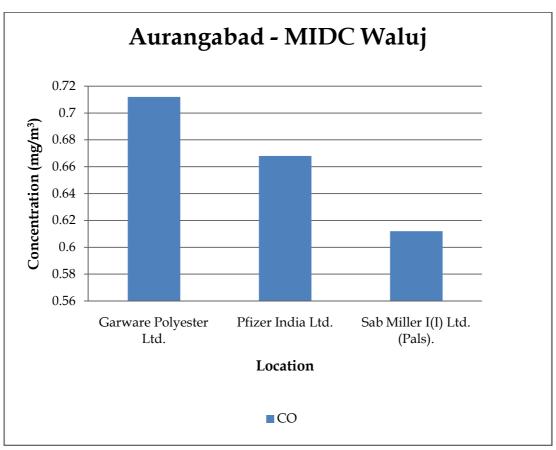

Name of Industry				Radico NV Distille ries	Metaly st Forgin gs Ltd.	s India Pvt.	Encore Labora ories	Pepsico India Ltd.	Videoco n India Ltd.
Sr.	Parameters	Units	Std. Limit			Res	sults		
7	Carbon Monoxide (CO)	mg/m ³	04	0.629	0.510	0.596	0.646	0.653	0.609
8	Ammonia (NH ₃)	μg/m³	400	BDL	BDL	BDL	BDL	BDL	BDL
9	Benzene (C ₆ H ₆)	μg/m³	5	1.85	1.47	1.12	1.86	1.99	1.78
10	Benzo (a) Pyrene (BaP) – particulate phase only,	ng/m³	1	BDL	BDL	BDL	BDL	BDL	BDL
11	Arsenic (As)	ng/m³	6	BDL	BDL	BDL	BDL	BDL	BDL
12	Nickel (Ni)	ng/m³	20	BDL	BDL	BDL	BDL	BDL	BDL

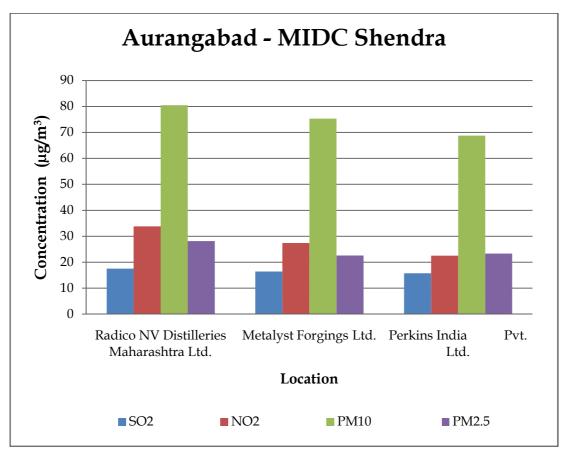

Graphs: Ambient Air Quality:

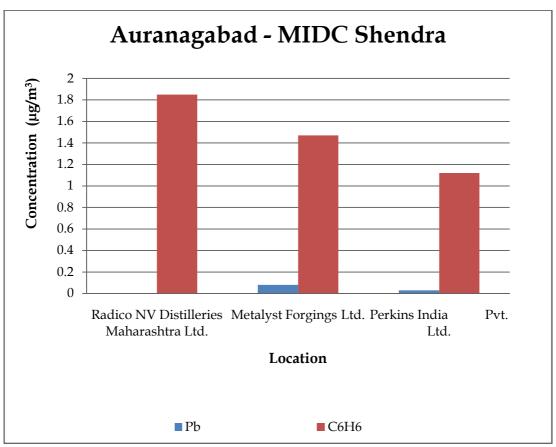

Parameters like BaP, As and Ni are observed below detection limit, not included in graphs.

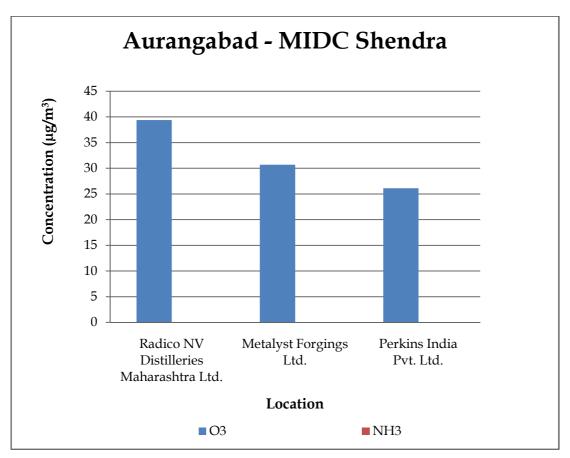


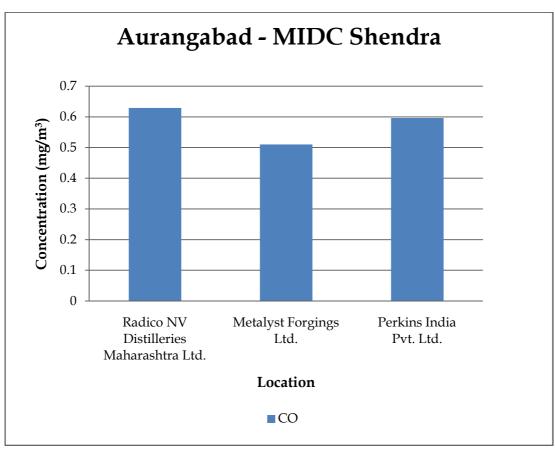


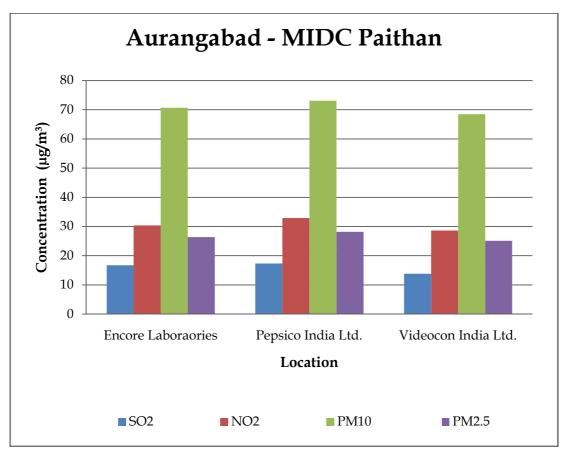


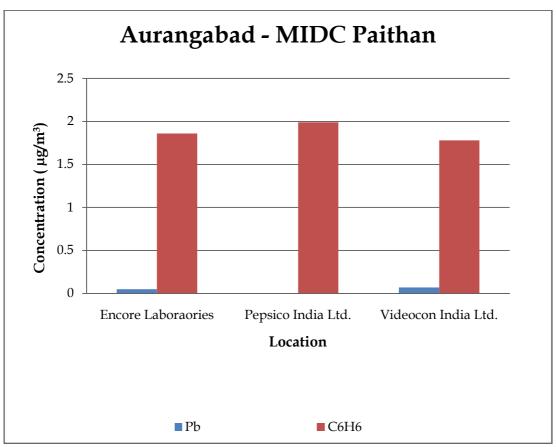


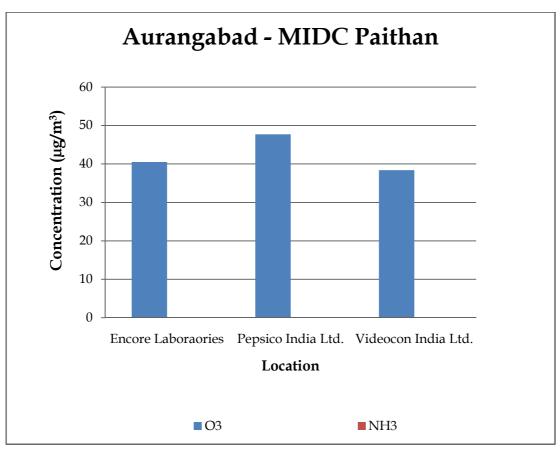


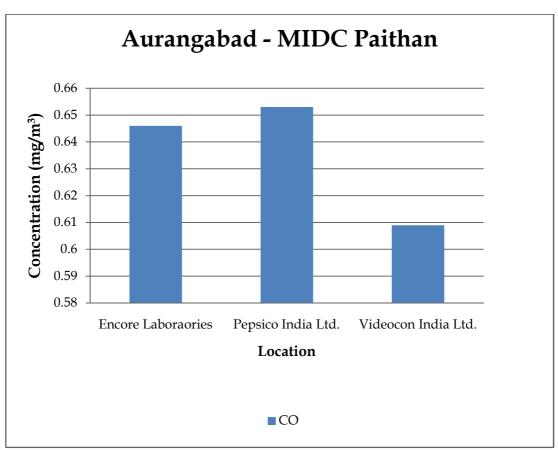












3.3 Water/Waste water Analysis Results:

Water Analysis Results are compared against CPCB document on criteria for Comprehensive Environmental Assessment of Industrial Clusters-Water Quality Parameters Requirement and Classification (Annexure VIII), CPCB Water Quality Criteria (Annexure VII) and Drinking Water Specification, IS 10500:2012 (Annexure VI), Wastewater Analysis Results are compared with General Standards for Discharge of Environmental Pollutants Part A: Effluents, The Environment (Protection) Rules, 1986, Schedule VI (Annexure V).

3.3.1 Waste Water Analysis:

a) MIDC Chikalthana

Sr.	Name of Industry	Included in
1.	NRB Bearing Ltd.	Table No. I
2.	Wockhardt Ltd. L-1	Table No. I
3.	Lupin Ltd.	Table No. I
4.	Radiant Induschem Pvt. Ltd.	Table No. I
5.	Exedy India Ltd.	Table No. I
6.	Allied Blenders & Distillers Ltd.	Table No. I

Table No. I

Table No. I									
Naı	me of Industry		NRB Beari ng Ltd.	Wockh ardt Ltd.	Lupin Ltd.	Radian t Indusc hem Pvt. Ltd.	Exedy India Ltd.	Allied Blende rs & Distille rs Ltd.	
Loc	cation		ETP Outlet	ETP Outlet	ETP Outlet	ETP Outlet	ETP Outlet	ETP Outlet	
	te of Sampling (/02/2017]			22	22	23	23	23	23
Sr.	Parameters	Unit	Std.			Res	sults		
1.	Sanitary Survey	-		Moder ate Clean	Clean	Moderat e Clean	Clear	Moderat e Clean	Moderat e Clean
2.	General Appearance	-		Dark Colour	Dark Colour	Dark Brown Colour	Clear	Dark Colour	Dark Colour
3.	Colour	Hazen		BDL	BDL	BDL	17	BDL	BDL
4.	Smell	-		Disagr eeable	Disagree able	Disagre eable	Disagre eable	Disagre eable	Disagre eable
5.	Transparency	-		No Trans paren cy	No Transpar ency	WILII	Transpa rency with slight sedimen t	No Transpa rency with sedimen t	No Transpa rency with sedimen t
6.	рН	-	5.5 -9.0	6.91	6.53	9.47	7.55	8.74	6.95
7.	Oil & Grease	mg/L	10.0	BDL	BDL	BDL	BDL	BDL	BDL
8.	Suspended Solids	mg/L	100.0	16	14	68	BDL	52	BDL
9.	Dissolved Oxygen (%Saturation)	%		64	70	57	73	56	59
10.	Chemical Oxygen Demand	mg/L	250.0	74.16	28	55.64	BDL	109.71	81.15

Naı	me of Industry		NRB Beari ng Ltd Uockh ardt Lupin Ltd. Ltd. Ltd. Ltd. Ltd. Ltd. Ltd. Ltd.				Allied Blende rs & Distille rs Ltd.				
Loc	ation			ETP Outlet	ETP Outlet	ETP Outlet	ETP Outlet	ETP ETP ET Outlet Outlet 23 23 23			
	te of Sampling (/02/2017]			22	22	23					
Sr.	Parameters	Unit	Std.		1	Re	sults				
11.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	20.72	8.36	102	BDL	199.25	56		
12.	Electrical Conductivity (at 25 °C)	µmho/ cm		3851	1082	3883	3668	4170	2301		
13.	Nitrite Nitrogen (as N)	mg/L		2.59	0.13	2.34	0.02	0.18	0.45		
14.	Nitrate Nitrogen (as N)	mg/L	10.0	4.36	31.67	32.48	10.24	23.33	2.17		
15.	(NO ₂ + NO ₃)- Nitrogen	mg/L	5.0	16.95	31.8	<0.1	10.26	<0.1	<0.1		
	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL	BDL	0.28	BDL	0.31	BDL		
17.	Total Residual Chlorine	mg/L	1.0	BDL	BDL	BDL	BDL	BDL	BDL		
18.	Cyanide (as CN)	mg/L	0.2	0.06	0.18	0.11	0.08	0.04	0.07		
19.	Fluoride (as F)	mg/L	2.0	0.54	0.26	BDL	0.24	0.57	1.38		
20.	Sulphide (as S ²⁻)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL		
21.	Dissolved Phosphate (as P)	mg/L	5.0	0.52	3.82	BDL	BDL	13.25	BDL		
22.	Sodium Absorption Ratio			4.14	1.89	2.93	2.79	5.11	1.57		

Nar	me of Industry			NRB Beari ng Ltd.	Wockh ardt Ltd.	Lupin Ltd.	Radian t Indusc hem Pvt. Ltd.	Exedy India Ltd.	Allied Blende rs & Distille rs Ltd.		
Loc	ation			ETP	ETP	ETP	ETP	ETP	ETP		
		Outlet Outlet Outlet Outlet Outlet Ou						Outlet			
	e of Sampling (/02/2017]			22	22 22 23 23 23 2						
Sr.	Parameters	Unit	Std.			Re	sults				
23.	Total Coliforms	MPN index/ 100 mL	100.0	1600	1600	23	23	1600	1600		
24.	Faecal Coliforms	MPN index/ 100 mL	1000.0	240	175	5	8	240	348		
25.	Total Phosphorous (as P)	mg/L	1.0	2.14	1.55	0.96	1.47	1.22	1.72		
	Total Kjeldahl Nitrogen (as N)	mg/L	100.0	0.97	1.42	2.64	10.53	28.7	16.8		
	Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	5.0	BDL	BDL	1.3	BDL	48.9	3.4		
	Phenol (as C ₆ H ₅ OH)	mg/L	3.0	BDL	BDL	BDL	BDL	BDL	BDL		
29.	Surface Active Agents (as MBAS)	mg/L	3.0	BDL	BDL	BDL	BDL	BDL	BDL		
	Organo Chlorine Pesticides		0.1								
i.	Alachlor	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL		
ii.	Atrazine	μg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL		
iii.	Aldrin	μg/L	0.1	BDL	BDL	BDL	BDL	BDL	BDL		

Naı	me of Industry			NRB Beari ng Ltd.	Wockh ardt Ltd.	Lupin Ltd.	Radian t Indusc hem Pvt. Ltd.	Exedy India Ltd.	Allied Blende rs & Distille rs Ltd.
Loc	ation			ETP Outlet	ETP Outlet	ETP Outlet	ETP	ETP	ETP
							Outlet	Outlet	Outlet
	e of Sampling (/02/2017]			22	22	23	23	23	23
Sr.	Parameters	Unit	Std.			Re	sults		
iv.	Dieldrin	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
v.	Alpha HCH	μg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL
vi.	Beta HCH	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
vii.	Butachlor	μg/L	3.0	BDL	BDL	BDL	BDL	BDL	BDL
viii.	Chloropyhil	μg/L		BDL	BDL	BDL	BDL	BDL	BDL
ix.	Delta HCH	μg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL
x	p,p DDT	μg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
xi.	o,p DDT	μg/L	100.0	BDL	BDL	BDL	BDL	BDL	BDL
xii.	p,p DDE	μg/L	250.0	BDL	BDL	BDL	BDL	BDL	BDL
xiii.	o,p DDE	μg/L	30.0	BDL	BDL	BDL	BDL	BDL	BDL
xiv.	p,p DDD	μg/L		BDL	BDL	BDL	BDL	BDL	BDL
xv.	o,p DDD	μg/L		BDL	BDL	BDL	BDL	BDL	BDL
xvi.	Alpha Endosulfan	μg/L	10.0	BDL	BDL	BDL	BDL	BDL	BDL
xvii	Beta Endosulfan	μg/L		BDL	BDL	BDL	BDL	BDL	BDL
xvii i.	EndosulfanSulphat e	μg/L	5.0	BDL	BDL	BDL	BDL	BDL	BDL

Naı	me of Industry		NRB Beari ng Ltd.	Wockh ardt Ltd.	Lupin Ltd.	Radian t Indusc hem Pvt. Ltd.	Exedy India Ltd.	Allied Blende rs & Distille rs Ltd.		
Loc	ation			ETP Outlet	ETP Outlet					
	te of Sampling (/02/2017]			22	22	23	23	23	23	
Sr.	Parameters	Std.			Re	sults				
xix	Y HCH (Lindane)	μg/L	1.0	BDL	BDL	BDL	BDL	BDL	BDL	
31.	Polynuclear aromatic hydrocarbons (PAH)	μg/L	0.2	BDL	BDL	0.21	BDL	0.14	BDL	
32.	Polychlorinated Biphenyls (PCB)	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL	
33.	Zinc (Zn)	mg/L	5.0	0.45	0.25	0.21	BDL	BDL	BDL	
34.	Nickel (as Ni)	mg/L	3.0	BDL	BDL	BDL	BDL	BDL	BDL	
35.	Copper (as Cu)	mg/L		BDL	BDL	BDL	BDL	BDL	BDL	
36.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL	BDL	BDL	BDL	BDL	BDL	
37.	Total Chromium (as Cr)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL	
38.	Total Arsenic (as As)	mg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL	
39.	Lead (as Pb)	mg/L	0.1	0.09	0.10	0.10	0.05	0.1	0.09	
40.	Cadmium (as Cd)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL	
41.	Mercury (as Hg)	mg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL	

Naı	me of Industry			NRB Beari ng Ltd.	Wockh ardt Ltd.	Lupin Ltd.	Radian t Indusc hem Pvt. Ltd.	Exedy India Ltd.	Allied Blende rs & Distille rs Ltd.
Loc	ation			ETP	ETP	ETP	ETP	ETP	ETP
				Outlet	Outlet	Outlet	Outlet	Outlet	Outlet
	te of Sampling (/02/2017]		22	22	23	23	23	23	
Sr.	Parameters	Unit	Std.			Re	sults		
42.	Manganese (as Mn)	mg/L	2.0	0.26	BDL	BDL	BDL	0.24	0.13
43.	Iron (as Fe)	mg/L	3.0	1.37	1.51	1.26	0.22	0.23	2
44.	Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL
45.	Selenium (as Se)	mg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
46.	Boron (as B)	mg/L		BDL	BDL	BDL	BDL	BDL	BDL

b) MIDC Waluj

Sr.	Name of Industry	Included in
1.	Bajaj Auto Ltd.	Table No. II
2.	Carlsberg Ltd.	Table No. II
3.	Wockhardt Biotech	Table No. II
4.	IPCA (Paschim Chem)	Table No. II
5.	SAB Miller I(I) Ltd. (Pals).	Table No. II
6.	Endurance Technology K-120	Table No. II

Table No. II

ıaı	ole No. II				T	T		1	T	
Naı	me of Industry			Bajaj Auto Ltd.	Carlsbe rg Ltd.	Wockh ardt Biotech	IPCA (Paschi m Chem)	SAB Miller I(I) Ltd. (Pals).	Endura nce Technol ogy K- 120	
	cation			ETP	ETP	ETP	ETP	ETP	ETP	
LOC	ation			Outlet	Outlet	Outlet	Outlet	Outlet	Outlet	
	te of Sampling (/02/2017]			27 27 27 27 28						
Sr.	Parameters	Unit	Std. Limit			Res	sults			
1.	Sanitary Survey	-		Moderate Clean	Clean	Clean	Clean	Clean	Clean	
2.	General Appearance	-		Clear colourless	Dark Colour	Colourles s	Colourles s with Sedimen t	Colourless with Sediment	Dark Colour	
3.	Colour	Hazen		1	>25	2	8	5	>25	
4.	Smell	-		Agreeable	Disagree able	Agreeabl e	Agreeabl e	Agreeable	Disaggrea ble	
5.	Transparency	-		Transpare nt	Turbid with sediment	Transpar ent	Transpar ency with sediment	ncy with	No Transpare ncy	
6.	рН	-	5.5 -9.0	6.65	7.81	8.10	7.52	7.76	6.70	
7.	Oil & Grease	mg/L	10.0	BDL	BDL	BDL	BDL	BDL	<1	
8.	Suspended Solids	mg/L	100.0	BDL	44	BDL	12	15	67	
9.	Dissolved Oxygen (%Saturation)	%		72	60	71	69	65	56	
10.	Chemical Oxygen Demand	mg/L	250.0	BDL	128	BDL	16	60	42	

Nar	me of Industry			Bajaj Auto Ltd.	Carlsbe rg Ltd.	arat	(Pascni	I(I) Ltd.	Endura nce Technol ogy K- 120			
Loc	ation			ETP	ETP	ETP	ETP	ETP	ETP			
				Outlet	Outlet	Outlet	Outlet	Outlet	Outlet			
	e of Sampling (/02/2017]			27	27 27 27 27 28							
Sr.	Parameters	Unit	Std. Limit			Res	sults					
11.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	BDL	40.66	BDL	4.96	18.65	102			
12.	Electrical Conductivity (at 25 °C)	µmho/ cm		98.54	3251	432.9	491	3181	4947			
13.	Nitrite Nitrogen (as N)	mg/L		BDL	0.48	0.05	0.16	0.19	0.11			
14.	Nitrate Nitrogen (as N)	mg/L	10.0	BDL	BDL	BDL	10.64	36.63	27.5			
15.	(NO ₂ + NO ₃)- Nitrogen	mg/L	5.0	BDL	BDL	BDL	10.48	36.44	<0.1			
16.	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL	BDL	BDL	BDL	BDL	<0.1			
17.	Total Residual Chlorine	mg/L	1.0	BDL	BDL	BDL	BDL	BDL	<0.1			
18.	Cyanide (as CN)	mg/L	0.2	0.01	BDL	0.02	BDL	BDL	<0.00 1			
19.	Fluoride (as F)	mg/L	2.0	0.32	0.25	0.19	0.51	0.13	0.8			
20.	Sulphide (as S ²⁻)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	<0.00			
21.	Dissolved Phosphate (as P)	mg/L	5.0	BDL	12.64	BDL	BDL	11.9	10.77			

Nar	me of Industry			Bajaj Auto Ltd.	Carlsbe rg Ltd.	Wockh ardt Biotech	IPCA (Paschi m Chem)	SAB Miller I(I) Ltd. (Pals).	Endura nce Technol ogy K- 120	
Loc	ation			ETP	ETP	ETP	ETP	ETP	ETP	
				Outlet	Outlet Outlet Outlet Outlet Outlet Outlet					
	e of Sampling (/02/2017]			27	27	27	27	27	28	
Sr.	Parameters	Unit	Std. Limit			Res	sults			
22.	Sodium Absorption Ratio			1.41	1.83	1.27	BDL	2.44	1.16	
23.	Total Coliforms	MPN index/ 100 mL	100.0	240	542	BDL	BDL	26	240	
24.	Faecal Coliforms	MPN index/ 100 mL	1000.0	80	BDL	BDL	BDL	BDL	50	
25.	Total Phosphorous (as P)	mg/L	1.0	BDL	BDL	BDL	2.17	BDL	1.27	
26.	Total Kjeldahl Nitrogen (as N)	mg/L	100.0	0.16	0.52	0.13	11	37	1.63	
27.	Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	5.0	BDL	BDL	BDL	0.36	0.37	2.1	
28.	Phenol (as C ₆ H₅OH)	mg/L	3.0	BDL	BDL	BDL	BDL	BDL	0.012	
29.	Surface Active Agents (as MBAS)	mg/L	3.0	BDL	BDL	BDL	BDL	BDL	<0.1	
30.	Organo Chlorine Pesticides		0.1							

Naı	me of Industry			Bajaj Auto Ltd.	Carlsbe rg Ltd.	Wockh ardt Biotech	(Paschi	I(I) Ltd.	Endura nce Technol ogy K- 120			
Loc	ation			ETP	ETP	ETP	ETP	ETP	ETP			
				Outlet	Outlet	Outlet	Outlet	Outlet	Outlet			
	e of Sampling (/02/2017]			27	27	27	27	27	28			
Sr.	Parameters	Unit	Std. Limit	Results								
i.	Alachlor	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	<0.01			
ii.	Atrazine	μg/L	0.2	BDL	BDL	BDL	BDL	BDL	<0.01			
iii.	Aldrin	μg/L	0.1	BDL	BDL	BDL	BDL	BDL	<0.01			
iv.	Dieldrin	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	<0.01			
٧.	Alpha HCH	μg/L	0.01	BDL	BDL	BDL	BDL	BDL	<0.01			
vi.	Beta HCH	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	<0.01			
vii.	Butachlor	μg/L	3.0	BDL	BDL	BDL	BDL	BDL	<0.01			
viii.	Chloropyrifos	μg/L		BDL	BDL	BDL	BDL	BDL	<0.01			
ix.	Delta HCH	μg/L	0.2	BDL	BDL	BDL	BDL	BDL	<0.01			
x	p,p DDT	μg/L	0.05	BDL	BDL	BDL	BDL	BDL	<0.01			
xi.	o,p DDT	μg/L	100.0	BDL	BDL	BDL	BDL	BDL	<0.01			
xii.	p,p DDE	μg/L	250.0	BDL	BDL	BDL	BDL	BDL	<0.01			
xiii.	o,p DDE	μg/L	30.0	BDL	BDL	BDL	BDL	BDL	<0.01			
xiv.	p,p DDD	μg/L		BDL	BDL	BDL	BDL	BDL	<0.01			
xv.	o,p DDD	μg/L		BDL	BDL	BDL	BDL	BDL	<0.01			
xvi.	Alpha Endosulfan	μg/L	10.0	BDL	BDL	BDL	BDL	BDL	<0.01			

Nan	ne of Industry		Bajaj Auto Ltd.	Carlsbe rg Ltd.	Wockh ardt Biotech	(Pascni	I(I) Ltd.	Endura nce Technol ogy K- 120				
Loc	ation			ETP	ETP	ETP	ETP	ETP	ETP			
				Outlet	Outlet	Outlet	Outlet	Outlet	Outlet			
	e of Sampling //02/2017]			27	27	27	27	27	28			
Sr.	Parameters	Unit	Std. Limit	Results								
xvii	Beta Endosulfan	μg/L		BDL	BDL	BDL	BDL	BDL	<0.01			
xviii	EndosulfanSulph ate	μg/L	5.0	BDL	BDL	BDL	BDL	BDL	<0.01			
xix.	Y HCH (Lindane)	μg/L	1.0	BDL	BDL	BDL	BDL	BDL	<0.01			
31.	Polynuclear aromatic hydrocarbons (PAH)	μg/L	0.2	0.25	BDL	0.33	0.18	BDL	<0.00 007			
32.	Polychlorinated Biphenyls (PCB)	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	<0.00 007			
33.	Zinc (Zn)	mg/L	5.0	BDL	0.08	BDL	BDL	0.06	4.08			
34.	Nickel (as Ni)	mg/L	3.0	0.09	BDL	BDL	BDL	BDL	0.12			
35.	Copper (as Cu)	mg/L		BDL	BDL	BDL	BDL	BDL	0.63			
36.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL	BDL	BDL	BDL	BDL	<0.02			
37.	Total Chromium (as Cr)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	0.08			
38.	Total Arsenic (as As)	mg/L	0.2	BDL	BDL	BDL	BDL	BDL	<0.00 5			
39.	Lead (as Pb)	mg/L	0.1	0.07	0.1	BDL	0.06	0.1	0.1			

Naı	me of Industry			Bajaj Auto Ltd.	Carlsbe rg Ltd.	Wockh ardt Biotech	IPCA (Paschi m Chem)	SAB Miller I(I) Ltd. (Pals).	Endura nce Technol ogy K- 120
Loc	ation			ETP	ETP	ETP	ETP	ETP	ETP
				Outlet	Outlet	Outlet	Outlet	Outlet	Outlet
	e of Sampling (/02/2017]			27	27	27	27	27	28
Sr.	Parameters	Unit	Std. Limit			Res	sults		
40.	Cadmium (as Cd)	mg/L	2.0	BDL	BDL	BDL	BDL	0.08	<0.00
41.	Mercury (as Hg)	mg/L	0.01	BDL	BDL	BDL	BDL	BDL	<0.00 08
42.	Manganese (as Mn)	mg/L	2.0	BDL	0.13	BDL	BDL	0.09	0.31
43.	Iron (as Fe)	mg/L	3.0	0.21	1.82	0.19	0.22	1.08	0.89
44.	Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL	BDL	BDL	<0.01
45.	Selenium (as Se)	mg/L	0.05	BDL	BDL	BDL	BDL	BDL	<0.00 5
46.	Boron (as B)	mg/L		0.77	BDL	0.54	BDL	BDL	< 0.1

c) MIDC Shendra:

Sr.	Name of Industry	Included in
1.	Skoda Auto India Pvt. Ltd.	Table No. III
2.	Glenmark Pharmaceuticals Lab.	Table No. III
3.	Wockhardt Infrastructure Development Ltd	Table No. III
4.	Harman Finochem Ltd.	Table No. III
5.	Perkins India Pvt. Ltd.	Table No. III
6.	NRB Bearings Ltd.	Table No. III

Table No. III

ıaı	DIE NO. III		1				ı	T.	П
Na	me of Industry			Skoda Auto India Pvt. Ltd.	Glenm ark Pharm aceutic als Lab.	Wockh ardt Infrast ructure Develo pment Ltd	n	Perkins India Pvt. Ltd.	NRB Bearin gs Ltd.
Loc	cation			ETP	ETP	ETP	ETP	ETP	ETP
				Outlet	Outlet	Outlet	Outlet	Outlet	Outlet
	te of Sampling <mark>(</mark> /02/2017]			24 24 24 24 2					
Sr.	Parameters	Unit	Std.		1	Res	ults		<u>I</u>
1.	Sanitary Survey	-							
2.	General Appearance	-		Clear colourle ss	Clear colourle ss	Turbid liquid	Turbid liquid	Turbid liquid	Dark Colour
3.	Colour	Haze n		3	3	14	10	8	>25
4.	Smell	-		Agreeab le	Agreeab le	Agreeab le	Agreeab le	Agreeab le	Disagre eable
5.	Transparency	-		Transpa rent	Transpa rent	Turbid with sedimen t	Slighty turbid	Slighty turbid	No Transpa rency with sedime nt
6.	рН	-	5.5 - 9.0	7.83	6.22	7.05	7.36	7.10	7.15
7.	Oil & Grease	mg/L	10.0	BDL	BDL	BDL	BDL	BDL	BDL
8.	Suspended Solids	mg/L	100.0	BDL	BDL	15	BDL	12	38
9.	Dissolved Oxygen (%Saturation)	%		71	72	65	73	71	64
10.	Chemical Oxygen Demand	mg/L	250.0	BDL	BDL	72.72	BDL	BDL	108

Naı	lame of Industry			Skoda Auto India Pvt. Ltd.	Glenm ark Pharm aceutic als Lab.	Wockh ardt Infrast ructure Develo pment Ltd	n	Perkins India Pvt. Ltd.	NRB Bearin gs Ltd.
Loc	ation			ETP	ETP	ETP	ETP	ETP	ETP
				Outlet	Outlet	Outlet	Outlet	Outlet	Outlet
	e of Sampling (/02/2017]			24	24	24	24	24	26
Sr.	Parameters	Std.		I	Res	ults	1		
11.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	BDL	BDL	BDL	BDL	BDL	34
12.	Electrical Conductivity (at 25°C)	µmho / cm		643.1	113.8	809.5	826	1913	2077
13.	Nitrite Nitrogen (as N)	mg/L		0.01	0.23	0.03	2.65	3.08	2.99
14.	Nitrate Nitrogen (as N)	mg/L	10.0	2.28	14.11	50.94	40.24	BDL	10.45
15.	(NO ₂ + NO ₃)-Nitrogen	mg/L	5.0	2.27	13.88	50.91	37.59	BDL	<0.1
16.	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL	BDL	BDL	BDL	BDL	BDL
17.	Total Residual Chlorine	mg/L	1.0	BDL	BDL	BDL	BDL	BDL	BDL
18.	Cyanide (as CN)	mg/L	0.2	0.03	BDL	0.04	BDL	BDL	0.03
19.	Fluoride (as F)	mg/L	2.0	0.23	BDL	0.34	0.15	0.26	0.18
20.	Sulphide (as S ²⁻)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
21.	Dissolved Phosphate (as P)	mg/L	5.0	1.01	BDL	3.92	BDL	1.07	0.67
22.	Sodium Absorption Ratio			1.55	3.59	1.78	2.95	2.16	2.49

Nar	Name of Industry			Skoda Auto India Pvt. Ltd.	Glenm ark Pharm aceutic als Lab.	Wockh ardt Infrast ructure Develo pment Ltd	n	Perkins India Pvt. Ltd.	NRB Bearin gs Ltd.
Loc	ation			ETP	ЕТР	ETP	ETP	ETP	ETP
				Outlet	Outlet	Outlet	Outlet	Outlet	Outlet
	e of Sampling (/02/2017]			24	24	24	24	24	26
Sr.	Parameters	Std.			Res	ults			
23.	Total Coliforms	MPN index / 100 mL	100.0	1600	33	900	23	22	1600
24.	Faecal Coliforms	MPN index / 100 mL	1000. 0	240	13	70	BDL	BDL	110
	Total Phosphorous (as P)	mg/L	1.0	BDL	BDL	0.87	BDL	BDL	BDL
	Total Kjeldahl Nitrogen (as N)	mg/L	100.0	2.3	14.15	31	3.09	3.11	10.98
27.	Total Ammonia (NH ₄ +NH ₃)-Nitrogen	mg/L	5.0	0.02	BDL	BDL	0.7	BDL	0.53
28.	Phenol (as C ₆ H ₅ OH)	mg/L	3.0	BDL	BDL	BDL	BDL	BDL	BDL
29.	Surface Active Agents (as MBAS)	mg/L	3.0	BDL	BDL	BDL	BDL	BDL	BDL
	Organo Chlorine Pesticides		0.1						
i.	Alachlor	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
ii.	Atrazine	μg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL

Naı	ame of Industry			Skoda Auto India Pvt. Ltd.	Glenm ark Pharm aceutic als Lab.	Wockh ardt Infrast ructure Develo pment Ltd	Harma n Finoch em Ltd	Perkins India Pvt. Ltd.	NRB Bearin gs Ltd.
Loc	ation			ETP	ETP	ETP	ETP	ETP	ETP
				Outlet	Outlet	Outlet	Outlet	Outlet	Outlet
	e of Sampling (/02/2017]			24	24	24	24	24	26
Sr.	Parameters	Unit	Std.			Res	ults		
iii.	Aldrin	μg/L	0.1	BDL	BDL	BDL	BDL	BDL	BDL
iv.	Dieldrin	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
٧.	Alpha HCH	μg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL
vi.	Beta HCH	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
vii.	Butachlor	μg/L	3.0	BDL	BDL	BDL	BDL	BDL	BDL
viii.	Chloropryifos	μg/L		BDL	BDL	BDL	BDL	BDL	BDL
ix.	Delta HCH	μg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL
х	p,p DDT	μg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
xi.	o,p DDT	μg/L	100.0	BDL	BDL	BDL	BDL	BDL	BDL
xii.	p,p DDE	μg/L	250.0	BDL	BDL	BDL	BDL	BDL	BDL
xiii.	o,p DDE	μg/L	30.0	BDL	BDL	BDL	BDL	BDL	BDL
xiv.	p,p DDD	μg/L		BDL	BDL	BDL	BDL	BDL	BDL
xv.	o,p DDD	μg/L		BDL	BDL	BDL	BDL	BDL	BDL
xvi.	Alpha Endosulfan	μg/L	10.0	BDL	BDL	BDL	BDL	BDL	BDL
xvii	Beta Endosulfan	μg/L		BDL	BDL	BDL	BDL	BDL	BDL

Nar	me of Industry			Skoda Auto India Pvt. Ltd.	Glenm ark Pharm aceutic als Lab.	Wockh ardt Infrast ructure Develo pment Ltd	Harma n Finoch em Ltd	Perkins India Pvt. Ltd.	NRB Bearin gs Ltd.
Loc	ation			ETP	ETP	ETP	ETP	ETP	ETP
				Outlet	Outlet	Outlet	Outlet	Outlet	Outlet
	e of Sampling [/02/2017]			24	24	24	24	24	26
Sr.	Parameters	Unit	Std.			Res	ults		
xvii i.	EndosulfanSulphate	μg/L	5.0	BDL	BDL	BDL	BDL	BDL	BDL
xix.	Y HCH (Lindane)	μg/L	1.0	BDL	BDL	BDL	BDL	BDL	BDL
31.	Polynuclear aromatic hydrocarbons (PAH)	μg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL
32.	Polychlorinated Biphenyls (PCB)	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
33.	Zinc (Zn)	mg/L	5.0	0.23	BDL	BDL	BDL	BDL	0.11
34.	Nickel (as Ni)	mg/L	3.0	0.08	BDL	BDL	BDL	0.07	BDL
35.	Copper (as Cu)	mg/L		BDL	BDL	BDL	BDL	BDL	BDL
36.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL	BDL	BDL	BDL	BDL	BDL
37.	Total Chromium (as Cr)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
38.	Total Arsenic (as As)	mg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL
39.	Lead (as Pb)	mg/L	0.1	0.05	0.07	0.09	0.06	0.09	0.08
40.	Cadmium (as Cd)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
41.	Mercury (as Hg)	mg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL

Name of Industry			Skoda Auto India Pvt. Ltd.	Glenm ark Pharm aceutic als Lab.	Wockh ardt Infrast ructure Develo pment Ltd	n	Perkins India Pvt. Ltd.	NRB Bearin gs Ltd.	
Loc	ation		ETP	ETP	ETP	ETP	ETP	ETP	
LUC	Location			Outlet	Outlet	Outlet	Outlet	Outlet	Outlet
1	e of Sampling (/02/2017]		24	24	24	24	24	26	
Sr.	Parameters	Unit	Std.		,	Res	ults	,	
42.	Manganese (as Mn)	mg/L	2.0	BDL	BDL	0.09	BDL	BDL	0.22
43.	Iron (as Fe)	mg/L	3.0	0.21	0.23	1.06	0.2	0.84	1.45
44.	Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL
45.	Selenium (as Se)	mg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
46.	Boron (as B)	mg/L		0.18	0.57	BDL	BDL	BDL	0.39

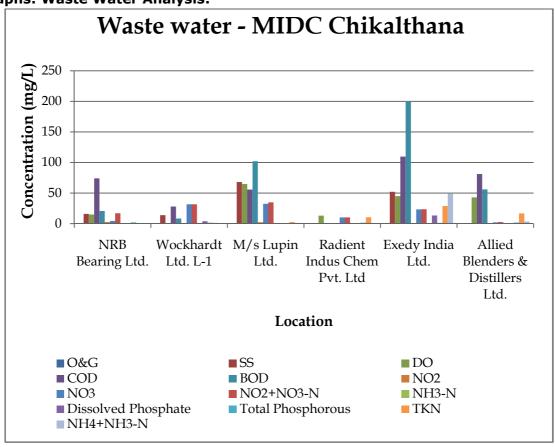
d) MIDC Paithan Road:

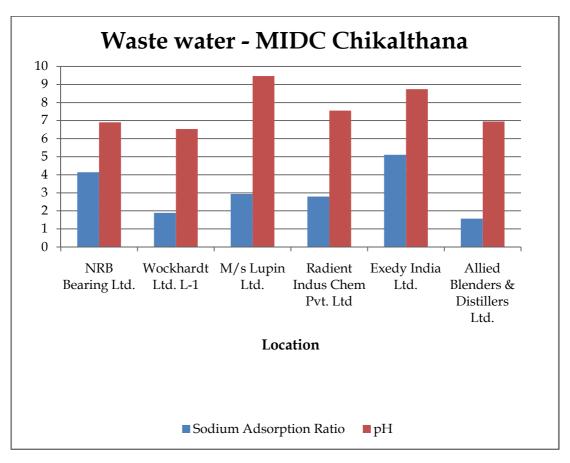
Sr.	Name of Industry	Included in
1.	Frogorifico Allan Ltd	Table No. IV
2.	Encore Laboraories	Table No. IV
3.	Pepsico India Pvt. Ltd.	Table No. IV
4.	Badve Engineering	Table No. IV
5.	Videocon India Ltd.	Table No. IV
6.	Ajantha Pharma	Table No. IV

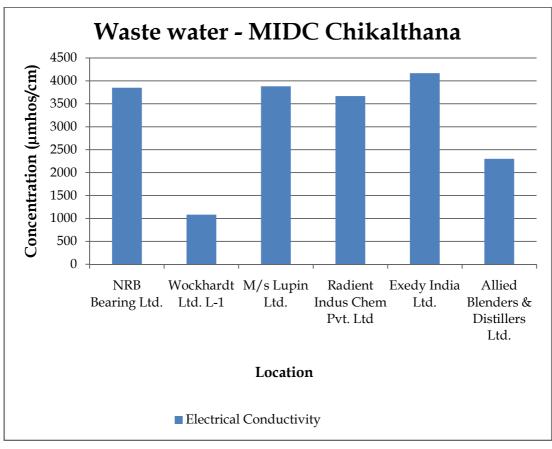
Table No. IV

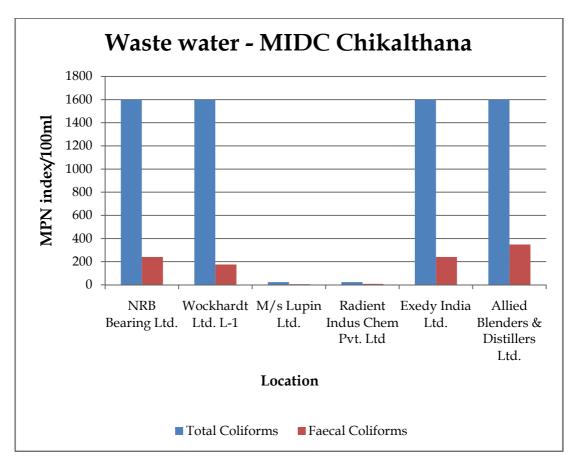
ie No. 1V			ı	I	ı		ı	
ne of Industry			Frogori fico Allan Ltd	Encore Labora ories	Pepsic o India Pvt. Ltd.	Badve Engine ering	0.00	Ajanth a Pharm a
ation			CETP Outlet	Khane River Upstrea m	Khane River Down Stream	ETP Outlet	ETP Outlet	ETP Outlet
			25	25	25	25	26	26
Parameters	Unit	Std.			Resi	ults		
Sanitary Survey	-		Moderat e Clean	Clean	Clean	Clean	Clean	Clean
General Appearance	-		Dark Colour	Dark Colour	with	colourle	se with	Clear colourle ss
Colour	Hazen		>25	>25	7	2	3	2
Smell	-		Disagre eable	Disagre eable	Agreeab le	Agreeab le	Disagre eable	Agreea ble
Transparency	-		No transpar ency	rency with	e of sedimen	•	rency with slight	Transp arent
рН	-	5.5 - 9.0	7.21	7.12	7.78	7.44	7.70	6.97
Oil & Grease	mg/L	10.0	BDL	BDL	BDL	BDL	BDL	BDL
Suspended Solids	mg/L	100.0	15	BDL	20	BDL	24	18
Dissolved Oxygen (%Saturation)	%		60	70	65	72	66	72
Chemical Oxygen Demand	mg/L	250.0	132	14.24	48	BDL	44	24.21
	ation e of Sampling /02/2017] Parameters Sanitary Survey General Appearance Colour Smell Transparency pH Oil & Grease Suspended Solids Dissolved Oxygen (%Saturation) Chemical Oxygen	ation e of Sampling /02/2017] Parameters Unit Sanitary Survey - Colour Hazen Smell - Transparency - Oil & Grease mg/L Suspended Solids mg/L Dissolved Oxygen (%Saturation) Chemical Oxygen mg/l	re of Industry ation e of Sampling /02/2017] Parameters Unit Std. Sanitary Survey - Colour Hazen Smell - Transparency - pH - 5.5 - 9.0 Oil & Grease mg/L Suspended Solids mg/L Dissolved Oxygen (%Saturation) Chemical Oxygen mg/l 250.0	re of Industry ation CETP Outlet ation CETP Outlet 25 Parameters Unit Std. Sanitary Survey - Moderate e Clean Colour Hazen - Dark Colour Colour Hazen - Disagre eable Transparency - No transparency pH - 5.5 - 9.0 7.21 Oil & Grease mg/L Suspended Solids mg/L Dissolved Oxygen (%Saturation) CetTP Outlet Trogori fico Allan Ltd Tengori fico Allan CETP Outlet 10.0 Moderate e Clean No transparency - Transparency - Dissolved Oxygen (%Saturation) 60 Chemical Oxygen mg/L 10.0 132	re of Industry Transparency Transparency	re of Industry Frogori fico Allan Ltd Encore Labora ories Pepsic of Industry	Frogori fico Allan Ltd Results Sanitary Survey General Appearance Colour Hazen - Disagre eable Transparency Transparency - Disagre eable Transparency Transparency - Disagre eable Disag	Frogori fice Allan Ltd. Frogori fice Allan Ltd. Encore fice Allan Ltd. Encore India ories Encore India ories Encore Pvt. Ltd. English on India Ltd.

Nan	ne of Industry			Frogori fico Allan Ltd	Encore Labora ories	Pepsic o India Pvt. Ltd.	Badve Engine ering	Videoc on India Ltd.	Ajanth a Pharm a	
Loca	ation			CETP Outlet	Khane River Upstrea m	Khane River Down Stream	ETP Outlet	ETP Outlet	ETP Outlet	
	e of Sampling /02/2017]			25	25 25 25 26 2					
Sr.	Parameters	Unit	Std.			Resi	ults			
11.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	30.0	39	68.42	13	BDL	12.6	6.07	
12.	Electrical Conductivity (at 25 °C)	µmho / cm		2621	2909	3637	3050	4400	858.8	
13.	Nitrite Nitrogen (as N)	mg/L		0.02	3.35	BDL	0.06	0.81	2.56	
14.	Nitrate Nitrogen (as N)	mg/L	10.0	65.81	65.78	BDL	33.05	BDL	28.53	
15.	(NO ₂ + NO ₃)- Nitrogen	mg/L	5.0	<0.1	<0.1	BDL	32.99	BDL	25.97	
16.	Free Ammonia (as NH ₃ -N)	mg/L	5.0	BDL	BDL	BDL	BDL	BDL	BDL	
17.	Total Residual Chlorine	mg/L	1.0	BDL	BDL	BDL	BDL	BDL	BDL	
18.	Cyanide (as CN)	mg/L	0.2	0.02	BDL	BDL	0.03	0.04	BDL	
19.	Fluoride (as F)	mg/L	2.0	0.13	0.31	0.28	0.59	0.27	0.17	
20.	Sulphide (as S ²⁻)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL	
21.	Dissolved Phosphate (as P)	mg/L	5.0	<0.1	5.26	4.92	BDL	0.37	BDL	
22.	Sodium Absorption Ratio			3.52	1.89	1.44	1.53	2.91	0.64	

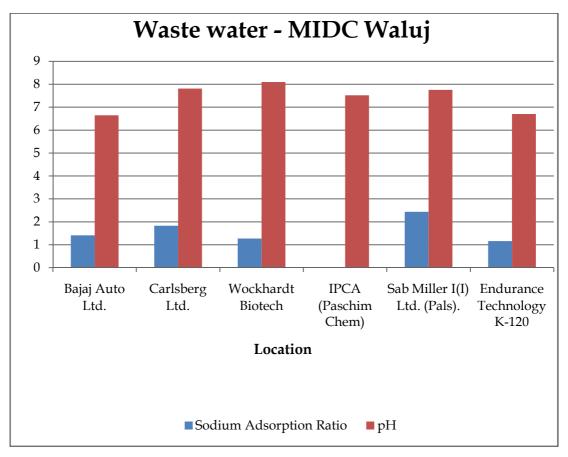

Nan	ne of Industry			Frogori fico Allan Ltd	Encore Labora ories	Pepsic o India Pvt. Ltd.	Badve Engine ering	Videoc on India Ltd.	Ajanth a Pharm a
Loc	ation			CETP Outlet	Khane River Upstrea m	Khane River Down Stream	ETP Outlet	ETP Outlet	ETP Outlet
	e of Sampling /02/2017]			25	25	25	25	26	26
Sr.	Parameters	Unit	Std.			Resi	ults		
23.	Total Coliforms	MPN index/ 100 mL	100.0	1600	1600	1600	50	8	240
24.	Faecal Coliforms	MPN index/ 100 mL	1000. 0	BDL	240	348	BDL	BDL	BDL
25.	Total Phosphorous (as P)	mg/L	1.0	0.55	BDL	BDL	BDL	BDL	1.35
26.	Total Kjeldahl Nitrogen (as N)	mg/L	100.0	7.79	5.83	1.68	33.65	1.9	28.68
27.	Total Ammonia (NH ₄ +NH ₃)-Nitrogen	mg/L	5.0	1.39	0.2	1.65	0.6	BDL	0.15
28.	Phenol (as C ₆ H ₅ OH)	mg/L	3.0	BDL	BDL	BDL	BDL	BDL	BDL
29.	Surface Active Agents (as MBAS)	mg/L	3.0	BDL	BDL	BDL	BDL	BDL	BDL
30.	Organo Chlorine Pesticides		0.1						
i.	Alachlor	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
ii.	Atrazine	μg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL
iii.	Aldrin	μg/L	0.1	BDL	BDL	BDL	BDL	BDL	BDL

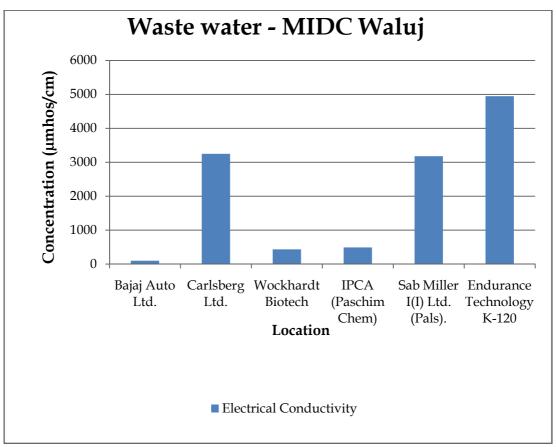

Nam	ne of Industry			Frogori fico Allan Ltd	Encore Labora ories	Pepsic o India Pvt. Ltd.	Badve Engine ering	Videoc on India Ltd.	Ajanth a Pharm a		
Loca	ation			CETP Outlet	Khane River Upstrea m	Khane River Down Stream	ETP Outlet	ETP Outlet	ETP Outlet		
	e of Sampling /02/2017]			25	25 25 25 26						
Sr.	Parameters	Unit	Std.			Resi	ults				
iv.	Dieldrin	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL		
٧.	Alpha HCH	μg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL		
vi.	Beta HCH	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL		
vii.	Butachlor	μg/L	3.0	BDL	BDL	BDL	BDL	BDL	BDL		
viii.	Chlorpyrifos	μg/L		BDL	BDL	BDL	BDL	BDL	BDL		
ix.	Delta HCH	μg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL		
X	p,p DDT	μg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL		
xi.	o,p DDT	μg/L	100.0	BDL	BDL	BDL	BDL	BDL	BDL		
xii.	p,p DDE	μg/L	250.0	BDL	BDL	BDL	BDL	BDL	BDL		
xiii.	o,p DDE	μg/L	30.0	BDL	BDL	BDL	BDL	BDL	BDL		
xiv.	p,p DDD	μg/L		BDL	BDL	BDL	BDL	BDL	BDL		
xv.	o,p DDD	μg/L		BDL	BDL	BDL	BDL	BDL	BDL		
xvi.	Alpha Endosulfan	μg/L	10.0	BDL	BDL	BDL	BDL	BDL	BDL		
xvii.	Beta Endosulfan	μg/L		BDL	BDL	BDL	BDL	BDL	BDL		
xviii.	EndosulfanSulphate	μg/L	5.0	BDL	BDL	BDL	BDL	BDL	BDL		
xix.	Y HCH (Lindane)	μg/L	1.0	BDL	BDL	BDL	BDL	BDL	BDL		

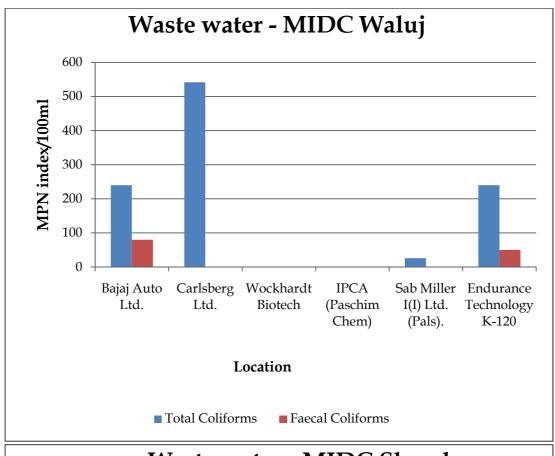

Nan	ne of Industry			Frogori fico Allan Ltd	Encore Labora ories	Pepsic o India Pvt. Ltd.	Badve Engine ering	Videoc on India Ltd.	Ajanth a Pharm a
Loc	ation			CETP Outlet	Khane River Upstrea m	Khane River Down Stream	ETP Outlet	ETP Outlet	ETP Outlet
	e of Sampling /02/2017]			25	25	25	25	26	26
Sr.	Parameters	Unit	Std.			Resi	ults		
31.	Polynuclear aromatic hydrocarbons (PAH)	μg/L	0.2	BDL	BDL	BDL	0.41	BDL	0.288
32.	Polychlorinated Biphenyls (PCB)	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
33.	Zinc (Zn)	mg/L	5.0	BDL	0.11	BDL	BDL	<0.05	BDL
34.	Nickel (as Ni)	mg/L	3.0	BDL	BDL	BDL	BDL	0.04	BDL
35.	Copper (as Cu)	mg/L		BDL	BDL	BDL	BDL	BDL	BDL
36.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	0.1	BDL	BDL	BDL	BDL	BDL	BDL
37.	Total Chromium (as Cr)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
38.	Total Arsenic (as As)	mg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL
39.	Lead (as Pb)	mg/L	0.1	0.09	0.09	0.07	0.07	0.07	0.07
40.	Cadmium (as Cd)	mg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
41.	Mercury (as Hg)	mg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL
42.	Manganese (as Mn)	mg/L	2.0	BDL	0.46	BDL	0.11	BDL	BDL
43.	Iron (as Fe)	mg/L	3.0	BDL	1.11	BDL	0.27	0.48	0.72
44.	Vanadium (as V)	mg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL

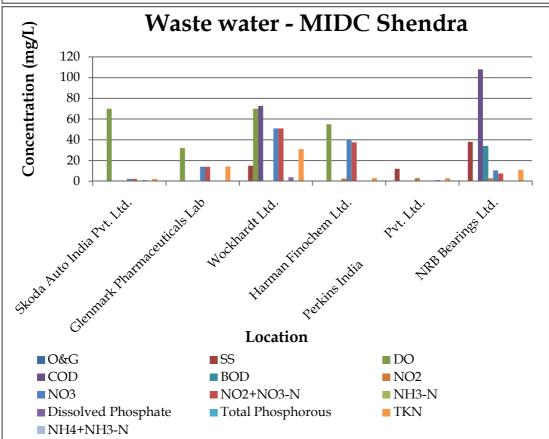

Nan	ne of Industry			Frogori fico Allan Ltd	Encore Labora ories	Pepsic o India Pvt. Ltd.	Badve Engine ering	Videoc on India Ltd.	Ajanth a Pharm a
Loc	ation			CETP Outlet	Khane River Upstrea m	Khane River Down Stream	ETP Outlet	ETP Outlet	ETP Outlet
	e of Sampling /02/2017]			25	25	25	25	26	26
Sr.	Parameters	Unit	Std.			Resi	ults		
45.	Selenium (as Se)	mg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
46.	Boron (as B)	mg/L		BDL	0.66	BDL	BDL	BDL	0.92

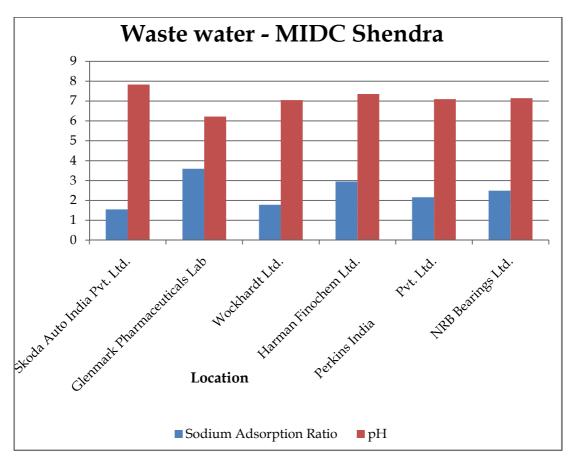
Graphs: Waste Water Analysis:

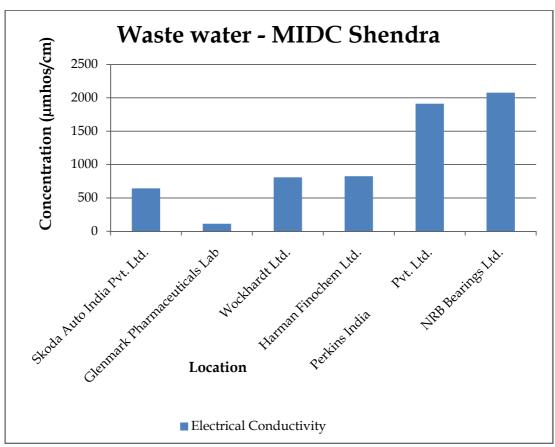


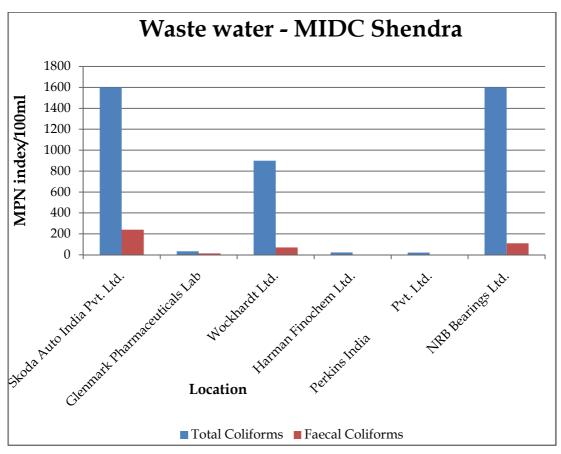


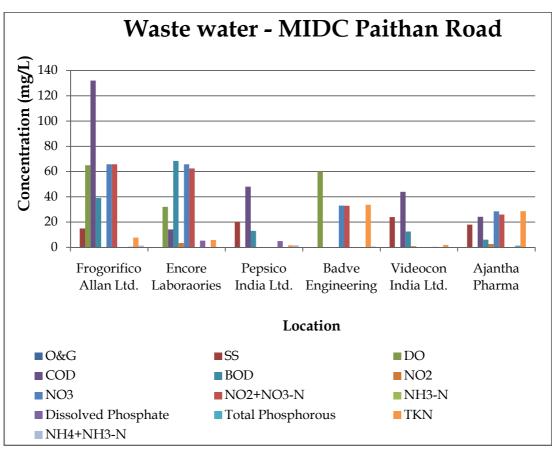


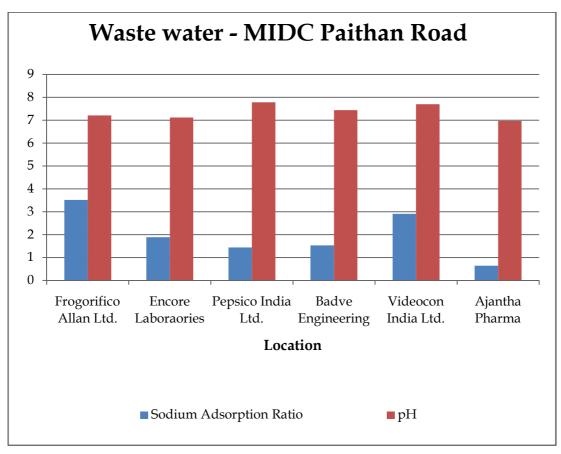


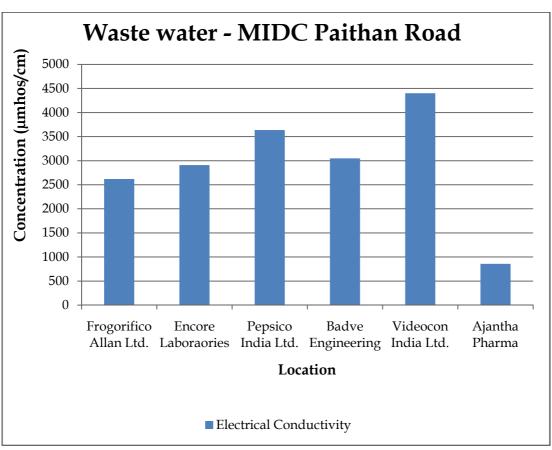


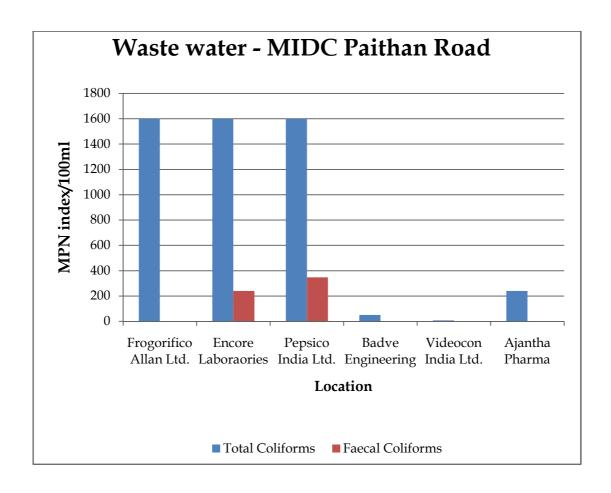












3.3.2 Ground Water Analysis

a) MIDC Chikalthana and Waluj

Sr.	Name of Industry	MIDC	Included in		
1.	Nr. Compost yard of United Spirits Ltd.	Chikalthana	Table No. V		
2.	Naregaon Village	Chikalthana	Table No. V		
3.	Mhada Colony	Chikalthana	Table No. V		
4.	Giriraj Society	Waluj	Table No. V		
5.	Ranjangaon	Waluj	Table No. V		
6.	Good Year	Waluj	Table No. V		

Table No. V

Nan	ne of Industry			Nr. Compo st yard of United Spirits Ltd.	Nareg aon Village	Mhada Colony		Ranja ngaon	Good Year	
Loc	ation			Bore Well	Bore Well	Bore Well	Ground Water	Ground Water	Well Water	
	e of Sampling [/02/2017]			23	24	24	27	28 28		
Sr.	Parameters	Unit	Std.			Resi	ults			
1.	Sanitary Survey	-	Very Clean neighb orhood and catchm ent	Clean	Clean	Modera te Clean	Modera te Clean	Clean		
2.	General Appearance	-	No floatin g matter	Clear Colourl ess	Clear Colourl ess	Clear Colourl ess	Clear Colourl ess	Clear Colourl ess	Clear Colourl ess	
3.	Colour	Hazen	5	2	3	2	2	1	8	

Nar	ne of Industry			Nr. Compo st yard of United Spirits Ltd.	Nareg aon Village	Mhada Colony	Giriraj Societ Y	Ranja ngaon	Good Year
Loc	ation			Bore Well	Bore Well	Bore Well	Ground Water	Ground Water	Well Water
	e of Sampling [/02/2017]			23	24	24	27	28	28
Sr.	Parameters	Unit	Std.		<u>I</u>	Resi	ults	I	
4.	Smell	-	Agreea ble	Agreea ble	Agreea ble	Agreea ble	Agreea ble	Agreea ble	Agreea ble
5.	Transparency	m	unobje ctiona ble	Transp arent	Transp arent	Transp arent	Transp arent	Transp arent	Transp arent
6.	рН	-	6.5-8.5	7.67	7.30	7.90	7.46	7.50	7.38
7.	Oil & Grease	mg/L	100	BDL	BDL	BDL	BDL	BDL	BDL
8.	Suspended Solids	mg/L	500	BDL	BDL	BDL	BDL	BDL	BDL
9.	Chemical Oxygen Demand	mg/L	10 (WHO, 1993)	BDL	BDL	BDL	BDL	16.76	12.11
10.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	6 (WHO, 1993)	BDL	BDL	BDL	4.14	4.58	3.96
11.	Electrical Conductivity (at 25 °C)	μmho/ cm	750	1688	1507	125.7	4040	4146	4096
12.	Nitrite Nitrogen (as N)	mg/L		0.02	0.02	0.04	BDL	0.07	BDL
13.	Nitrate Nitrogen (as N)	mg/L	45	80.09	45.9	BDL	25.44	27.96	30.14

Nan	ne of Industry			Nr. Compo st yard of United Spirits Ltd.	Nareg aon Village	Mhada Colony	Giriraj Societ Y	Ranja ngaon	Good Year
Loc	ation			Bore Well	Bore Well	Bore Well	Ground Water	Ground Water	Well Water
	e of Sampling [/02/2017]			23	24	24	27	28	28
Sr.	Parameters	Unit	Std.			Resi	ults		
14.	(NO₂ + NO₃)- Nitrogen	mg/L	1.0	80.11	45.92	BDL	25.44	27.89	30.14
15.	Free Ammonia (as NH ₃ -N)	mg/L	0.5	BDL	BDL	BDL	BDL	BDL	BDL
16.	Total Residual Chlorine	mg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL
17.	Cyanide (as CN)	mg/L	1.5	BDL	BDL	BDL	BDL	BDL	BDL
18.	Fluoride (as F)	mg/L	1	1.14	0.38	0.06	0.41	0.36	0.58
19.	Sulphide (as S ²⁻)	mg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
20.	Dissolved Phosphate (as P)	mg/L		BDL	BDL	BDL	BDL	BDL	BDL
21.	Sodium Absorption Ratio			1.47	1.75	2.43	1.74	1.38	BDL
22.	Total Coliforms	MPN index/ 100 mL	ND	1600	30	542	240	1600	542
23.	Faecal Coliforms	MPN index/ 100 mL	ND	141	9	130	130	110	172
24.	Total Phosphorous (as P)	mg/L	0.5	BDL	BDL	BDL	BDL	BDL	BDL

Nan	ne of Industry			Nr. Compo st yard of United Spirits Ltd.	Nareg aon Village	Mhada Colony	Giriraj Societ Y	Ranja ngaon	Good Year
Loc	ation			Bore Well	Bore Well	Bore Well	Ground Water	Ground Water	Well Water
	e of Sampling /02/2017]			23	24	24	27	28	28
Sr.	Parameters	Unit	Std.			Resi	ults		
25.	Total Kjeldahl Nitrogen (as N)	mg/L	0.001	0.89	0.46	1.2	1.51	1.28	0.95
26.	Total Ammonia (NH ₄ +NH ₃)-Nitrogen	mg/L	0.5	BDL	BDL	0.16	BDL	0.14	BDL
27.	Phenol (as C ₆ H ₅ OH)	mg/L	0.001	BDL	BDL	BDL	BDL	BDL	BDL
28.	Surface Active Agents (as MBAS)	mg/L	0.02	BDL	BDL	BDL	BDL	BDL	BDL
29.	Organo Chlorine Pesticides	μg/L	0.05						
i.	Alachlor	μg/L	20	BDL	BDL	BDL	BDL	BDL	BDL
ii.	Atrazine	μg/L	2	BDL	BDL	BDL	BDL	BDL	BDL
iii.	Aldrin	μg/L	0.03	BDL	BDL	BDL	BDL	BDL	BDL
iv.	Dieldrin	μg/L	0.03	BDL	BDL	BDL	BDL	BDL	BDL
v.	Alpha HCH	μg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL
vi.	Beta HCH	μg/L	0.04	BDL	BDL	BDL	BDL	BDL	BDL
vii.	Butachlor	μg/L	125	BDL	BDL	BDL	BDL	BDL	BDL
viii.	Chlorpyrifos	μg/L		BDL	BDL	BDL	BDL	BDL	BDL
ix.	Delta HCH	μg/L	0.04	BDL	BDL	BDL	BDL	BDL	BDL

Nan	ne of Industry			Nr. Compo st yard of United Spirits Ltd.	Nareg aon Village	Mhada Colony	Giriraj Societ Y	Ranja ngaon	Good Year
Loca	ation			Bore Well	Bore Well	Bore Well	Ground Water	Ground Water	Well Water
	e of Sampling /02/2017]			23	24	24	27	28	28
Sr.	Parameters	Unit	Std.			Resi	ılts		
x	p,p DDT	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xi.	o,p DDT	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xii.	p,p DDE	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xiii.	o,p DDE	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xiv.	p,p DDD	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xv.	o,p DDD	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xvi.	Alpha Endosulfan	μg/L	0.4	BDL	BDL	BDL	BDL	BDL	BDL
xvii.	Beta Endosulfan	μg/L	0.4	BDL	BDL	BDL	BDL	BDL	BDL
xviii	Endosulfan Sulphate	μg/L	0.4	BDL	BDL	BDL	BDL	BDL	BDL
xix.	Y HCH (Lindane)	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
30.	Polynuclear aromatic hydrocarbons (as PAH)	μg/L	0.0001	BDL	BDL	BDL	BDL	0.74	BDL
31.	Polychlorinated Biphenyls (PCB)	μg/L	0.0005	BDL	BDL	BDL	BDL	BDL	BDL
32.	Zinc (Zn)	mg/L	5.0	0.45	BDL	BDL	BDL	BDL	BDL
33.	Nickel (as Ni)	mg/L	0.02	BDL	BDL	BDL	BDL	BDL	BDL

Nar	ne of Industry			Nr. Compo st yard of United Spirits Ltd.	Nareg aon Village	Mhada Colony	Giriraj Societ Y	Ranja ngaon	Good Year
Loc	ation			Bore Well	Bore Well	Bore Well	Ground Water	Ground Water	Well Water
	e of Sampling [/02/2017]			23	24	24	27	28	28
Sr.	Parameters	Unit	Std.			Resi	ults		
34.	Copper (as Cu)	mg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
35.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
36.	Total Chromium (as Cr)	mg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
37.	Total Arsenic (as As)	mg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL
38.	Lead (as Pb)	mg/L	0.01	0.04	0.09	0.25	BDL	0.09	BDL
39.	Cadmium (as Cd)	mg/L	0.003	BDL	BDL	BDL	BDL	BDL	BDL
40.	Mercury (as Hg)	mg/L	0.001	BDL	BDL	BDL	BDL	BDL	BDL
41.	Manganese (as Mn)	mg/L	0.1	0.51	0.08	BDL	BDL	BDL	BDL
42.	Iron (as Fe)	mg/L	0.3	0.16	0.2	0.2	0.28	0.26	0.34
43.	Vanadium (as V)	mg/L		BDL	BDL	BDL	BDL	BDL	BDL
44.	Selenium (as Se)	mg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL
45.	Boron (as B)		BDL	0.28	BDL	0.37	BDL	0.44	

b) MIDC Shendra and Paithan Road

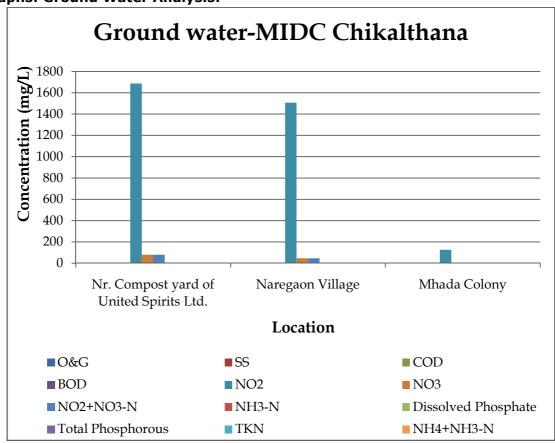
Sr.	Name of Industry	MIDC	Included in
1.	Radico Distilleries	Shendra	Table No. VI
2.	Wockhardt Infrastructure development Ltd.	Shendra	Table No. VI
3.	Shendra Village	Shendra	Table No. VI
4.	Frigorifico Allana Ltd. Backside	Paithan Road	Table No. VI
5.	Chitegaon Jailaxmi Carting Well	Paithan Road	Table No. VI
6.	JPK School Paithan Road	Paithan Road	Table No. VI

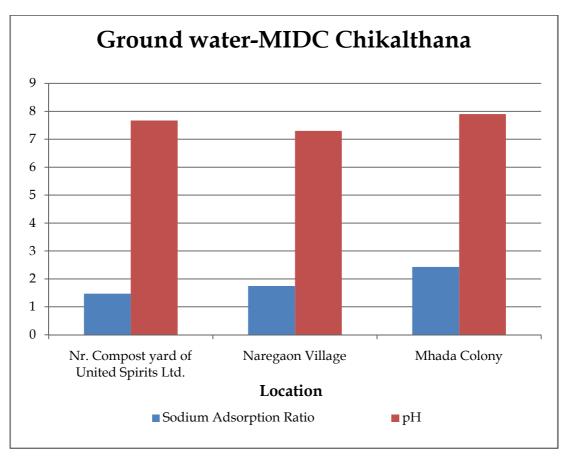
Table No. VI

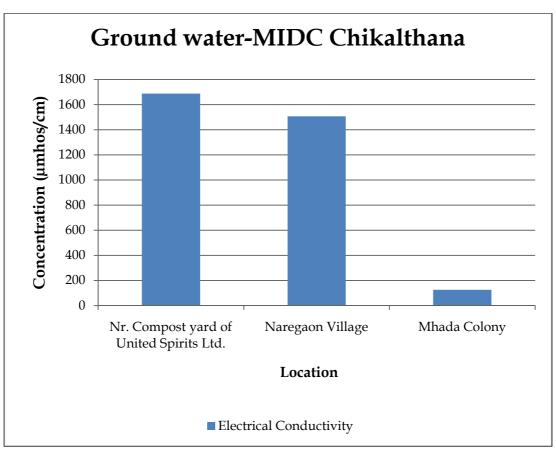
			1	1	1	1	1	1	
Nar	ne of Industry			Radico Distille ries	Wockh ardt Infrast ructur e develo pment Ltd.	Shendr a Village	ico Allana Ltd.	Chitega on Jailaxm i Carting Well	JPK School Paithan Road
Loc	ation			Ground Water	Well Water	Bore Well	Bore Well	Bore Well	Bore Well
	e of Sampling (/02/2017]			24	24	24	25	25	27
Sr.	Parameters	Unit	Std. Limit			Re	sults		
1.	General Appearance		No floatin g matter	Dark Colour	Clear with slight sedime nt	Clear Colourle ss	Clear Colourle ss	Clear Colourle ss	Clear Colourle ss
2.	Colour	Hazen	5	>25	8	2	2	1	1
3.	Smell		Agree able	Agreea ble	Agreea ble	Agreeab le	Agreeabl e	Agreeabl e	Agreeabl e

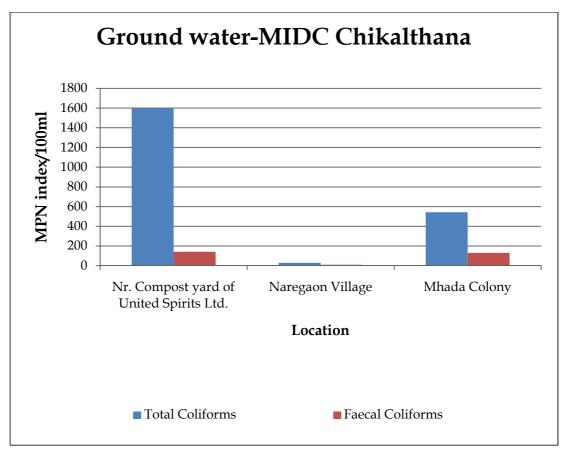
Nan	ne of Industry			Radico Distille ries	Wockh ardt Infrast ructur e develo pment Ltd.	Shendr a Village	ico	Chitega on Jailaxm i Carting Well	JPK School Paithan Road			
Loca	ation			Ground Water	Well Water	Bore Well	Bore Well	Bore Well	Bore Well			
	e of Sampling /02/2017]			24	24	24	25	25	27			
Sr.	Parameters	Unit	Std. Limit		Results							
4.	Transparency	m	unobje ctiona ble	No Transp arency	Sedime nt	Transpa rent	Transpar ent	Transpar ent	Transpa rent			
5.	рН		6.5- 8.5	7.10	7.35	7.77	8.08	7.54	7.79			
6.	Oil & Grease	mg/L	100	BDL	BDL	BDL	BDL	BDL	BDL			
7.	Suspended Solids	mg/L	500	13	BDL	BDL	BDL	BDL	BDL			
8.	Chemical Oxygen Demand	mg/L	10 (WHO, 1993)	24	40	BDL	BDL	BDL	12.12			
9.	Biochemical Oxygen Demand (3 days,27°C)	mg/L	6 (WHO, 1993)	6	10.33	BDL	BDL	BDL	3.98			
10.	Electrical Conductivity (at 25 °C)	μmho/ cm	750	1208	1238	1423	792.5	758.2	393.7			
11.	Nitrite Nitrogen (as N)	mg/L		0.08	0.17	0.09	BDL	BDL	BDL			
12.	Nitrate Nitrogen (as N)	mg/L	45	BDL	33.42	33.55	27.02	22.01	BDL			
13.	(NO ₂ + NO ₃)- Nitrogen	mg/L	1.0	BDL	33.25	33.46	27.01	22.01	BDL			

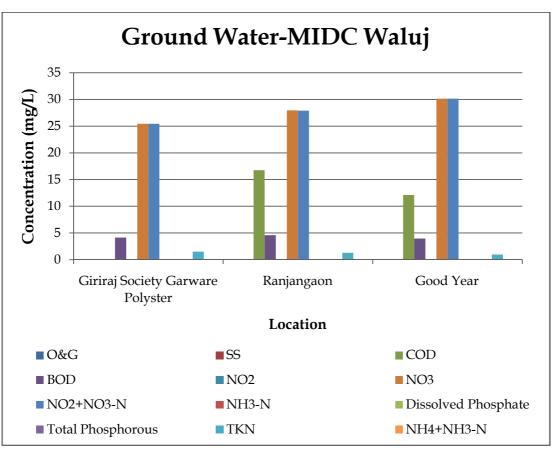
Nan	ne of Industry			Radico Distille ries	Wockh ardt Infrast ructur e develo pment Ltd.	Shendr a Village	ico	Chitega on Jailaxm i Carting Well	JPK School Paithan Road
Loca	ation			Ground Water	Well Water	Bore Well	Bore Well	Bore Well	Bore Well
	e of Sampling /02/2017]			24	24	24	25	25	27
Sr.	Parameters	Unit	Std. Limit			Re	sults		
14.	Free Ammonia (as NH ₃ -N)	mg/L	0.5	BDL	BDL	BDL	BDL	BDL	BDL
15.	Total Residual Chlorine	mg/L	0.2	BDL	BDL	BDL	BDL	BDL	BDL
16.	Cyanide (as CN)	mg/L	1.5	BDL	BDL	BDL	BDL	BDL	BDL
17.	Fluoride (as F)	mg/L	1	0.12	0.32	0.6	0.55	0.5	0.21
18.	Sulphide (as S ²⁻)	mg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
19.	Dissolved Phosphate (as P)	mg/L		BDL	0.75	BDL	BDL	BDL	BDL
20.	Sodium Absorption Ratio			1.44	1.25	0.24	1.04	1.41	1.33
21.	Total Coliforms	MPN index/ 100 mL	ND	30	1600	30	40	27	BDL
22.	Faecal Coliforms	MPN index/ 100 mL	ND	BDL	70	BDL	BDL	BDL	BDL
23.	Total Phosphorous (as P)	mg/L	0.5	BDL	BDL	BDL	BDL	BDL	BDL

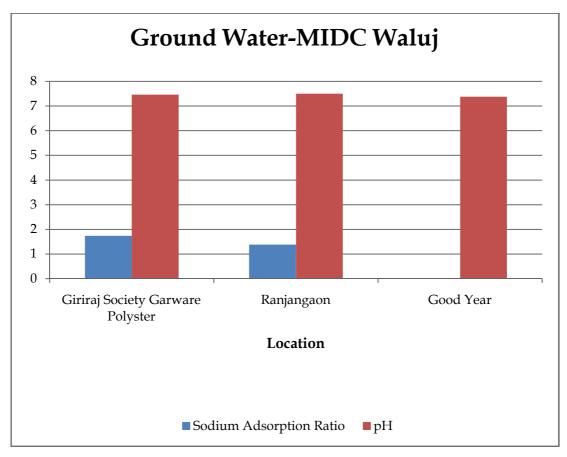

Nan	ne of Industry			Radico Distille ries	Wockh ardt Infrast ructur e develo pment Ltd.	Shendr a Village	ico		JPK School Paithan Road					
Loca	ation			Ground Water	Well Water	Bore Well	Bore Well	Bore Well	Bore Well					
	e of Sampling /02/2017]			24	24 24 24 25 25 27									
Sr.	Parameters	Unit	Std. Limit			Re	sults							
24.	Total Kjeldahl Nitrogen (as N)	mg/L	0.001	BDL	0.93	1.36	1.16	0.81	0.96					
25.	Total Ammonia (NH ₄ +NH ₃)- Nitrogen	mg/L	0.5	0.73	0.68	0.4	BDL	BDL	BDL					
26.	Phenol (as C ₆ H ₅ OH)	mg/L	0.001	BDL	BDL	BDL	BDL	BDL	BDL					
27.	Surface Active Agents (as MBAS)	mg/L	0.02	BDL	BDL	BDL	BDL	BDL	BDL					
28.	Organo Chlorine Pesticides		0.05											
i.	Alachlor	μg/L	20	BDL	BDL	BDL	BDL	BDL	BDL					
ii.	Atrazine	μg/L	2	BDL	BDL	BDL	BDL	BDL	BDL					
iii.	Aldrin	μg/L	0.03	BDL	BDL	BDL	BDL	BDL	BDL					
iv.	Dieldrin	μg/L	0.03	BDL	BDL	BDL	BDL	BDL	BDL					
v.	Alpha HCH	μg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL					
vi.	Beta HCH	μg/L	0.04	BDL	BDL	BDL	BDL	BDL	BDL					
vii.	Butachlor	μg/L	125	BDL	BDL	BDL	BDL	BDL	BDL					
viii.	Chlorpyrifos	μg/L		BDL	BDL	BDL	BDL	BDL	BDL					

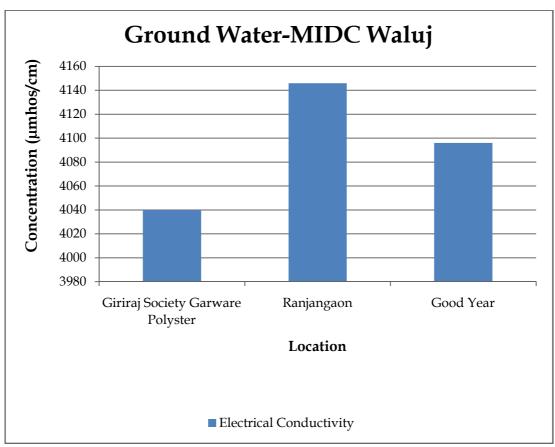

Nam	ne of Industry			Radico Distille ries	riictiir		ico	Chitega on Jailaxm i Carting Well	JPK School Paithan Road
Loca	ition			Ground Water	Well Water	Bore Well	Bore Well	Bore Well	Bore Well
	e of Sampling /02/2017]			24	24	24	25	25	27
Sr.	Parameters	Unit	Std. Limit			Re	sults		
ix.	Delta HCH	μg/L	0.04	BDL	BDL	BDL	BDL	BDL	BDL
x	p,p DDT	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xi.	o,p DDT	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xii.	p,p DDE	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xiii.	o,p DDE	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xiv.	p,p DDD	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xv.	o,p DDD	μg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
xvi.	Alpha Endosulfan	μg/L	0.4	BDL	BDL	BDL	BDL	BDL	BDL
xvii.	Beta Endosulfan	μg/L	0.4	BDL	BDL	BDL	BDL	BDL	BDL
xviii.	EndosulfanSulphat e	μg/L	0.4	BDL	BDL	BDL	BDL	BDL	BDL
xix.	Y HCH (Lindane)	μg/L	2.0	BDL	BDL	BDL	BDL	BDL	BDL
29.	Polynuclear aromatic hydrocarbons (PAH)	μg/L	0.0001	BDL	BDL	BDL	0.17	BDL	BDL
30.	Polychlorinated Biphenyls (PCB)	μg/L	0.0005	BDL	BDL	BDL	BDL	BDL	BDL

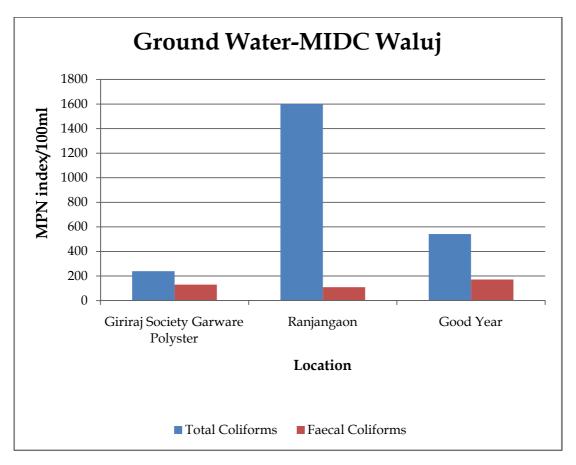

Nan	ne of Industry			Radico Distille ries	ructur		ico	Chitega on Jailaxm i Carting Well	JPK School Paithan Road
Loca	ation			Ground Water	Well Water	Bore Well	Bore Well	Bore Well	Bore Well
	e of Sampling /02/2017]			24	24	24	25	25	27
Sr.	Parameters	Unit	Std. Limit			Re	sults		
31.	Zinc (Zn)	mg/L	5.0	BDL	BDL	BDL	BDL	0.2	BDL
32.	Nickel (as Ni)	mg/L	0.02	BDL	BDL	BDL	BDL	BDL	BDL
33.	Copper (as Cu)	mg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
34.	Hexavalent Chromium (as Cr ⁶⁺)	mg/L	1	BDL	BDL	BDL	BDL	BDL	BDL
35.	Total Chromium (as Cr)	mg/L	0.05	BDL	BDL	BDL	BDL	BDL	BDL
36.	Total Arsenic (as As)	mg/L	0.01	BDL	BDL	BDL	BDL	BDL	BDL
37.	Lead (as Pb)	mg/L	0.01	0.15	0.3	0.07	0.09	0.07	0.08
38.	Cadmium (as Cd)	mg/L	0.003	BDL	BDL	BDL	BDL	BDL	BDL
39.	Mercury (as Hg)	mg/L	0.001	BDL	BDL	BDL	BDL	BDL	BDL
40.	Manganese (as Mn)	mg/L	0.1	BDL	BDL	BDL	BDL	0.14	BDL
41.	Iron (as Fe)	mg/L	0.3	0.54	0.21	0.19	0.27	0.37	0.24
42.	Vanadium (as V)	mg/L		BDL	BDL	BDL	BDL	BDL	BDL
43.	3. Selenium (as Se) mg/L		0.01	BDL	BDL	BDL	BDL	BDL	BDL

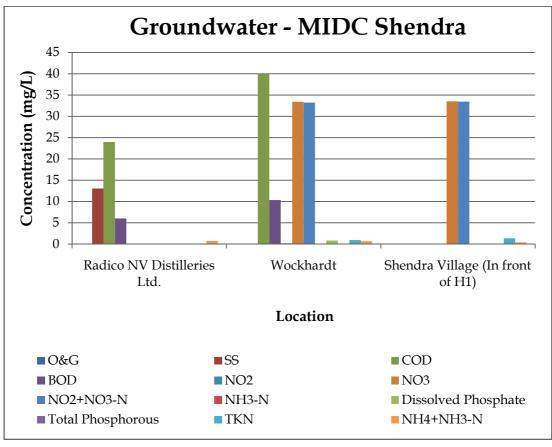

Name of Industry			Radico Distille ries	ructur	Shendr a Village	ico Allana Ltd.	Chitega on Jailaxm i Carting Well	JPK	
Loc	ation			Ground Water	Well Water	Bore Well	Bore Well	Bore Well	Bore Well
	e of Sampling /02/2017]			24	24	24	25	25	27
Sr.	Parameters	Unit	Std. Limit			Re	sults		
44.	Boron (as B)	mg/L		0.28	BDL	0.47	BDL	0.32	BDL

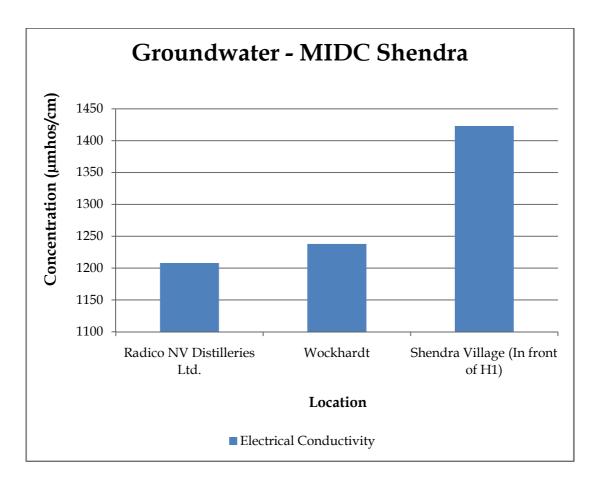

Graphs: Ground Water Analysis:

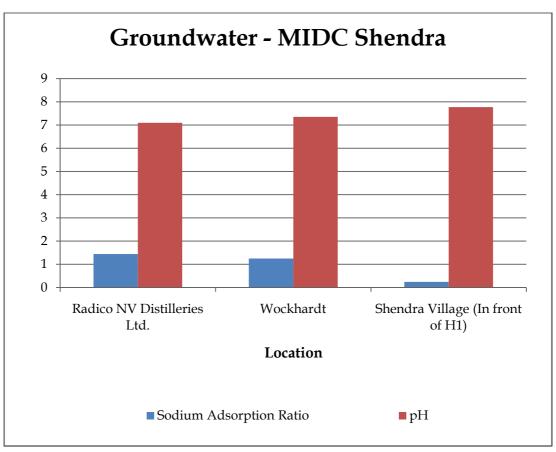


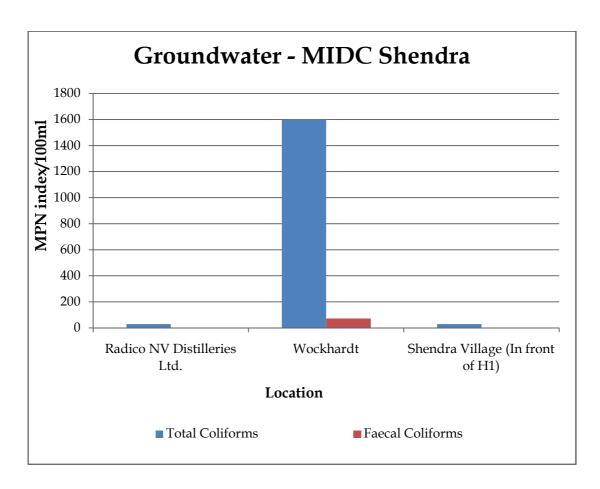


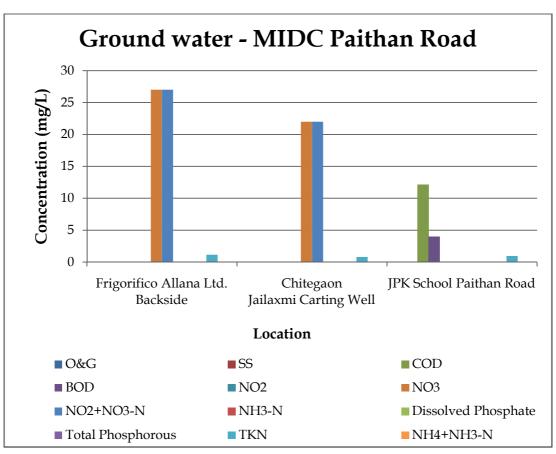


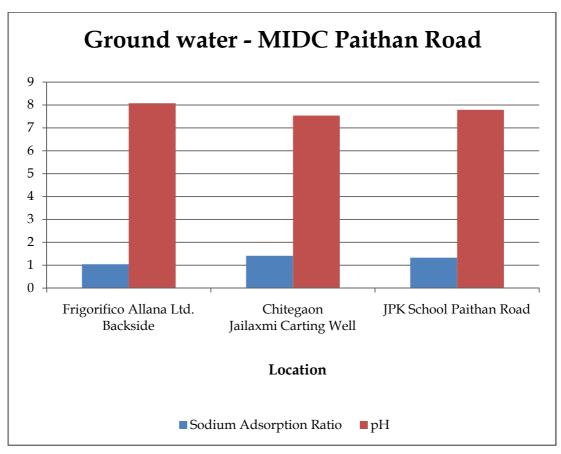


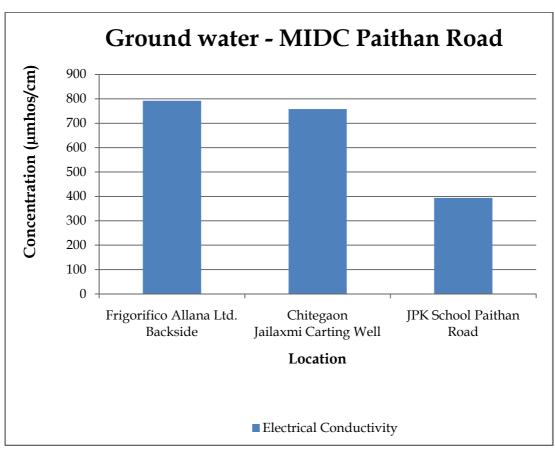


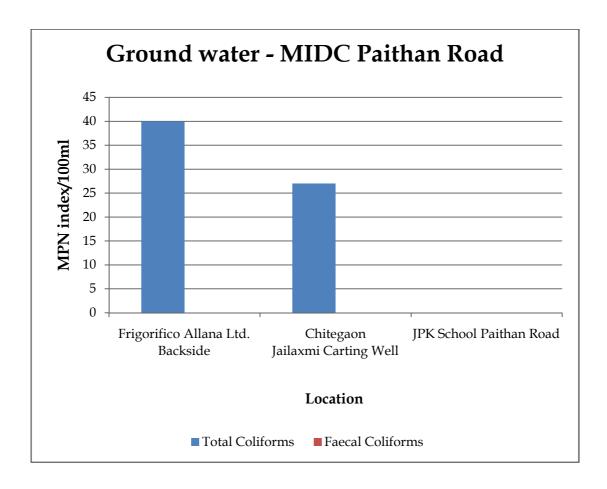












4 Summary and Conclusions:

The results are summarized and concluded based on various standards mentioned in the previous chapter.

4.1 Stack Emission Monitoring:

Stack monitoring was done at four MIDC clusters and they are:

- **a) Chikalthana MIDC** includes United Breweries, NRB Bearing Ltd. and Greaves Cotton Ltd. The status of stack parameters in these industrial clusters is discussed below:
- 1. **Particulate Matter:** At all the three locations of MIDC Chikalthana, all obtained values for particulate matter are below the standard limit of 150mg/Nm³. It is observed in the range from 52.5 to 118.4 mg/Nm³.
- 2. **Sulphur Dioxide and Oxides of Nitrogen:** All industries in this MIDC displayed different concentrations depending on fuel and load. Sulphur dioxide is found in the range of BDL (<5.0) to 135.6mg/Nm³ and oxides of nitrogen is observed in the range of 28.5 to 537mg/Nm³.
- 3. **Carbon Monoxide**: Concentration of Carbon monoxide is also observed in all the stack samples ranging from 326 to 637mg/L.
- 4. **Oxygen**: It is found in the range of 10.8 to 16.5%.
- 5. Flouride, H₂S, PAHs, Ammonia, Hydrochloride, benzene Volatile Organic Carbons and Acid Mist concentration at all the studied locations is detected below detection limits.
- **b) Waluj MIDC includes** Garware Polyester Ltd., Pfizer India Ltd. And SAB Miller I(I) Ltd. (Pals). The status of stack parameters in these industrial clusters is discussed below:
- 1. **Particulate Matter:** All obtained values for particulate matter are below the standard limit of 150mg/Nm³. It is observed in the range of 42.7 to 128.5mg/Nm³.
- 2. **Sulphur Dioxide and Oxides of Nitrogen:** Sulphur dioxide is found in the range of 1.2 to 112.mg/Nm³ and oxides of nitrogen is observed in the range of 23.1 to 151.2 mg/Nm³.
- 3. **Carbon Monoxide**: Concentrations of Carbon monoxide is also observed in all the stack samples ranging from 386 to 578mg/L.
- 4. **Oxygen**: It is found in the range of 10.2 to 14.3%.
- 5. Flouride, H₂S, PAHs, Ammonia, Hydrochloride, benzene and Volatile Organic Carbons concentration at all the studied locations is detected below detection limits.
- 6. **Acid Mist**: Concentration of Acid Mist is also observed at 2 locations of MIDC Waluj i.e. at IPCA 0.93mg/Nm³ and Bajaj Auto Ltd. 1.17mg/Nm³.
- **c) Shendra MIDC** includes Radico NV Distilleries Maharashtra Ltd., Metalyst Forgings Ltd., and Perkins India Pvt. Ltd. The status of stack parameters in these industrial clusters is discussed below:

- 1. **Particulate Matter:** All obtained values for particulate matter are below the standard limit of 150mg/Nm³. It is observed in the range of 41.9 to 128.8µg/Nm³.
- 2. **Sulphur Dioxide and Oxides of Nitrogen:** Sulphur dioxide is found in the range of <5 to 109.2 mg/Nm³ and oxides of nitrogen is observed in the range of <10 to 147.2mg/Nm³.
- 3. **Carbon Monoxide**: Concentrations of Carbon monoxide is also observed in all the stack samples ranging from 216 to 620mg/L.
- 4. **Oxygen**: It is found in the range of 11.3 to 15.6%.
- 5. Flouride, H₂S, PAHs, Ammonia, Hydrochloride, benzene and Volatile Organic Carbons concentration at all the studied locations is detected below detection limits.
- 6. **Acid Mist**: Concentration of Acid Mist is also observed at a location of MIDC Shendra i.e. at Harman Finochem Ltd. 1.32mg/Nm³.
- **d) Paithan MIDC include** Encore Laboratories, Pepsico India Ltd., and Videocon India Ltd. The status of stack parameters in these industrial clusters is discussed below:
- 1. **Particulate Matter:** All obtained values for particulate matter are below the standard limit of 150mg/Nm³. It is observed in the range of 36.7 to 132.6mg/Nm³.
- 2. **Sulphur Dioxide and Oxides of Nitrogen:** Sulphur dioxide is found in the range of <5 to 132.1 mg/Nm³ and Oxides of Nitrogen is observed in the range of 25.4 to 252.7mg/Nm³.
- 3. **Carbon Monoxide**: Concentrations of Carbon monoxide is also observed in all the stack samples ranging from 318 to 667mg/L.
- 4. **Oxygen**: It is found in the range of 10.9 to 12.8%.
- 5. Flouride, H₂S, PAHs, Ammonia, Hydrochloride, benzene, Volatile Organic Carbons and Acid Mist concentration at all the studied locations is detected below detection limits.

4.2 Ambient Air Quality:

Ambient Air Quality parameters are compared with NAAQ, 2009 by CPCB. Allthe four MIDCs covered with 3 locations each under study.

a) MIDC Chikalthana

MIDC Chikalthana is covered by studying 3 locations i. e. United Spirits Ltd., NRB Bearings Ltd. And Greaves Cotton Ltd.

- **1. Sulphur dioxide:** Sulphur dioxide at all the three locations of MIDC Chikalthana is observed very low in concentration and hence, below its standard limit of NAAQ, 2009. It is ranged between minimum of 14.8 to maximum of 18.8 μ g/m³.
- **2. Nitrogen Dioxide:** It ranges between minimum of $29.9\mu g/m^3$ at Greaves Cotton Ltd.and maximum $44.7\mu g/m^3$ at United Spirits Ltd. All the values are quiet below the standard limit of $80~\mu g/m^3$

- 3. Particulate Matter (PM10): All the values of Particulate Matter are found below the standard limit of NAAQ Standards, 2009. It is ranged from minimum of 57 μ g/m³ and maximum of 69 μ g/m³ at Chikalthana MIDC.
- **4. Particulate Matter (PM2.5):** Range between minimum of $26.4\mu g/m^3$ at NRB Bearings Ltd. and maximum of $31.5\mu g/m^3$ at United Spirits of Chikalthana MIDC. All the values are below the standard limit of $60\mu g/m^3$.
- **5. Ozone (O₃):** Well within the limit and it is detected in the range of 31.6 to $42.8\mu g/m^3$ at all the locations.
- **6. Lead (Pb):** It is observed below detection limit at all other locations ranging from 0.036 to $0.07\mu g/m^3$.
- **7. Carbon monoxide (CO):** It is also observed in very low concentrations and well below standard limit i.e. in the range of 0.507 to 0.636mg/m³
- **8. Nickel and Arsenic :** Being carcinogenic in nature high concentration of nickel and Arsenic may become fatal for all human beings. However, both the metals are observed below detection limit in the ambient air samples studied.
- **9. Ammonia:** It is also observed below detection limit in the ambient air samples studied
- **10. Benzene:** Benzene is categorized as a known carcinogen in CEPI guidelines. It is present in all the collected samples but below standard limit in the range of 1.70 to $2.18\mu g/m^3$
- **11. Benzo(a)Pyrene**: All values are observed <0.2 ng/m³ at all the locations.

b) MIDC Waluj

MIDC Waluj includes 3 locations namely: Garware polyster Ltd., Pfizer India Ltd. and SAB Miler Ltd.

- **1. Sulphur dioxide:** Sulphur dioxide at all the three locations of MIDC Waluj is observed very low in concentration and hence, below its standard limit of NAAQ, 2009. It is ranged between minimum of 16.34 to maximum of 18.5 μg/m³.
- 2. Nitrogen Dioxide: It ranges between minimum of $38.3\mu g/m^3$ at Pfizer India Ltd. and maximum $45.6\mu g/m^3$ at Garware Polysters Ltd. All the values are quiet below the standard limit of $80~\mu g/m^3$.
- **3. Particulate Matter (PM10):** All the values of Particulate Matter are found below the standard limit of NAAQ Standards, 2009. It is ranged from minimum of 58.0 μg/m³ at SAB Miler Ltd and maximum of 61.0μg/m³ at Garware Polysters Ltd.
- **4. Particulate Matter (PM2.5):** Range between minimum of 24.1μg/m³ at Pfizer India Ltd. and maximum of 29.5μg/m³ at Garware Polysters Ltd. All the values are below the standard limit of 60μg/m³.
- **5. Ozone (O₃):** Well within the limit and it is detected in the range of 44.7 to $48.6\mu g/m^3$ at all the locations.
- **6. Lead (Pb):** It is observed below detection limit at all other locations ranging from 0.02 to $0.04\mu g/m^3$.

- **7. Carbon monoxide (CO):** It is also observed in very low concentrations and well below standard limit i.e. in the range of 0.612 to 0.712mg/m³.
- **8. Nickel and Arsenic :** Being carcinogenic in nature high concentration of nickel and Arsenic may become fatal for all human beings. However, both the metals are observed below detection limit in the ambient air samples studied.
- **9. Ammonia:** It is also observed below detection limit in the ambient air samples studied
- **10. Benzene:** Benzene is categorized as a known carcinogen in CEPI guidelines. It is present in all the collected samples but below standard limit in the range of 1.85 to $2.24\mu g/m^3$
- **11. Benzo(a)Pyrene**: All values are observed <0.2 ng/m³ at all the locations.

c) MIDC Shendra

MIDC Shendra includes 3 locations namely: Radico NV Distilleries Maharshtra Ltd., Metalyst Forgings Ltd., and Perkins Pvt. Ltd.

- **1. Sulphur dioxide:** Sulphur dioxide at all the three locations of MIDC Shendra is observed very low in concentration and hence, below its standard limit of NAAQ, 2009. It is ranged between minimum of 15.7 to maximum of 17.5 μ g/m³.
- **2. Nitrogen Dioxide:** It ranges between minimum of $22.5\mu g/m^3$ at Perkins Ltd. and maximum $33.8\mu g/m^3$ at Radico Distilleries Ltd. All the values are quiet below the standard limit of $80~\mu g/m^3$
- 3. Particulate Matter (PM10): All the values of Particulate Matter are found above the standard limit of NAAQ Standards, 2009. It is ranged from minimum of 51 μ g/m³ at Metalysts Ltd. and maximum of 60 μ g/m³ at Radico Distilleries Ltd.
- **4. Particulate Matter (PM2.5):** Range between minimum of $22.6\mu g/m^3$ at Metalysts Ltd. and maximum of $28.1\mu g/m^3$ at Radico Distilleries Ltd. All the values are below the standard limit.
- **5. Ozone (O₃):** Well within the limit and it is detected in the range of 26.1 to $39.4\mu g/m^3$ at all the locations.
- **6. Lead (Pb):** It is observed below detection limit at all other locations ranging from below detection limit at Radico Distilleries to 0.08µg/m³ at Metalysts Ltd.
- **7. Carbon monoxide (CO):** It is also observed in very low concentrations and well below standard limit i.e. in the range of 0.510 to 0.629mg/m³.
- **8. Nickel and Arsenic :** Being carcinogenic in nature high concentration of nickel and Arsenic may become fatal for all human beings. However, both the metals are observed below detection limit in the ambient air samples studied.
- **9. Ammonia:** It is also observed below detection limit in the ambient air samples studied

- **10. Benzene:** Benzene is categorized as a known carcinogen in CEPI guidelines. It is present in all the collected samples but below standard limit in the range of 1.12 to $1.85 \mu g/m^3$.
- **11. Benzo(a)Pyrene :** All values are observed <0.2 ng/m³ at all the locations.

d) MIDC Paithan Road

MIDC Paithan Road includes 3 locations namely: Encore Laboratories, Pepsico India Ltd., and Videocon India Ltd.

- **1. Sulphur dioxide:** Sulphur dioxide at all the three locations of MIDC Paithan is observed very low in concentration and hence, below its standard limit of NAAQ, 2009. It is ranged between minimum of 13.8 to maximum of 17.3 μ g/m³.
- **2. Nitrogen Dioxide:** It ranges between minimum of $28.6\mu g/m^3$ at videocon Ltd. and maximum $32.9\mu g/m^3$ at Pepsico Ltd. All the values are quiet below the standard limit of $80~\mu g/m^3$
- **3. Particulate Matter (PM10):** All the values of Particulate Matter are found above the standard limit of NAAQ Standards, 2009. It is ranged from minimum of $58.5 \, \mu g/m^3$ at Pepsico Ltd and maximum of $60.0 \, \mu g/m^3$ at Encore Laboratories.
- **4. Particulate Matter (PM2.5):** Range between minimum of 25.1μg/m³ at Videocon Ltd. and maximum of 28.2μg/m³ at Pepsico Ltd. All the values are below the standard limit.
- **5. Ozone (O₃):** Well within the limit and it is detected in the range of 38.4 to $47.7\mu g/m^3$ at all the locations.
- **6. Lead (Pb):** It is observed below detection limit at all other locations ranging from below detection limit at Pepsico Ltd. to $0.07\mu g/m^3$ at videocon Ltd.
- **7. Carbon monoxide (CO):** It is also observed in very low concentrations and well below standard limit i.e. in the range of 0.609 to 0.653mg/m³.
- **8. Nickel and Arsenic :** Being carcinogenic in nature high concentration of nickel and Arsenic may become fatal for all human beings. However, both the metals are observed below detection limit in the ambient air samples studied.
- **9. Ammonia:** It is also observed below detection limit in the ambient air samples studied
- **10.Benzene:** Benzene is categorized as a known carcinogen in CEPI guidelines. It is present in all the collected samples but below standard limit in the range of 1.78 to $1.99 \mu g/m^3$.
- **11. Benzo(a)Pyrene :** All values are observed <0.2 ng/m³ at all the locations.

4.3 Water and Waste Water Quality:

Waste water parameters are compared with general water standards by CPCB. All the ground water parameters are compared with ISO 10500:2012 standards. Parameters which are not included in ISO 10500:2012 are compared with WHO standards like BOD (6mg/L) and COD (10mg/L).

a) MIDC Chikalthana:

Waste Water:

Samples of outlet effluent from six different Industries were drawn from their Effluent Treatment Plants. The names of Industries are i) NRB Bearing Ltd. (ii) Wockhardt Ltd. L-1 (iii) M/s Lupin Ltd. (iv) Radiant Indus Chem Pvt. Ltd. (v) Exedy India Ltd. (vi) Allied Blenders & Distillers Ltd.

- Out of all six industries, in case of Lupin Ltd., Exedy India Ltd. and Allied Blenders & Distillers Ltd. BOD is observed above standard limit. The ETPs of these three industries certainly need upgradation so as to achieve the norms stipulated. However, COD is observed within the limits at all the locations.
- Except NRB bearing, water samples of all other locations are found with high nitrate concentration and above standard limit too. However, NRB Bearing and Wockhardt Ltd. water samples exceed the limit of Total Coliforms.

Ground water

Three samples of Ground water from Nr. Compost yard of United Spirits Ltd, Naregaon and MHADA Colony were taken for analysis.

If the results are compared with IS 10500:2012 drinking water standard almost all parameters meet the standard, except Nitrate, Total Kjeldahl Nitrogen and Lead.

b) MIDC Waluj:

Waste water

MIDC at Waluj has maximum concentration of industries in Aurangabad District. There are more than 10 industries in the area where the total effluent generation is about 11 MLD. Large and medium scale industries are provided with ETP having primary and secondary treatment. These industries are also provided with septic tanks or STP for domestic waste water. Most of the units are bulk drugs and electroplating generating carcinogenic wastes.

In this MIDC area, 6 ETP samples were collected and analyzed for general water parameters, metals, phenols, cyanides, surface active agents.

ETP Outlet sample were taken from:

- 1) Bajaj Auto Ltd.
- 2) Carlsberg Ltd.
- 3) Wockhardt Biotech
- 4) IPCA (Paschim Chem)
- 5) Sab Miller I (I) Ltd. (Pals).
- 6) Endurance Technology K-120

All parameters are observed within the permissible limits.

Ground Water

Three water samples are taken from Giriraj Society Garware Polyster, Ranjangao and Good Year Ltd. industries for the analysis of ground water.

All the water samples are observed to exceed the standard limits for nitrate and total Kjeldahl nitrogen. All other parameters are found within the permissible range.

a) MIDC Shendra:

Waste Water

In this, 6 ETP outlet samples and 1 lagoon sample was collected and analyzed for general water parameters.

Samples were taken from following industries:

- 1) Skoda Auto India Pvt. Ltd.
- 2) Glenmark Pharmaceutical Ltd.
- 3) Wockhardt Infrastructure Development Ltd.
- 4) Harman Finochem Ltd.
- 5) Perkins India Pvt. Ltd.
- 6) NRB Industrial Bearings Ltd.

Water samples of both Skoda Auto India Pvt. Ltd. and Wockhardt Infrastructure Development Ltd. exceed the limit of Total Coliform.

Glenmark Pharmaceutical Ltd., Wockhardt Infrastructure Development Ltd. and Harman Finochem Ltd. water samples exceed nitrate concentration.

Ground water

Ground water analysis at MIDC Shendra comprised of water samples from 3 industries namely: Radico Distilleries, Wockhardt Infrastructure Development Ltd. and Shendra Village.

- Here, COD concentration of Radico Distilleries and Wockhardt Infrastructure Development Ltd. is observed above the standard limit.
- However, nitrate concentration is observed beyond standard limits in Wockhardt Infrastructure Development Ltd. and Shendra Village.

b) MIDC Paithan Road

Waste Water

From Paithan Road industrial area, waste water samples were collected from 6 industries namely:

- 1) Frogorifico Allan Ltd.
- 2) Encore Laboratories
- 3) Pepsico India Ltd.
- 4) Badve Engineering
- 5) Videocon India Ltd.
- 6) Ajantha Pharma

Out of all the collected samples, 2 samples are found to exceed the standard limit of BOD and Nitrate. These are Frogorifico Allan Ltd. (39mg/L) and Encore Laboratories

(68.4mg/L). Total coliforms are also observed beyond limits at 3 locations namely: Frogorifico Allan Ltd., Encore Laboratories and Pepsico India Ltd.

Ground Water

At this MIDC, 3 water samples are collected from Frigorifico Allana Ltd. Backside, Chitegaon Jailaxmi Carting Well and JPK School Paithan Road. Water sample of JPK School has exceeded the COD concentration. However, TKN is observed above limits.

5. CEPI Score:

Comprehensive Environmental Pollution Index (CEPI) is intended to act as early warning tool which helps in categorization of industrial clusters/areas in terms of priority of needing attention. CPCB had evolved certain methodology to calculate CEPI, in which a score has been fixed for different environmental components based on the level of pollution. The scoring system involves an algorithm that takes into account the basic selection criteria. This approach is based on the basic hazard assessment logic that can be summarized as below.

Hazard = pollutant source, pathways, and receptor

CPCB has calculated CEPI for the identified critically polluted industrial clusters in 2009. It is calculated separately for air, water, and land. The basic framework and scoring system of the CEPI – based on three factors namely pollutant, pathway, and receptor – has been described below.

Based on Sub-index Score (score of individual environmental component like air, water etc.):

• Score more than 63: A Critical Level of Pollution in the respective level of

environmental component

• **Score between 51-63:** Severe to critical level of pollution with reference to

respective environmental component

Cut-off Score

• Score 50: Severely Polluted Industrial Clusters/areas

• **Score 60:** Critically Polluted Industrial Clusters/areas

Based on Aggregated CEPI Score (score includes sub-index score of all individual environmental components together):

• **Aggregated CEPI score >70:** Critically polluted areas

• Aggregated CEPI score between 60-70 : Severely polluted areas

Since the inception of the programme, MPCB has also formulated Action Plans to mitigate the environmental pollution problems for each of the 8 Critically Polluted Areas (CPAs) in Maharashtra. Based on available information, parameters selected and monitored in continuation with this, CEPI has been calculated and Short Term Action Plan (STAP) as well as Long Term Action Plan (LTAP) was prepared in 2010.

Subsequently NAAQS 2009 came in force. List of parameters to be considered increased and expanded including more critical and hazardous pollutants like benzene, BaP, Metals, etc. existing in the environment. There was revision of standards (limiting values) as well. In this present report of 2016 prepared by MPCB, CEPI is calculated considering all these revised standards' limiting values, list of parameters and complete scope of monitoring.

Below given Table shows aggregated CEPI of present report in comparison with the CEPI Score 2013 and CPCB report (2009).

- 1. CEPI score by CPCB in 2009
- 2. CEPI score 2013

(considering all revised standards, scope and limiting values of 2013)

- 3. CEPI score MPCB 2016, (considering all parameters)
- 4. CEPI score MPCB 2017, this report (considering all parameters)

The result shows that CEPI score of present report is 64.88. This is higher than the CEPI score of 2016 studies (56.45), but lower than the studies done by CPCB 2009 (77.43) and CEPI score 2013 (76.66).

The higher CEPI score in the present study as compared to the 2016 score is may be due to the time period when sampling was done. In 2016, sampling was carried out in monsoon season (July month) and this time it was done in post monsoon (February month). It is proved that in monsoon season, pollutants load gets decreased in air as well as in water bodies due to dilution and in post monsoon season, it again gets increased or comes to normal. This has resulted in lower CEPI score in 2016 and again increase in 2017 score.

However, it should also be noticed over here that MPCB's efforts through the formulation of action plans decreased the overall concentration of pollutants in all aspects i.e. air, land and water in Aurangabad area in past three years. This has also resulted in decreased score of CEPI now.

5.1. Comparison of CEPI Scores:

Results show that present CEPI score (64.88) of Aurangabad considering all revised standards and parameters has decreased by almost 12 points if compared with the CEPI Score of 2013 (76.66) report. This clearly indicates the successful application of STAP and LTAP of MPCB which resulted in a cleaner environment of Aurangabad in past three years.

Detailed results of Air, Water and Land are given below:

Air

	A1	A2	A	B1	B2	В3	В	C1	C2	С3	С	D	СЕРІ
Present Report 2017	1	5	5	6	3	3	12	3	1	5	8	10	35
CEPI Score 2016	2	5	10	6	3	3	12	3	3	5	14	10	46
CEPI score 2013 (considering all revised standards, scope and limiting values of 2013)	6	5	30	6	3	3	12	3	3	5	14	10	66
CPCB Report 2009	5.75	5	28.75	6	3	3	12	3	3	5	14	10	64.75

Water

water													
	A1	A2	A	В1	B2	В3	В	C1	C2	С3	С	D	CEPI
Present Report 2017	4	5	20	8	3	3	14	3	5	5	20	5	59
CEPI Score 2016	1	5	10	8	3	3	14	3	5	5	20	5	44
CEPI score 2013 (considering all revised standards, scope and limiting values of 2013)	4	5	20	8	3	3	14	3	5	5	20	3	57
CPCB Report 2009	5.5	5	27.5	8	3	3	14	3	3	5	14	5	60.5

Land

	A1	A2	A	В1	B2	В3	В	C1	C2	С3	С	D	CEPI
Present Report 2017	2	5	10	6	3	3	12	3	3	5	14	5	41
CEPI Score 2016	1	5	5	8	3	3	14	3	3	5	20	5	44
CEPI score 2013 (considering all revised standards, scope and limiting values of 2013)	4	5	20	6	3	3	12	3	5	5	20	3	55
CPCB Report 2009	5.5	5	27.5	7	3	3	13	3	3	5	14	5	59.5

Aggregated CEPI

	Air Index	Air Index Water Index La		СЕРІ	
Present Report 2017	35	59	41	64.88	
CEPI Score 2016	46	44	44	56.45	
CEPI score 2013 (considering all revised standards, scope and limiting values of 2013)	66	57	57	76.66	
CPCB Report 2009	64.75	60.5	59.5	77.43	

6. Conclusions

The Present study has been an attempt to check the characteristics and status of environment among the different industrial clusters of Aurangabad city. Being an industrial hub, the city was sampled among the industrial clusters fall into 4 different MIDCs. The result shows that the concentration of pollutants in air, ground water and surface water is lowered down at the Industrial clusters as compared to past studies, as most of the results are observed below their standards with an exception of one or two parameters.

Air sampling parameters of all the samples are observed within the permissible limits of NAAO standards 2009.

All the waste water parameters are also observed below their standards except few samples, in which BOD and Nitrate are found beyond standard limit.

Similarly, ground water samples are also observed within the permissible limits.

Moreover, the lower value (64.88) of Comprehensive Environmental Pollution Index (CEPI) in the present study as compared to past few years study also reveals the fact that the environmental pollution in this city is substantially decreased over the period of times. To achieve this target, improvement in conventional practice and procedures adopted by the industries coupled with initiatives taken by Maharashtra Pollution Control Board played a major role. Although, a decrease in environmental pollution is observed, but still the city comes under severely polluted category, according to CEPI. Hence, there is lot of scope to improve the environmental quality of the city, for which continuous efforts, strategies, planning and actions are required.

	A1	A2	Α	В1	В2	В3	В	C1	C2	С3	С	D	CEPI
Air Index	1	5	5	6	3	3	12	3	1	5	8	10	35
Water Index	4	5	20	8	3	3	14	3	5	5	20	5	59
Land Index	2	5	10	6	3	3	12	3	3	5	14	5	41
Aggregated CEPI											64.88		

7. Efforts Taken For the Abatement of Pollution

The regional office of Maharashtra pollution control board has taken various initiatives in reducing the CEPI Score of 76.66 of 2013 to 64.88 of 2017. Below mentioned are some of the efforts:

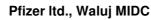
- All the large scale and medium scale industries have provided primary and secondary treatment facility for
- treatment of the trade effluent generated. Board has persuaded large industries to adopt cleaner technologies. Following are the industries who have adopted cleaner technologies: Chrome recovery plant has been installed and operated by M/s. Metalman

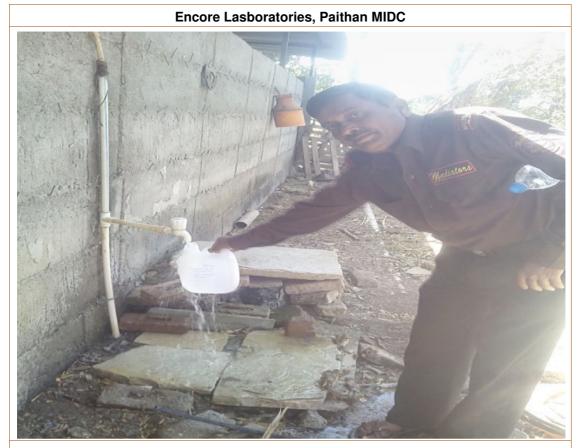
Industries. Metal recover plant has been provided by M/s. Endurance group of Companies and M/s. Durvoalve industry. RO system is being installed and operated by M/s. Orchid Chemicals, and M/s. Radico distillery. Multi effect evaporators are being used by M/s. Radico distillery and M/s. Pranav Agrotech distillery. Raamri, M/s Skol brewery and M/s. Foster (I) Ltd. have also provided RO system and are generating biogas from there UASB plant. M/s. Canpac industries have provided central fume extraction system and these fumes are treated by thermal oxidation system.

- Provision of tertiary treatment for industrial waste water at MIDC Waluj and provision of STP near Kham river for sale of treated water to the industries is envisaged as a project through Private Public Participation.
- Online monitoring system provided at CETP Waluj for pH and TOC It is planned to link it to MPCB and CPCB websites.
- Major industries like M/s. Orchid Chemicals and other large bulk drug industries have provided solvent recovery systems. This has lead to substantial reduction in the VOC emissions. The Board has made it mandatory for industries using coal / bagasse / biomass / briquettes as fuel to provide dust collectors and wet scrubbers to limit emissions.
- Vision 2020 is being formulated for Aurangabad city. Major concerns like sewage collection and treatment facility, municipal waste collection and treatment facility will be stressed upon. MPC Board along with the industrial associations and CETP association along with MIDC will work in co-ordination for efficient implementation of the action plan.

8. Photographs

Wockhardt Itd L-1, Chikalthana MIDC




Wockhardt L-1, Chikalthana MIDC

Sab Miller (Pals), Waluj MIDC

Videocon Itd, Paithan MIDC

Garware Polyster, Waluj MIDC

NRB, Shendra MIDC

nited Spirit, Chikalthana MIDC

9. References

- 1. Criteria for Comprehensive Environmental Assessment of Industrial Clusters, December 2009, CPCB, EIAS/4/2009-10
- 2. Comprehensive Environmental Assessment of Industrial Clusters, December 2009, CPCB, EIAS/5/2009-10
- 3. Action Plan for Industrial Cluster: Chandrapur, November 2010, MPCB
- 4. Action Plan for Industrial Cluster: Dombivali, November 2010, MPCB
- 5. Action Plan for Industrial Cluster: Aurangabad, November 2010, MPCB
- 6. Action Plan for Industrial Cluster: NaviMumbai, November 2010, MPCB
- 7. Action Plan for Industrial Cluster: Tarapur, November 2010, MPCB
- 8. Standard Methods for the Examination of Water and Waste Water, American Public Health Association, 22^{nd} Edition, 2012.
- 9. IS 3025 (various parts)
- 10. www.mpcb.gov.in
- 11. www.cpcb.gov.in

10. Annexures

Annexure I: Stack Emission Sampling and Analysis Methodology

Sr.	Parameters	Method References	Techniques	Detection Limit
1.	Acid Mist (as Sulphuric Acid)	US EPA Method no.m-8	Barium thorine titration Method	0.6 mg/Nm ³
2.	Ammonia	IS 11255 (Part 6):1999, Reaffirmed 2003	Titration/Nessler Reagent / Spectrophotometric Method	1 mg/Nm ³
3.	Carbon Monoxide	USEPA Method 10B	GC-FID Method	0.2 mg/Nm ³
4.	Chlorine	US EPA Method 26 for sampling	Titrimetric	0.001 mg/Nm ³
5.	Fluoride (Gaseous)	US EPA Method 13 A	SPADNS Zirconium Lake Spectrophotometric Method	0.025 mg/Nm ³
6.	Fluoride (Particulate)	US EPA Method 13 A	SPADNS Zirconium Lake Spectrophotometric Method	0.005 mg/Nm ³
7.	Hydrogen Chloride	US EPA Method 26 for sampling	Titrimetric	0.25 mg/Nm ³
8.	Hydrogen Sulphide	IS 11255 (Part 4):1985	Titrimetric	1 mg/Nm ³
9.	Oxides of Nitrogen	IS 11255 (Part 7): 2005	PDSA Colorimetric Method	10 mg/Nm ³
10.	Oxygen	IS 13270 : 1992	ORSAT Apparatus	1 %
11.	Poly Aromatic Hydrocarbons (Particulate)	IS 5182 (Part 12): 2004, Reaffirmed 2009 CPCB Guidelines, May 2011, Page No.39	GC-FID Method	0.25 mg/Nm ³
12.	Suspended Particulate Matter	IS 11255 (Part 1):1985, Reaffirmed 2003	Gravimetric Method	10 mg/Nm ³
13.	Sulphur Dioxide	IS 11255 (Part 2): 1985, Reaffirmed	Titrimetric IPA thorine Method	5.0mg/Nm ³ 0.02kg/day
14.	BTX (Benzene, Toluene, Xylene)	2003 NIOSH (NMAM) 1501	Adsorption and Desorption followed by GC-FID analysis	0.001 mg/Nm ³
15.	VOC (Volatile Organic Compounds)	NIOSH (NMAM) 1501 for sampling	Adsorption and Desorption followed by GC-FID or GC/MS analysis	-

Sr.	Parameters	Method References	Techniques	Detection Limit
	Methyl Isobutyl			0.001 mg/Nm ³
i	Ketone	-	-	0.001 mg/mm
ii	Benzene	-	-	0.001 mg/Nm ³
iii	Toluene	-	-	0.001 mg/Nm ³
iv	Xylene	-	-	0.001 mg/Nm ³
V	Ethyl Benzene	-	-	0.001 mg/Nm ³
vi	Ethyl Acetate	-	-	0.001 mg/Nm ³

Annexure II: Ambient Air Sampling and Analysis Methodology

Sr.	Parameters	Method References	Techniques	Detection Limit
1.	Sulphur Dioxide (SO ₂)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.1	Improved West &Gaeke Method	4 μg/m³
2.	Nitrogen Dioxide (NO ₂)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.7	Modified Jacob &Hochheiser Method	3 μg/m³
3.	Particulate Matter (size less than 10 μm) or PM ₁₀	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No.11	Gravimetric Method	2 μg/m³
4.	Particulate Matter (size less than 2.5 µm) or PM _{2.5}	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 15	Gravimetric Method	0.4 μg/m ³
5.	Ozone (O ₃)	APHA, Method No. 820, Page no. 836	Chemical Method	19.6 μg/m ³
6.	Lead (Pb)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	0.02 μg/m³
7.	Carbon Monoxide (CO)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume II, May 2011, Page No. 16	Non Dispersive Infra Red (NDIR) spectroscopy	0.05 mg/m ³
8.	Ammonia (NH ₃)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 35	Indophenol Blue Method	4.0μg/m ³
9.	Benzene (C ₆ H ₆)	IS 5182 (Part 11):2006	Adsorption and Desorption followed by GC- FID analysis	1.0 μg/m ³

Sr.	Parameters	Method References	Techniques	Detection Limit
10.	Benzo (a) Pyrene (BaP) – particulate phase only,	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 39	Solvent extraction followed by GC-FID analysis	0.2 ng/m ³
11.	Arsenic (As)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	0.3ng/m ³
12.	Nickel (Ni)	CPCB Guidelines for the Measurement of Ambient Air Pollutants, Volume I, May 2011, Page No. 47	AAS Method	3.0ng/m ³

Annexure III: Water/Wastewater Sampling and Analysis Methodology

Sr.	. Parameters Methods References		Techniques	Detection Limit
	Sampling Procedure for Chemical Parameters	IS 3025 (Part 1): 1987, Reaffirmed 1998, Amds.1& APHA, 22 nd Ed., 2012, 1060 B, 1-39	-	-
2.	Sampling Procedure for Microbiological Parameters	APHA, 22nd Ed., 2012,1060 B, 1-39, 9040, 9-17, and 9060B, 9-35	-	-
3.	Temperature	APHA, 22 nd Ed., 2012, 2550-B, 2-69	By Thermometer	-
ŀ.	Colour	APHA, 22 nd Ed., 2012, 2120-B, 2-26	Visible Comparison Method	1 Hazen Unit
5.	Odour	IS 3025 (Part 5): 1983, Reaffirmed 2006	Qualitative Method	-
5.	рН	APHA, 22 nd Ed., 2012, 4500-H ⁺ - B, 4-92	By pH Meter	1
7.	Oil & Grease	APHA, 22 nd Ed., 2012, 5520-B, 5-40	Liquid -liquid Partition- Gravimetric Method	1.0 mg/L
3.	Suspended Solids	IS 3025(Part 17): 1984, Reaffirmed 2006,Amds.1	Filtration /Gravimetric Method	5.0 mg/L
).	Dissolved Oxygen	IS 3025(Part 38): 1989, Reaffirmed 2009	Iodometric Method-Azide modification	0.05 mg/L
0.	Chemical Oxygen Demand	APHA,22 nd Ed., 2012 , Open Reflux 5220-B, 5-17 Method		5.0 mg/L
1.	Biochemical Oxygen Demand	IS 3025(Part 44): 1993,Reaffirmed	Iodometric Method	5.0 mg/L

Sr.	Parameters	Methods References	Techniques	Detection Limit
		2009,Amds.1		
2.	Electrical Conductivity	APHA, 22 nd Ed., 2012, 2510- B, 2-54	By Conductivity Meter	0.1 μmho/cm
3.	Nitrite-Nitrogen	APHA, 22 nd Ed., 2012, 4500-NO ₂ -B, 4-120	Colorimetric Method	0.006 mg/L
4.	Nitrate-Nitrogen	APHA,22 nd Ed.,2012 ,4500-NO ₃ ,B-4-122	UV Spectrophotomete r Screening Method	0.2 mg/L
5.	(NO ₂ + NO ₃)- Nitrogen	APHA, 22 nd Ed., 2012, 4500-NO ₂ -B, 4-120 APHA,22 nd Ed.,2012,4500- NO ₃ ,B-4-122	Colorimetric Method UV Spectrophotomete r Screening Method	0.2 mg/L
6.	Free Ammonia	APHA, 22 nd Ed., 2012, 4500 NH ₃ , F, 4 -115	Colorimetric Method	0.006 mg/L
7.	Total Residual Chlorine	IS 3025 (Part 26) :1986 , Reaffirmed 2009, Ed. 2.1(2004-02)	lodometric Method	0.1 mg/L
8.	Cyanide (CN)	APHA, 22 nd Ed., 2012 ,4500-CN, C & E, 4-41 & 4-43	Colorimetric Method	0.001 mg/L
9.	Fluoride (F)	APHA, 22 nd Ed., 2012, 4500-F ⁻ , D, 4-87	SPADNS Method	0.05 mg/L
20.	Sulphide (S ²⁻)	APHA, 22 nd Ed., 2012, 4500 –S ² , C-4-175, F-4- 178	lodometricMethod	0.08 mg/L
21.	Dissolved Phosphate (P)	APHA,22 nd Ed., 2012 , 4500 P,E, 4-155	Ascorbic Acid Method	0.03 mg/L
22.	Sodium Absorption Ratio	IS11624 :1986, Reaffirmed 2006	By Calculation	0.3
23.	Total Phosphorous (P)	APHA,22 nd Ed., 2012, 4500 P,E, 4-155	Ascorbic Acid Method	0.03 mg/L
24.	Total Kjeldahl Nitrogen	APHA, 22 nd Ed., 2012, 4500 NH ₃ , B & C, 4 -110, 4-112	Titrimetric Method	0.1 mg/L
25.	Total Ammonia (NH ₄ +NH ₃)- Nitrogen	APHA,22 ^d Ed., 2012, 4500 NH ₃ , F, 4-115	Colorimetric Method	0.001 mg/L
26.	Phenols (C ₆ H ₅ OH)	APHA,22 nd Ed., 2012, 5530- B & C, 5-44 & 5-47	Chloroform Extraction Method	0.001 mg/L
27.	Surface Active Agents	APHA,22 nd Ed., 2012, 5540-B & C,5-50	Methylene Blue Extraction Method	0.1 mg/L
28.	Organo Chlorine Pesticides	APHA, 22 nd Ed., 2012,6410B,6-74	GC MS-MS Method	0.01 μg/L

Sr.	Parameters	Methods References	Techniques	Detection Limit
29.	Polynuclear aromatic hydrocarbons (PAH)	APHA, 22 nd Ed., GC N		0.01 μg/L
30.	Polychlorinated Biphenyls (PCB)	APHA, 22 nd Ed., 2012,6410B,6-74	GC MS-MS Method	0.01 μg/L
31.	Zinc (Zn)	IS 3025(Part 2): 2004	ICP Method	0.1 mg/L
32.	Nickel (Ni)	IS 3025(Part 2): 2004	ICP Method	0.05 mg/L
33.	Copper (Cu)	IS 3025(Part 2): 2004	ICP Method	0.03 mg/L
34.	Hexavalent Chromium (Cr ⁶⁺)	APHA, 22 nd Ed., 2012,3500-Cr,B,3-69	Colorimetric Method	0.02 mg/L
35.	Total Chromium (Cr)	IS 3025(Part 2): 2004	ICP Method	0.02 mg/L
36.	Total Arsenic (As)	IS 3025(Part 2): 2004	ICP Method	0.005 mg/L
37.	Lead (Pb)	IS 3025(Part 2): 2004	ICP Method	0.008 mg/L
38.	Cadmium (Cd)	IS 3025(Part 2): 2004	ICP Method	0.002 mg/L
39.	Mercury (Hg)	IS 3025(Part 2): 2004	ICP Method	0.0008 mg/L
ł0.	Manganese (Mn)	IS 3025(Part 2): 2004	ICP Method	0.02 mg/L
l 1.	Iron (Fe)	IS 3025(Part 2): 2004	ICP Method	0.06 mg/L
12.	Vanadium (V)	IS 3025(Part 2): 2004	ICP Method	0.05 mg/L
I 3.	Selenium (Se)	IS 3025(Part 2): 2004	ICP Method	0.005 mg/L
14.	Boron (B)	IS 3025(Part 2): 2004	ICP Method	0.1 mg/L
I 5.	Total Coliforms APHA, 22 nd Ed., 2012,9221-B, 9-66		Multiple tube fermentation technique (MPN/100ml)	1.1 MPN/100ml
l 6.	Faecal Coliforms	APHA, 22 nd Ed., 2012,9221-E, 9-74	Multiple tube fermentation technique (MPN/100ml)	1.1 MPN/100ml
17.	Bioassay (Zebra Fish) Test	IS 6582, 1971, Reaffirmed 1987	Static Technique	-

Annexure IV: National Ambient Air Quality Standards, 2009

EXTRAORDINARY PART III-Section 4 PUBLISHED BY AUTHORITY NEW DELHI, WEDNESDAY, NOBEMBER 18, 2009 No. B-29016/20/90/PCI-I

National Ambient Air Quality Standards: Central Pollution Control Board

In exercise of the powers conferred by Sub-section (2) (h) of section 16 of the Air (Prevntion and Control of Pollution) Act, 1981 (Act No.14 of 1981), and in suppression of the Notification No(s). S.O.384(E), dated 11th April, 1994 and S.O.935(E), dated 14th October, 1998, the Central Pollution Control Board hereby notify the National Ambient Air Quality Standards with immediate effect, namely:

Sr.	Pollutant		Time	Concentration in Ambient Air			
No.			Weighted Average	Industrial, Residential, Rural and Other Areas	Ecologically Sensitive Areas (Notified by Central Government)	Methods of Measurement	
(1)	(2)		(3)	(4)	(5)	(6)	
1	Sulphur Dioxide (SO ₂)	$\mu g/m^3$	Annual *	50	20	 Improved West and Gaeke 	
_	Sulphu Blokide (802)	µg/m	24 hours **	80	80	Ultraviolet fluorescence	
2	Nitrogen Dioxide (NO ₂)	$\mu g/m^3$	Annual *	40	30	 Modified Jacob & Hochheiser (Na-Arsenite) 	
	3		24 hours **	80	80	- Chemilminescence	
3	Particulate Matter (size		Annual *	60	60	GravimetricTOEM	
,	less than 10 μ m) or PM ₁₀	μg/m ³	24 hours **	100	100	- Beta attenuation	
4	Particulate Matter (size		Annual *	40	40	GravimetricTOEM	
4	less than 2.5 $\mu m)$ or PM _{2.5}	μg/m ³	24 hours **	60	60	- Beta attenuation	
5	Ozone (O ₃)	$\mu g/m^3$	8 hours **	100	100	UV photometricChemiluminescence	
3	Ozolie (O3)	μg/m	1 hour **	180	180	- Chemical Method	
6	Lead (Pb)	$\mu g/m^3$	Annual *	0.50	0.50	 AAS/ICP method after sampling on EPM 2000 or 	
0	Lead (FU)	μg/m	24 hours **	1.0	1.0	equivalent filter paper — EDXRF using Teflon filter	
7	Carbon Monoxide (CO)	mg/m^3	8 hours **	02	02	– Non Dispersive Infra Red	
	Carbon Monoxide (CO)	mg/m	1 hour **	04	04	(NDIR) spectroscopy	
8	Ammonia (NH ₃)	$\mu g/m^3$	Annual *	100	100	- Chemiluminescence	
Ľ	Anmona (1113)	μg/m	24 hours **	400	400	– Indophenol blue method	
9	Benzene (C ₆ H ₆)	$\mu g/m^3$	Annual *	05	05	 Gas Chromatography based continuous analyzer Adsorption and Desorption followed by GC analysis 	
10	Benzo (a) Pyrene (BaP) – particulate phase only,	ng/m^3	Annual *	01	01	 Solvent extraction followed by HPLC/GC analysis 	
11	Arsenic (As)	ng/m³	Annual *	06	06	 AAS/ICP method after sampling on EPM 2000 or equivalent filter paper. 	
12	Nickel (Ni)	ng/m³	Annual *	20	20	 AAS/ICP method after sampling on EPM 2000 or equivalent filter paper. 	

^{*} Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

SANT PRASAD GAUTAM, Chairman, Central Pollution Control Board [ADVT-III/4/184/09/Exty.]

Note: The notifications on National Ambient Air Quality Standards were published by the Central Pollution Control Board in the Gazette of India. Extraordinary vide notification No(s). S.O. 384(E), dated 11th April, 1994 and S.O. 935(E), dated 14th October, 1998.

μg/m³: micro-gram/m³ i.e. 10⁻⁶gm/m³ ng/m³: nano-gram/m³ i.e. 10⁻⁹gm/m³

^{** 24} hourly or 08 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2 % of the time, they may exceed the limits but not on two consecutive days of monitoring.

Annexure V: General Standards for Discharge of Environmental Pollutants, Part A: Effluents (The Environment (Protection) Rules, 1986, Schedule VI)

			Stand	lards	
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
1.	Colour and Odour	See Note 1		See Note I	See Note 1
2.	Suspended solids, mg/L, Max.	100	600	200	For process waste water - 100 For cooling water effluent- 10 percent above total suspended mailer of influent cooling water.
3.	Particle size of suspended solids	Shall pass 850 micron IS Sieve			Floatable solids, Max 3 mm Settleable solids Max 850 microns
4.	Dissolved solids (Inorganic), mg/L, Max.	2100	2100	2100	
5.	pH value	5.5 -9.0	5.5 -9.0	5.5 -9.0	5.5-9.0
6.	Temperature °C, Max	Shall not exceed 40 in any section of the stream within 15 mts. Downstream from the effluent outlet	45 at the point of discharge		45 at the point of discharge
7.	Oil and Grease, mg/L, Max	10	20	10	20
8.,	Total Residual chlorine, mg/L, Max	1.0			1.0
9.	Ammonical Nitrogen (as N), mg/L, Max	50	50		50
10.	Total Kjeldahl Nitrogen (as N), mg/L, Max.	100			100
11.	Free Ammonia (as NH ₃), mg/L, Max	5.0			5.0
12.	Biochemical oxygen demand (5 days, at 20° c) mg/L, Max	30	350	100	100
13.	Chemical oxygen demand, mg/L, Max	250			250
14.	Arsenic (as As), mg/l, Max	0.2	0.2	0.2	0.2

		Standards			
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas
15.	Mercury (as Hg). Mg/L, Max	0.01	0.01		0.01
16.	Lead (as Pb), mg/L, Max	0.1	1.0	-	1.0
17.	Cadmium (as Cd), mg/L,	2.0	1.0		2.0
18.	Hexavalent Chromium (as Cr ⁺⁶) mg/L, Max	.1	2.0		1.0
19.	Total Chromium (as Cr), mg/L, Max	2.0	2.0		2.0
20.	Copper (as Cu), mg/L, Max.	3.0	3.0		3.0
21.	Zinc (as Zn), mg/L, Max.	5.0	15	0	15
22	Selenium (as Se), mg/l, Max.	0.05	0.05		0.05
23	Nickel (as Ni), mg/l, Max.	3.0	3.0		5.0
24	Boron (as B), mg/l, Max.	2.0	2.0	2.0	
25.	Percent Sodium, Max.		60	60	
26.	Residual Sodium carbonate, mg/l, Max.			5.0	
27.	Cyanide (as Cn), mg/L, Max.	0.2	2.0	0.2	0.2
28.	Chloride (as CI), mg/L, Max.	1000	1000	600	
29.	Fluoride (as F), mg/IL, Max.	2.0	15		15
30.	Dissolved Phosphate (as P), mg/L, Max.	5.0			
31.	Sulphate (as SO ₄), mg/L, Max.	1000	1000	1000	
32.	Sulphide (as S), mg/L, Max.	2.0			5.0
33.	Pesticides	Absent	Absent	Absent	Absent
34.	$\begin{array}{lll} \mbox{Phenolic} & & (as \\ \mbox{compounds} & (as \\ \mbox{C}_6\mbox{H}_5\mbox{OH}), & \mbox{mg/L}, \\ \mbox{Max}. & & \end{array}$	1.0	5.0		5.0
35.	Radioactive materials:				

		Standards				
Sr.	Parameter	Inland surface Water	Public Sewers	Land for Irrigation	Marine Coastal Areas	
	Alpha emitters MC/ml., Max.	10 ⁻⁷	10 ⁻⁷	10 ⁻⁸	10 ⁻⁷	
	Beta emitters μc/ml., Max	10 ⁻⁶	10 ⁻⁶	10 ⁻⁷	10 ⁻⁶	

Annexure VI: Drinking Water Specification-IS 10500:2012

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
Table 1	Organoleptic and Physical Parameters			
1.	Colour	Hazen units	Max 5	Max 15
2.	Odour	-	Agreeable	Agreeable
3.	pH value	-	6.5-8.5	No relaxation
4.	Taste	-	Agreeable	Agreeable
5.	Turbidity	NTU	Max 1	Max 5
6.	Total dissolved solids	mg/L	Max 500	Max 2000
Table 2	General parameters concerning substances undesirable in excessive amounts			
7.	Aluminium (as Al)	mg/L	Max 0.03	Max 0.2
8.	Ammonia (as total ammonia- N)	mg/L	Max 0.5	No relaxation
9.	Anionic detergents (as MBAS)	mg/L	Max 0.2	Max 1.0
10.	Barium (as Ba)	mg/L	Max 0.7	No relaxation
11.	Boron (as B)	mg/L	Max 0.5	Max 1.0
12.	Calcium (as Ca)	mg/L	Max 75	Max 200
13.	Chloramines (as C1 ₂)	mg/L	Max 4.0	No relaxation
14.	Chlorides (as CI)	mg/L	Max 250	Max 1000
15.	Copper (as Cu)	mg/L	Max 0.05	Max 1.5
16.	Fluoride (as F)	mg/L	Max 1.0	Max 1.5
17.	Free residual chlorine	mg/L	Min 0.2	Min 1
18.	Iron (as Fe)	mg/L	Max 0.3	No relaxation
19.	Magnesium (as Mg)	mg/L	Max 30	Max100
20.	Manganese (as Mn)	mg/L	Max 0.1	Max 0.3
21.	Mineral Oil	mg/L	Max 0.5	No relaxation
22.	Nitrate (as NO ₃)	mg/L	Max 45	No relaxation
23.	Phenolic compounds (as C ₆ H ₅ OH)	mg/L	Max 0.001	Max 0.002
24.	Selenium (as Se)	mg/L	Max 0.01	No relaxation
25.	Silver (as Ag)	mg/L	Max 0.1	No relaxation
26.	Sulphate (as SO ₄)	mg/L	Max 200	Max 400
27.	Sulphide (as H₂S)	mg/L	Max 0.05	No relaxation

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
28.	Total Alkalinity as calcium carbonate	mg/L	Max 200	Max600
29.	Total hardness (as CaCO ₃)	mg/L	Max 200	Max 600
30.	Zinc (as Zn)	mg/L	Max 5	Max15
Table 3	Parameters Concerning Toxic Substances			
31.	Cadmium (asCd)	mg/L	Max 0.003	No relaxation
32.	Cyanide (asCN)	mg/L	Max 0.05	No relaxation
33.	Lead (as Pb)	mg/L	Max 0.01	No relaxation
34.	Mercury (asHg)	mg/L	Max 0.001	No relaxation
35.	Molybdenum (as Mo)	mg/L	Max 0.07	No relaxation
36.	Nickel (as Ni)	mg/L	Max 0.02	No relaxation
37.	Pesticides	mg/L	See Table 5	No relaxation
38.	Polychlorinatedbiphenyls	mg/L	Max 0.0005	No relaxation
39.	Poly nuclear aromatic Hydrocarbons (as PAH)	mg/L	Max 0.0001	No relaxation
40.	Total Arsenic(as As)	mg/L	Max 0.01	Max0.05
41.	Total Chromium (as Cr)	mg/L	Max 0.05	No relaxation
42.	Trihalomethanes			
a)	Bromoform	mg/L	Max 0.1	No relaxation
b)	DibromochloroMethane	mg/L	Max 0.1	No relaxation
c)	Bromodichloromethane	mg/L	Max 0.06	No relaxation
d)	Chloroform	mg/L	Max 0.2	No relaxation
Table 4	Parameters Concerning Radioactive Substances			
43.	Radioactive Materials			
a)	Alpha emitters	Bq/L	Max 0.1	No relaxation
b)	Beta emitters	Bq/L	Max 1.0	No relaxation
Table 5	Pesticide Residues Limits and Test Method			
i)	Alachor	μg/L	20	No relaxation
ii)	Atrazine	μg/L	2	No relaxation
iii)	Aldrin/ Dieldrin	μg/L	0.03	No relaxation
iv)	Alpha HCH	μg/L	0.01	No relaxation
v)	Beta HCH	μg/L	0.04	No relaxation

Sr.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
vi)	Butachlor	μg/L	125	No relaxation
vii)	Chlorpyriphos	μg/L	30	No relaxation
viii)	Delta HCH	μg/L	0.04	No relaxation
ix)	2,4- Dichlorophenoxyacetic acid	μg/L	30	No relaxation
x)	DDT (o,p&p,p — Isomers of DDT, DDE and DDD)	μg/L	1	No relaxation
xi)	Endosulfan (α,β & sulphate)	μg/L	0.4	No relaxation
xii)	Ethion	μg/L	3	No relaxation
xiii)	Gamma - HCH (Lindane)	μg/L	2	No relaxation
xiv)	Isoproturon	μg/L	9	No relaxation
xv)	Malathion	μg/L	190	No relaxation
xvi)	Methyl parathion	μg/L	0.3	No relaxation
xvii)	Monocrotophos	μg/L	1	No relaxation
xviii)	Phorate	μg/L	2	No relaxation
Table 6	Bacteriological Quality of Drinking Water			
44.	E.coli or thermotolerant coliform bacteria	/100	Not detectable	-
45.	Total coliform bacteria	/100 mL	Not detectable	-
	Virological Requirements			
46.	MS2 phage	/1 L	Absent	-
	Biological Requirements			
47.	Cryptosporidium	/10 L	Absent	-
48.	Giardia	/10 L	Absent	-
49.	Microscopic organisms such as algae,zooplanktons,flagellates,parasites and toxin producing organisms		Free from microscopic organisms	-

Annexure VII: CPCB Water Quality Criteria:

Designated best use	Quality Class	Primary Water Quality Criteria
Drinking water source without conventional treatment but with chlorination	А	Total coliformorganisms (MPN*/100 ml) shall be 50 or less pH between 6.5 and 8.5 Dissolved Oxygen 6 mg/l or more, and Biochemical Oxygen Demand 2 mg/l or less
Outdoor bathing (organized)	В	Total coliform organisms (MPN/100 ml) shall be 500 or less pH between 6.5 and 8.5 Dissolved Oxygen 5 mg/l or more, and Biochemical Oxygen Demand 3 mg/l or less
Drinking water source with conventional treatment	С	Total coliform organisms (MPN/100ml) shall be 5000 or less pH between 6 and 9 Dissolved Oxygen 4 mg/l or more, and Biochemical Oxygen Demand 3 mg/L or less
Propagation of wildlife and fisheries	D	pH between 6.5 and 8.5 Dissolved Oxygen 4 mg/l or more, and Free ammonia (as N) 1.2 mg/L or less
Irrigation, industrial cooling, and controlled disposal	E	pH between 6.0 and 8.5 Electrical conductivity less than 2250 micro mhos/cm, Sodium Absorption Ratio less than 26, and Boron less than 2 mg/l.
	Below E	Not Meeting A, B, C, D & E Criteria

Annexure VIII: Water Quality Parameters Requirements and Classification

Water quality parameters are classified into three categories, given in Table (i), (ii) and (iii) (Source: CPCB, 2002, "Water Quality Criteria and Goals", Monitoring of Indian National aquatic Resources Series: MINARS/17/2001-2002).

Table: Basic Water Quality Requirement and Classification (Surface Water + Ground Water)

i) Simple Parameters:

Sr.	Parameters	Requirement for Waters of Class			
		A-Excellent	B-Desirable	C-Acceptable	
(i)	Sanitary Survey	Very Clean neighborhood and catchment	Reasonably clean neighborhood	Generally clean neighborhood	
(ii)	General Appearance	No floating matter	No floating matter	No floating matter	
(iii)	Colour	Absolutely Colourless	Almost colourless, very light shade if any	No colour of anthropogenic origin	
(iv)	Smell	Odourless	Almost odourless	No unpleasant odour	
(v)	Transparency	>1.0 depth	>0.5 to 0.1m depth	>0.2 to 0.5 m depth	
(vi)	Ecological* (Presence of Animals)	Fish & Insects	Fish & Insects	Fish & Insects	

^{*} Applicable to only surface water

ii) Regular Monitoring Parameters:

Sr.	Parameters	Requirement for Waters of Class		
		A Excellent	B-Desirable	C-Acceptable
(i)	рН	7.0 to 8.5	6.5 to 9.0	6.5 to 9.0
(ii)	DO (% Saturation)	90-110	80-120	60-140
(iii)	BOD, mg/l	Below 2	Below 5	Below 8
(iv)	EC, µmhos/cm	<1000	<2250	<4000
(v)	(NO ₂ +NO ₃)- Nitrogen, mg/l	<5	<10	<15
(vi)	Suspended solid, mg/l	<25	<50	<100
(vii)	Feacal Coliform, MPN/ 100 ml	<20 per 100 ml	<200 per 100 ml	<2000 per 100 ml
(viii)	Bio-assay (Zebra Fish)	No death in 5 days	No death in 3 days	No death in 2 days

Note:

- 1. Dissolved Oxygen (DO) not applicable for ground waters.
- 2. Dissolved Oxygen in eutrophicated waters should include measurement for diurnal variation.
- 3. Suspended solid limit is applicable only during non-monsoon period.
- 4. Faecal Coliform values should meet for 90% times.
- 5. Static Bio-Assay method may be adopted.

iii) Specific Parameters: (Only in case of need/apprehensions)

Sr.	Parameters	Requirement for Waters of Class			
		A- Excellent	B-Desirable	C-Acceptable	
(i)	Total Phosphorous	<0.1 mg/l	< 0.2 mg/l	< 0.3 mg/l	

(ii)	T.K.N	< 1.0 mg/l	<2.0 mg/l	<3.0 mg/l
(iii)	Total Ammonia (NH4 + NH3)- Nitrogen	< 0.5 mg/l	< 1.0 mg/l	< 1.5 mg/l
(iv)	Phenols	< 2µg/l	< 5µg/l	<10 µg/l
(v)	Surface Active Agents	<20 μg/l	<100µg/l	< 200µg/l
(vi)	Organo Chlorine Pesticides	< 0.05µg/l	< 0.1µg/l	< 0.2µg/l
(vii)	PAH	< 0.05µg/l	<0.1 µg/l	<0.2 µg/l
(viii)	PCB and PCT	< 0.01µg/l	< 0.01µg/l	< 0.02µg/l
(ix)	Zinc	< 100µg/l	< 200µg/l	<300 µg/l
(x)	Nickel	< 50µg/l	< 100µg/l	< 200µg/l
(xi)	Copper	< 20µg/l	< 50µg/l	<100µg/l
(xii)	Chromium (Total)	< 20µg/l	< 50µg/l	< 100µg/l
(xiii)	Arsenic (Total)	< 20µg/l	<50 μg/l	<100 µg/l
(xiv)	Lead	< 20µg/l	< 50µg/l	< 100µg/l
(xv)	Cadmium	< 1.0µg/l	<2.5 μg/l	< 5.0µg/l
(xvi)	Mercury	< 0.2µg/l	< 0.5µg/l	< 1.0µg/l