
Central Server Software Open API September 11, 2017

Open API Version No 2.3 dated 11th September 2017

Overview

This Open API document will be used for integrating multi-software clients to

Maharashtra Central Server Software. All communication between Central Server and

acquisition clients (at Industry site) are all managed through HTTP-based REST API. All the

API are authenticated. Any approved software client complying with the specified open API

can upload the data to the Central Server.

Supported Operations in Version 2.3
The following are the operations supported in Version 2.3 of the Open API. All clients should
support full integration with all these operations.

 Real Time Data Upload
 Delayed Data Upload
 Remote Analyser Configuration
 Remote Analyser Calibration
 Analyser Diagnostic Fetch

Key Concepts

The following are the key concepts to be followed while working with the Open API

 Site ID: Unique Site ID identifying the specific industry

 Monitoring ID: Each Site has multiple monitoring stations. Each monitoring station
will be assigned a unique monitoring ID relative to the Site

 Analyser ID: Each analyser make and model will be assigned a unique Analyser ID

 Parameter ID: Each monitored parameter will have a common unified ID across all
industries

Client Side Software Requirement

 Each client software implementing the API should also comply with “Client Side
Software Requirement published by MPCB“

Key API Requirements

 Each site client software has to collect the data from the analyser based on the poll

frequency defined. Ideal frequency for data sampling from analyser is 10 second. Data

transmission to the Central Server should be at 1 minute frequency. The raw data and

linearized data should be transmitted to the server along with the data quality code and

captured timestamp.

Central Server Software Open API September 11, 2017

 Optional for Pilot Phase: The captured data should be transmitted to the Server

immediately after encrypting the data with the digital private key. This digital private key

should be kept safe and shouldn’t be tampered with or disclosed to others. The Client

Software should provide a mechanism for generating industry specific digital signature to

establish the data connectivity with Central Server Software. Industry should procure the

Digital Signature as soon as possible, provide the details of the Digital Signature and use that

for data encryption to ensure authentic tamper proof data transmission.

 The transmitted data should be encrypted zipped data in ISO-7168. All API request data

transfer should be using a REST Service over HTTP protocol.

 The client site software should wait for successful upload and also read subsequent

instructions (Remote calibration, Configuration update, Diagnostics information etc.) from

the Central Server Software

 On receiving instructions on Remote calibrations or Configuration update, the site client

software should invoke the Remote Calibration or Configuration update services to

download the corresponding configurations.

 In-case of any communication failure or any delayed data transmitted beyond a period 15

minutes, site software should store the data the locally and upload to the Delayed Data

Upload URL and not to the Real Time upload URL. This is to ensure that the delayed data is

captured separately at the Central Server and can be tracked for any integrity issues.

 All client should transmit data captured directly from the analyser from the site location. Any

data transmission from different location will be rejected by the server.

 All the requests from the client to the server should be authenticated requests only. Any

unauthenticated requests will be discarded or not processed.

Basic Organization of API

http://<ipaddress:port>/MPCBServer

Resource Description Route Request type

Data upload

This is for uploading data to the
central server from the client. Any
authenticated client with proper
credentials can upload data to the
server using this api. Only real time
data (delay of max 2 min) will be
accepted through /realtimeupload
URL and any delayed data should be
uploaded using /delayedUpload URL

/realtimeUpload
/delayedUpload

POST

Configuration
Download

This is for downloading the
configuration from the server. Any
approved client software can
download the configuration from the
server using this API

/getConfig POST

Fetch Client
Configuration

When the ConfigurationUpdateFlag is
set to “True” in the response of the
Realtime Upload or Delayed Upload,
client needs to provide the current
configurations set at the Analyser.

/uploadConfig POST

Central Server Software Open API September 11, 2017

Acknowledge
Configuration

Download

When the
ConfigurationDownloadFlag flag is set
to “True” in the response of the
Realtime Upload or Delayed Upload,
the client software should use the
/getConfig URL to download the
configuration from the Central
Server. Once the configuration is
updated in the Analyser, the client
should update the Central Server
with the status of the configuration
update. Till the status is updated to
success, client will be asked
continuously to update the
configuration by setting the
ConfigurationDownload flag to
“True”.

/completedConfig POST

Calibration
download service

When the
RemoteCalibrationUpdateFlag is set
to “True”, the client software should
using this URL for downloading the
configuration required for
calibration. The remote calibration
data and sequence should be
updated to the Calibrator locally

/getcalibrationconfig POST

Calibration
Update

Acknowledgement

After successful download of the
Remote Calibration Configuration
and updating the local calibrator or
analyser who will be performing the
calibration, the client software
should acknowledge the status of
calibration status using this URL

/updatecalibrationconfig POST

Diagnostic Upload
service

When the DiagnosticUpdateFlag is
set to “True”, the client software
should using this URL for uploading
the diagnostic information including
any internal state of the analyser as
per the analyser make and model.

/uploadDiagnosticInfo POST

Central Server Software Open API September 11, 2017

Authentication Mechanism for the API

Each API request header should have the following information

A. Timestamp

B. Authorization  Encrypted data from the site which has the authentication digest. Each request

should send authentication digest with the following encrypted data

 site_id  Unique Site Id provided by the Maharashtra Pollution Control Board for each site for

authentication

 software_version_id  Software version set by the Central Server for the industry

 time_stamp_data  Timestamp when the data was encrypted

The authentication digest is decrypted using the Site Private Key. The timestamp is ensured to be not

more than 15 minutes (configurable) from the current timestamp. The software version is verified against the

registered software version with the Central Server Software. This ensures the data is encrypted just before

transmission and the client program have access to Site Private Key and the current registered software

version. The registered software version will be updated from Central Server Software time to time and hence

is not depend on client software version.

Data Upload

The standard response format is described below. Any approved client software with proper

credentials can send data to the central server using this API.

Data Upload Format
The API supports 2 different types of data format for data upload. The data upload follows an

ISO-7168 format zip file or a simplified delimited or fixed width file format.
The zip file upload to the server will be multipart/form-data format. The data should be sent in

zip format. The uploaded zip file will have two files, namely 1. Data File, 2. Metadata File. The Data
file should be encrypted using the Site Private Key. The zip file should be uploaded to the server with
proper authentication using the key. Else the response with HTTP 401 with “Authentication Failure"
will be returned.
 The metadata file will specify the file formats (ISO-7168, CSV, FixedWidth) etc. and the data

file should comply with the same. This gives flexibility to support different file formats based on the

analyser or client software capability.

 However, all files has to follow the basic guidelines

1. Data should encrypted

2. File should zipped

3. Metadata file should provide the file specification and format

4. Header should have the encryption digest for decryption of the data

Request Details

Upload data to Central Server

This method uploads data to the server. The requests will be authenticated and hence should have
the authentication header as described in section “Authentication Mechanism for the API”

http://ipaddress:port/MPCBServer/realtimeUpload OR

http://ipaddress:port/MPCBServer/delayedUpload

Path: realtimeUpload or delayedUpload

http://ipaddress:port/MPCBServer/realtimeUpload
http://ipaddress:port/MPCBServer/delayedUpload

Central Server Software Open API September 11, 2017

Method: POST
Parameters: The file to be uploaded should be send as the parameter.

Returns: Response JSON which contains the status as either success or failure

Note: realtimeUpload URL will take only data that is captured from the analyser during the last

poll frequency defined by regulator. Anything delayed should be uploaded to delayedUpload URL

If the upload is success, the following response will be obtained.

{

 "status": "Success",

 "serverConfigLastUpdatedTime": "<time>",

 "ConfigurationDownloadFlag": "<Flag>",

 "ConfigurationUpdateFlag": "<Flag>",

 "RemoteCalibrationUpdateFlag ": "<Flag>",

 "DiagnosticUpdateFlag": "<Flag>",

 "statusMessage": "file uploaded successfully."

}

Where the <time> is the last updated time of server configurations and <Flag> is a Boolean value

depending upon whether the site configuration is updated or not.

Flag can have values “True” or “False”

Eg:

{

 "status": "Success",

 "serverConfigLastUpdatedTime": "2015-02-24T13:21:19Z",

 "ConfigurationDownloadFlag": "True",

 "ConfigurationUpdateFlag": "False",

 "RemoteCalibrationUpdateFlag ": "True",

 "DiagnosticUpdateFlag": "False",

 "statusMessage": "file uploaded successfully. "

}

If the upload is a failure the following response will be obtained.

{

Central Server Software Open API September 11, 2017

 "status": "Failed",

 "statusMessage": "No files were uploaded."

}

Configuration Download from server

The configuration download request helps the client software understand the format and

parameters which should be transferred to the server. This request enables the client software to

download the entire configuration for the monitoring station. This configuration should be

synchronized with the analyser.

This method download the configuration from the server.

http://ipaddress:port/MPCBServer/getConfig

Path: getConfig

Method: POST

Parameters: The site id will be passed as the parameter.

Returns: The response json contains, the configuration in case of success or failure message

in case of failure.

Request body:

{

 "siteId": <site-id>,

 "monitoringid": <monitor-id>

}

If the configuration download request is success, the following response will come. Any approved
client software with proper credentials can download the configurations from the central server using
this api. Software with improper credentials will be blocked. The request should have the valid
authenticated headers.

Request Format

The request for site configuration update will be in the following format.

{

 "siteId": “site_108”,

 "monitoringid": “ETP_PLANT”

}

Response Format

{

 "status": "Success",

 "serverConfigLastUpdatedTime": <ServerConfigUpdatedLastTime>,

 "SiteDetails": {

 "siteName": <SiteName>,

http://ipaddress:port/MPCBServer/getConfig

Central Server Software Open API September 11, 2017

 "siteLabel": <SiteLabel>,

 "siteConfigLastUpdatedTime": <SiteConfigUpdatedLastTime>,

 "siteId": <site id>,

 “customparameters” :{}

 },

 "CollectorDetails":[{

 “CollectorType”: <>,

 “CollectorName”: <>,

 "ConfiguredChannels": <>,

 "PollingStep": <polling step>,

 "ChecksumStatusBit": <checksum bit>,

 "Address": <address>,
 "HeartBeat": <heartbeat>,
 "DataFormatBits": "00",

 "Port": <port>,

 "CommunicationTimeOut": <communication bit>

 “customparameters” :{}

 }],
 "configJson": {

 "monitoringType": {

 "required": "True",

 "padding": "-",

 "start_pos": 55,

 "end_pos": 64,

 "type": "string",

 "alignment": "left"

 },

 "monitoringId": {

 "required": "True",

 "padding": "-",

 "start_pos": 65,

 "end_pos": 84,

 "type": "string",

 "alignment": "left"

 },

 "QualityCode": {

 "required": "True",

 "padding": "*",

 "start_pos": 42,

 "end_pos": 43,

 "type": "string",

 "alignment": "left"

 },

 "SensorTime": {

 "required": "True",

 "padding": "-",

 "start_pos": 44,

 "end_pos": 54,

 "type": "string",

 "alignment": "left"

 },

 "parameterId": {

 "required": "True",

 "padding": "-",

 "start_pos": 85,

 "end_pos": 100,

 "type": "string",

 "alignment": "left"

 },

 "parameterName": {

 "required": "True",

Central Server Software Open API September 11, 2017

 "padding": "*",

 "start_pos": 11,

 "end_pos": 25,

 "type": "string",

 "alignment": "left"

 },

 "Reading": {
 "required": "True",
 "padding": "*",

 "start_pos": 26,

 "end_pos": 41,

 "type": "string",

 "alignment": "left"

 },

 "id": {

 "required": "True",
 "padding": "-",

 "start_pos": 1,

 "end_pos": 8,

 "type": "string",

 "alignment": "left"

 },

 "sensorChannel": {

 "required": "True",

 "padding": "-",

 "start_pos": 9,

 "end_pos": 10,

 "type": "string",

 "alignment": "left"

 },

 "analyzerId": {

 "required": "True",

 "padding": "-",

 "start_pos": 101,

 "end_pos": 115,

 "type": "string",

 "alignment": "left"

 }

 },

 "AcquisitionSystemDetails": {

 "AcquisitionVersion": <Version Number>,

 "AcquisitionSystem": <Acquisition System Name>

 },

 "SensorA": {

 "collectorType": <Monitoring Type>,

 "monitoringType": <Monitoring Type>,

 "monitoringId": <Monitoring Id>,

 "ChannelNo": "0",

 "GaugeMinimum": "",

 "CoefficientA": "",

 "parameterId": <parameter id>,

 "GaugeMaximum": "",

 "MeasurementUnit": <measurement unit>,

 "compPort": "",

 "parameterName": <parameter name>,

 "CoefficientB": "",

 "analyzerId": <analyzer id>

 “customparameters” :{}

 },

.

.

Central Server Software Open API September 11, 2017

.

 "SensorN": {

 "monitoringType": <Monitoring Type>,

 "monitoringId": <Monitoring Id>,

 "ChannelNo": "0",

 "GaugeMinimum": "",

 "CoefficientA": "1",

 "parameterId": <parameter id>,

 "GaugeMaximum": "",

 "MeasurementUnit": <measurement unit>,

 "compPort": "",

 "parameterName": <parameter name>,

 "CoefficientB": "0",

 "analyzerId": <analyzer id>,

 “customparameters” :{}

 }

}

If the configuration request status is failed, the response will be

{

 "status": "Failed"

}

Fetch Configuration From Client
This method will be invoked by the client to upload the current configuration in the analyser to the

Central Server Software when the ConfigurationUpdateFlag is set to “True”

http://ipaddress:port/MPCBServer/uploadConfig

Path: uploadConfig

Method: POST

Parameter: The configuration of the Site in the json format

Returns: The response json contains, success in case of success or failure message in case of

failure.

Request body:

{

 "Command": "ConfigFetch",

 "serverConfigLastUpdatedTime": <ServerConfigUpdatedLastTime>,

 "SiteDetails": {

 "siteName": <SiteName>,

 "siteLabel": <SiteLabel>,

http://ipaddress:port/MPCBServer/uploadConfig

Central Server Software Open API September 11, 2017

 "siteConfigLastUpdatedTime": <SiteConfigUpdatedLastTime>,

 "siteId": <site id>,

 "monitoringId": <monitoring id>,

 “customparameters” :{}

 },

 "CollectorDetails":[{

 “CollectorType”: <>,

 “CollectorName”: <>,

 "ConfiguredChannels": <>,

 "PollingStep": <polling step>,

 "ChecksumStatusBit": <checksum bit>,

 "Address": <address>,
 "HeartBeat": <heartbeat>,
 "DataFormatBits": "00",

 "Port": <port>,

 "CommunicationTimeOut": <communication bit>

 “customparameters” :{}

 }],
 "configJson": {

 "monitoringType": {

 "required": "True",

 "padding": "-",

 "start_pos": 55,

 "end_pos": 64,

 "type": "string",

 "alignment": "left"

 },

 "monitoringId": {

 "required": "True",

 "padding": "-",

 "start_pos": 65,

 "end_pos": 84,

 "type": "string",

 "alignment": "left"

 },

 "QualityCode": {

 "required": "True",

 "padding": "*",

 "start_pos": 42,

 "end_pos": 43,

 "type": "string",

 "alignment": "left"

 },

 "SensorTime": {

 "required": "True",

 "padding": "-",

 "start_pos": 44,

 "end_pos": 54,

 "type": "string",

 "alignment": "left"

 },

 "parameterId": {

 "required": "True",

 "padding": "-",

 "start_pos": 85,

 "end_pos": 100,

 "type": "string",

 "alignment": "left"

 },

 "parameterName": {

 "required": "True",

Central Server Software Open API September 11, 2017

 "padding": "*",

 "start_pos": 11,

 "end_pos": 25,

 "type": "string",

 "alignment": "left"

 },

 "Reading": {
 "required": "True",
 "padding": "*",

 "start_pos": 26,

 "end_pos": 41,

 "type": "string",

 "alignment": "left"

 },

 "id": {

 "required": "True",
 "padding": "-",

 "start_pos": 1,

 "end_pos": 8,

 "type": "string",

 "alignment": "left"

 },

 "sensorChannel": {

 "required": "True",

 "padding": "-",

 "start_pos": 9,

 "end_pos": 10,

 "type": "string",

 "alignment": "left"

 },

 "analyzerId": {

 "required": "True",

 "padding": "-",

 "start_pos": 101,

 "end_pos": 115,

 "type": "string",

 "alignment": "left"

 }

 },

 "AcquisitionSystemDetails": {

 "AcquisitionVersion": <Version Number>,

 "AcquisitionSystem": <Acquisition System Name>

 },

 "SensorA": {

 "collectorType": <Monitoring Type>,

 "monitoringType": <Monitoring Type>,

 "monitoringId": <Monitoring Id>,

 "ChannelNo": "0",

 "GaugeMinimum": "",

 "CoefficientA": "",

 "parameterId": <parameter id>,

 "GaugeMaximum": "",

 "MeasurementUnit": <measurement unit>,

 "compPort": "",

 "parameterName": <parameter name>,

 "CoefficientB": "",

 "analyzerId": <analyzer id>

 “customparameters” :{}

 },

.

.

Central Server Software Open API September 11, 2017

.

 "SensorN": {

 "monitoringType": <Monitoring Type>,

 "monitoringId": <Monitoring Id>,

 "ChannelNo": "0",

 "GaugeMinimum": "",

 "CoefficientA": "1",

 "parameterId": <parameter id>,

 "GaugeMaximum": "",

 "MeasurementUnit": <measurement unit>,

 "compPort": "",

 "parameterName": <parameter name>,

 "CoefficientB": "0",

 "analyzerId": <analyzer id>,

 “customparameters” :{}

 }

}

Response for the Request will be

Success status

{

 "status": "Success",

 "configUpdateStatus": "Received Site configuration successfully"

}

Failure status
{

 "status": "Failed",

 "configUpdateStatus": "Failed to receive Site Configuration. Please

retry"

}

Configuration Update Acknowledgement

Whenever the site client software has received the configuration from the Central Server

Software and successfully update the site configuration, the client software should provide

acknowledgement to the Central Server to ensure that server doesn’t request for

configuration update again.

This method gives the status of calibration.

http://ipaddress:port/MPCBServer/completedConfig

Path: completedConfig

Method: POST

http://ipaddress:port/MPCBServer/completedConfig

Central Server Software Open API September 11, 2017

Parameter: The site id and monitoring id will be passed as the parameter.

Returns: The response json contains, success in case of success or failure message in case of

failure.

Request body:

{

 "siteId": <site-id>,

 "monitoringid": <monitor-id>,

 “ConfigUpdated”: “True”

}

Response to Configuration acknowledgement received by client software

Success Response

{

 "status": "Success",

 "calibrationUpdateStatus": "Server and Site Configuration Synchronized"

}

Failure response

{

 "status": "Failed",

 "calibrationUpdateStatus": "Failed to update Configuration status"

}

Remote Calibration Service
This method download the configuration required for calibration.

http://ipaddress:port/MPCBServer/getCalibrationConfig

Path: getCalibrationConfig

Method: POST

Parameter: The site id, monitoring id, CalibrationType will be passed as the parameter.

CalibrationType will be “scheduled” when a schedule is submitted to client or “immediate” if an

immediate request for calibration is required.

Returns: The response json contains the configuration required for calibration

Request body:

{

 "siteId": <site-id>,

 "monitoringid": <monitor-id>,

 “CalibrationType”: “Scheduled” or “Immediate”

http://ipaddress:port/MPCBServer/getCalibrationConfig

Central Server Software Open API September 11, 2017

}

Response provided by the Server will have the following fields. If any analyser maker needs any
additional fields for performing, remote calibration, this can be discussed with MPCB Online
Monitoring team at onlinecems.support@mpcb.gov.in and can use “customparameters” tag in
the json

The configuration details has the sequence for calibrations, the required
parameters for calibrations and the schedule for the calibrations.

RESPONSE

{

 "status": "Success",

 "calibration": {

 "calibratorName": <calibrator-name>,

 "sequence": [

 {

 "function": <function name>,

 "duration_secs": <duration in seconds>,

 "gas": <gas>,

 "value": "0",

 "delay": <delay in minutes>,

 "sequenceName": <sequence name>,

 "duration": <duration in minute>,

 "type": <type of calibration>,

 "unit": <unit of gas>

 }

],

 "siteName": <site name>,

 "monitoringType": <monitoring type>,

 "frequency": <frequency>,

 "analyzerId": <analyser id>,

 "parameterId": <parameter id>,

 "remoteCalibrationId": <remote calibration id>,

 "parameterName": "SO2",

 "cycleUnit": "1",

 "total_duration": <total duration>,

 "frequencyDay": <day>,

 "siteId": <site id>,

 "startTime": {

 "date": <date>,

 "time": <time>

 },

 "executeImmediate": "True",

 "day": <day>,

 "cycle": <cycle>,

 "frequencyTime": <frequency time>,

 "calibratorId": <calibration id>,

 "monitoringUnit": <monitoring unit>,

 "value": "",

 "channelNumber": <channel number>,

 "analyzerType": <analyser type>,

 "endTime": {

 "date": <date>,

 "time": <time>

 },

 "remoteCalibrationName": <remote calibration name>,

 "analyzerName": <analyser name>

Central Server Software Open API September 11, 2017

 },

 "serverCalibrationLastUpdatedTime": <serverCalibrationLastUpdatedTime>,

 "siteCalibrationLastUpdatedTime": <siteCalibrationLastUpdatedTime>,

 "lastCalibratedOn": <lastCalibratedOn>,

 "siteId": <siteid>

}

Failure

{

 "status": "Failed. Calibration configuration not available"

}

Calibration Update Acknowledgement

Whenever the site client software has received the calibration sequence and has scheduled

the calibration on the analyser, the calibration acknowledgement has to be provided to

MPCB Central Server to ensure that server doesn’t request for calibration configuration

again.

This method gives the status of calibration.

http://ipaddress:port/MPCBServer/updateCalibrationConfig

Path: updateCalibrationConfig

Method: POST

Parameter: The site id and monitoring id will be passed as the parameter.

Returns: The response json contains, success in case of success or failure message in case of

failure.

Request body:

{

 "siteId": <site-id>,

 "monitoringid": <monitor-id>,

 “CalibrationType”: “Scheduled” or “Immediate”

}

Response to Calibration Update Received by Client Software

Success Response

{

 "status": "Success",

 "calibrationUpdateStatus": "Server and Site Calibration Synchronized"

}

http://ipaddress:port/MPCBServer/updateCalibrationConfig

Central Server Software Open API September 11, 2017

Failure response

{

 "status": "Failed",

 "calibrationUpdateStatus": "Failed to update calibration configuration

status"

}

Fetch Diagnostic Information From Client
This method will be invoked by the client to upload the current diagnostic information in the

analyser to the Central Server Software when the DiagnosticUpdateFlag is set to “True”

http://ipaddress:port/MPCBServer/uploadDiagnisticsInfo

Path: uploadDiagnosticInfo

Method: POST

Parameter: The diagnostic information of the Site in the json format

Returns: The response json contains, success in case of success or failure message in case of

failure. The diagnostics json will be an array of key value pair with the corresponding category

associated to the key.

Request body:

{

 "Command": "DiagnosticFetch",

 "SiteDetails": {

 "siteName": <SiteName>,

 "siteLabel": <SiteLabel>,

 "siteConfigLastUpdatedTime": <SiteConfigUpdatedLastTime>,

 "siteId": <site id>,

 "monitoringId": <monitoring id>,

 “customparameters” :{}

 },

 "CollectorDetails":[{

 “CollectorType”: <>,

 “CollectorName”: <>,

 "ConfiguredChannels": <>,

 "PollingStep": <polling step>,

 "ChecksumStatusBit": <checksum bit>,

 "Address": <address>,
 "HeartBeat": <heartbeat>,
 "DataFormatBits": "00",

 "Port": <port>,

 "CommunicationTimeOut": <communication bit>

 “customparameters” :{}

 }],
 "diagnosticJson": [{“analyserId”:<analyser-id>,”parameterName”:””,

diagnostics”:[{“key”:<key>, “value”:<value>,”category”:<category>}]}]

}

http://ipaddress:port/MPCBServer/uploadDiagnisticsInfo

Central Server Software Open API September 11, 2017

Response for the Request will be

Success status

{

 "status": "Success",

 "diagnosticUpdateStatus": "Received Site diagnostics successfully"

}

Failure status
{

 "status": "Failed",

 "diagnosticUpdateStatus": "Failed to receive Site diagnostics. Please

retry"

}

