Final Report

WATER QUALITY STATUS OF WATER BODIES OF MAHARASHTRA WITH RECOURSE TO **ANALYTICAL/ STATISTICAL TOOLS** (2007-2011)

Prepared By

Council of Scientific and Industrial Research **National Environmental Engineering** CSIR NEERI Research Institute

April, 2014

FINAL REPORT

Water Quality Status of Water Bodies of Maharashtra with Recourse to Analytical/Statistical Tools (2007-2011)

Maharashtra Pollution Control Board (MPCB)

CSIR- National Environmental Engineering Research Institute (NEERI)

April, 2014

राजीव कमार मित्तल भाष्रसे

Rajeev Kumar Mital IAS MEMBER SECRETARY

MAHARASHTRA POLLUTION CONTROL BOARD

Preface

Water Quality Monitoring is one of important function of State Pollution Control Board. It helps in evaluating the nature & extent of water contamination, assess the water quality trends, evaluate the success of pollution control measures taken & prioritization of efforts to be initiated. Maharashtra Pollution Control Board is monitoring water quality under National Water Monitoring Programme (NWMP) and State Water Monitoring Programme (SWMP) at various locations as per the Uniform Monitoring Protocol of Central Pollution Control Board / MoEF, New Delhi.

The water quality review committee members in Maharashtra namely Central Ground Water Agency(GSDA), Hydrology Water Surveys and Development Board (CGWB), Ground department(HP), who have similar objectives in monitoring of water quality are also regularly monitoring water quality in the state of Maharashtra. Maharashtra Pollution Control Board (MPCB) is preparing status of Water Quality Report based on the data generated by all the monitoring agencies as per decision of meeting of Cabinet Ministers, GoM dated 27/05/2009.

This document contains compilation & statistical analysis of Water Quality Monitoring data collected through the various agencies namely CGWB, GSDA and Hydrology department during the period 2007 to 2011.

The various statistical tools have been used for useful interpretation of data. This analysis will help various departments to prioritize the areas of concerns to facilitate mitigation measures & development of preventive action plans. Also National Sanitation Foundation, USA's formula has been used to calculate Water Quality Index (WQI). It is observed that there are multiple principles & practices for analysis of water quality data and therefore attempts have been made to apply most videly used practices to compare the findings & arrive at proper conclusion. I trust findings of this report will help concerned departments to prepare suitable action plans for improvement of water quality.

This study was conducted through NEERI, Mumbai, Zonal Laboratory and I appreciate the efforts of Dr. Rakesh Kumar, Chief Scientist and Head and Ms. Indrani Gupta, Senior Principal Scientist & their team in preparing this report. Also acknowledge the efforts taken by CGWB, GSDA, HP for providing water quality data for this report. Contribution of Shri. Bharat Nimbarte, Joint Director-WPC, Shri.S.C.Kollur, Scientific Officer and Ms.Yamini Chachad, Junior Scientific Officer are appreciated for their inputs in the report.

Date: APRIL 30, 2014

(Rajeev Kumar Mital IAS) Member Secretary

कल्पतरु पॉईंट, सायन सर्कल, सायन (पूर्व), मुंबई - ४०० ०२२. टेलि. : २४०१ ०७०६ • फॅक्स : २४०२ ३५१६ Kalpataru Point, Sion Circle, Sion (East), Mumbai - 400 022. Tel.: 2401 0706 • Fax : 2402 3516 E-mail: ms@mpcb.gov.in • Website: http://mpcb.gov.in

FOREWORD

"Water" is a prime natural resource and is considered as a precious national asset. Water is used for various purposes ranging from domestic, agricultural, industrial & allied purposes. The deterioration of water quality in the State has taken place due to untreated disposal of sewage and industrial effluents. Though efforts are being made all over the country to improve the situation, an intensive effort to monitor and understand water quality across the Maharashtra state has been initiated by MPCB.

In order to assess the quality of water, Maharashtra Pollution Control Board (MPCB) has been conducting assessment of the water quality through programs such as State Water Quality Monitoring Program (SWMP), National Water Quality Monitoring Program (NWMP) and Hydrology project. Under these programs, regular monitoring is carried out at 251 locations on 59 Rivers, and 34 locations on Seafronts and Creeks of Maharashtra. Similarly, ground water survey is carried out in coordination with Groundwater Survey and Development Agency (GSDA), Central Ground Water Board (CGWB) for 3694 villages located in 369 talukas covering all 34 districts in Maharashtra. MPCB also monitors ground water quality annually at 50 locations under SWMP and NWMP programs.

MPCB was keen to undertake comprehensive analysis of this huge data to study the spatial and temporal variability in water quality in the state of Maharashtra through reliable statistical analysis. That is to visualize the level of pollution, identify the hotspots and suggest corrective measures.

With a view to address the above issues, CSIR-NEERI was assigned to carry out statistical analysis of water quality data for five years viz. 2007-2011 in Maharashtra. Outlier identification was carried out using Dixon's formula. Descriptive statistics including mean, minimum, maximum, standard deviation and percent exceedances were carried out. For surface water quality, modified National Sanitation Foundation (NSF, USA) formula has been used to calculate WQI. For groundwater, organic and inorganic parameters were considered to compute WQI. The formula adopted is as per literature review.

The cooperation and assistance rendered by officials of MPCB especially Mr. Bharat B. Nimbarte, Mr. S.C. Kollur and Ms. Yamini R. Chachad are gratefully acknowledged. The direction given and interest shown by Shree Rajeev Kumar Mital, Member Secretary, MPCB, have been useful in preparing this report.

(S.R.Wate) Director, NEERI

mayo

March, 2014

Project Leaders

Dr. Rakesh Kumar

Dr. (Mrs.) Indrani Gupta

Project Personnel

Mr. Shiwaji Sawant

Ms. Kinjal Shah Ms. Vandana Singh

Secretarial Assistance

Mr. V.P. Chaudhari

Mrs. J.K. Siddhu

Ms. Roda Irani

CONTENTS

Extend	led Executive Summary	EES1
Chapt	er 1: Introduction	
1.1	Preamble	1.1
1.2	Data Analysis Methodology	1.1
1.3	Outputs	1.3
Chapt	er 2: Integrated Approach for Water Quality Assessment	
2.1	Water Quality Monitoring	2.1
2.2	Water Quality Standards	2.1
2.3	Methods for Water Quality Assessment - A Review	2.2
2.4	Limitations of a Water Quality Index	2.3
2.5	Past Studies	2.3
Chapt	er 3 : Methodology for Data Interpretation	
3.1	Introduction	3.1
3.2	Outliers	3.1
3.3	Background of WQI	3.1
3.3.1	Method for Calculation of Water Quality Index for Surface Water	3.2
3.3.2	Method for Calculation of Water Quality Index for Ground Water	3.4
Chapt	er 4: Evaluation of River Water Quality	
4.1	Surface Water Monitoring Network	4.1
4.2	River Water Quality Evaluation	4.2
4.3	Summary Observations	4.2
4.4	Details of Analysis	4.7
	Amba River	4.7
	Amravati River	4.8
	Bhatsa River	4.9
	Bhima River	4.10
	Bindusara River	4.15
	Bori River	4.15
	Burai River	4.16
	Chandrabagha River	4.17
	Daman Ganga River	4.18
	Darna River	4.19
	Deoghar (Ghonsari) River	4.20
	Ghod River	4.21
	Girna River	4.22
	Godavari River	4.23
	Gomai River	4.32
	Hiwara River	4.32

Indrayani River	4.33
Kajvi River	4.34
Kalu River	4.35
Kan River	4.36
Kanhan River	4.37
Kodavali River	4.38
Kolar River	4.39
Koyna River	4.39
Krishna River	4.40
Kundalika River	4.46
Manjra River	4.48
Mithi River	4.48
Mor River	4.49
Morna River	4.50
Muchkundi River	4.51
Mula-Mutha River	4.51
Nira River	4.54
Penganga River	4.55
Panchganga River	4.56
Panzara River	4.58
Patalganga River	4.59
Pawana River	4.61
Pedhi River	4.63
Pehlar River	4.64
Purna River	4.64
Rangavali River	4.66
Savitri River	4.66
Sina River	4.68
Shastri River	4.69
Surya River	4.70
Tansa River	4.71
Tapi River	4.71
Titur River	4.76
Ulhas River	4.77
Urmodi River	4.79
Vaitarna River	4.79
Vashishti River	4.81
Vel River	4.82
Venna River	4.83
Waghur River	4.84
Wardha River	4.84
Wainganga River	4.86
Wena River	4.89

Chapt	ter 5: Evaluation of Sea Water Quality	
5.1	Sea Water Quality Evaluation	5.1
5.2	Summary Observation	5.2
	Arnala Sea	5.3
	Bassein Creek	5.4
	Bhagwati Bunder Creek	5.4
	Bhayandar Creek	5.5
	Charni Road Chowpatty	5.6
	Shivaji Park (Dadar Chowpatty)	5.6
	Dahanu Creek	5.7
	Dandi Creek	5.8
	Ganapatipule	5.8
	Gateway of India	5.9
	Haji Ali	5.9
	Juhu Beach	5.10
	Kharekuran Murbe Creek	5.11
	Kalwa Creek	5.12
	Karambhavane Creek	5.12
	Mahim Creek	5.13
	Malabar Hill	5.14
	Mandvi Bunder	5.14
	Nariman Point	5.15
	Navapur Sea	5.15
	Panvel Creek	5.16
	Sarwalli Creek	5.17
	Savta Creek	5.17
	Thane Creek	5.18
	Ulhas Creek	5.19
	Uttan Sea	5.20
	Vashi Creek	5.21
	Versova Beach	5.21
	Worli Seaface	5.22
Chapt	ter 6 : Evaluation of Groundwater Quality	
6.1	Ground Water Monitoring in Maharashtra	6.1
6.2	Sources of Pollution in Ground Water	6.1
6.3	Ground Water Network	6.3
6.3.1	Summary Observations	6.5
6.3.2	Correlation Matrix for Different Ground Water Parameters	6.20
6.4	District Wise Ground Water Status of Maharashtra (CGWB and GSDA)	6.40
	Ahmednagar District	6.40
	Akola District	6.44
	Amravati District	6.47
	Aurangabad District	6.51

	Beed District	6.53
	Bhandara District	6.55
	Buldhana District	6.57
	Chandrapur District	6.60
	Dhule District	6.63
	Gadchiroli District	6.65
	Gondia District	6.67
	Hingoli District	6.69
	Jalgaon District	6.70
	Jalna District	6.72
	Kolhapur District	6.75
	Latur District	6.77
	Mumbai District	6.79
	Nagpur District	6.81
	Nanded District	6.84
	Nandurbar District	6.86
	Nasik District	6.88
	Osmanbad District	6.91
	Parbhani District	6.93
	Pune District	6.94
	Raigad District	6.96
	Ratnagiri District	6.98
	Sangli District	6.100
	Satara District	6.103
	Sindhudurg District	6.105
	Solapur District	6.107
	Thane District	6.109
	Wardha District	6.111
	Washim District	6.113
	Yavatmal District	6.115
6.5	Ground Water Monitoring Status under MPCB	6.118

LIST OF ANNEXURES

Annexure I	Water Quality Criteria (CPCB)	AI_1
Annexure II	Water Quality Standards for Best Designated Usage (MPCB)	AII_1
Annexure IIa	General Standards for Discharge of Environmental Pollutants	AII_3
Annexure III	Receiving Sea Water Standards for Different Categories, Applicable Parameters and Pertinent Issues	AIII_1
Annexure IV	Drinking Water Quality Standards	AIV_1
Annexure V	Water Quality Indices of Rivers of Maharashtra	AV_1
Annexure VI	Map of Surface and Sea Creek Water Quality Index of	AVI_1
	Maharashtra State (2007-11)	
Annexure VIa	List of Municipal Corporation / Councils Wastewater Discharges into Rivers Stream /Bassin	AVIa_1
Annexure VII	Percent Exceedance Monitoring Locations of River Water	AVII_1
Annexure VIII	Water Quality Indices for Sea Water	AVIII_1
Annexure IX	Five Years Descriptive Statistics of Ground Water Quality	AIX_1
Annexure X	District wise Water Quality Indices of Maharashtra State (2007-2011)	AX_1
Annexure XI	Map of Ground Water Quality Index of Maharashtra State (2007-2011)	AXI_1

LIST OF APPENDICES

Appendix I	Measuring, Monitoring and Controlling of	ApI_1
	Wastewater Treatment Plants using Sensor Network System	
Appendix II	Floating Wetland Ecosystem (FWE)	ApII_1
Appendix III	Application of Natural Methods for Sewage Treatment	ApIII_1
	and Polishing of Treated Wastewater	
Appendix IV	PSRT Based Improved Sanitation Treatment Unit	ApIV_1
Appendix V	Nitrate Removal from Groundwater	ApV_1
Appendix VI	Fluoride in Ground: Overview and Evaluation of	ApVI_1
	Removal Methods -IGRAC	

EXTENDED EXECUTIVE SUMMARY

Disposal of untreated domestic sewage from cities, towns and villages is the major source of pollution of surface water bodies leading to the outbreak of water borne diseases. According to World Health Organization (WHO) estimates, about 80% of water pollution in developing countries like India is caused by domestic wastes (*Durmishi et al., 2012*). The growth of urban megalopolises increased industrial activities and dependence of the agricultural sector on chemicals and fertilizers which has led to overloading of the carrying capacity of water bodies to assimilate and decompose waste load. The objective of any water quality management is to balance the interests of users with the development of the resource, while at the same time improving and preserving environmental quality and ecosystem services.

Maharashtra is the second most populous state and third largest state by area in India. The state covers an area of 307,731 km² or 9.84% of the total geographical area of India. There are 35 districts, Mumbai, being the capital city of the state. The state of Maharashtra has major rivers such as Godavari, Krishna, Tapi- Purna, Bhima and Wardha- Wainganga river besides many other rivers.

The mandate on environmental monitoring of Maharashtra Pollution Control Board (MPCB) necessitates collection of data on the status of water quality in Maharashtra State. Under State Water Quality Monitoring Program (SWMP), National Water Quality Monitoring Program (NWMP) and Hydrology project, River Water quality data is being monitored at 251 locations on 59 Rivers. Water Quality data for these locations for the period 2007-2011 has been analyzed. Sea Water quality data monitored under SWMP, NWMP at 34 locations has been analyzed. Groundwater Survey and Development Agency (GSDA), Central Ground Water Board (CGWB) and MPCB have conducted groundwater quality monitoring program in

various districts of Maharashtra state. Ground water quality data for 3694 villages from 369 talukas of 34 districts of Maharashtra have been analyzed.

Water Quality Index for Surface Water

Multiple parameter assessment requires application of Index which can easily communicate to all for understanding of water quality. The major purpose of combined assessment of these data sets was to bring out the facts related to identification of hotspots, region of high exceedances of standards, and thus development of action plan to remediate the situation. It would also help policy makers to understand the overall water quality status in the state and prioritize action plan.

In India the NSF WQI is being used by CPCB, with a slight modification in weights (*Abbasi*, 2002, *CPCB*, 2001). The NSF WQI is expressed mathematically as:

$$NSF WQI = \sum_{i=1}^{p} W_{i}I_{i},$$

Where, I_i = sub index for ith water quality parameter

Wi = weight (in terms of importance) associated with water quality parameter p = number of water quality parameters.

The modified weights (W_i) and the equation for the sub-indices (I_i) as per CPCB are given in **Tables E1 and E2** respectively.

Table E1: Original and Modified Weights for the Computation of NSF WQI Based on DO, Fecal Coliforms, pH and BOD*

Water Quality Parameters	Original Weights from NSF WQI	Modified Weights by CPCB
DO	0.17	0.31
FC	0.15	0.28
pН	0.12	0.22
BOD	0.1	0.19
Total	0.54	1.00

^{*} CPCB 2001

Table E2: Sub – Index Equations for Water Quality Parameters (NSF WQI)*

Water Quality	Range Applicable	Equation
Parameters		_
DO	0-40% saturation	IDO = 0.18+0.66 x (% Saturation DO)
(Percent saturation)	40-100% saturation	IDO = -13.55+1.17 x (% Saturation DO)
	100-140% saturation	IDO = 163.34-0.62 x (% Saturation DO)
BOD.(mg/l)	0-10	IBOD = 96.67-7 (BOD)
	10-30	IBOD = 38.9-1.23 (BOD)
	> 30	IBOD = 2
pН	2-5	IpH = 16.1 + 7.35 x (pH)
	5-7.3	IpH = -142.67 + 33.5 x (pH)
	7.3-10	IpH = 316.96-29.85 x (pH)
	10-12	IpH = 96.17-8.0 x(pH)
	<2,>12	IpH=0
Fecal Coliform	$1-10^3$	$IFC = 97.2-26.6 \times log(FC)$
(counts/100ml)	$10^3 - 10^5$	$IFC = 42.33 - 7.75 \times log(FC)$
	>10 ⁵	IFC = 2

^{*} Abbasi, 2002

The range of the NSF WQI corresponding to various designated best use classification is given in **Table E3**.

Table E3: NSF WQI for Various Designated Best Use*

Sr.	NSF WQI	Description of Quality (1978)	Class by CPCB	Remarks
1	63-100	Good to Excellent	A	Non polluted
2	50-63	Medium to Good	В	Non polluted
3	38-50	Bad	С	Polluted
4	38 & less	Bad to Very Bad	D, E	Heavily polluted

^{*} CPCB, 2001

Water Quality Index for Ground Water

Each of the groundwater samples analysis data are based on assessment of various parameters such as pH, total hardness, calcium, magnesium, bicarbonate, chloride, TDS, fluoride, nitrate, iron, sulphate, manganese, turbidity, total alkalinity, sodium, potassium, electrical conductivity and carbonate. For computing WQI of Groundwater, three steps are followed (*Ramakrishnaiah et al.*, 2009).

In the first step, each of the selected parameters has been assigned a weight (w_i) according to its relative importance in the overall quality of water for drinking purposes. The modified relative weight of selected parameters is given in **Table E4.**

In the second step, the relative weight (W_i) is computed from the following equation:

$$W_i = \frac{w_i}{\sum_{i=1}^{n} w_i}$$

Where, W_i is the relative weight,

w_i is the weight of each parameter and n is the number of parameters

In the third step, a quality rating scale (q_i) for each parameter is assigned by dividing its concentration in each water sample by its respective standard according to the guidelines laid down in the BIS and the result is multiplied by 100:

$$q_i = (C_i/S_i) \times 100$$

Where, q_i is the quality rating,

 C_i is the concentration of each chemical parameter in each water sample in mg/L, and S_i is the Indian drinking water standard for each chemical parameter in mg/L

According to the guidelines of the BIS 10500, (2004-2005). [BIS (Bureau of Indian Standards) 10500, Indian standard drinking water specification, 2004-2005, pp 1-8].

Table E4: Relative Weight of Chemical Parameters with and without Iron

Chemical Parameters	Indian Standards	Desirable Limit	Permissible Limit	Weight (w _i)	Relative Weight (W _i) Without Iron	Relative Weight (W _i) With Iron
рН	6.5-8.5	6.5-8.5	No	4		
			relaxation		0.12121	0.10811
TH	300-600	300	600	2	0.06061	0.05405
Calcium	75-200	75	200	2	0.06061	0.05405
Magnesium	30-100	30	100	2	0.06061	0.05405
Bicarbonate	244-732	244	732	3	0.09091	0.08108
Chloride	250-1,000	250	1,000	3	0.09091	0.08108
TDS	500-2,000	500	2,000	4	0.12121	0.10811
Fluoride	1-1.5	1	1.5	4	0.12121	0.10811
Nitrate	45-100	45	No	5		
			relaxation		0.15152	0.13514
Iron	0.3-1.0			4		0.10811
Sulphate	200-400	200	400	4	0.12121	0.10811

The maximum weight of 5 has been assigned to the parameter nitrate due to its major importance in water quality assessment. Magnesium is given the minimum weight of 1 as magnesium by itself may not be harmful.

For computing the WQI, the SI is first determined for each chemical parameter, which is then used to determine the WQI as per the following equation:

$$SI_i = W_i \cdot q_i$$

$$WQI = \sum_{i=1}^{n} SI_{i}$$

Where, SI_i is the subindex of i^{th} parameter; q_i is the rating based on concentration of i^{th} parameter, and n is the number of parameters.

The computed WQI values are classified into five types, "excellent water" to "water, unsuitable for drinking" (*Ramakrishnaiah et al.*, 2009) is given in **Table E5.**

Table E5: Water Quality Classification based on WQI Value

WQI Value	Water Quality	
< 50	Excellent	
50-100	Good water	
100-200	Poor water	
200-300	Very poor water	
>300	Water unsuitable for drinking	

The methodology described above has been used in the report for evaluation of WQI. Water quality data analyses have been carried out to arrive at the overall status of rivers, sea beaches, creeks and ground water quality of Maharashtra state along with the trend for last three years. An attempt has been made to bring out the significant places/locations of concern and suggest possible action plan. These action plans though generic may need detailed planning for further step of implementation.

A) RIVER WATER

Monthly water quality data for selected physico-chemical parameters viz. pH, DO BOD, Ammonical Nitrogen and Nitrate for the years 2007-11 were compared with the Maharashtra Pollution Control Board (MPCB) water quality standards of class A-II (**Table E6**) for best designated usage. The water quality indexes for all sites were evaluated using four parameters viz. pH, DO, BOD FC.

Table E6: Water Quality Standards for Best Designated Usage (MPCB)

Category of Fresh Water	A – I	A – II	A – III	A - IV
Best Usage	Unfiltered Public water supply after approved disinfection	Public water supply with approved treatment equal to coagulation, sedimentation and disinfection	Not fit for human consumption, Fish & Wildlife Propagation	Fit for Agriculture, Industrial cooling & process water
Nitrates (NO ₃)	45 mg/l	45 mg/l	-	-
pН	6.5 to 8.5	6.0 to 8.5	6.5 to 9.0	6.5 to 9.0
Total	1.5 mg/l	1.5 mg/l	-	50 mg/l
Ammonical				
Nitrogen				
BOD	2.0 mg/l (monthly	5.0 (monthly average	10 mg/l	30 mg/l
(5 days 20 ⁰ C)	average of at least	of at least 10 samples)		
	10 samples)			
DO	Not less than 5	4.0 mg/l	Not less than	Not less
	mg/l (monthly		3 mg/l	than 2 mg/l
	average of 100			
	samples)			
Bacteriological	Coliform	Not greater		
Standards:	Bacteria 250	than 5000		
MPN/100 ml				

The overall picture of the water quality of the Rivers of Maharashtra is summarized as follows:

- ➤ Water Quality Index showed that out of 251 monitoring locations, 67 locations had water quality index good to excellent during the period 2007-2011 (**Table E7**).
- ➤ 35 locations had water quality very bad at least in one of the months during the period 2007-2011(**Table E8**).
- ➤ At 25 locations out of 251 locations, all parameters are within the standards throughout the period 2007-2011 (**Table E9**).
- At 32 locations out of 251 monitoring sites, percent exceedance of significant parameters is 100% (**Table E10**). At 82 locations, the parameters exceed the stipulated standard, 75% of the time. At 133 locations, the parameters exceed the stipulated standard, 50% of the time.
- > DO is exceeding the standard 100% of the time in Mula Mutha River in Sangam bridge near Ganapathy Ghat, Village- Shivaji Nagar, Pune district.
- ➤ BOD concentrations are exceeding the standard 100% of the time at 26 locations. These rivers are Pawana, Mula Mutha, Bhima, Ulhas, Godavari, Tapi and Vaitarna. At most of the sampling locations in the rivers, BOD values have exceeded the MPCB Class AII

- standard of 5 mg/l. At 164 locations BOD values have exceeded the standard at least once during the period 2007-2011.
- > TC is exceeding the standard 100% of the time at 2 sites in Krishna River at Daund and Khamgaon
- Ammonical nitrogen exceeded the standard 100% of the time at 2 locations in Godavari River at Kesrali village and at Latur water intake near pump house. Village- Dhamegaon, Taluka- Kalumb, District- Osmanabad.; Tapi River at Hingona.

Table E7: Monitoring Locations with WQI "Good to Excellent" during 2007-2011

Sr.	River	St. Code	Location
1	DI (1461	D/s of Pise Dam, Tal:Bhiwandi, Thane
2	Bhatasa	2654	U/S of Liberty Oil Mill, Dist:Thane
3		2653	D/S of Liberty Oil Mill, Dist:Thane
4	Darna	2661	Aswali (Darna Dam), Igatpuri, Nashik
5		HP_GD_2	Dhalegaon
6		HP_GD_6	Killari
7		HP_GD_14	Pishor
8		HP_GD_15	Purnabridge
9		HP_GD_20	Takli
10		HP_GD_21	Taklidhangar
11		HP_GD_22	Toka
12		HP_GD_23	Wadvali
13		HP_GD_24	Yelli
14		HP_GD_25	Zari
15		HP_GD_27	Damrencha
16		HP_GD_28	Deori
17		HP_GD_30	Grugwada
18	Godavari	HP_GD_31	Kamtheekhairi
19		HP_GD_32	Kardha
20		HP_GD_34	Mahagaon
21		HP_GD_35	Mathani
22		HP_GD_36	Petta
23		HP_GD_40	Wadsa (Chincholi)
24		HP_GD_41	Wagholi-Butti
25		12	Dhalegaon
26		1095	Gangapur Dam
27		1210	Vishnupuri
28		1312	Jaikwadi Dam,Paithan
29		2158	Paithan intake, Jayakwadi
30		2159	Pathegaon bridge
31		2183	Nandur Madhmeshwar Dam, Nandur

Table E7 (Contd..): Monitoring Locations with WQI "Good to Excellent" during 2007-2011

Sr.	River	St. Code	Location	
32		37	Miraj	
33	Krishna	1153	Rajapur	
34	KHSIIIIa	1310	At Kurundwad	
35		1906	At Walwa	
36	Kundalika	1152	At Roha bridge	
37		2672	At Dhatav at Jackwell	
38	Muchkundi	HP_MU_1	Pawarwadi	
39		2676	At Waked	
40	Mula-Mutha	2680	Khadakvasla Dam, Pune	
41	Donahaganga	1311	Ichalkaranji near MIDC intake well	
42	Panchaganga	1904	U/S of Kolhapur town near Balinga P.S.	
43		2163	Shirol Intake well	
44	Datalaanaa	2686	Vyal Pump house	
45	Patalganga	2687	Khalapur pumping station	
46		2689	Gagangiri Temple,Khopoli	
47	Pehlar River	2696	Pehlar dam water works	
48		2199	Ovale Village	
49	Savitri	2701	Upsa kendre, Mangalwadi	
50	Saviui	2702	Shedav Doh	
51		2703	Dadli Bridge	
52		2704	Muthavali village	
53	Surya	2706	U/s. Surya Dam, Dhammi, Vikramgad, Thane.	
54	Surya	2707	MIDC PS, Garvshet, Palghar, Thane	
55		2708	Intake of Vasai-Virar w/s, Palghar, Thane	
56		HP_TP_2	Bhusawal	
57		HP_TP_5	Hingona	
58	Tomi	HP_TP_11	Padalse	
59	Tapi	HP_TP_13	Sawkheda	
60		HP_TP_6	Kawtha	
61		HP_TP_7	Khariya	
62		HP_TP_8	Lakhpuri	
63	Ulhas	1094	U/s of BadalapurWW, Kulgaon village	
64		2162	Jambhul water work, Ambernath	
65	Vashishti	2164	U/s 3M Paper Mill Kherdi	
66	v asnisnu	2713	D/s 3M Paper Mill Kherdi	
67		2714	U/s Konphansawane	

Table E8: Monitoring Stations with WQI "Very Bad" at least One Month

Sr. No	River	St. Code	Location	
1		1189	U/s of Vithalwadi near Sankar Mandir, Dist. Pune	
2	Bhima	D/s of Bundgarden, District-Pune		
3	Billila	1191	After confluence with Mula-Mutha at Pargaon	
4		2655	At Koregaon near Koregaon bridge, District- Pune	
5	Daman Ganga	HP_DG_3	Shindayacha Pada	
6	Ghod	2665	Shirur	
7	Godavari	HP_GD_7	Kopargaon	

Table E8 (Contd..): Monitoring Stations with WQI "Very Bad" at least One Month

Sr. No	River	St. Code	Location			
8	T., 1	2197	D/s of Alandigaon			
9	Indrayani	2668	D/s of Moshi village			
10		2669	U/s of Moshigaon			
11	Kanhan	1909	D/s of Nagpur			
12	Krishna	HP_KR_10	Dattawadi			
13		HP_KR_24	PimpleGurav			
14	Mithi	2168	Mahim Village			
15	Morna	2675	D/s Railway Bridge, Akola			
16		2191	Mutha river at Sangam bridge near Ganapathy ghat			
17		2192	Mundhawa bridge			
18	Mula-	2193	Aundh bridge			
19	Mutha	2194	Harrison bridge near Mula- Pawana sangam			
20		2677	D/s of Theur			
21		2678	Mutha river near Veer Savarkar Bhavan			
22		2679	Mutha river at Deccan bridge			
23	Nira	2195	D/s of Jubilant Organosis, Nimbut			
24		2681	Sangavi			
25		2196	Sangavigaon			
26		2690	Kasarwadi			
27	Pawana	100	Sangavigaon			
28		2691	Dapodi at Pawana-Mula sangam			
29		2693	Chinchwadgaon			
30		2694	Pimprigaon			
31	Pedhi	2695	Pedhi river brudge near Padhi village			
32	Purna	2155	D/s of confluence of Morna and Purna, at Andura			
33	Tapi	HP_TP_1	Akkalpada			
34		HP_TP_12	Sarangkheda			
35	Ulhas	HP_UH_3	Manda			

Table E9: Monitoring Sites with 0% Percent Exceedance of all the Parameters during the Period 2007-2011

Sr. No	River	St. Code	Location		
1		HP_GD_2	Dhalegaon, Regional Lab Aurangabad		
2		HP GD 6	Killari, Regional Lab Aurangabad		
3		HP_GD_14	Pishor, Regional Lab Aurangabad		
4		HP GD 20	Takli, Regional Lab Aurangabad		
5		HP GD 24	Yelli, Regional Lab Aurangabad		
6		HP_GD_25	Zari, Regional Lab Aurangabad		
7		HP_GD_27	Dhamrencha, Regional Lab-Nagpur		
8	Godavari	HP_GD_30	Drugwada, Regional Lab-Nagpur		
9		HP GD 31	Kamtheekhairi, Regional Lab-Nagpur		
10		HP GD 32 Godavari			
11		HP_GD_33	Kolgaon, Regional Lab-Nagpur		
12		HP_GD_34	Mahagaon, Regional Lab-Nagpur		
13		HP_GD_35	Mathani, Regional Lab-Nagpur		
14		HP_GD_36	Petta, Regional Lab-Nagpur		
15		HP_GD_37	Saiphal, Regional Lab-Nagpur		

Table E9 (Contd..): Monitoring Sites with 0% Percent Exceedance of all the Parameters during the Period 2007-2011

Sr. No	River	St. Code	Location		
16	Godavari	HP_GD_39	Wadsa (Chincholi), Regional Lab-Nagpur		
17	Godavaii	HP_GD_40	Tembhurdoh, Regional Lab-Nagpur		
18	Vrighno	HP_KR_25	Shirur		
19	19 Krishna HP KR 25		Rakshewadi		
20	Patalganga	2689	Gagangiri Maharaj Temple, Khopoli, Raigad.		
21	Pehler	2696	Pehlar Dam inlet of water works, Vasai, Thane.		
22	Toni	HP_TP_11	Padalse		
23	Tapi	HP_TP_13	Sawkheda		
24		HP_TP_7	Khariya		
25	25 Ulhas 10		U/s of Badlapur water works, Kulgaon,		
23	Omas	1094	Taluka- Ambernath, District- Thane		

Table E10: Monitoring Sites with 100% Percent Exceedance of Significant Parameters

Sr.	St. Code	River	Location	pН	DO	BOD	TC	Ammo- nical-N
1	1189	Bhima	U/s of Vithalwadi near Sankar Mandir.Village- Vithalwadi, Taluka- Haweli, District- Pune.	0	64	100	0	44
2	1190		Pune, D/s of Bundgarden. Village- Yerwada, Taluka- Haweli, District- Pune.	4	77	100	0	71
3	HP_GD_5		Kesrali, Regional Lab Aurangabad	67	0	0	50	100
4	HP_GD_1		Bhandardara, Regional Lab Nasik	0	0	100	0	0
5	HP_GD_3	Godavari	Gangapur Dam, Regional Lab Nasik	33	33	100	0	0
6	2157		Latur water intake near Pump house. Village- Dhamegaon, Taluka- Kalumb, District Osmanabad.	0	33	0	0	100
7	HP_KR_8	Krishna	Bundgarden Bridge	0		100	0	100
8	HP_KR_11	Krisiiia	Daund	0	0	56	100	0
9	HP_KR_15		Khamgaon	0	0	67	100	0
10	2191	Mula	Sangam bridge near Ganapathy ghat. Village- Shivaji Nagar, District- Pune.	0	100	98	0	87
11	2192	Mutha	Mundhawa bridge. Village- Mundhawa, Taluka- Haweli, District- Pune.	2	87	100	0	90

Table E10(Contd..): Monitoring Sites with 100% Percent Exceedance of Significant Parameters

Sr.	St. Code	River	Location	pН	DO	BOD	TC	Ammo-
12	Code		Aundh	2	(0	100	0	nical-N
12			bridge, Aundgaon. Village-	2	60	100	0	82
	2193		Aundgaon, Taluka-					
			Haweli, District- Pune.					
13		Mula	Harrison bridge near	2	77	100	0	85
13		Mutha	Mula- Pawana sangam.	2	, ,	100		0.5
	2194	Mulliu	Village- Bopodi, Taluka-					
			Haweli, District- Pune.					
14	2678		Near Veer Savarkar	0	82	100	0	76
	20/8		Bhavan, Pune.					
15	2679		Deccan bridge, Pune.	2	84	100	0	73
16			Sangavigaon, Pune.	0	83	100	0	71
	2196		Village- Sangavigaon,					
	2170		Taluka- Haweli, District-					
			Pune.					
17	2690		Kasarwadi, Haweli, Pune.	9	71	100	0	76
18	100		Sangvigaon, Pune	0	86	100	0	89
19	2691	Pawana	Dapodi bridge, at Pawana-	4	88	100	0	71
20	2604		Mulla Sangam, Pune.	0	7.6	100	0	((
20 16	2694		Pawna Pimprigaon, Pune.	0	76 83	100	0	66
16			Sangavigaon, Pune.	U	83	100	0	71
	2196		Village- Sangavigaon, Taluka- Haweli, District-					
			Pune.					
17	2690		Kasarwadi, Haweli, Pune.	9	71	100	0	76
18	100		Sangvigaon, Pune	0	86	100	0	89
21	HP TP 5		Hingona	0	0	0	0	100
22	HP TP 1		Akkalpada	29	0	100	0	0
23	HP_TP_14		Dhule	0	13	100	89	0
24	HP_TP_9	Tapi	Malegaon Mosam	9	0	100	27	0
25	HP_TP_12		Sarangkheda	0	7	100	8	0
26	HP_TP_15		Suple	13	0	100	43	0
27	HP_TP_14		Sukwad	7	7	100	7	0
28	HP_UH_2	Ulhas	Khapari	7	0	100	15	0
29	HP_UH_3		Manda	0	77	100	80	0
30	HP_VN_1	Vaitarna	Alman	0	0	100	0	0
31	HP_VN_2	, aimiia	Vaitarna	0	0	100	0	0
32	HP_VN_3		Kasa (Thane)	0	0	100	8	0

Godavari Basin

With a length of 1465 km, the Godavari River is a major water body in central India, originating in the Western Ghats of Trimbakeshwar, in the Nashik District. It flows for 692 kms before entering Andhra Pradesh and finally reaches the Bay of Bengal. **Table E11** gives the number of

sites out of 51 sites of Godavari with percent exceedances in different ranges for BOD, DO, TC and pH.

Table E11: Number of Sites of Godavari with Percent Exceedances for BOD, DO, TC and pH

Percent Exceedance	BOD	DO	TC	pН
0%	29	35	49	22
1-20%	7	11	0	25
20-40%	4	4	0	2
40-60%	1	1	0	1
60-80%	2	0	2	1
80-100%	6	0	0	0

Figures E1 shows the pie chart for percent exceedances for BOD, DO, TC and pH for 51 locations in Godavari River. 59% of the sites have no exceedance of BOD from the standard. 15% of the sites have percent exceedance of BOD between 1-20% and so on.

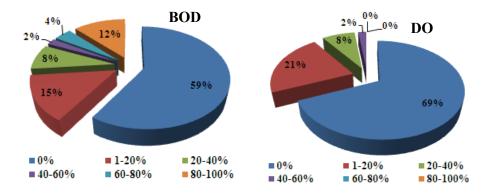


Figure E1: Percent Exceedances at 51 Monitoring Locations of Godavari River

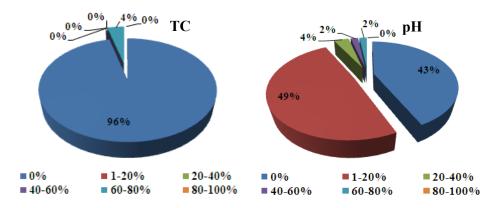


Figure E1(Contd..): Percent Exceedances at 51 Monitoring Locations of Godavari

The average water quality index for five years evaluated at 51 sites showed that 84% of the locations had water quality "Good to Excellent", 14% of the locations had water quality "Medium to Good" and 2% of the locations (1 location) that is at Kopargaon water quality was bad (Figure E2).

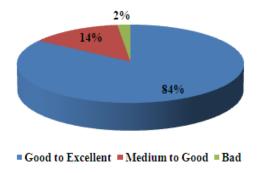


Figure E2: Water Quality Index of 51 Monitoring locations of Godavari River

Krishna Basin

Krishna River rises at Mahabaleswar in Maharashtra in the west and meets the Bay of Bengal at Hamasala deevi in Andhra Pradesh, on the east coast. It goes through Satara, Sangli, Kohapur, Solapur which have many sugar plants. The use of large quantities of fertilizers and pesticides in these plots ultimately finds its way in the river.

Table E12 gives the number of sites out of 28 sites of Krishna with percent exceedances in different ranges for BOD, DO, TC and pH

Table E12: Number of Sites of Krishna with percent exceedances for BOD, DO, TC and pH

Percent Exceedance	BOD	DO	TC	pН
0%	13	21	11	8
1-20%	5	4	1	18
20-40%	0	0	1	0
40-60%	2	0	3	0
60-80%	5	0	4	1
80-100%	2	2	5	0

Figures E3 shows the pie chart for percent exceedances for BOD, DO, TC and pH for 28 locations in Krishna River. 48% of the sites have no exceedance of BOD from the standard.

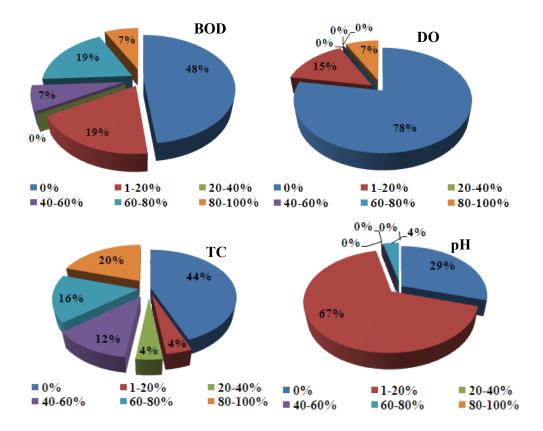


Figure E3: Percent Exceedances at 28 Monitoring Locations of Krishna River

The average water quality index for five years evaluated at 28 sites is presented in **Figure E4**. It shows that 26% of the locations had water quality "Good to Excellent", 67% had water quality "Medium to Good" and at 7% locations (2 locations iz. Paud and Ambeghar in Karanje) water quality was bad.

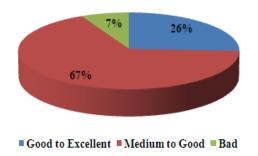


Figure E4: Water Quality Index of 28 Monitoring Locations of Krishna River

Tapi Basin

The Tapi River is one of the major rivers with a length of around 724 km. The river rises in the eastern Satpura Range of Madhya Pradesh, and flows westward, though, Maharashtra's Kandeshand, East Vidarbha regions in the northwest corner of the Deccan Plateau and south Gujarat, before emptying into the Arabian Sea.

MPCB has 21 monitoring locations of Tapi River under NWMP, SWMP and Hydel Project. **Table E13** gives the number of sites out of 21 sites of Tapi with percent exceedances in different ranges for BOD, DO, TC and pH.

Table E13: Number of Sites of Tapi with Percent Exceedances for BOD, DO, TC and pH

Percent Exceedance	BOD	DO	TC	pН
0%	11	14	16	6
1-20%	1	6	2	14
20-40%	0	1	1	1
40-60%	1	0	1	0
60-80%	2	0	0	0
80-100%	6	0	1	0

Figures E5 show the pie chart for percent exceedances for BOD, DO, pH and TC for 21 locations in Tapi River.

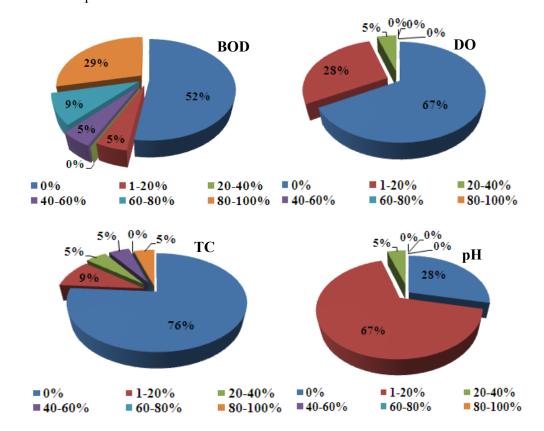


Figure E5: Percent Exceedances at 21 Monitoring Locations of Tapi River

The average water quality index for five years evaluated at 21 sites is presented in **Figure E6**. It shows that 67% of the locations had water quality "Good to Excellent", 24% had water quality "Medium to Good" and at 9% locations (2 locations viz. Akkalpada and Dhule) water quality was bad.

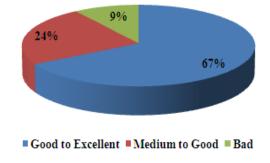


Figure E6: Water Quality Index of 21 Monitoring Locations of Tapi River

Bhima Basin

The Bhima River originates in Bhimashankar hills near Karjat on Sahyadri, in Maharashtra. Bhima flows southeast for 725 km through Maharashtra, Karnataka and Andhra Pradesh. Bhima is the most important tributary of Krishna River. Its banks are densely populated. Monitoring is carried out at 9

locations of Bhima River. Number of sites of Bhima with percent exceedances in different ranges for BOD, DO, TC and pH are given **Table E14**.

Table E14: Number of Sites of Bhima with Percent Exceedances for BOD, DO, TC and pH

Percent Exceedance	BOD	DO	TC	pН
0%	0	2	8	4
1-20%	0	3	0	5
20-40%	0	2	1	0
40-60%	2	0	0	0
60-80%	2	2	0	0
80-100%	5	0	0	0

Percent exceedances for BOD, DO, pH and TC for 9 locations in Bhima River are shown in **Figures E7.**

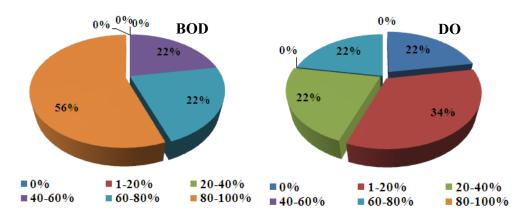


Figure E7: Percent Exceedances at 9 Monitoring Locations of Bhima River

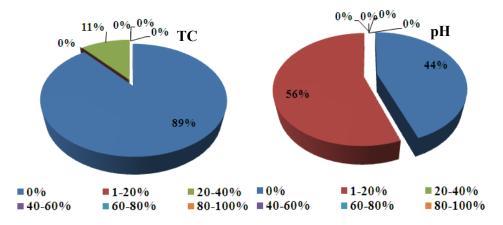


Figure E7 (Contd..): Percent Exceedances at 21 Monitoring Locations of Bhima River

The WQI indicates that out of 9 monitoring locations, river water quality was "Good to Excellent" at 1 site. At six sites water quality was "Medium to Good" and at 2 sites (viz. Upstream of Vithalwadi near Sankar Mandir and D/s of Bundgarden, both in Taluka Haweli, district Pune) it was bad (Figure E8).

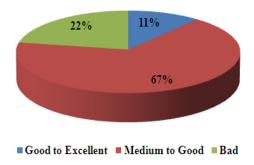


Figure E8: Water Quality Index of 9 Monitoring Locations of Bhima River

Wardha Wainganga Basin

Both Wardha and Wainganga Rivers originate at Satpura Range in Madhya Pradesh and enters into Maharastra. A huge dam (Upper Wardha Dam) is built on Wardha River near Morshi and considered as lifeline for Amravati city. After both the rivers join the united stream, known as Pranahita, ultimately falls into the River Godavari. The total number of monitoring

sites of Wardha and Wainganga rivers is 13. Percent exceedances in different ranges for BOD, DO, TC and pH are given in **Table E15** and **Figures E9**. TC concentrations are within the standard at all the sites. Percent exceedances of pH at all the sites range between 5-14%.

Table E15: Number of Sites of Wardha Wainganga with Percent Exceedances for BOD, DO, TC and pH

Percent Exceedance	BOD	DO	TC	pН
0%	0	8	13	0
1-20%	0	5	0	13
20-40%	0	0	0	0
40-60%	1	0	0	0
60-80%	7	0	0	0
80-100%	5	0	0	0

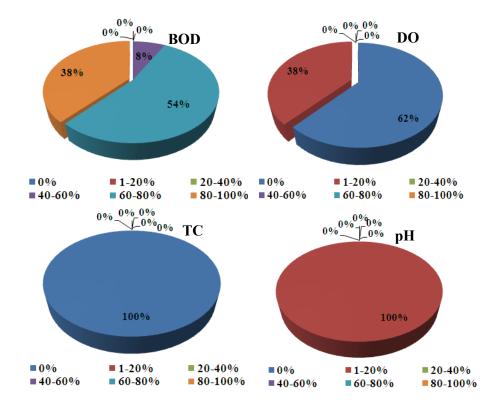


Figure E9: Percent Exceedances at 13 Monitoring Locations of Wardha Wainganga River

The water quality of Wardha Wainganga Rivers were "Medium to Good" at 9 sites and "Good to Excellent at 4 sites." None of the sites had "Bad" water quality (**Figure E10**).

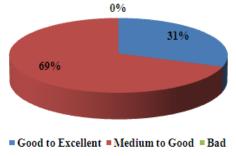


Figure E10: Water Quality Index of 13 Monitoring locations of Wardha and Wainganga Rivers

B) WATER QUALITY OF SEAFRONTS AND CREEKS OF MAHARASHTRA

Water quality index evaluated for each month for the period 2007-2011 show that at Ganapatiphule, Bhagwati Bunder, Karambhane creek and Mandavi Bunder water quality index lie between good to excellent.

At these four sites FC is within CPCB water quality standards of class SW-II throughout the year for the period 2007 to 2011. At Bhagawati Bundar, Mandavi Bander, Ganapatiphule the percent exceedances for BOD is 7% at all three sites. At Karambhane creek, the percent exceedance for BOD is 15%.

At Karambhane creek and Mandavi Bander the percent exceedance for DO is 5 and 7% respectively.

WQI evaluated for all other Seafronts and Creeks of Maharashtra for each month for the period 2007-2011 is "Bad to Moderately Good". Percent exceedances of BOD with respect to SWII standards (Table E16) in all these 29 beaches and seafronts are 100%. Percent exceedance of pH, DO, BOD and TC for the sea water for the period 2007-11 are given in **Table E17**.

Table E16: Receiving Sea Water Standards for Different Categories, Applicable Parameters and Pertinent Issues

Categories	Major	Rationale/Remarks	Issues
Commercial	parameters	Danga daga nat agusa shin ar aya	Commoraid fishing
fishing,	pH- 6.5-8.5	Range does not cause skin or eye irritation and is also conducive for	Commercial fishing generally not
contact		propagation of aquatic lives.	undertaken near shore
recreation,		propagation of aquatic rives.	where bathing,
bathing	DO- 4.0 mg/l	Not less than 3.5 mg/l at any time for	recreational activities
water	DO 1.0 mg/1	protection of aquatic lives.	are common. Length
(SW II)		protection of aquatic rives.	(seaward) upto
(25)	No noticeable	Specially caused by chemical	which bathing is
	colour, odour	compounds like creosols, phenols,	undertaken should be
	and floating	naphtha, benzene, pyridine, toluene	also taken into
	matters	etc. causing visible colouration of	consideration.
		water and tainting of and odour in fish	
		flesh.	Sampling schedule
			suggested (average
	Turbidity	30 NTU (Nephelo Tur- bidity Unit)	200/ 100ml not to
		Measured at 0.9 depth	exceed in 20 % of the
			sample and 3
	BOD_5 - 3 mg/l	Restricted for bathing (aesthetic	consecutive samples
		quality of water). Also prescribed by	in monsoon) may
		IS:2296-1974.	give varied results
	F1 C-1:6	Th	depending upon tide
	Fecal Coliform	The average value not exceeding	timings and location
	- 100/100 ml	200/100 ml in 20 percent of samples in	of sampling
		the year and in 3 consecutive samples	
		in monsoon months.	

Table E17: Percent Exceedance of pH, DO, BOD and FC for the Sea Water

Sr.	Location	Station	pН	DO	BOD	FC
		Code				
1	Arnala Sea	2805	0	25	100	70
2	Bassein creek	1316	0	16	100	78
3	Bhagawati Bunder	2814	19	0	7	0
4	Bhyander Creek, Jesal Park	2797	0	26	100	80
5	Charni road choupathy, Mumbai.	2166	0	27	100	87
6	Shivaji Park, Dadar	2811	4	35	100	96
7	Dahanu Creek at Dahanu Fort	2802	0	26	100	94
8	Dandi Creek	2799	0	29	100	29
9	Ganapatiphule, Ratnagiri	2813	35	0	7	0
10	Gateway of India	2165	0	38	100	83
11	Haji Ali	2810	4	44	100	87
12	Juhu Beach	2812	0	13	100	78
13	Kalwa Creek	2793	0	38	100	79
14	Karambhane creek at Chiplun village	2804	5	5	15	0
15	Mahim creek	1318	6	31	100	72
16	Malbar Hill	2809	4	36	100	92
17	Mandavi Bunder	2815	29	7	7	0

Table E17 (Contd..): Percent Exceedance of pH, DO, BOD and FC for the Sea Water

Sr.	Location	Station	pН	DO	BOD	FC
1.0	771 1 26 1 1	Code	0		100	100
18	Kharekuran Murbe creek	2798	0	7	100	100
19	Nariman point	2808	4	46	100	96
20	Navapur Sea	2807	0	13	100	100
21	Panvel Creek, Kopra	2803	0	43	100	100
22	Sarwali creek	2800	0	27	100	88
23	Sawta Creek	2801	4	16	100	59
24	Thane creek at Elephanta Island.	1317	0	14	100	63
25	Ulhas creek at Retibunder, D/S of		0	26	100	100
	Kalyan Bhiwandi Bridge	2791	0	36	100	100
26	Ulhas creek at Versova bridge.	2796	0	26	100	86
27	Ulhas creek at Gaimukh at Nagla		0	26	100	01
	bunder	2795	0	26	100	91
28	Ulhas creek at Mumbra Reti bunder	2792	0	28	100	87
29	Ulhas creek at Kolshet Reti bunder	2794	0	24	100	83
30	Uttan Sea	2806	0	30	100	84
31	Vashi creek at Airoli bridge, Thane.	2184	0	35	100	85
32	Vashi creek at Vashi bridge, Mumbai	2185	0	39	100	73
33	Versova. Mumbai.	2169	0	28	100	56
34	Worli seaface, Mumbai.	2167	0	19	100	81

C) GROUND WATER QUALITY OF MAHARASHTRA

Groundwater Survey and Development Agency (GSDA) and Central Ground Water Board (CGWB) have conducted groundwater quality monitoring program in various districts of Maharashtra state. It is to be noted that in many Talukas only one set of data is available for the period 2007-2009 and the conclusion is drawn based on the limited data.

It is observed that out of 369 Talukas, there are 36 Talukas in Maharashtra where water quality is within permissible limits i.e. pH, Total Dissolved solids, Total hardness, Flouride and Nitrate does not exceed the standards throughout the study period i.e. 2007 to 2011. These 36 Talukas with good ground water given in Table E18 include 9 Talukas in Raigad, 5 Talukas in Mumbai, 4 Talukas in Kolhapur, 3 Talukas each in Chandrapur and Ratnagiri.

Table E18: Talukas in Maharashtra with No Exceedance for Selected Parameters

Sr.	District	Taluka
1	Ahmednagar	Pathardi
2	Beed	Ambejogai
3	Chandrapur	Jiwati, Pombhurna, Korpna
4	Gondia	Goregaon

Table E18 (Contd..): Talukas in Maharashtra with No Exceedance for Selected Parameters

Sr.	District	Taluka
5	Gadchiroli	Bhamragarh
6	Kolhapur	Gaganbawada, Panhala, Radhanagari, Shahuwadi
7	Raigad	Khalapur, Panvel, Poladpur, Raigad, Roha, Sudhagad,
		Shrivardhan, Tala, Uran
10	Mumbai	Kurla, Churchgate, Deulwadi, Mahim, Chembur
11	Nagpur	Umred
12	Nanded	Biloli
13	Ratnagiri	Chiplun, Mandangarh, Lanja
14	Sangli	Walwa
15	Satara	Mahabaleshwar, Medha
16	Sindhudurg	Devagad
17	Thane	Wada, Talasari
18	Thane	Talasari

It is further observed that out of 369 Talukas, in 76 Talukas in Maharashtra, Total Hardness and Nitrate exceed BIS permissible limits 100% of the time during 2007 to 2011 (Table E19). It is observed that NO₃ in ground water exceed the permissible limit of 45 mg/l in 3 Talukas in Maharashtra 100% of the time. Total Hardness in ground water exceeds the permissible limit of 600 mg/l 100% of the time in 74 Talukas in Maharashtra. TDS, pH and F do not exceed 100% of the time in any Taluka.

Table E19: Talukas in Maharashtra with 100% Exceedance for Selected Parameters

Sr.	District	Taluka	pН	TDS	TH	F	NO ₃
1	Ahmednagar	Hahata	0	0	100	0	100
2	Jalgaon	Dharangaon	0	0	20	0	100
3		Bodwad	0	0	0	0	100
4		Dhadgaon	35	0	100	0	0
5		Shahada	25	25	100	0	0
6	Nandurbar	Akkalkuva	25	17	100	0	0
7		Nandurbar	14	39	100	0	10
8		Navapur	13	9	100	0	7
9		Taloda	12	6	100	0	0
10		Yeola	53	35	100	6	12
11		Surgana	50	0	100	0	0
12		Kalwan	46	21	100	0	0
13		Nandgaon	38	62	100	3	10
14	Nashik	Deola	33	83	100	17	17
15	INASIIIK	Sinnar	30	63	100	3	8
16		Peinth	29	0	100	0	0
17		Baglan	27	46	100	2	2
18		Chandwad	27	13	100	0	0
19		Igatpuri	26	5	100	0	0
20		Niphad	22	59	100	7	20

Table E19 (Contd..): Talukas in Maharashtra with 100% Exceedance for Selected Parameters

Sr.	District	Taluka	pН	TDS	TH	F	NO_3
21		Malegaon	16	63	100	3	3
22	NI1. 11-	Dindori	16	9	100	6	3
23	Nashik	Nashik	14	32	100	0	9
24		Satana	0	83	100	0	33
25		Trimbakeshwar	0	0	100	0	0
26		Paranda	40	30	100	10	20
27		Tuljapur	32	35	100	6	0
28	Osmanabad	Kallam	28	24	100	0	7
29	Osmanabad	Omerga	26	16	100	6	5
30		Bhoom	25	17	100	0	8
31		Osmanabad	13	45	100	5	18
32		Lohara	0	0	100	0	33
33		Palam	14	71	100	14	7
34		Pathri	6	33	100	17	6
35		Gangakhed	4	29	100	17	0
36	Doubboui	Jintur	0	57	100	22	4
37	Parbhani	Manwat	0	50	100	33	33
38		Sonpeth	0	50	100	25	0
39		Parbhani	0	46	100	20	14
40		Selu	0	44	100	28	0
41		Purna	0	25	100	0	0
42		Indapur	36	48	100	0	31
43		Baramati	19	51	100	0	54
44		Ambegaon	16	37	100	0	47
45		Shirur	10	51	100	0	49
46		Daund	8	59	100	0	32
47		Pune (Haveli)	6	42	100	2	38
48	Pune	Junnar	5	18	100	0	20
49	1 unc	Purandar	0	29	100	0	39
50		Khed	0	13	100	0	50
51		Bhor	0	0	100	0	33
52		Mawal	0	0	100	0	0
53		Mulshi	0	0	100	0	0
54		Wadgaon (Maval)	0	0	100	0	0
55		Wehle	0	0	100	0	0
56		Karanja	18	32	100	3	39
57	Washim	Manora	15	37	100	0	44
58	vv asiiiiii	Malegaon	14	49	100	0	49
59		Mangarulpir	10	33	100	0	43
60		Risod	8	89	100	1	62
61	Yavatmal	Digras	9	55	100	0	42
62	i availlai	Pusad	8	25	100	0	25
63		Zari Jamni	7	14	100	21	14

Table E19 (Contd..): Talukas in Maharashtra with 100% Exceedance for Selected Parameters

Sr.	District	Taluka	pН	TDS	TH	F	NO ₃
64		Wani	7	86	100	31	38
65		Ner	7	50	100	0	57
66		Umarkhed	4	48	100	0	39
67		Darwha	3	36	100	0	33
68		Arni	0	52	100	0	48
69	Yavatmal	Ralegaon	0	42	100	0	48
70	i availlal	Kalamb	0	40	100	0	50
71		Bhabhulgaon	0	37	100	0	53
72		Yavatmal	0	33	100	0	39
73		Ghatanji	0	29	100	6	44
74		Pandharkawada (Kelapur)	0	26	100	3	32
75		Maregaon	0	25	100	0	25
76		Mahagaon	0	25	100	0	6

The frequency distribution of selected parameters and contour maps of average concentrations of pH, TDS, TH, Fluoride and Nitrate are given in **Figure E11 through E16**.

i) Nitrate Pollution

The studies carried-out by GSDA and CGWB during the period 2007-2011 revealed that 3 Talukas in Ahmednagar and Jalgaon districts have shown nitrate levels above desirable limits, 100% of the time. The districts with high concentrations of Nitrate are Aurangabad, Ahmednagar, Amravati, Buldhana, Beed, Chandrapur, Dhule, Gadchiroli, Jalna, Jalgaon, Solapur, Washim and Wardha.

Human health consequences of exposure to high nitrate levels are of great concern. Greater NO₃⁻ intake reduces the oxygen carrying capacity in the blood by binding to hemoglobin, causing a condition referred to as methemoglobinemia or blue baby syndrome which may cause mortality by asphyxiation especially in new born infants. In developing countries like India, NO₃⁻ enrichment in groundwater has been appearing as a major threat in few intensively cultivable States: Punjab, Haryana, Maharashtra, Andhra Pradesh, Uttar Pradesh, West Bengal, Rajasthan and Delhi.

ii) Total Hardness

Groundwater in 74 Talukas in 17 Districts shows Total Hardness exceeding the permissible limits (600mg/l) 100% of the time. In Talukas of Amhednagar, Aurangabad, Dhule and Nagpur, and in certain part of Nashik and Pune; Washim and Yavatmal where total hardness in ground water exceeded 100% of the time.

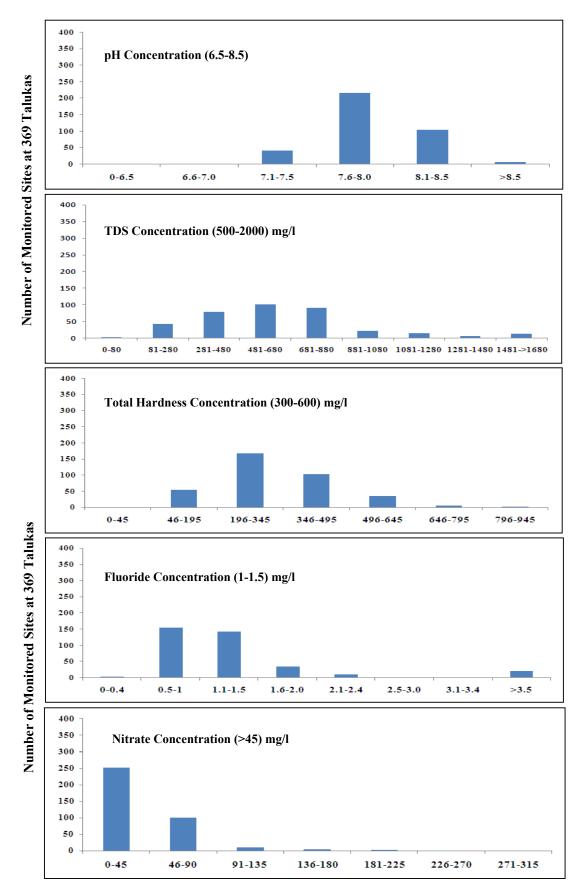


Figure E11: Frequency Distribution of Average Concentration of Selected Parameters in Ground Water of Maharashtra

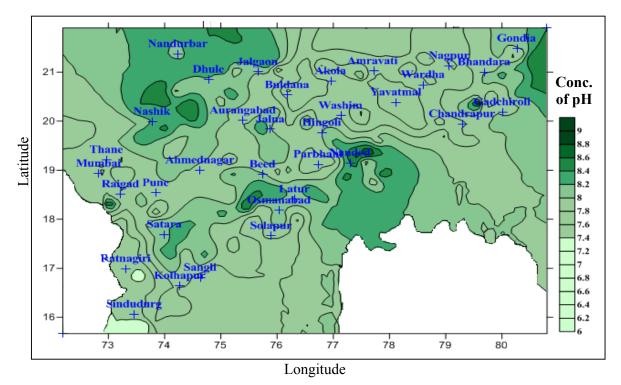


Figure E12: Contour Map of Average Concentration of pH

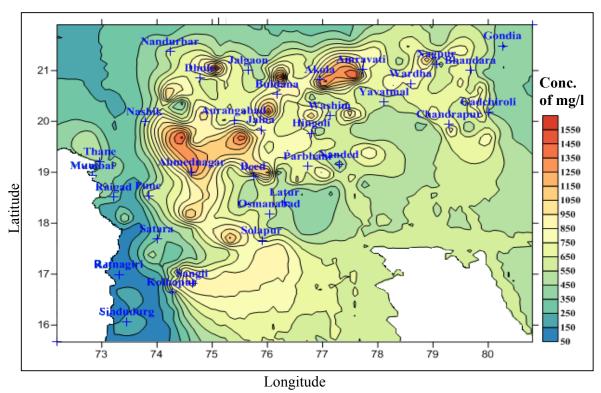


Figure E13: Contour Map of Average Concentration of Total Dissolved Solids

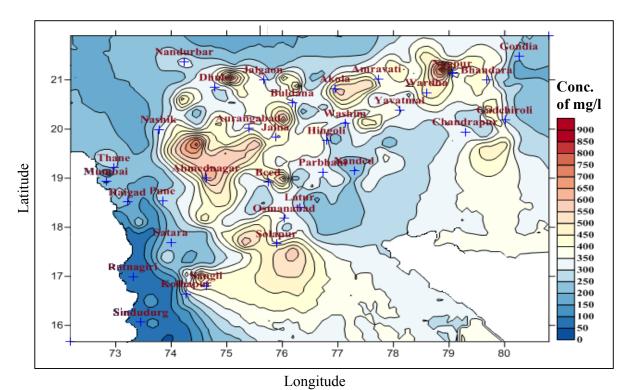


Figure E14: Contour Map of Average Concentration of Total Hardness

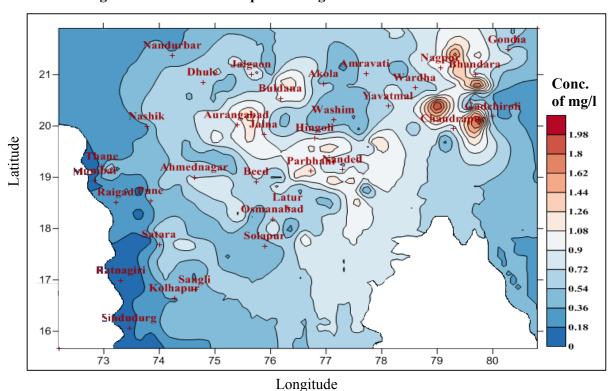


Figure E15: Contour Map of Average Concentration of Fluoride

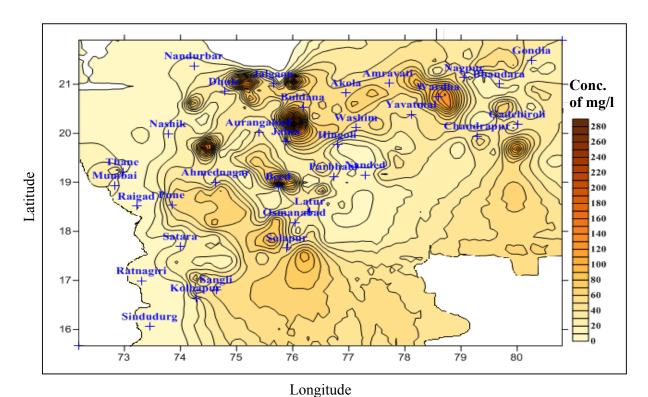


Figure E16: Contour Map of Average Concentration of Nitrate

Hard water is not a health hazard. Hard water is a nuisance because of mineral buildup on fixtures and poor soap and/or detergent performance. Hard water interferes with almost every cleaning task from laundering and dishwashing to bathing and personal grooming. Water flow may also be reduced by deposits in pipes.

iii) Fluoride Pollution

The groundwater quality monitored by GSDA and CGWB during the period 2007-2011 showed that 137 Talukas in 27 districts have Fluoride levels above permissible limits of 1.5 mg/l. Chandrapur, Nanded, Nagpur, Parbhani, Jalna and Yavatmal have high Fluoride levels.

The major health problems caused by fluoride are dental fluorosis, teeth mottling, skeletal fluorosis and deformation of bones in children as well as in adults. The major sources of fluoride in groundwater are fluoride-bearing rocks such as fluorspar, cryolite, fluorapatite and hydroxylapatite. The fluoride content in the groundwater is a function of many factors such as availability and solubility of fluoride minerals, velocity of flowing water, temperature, pH, concentration of calcium and bicarbonate ions in water, etc.

iv) Total Dissolved Solids

TDS is an indicator of aesthetics. The analysis shows that 124 Talukas of Maharashtra show exceedance of permissible limit. Total dissolved solids in ground water exceeded the BIS standard of 2000 mg/l in most of the Talukas of Amravati, Ahmednagar, Akola, Buldhana, Dhule, Nadurbar, Nashik, Parbhani and Washim having high concentrations of TDS in ground water.

An elevated level of TDS, by itself, does not indicate that the water presents a health risk. However, elevated levels of specific ions included in the TDS measurement, such as nitrate, arsenic, aluminum, copper, or lead, could present health risks. The concentration of the dissolved ions may cause the water to be corrosive, salty or brackish taste, result in scale formation, and interfere and decrease efficiency of hot water heaters; For aesthetic reasons, a limit of 2000 mg/l as permissible limit has been established as part of the BIS – 10500 (2004-2005).

v) pH Concentration

216 Talukas from Ahmednagar, Akola, Amravati, Aurangabad, Beed, Bhandara, Buldhana, Chandrapur, Dhule, Gadchiroli, Gondia, Hingoli, Jalgaon, Jalna, Kolhapur, Latur, Nagpur, Nanded, Nandurbar, Nashik, Osmanabad Parbhani, Pune, Raigad, Ratnagiri, Sangli, Satara, Sindhudurg, Thane and Wardha, Washim and Yavatmal districts have pH concentrations not complying with the BIS standard of 6.5-8.5 mg/l.

vi) BOD

MPCB also monitors groundwater at 50 locations. The analysis of MPCB data reveal that at most of the locations BOD did not comply with the MPCB Class AI standard. TC and Ammonical Nitrogen did not comply at few places.

vii) Discharge Locations

MPCB also monitored water quality of some of the discharge locations such as nallahs at various domestic and industrial locations. Water Quality of Nallas monitored by MPCB was compared with the MPCB's General Standards for Discharge of Environmental Pollutants – Part A, Effluents (Public Sewers) [Annexure IIa]. Most of the results complied with the standards, except pH not meeting at 2 nallas viz. Tarapur, MIDC Nalla (Near Sump 1 and 3) and Ammonical Nitrogen at Tarapur, MIDC Nalla (near Sump 3) during 2010.

Correlation Matrix for Different Ground Water Parameters

Table E20 presents the correlation coefficient matrix between major parameters of ground water.

Table E20: District Wise Correlation Matrix for Different Ground Water Parameters

1.		SO_4^{-2}	F ⁻	NO ₃	2.		SO ₄ -2	F-	NO ₃
Ahmedna	Cl	-0.068	-0.116	.662**	Akola	Cl	.905(**)	0.417	0.261
gar	SO_4^{-2}	1	602*	0.126	(n-7)	SO_4^{-2}	1	0.454	0.442
(n-14)	F-		1	-0.168		F-		1	-0.262
3.		SO ₄ ⁻²	F ⁻	NO_3^-	4.		SO ₄ -2	F ⁻	NO_3^-
Amravati	Cl	.844**	-0.399	.671**	Aurangabad	Cl	.740*	-0.267	.846**
(n-14)	SO ₄ ⁻²		-0.116	.654*	(n=9)	SO ₄ ⁻²		-0.351	0.608
	F ⁻			-0.013		F-			-0.166
5.		SO ₄ -2	F ⁻	NO ₃	6.		SO ₄ -2	F-	NO ₃
Beed	Cl	.787**	.768**	-0.02	Bhandara	Cl	.923**	-0.281	0.564
(n=11)	SO ₄ -2	1	.972**	0.14	(n=7)	SO ₄ ⁻²	1	-0.174	0.638
(11 11)	SO ₄ -2 F	1	1	0.14	(11 /)	F	1	1	-0.454
	1			1	1	1			•
7.		SO ₄ ⁻²	F ⁻	NO ₃	8.		SO ₄ ⁻²	F ⁻	NO ₃
Buldhana	Cl	0.336	0.446	0.194	Chandrapur	Cl	0.475	-0.231	0.422
(n=13)	SO ₄ -2 F	1	-0.198	0.511	(n=15)	SO ₄ -2	1	-0.261	0.494
	F ⁻		1	-0.318		F ⁻		1	0.117
9.		SO ₄ -2	F ⁻	NO ₃	10.		SO ₄ -2	F ⁻	NO ₃
Dhule	Cl	.959*	0.103	0.811	Gadchiroli	Cl	.730**	0.498	.635*
(n=4)	SO_4^{-2}	1	0.38	0.943	(n=12)	SO ₄ -2	1	.720**	.927**
	F		1	0.666		F-		1	.672*
	I		1		T	1		I	
11.	~	SO ₄ -2	F-	NO ₃	12.		SO ₄ -2	F-	NO ₃
Gondia	Cl	.877**	0.546	.743*	Hingoli	Cl	0.873	0.736	-0.155
(n=8)	SO ₄ -2	1	0.634	.880**	(n=5)	SO ₄ -2	1	0.392	0.323
	F ⁻		1	0.248		F		1	-0.47
13.		SO ₄ -2	F ⁻	NO ₃	14.		SO ₄ -2	F	NO ₃
Jalgaon	Cl	.875**	0.171	.661**	Jalana	Cl	0.386	820*	.931**
(n=15)	SO ₄ -2	1	0.286	0.48	(n=8)	SO ₄ -2	1	-0.17	0.239
	Cl ⁻ SO ₄ ⁻² F ⁻		1	-0.246		Cl ⁻ SO ₄ ⁻² F		1	741*
		G G -2				1	G G -2	-	•
15.	CIT	SO ₄ ⁻²	F-	NO ₃	16.		SO ₄ -2	F-	NO ₃
Kolhapur	Cl	.953**	0.51	.955**	Latur	Cl	.787**	-0.565	.726*
(n=12)	SO ₄ ⁻²	1	0.433	.947**	(n=10)	SO ₄ ⁻²	1	-0.304	.856**
	F		1	0.559		F		1	-0.371
17.		SO ₄ -2	F ⁻	NO ₃	18.		SO ₄ ⁻²	F ⁻	NO ₃
Mumbai	Cl	.692**	0.45	0.577	Nagpur	Cl	0.195	0.118	0.342
(n=8)	SO ₄ -2	1	0.139	.765*	(n=14)	SO ₄ -2	1	0.031	0.339
`	F		1	-0.225		F		1	-0.165
	-								

Table E20: District Wise Correlation Matrix for Different Ground Water Parameters

19.		SO ₄ -2	F ⁻	NO ₃	20.		SO ₄ -2	F ⁻	NO ₃
Nanded	Cl	.836**	.586*	0.075	Nandurbar	Cl	.965**	0.685	0.68
(n=16)	SO ₄ ⁻²	1	0.233	0.426	(n=6)	SO ₄ -2	1	0.768	0.664
	\mathbf{F}^{-}		1	-0.43		F ⁻		1	0.333
21.		SO ₄ -2	F-	NO -	22.		SO ₄ -2	F -	NO ₃
Nashik	Cl	.954**	0.412	NO ₃	Osmanabad	Cl	.798*	-0.365	0.598
(n=16)	SO ₄ -2	1	0.412	.646**	(n=7)	SO ₄ -2	1	-0.625	0.624
(11 10)	F-	1	1	0.289	(11 /)	F-	1	1	-0.56
	1							1	
23.		SO ₄ ⁻²	F ⁻	NO ₃	24.		SO ₄ ⁻²	F ⁻	NO_3
Parbhani	Cl	0.44	0.164	-0.016	Pune	Cl	.961**	.611*	.856**
(n=9)	SO ₄ ⁻² F	1	0.247	0.147	(n=14)	SO ₄ ⁻²	1	.545*	.826**
	F		1	-0.123		F		1	.726**
25.	·	SO ₄ -2	F ⁻	NO ₃	26.		SO ₄ ⁻²	F-	NO ₃
Raigad	Cl	.778**	0.092	0.06	Ratnagiri	Cl	-0.151	0.408	0.121
(n=15)	SO ₄ -2	1	0.092	0.36	(n=9)	SO ₄ -2	1	-0.337	-0.066
(22 20)	F	1	1	-0.073	(>)	F	1	1	0.189
	•		1	-0.073		_		1	0.107
27.		SO_4^{-2}	F-	NO ₃	28.		SO_4^{-2}	F-	NO -
									NO_3
Sangali	Cl	0.322	-0.185	0.525	Satara	Cl	.860**	0.554	.913**
	SO ₄ -2					SO ₄ -2			
Sangali	Cl ⁻ SO ₄ -2 F ⁻	0.322	-0.185	0.525	Satara		.860**	0.554	.913**
Sangali (n=12)	SO ₄ -2	0.322	-0.185 0.108 1	0.525 0.224 -0.292	Satara (n=12)	SO ₄ -2	.860**	0.554 .592* 1	.913** .927** .712**
Sangali (n=12)	SO ₄ ⁻² F	0.322 1 SO ₄ -2	-0.185 0.108 1	0.525 0.224 -0.292 NO ₃	Satara (n=12) 30.	SO ₄ -2 F	.860** 1 SO ₄ -2	0.554 .592* 1	.913** .927** .712**
Sangali (n=12) 29. Sindhudurg	SO ₄ -2 F-	0.322 1 SO ₄ ⁻² 0.196	-0.185 0.108 1 F - 0.341	0.525 0.224 -0.292 NO ₃ - 0.331	Satara (n=12) 30. Solapur	SO ₄ ⁻² F	.860** 1 SO ₄ -2 .856**	0.554 .592* 1 F 0.333	.913** .927** .712** NO ₃ 0.177
Sangali (n=12)	SO ₄ -2 F Cl SO ₄ -2	0.322 1 SO ₄ -2	-0.185 0.108 1 F 0.341 .859**	0.525 0.224 -0.292 NO ₃ ⁻ 0.331 -0.37	Satara (n=12) 30.	SO ₄ ⁻² F Cl SO ₄ ⁻²	.860** 1 SO ₄ -2	0.554 .592* 1 F 0.333 0.299	.913** .927** .712** NO ₃ - 0.177 -0.013
Sangali (n=12) 29. Sindhudurg	SO ₄ -2 F-	0.322 1 SO ₄ ⁻² 0.196	-0.185 0.108 1 F - 0.341	0.525 0.224 -0.292 NO ₃ - 0.331	Satara (n=12) 30. Solapur	SO ₄ ⁻² F	.860** 1 SO ₄ -2 .856**	0.554 .592* 1 F 0.333	.913** .927** .712** NO ₃ 0.177
Sangali (n=12) 29. Sindhudurg	SO ₄ -2 F CI SO ₄ -2 F	0.322 1 SO ₄ ⁻² 0.196 1 SO ₄ ⁻²	-0.185 0.108 1 F 0.341 .859**	0.525 0.224 -0.292 NO ₃ ⁻ 0.331 -0.37	Satara (n=12) 30. Solapur	SO ₄ ⁻² F Cl SO ₄ ⁻²	.860** 1 SO ₄ -2 .856**	0.554 .592* 1 F 0.333 0.299	.913** .927** .712** NO ₃ - 0.177 -0.013
Sangali (n=12) 29. Sindhudurg (n=8) 31. Thane	SO ₄ -2 F CI SO ₄ -2 F CI	0.322 1 SO ₄ ⁻² 0.196	-0.185 0.108 1 F 0.341 .859**	0.525 0.224 -0.292 NO ₃ ⁻ 0.331 -0.37 -0.578	Satara (n=12) 30. Solapur (n=12)	SO ₄ -2 F- CI SO ₄ -2 F- CI CI	.860** 1 SO ₄ -2 .856**	0.554 .592* 1 F- 0.333 0.299	.913** .927** .712** NO ₃ - 0.177 -0.013 -0.089 NO ₃ - 0.632
Sangali (n=12) 29. Sindhudurg (n=8) 31.	SO ₄ -2 F Cl' SO ₄ -2 F Cl' SO ₄ -2	0.322 1 SO ₄ ⁻² 0.196 1 SO ₄ ⁻²	-0.185 0.108 1 F 0.341 .859** 1	0.525 0.224 -0.292 NO ₃ ⁻ 0.331 -0.37 -0.578	Satara (n=12) 30. Solapur (n=12)	SO ₄ -2 F - CI - SO ₄ -2 F - CI - SO ₄ -2	.860** 1 SO ₄ -2 .856** 1 SO ₄ -2	0.554 .592* 1 F- 0.333 0.299 1	.913** .927** .712** NO ₃ 0.177 -0.013 -0.089
Sangali (n=12) 29. Sindhudurg (n=8) 31. Thane	SO ₄ -2 F CI SO ₄ -2 F	0.322 1 SO ₄ ⁻² 0.196 1 SO ₄ ⁻² .851**	-0.185 0.108 1 F ⁻ 0.341 .859** 1 F ⁻ -0.214	0.525 0.224 -0.292 NO ₃ 0.331 -0.37 -0.578 NO ₃ -0.69	Satara (n=12) 30. Solapur (n=12) 32. Wardha	SO ₄ -2 F- CI SO ₄ -2 F-	.860** 1 SO ₄ -2 .856** 1 SO ₄ -2 .783*	0.554 .592* 1 F- 0.333 0.299 1 F- 0.223	.913** .927** .712** NO ₃ 0.177 -0.013 -0.089 NO ₃ 0.632
Sangali (n=12) 29. Sindhudurg (n=8) 31. Thane (n=15)	SO ₄ -2 F Cl' SO ₄ -2 F Cl' SO ₄ -2	0.322 1 SO ₄ ⁻² 0.196 1 SO ₄ ⁻² .851**	-0.185 0.108 1 F -0.341 .859** 1 F -0.214 0.073	0.525 0.224 -0.292 NO ₃ ⁻ 0.331 -0.37 -0.578 NO ₃ ⁻ -0.069 0.167 0.028	Satara (n=12) 30. Solapur (n=12) 32. Wardha (n=8)	SO ₄ -2 F - CI - SO ₄ -2 F - CI - SO ₄ -2	.860** 1 SO ₄ -2 .856** 1 SO ₄ -2 .783*	0.554 .592* 1 F 0.333 0.299 1 F 0.223 0.689	.913** .927** .712** NO ₃ .0.177 -0.013 -0.089 NO ₃ .632 .870** 0.601
Sangali (n=12) 29. Sindhudurg (n=8) 31. Thane (n=15)	SO ₄ -2 F CI SO ₄ -2 F CI SO ₄ -2 F	0.322 1 SO ₄ ⁻² 0.196 1 SO ₄ ⁻² .851**	-0.185 0.108 1 F ⁻ 0.341 .859** 1 F ⁻ -0.214 0.073 1	0.525 0.224 -0.292 NO ₃ ⁻ 0.331 -0.37 -0.578 NO ₃ ⁻ -0.069 0.167 0.028	Satara (n=12) 30. Solapur (n=12) 32. Wardha (n=8)	SO ₄ -2 F	.860** 1 SO ₄ ⁻² .856** 1 SO ₄ ⁻² .783* 1	0.554 .592* 1 0.333 0.299 1 F- 0.223 0.689 1	.913** .927** .712** NO ₃ .0.177 -0.013 -0.089 NO ₃ .870** 0.601 NO ₃
Sangali (n=12) 29. Sindhudurg (n=8) 31. Thane (n=15) 33. Washim	SO ₄ -2 F Cl SO ₄ -2 F Cl SO ₄ -2 F Cl	0.322 1 SO ₄ ⁻² 0.196 1 SO ₄ ⁻² .851** 1 SO ₄ -2 0.629	-0.185 0.108 1 F 0.341 .859** 1 F -0.214 0.073 1 F 0.364	0.525 0.224 -0.292 NO ₃ ⁻ 0.331 -0.37 -0.578 NO ₃ ⁻ -0.069 0.167 0.028 NO ₃ ⁻ 0.565	Satara (n=12) 30. Solapur (n=12) 32. Wardha (n=8) 34. Yavatmal	SO ₄ -2 F CI SO ₄ -2 F CI SO ₄ -2 F CI	.860** 1 SO ₄ -2 .856** 1 SO ₄ -2 .783* 1 SO ₄ -2 0.373	0.554 .592* 1 F 0.333 0.299 1 F 0.223 0.689 1 F -0.051	.913** .927** .712** NO ₃ .0.177 -0.013 -0.089 NO ₃ .632 .870** 0.601 NO ₃ .572*
Sangali (n=12) 29. Sindhudurg (n=8) 31. Thane (n=15)	SO ₄ -2 F CI SO ₄ -2 F CI SO ₄ -2 F	0.322 1 SO ₄ ⁻² 0.196 1 SO ₄ ⁻² .851**	-0.185 0.108 1 F ⁻ 0.341 .859** 1 F ⁻ -0.214 0.073 1	0.525 0.224 -0.292 NO ₃ ⁻ 0.331 -0.37 -0.578 NO ₃ ⁻ -0.069 0.167 0.028	Satara (n=12) 30. Solapur (n=12) 32. Wardha (n=8)	SO ₄ -2 F	.860** 1 SO ₄ ⁻² .856** 1 SO ₄ ⁻² .783* 1	0.554 .592* 1 0.333 0.299 1 F- 0.223 0.689 1	.913** .927** .712** NO ₃ .0.177 -0.013 -0.089 NO ₃ .870** 0.601 NO ₃

Note: ** Correlation is significant at 0.01 level (2 tailed) * Correlation is significant at 0.05 level (2 tailed)

Significant correlation between NO_3^- and SO_4^{2-} concentration at 5% (*) level of significance was observed in ground water samples collected from districts namely, Amravati (r=0.654), Aurangabad (r=0.608), Bhandara (r=0.638), Buldhana (r=0.511), Chandrapur (r=0.494), Dhule (r=0.943), and Washim (r=0.7). Similarly 1% (**) level of significance were observed at, Gadchiroli (r=0.927), Gondia (r=0.880), Kolhapur (r=0.947), Latur (r=0.856), Nandurbar (r=0.664), Nashik (r=0.646), Osmanabad (r=0.624), Pune (r=0.826), Satara (r=0.927), and Wardha (r=0.870). Such high correlation indicates contamination of groundwater with nitrate and sulphate from point sources, i.e. fertilizers, sewage and animal wastes. While studying

nitrate concentrations in ground water of some rural areas of Rajasthan, *Suthar et al.*, 2009 also reported a significant relationship between NO_3^- and SO_4^{2-} .

 NO_3 showed good correlation with Cl at the significance level of 5% (*) at Bhandara (r=0.564), Dhule (r=0.811), Gondia (r=0.743), Gadchiroli (r=0.635), Mumbai (r=0.577), Nadurbar (r=0.68), Sangli (r=0.525), Wardha (r=0.632) and Washim (r=0.565); whereas, significance level of 1% (**) where observed at Ahmednagar (r=0.662), Amravati (r=0.671), Aurangabad (r=0.846), Jalgaon (r=0.661), Jalana (r=0.931), Kolhapur (r=0.955), Latur (r=0.726), Nashik (r=0.768), Osmanabad (r=0.598), Pune (r=0.856) and Satara (r=0.913).

Similarly SO_4^{2-} also exhibited good relationship with Cl⁻ for groundwater samples found to be at significance level of 5% (*) at Aurangabad (r=0.740), Dhule (r=0.959), Hingoli (r=0.873), Osmanabad (r=0.798), Wardha (r=0.783). Whereas, 1% (**) significance level was observed at Akola (r=0.905), Amravati (r=0.844), Beed (r=0.787), Bhandara (r=0.923), Gadchiroli (r=0.730), Gondia (r=0.877), Kolhapur (r=0.953), Latur (r=0.787), Mumbai (r=0.692), Nanded (r=0.836), Nandurbar (r=0.965), Nashik (r=0.954), Pune (r=0.961), Raigad (r=0.778), Satara (r=0.860) and Thane (r=0.851). The correlation matrix between important parameters of water (**Table E20**) suggested that major source of NO_3^- and SO_4^{2-} , in ground water of this region were nitrogenous fertilizers, sewage, animal waste, organic manure and other non-point sources.

Based on water quality index calculated as per the methodology given in *Chapter 3*, the list of Talukas having the ground water quality Excellent, Good, Poor, Very Poor and Unsuitable for drinking based on the monitored data is given in **Table E21**.

Table E21: Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce	ellent	Good	Water	Poor	r Water	Very	Poor	Unsu	iitable	No.of Samples
			NS/	(%)		(%)		5 / (%)	NS/	(%)	NS	/ (%)	(5 Yrs.)
1.	Ahmadnagar	Ahmednagar	4	7	25	44	20	35	2	4	6	11	57
	167 villages	Akole	4	25	6	38	4	25	2	13			16
		Jamkhed			8	80	2	20					10
		Karjat			11	50	9	41	1	5	1	5	22
		Kopargaon	4	12	12	36	14	42	2	6	1	3	33
		Newasa			26	55	12	26	6	13	3	6	47
		Parner	2	9	11	48	9	39	1	4			23
		Pathardi			1	50	1	50					2
		Rahata					2	67	1	33			3
		Rahuri	9	19	13	28	16	34	8	17	1	2	47
		Sangamner	3	7	25	58	6	14	7	16	2	5	43
		Shevgaon	4	14	8	28	14	48	2	7	1	3	29
		Shrigonda			18	49	15	41	3	8	1	3	37
		Srirampur	11	22	26	53	9	18	2	4	1	2	49
2.	Akola	Akola	3	3	45	48	36	38	7	7	3	3	94
	104 villages	Akot	7	8	34	39	31	36	10	11	5	6	87
		Balapur			34	83	5	12	1	2	1	2	41
		Barshi-takli	2	6	27	77	3	9	2	6	1	3	35
		Murtizapur	3	6	24	44	21	39	3	6	3	6	54
		Patur	8	17	34	74	4	9					46
1 3 IG	N. I. CG. I	Telhara	8	22	15	42	10	28	2	6	1	3	36

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exc	ellent	Good	Water	Poor	r Water	Ver	y Poor	Unsu	itable	No.of Samples
			NS/	(%)	NS/	(%)	NS	6/(%)	NS	5/(%)	NS/	(%)	(5 Yrs.)
3.	Amravati	Achalpur			2	40	3	60					5
	183 villages	Amravati			21	72	8	28					29
		Anjangaon	1	11	4	44	4	44					9
		Bhatkuli			17	35	28	57	3	6	1	2	49
		Chandur Bazar	1	5	18	82	3	14					22
		Chandur Rly.	3	11	18	67	6	22					27
		Chikhaldara	12	25	34	71	2	4					48
		Daryapur	1	3	16	52	11	35	3	10			31
		Dhamangaon Rly.	3	19	8	50	5	31					16
		Dharni	21	29	48	67	3	4					72
		Morshi	7	10	34	49	28	41					69
		Nandgaon Kh.	3	5	33	60	18	33	1	2			55
		Tiwasa			13	68	6	32					19
		Warud	4	5	64	84	8	11					76
4.	Aurangabad	Aurangabad	1	2	26	52	23	46					50
	96 villages	Gangapur	1	2	35	73	8	17	3	6	1	2	48
		Kannad			33	75	10	23	1	2			44
		Khultabad			20	91	2	9					22
		Paithan	2	3	26	38	30	43	6	9	5	7	69
		Phulambri	1	3	20	67	9	30					30
		Sillod	4	9	32	73	7	16			1	2	44
		Soygaon	1	3	22	76	6	21					29
		Vaijapur	1	2	21	50	15	36	3	7	2	5	42

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name		ellent				Water		Poor	Unsui	table	No.of Samples
			NS	/ (%)	NS/	(%)	NS	/ (%)	NS	/ (%)	NS/	(%)	(5 Yrs.)
5.	Beed	Ambejogai	6	30	12	60	2	10					20
	67 villages	Ashti	1	4	17	71	6	25					24
		Beed			13	81	3	19					16
		Dharur			5	71	2	29					7
		Gewrai	1	4	13	57	9	39					23
		Kej	0	0	3	75	1	25					4
		Majalgaon	4	44	5	56							9
		Patoda	1	8	10	77	2	15					13
		Shiruru Kasar			2	40	1	20	2	40			5
		Wadwani			2	40	2	40	1	20			5
6.	Bhandara	Bhandara	3	11	15	56	9	33					27
	68 villages	Lakhandur			6	46	7	54					13
		Lakhani			5	100							5
		Mohadi	2	8	13	52	10	40					25
		Pauni	1	4	16	67	5	21	2	8			24
		Sakoli	6	22	17	63	4	15					27
		Tumsar			24	73	8	24	1	3			33
7.	Buldhana	Buldhana	1	3	13	42	17						31
	139 villages	Chikhali	3	16	13	68	3	16					19
		Deolgaon Raja	1	8	4	33	7	58					12
		Jalgaon jamod	1	6	11	69	4	25					16
		Khamgaon			17	45	21	55					38
		Lonar			10	56	8	44					18
		Malkapur			5	36	6	43	2	14	1	7	14

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Excel		Good V			Water		y Poor	Unsuitable	No.of Samples
			NS/	(%)	NS/	` /		(%)	NS	/ (%)	NS / (%)	(5 Yrs.)
7.	Buldhana	Mehkar			13	59	9	41				22
	Contd	Motala	1	4	14	54	11	42				26
	139 villages	Nandura	1	3	23	64	12	33				36
		Sangrampur	2	10	16	76	3	14				21
		Shegaon			12	46	13	50	1	4		26
		Sindkhed Raja	3	20	9	60			3	20		15
8.	Chandrapur	Ballarpur			5	83			1	17		6
	113 villages	Bhadrawati	1	13	5	63	2	25				8
		Brahmapuri			9	56	7	44				16
		Chandrapur	4	11	18	50	14	39				36
		Chimur	1	4	18	69	6	23	1	4		26
		Gondipipri			5	71	2	29				7
		Jiwati			2	100						2
		Korapna			2	100						2
		Mul			4	29	10	71				14
		Nagbhid			3	21	11	79				14
		Pombhurna			2	100						2
		Rajura			13	65	7	35				20
		Sawali			1	33	2	67				3
		Sindewahi	3	16	6	32	10	53				19
		Waroda			6	55	5	45				11

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name		ellent (%)		Water (%)		Water (%)		y Poor /(%)	itable '(%)	No.of Samples (5 Yrs.)
9.	Dhule	Dhule	14	19	48	64	10	13	3	4		75
	100 villages	Sakri	16	33	30	63	2	4				48
		Shirpur	7	12	47	81	4	7				58
		Sindkheda	3	4	49	68	19	26	1	1		72
10.	Gadchiroli	Aheri	3	9	18	56	11	34				32
	117 villages	Armori	2	14	11	79	1	7				14
		Bhamragarh			8	100						8
		Chamorshi			9	64	5	36				14
		Desaiganj-Wadsa	3	27	6	55	2	18				11
		Dhanora	7	41	9	53	1	6				17
		Etapalli	1	6	14	88	1	6				16
		Gadchiroli	11	39	14	50	3	11				28
		Korchi	4	44	4	44			1	11		9
		Kurkheda	7	44	9	56						16
		Mulchera	1	10	3	30	4	40	2	20		10
		Sironcha	1	14	3	43	3	43				7
11.	Gondia	Amgaon	6	35	8	47	3	18				17
	68 villages	Arjuni Moregaon	8	40	7	35	5	25				20
		Deori	4	25	12	75						16
		Gondia	15	52	11	38	3	10				29
		Goregaon			3	100						3
		Sadal Arjuni	2	25	6	75						8
		Salekasa	3	38	4	50	1	13				8
		Tiroda			14	70	5	25	1	5		20

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Excel NS/ (Water (%)		Water '(%)		ry Poor 5 / (%)		itable (%)	No.of Samples (5 Yrs.)
12.	Hingoli	Aundha (Nag)			7	70	3	30					10
	31 villages	Basmatnagar	2	11	15	79	2	11					19
		Hingoli	1	4	17	71	6	25					24
		Kalmnuri			6	86	1	14					7
		Sengaon	1	17	5	83							6
13.	Jalgaon	Amalner			6	38	6	38	1	6	3	19	16
	120 villages	Bhadgaon			8	80			2	20			10
		Bhusawal			7	100							7
		Bodwad			2	100							2
		Chalisgaon			15	94	1	6					16
		Chopda	2	6	17	55	12	39					31
		Dharangaon			2	40	2	40	1	20			5
		Erandol	2	8	19	73	4	15	1	4			26
		Jalgaon			21	78	4	15	2	7			27
		Jamner	1	9	6	55	4	36					11
		Mukainagar					1	100					1
		Pachora			5	71	2	29					7
		Parola			14	74	5	26					19
		Raver	2	9	20	87	1	4					23
		Yaval	5	23	16	73	1	5					22

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce			Water		Water		y Poor	Unsui		No.of Samples
			NS/	(%)		/ (%)		(%)	NS	/ (%)	NS/	(%)	(5 Yrs.)
14.	Jalna	Ambad			12	32	25	68					37
	116 villages	Badnapur	1	5	12	60	7	35					20
		Bhokardan			39	72	12	22	3	6			54
		Ghansawangi	2	7	21	72	6	21					29
		Jafrabad	2	8	13	54	5	21	1	4	3	13	24
		Jalna			17	55	12	39	1	3	1	3	31
		Mantha	2	12	6	35	8	47			1	6	17
		Parthur	1	4	12	52	10	43					23
15.	Kolhapur	Ajra	9	43	12	57							21
	138 villages	Bhudargad	11	41	16	59							27
		Chandgad	26	74	9	26							35
		Gadinglaj	7	25	18	64	3	11					28
		Gaganbawada	12	100									12
		Hatkanangale			24	69	11	31					35
		Kagal	4	16	19	76	2	8					25
		Kolhapur	18	39	26	57	2	4					46
		Panhala	11	61	7	39							18
		Radhanagari	19	90	2	10							21
		Shahuwadi	10	53	9	47							19
		Shirol	1	4	6	25	17	71					24

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce	llent	Good	Water	Poor	Water	Very	Poor	Uns	uitable	No.of Samples
			NS/	(%)	NS.	/ (%)	NS/	(%)	NS/	(%)	NS	/ (%)	(5 Yrs.)
16.	Latur	Ahmadpur	11	35	16	52	4	13					31
	95 villages	Ausa	7	23	20	65	4	13					31
		Chakur	5	21	16	67	3	13					24
		Deoni	2	33	3	50	1	17					6
		Jalkot	1	25	3	75							4
		Latur	12	32	22	58	4	11					38
		Nilanga	9	26	24	69	2	6					35
		Renapur	4	27	10	67	1	7					15
		Shirur Anantpal	2	33	4	67							6
		Udgir	4	21	13	68	2	11					19
17.	Mumbai	Bombay											
	8 villages	(Church Gate)			1	100							1
		Borivali	1	50	1	50							2
		Colaba (Dandi)			3	100							3
		Deulwadi			1	100							1
		Goregaon East	2	67	1	33							3
		Kurla	1	100									1
		Mahim	3	100									3
		Mahroli(Chembur)			1	100							1

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce			Water		Water		y Poor		itable	No.of Samples
			NS/		NS A	(%)	NS /	(%)	NS	/ (%)	NS /	(%)	(5 Yrs.)
18.	Nagpur	Bhivapur	1	9	4	36	6	55					11
	124 villages	Hingna	2	11	6	32	11	58					19
		Kalmeshwar			5	29	8	47	2	12	2	12	17
		Kamptee			11	65	6	35					17
		Katol			8	73	3	27					11
		Kuhi	2	22	2	22	5	56					9
		Mouda			11	79	3	21					14
		Nagpur	5	10	36	69	10	19	1	2			52
		Nagpur (Rural)			3	100							3
		Narkhed			18	58	13	42					31
		Parseoni	2	8	22	85	2	8					26
		Ramtek			5	45	6	55					11
		Saoner	2	6	21	60	11	31	1	3			35
		Umred	1	13	6	75	1	13					8
19.	Nanded	Ardhapur			3	100							3
	106 villages	Bhokar			6	67	3	33					9
		Biloli	1	50	1	50							2
		Deglur			12	86	2	14					14
		Dharmabad			5	100							5
		Hadgaon			16	94	1	6					17
		Himayat Nagar			4	80	1	20					5
		Kandhar	1	8	10	83	1	8					12
		Kinwat	2	13	14	88							16
		Loha			5	71	2	29					7
		Mahur	1	33	2	67							3

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce	llent	Good	Water	Poor	Water	Ver	y Poor	Unsuitable	No.of Samples
			NS/	(%)	NS /	/ (%)	NS/	(%)	NS	6/(%)	NS / (%)	(5 Yrs.)
19.	Nanded	Mudkhed			4	100						4
	Contd	Mukhed	2	10	16	76	3	14				21
	106 villages	Naigaon			5	71	2	29				7
		Nanded			13	72	5	28				18
		Umri	2	20	7	70	1	10				10
		Mudkhed			4	100						4
20.	Nandurbar	Akkalkuva	10	42	13	54	1	4				24
	63 villages	Dhadgaon	13	76	4	24						17
		Nandurbar	11	22	34	67	5	10	1	2		51
		Navapur	15	33	30	67						45
		Shahada	15	47	14	44	3	9				32
		Taloda	7	41	10	59						17
21.	Nashik	Baglan	10	21	31	65	7	15				48
	174 villages	Chandvad	3	20	12	80						15
		Deola			2	33	4	67				6
		Dindori	12	38	18	56	2	6				32
		Igatpuri	21	54	18	46						39
		Kalwan	4	14	21	75	3	11				28
		Malegaon	4	11	20	53	14	37				38
		Nandgaon	4	14	16	55	8	28	1	3		29
		Nashik	21	30	42	61	6	9				69
		Niphad	4	10	23	56	12	29	2	5		41
		Peinth	10	71	4	29	_					14

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Excellent NS/ (%)			Water (%)		Poor Water NS / (%)		y Poor / (%)	Unsuitable NS/(%)		No.of Samples (5 Yrs.)
21.	Nashik	Satana	1	17	3	50			2	33			6
	Contd	Sinnar	3	8	25	63	10	25	2	5			40
	174 villages	Surgana	3	50	3	50							6
		Trimbakeshwar	5	83	1	17							6
		Yeola	6	35	7	41	4	24					17
22.	Osmanabad	Bhum	2	17	10	83							12
	76 villages	Kalambh	7	24	18	62	2	7	2	7			29
		Lohara			3	100							3
		Omerga	2	11	15	79	1	5			1	5	19
		Osmanabad##	2	5	27	71	9	24					38
		Paranda			9	90	1	10					10
		Tuljapur	8	26	20	65	3	10					31
23.	Parbhani	Gangakhed	1	4	22	92	1	4					24
	68 villages	Jintur	2	9	12	52	9	39					23
		Manwat			4	67	2	33					6
		Palam			12	86	2	14					14
		Parbhani			27	77	8	23					35
		Pathari	1	6	12	67	5	28					18
		Purna			8	100							8
		Selu	1	6	14	78	3	17					18
		Sonpeth	1	25	2	50	1	25					4

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Excellent					Poor Water				iitable	No.of Samples
			NS/	(%)	%) NS/(%) NS/(%)		NS / (%)		NS.	/ (%)	(5 Yrs.)		
24.	Pune	Ambegaon	3	16	10	53	6	32					19
	148 villages	Baramati	1	3	18	49	13	35			5	14	37
		Bhor			3	100							3
		Daund	2	5	21	57	8	22	6	16			37
		Indapur			25	60	15	36	1	2	1	2	42
		Junnar	7	18	28	70	5	13					40
		Mawal	10	77	3	23							13
		Mulshi	15	94	1	6							16
		Pune (Haveli)	11	21	28	54	12	23	1	2			52
		Purandar	8	20	22	54	11	27					41
		RajgurNgr(Khed)	7	29	12	50	5	21					24
		Shirur	4	10	22	54	13	32	2	5			41
		Wadgaon(Maval)	2	100									2
		Wehle	4	100									4
25.	Raigad	Alibag	13	46	15	54							28
	113 villages	Karjat	18	69	7	27	1	4					26
		Khalapur	11	79	3	21							14
		Mahad	19	83	2	9			1	4	1	4	23
		Mangaon	13	93	1	7							14
		Mhasala	18	90	2	10							20
		Murud	9	69	4	31	_						13
		Panvel	12	55	9	41	1	5					22
		Pen	18	67	7	26	1	4	1	4			27

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Excellent			Water		Water		y Poor		itable	No.of Samples
			NS/	(%)	NS /	′ (%)	NS /	(%)	NS	/ (%)	NS /	(%)	(5 Yrs.)
25.	Raigad	Poladpur	5	100									5
	Contd	Raigad	4	57	3	43							7
	113 villages	Roha	22	100									22
		Shrivardhan	5	56	4	44							9
		Sudhagad	4	80	1	20							5
		Tala	2	50	2	50							4
		Uran	5	100									5
26.	Ratnagiri	Chipalun	47	98	1	2							48
	133 villages	Dapoli	40	95	2	5							42
		Guhagar	42	100									42
		Kehd	64	97	1	2			1	2			66
		Lanja	7	100									7
		Mandangarh	18	100									18
		Rajapur	46	96			2	4					48
		Ratnagiri	60	95	2	3	1	2					63
		Sangameshwar	34	100									34
27.	Sangli	Atpadi	1	3	25	78	6	19					32
	148 villages	Islampur			1	50	1	50					2
		Jath			30	57	21	40			2	4	53
		Kadegaon	4	44	5	56							9
		Kavathemahankal	2	6	19	59	9	28			2	6	32
		Khanapur	5	17	21	72	3	10					29
		Miraj	3	11	10	37	13	48	1	4			27
		Palus			4	67	2	33					6

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce			Water		Water		y Poor		iitable	No.of Samples
			NS/	(%)	NS /	/ (%)	NS/	(%)	NS	(%)	NS.	/ (%)	(5 Yrs.)
27.	Sangli Cond	Shirala	3	27	7	64	1	9					11
	148 villages	South Solapur			1	33	2	67					3
		Tasgaon	2	17	4	33	5	42	1	8			12
		Walwa	11	44	12	48	2	8					25
28.	Satara	Javali	2	50	2	50							4
	146 villages	Karad	4	17	18	75	2	8					24
		Khandala	12	46	14	54							26
		Khatav	10	40	13	52	2	8					25
		Koregaon	2	8	18	69	6	23					26
		Mahabaleswar	8	89	1	11							9
		Man(dahivadi)	2	8	17	65	7	27					26
		Medha	5	100									5
		Patan	9	32	13	46	3	11	3	11			28
		Phaltan	2	9	12	52	9	39					23
		Satara	18	47	17	45	3	8					38
		Wai	1	8	9	75	2	17					12
29.	Sindhudurg	Devgad	26	100									26
	105 villages	Dodamarg	20	100									20
		Kankavli	34	89	4	11							38
		Kudal	35	81	6	14	2	5					43
		Malvan	35	88	5	13							40
		Sawantwadi	29	100									29
		Vaibhavwadi	13	72	4	22	1	6					18
		Vengurla	22	79	5	18	1	4					28

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce NS/			Water (%)		Water (%)		y Poor 5 / (%)		uitable / (%)	No.of Samples (5 Yrs.)
30.	Solapur	Akkalkot	110/	(70)	5	71	1	14	1	14	110	(70)	7
00.	48 villages	Barshi	2	17	4	33	6	50	1				12
		Karmala			3	60	2	40					5
		Madha			2	33	4	67					6
		Malshiras			3	38	5	63					8
		Mangalwedha			3	60	2	40					5
		Mohol			5	56	4	44					9
		N.Solapur			4	50	4	50					8
31.	Thane	Ambernath	6	50	5	42	1	8					12
	137 villages	Bhivandi	24	59	16	39	1	2					41
		Dahanu	27	79	4	12	3	9					34
		Jawhar	12	71	5	29							17
		Kalyan	11	73	4	27							15
		Mokhada	16	80	4	20							20
		Murbad	21	64	10	30	2	6					33
		Murud	6	100									6
		Palghar	28	54	23	,			1	2			52
		Shahapur	24	75	8	25							32
		Talasari	22	88	3	12							25
		Thane	24	48	24	48	2	4					50
		Ulhasnagar	3	27	6	55	2	18					11
		Vasai	22	47	19	40	6	13					47
		Wada	29	66	15	34							44

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Excellent		Good	Water	Poor Water		Very Poor		Unsuitable		No.of Samples
			NS/	(%)	NS A	/ (%)	NS /	(%)	NS	/ (%)	NS/	(%)	(5 Yrs.)
32.	Wardha	Arvi			17	74	4	17	1	4	1	4	23
	128 villages	Ashti			11	55	8	40	1	5			20
		Deoli			25	64	11	28	2	5	1	3	39
		Hinganghat	1	2	18	41	19	43	6	14			44
		Karanja	2	14	7	50	5	36					14
		Samudrapur	2	4	26	47	26	47	1	2			55
		Seloo			27	46	26	44	2	3	4	7	59
		Wardha	2	5	22	56	11	28			4	10	39
33.	Washim	Karanja	2	5	31	82	5	13					38
	67 villages	Mangarulpir			20	95	1	5					21
		Malegaon			23	66	12	34					35
		Manora	1	4	23	85	3	11					27
		Risod	3	4	53	70	20	26					76
		Washim	6	10	54	86	3	5					63
34.	Yavatmal	Arni	1	4	20	74	6	22					27
	180 villages	Babhulgaon			24	80	6	20					30
		Darwha			29	81	7	19					36
		Digras	1	3	18	55	14	42					33
		Ghatanji	1	3	27	79	6	18					34
		Kalamb			24	80	6	20					30
		Kelapur	1	3	27	87	3	10					31

^{*} NS= Number of Samples

Table E21 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Excellent NS/ (%)			Water (%)			Very Poor NS / (%)		Unsuitable NS / (%)		No.of Samples (5 Yrs.)
34.	Yavatmal	Mahagaon	1	6	15	94	1107	(,,,	110	(,0)	1107	(,0)	16
	Contd	Maregaon	1	13	6	75	1	13					8
	180 villages	Ner	2	7	22	73	6	20					30
		Pusad	2	17	10	83							12
		Ralegaon			22	71	9	29					31
		Umarkhed	1	4	18	78	4	17					23
		Wani			16	55	13	45					29
		Yavatmal	2	6	29	88	2	6					33
		Zari Jamni	1	7	10	71	3	21					14

^{*} NS= Number of Samples

PROBABLE REASONS OF POLLUTED STRETCHES

There are multitudes of reasons for river water pollution, many of which are due to anthropogenic activities and some places, it could be also due to absence of minimum flow available. Some of these are given hereunder:

- It is observed that most of the rivers are encroached by the residential growth from all sides, experiencing pollution due to addition of domestic sewage. Further, their natural water streams are also obstructed due to human activities resulting in drying of these rivers.
- Sewage ingress from small taluka places and villages have not yet been addressed which are situated on the banks.
- The accidental discharges of effluents directly or indirectly from the industries (in some of the stretches) further pollute the rivers.
- Unauthorized disposal of solid waste and debris at the bank of river finds its way into the river in rainy season also makes river water unfit for consumption.
- In some places, religious activities like immersion idols or mass bathing activities also lead to contamination in major rivers in the state.
- Indiscriminate use of pesticides and fertilizers in irrigation may lead to river or groundwater pollution.
- Improper treatment facilities and poor maintenance at Effluent Treatment Plants and Sewage Treatment Plants add contaminated wastewater in to river and creeks.
- Due to excessive organic load from food, agro based, sugar and distillery industries in the river algal growth have been observed at certain places, indicating eutrophication.
- Pollution load increases due to decline in river water flow during certain seasons and time.

CONTROL MEASURES AND RECOMMENDATIONS

The overall analysis of data and WQI indicates many areas of improvement, especially data collection and analysis. Some of these areas of improvement are:

- The process of collection of samples and analysis of water samples across the state shows the intent to understand the water bodies behavior based on quality attributes
- The quality, however suffers from a possible poor QA/QC process or human error, which is leading to many values with high variation.
- The outlier's analysis does lead to elimination of some very high values; however the same has been mentioned in the report. This can be made as a regular practice wherein local variation in the Water Quality could be easily recorded.

- Regular training and awareness program for all stakeholders, especially personnel responsible for water sample collection as well as analyses.
- The overall analysis seeks improvement in following areas:
 - o Capacity building of personnel carrying out sampling and analysis
 - Awareness and communication with the locals and municipal bodies for sharing of data and suggestions of improvement
 - o Creating linkages with the data for decision making for better river water quality.
 - o Demand driven sewage management through decentralized treatment system
 - Seeking alternate use of treated waste water before it gets discharged in the river, thus reducing loads.
 - o Strict compliance and regular monitoring for industrial discharges.
- Water quality analysis should be frequently audited by third party with assessment and communication with the development of recent methodologies
- GIS based water quality database should be prepared for easy assessment of accurate river data information and data retrieval.
- Village level sanitation with improved design of septic tank of IIT Bombay and also decentralized nalla treatment using phytorid technology of NEERI can be made.

Technologies for water quality improvement are given in Appendices I toVI.

References

- 1. Abbasi, S.A., 2002, Water Quality Indices State-of-the- Art, Pondicherry: Pondicherry University, Centre for Pollution Control & Energy Technology.
- 2. CPCB, 2001, Environmental Atlas of India, New Delhi: Central Pollution Control Board.
- 3. Ramakrishnaiah C R, Dadashivaiah C., Ranganna, G., 2009, Assessment of Water Quality Index for the Groundwater in Tumkur Taluka, Karnataka State, India, E-Journal of Chemistry, http://www.e-journals.net 2009, 6(2), 523-530
- 4. Durmishi, B.H., M. Ismaili, A. Shabani, Sh. Abduli, Drinking Water Quality Assessment in Tetova Region, American Journal of Environmental Sciences 8 (2): 162-169, 2012

.

1.1 Preamble

The problem of water quality deterioration has mainly resulted from two general categories of contaminant sources viz. direct and indirect. Direct sources include effluent outfalls from factories, refineries, waste water treatment plants, etc., which directly leak into urban water supplies; while the later includes contaminants that enter the river from soils/ groundwater and from the atmosphere through rain. Soils and groundwater contain the residue of domestic wastes, agricultural wastes (fertilizers, pesticides, etc.) and improperly disposed off industrial wastes. Construction of major and minor dams and abstraction of river water has reduced the flows of many perennial rivers resulting in dry riverbeds in non-monsoon months. The growth of urban megalopolises increased industrial activities and dependence of the agricultural sector on chemicals and fertilizers have led to overloading of the carrying capacity of water bodies to assimilate & decompose waste load. Ground water is the only drinking water source in many parts of the country.

The National organizations like CPCB and MPCB have various water quality monitoring programmes to collect time series data on site-specific quality issues of major rivers. Such data set help to analyze the extent of pollution and suggest remedial measures. This could be achieved by carrying out analytical and statistical analysis using the available water quality data from National Water Quality Monitoring Program, State Water Quality Monitoring Program, Hydrology project, Directorate of Groundwater Surveys and Development Agency, Irrigation Department, Central Ground Water Board and others. Data is available monthly from around 251 stations for rivers and 34 stations for creeks .Ground water data is available on yearly or six monthly bases from 3694 stations. Thus the proposed work includes consolidation of huge data set.

1.2 Data Analysis Methodology

The statistical analyses to be carried out for River, sea water and ground water are as follows:

a. Identification of outliers

To measure the experimental errors and disturbances caused due to unexpected events such as accidental spill or abrupt changes in the river flow or errors in collection and analysis for the analytical data under consideration, "Outlier" is calculated by using "Dixon's test". " 4σ Test" is a screening test. The " 4σ Test" performed to find out outlier, is a liberal test and do not identify any extreme values, therefore Dixon's test, which is a

stringent test, can be used in the present analysis. For ground water data since the data set is limited identification of outliers was not carried out.

b. Identify the parameters and values exceeding the permissible limits

Permissible limit analysis will be based on assessment of current norms and their applicability at the data point and locations.

c. Carry out descriptive statistics.

The descriptive statistics will involve computation for each data for the parameters pH, DO, BOD, TC and FC the mean and Standard deviation. The percent of the samples exceeding the MPCB standards are also calculated.

d. Estimate National Sanitation Foundation Water Quality Index (NSF, WQI)

Parameters for surface and ground water quality indices are generally different due to the nature of contamination (geogenic vis-à-vis anthropogenic), contaminant propagation characteristics and designated use. Surface water quality data will be analyzed for river, estuary and creeks where as the ground water quality data correspond to dug well, tubewell and deep tubewells.

Monthly surface WQ data is available from around 251 stations. The data will be analyzed based on four parameters viz. DO, FC, pH and BOD for identification of the parameters and values exceeding the permissible limits. The analysis will further include assessment of WQI and its graphical representation.

The statistical analyses for groundwater quality data will involve over approx. 3694 sites for which data is available on yearly or six monthly basis. Since the temporal distribution of the data is meager and the spatial distribution of different types of wells to be made available from CGWB and GSDA is not clear at this stage, the huge data will first be subjected to initial screening and preprocessing to establish appropriate water quality parameters including their test for outliers. The data is proposed to be grouped under different districts or talukas depending on their spatial distribution for achieving statistically relevant significant number of stations. Statistical analysis leading to trends and WQI will then be carried out to arrive at meaningful interpretation and graphical presentation of the data.

1.3 Outputs

Under State Water Quality Monitoring Program (SWMP), National Water Quality Monitoring Program (NWMP) and Hydrology project, River Water quality data is being monitored at 251 locations on 59 Rivers. Whereas, 34 water quality monitoring stations along the Seafronts and Creeks of Maharashtra is also monitored regularly. These are also covered in the report. Approximately 3694 villages from 369 talukas of 34 districts considered for ground water analysis under Groundwater Survey and Development Agency (GSDA), Central Ground Water Board (CGWB) programme with MPCB's 50 monitoring locations in different districts under SWMP and NWMP programs.

Integrated Approach for Water Quality Assessment

2.1 Water Quality Monitoring

The preamble of Water (prevention and control of pollution) Act, 1974 stated that pollution control board both at States and Central level to restore and maintain the wholesomeness of water bodies in India. Water quality monitoring is therefore an imperative prerequisite in order to assess the extent of pollution levels. Since there are a number of agencies involved in water quality monitoring, in order to optimize and rationalize the monitoring programme, it is important that all these agencies follow the same monitoring protocol. Water Quality Assessment Authority (WQAA) created under Environment (Protection) Act, 1986 has notified a "Protocol for Water Quality Monitoring". Therefore CPCB has come out with a document "Guidelines for Water Quality Monitoring'. The Document brings out major considerations to design water quality monitoring, network, procedures for sampling, laboratory analysis, data storage, data analysis, presentation, and interpretation, reporting and quality assurance. The water quality monitoring is performed with following main objectives in mind.

- Rational planning of pollution control strategies and their prioritization;
- To assess nature and extent of pollution control needed in different water bodies or their part;
- To evaluate effectiveness of pollution control measures already in existence;
- To evaluate water quality trend over a period of time;
- To assess assimilative capacity of a water body thereby reducing cost on pollution control;
- To understand the environmental fate of different pollutants.
- To assess the fitness of water for different use

2.2 Water Quality Standards

The assessment of water quality is an issue dependent on best-designated use for the specific water body. Moreover, in India there are multiple agencies, which stipulate water quality standards viz. BIS has brought drinking water standards. CPCB has classified surface water into 5 categories based on the utility of source. MPCB also categorizes the river stretch in to 4 categories and provides standards for maximum allowable concentrations for health related parameters. There are Sea Water standards for creek and coastal waters. CPHEEO has brought out drinking water standards applicable for water treatment plants. Pollution Control Boards of different states also bring out guidelines for quality of surface waters, which can be

more stringent. Worldwide also the drinking water standards are laid down by various agencies and are being reviewed from time to time. **Annexure I**, **II**, **III** and **IV** give related water quality standards stipulated by different agencies in India and receiving Sea Water Standards for Different Categories, Applicable Parameters and Pertinent Issues

2.3 Methods for Water Quality Assessment - A Review

Many factors affect water quality of a river system. The conditions of a river can fluctuate periodically, seasonally and also over the period of time. Hence it is essential to measure water quality at defined intervals to look for trends. Water that is acceptable to be safe for one use may be unacceptable for another purpose. In fact, many water quality experts refer to their measurement in terms of a specific use. The categories used for making recommendations on water quality are: Water supply for domestic and industrial use; recreation for total body contact like swimming, water skiing etc, protection of aquatic organisms; agricultural uses, irrigation, commercial uses such as navigation, hydroelectric and steam generated electric power and so on.

In an attempt to device a system to compare rivers in various parts of country, Water Quality Indices (WQIs) have been developed to assess the suitability of water for a variety of uses. These indices reflect the status of water quality in lakes, streams, rivers, and reservoirs. The concept of WQIs is based on a comparison of the concentration of contaminants with the respective environmental standards. The number, frequency, and magnitude by which the environmental standards for specific variables are not met in a given time period are reflected in WQIs. Further, the water quality trend analysis predicts the behavior of the water quality in the specified time domain.

The National Sanitation Foundation (NSF) designed a standard index called the Water Quality Index (WQI) in 1970 to measure water quality changes in particular river stretch/reach over a time, compare water quality from different reaches of the same river and even compare water quality of different rivers. The WQI is one of the most widely used indice, which can also be used to determine if a particular stretch of the river is healthy or not. To summarize it can be stated that water quality index synthesizes complex scientific data into an easily understood format.

- A water quality index can provide a way to summarize overall water quality conditions in a manner that can be communicated to a general audience.
- An index can tell us whether the overall quality of water bodies poses a potential threat to various uses of water.
- Used as a broad tool, an index can indicate success in protection and remediation efforts.

2.4 Limitations of a Water Quality Index

- Water quality indices by design contain less information than the raw data that they summarize.
- An index is not a complex predictive model for technical and scientific application.
- Distortion can occur from combining various environmental variables into one single value or index score.
- There can be loss of information on a single variable.

While calculating Water Quality Index for surface water, significant parameters indicating organic pollution and nutrient concentration were considered in NSF methodology. Over the years based on the locations specific situation the limited parameters are chosen for deciding WQI. CPCB has modified the weightage when the number of parameters is reduced.

2.5 Past Studies

Based on the long-term water quality data generated over the years, the Central Pollution Control Board had identified river stretches where the existing water quality is below the water quality required by their designated best use criteria. These stretches are referred as polluted river stretches. While identifying these stretches, dissolved oxygen, biochemical oxygen demand and Total Coliform have been taken as the critical pollutants. So far, 13 heavily polluted and 26 medium polluted river stretches have been identified. On behalf of the Ganga Project Directorate, the Central Board conducted detailed surveys of the polluted stretches. The action plans for most of the stretches are complete. CPCB draws up a list of polluted river stretches in the country. It has identified 26 such rivers in Maharashtra with 28 polluted stretches.

Evaluation of River Water Quality

4.1 Surface Water Monitoring Network

Monitoring of water quality of Rivers of Maharashtra is being carried out under various programmes namely NWMP, SWMP and Hydrology project. The present chapter covers all the major and minor rivers of Maharashtra considered for water quality monitoring. **Table 4.1** gives the list of the rivers and their number of monitoring stations.

Table 4.1: Major and Minor Rivers Covering River Water Monitoring Network

Sr.No.	River Name	No. of Stations	Sr. No.	River Name	No. of Stations
1	Amba	2	31	Muchkundi	2
2	Amravati	1	32	Mula-Mutha	8
3	Bhatsa	3	33	Nira	5
4	Bhima	11	34	Penganga	2
5	Bindusara	1	35	Panchganga	5
6	Bori	1	36	Panzara	1
7	Burai	1	37	Patalganga	8
8	Chandrabhaga	2	38	Pawana	7
9	Daman Ganga	3	39	Pedhi	1
10	Darna	5	40	Pelhar	1
11	Deoghar	1	41	Purna	3
12	Ghod	1	42	Rangavali	1
13	Girna	2	43	Savitri	7
14	Godavari	51	44	Sina	1
15	Gomai	1	45	Shastri	1
16	Hiwara	1	46	Surya	3
17	Indrayani	3	47	Tansa	1
18	Kajvi	2	48	Tapi	21
19	Kalu	1	49	Titur	1
20	Kan	1	50	Ulhas	6
21	Kanhan	3	51	Urmodi	1
22	Kodavali	1	52	Vaitarna	5
23	Kolar	1	53	Vashishti	4
24	Koyna	1	54	Vel	1
25	Krishna	28	55	Venna	3
26	Kundalika	5	56	Waghur	1
27	Manjra	1	57	Wardha	7
28	Mithi	1	58	Wena	1
29	Mor	1	59	Wainganga	6
30	Morna	1		Total	251

4.2 River Water Quality Evaluation

The monthly water quality data of 59 rivers for five years 2007-11was evaluated and interpreted for selected physico-chemical parameters viz. pH, DO BOD, FC, TC Ammonical Nitrogen and Nitrate. They were first checked for possible outliers. After removing the outliers the values were compared with the state pollution control board (MPCB) water quality standards of class A-II for best designated usage. Monthly and yearly average WQI was evaluated and the categories at different locations are given in **Annexure V.** The pictorial view of five years WQI for the locations located on the stream of the 59 rivers is given in **Annexure VI.** The water supply and water discharge in some of the municipal councils/corporation with respect to discharge in different river streams is as given in **Annexure Via** (Source: Environment Dept. GoM & MPCB).

4.3 Summary Observations

The overall picture of the water quality of the Rivers of Maharashtra is summarized as follows:

- Water Quality Index evaluated using four parameters viz. pH, DO, BOD FC showed that out of 251monitoring locations, 67 locations had water quality index good to excellent during the period 2007-2011. **Table 4.2** gives a list of these monitoring sites.
- 35 locations had water quality very bad at least in one of the months during the period 2007-2011. **Table 4.3** gives a list of these monitoring sites.
- At 25 locations out of 251 locations, all parameters are within the standards throughout the period 2007-2011. **Table 4.4** gives a list of these monitoring sites.
- At 32 locations out of 251 monitoring sites percent exceedance of significant parameters is 100%. **Table 4.5** gives a list of these sites.
- DO is exceeding the standard 100% time in Mula Mutha River in Sangam bridge near Ganapathy ghat. Village- Shivaji Nagar, Taluka from District Pune.
- BOD concentrations are exceeding the standard 100% time at 26 locations These Rivers are Pawana, Mula Mutha, Bhima, Ulhas, Godavari, Tapi and Vaitarna.
- TC is exceeding the standard 100% of the time at 2 sites in Krishna River at Daund and Khamgaon.
- Ammonical nitrogen exceeded the standard 100% times at 2 locations in Godavari River at Kesrali village and at Latur water intake near pump house. Village- Dhamegaon, Taluka- Kalumb, District- Osmanabad.; Tapi River at Hingona.

The 75% and 50% exceedance of monitoring locations of River Water is given in **Annexure VII**.

Table 4.2 : Monitoring Locations with WQI "Good to Excellent" during 2007-2011

Sr. No.	River	St.Code	Location
1	Dhataa	1461	D/s of Pise Dam, Tal:Bhiwandi, Thane
2	Bhatasa	2654	U/S of Liberty Oil Mill, Dist:Thane
3		2653	D/S of Liberty Oil Mill, Dist:Thane
4	Darna	2661	Aswali (Darna Dam), Igatpuri, Nashik
5		HP_GD_2	Dhalegaon
6		HP_GD_6	Killari
7		HP_GD_14	Pishor
8		HP_GD_15	Purna Bridge
9		HP_GD_20	Takli
10		HP_GD_21	Taklidhangar
11	Godavari	HP_GD_22	Toka
12		HP_GD_23	Wadvali
13		HP_GD_24	Yelli
14		HP_GD_25	Zari
15		HP_GD_27	Damrencha
16		HP_GD_28	Deori
17		HP_GD_30	Grugwada
18		HP_GD_31	Kamtheekhairi
19		HP_GD_32	Kardha
20		HP_GD_34	Mahagaon
21		HP_GD_35	Mathani
22		HP_GD_36	Petta
23		HP_GD_40	Wadsa (Chincholi)
24		HP_GD_41	Wagholi-Butti
25		12	Dhalegaon
26		1095	Gangapur Dam
27		1210	Vishnupuri
28		1312	Jaikwadi Dam,Paithan
29		2158	Paithan intake, Jayakwadi
30		2159	Pathegaon bridge
31		2183	Nandur Madhmeshwar Dam, Nandur

Table 4.2 (Contd.): Monitoring Locations with WQI "Good to Excellent" during 2007-2011

	durin	g 2007-2011							
Sr. No.	River	St. Code	Location						
32		37	Miraj						
33	Krishna	1153	Rajapur						
34	Krisnna	1310	At Kurundwad						
35		1906	At Walwa						
36	Kundalika	1152	At Roha bridge						
37		2672	At Dhatav at Jackwell						
38	Muchkundi	HP MU 1	Pawarwadi						
39		2676	At Waked						
40	Mula-Mutha	2680	Khadakvasla Dam, Pune						
41	_	1311	Ichalkaranji near MIDC intake well						
42	Panchaganga	1904	U/S of Kolhapur town near Balinga P.S.						
43		2163	Shirol Intake well						
44		2686	Vyal Pump house						
45	Patalganga	2687	Khalapur pumping station						
46		2689	Gagangiri Temple, Khopoli						
47	Pehlar River	2696	Pehlar dam water works						
48	Savitri	2199	Ovale Village						
49	Saviui	2701	Upsa kendre, Mangalwadi						
50		2702	Shedav Doh						
51		2703	Dadli Bridge						
52		2704	Muthavali village						
53	~	2706	U/s. Surya Dam, Dhammi, Vikramgad, Thane.						
54	Surya	2707	MIDC PS, Garvshet, Palghar, Thane						
55		2708	Intake of Vasai-Virar w/s, Palghar, Thane						
56		HP_TP_2	Bhusawal						
57	Тарі	HP_TP_5	Hingona						
58		HP_TP_11	Padalse						
59		HP_TP_13	Sawkheda						
60		HP_TP_6	Kawtha						
61		HP_TP_7	Khariya						
62		HP_TP_8	Lakhpuri						
63	Ulhas	1094	U/s of BadalapurWW, Kulgaon village						
64		2162	Jambhul water work, Ambernath						
65	Vashishti	2164	U/s 3M Paper Mill Kherdi						
66	<u> </u>	2713	D/s 3M Paper Mill Kherdi						
67	-	2714	U/s Konphansawane						

Table 4.3: Monitoring Stations with WQI "Very Bad" at least One Month

Sr. No.	River	St. Code	Location
1	Bhima	1189	U/s of Vithalwadi near Sankar Mandir, Dist. Pune
2		1190	D/s of Bundgarden, District-Pune
3		1191	After confluence with Mula-Mutha at Pargaon
4		2655	At Koregaon near Koregaon bridge, District- Pune
5	Daman Ganga	HP_DG_3	Shindayacha Pada
6	Ghod	2665	Shirur
7	Godavari	HP_GD_7	Kopargaon
8	Indrayani	2197	D/s of Alandigaon
9		2668	D/s of Moshi village
10		2669	U/s of Moshigaon
11	Kanhan	1909	D/s of Nagpur
12	Krishna	HP_KR_10	Dattawadi
13		HP_KR_24	Pimple Gurav
14	Mithi	2168	Mahim Village
15	Morna	2675	D/s Railway Bridge, Akola
16	Mula-Mutha	2191	Mutha river at Sangam bridge near
			Ganapathy ghat
17		2192	Mundhawa bridge
18		2193	Aundh bridge
19		2194	Harrison bridge near Mula- Pawana sangam
20		2677	D/s of Theur
21		2678	Mutha river near Veer Savarkar Bhavan
22		2679	Mutha river at Deccan bridge
23	Nira	2195	D/s of Jubilant Organosis, Nimbut
24		2681	Sangavi
25	Pawana	2196	Sangavigaon
26		2690	Kasarwadi
27		100	Sangavigaon
28		2691	Dapodi at Pawana-Mula sangam
29		2693	Chinchwadgaon
30		2694	Pimprigaon
31	Pedhi	2695	Pedhi river brudge near Padhi village
32	Purna	2155	D/s of confluence of Morna and Purna, at Andura
33	Tapi	HP_TP_1	Akkalpada
34		HP_TP_12	Sarangkheda
35	Ulhas	HP UH 3	Manda

Table 4.4: Monitoring Sites with 0% Exceedance of all the Parameters during the Period 2007-2011

Sr. No.	St. Code	River	Location					
1	HP_GD_2		Dhalegaon, Regional Lab Aurangabad					
2	HP_GD_6		Killari, Regional Lab Aurangabad					
3	HP_GD_14		Pishor, Regional Lab Aurangabad					
4	HP_GD_20		Takli, Regional Lab Aurangaba					
5	HP_GD_24		Yelli, Regional Lab Aurangabad					
6	HP_GD_25		Zari, Regional Lab Aurangabad					
7	HP_GD_27		Dhamrencha, Regional Lab-Nagpur					
8	HP_GD_30		Drugwada, Regional Lab-Nagpur					
9	HP_GD_31	Godavari	Kamtheekhairi, Regional Lab-Nagpur					
10	HP_GD_32		Godavari					
11	HP_GD_33		Kolgaon, Regional Lab-Nagpur					
12	HP_GD_34		Mahagaon, Regional Lab-Nagpur					
13	HP_GD_35		Mathani, Regional Lab-Nagpur					
14	HP_GD_36		Petta, Regional Lab-Nagpur					
15	HP_GD_37		Saiphal, Regional Lab-Nagpur					
16	HP_GD_39		Wadsa (Chincholi), Regional Lab-Nagpur					
17	HP_GD_40		Tembhurdoh, Regional Lab-Nagpur					
18	HP_KR_25	Krishna	Shirur					
19	HP_KR_25	KHSIIIa	Rakshewadi					
20	2689	Patalganga	Gagangiri Maharaj Temple, Khopoli, Raigad.					
21	2696	Pehler	Pehlar Dam inlet of water works, Vasai, Thane.					
22	HP_TP_11	Toni	Padalse					
23	HP_TP_13	Tapi	Sawkheda					
24	HP_TP_7		Khariya					
25	1094	Ulhas	U/s of Badlapur water works, Kulgaon, Taluka- Ambernath, District- Thane					

Table 4.5: Monitoring Sites with 100% Exceedance of Significant Parameters

Sr.No.	St.Code	River	Location	pН	DO	BOD	TC	Ammo nical-N
1	1189	Bhima	U/s of Vithalwadi near Sankar Mandir.Village- Vithalwadi, Taluka- Haweli, District- Pune.	0	64	100	0	44
2	1190		Pune, D/s of Bundgarden.Village- Yerwada, Taluka- Haweli, District- Pune.	4	77	100	0	71
3	HP_GD_5	Godavari	Kesrali, Regional Lab Aurangabad	67	0	0	50	100
4	HP_GD_1		Bhandardara, Regional Lab Nasik	0	0	100	0	0
5	HP_GD_3		Gangapur Dam, Regional Lab Nasik	33	33	100	0	0
6	2157		Latur water intake near Pump house. Village- Dhamegaon, Taluka- Kalumb, District- Osmanabad.	0	33	0	0	100
7	HP_KR_8	Krishna	Bundgarden Bridge	0		100		100
8	HP_KR_11		Daund	0	0	56	100	0
9	HP_KR_15		Khamgaon	0	0	67	100	0
10	2191	Mula Mutha	Sangam bridge near Ganapathy ghat. Village- Shivaji Nagar, Taluka- Pune, District- Pune.	0	100	98	0	87
11	2192		Mundhawa bridge. Village- Mundhawa, Taluka- Haweli, District- Pune.	2	87	100	0	90
12	2193		Aundh bridge, Aundgaon. Village- Aundgaon, Taluka- Haweli, District- Pune.	2	60	100	0	82
13	2194		Harrison bridge near Mula- Pawana sangam. Village- Bopodi, Taluka- Haweli, District- Pune.	2	77	100	0	85
14	2678		Near Veer Savarkar Bhavan, Pune.	0	82	100	0	76
15	2679		Deccan bridge, Pune.	2	84	100	0	73

Table 4.5 (Contd..): Monitoring Sites with 100% Exceedance of Significant Parameters

Sr.No.	St.Code	River	Location	pН	DO	BOD	TC	Ammo
								nical-N
16	2196	Pawana	Sangavigaon, Pune.					
			Village- Sangavigaon,	0	83	100	0	71
			Taluka- Haweli, District-	U	03	100	U	/ 1
			Pune.					
17	2690		Kasarwadi, Haweli, Pune.	9	71	100	0	76
18	100		Sangvigaon, Pune	0	86	100	0	89
19	2691		Dapodi bridge, at					
			Pawana- Mulla	4	88	100	0	71
			Sangam,Pune.					
20	2694		Pawna Pimprigaon, Pune.	0	76	100	0	66
21	HP_TP_5		Hingona	0	0	0	0	100
22	HP_TP_1		Akkalpada	29	0	100	0	0
23	HP_TP_14		Dhule	0	13	100	89	0
24	HP_TP_9	Tapi	Malegaon Mosam	9	0	100	27	0
25	HP_TP_12		Sarangkheda	0	7	100	8	0
26	HP_TP_15		Suple	13	0	100	43	0
27	HP TP 14		Sukwad	7	7	100	7	0
28	HP UH 2	Ulhas	Khapari	7	0	100	15	0
29	HP UH 3		Manda	0	77	100	80	0
30	HP VN 1	17-14	Alman	0	0	100	0	0
31	HP VN 2	Vaitarna	Vaitarna	0	0	100	0	0
32	HP VN 3		Kasa (Thane)	0	0	100	8	0

Technologies for water quality improvement are given in **Appendices I toVI**.

4.4 Details of Analysis

The details of the monitoring locations, outliers observed in the data file, the mean and standard deviation of the parameters after removing the outliers, percent exceedance with respect to the MPCB standards and the water quality indices calculated are given below.

1. Amba River

Amba River originates from Navghar located in the Raigad district and flows through Pali village where it meets Dharamtar Creek in the Arabian Sea. Along the bank of the river, many small villages and industrial zones such as Raigad MIDC is located. Maximum stream of the river covers the major portion of the Pali tehsil (also known as Sudhagad). MPCB has two sampling locations on Amba River under GEMS/MINARS programme. The descriptive statistics and Water Quality Index is given in **Table 4.6**.

1. Amba river at D/s of Waken bridge (2651 SWMP)

- Station details: Village-Waken Phata, Taluka-Roha, Distinct-Raigad.
- Pollution sources: U/s of the jackwells of M/s Supreme petrochemicals and MIDC.
 No effluent discharge point. Water is used for drinking by MIDC and nearby villages.

2. Amba river at Pali (HP_AM_1)

- Station details: Village-Pali, Taluka-Pali (Sudhagad), District-Raigad.
- **Pollution sources**: Water is used for drinking by MIDC and nearby villages.

Table 4.6(a): Two Years Descriptive Statistics for Amba River (2008-2009)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2651	Mean	7.5	6.8	4.0	68	142	0.3	0.1
	Std.dev	0.5	0.4	1.1	39.1	70.1	0.4	0.1
	No of Samples	15	15	14	11	10	15	13
	% Exceedance	7	0	14	-	0	7	0

Five Years Descriptive Statistics for Amba River (2007-2011)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_AM_1	Mean	7.8	6.8	1.7	6575.7	7649.3	0.1	ŀ
	Std.dev	0.56	0.59	0.61	5894.76	6238.61	0.04	-
	No of Samples	41	41	40	41	41	40	
	% Exceedance	4.9	0	0		63.4	0	

As per the MPCB standards, it was observed that percent exceedance of pH was 7% and 4.9 at D/s of Waken Bridge, Raigad, MIDC and Pali village respectively. Similarly 14% values of BOD and 7% values of Ammonical nitrogen were exceeding at D/s of Waken Bridge, Raigad, MIDC whereas Nitrate nitrogen and DO values were within permissible levels. In bacteriological analysis, TC values were found to be exceeding by 63.4 % at Pali location.

Table 4.6(b): Water Ouality Index for Amba River

Station Code	2007	2008	2009	2010	2011
HP_AM_1	GE	MG	MG	GE	
2651		GE	GE		

Water quality index for Pali station varied between good to excellent and moderate to good during 2008-2011. For Amba River at D/s of Waken Bridge (2651) WQI could not be calculated for the year 2007, 2010 and 2011 due to data gaps, whereas for the year 2008-09, WQI indicated that water quality for the available data was between good to excellent.

2. Amravati River

Amravati River is a minor river and there is only one monitoring location on this river. The descriptive statistics and Water Quality Index is given in **Table 4.7**.

1. Amravati River, D/s of Dhondaicha, Dhule (2652 SWMP)

• Station details: Village: Dhondaicha, Taluka: Dhondaicha, District: Dhule

Table 4.7(a): Two Years Descriptive Statistics for Amravati River (2007-2008)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2652	Mean	8.3	5.9	8.9	14	29	2.5	1.0
	Std.dev	0.23	0.93	3.66	7.8	16.4	1.00	0.79
	No of Samples	10	9	12	9	10	11	12
	% Exceedance	20	0	67	-	0	82	0

It was observed that DO, TC and Nitrate were complying with the standards, whereas values for pH, BOD and Ammonical nitrogen exceeded in 20, 67 and 82% samples respectively.

Table 4.7(b): Water Quality Index for Amravati River

Station Code	2007	2008	2009	2010	2011
2652	MG	MG			

The WQI at this station for the year 2007-08 indicated that the water quality was moderately good during 2007 and 2008. Data was unavailable for the remaining years.

3. Bhatsa River

Bhatsa River originates near Kasara and gets extended to Shahapur in the Thane district. River basin covers the major area from Shahapur to Titwala. Along the river stream many villages such as Bathsai, Shera, Vaveghar, Nadgaon and Rang are located. At Titwala Bhatsa River confluences with Kalu River, this flows through the Murbad district. From Kalyan onwards, the river flows towards Diva and Mumbra and finally it empties into the Thane creek. MPCB has following three monitoring locations of Bhatsa River. The descriptive statistics and Water Quality Index is given in **Table 4.8**.

1. Bhatsa River at D/s of Pise Dam (1461/NWMP)

- Station details: Village- Pise, Taluka- Bhiwandi, District-Thane.
- **Pollution sources**: No development zone up to 3 km. Source of drinking water supply to Mumbai and surrounding areas. No effluent discharge point.

2. Bhatsa River at D/s of Liberty Oil Mills, Satnel, Shahapur, Thane (2653/SWMP)

- Station details: Village-Satne, Taluka-Shahapur, District-Thane.
- **Pollution sources**: Effluent is reused after treatment. So no discharge into river. Accidental discharge possible.

3. Bhatsa River at U/s of Liberty Oil Mills, Satnel, Shahapur, Thane (2654/SWMP)

- **Station details:** Village-Satne, Taluka-Shahapur, District-Thane.
- **Pollution sources**: Only non-polluting industries are allowed around 3 km. No effluent discharge into river.

Table 4.8(a): Three Years Descriptive Statistics for Bhatsa River (2007-2009)

1								
Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1461	Mean	7.7	6.9	3.8	26.0	139.9	0.1	0.3
	Std.dev	0.36	0.42	1.69	19.52	108.38	0.19	0.26
	No of Samples	22	16	22	11	11	21	22
	% Exceedance	0	0	9.1	-	0	0	0

Table 4.8(a) (Contd..): One Year Descriptive Statistics for Bhatsa River (2011)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2653	Mean	7.9	7.1	3.3	37.6	96.1	0.1	0.4
	Std.dev	0.51	0.18	0.38	6.65	23.42	0.18	0.30
	No of Samples	19	17	18	9	9	17	19
	% Exceedance	10.5	0	0	•	0	0	0
2654	Mean	7.9	7.0	3.3	35.1	94.0	0.1	0.3
	Std.dev	0.57	0.38	0.38	4.95	13.90	0.08	0.22
	No of Samples	19	19	19	10	10	17	18
	% Exceedance	15.8	0	0	•	0	0	0

At Bhatsa River, D/s of Pise Dam, values for all the parameters were within the permissible standards of MPCB except BOD which exceeded the standard of 5 mg/l. For the stations at D/s and U/s of Liberty oil Mill, the percentage exceedance for pH values were 10.5 and 15.8% respectively whereas DO, BOD, TC, Ammonical and Nitrate nitrogen values were complying with MPCB standards for the available data sets. The percent exceedance of pH may be due to accidental discharge of effluent from Liberty Oil Mill.

Table 4.8(b): Water Quality Index for Bhatsa River

Station Code	2007	2008	2009	2010	2011
1461	GE	GE	GE	ŀ	ŀ
2653					GE
2654					GE

The Water Quality Index of Bhatsa River at D/s of Pise dam was good to excellent for the available data sets. However, for the stations at U/s and D/s of Liberty Oil Mill, WQI was good to excellent for 2011 but could not be calculated for 2007-2010 due to unavailability of data.

4. Bhima River

The Bhima River originates in Bhimashankar hills near Karjat on the western side of Western Ghats, known as Sahyadri, in Maharashtra state in India. Bhima flows southeast for 725 km through Maharashtra, Karnataka, Andhra Pradesh states. Bhima is the most important tributary of the Krishna River. Its banks are densely populated and form a fertile agricultural area. The river is prone to flooding due to heavy rainfall during the monsoon season.

During the long journey of Bhima towards southeast many smaller rivers confluence in it. Kundali River, Kumandala River, Ghod river, Bhama, Indrayani, Mula River, Mutha River and Pavna River are the major tributaries of this river around Pune. The total basin area is 48,631 km². Seventy-five percent of the basin lies in the state of Maharashtra. MPCB has

following nine monitoring stations of Bhima River. The descriptive statistics and Water Quality Index is given in **Table 4.9**.

1. Bhima river at Takli Village near Karnataka Border (28/NWMP)

- Station details: Village- Takali, Taluka- South Solapur, District- Solapur.
- **Pollution sources**: Domestic pollution and pollution due to human activities

2. Bhima River at Narsingpur near Sangam bridge after confluence with Nira(1188/NWMP)

- Station details: Village- Narsingpur, Taluka- Malshiros, District- Solapur
- **Pollution sources**: Industrial effluents are not discharged. Domestic pollution present

3. Bhima river at Pune (Mutha River) at U/s of Vithalwadi near Sankar Mandir. (1189/NWMP)

- Station details: Village- Vithalwadi, Taluka- Haweli, District- Pune.
- **Pollution sources**: Receive domestic wastes. Main pollution is due to human activities such as washing, bathing etc.

4. Bhima river at Pune, D/s of Bundgarden. (1190/NWMP)

- Station details: Village- Yerwada, Taluka- Haweli, District- Pune.
- **Pollution sources**: Pollution due to domestic effluent from Pune city and human activities.

5. Bhima River after confluence with Mula-Mutha at Pargaon near Vasant Bandara. (1191/NWMP)

- Station details: Village- Pargaon, Taluka- Daund, District- Pune.
- **Pollution sources**: Receive industrial wastes as well as domestic wastes.

6. Bhima River at Daund near Mahadev temple(1192/NWMP)

- Station details: Village- Daund, Taluka- Daund, District- Pune
- Pollution sources: Pollution due to human activities as well as domestic wastes

7. Bhima River at Koregaon near Koregaon bridge, Pune (2655/SWMP)

- Station details: Village- Koregaon, Taluka- Shirur, District- Pune
- **Pollution sources**: Pollution due to domestic waste, agricultural runoff and human activities.

8. Bhima River- Backwater of Ujani Dam near raw water pump house (2656/SWMP)

- **Station details:** Village- Kumbargaon, Taluka- Indapur, District- Pune.
- **Pollution sources**: Pollution due to human activities such as boating, washing, bathing

9. Bhima River at Narshinpur, Pune

- Station details: Village- Indapur Pune
- Pollution sources: Pollution due to human activities as well as domestic wastes

10. Bhima River at Sarati

- Station details: Sarati, District Solapur, Near Pandharpur
- **Pollution sources**: Pollution due to human activities such as boating, washing, bathing

Table 4.9(a): Five Years Descriptive Statistics for Bhima River (for 2007-2011)

Table 4.9(a): Five Years Descriptive Statistics for Bhima River (for 2007-2011)											
Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate			
Narshinpur		8.0	6.7	4.8	2732.2	4033.3	0.7	0.6			
Station	Std.dev	0.33	0.40	1.09	1608.5	2669.7	0.64	0.17			
(2010-2011)	No of Samples	9	9	9	9	9	9	0			
(2010-2011)	% Exceedance	0	0	44.4	-	22.2	0	0			
Sarati	Mean	8.3	6.8	4.6	2920.0	4732.2	0.1	0.8			
(2010 2011)	St deviation	0.12	0.28	0.88	1825.0	3072.8	0.04	0.16			
(2010-2011)	No of samples	9	9	9	9	9	9	0			
	% Exceedance	0	0	22.2	-	55.6	0	0			
28	Mean	8.1	5.7	7.8	135	962	0.8	0.5			
	Std.dev	0.32	0.79	1.99	100.9	703.8	0.70	0.63			
(2007-2009)	No of Samples	35	33	33	35	35	33	35			
	% Exceedance	6	3	94	-	0	15.0	0			
1188	Mean	8.1	5.7	7.2	149.5	1067.4	0.8	0.4			
	Std.dev	0.37	0.78	3.00	109.29	663.74	1.28	0.31			
	No of Samples	56	54	55	56	56	55	55			
	% Exceedance	14.3	1.9	74.5	-	0	9.1	0			
1189	Mean	7.6	3.5	13.7	196.0	1362.0	2.3	0.7			
	Std.dev	0.32	1.22	6.56	117.81	514.33	3.07	0.97			
	No of Samples	24	22	24	24	23	23	23			
	% Exceedance	0	63.6	100.0	-	0	43.5	0			
1190	Mean	7.6	2.7	18.9	270.6	1492.3	3.5	0.8			
	Std.dev	0.43	1.52	8.59	109.47	499.40	3.32	0.87			
	No of Samples	24	22	24	24	24	24	24			
	% Exceedance	4.2	77.3	100.0	-	0	70.8	0			
1191	Mean	7.7	4.5	8.7	179.1	1070.2	1.8	0.5			
	Std.dev	0.36	1.44	3.73	111.19	614.89	2.13	0.45			
	No of Samples	23	24	24	24	24	24	24			
	% Exceedance	0	29.2	87.5	-	0	50.0	0			
1192	Mean	7.8	5.1	6.8	150.0	1092.7	2.0	0.7			
	Std.dev	0.34	1.23	2.16	75.54	597.75	1.82	0.55			
	No of Samples	23	24	23	23	24	23	24			
	% Exceedance	0	25.0	82.6	-	0	60.9	0			
2655	Mean	8.1	5.6	7.1	118.6	851.7	0.7	0.3			
	Std.dev	0.47	1.14	3.07	86.42	543.52	0.64	0.30			
	No of Samples	45	45	44	38	45	45	44			
	% Exceedance	15.6	6.7	68.2	-	0	11.1	0			
2656	Mean	8.0	6.0	6.2	104.0	750.4	0.6	0.4			
	Std.dev	0.52	0.58	3.38	84.14	501.66	0.70	0.28			
	No of Samples	42	42	42	42	42	41	41			
			0.0	57.1	+	0.0	4.9	0.0			

Tables 4.9 show that the percent exceedance for pH was observed at Takli village, Narsingpur near Sangam Bridge, D/s of Bundgarden, Koregaon Bridge and Backwater of Ujani Dam ranging from 6 to 16.7 %. At other stations of Bhima River, pH was as per the standards. DO values at all stations exceed the standard except at Kumbargaon, Taluka- Indapur, and District- Pune. The range of percent exceedances were ranging from 1.9 to 77.3%. Also the

higher percent exceedance was observed in BOD values ranging from 57.1-100%. The exceeding values of BOD at all stations may be due to domestic waste released into the rivers at these stations. However, the values of TC and Nitrate nitrogen at all the stations of Bhima River were complying with the MPCB standards except at Narshinpur Station it exceeded by 22.2%. Ammonical Nitrogen exceeded the standards at all the stations.

Table 4.9(b): Water Quality Index for Bhima River

Station Code	2007	2008	2009	2010	2011
28	MG	MG	MG	ŀ	I
1188	GE	MG	MG	MG	MG
1189	MG	Bad	Bad	Bad	Bad
1190	Bad	Bad	Bad	VB	Bad
1191	GE	MG	MG	MG	Bad
1192	GE	GE	MG	MG	MG
2655	MG	MG	MG	MG	MG
2656	MG	MG	MG	GE	GE
Narshinpur				Bad	MG
Sarati				MG	MG

- The water quality for the available data sets at three stations on Bhima River namely (1) Narsingpur near Sangam bridge after confluence with Nira (2) Bhima River at Daund near Mahadev temple(3)Bhima river- Backwater of Ujani Dam near raw water pump house (were moderately good to excellent.
- The water quality at three stations namely (1) Takli Village near Karnataka Border (2) Koregaon near Koregaon bridge, Pune and (3) Sarati was moderately good.
- Bhima river at (1) Pune (Mutha river) at U/s of Vithalwadi near Sankar Mandir, (2) D/s. of Bundgarden, (3) after confluence with Mula-Mutha at Pargaon near Vasant Bandar and at (4) Narshinpur, Pune were bad.

Number of sites of Bhima river with percent exceedances in different ranges for BOD, DO, TC and pH are given **Table 4.9(c)**.

Table 4.9(c): Number of Sites of Bhima with Percent Exceedances for BOD, DO, TC and pH

Percent Exceedance	BOD	DO	TC	pН
0%	0	2	8	4
1-20%	0	3	0	5
20-40%	0	2	1	0
40-60%	2	0	0	0
60-80%	2	2	0	0
80-100%	5	0	0	0

Percent exceedances for BOD, DO, pH and TC for 9 locations in Bhima River are shown in **Figures 4.1.**

Figure 4.1: Percent Exceedances at 9 Monitoring Locations of Bhima River

The WQI indicates that out of 9 monitoring locations, river water quality was "Good to Excellent" at 1 site. At six sites water quality was "Medium to Good" and at 2 sites (viz. Upstream of Vithalwadi near Sankar Mandir and D/s of Bundgarden, both in Taluka Haweli, district Pune) it was bad (**Figure 4.2**).

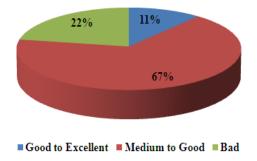


Figure 4.2: Water Quality Index of 9 Monitoring Locations of Bhima River

5. Bindusara River

Bindusara (also called Bendsura) is a small river situated in the district of Beed. It is a tributary river of Sindphana and a sub-tributary of Godavari River. It originates in the hills of Balaghat near the village Waghira, in south of district Beed in Patoda taluka. Total length of the river is about 40 km. Bendsura is a rapid and seasonal river. A reservoir; Bendsura Project, was constructed on the river in 1955 near the village Pāli, about 10 km south of Beed. The city of Beed is situated on the banks of Bindusara River. MPCB has one monitoring station at Bindusara River. The descriptive statistics and Water Quality Index is given in **Table 4.10**.

1. Bindusara river at Beed, near intake water pump house at Dam (2657/SWMP)

- Station details: Village- Kumbargaon, Taluka- Indapur, District- Pune
- **Pollution sources**: Pollution due to human activities such as boating, washing, bathing

Table 4.10(a): Three Years Descriptive Statistics for Bindusara River (2008-2009)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2657	Mean	7.8	6.1	7.7	7	300	0.6	1.4
	Std.dev	0.50	1.15	4.68	1.16	23.20	1.12	0.88
	No of Samples	14	14	14	14	14	11	10
	% Exceedance	7	14	64	-	0	18	0

The concentrations for TC and Nitrate nitrogen were in compliance with the MPCB standards whereas there was some percentage exceedance for pH, DO, BOD and Ammonical nitrogen. 64% of the BOD samples showed non-compliance with the MPCB standards. Higher percentage exceedance of BOD may be due to the human activities as the city is situated on the banks of the Bindusara River.

Table 4.10(b): Water Quality Index for Bindusara River

Station Code	2007	2008	2009	2010	2011
2657		GE	MG		

For the Bindusara River near intake water pump house, WQI could not be calculated for the year 2007, 2010 and 2011 due to data unavailability.

6. Bori River

Bori River is one of the tributary of Tapi River in Jalgoan district. The river starts the journey from the border of Dhule and Jalgaon district. The river gets broadened at the Amalner which is one of the major taluka places in Jalgaon district. Finally it meets the main stream of the Tapi River at Bohra village, where other two tributaries of the Tapi namely Panjara and Aner also meet the main flow of Tapi River. There is one monitoring location on this river. The descriptive statistics and Water Quality Index is given in **Table 4.11**.

1. Bori river at D/s of Amalner (2658/SWMP)

- Station details: Village- Amalner, Taluka-Jalgaon, District- Jalgaon
- **Pollution sources**: Sewage from Amalner city

Table 4.11(a): Five Years Descriptive Statistics for Bori River (2007-2011)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2658	Mean	8.1	5.8	8.5	14.1	43.3	1.0	1.5
	Std.dev	0.47	0.96	5.00	7.11	33.71	1.21	1.19
	No of Samples	28	28	29	24	24	24	29
	% Exceedance	14.3	3.6	62.1	-	0	29.2	0

TC and Nitrate nitrogen concentrations complied with the MPCB standards whereas pH, DO, BOD, and Ammonical nitrogen did not. It was observed that 62% of BOD values were exceeding the limit whereas for pH, DO and Ammonical nitrogen the exceedances were14.3, 3.6 and 29.2% respectively. The critical values of BOD could be due to the domestic sewage released from Amalner city into this river.

Table 4.11(b): Water Quality Index for Bori River

Station Code	2007	2008	2009	2010	2011
2658	MG	GE	MG	GE	GE

The WQI values for the available data sets of Bori River, D/S of Amalner indicate that the water quality varied between moderately good and good to excellent except for September, 07 when it was of bad quality.

7. Burai River

Burai River is one of the minor tributary of Tapi situated in the Dhule district. The main river flow is formed by many small streams of fresh water which meet at Arave and Amrale villages. From this point onward it gives a solitary stream which gets enlarged at the Shindkheda town and finally meets Tapi River at the Mukudas village. Since many small villages and towns are established on the bank of the river the water is used for domestic purpose. There is one monitoring location on this river, descriptive statistics of which is given in **Table 4.12**.

1. Burai river before confluence to Tapi river at Mukudas village (2659/SWMP)

- Station details: Village- Mukudas, Taluka- Dhule, District- Dhule
- **Pollution sources**: Sewage from Chimthana & Shindkheda area

Table 4.12(a): Five Years Descriptive Statistics for Burai River (2007-2011)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2659	Mean	8.0	5.9	6.9	14.9	40.0	1.1	1.8
	Std.dev	0.45	1.11	4.02	9.21	25.38	1.18	1.73
	No of Samples	30	27	29	22	23	27	30
	% Exceedance	10.0	3.7	51.7	-	0	37.0	0

On comparison of the dataset of Burai river with the MPCB standards, it was observed that TC and Nitrate nitrogen values were found to be complying with the standards whereas pH, DO, BOD and Ammonical nitrogen were exceeding by 10, 3.7, 51.7% and 37% respectively. High percent exceedance of BOD could be due to human activities and domestic sewage released from Chimthana & Shindkheda villages into this river.

Table 4.12(b): Water Quality Index for Burai River

Station Code	2007	2008	2009 2010 2		2011
2659	GE	GE	GE	GE	GE

The water quality at Burai River, before Confluence to Tapi River at Mukudas village, was found to be good to excellent throughout the study period.

8. Chandrabagha River

Chandrabhaga River is a small tributary of Bhima and most populous place in Solapur due to devotees frequently visiting the old Vitthal temple located on the bank of the river. Due to religious importance water of the river is used for religious, domestic and sanitation purpose which is the major cause of river water pollution. There are two monitoring locations on this river. Descriptive statistics of monitored data is given in **Table 4.13.**

1. Chandrabhaga River at U/s of Pandharpur town (1911/NWMP)

- Station Details: Village- Gursale, Taluka- Pandarpur, District- Solapur.
- **Pollution sources**: Religious place. Pollution through agricultural runoffs, human activities and domestic waste.

2. Chandrabhaga River at D/s of Pandharpur town near Vishnupant Mandir (1912/NWMP)

- Station Details: Village- Gopalpur, Taluka- Pandarpur, District- Solapur.
- **Pollution sources**: Religious place. Pollution through agricultural runoffs, human activities and domestic waste.

Table 4.13(a): Five Years Descriptive Statistics for Chandrabagha River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1911	Mean	8.1	5.8	5.6	112.1	603.0	0.8	0.3
	Std.dev	0.37	0.50	2.17	72.18	288.96	0.70	0.29
	No of Samples	24	24	24	24	22	23	23
	% Exceedance	12.5	0	58.3	•	0	13.0	0
1912	Mean	8.1	5.6	6.6	173.0	1218.5	1.1	0.5
	Std.dev	0.45	0.64	2.66	88.84	559.15	0.89	0.42
	No of Samples	24	24	24	24	23	23	23
	% Exceedance	25.0	0	75.0	-	0	30.4	0

DO, TC, Nitrate Nitrogen were complying with the MPCB standards at both the locations of Chandrabagha River. But pH was exceeding at both the U/s and D/s of Pandharpur ranging between 12.5-25%. The percentage exceedance for BOD was high i.e. 58 and 75% at U/s and

D/s of Pandharpur respectively. It could be due to the agricultural run-offs, human activities and domestic waste. Also since it is a religious place, the waste could be of biological origin. This all might account for increased BOD at these locations.

Table 4.13(b): Water Quality Index for Chandrabagha River

					0
Station Code	2007	2008	2009	2010	2011
1911	GE	MG	MG	GE	MG
1912	GE	MG	MG	MG	MG

The monthly WQI evaluated for Chandrabagha River, showed that the water quality varied from moderately good to good to excellent at U/s of Pandharpur. However, the water quality was bad for few months at D/s of Pandharpur near Vishnupant Mandir. This could be due to the human activities and waste discharged from religious places.

9. Daman Ganga River

The river's headwaters are on the western slope of the Western Ghats range, and it flows west into the Arabian Sea. The river flows through Maharashtra and Gujarat states, as well as the Union territories of Daman and Diu and Dadra and Nagar Haveli. The industrial towns of Vapi, Dadra and Silvassa lie on the north bank of the river, and the town of Daman occupies both banks of the river's estuary. Daman Ganga is also the most polluted of Indian rivers according to participants of the Machhimar Adhikar Rahstriya Abhiyan or the national campaign to save the coast and fish workers rights in India (June 2008) from Kutcheh to Kanyakumari. MPCB has monitored three locations of Daman Ganga River under Hydel Project. Detailed analysis of monitored data is given in **Table 4.14**.

1. Daman Ganga River at Khadadi (HP DG 1)

- Station Details: Taluka- Jawahar, District- Thane.
- Pollution sources: Industrial discharges as well as domestic pollution city

2. Daman Ganga River at Khadkhad (HP_DG_2)

- **Station Details:** Taluka- Jawahar, District- Thane.
- **Pollution sources**: Industrial discharges as well as domestic pollution city

3. Daman Ganga River at Shindyacha Pada (HP_DG_3)

- Station Details: Taluka-Mokhada, District- Thane.
- Pollution sources: Industrial discharges as well as domestic pollution city

Table 4.14 (a): Five Years Descriptive Statistics for Daman Ganga River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia
HP_DG_1	Mean	7.5	6.7	7.7	1192.7	2299.9	0.1
	Std.dev	0.57	0.77	4.16	1101.51	1983.0	0.01
	No of Samples	16	16	15	15	15	
	% Exceedance	6.3	0.0	73.3		0.0	

Table 4.14(a) (Contd.): Five Years Descriptive Statistics for Daman Ganga River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia
HP_DG_2	Mean	7.6	7.0	5.7	527.8	1085.5	0.1
	Std.dev	0.50	1.07	3.66	582.25	986.37	0.01
	No of Samples	25	25	24	25	25	24
	% Exceedance	0.0	0.0	54.2	-	0.0	0.0
HP_DG_3	Mean	7.7	6.3	8.1	557.2	885.6	0.1
	Std.dev	0.43	1.23	4.24	510.0	760. 9	0.01
	No of Samples	18	18	18	18	16	18
	% Exceedance	5.6	5.6	77.8		0.0	0.0

Water quality data of Daman Ganga River showed that Ammonical nitrogen complied with the standards at all three stations i.e. Khadadi, Khadkhad and Shindayacha Pada but BOD exceedance was from 54% to 78% at all three stations. It could be due to the domestic sewage released into these river locations. DO and TC exceeded only at Shindayacha Pada station.

Table 4.14(b): Water Quality Index for Daman Ganga River

Station Code	2007	2008	2009	2010	2011
HP_DG_1	GE	MG	Bad	GE	-
HP_DG_2	MG	MG	MG	GE	GE
HP_DG_3	MG	MG	MG	GE	-

On evaluation of the yearly water quality indices of the available data, it was found that the water quality at Daman-Ganga River varied from moderately good to bad at all its locations. However the monthly WQI evaluated shoed that during few months at all the locations WQI was bad.

10. Darna River

Darna River is located in Nasik district and it is known for the Darna dam constructed on main stream of river. Sampling stations on Darna are located at the Darna dam and Pandurli, Chehedi, Aswali M.E.S water pumping stations. Major source of water pollution is disposal of domestic sewage generated by the nearby villages located on banks of the river and other human activities. Detailed analysis of monitored data is given in **Table 4.15**.

1. Darna river at Chehedi water works- pumping station (2660/SWMP)

- **Station Details:** Village- Chehedi, Taluka- Nasik, District- Nasik.
- **Pollution sources**: No source of pollution
- 2. Darna river at Aswali (Darna Dam) (2661/SWMP)
 - Station Details: Village- Aswali, Taluka- Igatpuri, District- Nasik.
 - **Pollution sources**: No source of pollution
- 3. Darna river at M.E.S. site Pumping station (2662/SWMP)
 - Station Details: Village- Bhagur, Taluka- Nasik, District- Nasik.
 - **Pollution sources**: Pollution due to human activities

4. Darna river at Bhagur pumping station near Pandhurli bridge (2663/SWMP)

- Station Details: Village- Bhagur, Taluka- Nasik, District- Nasik.
- **Pollution sources**: Domestic sewage from nearby village.
- 5. Darna river at Sansari (2664/SWMP)
 - Station Details: Village- Sansari, Taluka- Nasik, District- Nasik
 - **Pollution sources**: Pollution due to human activities

Table 4.15(a): Five Years Descriptive Statistics for Darna River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2660	Mean	7.9	5.8	6.5	10.3	30.7	1.1	0.8
	Std.dev	0.36	1.01	3.99	5.34	16.07	1.37	0.64
	No of Samples	36	35	29	34	35	30	34
	% Exceedance	0.0	8.6	51.7	-	0.0	30.0	0.0
2661	Mean	7.9	6.3	4.6	7.7	25.8	0.8	0.9
	Std.dev	0.36	0.73	1.10	3.56	17.37	1.35	0.84
	No of Samples	37	35	29	35	36	27	36
	% Exceedance	2.7	0.0	24.1	-	0.0	33.3	0.0
2662	Mean	7.9	6.3	5.2	12.8	33.2	1.0	
	Std.dev	0.34	0.67	2.63	12.80	26.06	1.40	1.28
	No of Samples	38	36	37	37	38	31	37
	% Exceedance	5.3	0.0	32.4	-	0.0	29.0	0.0
2663	Mean	7.9	6.2	5.6	9.9	29.5	0.9	
	Std.dev	0.45	0.65	3.16	4.32	12.89	1.24	1.11
	No of Samples	39	36	39	37	38	35	38
	% Exceedance	7.7	0.0	38.5	-	0.0	25.7	0.0
2664	Mean	7.8	6.1	6.2	12.1	33.8	0.9	1.4
	Std.dev	0.35	0.96	3.43	5.86	19.55	1.26	1.13
	No of Samples	39	37	39	37	38	34	37
	% Exceedance	2.6	2.7	41.0	-	0.0	26.5	0.0

TC and Nitrate nitrogen values in Darna River for all five stations were complying with the MPCB standards. Percentage exceedance for BOD and Ammonical nitrogen ranged from 24 to 51% and 26% to 33% respectively. The reason for this could be the waste released due to human activities or the domestic sewage discharged from nearby villages including Bhagur and Sansari. Percentage exceedance for pH was found at all stations except Chehedi water works-pumping station. It could mainly be due to the detergents used for washing clothes and utensils by villagers.

Table 4.15(b): Water Quality Index for Darna River

the table to the territory of the table to the territory of the table to table to the table to tab						
Station Code	2007	2008	2009	2010	2011	
2660	MG	GE	ŀ	GE	GE	
2661	GE	GE	GE	GE	GE	
2662	MG	GE	GE	GE	GE	
2663	MG	GE	GE	GE	GE	
2664	GE	GE	GE	GE	GE	

On evaluation of the yearly water quality indices for the available data sets of the Darna river stations it was observed that the water quality was good to excellent at Aswali (Darna Dam), Igatpuri, Nasik and at Sansari, Talulka and district Nasik. The water quality was varying from moderately good to excellent at the other three sites viz., Chehadi Pumping Station, Nasik; MES Pumping Station, Bhagur, Nasik; near Pandhurli Bridge, Bhagur, Nasik.

11. Deoghar (Ghonsari) River

Deoghar River located at Kankawali Taluka, in Sindhudurg station is a minor river. There is one monitoring location on this river. Detailed analysis of monitored data is given in **Table 4.16**.

- 1. Deoghar River at Ghonsari Village (HP_DH_2)
 - Station Details: Village-Ghonsari, Taluka-Kankawali, District-Sindhudurg
 - **Pollution sources**: Pollution due to human activities

Table 4.16 (a): Five years Descriptive Statistics for Ghonsari River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_DH_2	Mean	7.0	7.1	1.2	755.4	840.0	0.1	0.1
	Std.dev	0.37	0.62	0.37	305.32	348.81	0.0	0.06
	No of Samples	40	40	39	39	39	39	11
	% Exceedance	0.0	0.0	0.0	•	0.0	0.0	0.0

The water quality of Deoghar River at Ghonsari Village showed that pH, DO, BOD, TC and Ammonical nitrogen complied well with MPCB standards. However, Nitrate nitrogen data was not available for analysis.

Table 4.16(b): Water Quality Index for Ghonsari River

ſ	Station Code	2007	2008	2009	2010	2011
Ì	HP_DH_2	MG	GE	GE	GE	GE

The monthly water quality indices from the available data set indicated that the water quality at Deoghar River in Ghosari Village was found to be good to excellent during most of the time except in 2007 when it was moderately good most of the time. The yearly WQI indicate that the water quality was good to except in 2007 when it was moderately good.

12. Ghod River

Ghod River is one of the tributaries of Bhima River. Kukri River which is also a tributary of Bhima meets Ghod River at Shirur. From Shirur a single stream of Ghod River moves towards Daund along Pune- Ahmednagar district border where it confluences with Bhima River. The Major source for water pollution is domestic sewage and local human activities. There is one monitoring location on Ghod River. Detailed analysis of monitored data is given in **Table 4.17**.

1. Ghod river at Shirur, Pune (2665)

- Station Details: Village- Shirur, Taluka- Shirur, District- Pune
- **Pollution sources**: Pollution due to domestic sewage and human activities

Table 4.17(a): Five years Descriptive Statistics for Ghod River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2665	Mean	8.1	5.2	8.5	165.3	1022.1	0.6	0.3
	Std.dev	0.33	1.12	3.76	109.59	559.37	0.65	0.43
	No of Samples	43	42	42	38	43	43	42
	% Exceedance	14.0	14.3	78.6	-	0.0	11.6	0.0

TC and Nitrate nitrogen in Ghod complied with the MPCB standards. However, pH, DO, BOD and Ammonical Nitrogen did not comply with the standards in 14, 14.3, 78.6 and 11.6 % of the samples. The highest percent exceedance, 78.6 %, was for BOD samples. It could be due to the human activities and domestic sewage released into the river.

Table 4.17(b): Water Quality Index for Ghod River

Station Code	2007	2008	2009	2010	2011
2665	MG	Bad	MG	MG	MG

The water quality indices evaluated for Ghod River indicated that water quality was bad to moderately good throughout the year.

13. Girna River

The Girna River originates in the Western Ghat range of Nasik District, and flows east across Nasik and Jalgaon districts, swinging north in Jalgaon District to join the Tapi River. The basin of Girna lies on the Deccan Plateau and its valley has fertile soil which is intensively farmed. MPCB has following two monitoring locations of Girna River. Detailed analysis of monitored data is given in **Table 4.18**.

1. Girna river at Jalgaon at intake of Girna pump house (1252/NWMP)

- Station Details: Village- Girna pump house area, Taluka- Jalgaon, District- Jalgaon
- **Pollution sources**: Industries are not allowed to discharge even treated effluents into river. Domestic pollution present.

2. Girna river at Malegaon at Malegaon road bridge (1253/NWMP)

- Station Details: Village- Malegaon, Taluka- Malegaon, District- Nasik
- **Pollution sources**: Industries are not allowed to discharge even treated effluents into river. Pollution due to domestic waste and human activities.

Table 4.18(a): Five years Descriptive Statistics for Girna River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1252	Mean	8.0	5.9	6.3	12.7	33.8	0.2	1.6
	Std.dev	0.50	0.64	2.63	6.48	20.23	0.14	1.48
	No of Samples	24	23	23	19	19	19	23
	% Exceedance	16.7	0.0	56.5	-	0.0	0.0	0.0
1253	Mean	7.9	5.8	5.9	10.8	28.8	0.4	1.6
	Std.dev	0.47	0.78	2.23	4.30	15.07	0.53	1.13
	No of Samples	18	18	17	16	16	14	18
	% Exceedance	11.1	0.0	58.8		0.0	7.1	0.0

For Girna River at intake of Girna Pump House and at Malegaon, DO, TC and Nitrate nitrogen complied with the MPCB standards whereas 57 and 59% exceedance was observed for BOD at both stations. The reason for this could be the domestic waste released into these rivers Also pH do not comply with MPCB standards at both the sites.

Table 4.18(b): Water Quality Index for Girna River

Station Code	2007	2008	2009	2010	2011
1252	MG	GE	GE	MG	GE
1253	GE	GE	GE	MG	GE

The WQI evaluation of the available data set of Girna River stations shows that the water quality of Girna River varied from moderately good to excellent. This could be because industries are not allowed to discharge even the treated effluent into the river.

14. Godavari River

Godavari River runs from western to southern India and is considered to be one of the big river basins in India. With a length of 1465 km, it is the second longest river in India (only after the Ganges), that runs within the country. The Godavari River is a major waterway in central India, originating in the Western Ghats Trimbakeshwar, in the Nasik Subdivision or District of Maharashtra and flowing eastwardly across the Deccan Plateau through the state of Maharashtra. It is known as *dakshin ganga* (Southern Ganges). It enters Andhra Pradesh in Nizamabad district, crosses the Deccan Plateau and then turns to flow in a southeast direction until it empties into the Bay of Bengal. At present there are 51 monitoring locations on Godavari River. Monitoring is carried out under various programmes namely NWMP, SWMP and Hydrology project. The details of monitoring locations are given below. Detailed analysis of monitored data is given in **Table 4.19**.

Sr.	Station Name /Code	Station Details
1	Dhalegaon (HP_GD_2)	Taluka- Majalgaon; District- Beed
2	Hirapur (HP_GD_4)	Taluka- Georai; District- Beed
3	Kesrali (HP_GD_5)	Taluka- Biloli; District- Nanded

Sr.	Station Name /Code	Station Details
4	Killari (HP_GD_6)	Taluka- Georai; District- Beed
5	Pishor (HP_GD_14)	Taluka- Kannad; District- Aurangabad
6	Prnabridge (HP_GD_15)	Taluka- Nanded; District- Nanded
7	Takli (HP GD 20)	Taluka- Devni; District- Latur
8	Taklidhangar (HP_GD_21)	Taluka- Nanded; District- Nanded
9	Toka (HP_GD_22)	Taluka- Newasa; District- Ahmednagar
10	Wadvali (HP_GD_23)	Taluka- Paithan; District- Aurangabad
11	Yelli (HP GD 24)	Taluka- Nanded; District- Nanded
12	Zari (HP GD 25)	Taluka- Parbhani; District- Parbhani
13	Bhandardara (HP GD 1)	Taluka- Nanded; District- Nanded
14	Gangapur Dam (HP GD 3)	Taluka- Nasik; District- Nasik
15	Kopargaon (HP GD 7)	Taluka- Kopargaon; District- Ahmednagar
16	Anantwadi (HP GD 26)	Taluka- Mahagaon; District- Yavatmal
17	Damrencha (HP GD 27)	Taluka- Aheri; District- Gadchiroli
18	Deori (HP_GD_28)	Taluka- Gondia; District- Gondia
19	Dhaba (HP GD 29)	Taluka- Gondpipri; District- Chandrapur
20	Drugwada (HP GD 30)	Taluka- Ashti; District- Wardha
21	Kamtheekhairi(HP GD 31)	Taluka- Parseoni; District- Nagpur
22	Kardha (HP GD 32)	Taluka- Bhandara; District- Bhandara
23	Kolgaon (HP GD 33)	Taluka- Wani; District- Yavathmal
24	Mahagaon (HP GD 34)	Taluka- Aheri; District- Gadchiroli
25	Mathani (HP_GD_35)	Taluka- Mouda; District- Nagpur
26	Petta (HP_GD_36)	Taluka- Ettapalli; District- Gadchiroli
27	Saiphal (HP_GD_37)	Taluka- Ghatanji; District- Yavatmal
28	Dindora (Soit) (HP_GD_38)	Taluka- Warora; District- Chandrapur
29	Temburdoh (HP_GD_39)	Taluka- Saoner; District- Nagpur
30	Chincholi (HP_GD_40)	Taluka- Brahmapuri; District- Chandrapur
31	Wagholi Butti (HP_GD_41)	Taluka- Saoli; District- Chandrapur
32	Warud Bagaji (HP_GD_42)	Taluka- Tiwasa; District- Amravati
33	Dhalegaon (12)	Taluka Pathari; District Parbhani
34	U/S of Gangapur Dam (1095)	Taluka- Nasik; District- Nasik
35	Panchavati at Ramkund (1096)	Taluka- Nasik; District- Nasik
36	Raher (1209)	Taluka- Nayagaon; District- Nanded
37	Intake of pump house (1210)	Taluka- Vishnupuri; District- Nanded
38	Nasik D/s near Amardham (1211)	Taluka- Nasik; District- Nasik
39	Jaikwadi Dam (1312)	Taluka- Paithan; District- Aurangabad
40	Latur water intake (2157)	Taluka- Kalumb; District- Osmanabad
41	Paithan intake pump house. Village- Jayakwadi (2158)	Taluka- Paithan; District- Aurangabad
42	D/s of Paithan at Pathegaon bridge. Pathegaon, (2159)	Taluka- Paithan; District- Aurangabad
43	U/s of Aurangabad Reservoir, Kaigaon Deori (2160)	Taluka- Gangapur; District- Aurangabad
44	Jalana Intake water pump house, Shahabad Deori (2161)	Taluka- Ambad; District- Jalna

Sr.	Station Name /Code	Station Details
45	Near Someshwar Temple (2177)	Taluka- Nasik; District- Nasik
46	Chikhali nallah meets	Taluka- Nasik; District- Nasik
	Godavari river, (2178)	
47	Hanuman Ghat, Nasik City (2179)	Taluka- Nasik; District- Nasik
48	Near Tapovan.Village (2180)	Taluka- Nasik; District- Nasik
49	Kapila-Godavari	Taluka- Nasik; District- Nasik
	confluence point (2181)	
50	Saikheda. Village- Saikheda, (2182)	Taluka- Niphad; District- Gondia
51	Nandur-Madhmeshwar	Taluka- Niphad; District- Gondia
	Dam. Village-Nandur (2183)	_

Table 4.19(a)I: Two years Descriptive Statistics for Godavari River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2178	Mean	7.2	4.4	23.8	15.5	34.8	9.8	1.9
	Std.dev	1.41	2.10	12.83	11.32	19.16	11.75	1.87
(2008-2009)	No of Samples	22	22	22	21	22	20	21
	% Exceedance	18.2	40.9	90.9	-	0.0	65.0	0
2179	Mean	7.8	5.2	10.3	14.4	33.0	1.2	1.2
	Std.dev	0.61	1.58	5.89	7.49	13.74	1.88	1.30
(2008-2009)	No of Samples	18	19	19	19	19	17	19
	% Exceedance	5.6	15.8	84.2	-	0.0	17.6	0
HP_GD_1	Mean	7.7	6.7	8.3	306.7	490.0	0.3	0.0
	Std.dev	0.57	0.66	0.85	126.62	111.36	0.36	0.0
(2007-2008)	No of Samples	3	3	3	3	3	3	0.0
	% Exceedance	0.0	0.0	100.0		0.0	0.0	0.0
HP_GD_3	Mean	8.1	7.7	13.1	253	1573	0.1	0.0
	Std.dev	0.75	3.69	3.58	170.9	640.4	0.01	0.0
(2007-2008)	No of Samples	3	3	3	3	3	3	0.0
	% Exceedance	33.3	33.3	100.0	-	0	0	0.0
HP_GD_7	Mean	7.9	6.3	10.5	11326.3	19075.0	0.1	1.1
	Std.dev	0.63	1.04	2.09	7755.1	13286.7	0.01	0.29
(2007 &	No of Samples	10	10	8	8	8	10	3
2008)	% Exceedance	0.0	0.0	62.5		50.0	0.0	0
HP_GD_5	Mean	7.0	2.8	0.8	7.0	8.7	26.7	1.1
	St deviation	1.97	1.62	0.53	2.86	12.79	0.88	0.42
(2010)	No of samples	6	9	3	8	4	7	2
	% Exceedance	66.7	0.0	0.0		50.0	100.0	0.0

Table 4.19(a)II: Three years Descriptive Statistics for Godavari River

Stn. Code	·	pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_GD_2	Mean	8.1	6.0	2.5	6	104	-	ŀ
	Std.dev	0.18	0.81	0.49	7.96	158.05	1	1
(2007-2009)	No of Samples	10	11	11	8	11	1	
	% Exceedance	0	0	0	-	0		1
HP_GD_14	Mean	8.0	5.9	2.1	2.9	10.9	0.1	0.0
	Std.dev	0.25	0.42	0.42	3.29	7.17	0.0	0.0
(2007-2009)	No of Samples	7	7	7	7	7	1	0.0
	% Exceedance	0.0	0.0	0.0	ŀ	0.0	0.0	0.0

4-25

Table 4.19(a)III (Contd..):
Three years Descriptive Statistics for Godavari River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_GD_25	Mean	7.9	6.1	2.0	3	13		
	Std.dev	0.28	0.45	0.63	1.91	7.42		
(2007-2009)	No of Samples	8	8	8	7	8		
	% Exceedance	0	0	0		0	-	
2157	Mean	8.0	4.3	4.9	7.0	333.3	3.0	0.8
	Std.dev	0.20	0.44	0.12	0.00	28.87	0.65	0.63
(2009-2011)	No of Samples	3	3	3	3	3	3	3
	% Exceedance	0.0	33.3	0.0		0.0	100.0	0
HP_GD_34	Mean	8.3	6.6	2.6	18.3	141.2	0.1	1.0
	Std.dev	0.13	0.61	0.34	22.74	210.63	0.01	0.33
(2007-2009)	No of Samples	13	14	12	9	11	2	4
	% Exceedance	0.0	0.0	0.0	-	0.0	0.0	0
HP_GD_35	Mean	8.3	6.4	2.9	61.2	159.4	0.1	0.9
	Std.dev	0.07	0.51	0.41	78.61	211.74	0.01	0.17
(2007-2009)	No of Samples	13	14	13	13	13	4	3
	% Exceedance	0.0	0.0	0.0	-	0.0	0.0	0
HP_GD_36	Mean	8.1	6.5	2.4	21.4	51.5	0.3	0.5
	Std.dev	0.27	0.84	0.51	28.50	61.35	0.35	0.12
(2007-2009)	No of Samples	13	13	12	10	11	2	3
	% Exceedance	0.0	0.0	0.0		0.0	0.0	0

Table 4.19(a)IV: Four years Descriptive Statistics for Godavari River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_GD_6	Mean	8.1	6.4	2.0	8.2	18.4		0.4
	St deviation	0.29	0.67	0.65	6.59	11.89		0.17
(2007-2010)	No of samples	14	14	14	14	14		4
	% Exceedance	0.0	0.0	0.0		0.0		0.0
HP_GD_15	Mean	8.2	6.4	2.2	5.1	22.9		1.3
	Std.dev	0.32	1.36	0.75	4.45	15.79		0.40
(2007-2010)	No of Samples	15	15	15	15	15		3
	% Exceedance	13.3	0.0	0.0		0.0		0
HP_GD_20	Mean	8.0	6.5	2.0	8.7	18.0	0	1.4
	Std.dev	0.22	0.65	0.63	6.98	12.91	0	0.51
(2007-2010)	No of Samples	10	10	10	10	10	0	5
	% Exceedance	0.0	0.0	0.0		0.0	0	0
HP_GD_21	Mean	8.0	6.2	2.1	27.1	89.8	0.3	1.3
	Std.dev	0.52	0.55	0.86	54.59	140.52	0.31	0.47
(2007-2010)	No of Samples	13	12	13	8	13	2	3
	% Exceedance	7.7	0.0	0.0		0.0	0.0	0
HP_GD_24	Mean	8.1	6.2	2.0	5.2	16.5	0.7	1.8
	Std.dev	0.24	0.68	0.60	5.89	14.01	0	1.18
(2007-2010)	No of Samples	15	15	16	11	16	1	4
	% Exceedance	0.0	0.0	0.0		0.0	0.0	0

Table 4.19(a)V: Four years Descriptive Statistics for Godavari River

Stn. Code	V : Four years Des	pН	DO	BOD	FC	TC	Ammonia	Nitrate
2158	Mean	7.7	6.0	4.6	6.5	287.5	1.4	0.5
	Std.dev	0.44	1.30	1.15	1.29	23.14	1.44	0.24
(2008-2011)	No of Samples	21	21	21	21	20	16	18
	% Exceedance	4.8	14.3	33.3		0.0	50.0	0
2159	Mean	7.9	6.1	4.5	6.4	283.0	1.7	4.1
	Std.dev	0.59	1.35	1.19	1.50	32.46	1.91	4.35
(2008-2011)	No of Samples	21	21	21	21	20	15	19
	% Exceedance	14.3	14.3	23.8		0.0	46.7	0
2160	Mean	7.7	6.2	4.0	6.6	291.0	1.7	1.0
	Std.dev	0.46	1.12	1.10	1.61	37.67	1.57	0.61
(2008-2011)	No of Samples	21	21	21	21	21	17	19
	% Exceedance	0.0	4.8	9.5		0.0	52.9	0
2161	Mean	7.7	5.9	4.0	6.6	280.0	1.1	2.3
	Std.dev	0.43	1.28	0.92	1.04	21.21	1.27	3.85
(2008-2011)	No of Samples	18	18	18	18	17	15	16
	% Exceedance	0.0	16.7	11.1		0.0	40.0	0
2180	Mean	7.7	4.6	12.9	25.7	75.7	1.7	1.9
	Std.dev	0.59	1.36	6.47	20.71	65.84	2.94	1.77
(2008-2011)	No of Samples	43	43	43	43	42	39	42
	% Exceedance	9.3	23.3	93.0		0.0	28.2	0
2181	Mean	7.7	4.7	12.2	20.3	57.1	1.0	2.0
	Std.dev	0.54	1.63	8.02	12.78	56.11	1.42	1.71
(2008-2011)	No of Samples	43	43	43	42	41	35	42
	% Exceedance	9.3	25.6	90.7		0.0	22.9	0
2182	Mean	7.8	6.0	5.8	11.5	34.1	0.5	1.4
	Std.dev	0.43	0.59	1.62	8.81	42.69	0.79	1.25
(2008-2011)	No of Samples	43	40	40	43	43	40	41
	% Exceedance	4.7	2.5	60.0	-	0.0	7.5	0
2183	Mean	7.8	6.3	4.5	7.5	20.8	0.3	1.2
	Std.dev	0.31	0.54	1.30	4.77	15.34	0.24	1.19
(2008-2011)	No of Samples	43	43	40	40	35	40	40
	% Exceedance	2.3	0.0	22.5	-	0.0	0.0	0
HP_GD_4	Mean	8.1	5.5	1.7	8.9	22.9	-	
	Std.dev	0.91	0.58	0.47	4.38	15.01		
(2008-2011)	No of Samples	11	9	11	10	11		
	% Exceedance	45.5	0.0	0.0		0.0	-	
HP_GD_22	Mean	8.1	6.1	2.6	6.1	19.6	0.1	1.5
	Std.dev	0.26	0.67	1.65	7.22	13.73		0.21
(2007-2010)	No of Samples	21	22	22	12	20	1	7
	% Exceedance	4.8	0.0	13.6		0.0	0.0	0
HP_GD_23	Mean	8.2	6.3	1.6	5.8	19.5	0.4	1.1
	Std.dev	0.50	1.24	0.58	5.28	12.26	0.40	0.501
(2007-2010)	No of Samples	22	22	21	14	20	2	7
	% Exceedance	27.3	0.0	0.0		0.0	0.0	0

Table 4.19(a)V: Four years Descriptive Statistics for Godavari River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_GD_28	Mean	8.3	6.6	2.5	31.6	52.4	0.1	0.9
	Std.dev	0.26	0.58	0.47	46.09	39.72	0.0	0.42
(2007-2010)	No of Samples	13	13	12	12	9	1	3
	% Exceedance	7.7	0.0	0.0	-	0.0	0.0	0
HP_GD_30	Mean	8.4	6.4	2.6	12.3	45.9	0.1	1.1
	Std.dev	0.07	0.58	0.40	7.32	34.69	0.00	0.36
(2008-2011)	No of Samples	10	9	8	7	7	2	4
	% Exceedance	0.0	0.0	0.0	-	0.0	0.0	0
HP_GD_40	Mean	8.3	6.4	2.9	24.8	81.7	0.1	1.0
	Std.dev	0.10	0.60	0.55	27.19	79.05	0.02	0.47
(2008-2011)	No of Samples	12	14	12	10	12	5	4
	% Exceedance	0.0	0.0	0.0		0.0	0.0	0

Table 4.19(a)VI: Five years Descriptive Statistics for Godavari River (2007-11)

20 22 0 3 00 2 2 2 2 2							
							Nitrate
	7.9		6.1	7.7		0.9	1.1
Std.dev	0.43	0.70	1.95	4.22	10.83	1.15	1.27
No of Samples		21		22	22		23
% Exceedance	4.3	0.0			0.0	19.0	0
Mean	8.4	6.4	2.8	62.6		0.1	0.9
Std.dev	0.13	0.60	0.55	75.97	372.12	0.02	0.27
No of Samples	42	42	39	33	40	22	10
% Exceedance	4.8	0.0	0.0		0.0	0.0	0
Mean	8.2	6.6	2.3	31.3	108.1	0.2	0.6
Std.dev	0.24	0.53	0.48	72.73	276.47	0.28	0.22
No of Samples	14	13	13	10	10	2	4
% Exceedance	0.0	0.0	0.0		0.0	0.0	0
Mean	8.3	5.6	3.7	100.3	332.0	0.1	1.4
Std.dev	0.19	0.89	0.60	102.26	341.15	0.03	0.48
No of Samples	44	45	41	43	42	28	12
% Exceedance	9.1	2.2	0.0		0.0	0.0	0
Mean	8.3	6.4	2.6	36.9	237.8	0.1	1.4
Std.dev	0.15	0.45	0.33	46.82	347.01	0.00	0.06
No of Samples	12	14	13	12	13	3	3
% Exceedance	0.0	0.0	0.0		0.0	0.0	0
Mean	8.3	6.5	2.6	59.7	68.3	0.6	0
Std.dev	0.17	0.58	0.45	81.48	50.59	0.06	0
No of Samples	13	13	12	13	10	3	0
% Exceedance	0.0	0.0	0.0		0.0	0.0	0
Mean	8.4	6.3	2.9	78.0	317.2	0.1	1.1
Std.dev	0.08	0.58	0.57	90.47	388.44	0.02	0.32
No of Samples	43	44	40	43	44	27	11
% Exceedance	0.0	0.0	0.0		0.0	0.0	0
Mean	8.4	6.4	2.8	40.6	97.6	0.1	1.1
Std.dev	0.07	0.58	0.36	44.18	75.36	0.00	0.00
No of Samples	11	13	12	12	11	3	3
% Exceedance	0.0	0.0	0.0	_	0.0	0.0	0
	Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples % Exceedance Mean Std.dev No of Samples	Mean 7.9 Std.dev 0.43 No of Samples 23 % Exceedance 4.3 Mean 8.4 Std.dev 0.13 No of Samples 42 % Exceedance 4.8 Mean 8.2 Std.dev 0.24 No of Samples 14 % Exceedance 0.0 Mean 8.3 Std.dev 0.19 No of Samples 44 % Exceedance 9.1 Mean 8.3 Std.dev 0.15 No of Samples 12 % Exceedance 0.0 Mean 8.3 Std.dev 0.17 No of Samples 13 % Exceedance 0.0 Mean 8.4 Std.dev 0.08 No of Samples 43 % Exceedance 0.0 Mean 8.4 Std.dev 0.0 No of Samples	Mean 7.9 5.8 Std.dev 0.43 0.70 No of Samples 23 21 % Exceedance 4.3 0.0 Mean 8.4 6.4 Std.dev 0.13 0.60 No of Samples 42 42 % Exceedance 4.8 0.0 Mean 8.2 6.6 Std.dev 0.24 0.53 No of Samples 14 13 % Exceedance 0.0 0.0 Mean 8.3 5.6 Std.dev 0.19 0.89 No of Samples 44 45 % Exceedance 9.1 2.2 Mean 8.3 6.4 Std.dev 0.15 0.45 No of Samples 12 14 % Exceedance 0.0 0.0 Mean 8.3 6.5 Std.dev 0.17 0.58 No of Samples 13 13 %	Mean 7.9 5.8 6.1 Std.dev 0.43 0.70 1.95 No of Samples 23 21 23 % Exceedance 4.3 0.0 56.5 Mean 8.4 6.4 2.8 Std.dev 0.13 0.60 0.55 No of Samples 42 42 39 % Exceedance 4.8 0.0 0.0 Mean 8.2 6.6 2.3 Std.dev 0.24 0.53 0.48 No of Samples 14 13 13 % Exceedance 0.0 0.0 0.0 Mean 8.3 5.6 3.7 Std.dev 0.19 0.89 0.60 No of Samples 44 45 41 % Exceedance 9.1 2.2 0.0 Mean 8.3 6.4 2.6 Std.dev 0.15 0.45 0.33 No of Samples 12 14	Mean 7.9 5.8 6.1 7.7 Std.dev 0.43 0.70 1.95 4.22 No of Samples 23 21 23 22 % Exceedance 4.3 0.0 56.5 Mean 8.4 6.4 2.8 62.6 Std.dev 0.13 0.60 0.55 75.97 No of Samples 42 42 39 33 % Exceedance 4.8 0.0 0.0 Mean 8.2 6.6 2.3 31.3 Std.dev 0.24 0.53 0.48 72.73 No of Samples 14 13 13 10 % Exceedance 0.0 0.0 0.0 Mean 8.3 5.6 3.7 100.3 Std.dev 0.19 0.89 0.60 102.26 No of Samples 44 45 41 43 % Exceedance 9.1 2.2 <t< th=""><th>Mean 7.9 5.8 6.1 7.7 20.8 Std.dev 0.43 0.70 1.95 4.22 10.83 No of Samples 23 21 23 22 22 % Exceedance 4.3 0.0 56.5 0.0 Mean 8.4 6.4 2.8 62.6 280.6 Std.dev 0.13 0.60 0.55 75.97 372.12 No of Samples 42 42 39 33 40 % Exceedance 4.8 0.0 0.0 0.0 Mean 8.2 6.6 2.3 31.3 108.1 Std.dev 0.24 0.53 0.48 72.73 276.47 No of Samples 14 13 13 10 10 % Exceedance 0.0 0.0 0.0 0.0 Mean 8.3 5.6 3.7 100.3 332.0 Std.dev 0.19 <td< th=""><th>Mean 7.9 5.8 6.1 7.7 20.8 0.9 Std.dev 0.43 0.70 1.95 4.22 10.83 1.15 No of Samples 23 21 23 22 22 21 % Exceedance 4.3 0.0 56.5 0.0 19.0 Mean 8.4 6.4 2.8 62.6 280.6 0.1 Std.dev 0.13 0.60 0.55 75.97 372.12 0.02 No of Samples 42 42 39 33 40 22 Exceedance 4.8 0.0 0.0 0.0 0.0 Mean 8.2 6.6 2.3 31.3 108.1 0.2 Std.dev 0.24 0.53 0.48 72.73 276.47 0.28 No of Samples 14 13 13 10 10 2 Exceedance 0.0 0.0 0.0 0.0</th></td<></th></t<>	Mean 7.9 5.8 6.1 7.7 20.8 Std.dev 0.43 0.70 1.95 4.22 10.83 No of Samples 23 21 23 22 22 % Exceedance 4.3 0.0 56.5 0.0 Mean 8.4 6.4 2.8 62.6 280.6 Std.dev 0.13 0.60 0.55 75.97 372.12 No of Samples 42 42 39 33 40 % Exceedance 4.8 0.0 0.0 0.0 Mean 8.2 6.6 2.3 31.3 108.1 Std.dev 0.24 0.53 0.48 72.73 276.47 No of Samples 14 13 13 10 10 % Exceedance 0.0 0.0 0.0 0.0 Mean 8.3 5.6 3.7 100.3 332.0 Std.dev 0.19 <td< th=""><th>Mean 7.9 5.8 6.1 7.7 20.8 0.9 Std.dev 0.43 0.70 1.95 4.22 10.83 1.15 No of Samples 23 21 23 22 22 21 % Exceedance 4.3 0.0 56.5 0.0 19.0 Mean 8.4 6.4 2.8 62.6 280.6 0.1 Std.dev 0.13 0.60 0.55 75.97 372.12 0.02 No of Samples 42 42 39 33 40 22 Exceedance 4.8 0.0 0.0 0.0 0.0 Mean 8.2 6.6 2.3 31.3 108.1 0.2 Std.dev 0.24 0.53 0.48 72.73 276.47 0.28 No of Samples 14 13 13 10 10 2 Exceedance 0.0 0.0 0.0 0.0</th></td<>	Mean 7.9 5.8 6.1 7.7 20.8 0.9 Std.dev 0.43 0.70 1.95 4.22 10.83 1.15 No of Samples 23 21 23 22 22 21 % Exceedance 4.3 0.0 56.5 0.0 19.0 Mean 8.4 6.4 2.8 62.6 280.6 0.1 Std.dev 0.13 0.60 0.55 75.97 372.12 0.02 No of Samples 42 42 39 33 40 22 Exceedance 4.8 0.0 0.0 0.0 0.0 Mean 8.2 6.6 2.3 31.3 108.1 0.2 Std.dev 0.24 0.53 0.48 72.73 276.47 0.28 No of Samples 14 13 13 10 10 2 Exceedance 0.0 0.0 0.0 0.0

Table 4.19(a)VI: Five years Descriptive Statistics for Godavari River (2007-11)

Stn. Code HP_GD_38		pН	DO	BOD	Cable 4.19(a)VI: Five years Descriptive Statistics for Godavari River (2007-11)Stn. CodepHDOBODFCTCAmmoniaN											
HP_GD_38						TC	Ammonia	Nitrate								
	Mean	8.4	6.3	2.9	76.1	258.1	0.1	1.1								
	Std.dev	0.15	0.54	0.48	94.06	304.31	0.03	0.35								
	No of Samples	44	44	40	42	43	27	12								
	% Exceedance	9.1	0.0	0.0		0.0	0.0	0								
HP_GD_39	Mean	8.3	6.3	2.7	51.2	231.3	0.0	1.2								
	Std.dev	0.20	0.59	0.36	94.92	393.36	0.02	0.31								
,	No of Samples	14	14	13	12	11	3	4								
	% Exceedance	0.0	0.0	0.0		0.0	0.0	0								
HP_GD_41	Mean	8.4	6.6	2.7	23.8	105.9	0.1	1.2								
	Std.dev	0.14	0.61	0.50	23.30	103.92	0.01	0.40								
,	No of Samples	14	14	13	10	12	3	4								
	% Exceedance	7.1	0.0	0.0		0.0	0.0	0								
HP_GD_42	Mean	8.3	6.3	2.7	51.3	183.0	0.0	0.8								
,	Std.dev	0.22	0.54	0.46	87.74	288.82	0.05	0.28								
	No of Samples	44	44	40	38	40	10	10								
	% Exceedance	6.8	0.0	0.0		0.0	0.0	0								
12	Mean	7.8	6.4	4.2	5.4	208.1	0.9	1.4								
	Std.dev	1.19	0.97	0.80	2.62	91.68	1.44	2.01								
	No of Samples	42	41	40	41	42	39	41								
	% Exceedance	4.8	2.4	10.0		0.0	23.1	0								
1095	Mean	7.8	6.5	4.7	6.1	19.5	0.2	0.8								
	Std.dev	0.42	0.54	1.57	3.82	9.86	0.26	0.86								
	No of Samples	54	54	54	49	54	50	53								
	% Exceedance	7.4	0.0	20.4		0.0	0.0	0								
1096	Mean	7.7	5.5	9.2	23.5	143.5	0.4	1.5								
,	Std.dev	0.42	0.81	4.08	17.76	258.73	0.36	1.36								
	No of Samples	55	55	56	55	55	52	56								
	% Exceedance	3.6	0.0	85.7		0.0	1.9	0								
1209	Mean	8.0	6.3	4.2	5.4	214.4	0.6	1.1								
-	Std.dev	0.49	0.95	1.02	2.31	81.43	0.93	1.06								
	No of Samples	54	51	55	53	55	47	54								
	% Exceedance	9.3	5.9	10.9		0.0	17.0	0								
1210	Mean	8.1	6.8	4.4	5.5	199.7	0.1	1.0								
	Std.dev	0.32	0.51	1.06	2.82	86.94	0.09	1.04								
	No of Samples	36	36	37	36	37	31	36								
	% Exceedance	8.3	0.0	16.2		0.0	0.0	0								
1211	Mean	7.8	5.2	10.1	23.2	183.4	0.4	1.1								
	Std.dev	0.47	0.88	4.32	19.98	338.55	0.54	1.26								
	No of Samples	34	34	33	33	34	32	34								
	% Exceedance	2.9	5.9	90.9		0.0	3.1	0								
1312	Mean	7.8	6.3	4.1	6.7	264.1	1.0	0.6								
ļ	Std.dev	0.46	1.06	0.91	1.28	46.26	1.37	0.43								
	No of Samples	34	34	34	32	34	31	33								
	5 5 - Swiiipios	5.9	5.9	5.9	22	0.0	25.8									

The WQI was found to be good to excellent at the following 24 sites in Godavari River which are listed below.

Table 4.19(b): Water Quality Index for Godavari River

<u>rabi</u>	able 4.19(b): Water Quality Index for Godavari River													
Sr.	Station Code	07	08	09	10	11		Sr.	Station Code	07	08	09	10	11
1	HP_GD_2	GE	GE	GE				27	HP_GD_37	GE	GE	GE	GE	GE
2	HP_GD_4		GE	GE	GE	GE		28	HP_GD_38	GE	GE	GE	GE	GE
3	HP_GD_5				GE			29	HP_GD_39	GE	GE	GE	GE	GE
4	HP_GD_6	GE	GE	GE	GE			30	HP_GD_40		GE	GE	GE	GE
5	HP_GD_14	GE	GE	GE				31	HP_GD_41	GE	GE	GE	GE	GE
6	HP_GD_15	GE	GE	GE	GE			32	HP_GD_42	GE	GE	GE	GE	GE
7	HP_GD_20	GE	GE	GE	GE			33	12	GE	GE	GE	GE	GE
8	HP_GD_21	GE	GE	GE	GE			34	1095	GE	GE	GE	GE	GE
9	HP_GD_22	GE	GE	GE	GE			35	1096	GE	GE	MG	MG	GE
10	HP_GD_23	GE	GE	GE	GE	ŀ		36	1209	GE	GE	GE	GE	GE
11	HP_GD_24	GE	GE	GE	GE	-		37	1210	GE	GE	GE	GE	GE
12	HP_GD_25	GE	GE	GE		-		38	1211	MG	GE	MG	MG	MG
13	HP_GD_1	MG	MG			-		39	1312	GE	GE	GE	GE	GE
14	HP_GD_3	MG	Bad					40	2157			GE	GE	GE
15	HP_GD_7		Bad		Bad			41	2158		GE	GE	GE	GE
16	HP_GD_26	GE	GE	GE	GE	GE		42	2159		GE	GE	GE	GE
17	HP_GD_27	GE	GE	GE	GE	GE		43	2160		GE	GE	GE	GE
18	HP_GD_28	GE	GE	GE	GE			44	2161		GE	GE	GE	GE
19	HP_GD_29	GE	GE	MG	GE	GE		45	2177	MG	GE	GE	GE	GE
20	HP_GD_30		GE	GE	GE	GE		46	2178		Bad	MG		
21	HP_GD_31	GE	GE	GE	GE	GE		47	2179		MG	MG		
22	HP_GD_32	GE	GE	GE	GE	GE		48	2180		MG	MG	MG	MG
23	HP_GD_33	GE	GE	GE	GE	GE		49	2181		MG	MG	GE	MG
24	HP_GD_34	GE	GE	GE		1		50	2182		GE	GE	GE	GE
25	HP_GD_35	GE	GE	GE		ŀ		51	2183		GE	GE	GE	GE
26	HP_GD_36	GE	GE	GE								1		

Table 4.19(c) gives the number of sites out of 51 sites of Godavari with percent exceedances in different ranges for BOD, DO, TC and pH

Table 4.19(c): Number of Sites with Percent Exceedances for BOD, DO, TC and pH

Percent Exceedance	BOD	DO	TC	pН
0%	29	35	49	22
1-20%	7	11	0	25
20-40%	4	4	0	2
40-60%	1	1	0	1
60-80%	2	0	2	1
80-100%	6	0	0	0

Figures 4.3 show the pie chart for percent exceedances for BOD, DO, pH and TC for 51 locations in Godavari River. 59% of the sites have no exceedance of BOD from the standard. 15% of the sites have percent exceedance of BOD between 1-20% and so on.

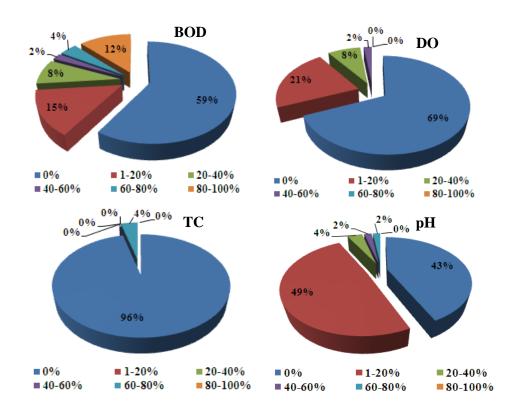


Figure 4.3: Percent Exceedances at 51 Monitoring Locations of Godavari River

The average water quality index for five years evaluated at 51 sites showed that 84% of the locations had water quality "Good to Excellent", at seven locations water quality was "Medium to Good" and at 2% of the locations (1 location) that is at Kopargaon water quality was bad (**Figure 4.4**).

Figure 4.4: Water Quality Index of 51 Monitoring locations of Godavari River

15. Gomai River

Gomai River is a tributary of Tapi River. It originates in Satpura Mountain Range and merges in Tapi River around 2 km east of Prakasha. Gomai River itself has many small tributary rivers like Susri River (passing by Sultanpur), Tipria River (passing by Mandane), Umri River, Sukhi River. MPCB has monitored following location of Girna River. Detailed analysis of monitored data is given in **Table 4.20**.

1. Gomai river at D/s of Shahada (2666/SWMP)

- Station Details: Village- Shahada, Taluka- Dhule, District- Dhule
- Pollution sources: Sewage from Shahada town

Table 4.20(a): Five years Descriptive Statistics for Gomai River (2007-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2666	Mean	8.0	5.9	7.4	14.1	45.5	1.2	1.9
	Std.dev	0.47	0.79	3.26	10.18	44.94	1.39	1.54
	No of Samples	29	26	29	22	23	28	29
	% Exceedance	10.3	0.0	62.1		0.0	32.1	0.0

The descriptive statistics of Gomai River showed that DO, TC and Nitrate nitrogen values complied with the MPCB standards. However, pH, BOD and Ammonical nitrogen exceeded the permissible limits. The higher percent exceedance was for BOD and Ammonical nitrogen, the exceedance being 62% and 32% respectively. It could be due to the sewage released from Shahada town into the river. 10% of pH samples exceeded the standards the probable reason may be releases of wastewater from the town.

Table 4.20(b): Water Quality Index for Gomai River

14510 1120(5)	******	Zuurr	J III GOINGI IN CI				
Station Code	2007	2008	2009	2010	2011		
2666	MG	GE	MG	GE	GE		

The water quality indices of the available data set of Gomai River, D/S. of Shahada, showed that the water quality varied from moderately good to good to excellent for all five years 2007-2011.

16. Hiwara River

Hiwara River is a small tributary located at the Pachora village in Jalgaon district. It flows independently for short distance and later gets merged with Girna River at Pachora. Mostly domestic sewage generated at Pachora and nearby villages gets discharged in the river stream. MPCB has monitored following location of Hiwara River. Detailed analysis of monitored data is given in **Table 4.21**.

1. Hiwara river at D/s of Pachora (2667/SWMP)

• Station Details: Village- Pachora, Taluka- Jalgaon, District- Jalgaon

• Pollution sources: Sewage from Pachora City

Table 4.21(a): Five years Descriptive Statistics for Hiwara River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate			
2667	Mean	8.1	6.0	8.2	18.3	53.7	1.2	1.4			
	Std.dev	0.54	0.80	5.28	15.19	60.03	1.55	1.11			
	No of Samples	30	25	29	26	26	25	30			
	% Exceedance	23.3	0.0	65.5		0.0	32.0	0.0			

It was observed that DO, TC and Nitrate nitrogen were complying with MPCB standards whereas pH, BOD and Ammonical nitrogen exceeded the standards. Highest percent exceedance i.e. 65% was for BOD and then 32% for Ammonical nitrogen. The reason for this could be the sewage released from Pachora city into the river.

Table 4.21(b): Water Quality Index for Hiwara River

Station Code	2007	2008	2009	2010	2011
2667	MG	MG	-	MG	GE

17. Indrayani River

Indrayani River is located in Pune district. One of the main streams of the river originated from the Andhra Lake and other one from the lake located near the Karla village. Both the streams confluence at Ambi village and from this point onward it flows as main Indrayani River. This is one of the major tributary of Bhima River which covers major area around the Pune city. Sampling location is located at the villages like Moshigaon and Alandi. Being the religious place, Alandi is found to be populous. Many villages utilize river water for domestic and irrigation purpose, especially for the Sugarcane and other valuable crops. Major disposal of domestic sewage generated from nearby villages and Pune city get discharged in the river stream. MPCB has monitored following three locations of Indrayani River. Detailed analysis of monitored data is given in **Table 4.22**.

1. Indrayani river at D/s of Alandigaon, Pune (2197/SWMP)

- Station Details: Village- Alandigaon, Taluka- Haweli, District- Pune
- **Pollution sources**: Pollution due to human activities and domestic waste.

2. Indrayani river at D/s of Moshi village (2668/SWMP)

- Station Details: Village- Moshi, Taluka- Haveli, District- Pune.
- **Pollution sources**: Agricultural runoff, domestic waste and other human activities.

3. Indrayani river at U/s of Moshigaon, Pune (2669/SWMP)

- Station Details: Village- Moshigaon, Taluka- Haweli, District- Pune
- **Pollution sources**: Pollution due to domestic waste, agricultural runoff and human activities

Table 4.22(a): Five years Descriptive Statistics for Indrayani River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2197	Mean	7.9	4.9	10.3	172.6	1190.1	1.6	0.3
	Std.dev	0.42	1.26	5.40	96.42	547.77	3.05	0.26
	No of Samples	53	52	52	52	53	52	52
	% Exceedance	1.9	19.2	86.5	ŀ	0.0	19.2	0.0
2668	Mean	7.9	4.8	10.9	199.0	1298.8	0.6	0.3
	Std.dev	0.47	1.29	5.84	86.66	579.51	0.52	0.31
	No of Samples	45	44	44	45	43	44	44
	% Exceedance	8.9	25.0	93.2	1	0.0	6.8	0.0
2669	Mean	7.9	5.2	9.2	136.8	940.3	0.6	0.2
	Std.dev	0.44	1.12	4.98	85.80	552.21	0.55	0.14
	No of Samples	42	43	43	43	43	42	42
	% Exceedance	4.8	11.6	83.7		0.0	7.1	0.0

It was observed that at all the three stations of Indrayani River i.e. D/s of Alandigaon, D/s of Moshi Village, U/s of Moshi Village, TC and Nitrate nitrogen complied with the MPCB standards. However DO, BOD and Ammonical nitrogen exceed the MPCB standards at all three stations. pH is also not complying with MPCB standards at D/s and U/s of Moshi village.

Table 4.22(b): Water Quality Index for Indrayani River

Station Code	2007	2008	2009	2010	2011
2197	MG	Bad	MG	MG	MG
2668	MG	MG	Bad	MG	Bad
2669	MG	MG	MG	MG	MG

The water quality of Indrayani River at D/s of Alandigaon, Pune and D/s of Moshi village were bad during some months. The monthly water quality of Indrayani River at U/s of Moshigaon, Pune varied between bad to good to excellent which resulted in the water quality being moderately good on average.

18. Kajvi River

Kajvi River originates in Ratnagiri district and flows through the Rajapur taluka and finally meets Arabian Sea. Main watercourse of the river is formed by small water stream flow from Kolhapur district border. River basin expands from Rajapur. Small villages utilize the water for domestic purpose. MPCB has monitored following two locations of Kajvi River under Hydrology Project. Detailed analysis of monitored data is given in **Table 4.23**.

1. Kajvi River at Anjanari (HP_KJ_1)

- Station Details: Village- Anjanari, Taluka- Lanja, District- Ratnagiri
- Pollution sources: Domestic waste, agricultural runoff and human activities
- 2. Kajvi River at Pastewadi (HP_KJ_2)
 - Station Details: Village- Pastewadi, Taluka-Sangmeshwar, District- Ratnagiri
 - **Pollution sources**: Domestic waste, agricultural runoff and human activities

Table 4.23(a): Five years Descriptive Statistics for Kajvi River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_KJ_1	Mean	7.7	7.1	1.3	1184.5	1840.2	0.1	0.1
	Std.dev	0.39	0.54	0.49	1408.08	3021.44	0.00	0.10
	No of Samples	47	46	46	46	46	-	
	% Exceedance	4.3	0.0	0.0		13.0	-	
HP_KJ_2	Mean	7.8	7.7	1.2	1200.8	1565.4	0.1	0.1
	Std.dev	0.44	0.81	0.46	1285.22	1807.02	0.00	0.08
	No of Samples	34	33	33	33	33	-	
	% Exceedance	5.9	0.0	0.0		3.0	-	

The descriptive statistics of Anjanari and Pastewadi stations of Kajvi River showed that DO, BOD and Ammonical nitrogen complied with the MPCB standards. However pH exceeded the standards at both the stations and TC exceeded at Anjanari station by 13% and 3% at Pastewadi station.

Table 4.23(b): Water Quality Index for Kajvi River

Station Code	2007	2008	2009	2010	2011
HP_KJ_1	GE	GE	GE	GE	GE
HP_KJ_2	GE	GE	GE	GE	GE

The monthly water quality at Anjanari station was good to excellent most of the time except in few months when it was moderately good. It could be due to some unusual human activities in those months. At Pastewadi station the monthly water quality index varied from moderately good to excellent for the available data set. The annual WQI were good to excellent at both the stations.

19. Kalu River

Kalu River is located in Murbad taluka of Thane district. It covers major area of Murbad and nearby villages like Atale Village; many small polluting industries are located on the bank of the Kalu River which discharges their effluent in the river. Also, the local human activities and domestic wastewater disposal is the major cause of water pollution. During its journey, Kalu River meets Bhatsa River and finally meets Arabian Sea at Thane creek. MPCB has monitored following location of Kalu River. Detailed analysis of monitored data is given in **Table 4.24**.

1. Kalu River at Atale (1092/SWMP)

- Station Details: Village-Atale, Taluka- Kalyan, District- Thane
- **Pollution sources**: Polluting industries located on the banks discharging effluents into the river at Ambivli. Domestic pollution from Atale village.

Table 4.24(a): Five years Descriptive Statistics for Kalu River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1092	Mean	7.4	5.4	6.9	163.8	687.5	0.4	1.2
	Std.dev	0.37	1.69	4.60	186.50	656.14	0.47	1.12
	No of Samples	27	27	26	20	22	24	26
	% Exceedance	0.0	33.3	50.0		0.0	4.2	0.0

It was observed that pH, TC, Ammonical and Nitrate nitrogen were as per the MPCB standards. However, DO and BOD showed 33% and 50% exceedance to MPCB standards. The reason for this could be the discharge of domestic sewage from the Atale village and the industrial waste discharge into Ambivali River.

Table 4.24(b): Water Quality Index for Kalu River

Station Code	2007	2008	2009	2010	2011
1092	GE	MG	MG		GE

The monthly water quality of Kalu River at Atale village varied from moderately good to good to excellent for all five years 2007-11 except for Apr-08 where it was bad for the available data set. It could be due to the discharge from polluting industries located nearby.

20. Kan River

Kan River flows through the Dhule district and its confluence with Panjhara River is near the Sakri Taluka. Source of pollution for Kan River is the discharge of domestic waste from Dalwell village. Water monitoring is carried out at the Sakri water work. MPCB has monitored following location of Kan River. Detailed analysis of monitored data is given in **Table 4.25**.

1. Kan river at Sakri water works (2670/SWMP)

- Station Details: Village- Sakri, Taluka- Dhule, District- Dhule
- **Pollution sources**: Sewage from Dalwell village

Table 4.25(a): Five years Descriptive Statistics for Kan River

Stn. Code	_	pН	DO	BOD	FC	TC	Ammonia	Nitrate
2670	Mean	8.1	5.9	6.7	12.6	35.0	1.8	0.6
	Std.dev	0.43	0.95	3.33	7.88	26.36	1.25	0.47
	No of Samples	31	26	30	25	26	27	30
	% Exceedance	16.1	0.0	53.3		0.0	63.0	0.0

The descriptive statistics of Kan River showed percentage exceedance for pH, BOD and Ammonical nitrogen 16%, 53% and 63% respectively. It could be due to the release of sewage from Dalwell village in Sakri. However, DO and TC complied with the MPCB standards.

Table 4.25(b): Water Quality Index for Kan River

1 abic 4.25(b) .	Tracei (Zuani	index for ixall ixiver				
Station Code	2007	2008	2009	2010	2011		
2670	GE	GE	GE	GE	GE		

The water quality at Kan River near Sakri water works was good to excellent for the available data set except for October-November-2007 and also December 2010 and 2011when it was moderately good.

21. Kanhan River

Kanhan River is one of the tributary of Wainganga River. Kanhan mainly originates in Madhya Pradesh from where it flows to Nagpur and finally confluences in Wainganga. Along with Pench River, it covers the maximum distance of Nagpur district. Kanhan River mostly carries the domestic sewage generated from nearby villages. MPCB has monitored following three locations of Kanhan River. Detailed analysis of monitored data is given in **Table 4.26**.

1. Kanhan river D/s of Nagpur (1909/ NWMP)

- Station Details: Village- Agargaon, Taluka- Kuhi, District- Nagpur
- **Pollution sources**: Pollution due to domestic waste and human activities

2. Kanhan river at U/s of M/s Vidarbha Paper Mills (2170/SWMP)

- Station Details: Village-Sinora, Taluka-Parseoni, Distict-Nagpur
- **Pollution sources**: Domestic &industrial pollution from Kamptee & Kanhan towns

3. Kanhan river at D/s of M/s Vidarbha Paper Mills (2171/SWMP)

- Station Details: Village-Sinora, Taluka-Parseoni, Distict-Nagpur
- **Pollution sources**: Effluents from M/s Vidarbha Mills & M/s Jaykwadi Mills

Table 4.26(a): Five years Descriptive Statistics for Kanhan River (2007-2011)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1909	Mean	7.8	5.4	7.5	95.2	205.2	1.2	1.7
	Std.dev	0.41	0.96	2.63	109.91	120.57	1.05	1.21
	No of Samples	23	23	23	22	21	22	23
	% Exceedance	0.0	4.3	87.0		0.0	31.8	0.0
2170	Mean	7.9	5.9	5.7	41.8	114.7	0.7	1.3
	Std.dev	0.51	0.62	1.22	28.98	90.01	0.63	0.84
	No of Samples	39	39	38	38	39	39	38
	% Exceedance	17.9	0.0	63.2		0.0	7.7	0.0
2171	Mean	8.0	5.0	7.6	63.1	185.2	0.7	1.9
	Std.dev	0.56	0.73	2.06	39.32	141.76	0.62	2.01
	No of Samples	39	39	38	38	38	39	39
	% Exceedance	12.8	5.1	92.1		0.0	12.8	0.0

The descriptive statistics showed that BOD did not comply with MPCB standards at all three stations. The percent exceedance ranged from 63% to 92%. It could be due to the release of organic waste from Paper mills situated there. Also DO and Ammonical nitrogen exceeded

the MPCB standards at D/s of M/s Vidarbha Paper Mills and D/s of Nagpur respectively. pH exceeded the standards at U/s and D/s of M/s Vidarbha Paper Mills.

Table 4.26(b): Water Quality Index for Kanhan River

Station Code	2007	2008	2009	2010	2011
1909	MG	MG	GE	MG	MG
2170		GE	GE	GE	GE
2171		MG	MG	MG	MG

At D/s of Nagpur, the monthly water quality varied from moderately good to excellent most of the time except for May-2011 when it was bad. The monthly water quality index of Kanhan River- at U/s of M/s Vidarbha Paper Mill was good to excellent most of the time except few months when it was moderately good. However, the water quality was moderately good most of the time at D/S of M/s Vidarbha Paper Mill for the period 2007-2011.

22. Kodavali River

Kodavali River is situated in Ratnagiri district under Rajapur tehsil. It is one of the minor rivers found in this district flow from west to east direction i.e. from Kolhapur-Ratnagiri border to Arabian Sea. From Rajapur onward it meets with Kajvi River. From starting point, it covers many small villages such as Talwade, Raipatan and Angale. MPCB has following monitoring location of Kodavali River under Hydrology Project. Detailed analysis of monitored data is given in **Table 4.27**.

1. Kodavali river at Rajpatan (HP_KV_1)

- Station Details: Village- Rajpatan, Taluka-Rajapur, District- Ratnagiri
- **Pollution sources**: Domestic waste and human activities

Table 4.27(a): Five years Descriptive Statistics for Kodavali River (For 2007-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_KV_1	Mean	7.6	7.0	1.3	4128.9	5045.3	0.1	0.1
	Std.dev	0.33	0.70	0.59	5152.36	5582.8	0.00	0.15
	No of Samples	46	46	45	46	46	46	12
	% Exceedance	0.0	0.0	0.0	-	32.6	0.0	0.0

It was observed for Kodavali River that 32% of TC samples did not comply with MPCB standards while pH, DO, BOD and Ammonical nitrogen were as per the MPCB standards.

Table 4.27(b): Water Quality Index for Kodavali River

Station Code	2007	2008	2009	2010	2011				
HP KV 1	GE	GE	GE	GE	GE				

The monthly WQI evaluated for Rajpatan station of Kodavali River indicated that the water quality varied from moderately good to good to excellent for the available data set.

23. Kolar River

Kolar River flows in the Nagpur district under Kamthi taluka. River covers a very short distance in comparison to other rivers flowing through the district. There is a confluence of Kolar River with Kanhan River at Waregaon village. MPCB has the following monitoring location of Kodavali River. Detailed analysis of monitored data is given in **Table 4.28**.

1. Kolar river before confluence with Kanhan river at Waregaon Bridge (1908/NWMP)

- Station Details: Village- Waregaon, Taluka-Kamptee, District-Nagpur
- Pollution sources: Pollution through agricultural run-offs and domestic waste

Table 4.28(a): Five years Descriptive Statistics for Kolar River (For 2007-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1908	Mean	8.0	5.5	7.1	66.3	163.9	0.9	1.6
	Std.dev	0.46	0.49	2.59	54.48	115.59	0.74	1.71
	No of Samples	24	24	23	23	23	24	23
	% Exceedance	4.2	0.0	82.6		0.0	16.7	0.0

For Kolar River, it was observed that pH, BOD and Ammonia showed 4%, 82%, and 16% exceedance to MPCB standards respectively whereas DO, TC and Nitrate nitrogen were as per the standards of MPCB. The exceedance of BOD could be due to the domestic sewage and the agricultural run-offs.

Table 4.28(b): Water Ouality Index for Kolar River

Station Code	2007	2008	2009	2010	2011
1908	MG	GE	MG	MG	MG

The water quality of Kolar River for the available data set for all the five years was moderately good except for Jan-09 and some months of 2011 it was good to excellent.

24. Koyna River

The Koyna River rises in Mahabaleshwar and is a tributary of the Krishna River in western Maharashtra, India. Unlike most of the other rivers in Maharashtra which flow East-West direction, the Koyna River flows in North-South direction. The river meets the Krishna River, which is one of the three largest rivers in southern India by Karad. The river is just about 100 meters in width and is slow-flowing. It is an olive shade of green during the dry months and a bluish-brown in the monsoon months attributed to much algae and aquatic plant life. MPCB has the following monitoring location of Koyna River. Detailed analysis of monitored data is given in **Table 4.29**.

1. Koyna river at Karad.(2189/SWMP)

- Station Details: Village- Karad, Taluka- Karad, District- Satara
- **Pollution sources :** Domestic Pollution

Table 4.29(a): Five years Descriptive Statistics for Koyna River (For 2007-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2189	Mean	8.1	6.0	6.7	161.8	1117.3	0.5	0.3
	Std.dev	0.32	0.85	2.31	80.9	576.6	0.89	0.35
	No of Samples	53	52	52	50	52	52	51
	% Exceedance	9.4	1.9	76.9	-	0.0	5.8	0.0

For Koyana River, the descriptive statistics showed that TC and Nitrate nitrogen complied with the MPCB standards whereas 91% of pH samples, 98% of DO and 96% of Ammonical nitrogen samples complied with MPCB standards. However, the highest percent exceedance was for BOD i.e. 77%. It could be due to the domestic waste released from Karad village into this river.

Table 4.29(b): Water Quality Index for Koyna River

Station Code	2007	2008	2009	2010	2011
2189	MG	MG	MG	MG	MG

The water quality indices of the available data of Koyana River indicated that the water quality varied from moderately good to good to excellent for the available data set except for Nov-08 and Nov -11 when it was bad.

25. Krishna River

It rises at Mahabaleswar in Maharashtra in the west and meets the Bay of Bengal at Hamasaladeevi in Andhra Pradesh, on the east coast. It also flows through the state of Karnataka. Ecologically, this is one of the disastrous rivers in the world, in that it causes heavy soil erosion during the monsoon season. Its flow is fast and furious, often reaching depths of over 75 feet (23 m). In reality, Krishna causes a high degree of erosion between June and August. During this time, Krishna takes fertile soil from Maharashtra, Karnataka and western Pradesh towards the delta region. Its most important tributary is the Tungabhadra River, which is formed by the Tunga River and Bhadra River that originate in the Western Ghats. Other tributaries include the Koyna River, Bhima River, etc. MPCB has the following monitoring locations of Krishna River under NWMP, SWMP and Hydrology Project. Detailed analysis of monitored data is given in **Table 4.30**.

Monitoring Locations on Krishna River

Sr.	Station Name /Code	Station Details
1	Ambeghar-Karanje (HP-KR_3)	Village Ambeghar, Taluka-Bhor, District -
		Pune
2	Bandalgi (HP_KR_4 /HP)	Village-Bandalgi, Taluka-Solapur,
		Distict-Solapur
3	Barur-Takli (HP_KR_5)	Village- Barur (Takli), Taluka- Solapur,
		District Solapur

(Contd...) Monitoring Locations on Krishna River

) Monitoring Locations on Kris	
Sr.	Station Name /Code	Station Details
4	Bubnal (HP_KR_7/HP)	Village-Bubnal, Taluka-Shirol, District- Kolhapur
5	Krishna river Bundgarden	Village- Bundgarden Bridge, Taluka- Haweli,
	Bridge (HP_KR_8)	District Pune
6	Chaskman (HP_KR_9/HP)	Village-Chaskman, Taluka-Khed, Distict- Pune
7	Dattawadi (HP_KR_10/HP)	Village-Dattawadi, Taluka- Haweli, District:- Pune
8	Daund(HP_KR_11 /HP)	Village-Daund, Taluka-Daund, Distict-Pune
9	Kale Colony (HP_KR_13)	Village- Kale Colony, Taluka-Maval,
		District:- Pune
10	Khamgaon (HP_KR_15)	Village- Khamgaon, Taluka-Daund, Distict-Pune
11	Kurundwad-Wadi	Village-Kurundwad, Taluka-Shirol,
	(HP_KR_16/HP)	Distict-Kolhapur
12	Mhaisal (HP_KR_17)	Village-Mhaisal, Taluka- Miraj, District:- Sangli
13	Nighoje (HP_KR_19)	Village-Nighoje, Taluka- Khed, District:- Pune
14	Paud (HP_KR_23/HP)	Village- Paud, Taluka- Mulshi, District:- Pune
15	Pimpale Gurav (HP_KR_24)	Village-Pimpale Gurav, Taluka-Haweli,
		District-Pune
16	Rakshewadi (HP_KR_25/HP)	Village-Rakshewadi, Taluka-Shirur, District-Pune
17	Krishna bridge, Karad (NH-4	Village- Karad, Taluka- Karad, District:- Satara
	bridge, Karad.) (36/ NWMP)	
18	Maighat, Sangli (37/NWMP)	Village- Gawali gally, Taluka- Miraj,
		District-Sangli
19	Krishna river Rajapur Weir	Village- Rajapur, Taluka- Shirol,
	(1153/NWMP)	District- Kolhapur
20	Dhom Dam (1194/NWMP)	Village- Wai, Taluka- Mahabaleshwar,
		District-Satara
21	Kurundwad near Santaji	Village-Narshingwadi, Kurundwad, Taluka-
	Ghorpade Ghat (1310/ WMP)	Shirol, District- Kolhapur
22	Walwa, D/s of Islampur near	Village- Walwa, Taluka- Walwa, District- Sangli.
	Vithal Temple (1906/NWMP)	
23	Kshetra Mahuli, Satara	Village- Kshetra Mahuli, Taluka- Mahuli,
	(2187/ SWMP)	District- Satara.
24	Krishna- Venna sangam,	Village- Mahuli, Taluka- Mahuli, District- Satara
	Mahuli (2188/SWMP)	
25	Wai, Satara (2190/SWMP)	Village- Wai, Taluka- Wai, District- Satara

Pollution Sources at few locations:

- 36& 37/ NWMP: Industrial wastes are not discharged into the river. Domestic wastes from Karad city are discharged
- 1153/NWMP: Pollution due to agricultural activities and human activities.
- 1194/NWMP: Pollution mainly due to agricultural activities and possible occasional discharge from a paper mill.
- 1310/ NWMP: Pollution through agricultural activities and human activities like washing, bathing etc.
- 1906/NWMP: Pollution due to disposal of Industrial and domestic effluents and other human activities.
- 2187& 2190 / SWMP: Domestic pollution
- 2188/SWMP: Domestic and Industrial pollution

Table 4.30(a)I: One years Descriptive Statistics for Krishna River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_KR_8	Mean	7.4		22.6	160000.0	160000.0	0.6	
	Std.dev	0.15		2.30	0.00	0.00	0.84	-
(2007)	No of Samples	5	0	5	5	5	5	-
	% Exceedance	0		100	-	100	20	-
HP_KR_21	Mean	8.6	6.9	2.1	911.1	1590.0	0.1	-
	Std.dev	0.26	1.06	0.89	706.21	1126.83	0.00	
(2007)	No of Samples	5	5	5	5	4	4	
	% Exceedance	60.0	0.0	0.0		0.0	0.0	
HP_KR_25	Mean	8.1	6.8	3.2	6201.1	9505.6	0.3	1.8
	Std.dev	0.29	0.91	1.51	7840.27	10883.44	0.45	0.10
(2010)	No of Samples	8	8	8	7	8	4	2
	% Exceedance	0.0	0.0	0.0	0.0	50.0	0.0	0.0

Table 4.30(a)I: Two /Three years Descriptive Statistics for Krishna River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
	M	-						
HP_KR_11	Mean	7.8	6.6	5.1	8487.5	16025.0	1.1	2.8
	Std.dev	0.48	0.39	1.22	2861.29	3448.2	0.14	0.33
(2010-2011)	No of Samples	9	9	9	8	8	9	7
	% Exceedance	0.0	0.0	55.6		100.0	0.0	0.0
HP_KR_15	Mean	7.8	6.7	5.5	34466.7	42250.0	1.1	2.4
	Std.dev	0.51	0.25	1.03	25298.42	24598.20	0.18	0.44
(2010-2011)	No of Samples	9	8	9	9	8	8	9
	% Exceedance	0.0	0.0	66.7		100.0	0.0	0.0
HP_KR_14	Mean	8.2	7.0	2.9	10020.0	11540.0	0.1	
	Std.dev	0.37	0.45	1.49	5275.06	4008.93	0.00	
(2007-2009)	No of Samples	12	11	12	10	10	8	
	% Exceedance	17	0	8		100	0	
HP_KR_3	Mean	7.4	0.2	22.6	160000.0	160000.0	0.6	
	St deviation	5.5	0.45	2.30	0.00	0.00	0.84	
(2007 & 2010-	No of samples	5	5	5	5	5	5	
2011)	% Exceedance	0.0	100.0	100.0		100.0	20.0	

Table 4.30(a)I: Four years Descriptive Statistics for Krishna River

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_KR_7	Mean	8.1	7.6	2.2	2683.1	2966.9	0.05	1.30
	Std.dev	0.35	1.67	1.05	4644. 6	4611.28	0.00	0.41
(2007-2010)	No of Samples	39	39	38	39	39	39	5
	% Exceedance	15.4	0.0	0.0		12.8	0.0	0.0
HP_KR_10	Mean	7.4	2.8	17.2	123497.7	138372.7	0.83	2.42
	Std.dev	0.28	2.15	13.67	57841.7	55483.7	1.58	0.85
(2007-2009)	No of Samples	45	26	45	44	44	44	9
	% Exceedance	0.0	76.9	71.1		97.7	18.2	0.0
HP_KR_16	Mean	7.8	7.0	2.1	2224.5	2683.2	0.1	1.3
	Std.dev	0.48	1.62	1.02	2072.78	2301.20	0.00	0.62
(2007-2010)	No of Samples	39	39	39	37	37	39	5
	% Exceedance	2.6	2.6	0.0		21.6	0.0	0.0
HP_KR_17	Mean	8.3	7.6	2.0	1011.1	1108.2	0.1	1.4
	Std.dev	0.37	1.15	0.95	903.82	973.69	0.00	0.54
(2007-2010)	No of Samples	39	39	39	39	39	39	5
	% Exceedance	15.4	0.0	0.0		0.0	0.0	0.0

Table 4.30(a)II: Five years Descriptive Statistics for Krishna River (For 2007-11)

Stn. Code		рĤ	DO	BOD	FC	TC	Ammonia	Nitrate
HP_KR_4	Mean	8.1	6.4	3.3	4206.9	8971.7	0.4	0.9
	Std.dev	0.32	0.94	1.23	5432.2	17671.9	0.47	0.58
	No of Samples	30	30	30	29	29	30	5
	% Exceedance	10.0	0.0	10.0		44.8	0.0	0.0
HP_KR_5	Mean	8.2	6.5	2.9	5124.6	6446.8	0.12	1.72
	Std.dev	0.34	0.75	1.00	4832.7	5497.5	0.14	0.18
	No of Samples	34	34	34	34	34	34	3
	% Exceedance	11.8	0.0	2.9		50.0	0.0	0.0
HP_KR_9	Mean	8.4	7.0	2.3	3684.5	6190.5	0.05	1.38
	Std.dev	0.16	0.68	0.96	3041.9	5799.30	0.01	0.15
	No of Samples	42	42	42	40	42	41	6
	% Exceedance	16.7	0.0	0.0		40.5	0.0	0.0
HP_KR_13	Mean	7.9	6.9	1.5	8002.0	9398.1	0.05	0.24
	Std.dev	0.36	0.58	0.42	6294.76	6538.72	0.00	0.07
	No of Samples	45	45	44	45	43	44	9
	% Exceedance	2.2	0.0	0.0		60.5	0.0	
HP_KR_19	Mean	8.2	6.9	1.6	5128.8	7356.6	0.1	0.2
	Std.dev	0.31	0.59	0.49	3758.99	4549.94	0.03	0.08
	No of Samples	46	46	46	46	46	46	11
	% Exceedance	8.7	0.0	0.0	0.0	71.7	0.0	0.0
HP_KR_23	Mean	7.8	6.6	1.6	6761.4	9400.8	0.1	0.2
	Std.dev	0.36	0.55	0.46	4966.73	5730.75	0.00	0.01
	No of Samples	38	38	37	37	37	36	
	% Exceedance	0.0	0.0	0.0		78.4	0.0	0.0
HP_KR_24	Mean	7.5	2.3	12.6	90696.3	97209.3	0.9	3.1
	Std.dev	0.28	2.25	7.43	70838.91	73177.66	1.07	0.52
	No of Samples	43	27	43	43	43	43	7
	% Exceedance	0.0	92.6	76.7		90.7	20.9	0.0
36	Mean	7.9	5.8	6.6	149.0	1026.5	0.4	0.4
	Std.dev	0.37	0.66	2.03	108.26	588.27	0.39	0.40
	No of Samples	56	56		55	51	56	
	% Exceedance	3.6	0.0	80.4		0.0	0.0	
37	Mean	7.3	6.6	2.6	5.9	113.8	0.4	
-	Std.dev	0.70	0.73	0.84	2.81	40.31	0.25	0.80
	No of Samples	56	54		54	55		
	% Exceedance	7.1	0.0	0.0		0.0	0.0	0.0
1153	Mean	7.4	6.2	2.8	6.8	123.7	0.4	
	Std.dev	0.55	1.06	1.00	4.29	49.54	0.20	
	No of Samples	54	52	53	54	54	52	52
	% Exceedance	3.7	7.7	7.5		0.0	0.0	
1194	Mean	7.9	6.3	4.9	50.9	459.6	0.3	0.2
	Std.dev	0.35	0.45	2.01	68.68	499.55	0.29	0.29
	No of Samples	56	56	55	55	56	55	56
	% Exceedance	5.4	0.0	50.9		0.0	0.0	0.0
1310	Mean	7.4	6.2	2.6	6.1	113.0	0.4	1.5
	Std.dev	0.56	1.10	0.87	3.27	34.67	0.20	0.92
	No of Samples	55	53	53	55	55	54	
	% Exceedance	5.5	5.7	1.9		0.0	0.0	

Table 4.30(a)II: Five years Descriptive Statistics for Krishna River (For 2007-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1906	Mean	7.4	6.6	2.4	7.8	127.7	0.4	1.3
	Std.dev	0.77	0.75	0.63	3.61	56.50	0.27	0.85
	No of Samples	55	55	54	54	55	54	51
	% Exceedance	7.3	0.0	0.0		0.0	0.0	0.0
2187	Mean	8.1	5.9	6.9	135.7	1057.0	0.4	0.6
	Std.dev	0.25	0.57	2.55	78.52	556.22	0.34	0.72
	No of Samples	52	53	53	53	53	50	53
	% Exceedance	1.9	0.0	77.4	-	0.0	2.0	0.0
2188	Mean	8.0	5.9	7.2	166.3	1130.4	0.4	0.6
	Std.dev	0.38	0.68	2.63	84.57	506.21	0.39	0.72
	No of Samples	53	53	52	53	53	51	52
	% Exceedance	•	0.0	80.8	-	0.0	2.0	0.0
2190	Mean	8.0	5.7	7.2	157.4	1118.4	0.5	0.3
	Std.dev	0.37	0.76	2.47	82.86	577.39	0.36	0.33
	No of Samples	53	53	52	52	52	52	52
	% Exceedance	5.7	1.9	75.0	-	0.0	1.9	0.0

For stations HP_KR_11 and HP_KR_15 data is given only for the years 2010 and 11. For the available data set, it was observed that Ammonical and Nitrate nitrogen complied with the MPCB standards on almost all stations of Krishna river except at Bundgarden bridge, Dattawadi, Pimpale Gurav and Kshetra Mahuli. However, percent exceedance of pH, DO, BOD and TC ranged from 2 to 60%, 2 to 96%, 2 to 100% and 13 to 100% respectively at the monitored stations.

Table 4.30(b): Water Quality Index for Krishna River

Sr.	Station	07	08	09	10	11	Sr.	Station	07	08	09	10	11
1	HP_KR_3	MG	-		MG	MG	14	HP_KR_21	MG	-			
2	HP_KR_4	MG	MG	MG	MG	MG	15	HP_KR_23	GE	MG	MG	MG	MG
3	HP_KR_5	MG	MG	MG	MG	MG	16	HP_KR_24	Bad	Bad	VB	VB	VB
4	HP_KR_7	GE	MG	MG	MG		17	HP_KR_25	-			MG	
5	HP_KR_8	VB					18	36	GE	MG	MG	MG	MG
6	HP_KR_9	MG	MG	MG	MG	MG	19	37	GE	GE	GE	GE	GE
7	HP_KR_10	Bad	Bad	VB	-		20	1153	GE	GE	GE	GE	GE
8	HP_KR_11		-		MG	MG	21	1194	GE	GE	GE	GE	GE
9	HP_KR_13	GE	MG	MG	MG	MG	22	1310	GE	GE	GE	GE	GE
10	HP_KR_14	MG	MG	MG			23	1906	GE	GE	GE	GE	GE
10	HP_KR_15		-		MG	MG	24	2187	GE	MG	MG	MG	MG
11	HP_KR_16	GE	MG	MG	MG		25	2188	MG	MG	MG	MG	MG
12	HP_KR_17	GE	GE	MG	MG		26	2190	MG	MG	MG	MG	MG
13	HP_KR_19	GE	MG	MG	MG	MG							

Water quality indices varied between moderately good to excellent at all monitoring stations except 2 stations viz.(1) Dattawadi, Tal.:- Haweli, Dist.:- Pune and (2) Village.:-Pimpale Gurav, Tal.:-Haweli, District-Pune.

Table 4.30(c) gives the number of sites out of 28 sites of Krishna with percent exceedances in different ranges for BOD, DO, TC and pH.

Table 4.30(c): Number of Sites with Percent Exceedances for BOD, DO, TC and pH

101 2 0 2 , 2	-,			
Percent Exceedance	BOD	DO	TC	pН
0%	13	21	11	8
1-20%	5	4	1	18
20-40%	0	0	1	0
40-60%	2	0	3	0
60-80%	5	0	4	1
80-100%	2	2	5	0

Figures 4.5 show the pie chart for percent exceedances for BOD, DO, pH and TC for 28 locations in Krishna River. 48% of the sites have no exceedance of BOD from the standard.

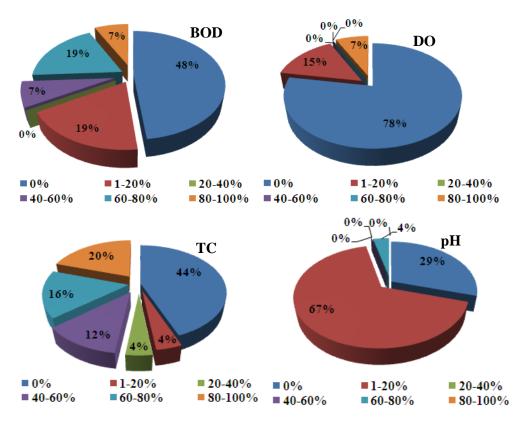


Figure 4.5: Percent Exceedances at 28 Monitoring Locations of Krishna River

The average water quality index for five years evaluated at 27 sites is presented in **Figure 4.6**. It shows that 26% of the locations had water quality "Good to Excellent", 67% had water quality "Medium to Good" and at 7% locations (2 locations ie. Paud and Ambeghar in Karanje) water quality was bad.

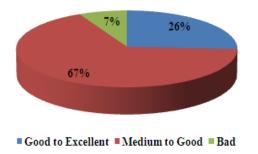


Figure 4.6: Water Quality Index of 28 Monitoring Locations of Krishna River

26. Kundalika River

Kundalika is a small river flowing from the Hills of Sahyadri to the Arabian Sea. This river originates at a small town called Bhira in the Indian State of Maharashtra, 150 km south east of Mumbai. The important towns located on the banks of Kundalika are Kolad, Roha and Salav. River Kundalika is fed by the excess water from Tata Power's Mulshi Dam Project on to a series of hydroelectric projects and dams, including Ravalje followed by Bhira and then Dholvan, where the water is released. Over 90% of Kundalika's water is consumed by industries, including RCF's THAL Project and many MIDC all across. MPCB has the following five monitoring locations of Kundalika River. Detailed analysis of monitored data is given in **Table 4.31**.

1. Kundalika river at Varasgaon (HP_KD_1/HP)

- Station Details: Village- Varasgaon, Taluka-Roha, District- Raigad
- Pollution sources: Domestic discharges

2. Kundalika river at Roha Bridge (1152/ NWMP)

- Station Details: Village-Roha, Taluka- Roha, District- Raigad
- **Pollution sources**: Kundalika river's sweet zone. After filtration water is used for drinking by MIDC Roha and nearby villages. No discharge point for pollutants.

3. Kundalika river at Are Khurd (saline zone) (2198/SWMP)

- Station Details: Village-Are Khurd, Taluka-Roha, District-Raigad.
- **Pollution sources**: D/s of CETP discharge point. Reti Bunder.

4. Kundalika river near Salav bridge (saline zone)(2671/SWMP)

- Station Details: Village-Salav, Taluka-Roha, District-Raigad.
- **Pollution sources**: D/s of Vikram Ispat disposal point. Fishing activity.

5. Kundalika river at at Dhatav Jackwell (2672/SWMP)

- **Station Details:** Village-Dhatav, Taluka-Roha, Distict-Raigad.
- **Pollution sources**: U/s of CETP discharge point. No industries nearby. Water is used for drinking by MIDC, Roha and nearby villages after filtration.

Table 4.31(a): Five years Descriptive Statistics for Kundalika River (2007-11)

Stn. Code	a). Five years be	pН	DO	BOD	FC	TC	Ammonia	Nitrate
		_						Tittate
HP_KD_1	Mean	7.9	7.3	1.5	3535	4312	0.1	
	Std.dev	0.32	0.42	0.46	4237.87	4666.03	0.00	
(2007-2009)	No of Samples	35	36	36	36	36	31	
	% Exceedance	0	0	0	0	33	0	
1152	Mean	7.6	6.8	3.7	128.7	400.2	0.2	0.4
	Std.dev	0.48	0.59	0.81	76.74	339.07	0.25	0.22
	No of Samples	22	22	21	20	21	21	21
	% Exceedance	0.0	0.0	4.8	-	0.0	0.0	0.0
2198	Mean	7.3	5.5	9.5	234.3	616.9	1.7	0.7
	Std.dev	0.42	1.44	8.67	206.91	508.62	2.75	0.66
(2008-	No of Samples	40	39	39	37	40	37	38
2011)	% Exceedance	0.0	20.5	53.8		0.0	29.7	0.0
2671	Mean	7.9	5.7	7.2	83.8	233.0	0.2	1.0
	Std.dev	0.33	0.98	3.17	103.03	258.84	0.20	0.55
	No of Samples	32	33	33	29	30	29	32
	% Exceedance	0.0	6.1	60.6		0.0	0.0	0.0
2672	Mean	7.6	6.9	3.7	180.3	319.3	0.1	0.2
	Std.dev	0.38	0.61	1.15	296.75	326.64	0.09	0.22
Exp. 2009	No of Samples	32	32	31	29	29	30	30
	% Exceedance	0.0	0.0	6.5		0.0	0.0	0.0

It was observed that pH and Nitrate nitrogen were as per the MPCB standards at all the stations of Kundalika River. However, DO, BOD and Ammonical nitrogen exceeded by 20%, 60% and 30% respectively at Are Khurd and near Salav Bridge. The non-compliance with MPCB standards at Are Khurd and Near Salav Bridge could be due to the CETP discharge and fishing activity at these stations. For TC, percent exceedance was observed only at Varasgaon station and it was 33%.

Table 4.31(b): Water Quality Index for Kundalika River

Station Code	2007	2008	2009	2010	2011
HP_KD_1	GE	GE	MG	GE	
1152	GE	GE	GE	GE	GE
2198		MG	MG	GE	GE
2671	MG	GE	MG	GE	MG
2672	GE	GE	1	GE	GE

Water quality of Kundalika River at Dhatav at Jackwell was good to excellent whereas it varied from moderately good to excellent at Kundalika, and Roha. Also, the water quality varied from bad to moderately good at the stations near Roha and at Arekhurd the reason probably is the CETP discharge and fishing activity.

27. Manjra River

Manjara River is one of the longest river nearly covering two districts of Maharashtra and flows towards the Karnataka state. River originates near Patoda tehsil of Beed district. It moves along the district border between Beed and Latur and enters into the Latur district in confluence with Tawarja and then with Terna river. MPCB has the following monitoring location of Manjra River. Detailed analysis of monitored data is given in **Table 4.32**.

1. Manjra river at D/s of Latur, near Latur- Nanded Bridge (2673/SWMP)

- Station Details: Village- Bhatkheda, Taluka- Latur, District- Latur
- **Pollution sources**: Pollution due to domestic sewage and human activities like washing, bathing etc

Table 4.32(a): Three years Descriptive Statistics for Manjra River (2009-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2673	Mean	8.0	5.9	4.8	3.5	100.9	0.6	1.8
	Std.dev	0.55	1.33	1.50	1.98	23.00	0.89	1.57
	No of Samples	18	16	16	13	11	17	16
	% Exceedance	11.1	12.5	31.3		0.0	11.8	0.0

For Manjra River it was observed that TC and Nitrate nitrogen complied with the MPCB standards whereas pH, DO and BOD exceeded the MPCB standards. 11% and 12% exceedance was for pH and DO, 31% for BOD 11% for Ammonical nitrogen. The reason for DO and BOD exceedance could be the domestic sewage and human activities at this river.

Table 4.32(b): Water Quality Index for Manjra River

Station Code	2007	2008			2011
2673			GE	GE	GE

Water quality of Manjra River could not be found during 2007 and 2008 due to unavailability of FC data. However in the year 2009 to 2011 the annual water quality index was good to excellent.

28. Mithi River

River Mithi is a river in, the island of the city of Mumbai. It is a confluence of tail water discharges of Powai and Vihar lakes. The river is seasonal. The river originates from the overflow of Vihar Lake and also receives the overflows from Powai Lake about 2 km later. It flows for a total of 15 km before it meets the Arabian Sea at Mahim Creek flowing through residential and industrial complexes of Powai, Saki Naka, Kurla, Kalina, Vakola, Bandra-Kurla complex, Dharavi and Mahim. The river has an average width of 5 m in the upper reaches, has been widened to 25 m in the middle reaches and up to 70 m in the lower reaches. The river is also a natural drainage channel which carries the excess water during the

monsoon. However, it is filthy mainly due to the presence of slums and the discharge of industrial effluents. MPCB has the following monitoring location of Mithi River. Detailed analysis of monitored data is given in **Table 4.33**.

1. Mithi River near Road bridge (2168/SWMP)

- Station Details: Village-Mahim, Taluka-Bandra, District-Mumbai.
- **Pollution sources**: Industrial and domestic effluents are discharged

Table 4.33(a): Four years Descriptive Statistics for Mithi River (2008-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2168	Mean	7.5	3.3	54.0	1054.9	1443.9	4.1	1.7
	Std.dev	0.35	1.52	66.90	699.49	496.20	5.85	1.07
	No of Samples	38	24	38	34	33	34	37
	% Exceedance	0.0	75.0	94.7		0.0	44.1	0.0

For Mithi River, it was observed that pH, TC and Nitrate nitrogen were as per the MPCB standards. However, DO, BOD and Ammonical nitrogen did not comply with the standards as they showed 75, 95 and 44% exceedance respectively. The most probable reason could be the effluents released from the industries and the domestic waste.

Table 4.33(b): Water Quality Index for Mithi River

2 m 20 100 (m) + + + + + + + + + + + + + + + + + +											
Station Code	2007	2008	2009	2010	2011						
2168		Bad	Bad	Bad	Bad						

The water quality of Mithi River was found to vary from very bad to bad for the available data set of the year 2008 to 2011. It could be due to untreated waste from small scale industries and since it is a slum area, human activities also account for such water quality. Monthly WQI was found medium to good in the months of September and November 2011.

29. Mor River

Mor River is located at Yaval taluka of Jalgaon district. The confluence of Mor River with the Tapi River is at Dhargavan village. MPCB has the following monitoring location of Mor River near Padalshe village. Detailed analysis of monitored data is given in **Table 4.34**.

1. Mor river at Padalashe village (2674/SWMP)

- Station Details: Village- Padalashe, Taluka- Jalgaon, District- Jalgaon.
- **Pollution sources**: Sewage from nearby village

Table 4.34(a): Four years Descriptive Statistics for Mor River (2007-09 &11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2674	Mean	8.0	6.0	5.6	15.8	40.9	0.6	2.0
	Std.dev	0.51	1.32	3.57	8.33	29.15	1.03	1.51
	No of Samples	9	8	8	6	6	5	8
	% Exceedance	11.1	12.5	37.5		0.0	20.0	0.0

It was observed that TC and Nitrate nitrogen were as per the MPCB standards for the available data set. However, pH, DO, BOD and Ammonical nitrogen did not comply with the standards. The percent exceedances were 11, 13, 37 and 20% for pH, DO, BOD and Ammonical nitrogen respectively. The reason for high exceedances of BOD and Ammonical nitrogen could probably be the sewage released from nearby villages.

Table 4.34(b): Water Quality Index for Mor River

Table 4.54(b): Water Quality Index for Mor River											
Station Code	2007	2008	2009	2010	2011						
2674	GE	GE	MG		GE						

As data is available for very few months the annual WQI index based on this does not give a correct picture.

30. Morna River

Morna River flows through the Akola city. It is one of the tributaries of Purna and Vaan River in Akola. Akola being primarily an industrial and agricultural city, the pollution in the Morna River could be due to the discharges of industrial effluents and agricultural run-offs. MPCB has the following monitoring location of Morna River. Detailed analysis of monitored data is given in **Table 4.35.**

1. Morna river at D/s of Railway bridge (2675/SWMP)

- Station Details: Village- Akola, Taluka- Akola, District- Akola.
- **Pollution sources**: Sewage from Akola city.

Table 4.35(a): Three years Descriptive Statistics for Morna River (2008, 10 &11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2675	Mean	7.9	4.6	11.6	322.3	780.0	1.0	2.9
	Std.dev	0.53	1.01	6.62	289.23	570.81	1.25	1.59
	No of Samples	15	13	14	13	15	14	14
	% Exceedance	13.3	23.1	92.9		0.0	21.4	0.0

For Morna River, it was found that TC and Nitrate nitrogen were as per the MPCB standards. Parameters pH, DO, BOD and Ammonical nitrogen exceeded the standards by 13, 23, 92, and 21% respectively,. The reason probably is the sewage released from Akola city into the Morna River.

Table 4.35(b): Water Quality Index for Morna River

Station Code	2007	2008	2009	2010	2011
2675	GE	Bad	MG	Bad	MG

As data is available for very few months the annual WQI index based on this does not give a correct picture.

31. Muchkundi River

Muchkundi River originates in the mountain of Sahyadri near Vishalgad and flows westward from Ratnagiri district. It meets Arabian Sea at Purnagad. It flows through villages like Satavali, Beni, Harche, Dorle and Gawade Ambere. MPCB has following two monitoring locations of Muchkundi River. Detailed analysis of monitored data is given in **Table 4.36**.

1. Muchkundi river at Pawarwadi (HP_MU_1/HP)

- Station Details: Village- Pawarwadi, Taluka- Lanja, District- Ratnagiri.
- **Pollution sources :** Domestic and human activities
- 2. Muchkundi River at Waked, Ratnagiri, near M/s Asahi Maharashtra Glass Ltd (2676/SWMP)
 - Station Details: Village- Waked, Taluka-Lanja, District- Ratnagiri
 - **Pollution sources**: Pollution due to Industrial waste and human activities like bathing, washing etc

Table 4.36(a): Five years Descriptive Statistics for Muchkundi River

Stn. Code	•	pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_MU-1	Mean	7.6	7.3	1.3	1180.1	1686.4	0.1	0.1
	Std.dev	0.26	0.91	0.58	1001.02	1855.19	0.00	0.08
	No of Samples	46	46	46	44	45	46	12
	% Exceedance	0.0	0.0	0.0	-	11.1	0.0	0.0
2676	Mean	7.5	6.9	2.2	2.7	70.4	0.5	0.8
	Std.dev	0.52	0.48	0.36	1.19	25.80	0.18	0.54
	No of Samples	35	34	34	33	35	32	33
	% Exceedance	5.7	0.0	0.0		0.0	0.0	0.0

For both the stations of Muchukundi River, it was observed that DO, BOD, Ammonical and Nitrate nitrogen complied with the MPCB standards whereas pH exceeded by 6% at Ratnagiri station and TC exceeded by 11% at Pawarwadi station. The reason could be some human activities.

Table 4.36(b): Water Quality Index for Muchkundi River

Station Code	2007	2008	2009	2010	2011
HP_MU-1	GE	GE	GE	GE	GE
2676	-	GE	GE	GE	GE

Monthly WQI values indicated that the water quality of Muchkundi River at Pawarwadi station varied from moderately good to excellent while at Waked it was good to excellent for the available data sets

32. Mula-Mutha River

The Mula-Mutha is formed by the confluence of the Mula and Mutha Rivers in the city of Pune. It forms a tributary of the Bhima River in the Deccan plateau. Mula River originates from Mulshi Dam near Pune It passes through the towns of Pune and Khadki. Mutha River arises in the Western Ghats and flows eastward until it merges with the Mula River in the city

of Pune. After merging with the River Mula in Pune, it flows as the Mula-Mutha to join the river Bhima. Mula-Mutha is a monsoon based river and usually flooded in the rains and dry in the summer. However the rivers have become polluted in the city. Their confluence is at Sangam Bridge in Pune. MPCB has following eight monitoring locations of Mula-Mutha River. Detailed analysis of monitored data is given in **Table 4.37.**

1. Mutha river at Sangam Bridge near Ganapathy ghat (2191/SWMP)

- Station Details: Village- Shivaji Nagar, Taluka- Pune, District- Pune.
- **Pollution sources**: Domestic sewage, Ganapathy immersion and other human activities.

2. Mula - Mutha river at Mundhawa bridge (2192/SWMP)

- Station Details: Village- Mundhawa, Taluka- Haweli, District- Pune.
- **Pollution sources**: Domestic waste and human activities

3. Mula river at Aundh bridge ,Aundgaon (2193/SWMP)

- Station Details: Village- Aundhgaon, Taluka- Haweli, District- Pune.
- **Pollution sources**: Domestic waste and human activities.

4. Mula river at Harrison bridge near Mula- Pawana sangam (2194/SWMP)

- Station Details: Village- Bopodi, Taluka- Haweli, District- Pune.
- **Pollution sources**: Domestic waste from Bopodi STP, municipal solid waste and human activities.

5. Mula-Mutha river at D/s of Theur, Pune (2677/SWMP)

- Station Details: Village- Theur, Taluka- Haweli, District- Pune.
- **Pollution sources**: Effluent from sugar industries, domestic waste & pollution due to human activities.

6. Mutha river near Veer Savarkar Bhavan, Pune (2678/SWMP)

- **Station Details:** Village- Pune M.C, Taluka- Pune, District- Pune.
- **Pollution sources**: Domestic sewage and other human activities.

7. Mutha river at Deccan bridge, Pune(2679/SWMP)

- Station Details: Village- Deccan, Taluka- Pune, District- Pune
- **Pollution sources**: Domestic sewage and other human activities.

8. Mutha river at Khadakvasla Dam, Pune (2680/SWMP)

- Station Details: Village- Kadakvasla, Taluka- Haweli, District- Pune.
- **Pollution sources**: No source of pollution.

Table 4.37(a): Five years Descriptive Statistics for Mula-Mutha River (2007-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2191	Mean	7.6	1.7	26.8	271.8	1499.1	9.7	0.5
	Std.dev	0.39	1.03	11.71	103.41	490.00	13.93	0.53
	No of Samples	53	27	52	53	53	52	52
	% Exceedance	0.0	100.0	98.1	ŀ	0.0	86.5	0.0
2192	Mean	7.7	1.8	23.5	277.5	1456.1	7.4	0.5
	Std.dev	0.40	1.56	11.62	103.21	499.59	6.05	0.61
	No of Samples	53	53	52	53	53	52	52
	% Exceedance	1.9	86.8	100.0	1	0.0	90.4	0.0

Table 4.37(a): Five years Descriptive Statistics for Mula-Mutha River (2007-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2193	Mean	7.8	3.2	18.0	249.1	1354.7	6.2	0.4
	Std.dev	0.36	1.88	12.34	120.80	546.06	8.45	0.42
	No of Samples	52	52	52	51	51	51	51
	% Exceedance	1.9	59.6	100.0		0.0	82.4	0.0
2194	Mean	7.7	2.8	20.8	268.1	1503.8	6.7	0.6
	Std.dev	0.38	3.27	10.10	107.78	459.68	7.44	0.57
	No of Samples	53	53	52	53	53	52	52
	% Exceedance	1.9	77.4	100.0		0.0	84.6	0.0
2677	Mean	7.9	4.0	12.9	202.6	1199.5	2.2	0.4
	Std.dev	0.48	1.72	6.95	114.86	526.93	2.63	0.52
	No of Samples	46	45	46	41	46	45	45
	% Exceedance	10.9	48.9	91.3		0.0	37.8	0.0
2678	Mean	7.6	2.1	23.7	241.4	1418.8	7.3	0.4
	Std.dev	0.36	2.07	11.77	101.43	540.80	8.55	0.41
	No of Samples	46	45	45	46	46	45	45
	% Exceedance	0.0	82.2	100.0		0.0	75.6	0.0
2679	Mean	7.7	2.1	27.6	260.5	1458.0	10.8	0.5
	Std.dev	0.36	1.38	14.27	112.36	522.42	16.69	0.53
	No of Samples	46	32	46	46	46	45	45
	% Exceedance	2.2	84.4	100.0		0.0	73.3	0.0
2680	Mean	7.9	6.4	5.0	37.5	258.4	0.3	0.2
	Std.dev	0.47	0.45	2.47	32.98	130.73	0.40	0.28
	No of Samples	40	39	39	40	38	39	40
	% Exceedance	7.5	0.0	48.7		0.0	2.6	0.0

The descriptive statistics of Mula-Mutha showed that only TC and Nitrate nitrogen were as per the MPCB standards whereas DO, BOD and Ammonical nitrogen did not comply with the standards. The percentage exceedance for DO, BOD and Ammonical nitrogen ranged from 48-100%, 48-100% and 2-90% respectively at almost all the stations of Mula Mutha River. The probable reason for such exceedance could be the domestic waste, human activities and some industrial effluents at these stations. However, percentage exceedance of pH ranged from 2-10% at these stations.

Table 4.37(b): Water Quality Index for Mula-Mutha River

Station Code	2007	2008	2009	2010	2011
2191	Bad	VB	VB	VB	VB
2192	Bad	Bad	VB	VB	Bad
2193	MG	Bad	Bad	Bad	Bad
2194	Bad	Bad	Bad	Bad	VB
2677	MG	Bad	Bad	MG	Bad
2678	Bad	Bad	Bad	VB	Bad
2679	Bad	VB		VB	VB
2680	GE	GE	GE	GE	GE

The reason for bad or very bad water quality at Sangam bridge, Mundhawa Bridge and Deccan bridge could be due to the domestic waste and human activities and immersion of Ganpati idols in Mutha River at Sangam Bridge.

33. Nira River

Nira River originates in Sahyadri Hills in Bhor tehsil and flows through Bhor, Baramati, Indapur tahsils covering Pune and Solapur districts of Maharashtra. The confluence of Bhima and Nira River is at Narsingpur and then it flows as Bhima River in Solapur districts. Nira River is a tributary of Bhima River and Karha River is a tributary of Nira River. MPCB has following five monitoring locations of Nira River. Detailed analysis of monitored data is given in **Table 4.38.**

- 1. Nira river at Sarola bridge (1463/NWMP)
 - Station Details: Village- Sarola, Taluka- Bhor, District- Pune.
 - Pollution sources: Agricultural/human activities domestic sewage.
- 2. Nira river at D/s of Jubilant Organosis, Pune (2195/SWMP)
 - Station Details: Village- Nimbut, Taluka- Baramati, District- Pune.
 - Pollution sources: Effluent from nearby distilleries, domestic waste.
- 3. Nira river at Sangavi (2681/SWMP)
 - Station Details: Village- Sangavi, Taluka- Phaltan, District- Satara
 - **Pollution sources**: Domestic pollution
- 4. Nira river at U/s of Jubilant Organosis, Pune (2682/SWMP)
 - Station Details: Village- Nira(Data ghat), Taluka- Baramati, District- Pune.
 - Pollution sources: Human activities and domestic waste
- 5. Nira river at Shirwal, Satara (2683/SWMP)
 - **Station Details:** Village- Shindewadi, Shirwal, Taluka- Khandala, District- Satara
 - **Pollution sources**: Domestic Pollution

Table 4.38(a): Five years Descriptive Statistics for Nira River (2007-2011)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1463	Mean	8.0	6.1	6.3	112.7	841.9	1.2	0.3
	Std.dev	0.39	0.72	2.16	73.67	487.89	1.77	0.36
	No of Samples	54	53	54	53	54	53	54
	% Exceedance	7.4	1.9	70.4	-	0.0	22.6	0.0
2195	Mean	8.0	4.7	10.3	159.3	1226.8	1.3	8.0
	Std.dev	0.42	1.45	5.52	75.39	551.83	2.05	0.63
	No of Samples	52	50	51	52	51	51	52
	% Exceedance	7.7	24.0	96.1	-	0.0	29.4	0.0
2681	Mean	8.1	5.2	9.2	122.9	877.7	0.7	0.3
	Std.dev	0.45	1.47	4.50	83.37	579.94	0.98	0.34
	No of Samples	47	47	46	45	46	46	46
	% Exceedance	19.1	21.3	87.0	-	0.0	4.3	0.0

Table 4.38(a): Five years Descriptive Statistics for Nira River (2007-2011)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2682	Mean	8.2	5.8	7.6	145.6	1077.8	0.6	0.4
	Std.dev	0.41	0.83	3.73	74.69	535.27	0.57	0.42
	No of Samples	46	46	45	46	46	45	45
	% Exceedance	9.4	4.3	66.7	-	0.0	6.7	0.0
2683	Mean	8.0	5.8	7.6	116.9	816.4	0.5	0.5
	Std.dev	0.38	0.97	2.87	75.44	571.44	0.54	0.90
	No of Samples	45	45	45	45	45	44	44
	% Exceedance	8.9	4.4	73.3	-	0.0	4.5	0.0

It was observed that TC and Ammonical nitrogen complied with the MPCB standards at all the stations. However, percent exceedance for pH and DO ranged from 7 -19% and 2-24% respectively. Also, BOD and Ammonical nitrogen exceeded the standards at almost all the stations and it ranged from 66 -96% and 4 -30% respectively. The probable reason for this could be the domestic waste, industrial waste and agricultural run-off.

Table 4.38(b): Water Quality Index for Nira River

Tuble Hea(b)	******	Zuuri	1114021	01 11110	
Station Code	2007	2008	2009	2010	2011
1463	GE	MG	MG	MG	MG
2195	MG	Bad	MG	MG	Bad
2681	GE	MG	MG	MG	Bad
2682	MG	MG	MG	MG	MG
2683	MG	MG	MG	MG	MG

The WQI indices evaluated for Nira river showed that the water quality at Sarola village, Sangvi, and U/s of Jubilant Organosis, Pune and Shirwal, Satara was moderately good to excellent. However, at D/s of Jubilant Organosis, Sangavi the water quality varied from very bad to good to excellent probably due to the effluents discharged from nearby distilleries, domestic waste and human activities.

34. Penganga River

The Penganga River is the chief river of the Yavatmal district in the Maharashtra state and flows along the south east boundaries of the district in a winding, meandering course. It rises in the Ajantha range and is a major tributary of the Wardha River, the other major river in the district. After flowing through Buldhana and Washim districts, it then flows along the state border between Maharashtra and Andhra Pradesh before converging into Wardha River. There are two dams being constructed on the river, namely Upper Penganga and Lower Penganga. Also this dam is known as 'Isapur Dam'. MPCB has following two monitoring locations of Penganga River. Detailed analysis of monitored data is given in **Table 4.39**.

1. Penganga river near water supply scheme of Umarkhed M.C (2697/SWMP)

- Station Details: Village- Belkhed, Taluka- Umarkhed, District- Yavatmal.
- **Pollution sources**: Sewage from villages located on river bank.
- 2. Penganga river D/s of Isapur Dam (2698/SWMP)
 - **Station Details:** Village- Isapur, Taluka- Pusad, District- Yavatmal.
 - **Pollution sources**: Sewage from villages located on river bank

Table 4.39(a): Two years Descriptive Statistics for Penganga River (2008 & 2010)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2697	Mean	7.9	5.8	6.2	43.7	131.0	0.5	1.3
	Std.dev	0.30	0.87	1.83	26.48	87.89	0.31	0.95
	No of Samples	11	11	11	11	11	11	10
	% Exceedance	0.0	0.0	72.7	•	0.0	100.0	0.0
2698	Mean	8.1	5.9	5.9	26.3	66.5	0.6	3.6
	Std.dev	0.26	0.54	1.31	16.41	42.40	0.29	4.74
	No of Samples	12	12	12	11	11	12	12
	% Exceedance	0.0	0.0	66.7		0.0	91.7	0.0

The descriptive statistics of Penganga River showed that pH, DO, TC and Nitrate nitrogen complied with the MPCB standards. However, 72% and 67% exceedance was observed for BOD and 100% and 92% was observed for Ammonia at both the stations i.e. near water supply scheme of Umarkhed M.C and D/s of Isapur Dam. The reason for such exceedance could be the sewage from Belkhed and Isapur villages located on river bank.

Table 4.39(b): Water Quality Index for Penganga River

Station Code	2007	2008	2009	2010	2011
2697		GE		GE	
2698		GE		GE	

For both the stations of Penganga River i.e. near water supply scheme of Umarkhed M.C and D/s of Isapur Dam, WQI was calculated only for the years 2008 and 2010. The water quality indices evaluated for the available data set indicated that the water quality was good to excellent at both the stations. However this result was based on very few month's data.

35. Panchganga River

The Panchganga River flows through the borders of Kolhapur. It starts from Prayag Sangam. The Panchganga is formed by four streams, the Kasari, the Kumbhi, the Tulsi and the Bhogawati. Local tradition believes in an underground stream Saraswati which together with the other four streams make the Panchganga. The Prayag Sangam confluence marks the beginning of the Panchganga River. From Kolhapur, the Panchganga River winds east about thirty miles till it falls into the Krishna at Kurundvad. MPCB has following four monitoring locations of Panchganga River. Detailed analysis of monitored data is given in **Table 4.40**.

1. Panchaganga river at Ichalkaranji near MIDC intake well (1311/NWMP)

- **Station Details:** Village- Shiradhwad (Ichalkaranji ghat), Taluka- Hatkanangale, District- Kolhapur.
- **Pollution sources**: Domestic wastes from local bodies are discharged into river. Human activities like bathing, washing, Ganapathi idol immersion etc.

2. Panchaganga river at U/s of Kolhapur town near Balinga Pumping Station (1904/NWMP)

- Station Details: Village-Balinga, Taluka- Karvir, District- Kolhapur
- **Pollution sources**: Pollution due to disposal of domestic sewage from Kolhapur city &other human activities like bathing, washing, Ganapathi idol immersion etc.

3. Panchaganga river at D/s of Kolhapur town at Gandhi nagar near NH-4 Bridge and MIDC intake well (1905/NWMP)

- Station Details: Village- Uchegaon, Taluka- Kolhapur, District- Kolhapur
- **Pollution sources**: Pollution due to disposal of domestic sewage from Kolhapur city &other human activities like bathing, washing, Ganapathi idol immersion etc.

4. Panchganga at Shirol Intake well, Shirol (2163/NWMP)

- Station Details: Village- Shirol, Taluka- Shirol, District- Kolhapur
- **Pollution sources :** Domestic discharges

5. Panchanganga River at Wadange, Kolhapur

- Station Details: Village- Wadange, Taluka-Karveer, District- Kolhapur
- Pollution sources: Domestic discharges

Table 4.40(a)I: Five years Descriptive Statistics for Panchganga River (2007-11)

Stn. Code	<i>y</i>	pН	DO	BOD	FC	TC	Ammonia	Nitrate
1311	Mean	7.4	6.3	2.5	7.3	154.5	0.4	1.2
	Std.dev	0.56	1.04	0.56	4.43	80.96	0.26	0.76
	No of Samples	24	23	23	24	24	23	23
	% Exceedance	0.0	4.3	0.0		0.0	0.0	0.0
1904	Mean	7.5	6.5	2.3	7.4	121.7	0.4	1.1
	Std.dev	0.54	0.65	0.39	4.52	50.74	0.23	0.72
	No of Samples	55	54	54	54	55	52	53
	% Exceedance	5.5	0.0	0.0		0.0	0.0	0.0
1905	Mean	7.3	5.7	3.2	12.1	212.7	0.5	1.4
	Std.dev	0.47	1.42	1.28	9.56	113.17	0.50	1.05
	No of Samples	55	54	55	55	54	51	54
	% Exceedance	0.0	14.8	12.7		0.0	5.9	0.0
2163	Mean	7.5	6.1	2.6	7.8	162.8	0.4	1.4
	Std.dev	0.48	1.30	0.59	3.92	61.36	0.25	0.99
(2008-2011)	No of Samples	43	43	42	41	43	40	41
	% Exceedance	0.0	7.0	0.0		0.0	0.0	0.0

Table 4.40(a)II :Two years Descriptive Statistics for Panchganga River (2010-2011)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
Wadange	Mean	7.2	4.5	6.6	10175	11150	0.1	1.9
	Std.dev	0.22	2.60	9.16	7628	7399	0.00	1.66
	No of Samples	12	12	12	12	12	12	12
	% Exceedance	0.0	25.0	25.0	0.0	75.0	0.0	0.0

Only two years data is available for the Wadange Station. The descriptive statistics of Panchganga River showed that pH, TC, Ammonical and Nitrate nitrogen complied with the MPCB standards except at U/s of Kolhapur the pH exceeded by 5% and at Wadange Station TC exceeded by 75% However, DO exceeded by 4-25% at all the stations while BOD exceeded 13% at D/s of Kolhapur town at Gandhinagar and 25% at Wadange Station. It could be due to some human activities and domestic sewage.

Table 4.40(b): Water Quality Index for Panchganga River

					0 0
Station Code	2007	2008	2009	2010	2011
1311	GE	GE	GE	GE	GE
1904	GE	GE	GE	GE	GE
1905	GE	GE	GE	GE	GE
2163		GE	GE	GE	GE
Wadange				MG	MG

The WQI evaluated for the stations of Panchganga River showed that the water quality was good to excellent from the year 2007-11 all the stations except Wadange where it was moderately good.

36. Panzara River

The Panzara-Kan or Panjhra is a river in Kandesh region of Maharashtra state. It is a tributary of the Tapi River. Panjhra River originates just few kilometers from a small town Pimpalner, tal-sakri in Dhule District. One small reservoir named Latipada dam is constructed just after its origin. MPCB has following monitoring location of Panzara River. Detailed analysis of monitored data is given in **Table 4.41.**

1. Panzara river near Panzarakan SSK Ltd. (2684)

- Station détails: Village- Panzara, Taluka- Dhule, District- Dhule
- Pollution Sources: Effluent from Panzarakan SSK Ltd.

Table 4.41(a): Three years Descriptive Statistics for Panzara River (for 2007-09)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2684	Mean	8.3	5.6	8.8	18	40	1.8	0.9
	Std.dev	0.26	0.99	3.49	9.88	24.98	1.29	0.68
	No of Samples	16	12	15	15	16	13	16
	% Exceedance	19	8	87	•	0	62	0

The descriptive statistics of Panzara River showed that only TC and Nitrate nitrogen complied with the MPCB standards whereas 19, 8, 8% and 62% exceedance was observed for pH, DO, BOD and Ammonical nitrogen. It could be due to the effluents released from the industry Panzarakan SSK Ltd. located in Panzara Village.

 Table 4.41(b): Water Quality Index for Panzara River

 Station Code
 2007
 2008
 2009
 2010
 2011

 2684
 MG
 GE
 MG
 - -

WQI for Panzara River varied from Moderately Good to Excellent.

37. Patalganga River

Patalganga River is a tributary of Alaknanda River originating in Kunwarikhal catchment. It raises in the steep western scarps of the Matheran uplands where it branches off from the main ridge near Khopoli and maintains a general westward flow till it joins the Dharamtar Creek with a wide estuary. The Patalganga River has its source in the Khandala portion of the Sahyadri scarp. The Balganga River is a tributary stream of the Patalganga only nominally as it flows almost parallel though in a hilly region, and joins the Patalganga only in the Dharamtar creek. MPCB has following eight monitoring location of Patalganga River. Detailed analysis of monitored data is given in **Table 4.42**.

1. Patalganga at Turade (HP_PG_1/HP)

- Station Details: Village- Turade, Taluka- Panvel, District- Raigad
- **Pollution sources :** Domestic discharges

2. Patalganga river at Shilphata bridge (1151/NWMP)

- Station Details: Village-Khopoli, Taluka- Khalapur, District- Raigad
- **Pollution sources**: Domestic effluent is discharged. Nearby industries are not allowed to discharge effluent into river.

3. Patalganga near intake of MIDC water works (Turade w/w) (1462/NWMP)

- Station Details: Village- Turade, Taluka- Khalapur, District- Raigad
- **Pollution sources**: Industries are not allowed to discharge effluents. Water is used for drinking by MIDC Patalganga and Rasayani.

4. Patalganga river at D/s of Kharpada bridge (2685/SWMP)

- Station Details: Village-Kharpada, Taluka-Khalapur, District-Raigad
- Pollution sources: Effluent discharge point of HOC Ltd, HIL, MIDC Patalganga etc. Fishing activity.

5. Patalganga river at Vyal Pump House (2686/SWMP)

- **Station Details:** Village-Vyal, Taluka-Khalapur, District-Raigad.
- **Pollution sources**: Discharge of effluent is not allowed. Non polluting industries are nearby.

6. Patalganga river at Khalapur Pumping Station (2687/SWMP)

- Station Details: Village-Khalapur, Taluka-Khalapur, District-Raigad.
- **Pollution sources**: Discharge of effluent not allowed. Water is used for washing, bathing etc. without filtration.

7. Patalganga river at Savroli bridge (2688/SWMP)

- Station Details: Village-Savroli, Taluka-Khalapur, Distict-Raigad.
- **Pollution sources**: Discharge of effluent not allowed.

8. Patalganga river at Gagangiri Maharaj Temple (2689/SWMP)

- Station Details: Village-Khopoli, Taluka-Khalapur, District-Raigad.
- **Pollution sources**: Holy place & tourist spot. Tailrace water from Tata Thermal Power station. Domestic pollution.

Table 4.42(a): Five years Descriptive Statistics for Patalganga River (2007-11)

2 46 22 11 12 (2	i) . Five years Des	criptiv	Cotatio	tics for .	i ataigaii	Su Itivei	(=007 11)	
Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_PG_1	Mean	7.5	6.9	2.1	3224.6	5125.5	0.1	
	Std.dev	0.47	0.98	0.89	3379.5	5464.7	0.22	
	No of Samples	48	48	47	45	47	47	
	% Exceedance	0.0	0.0	0.0	0.0	42.6	0.0	
1151	Mean	7.3	6.8	3.7	337.8	742.3	0.4	0.4
	Std.dev	0.34	0.37	0.61	442.4	658.11	1.42	0.42
	No of Samples	54	54	53	53	54	49	51
	% Exceedance	0.0	0.0	0.0	-	0.0	2.0	0.0
1462	Mean	7.3	6.7	3.8	136.5	430.5	0.2	0.5
	Std.dev	0.34	0.47	0.85	176.4	439.28	0.38	0.59
	No of Samples	50	50	49	49	50	47	47
	% Exceedance	0.0	0.0	4.1	-	0.0	2.1	0.0
2685	Mean	7.1	72.7	4.4	61.2	175.9	1.6	2.6
	Std.dev	0.51	413.9	1.48	93.48	196.3	3.15	2.98
(2008-2011)	No of Samples	38	42	37	37	39	36	37
	% Exceedance	2.6	9.5	13.5	-	0.0	22.2	0.0
2686	Mean	7.3	6.8	3.7	78.5	178.9	0.2	0.5
	Std.dev	0.34	0.45	0.95	98.24	184.0	0.30	0.45
(2008-2011)	No of Samples	36	36	36	34	33	31	32
	% Exceedance	0.0	0.0	8.3	-	0.0	0.0	0.0
2687	Mean	7.2	6.7	3.6	71.7	167.5	0.2	0.5
	Std.dev	0.37	0.43	0.73	89.86	152.3	0.26	0.44
(2008-2011)	No of Samples	35	35	35	34	34	27	32
	% Exceedance	0.0	0.0	2.9	-	0.0	0.0	0.0
2688	Mean	7.3	6.7	3.9	107.3	232.1	0.2	0.5
	Std.dev	0.32	0.49	0.87	121.00	195.09	0.26	0.48
(2008-2011)	No of Samples	36	36	35	35	35	29	35
	% Exceedance	0.0	0.0	8.6	-	0.0	0.0	0.0
2689	Mean	7.3	6.8	3.5	117.8	223.6	0.2	0.4
	Std.dev	0.28	0.44	0.55	167.43	244.94	0.19	0.48
(2008-2011)	No of Samples	36	36	35	36	35	33	35
	% Exceedance	0.0	0.0	0.0	-	0.0	0.0	0.0

The descriptive statistics of Patalganga River showed that pH, DO complied with the MPCB standards at all stations except at D/s of Kharpada Bridge. BOD exceeded the standards in the range of 3-13% at most of the stations. TC complied with the standards at all stations except at Turade and exceedance was 53%. Percent exceedance for Ammonical nitrogen was 2%, 2% and 22% at Shilphata Bridge, near intake of MIDC water works and at D/s of Kharpada Bridge respectively. The reason for exceedance could be the effluent discharged from HOC Ltd., HIL, and MIDC, domestic waste and fishing activity.

Table 4.42(b): Water Quality Index for Patalganga River

Station Code	2007	2008	2009	2010	2011
HP_PG_1	GE	MG	MG	GE	GE
1151	GE	GE	GE	GE	GE
1462	GE	GE	GE	GE	GE
2685	-	GE	GE	GE	GE
2686	ŀ	GE	GE	GE	GE
2687		GE	GE	GE	GE
2688	-	GE	GE	GE	GE
2689	ŀ	GE	GE	GE	GE

38. Pawana River

Pavana River (Pavna) is situated in the west of Maharashtra state, in the Pune District. It originates in the Western Ghats. It is a tributary of Bhima River and merges in the Mula River in Pune city. It flows through Pune city and divides Pune City and Pimpri Chinchwad area. A dam is built on this river at Pavnanagar called as the Pavnanagar dam. MPCB has following seven monitoring locations of Pawana River. Detailed analysis of monitored data is given in **Table 4.43**.

1. Pawana river at Sangavi gaon, Pune (2196/SWMP)

- Station Details: Village- Sangavigaon, Taluka- Haweli, District- Pune.
- **Pollution sources**: Domestic pollution. Sangavigaon STP is nearby.
- 2. Pawana river at Kasarwadi, Pune (2690/SWMP)
 - Station Details: Village- Kasarwadi, Taluka- Haweli, District- Pune.
 - **Pollution sources**: Pollution due to domestic sewage and other human activities.

3. Pawana river at Dapodi bridge, at Pawana- Mulla Sangam, Pune (2691/SWMP)

- Station Details: Village- Dapodi, Taluka- Haweli, District- Pune.
- **Pollution sources**: Pollution due to human activities viz.washing, bathing etc.
- 4. Pawana river at Ravet Weir, Pune (2692/SWMP)
 - Station Details: Village- Rivet, Taluka- Haweli, District- Pune.
 - **Pollution sources**: Pollution due to human activities viz.washing, bathing etc.
- 5. Pawana river at Chinchwadgaon, Pune (2693/SWMP)
 - Station Details: Village- Chinchwadgaon, Taluka- Haweli, District- Pune.
 - **Pollution sources**: Pollution due to domestic sewage and human activities.
- 6. Pawana river at Pimpri gaon, Pune (2694/SWMP)
 - Station Details: Village- Pimprigaon, Taluka- Haweli, District- Pune.
 - **Pollution sources**: Pollution due to domestic sewage and human activities.
- 7. Pawana river at Sangavi gaon, Pune (100/SWMP)
 - Station Details: Village- Sangavigaon, Taluka- Haweli, District- Pune
 - **Pollution sources**: Pollution due to domestic sewage and human activities.

Table 4.43 (a): Five years Descriptive Statistics for Pawana River (2007-11)

1 able 4.45 (a	able 4.43 (a): Five years Descriptive Statistics for Pawana River (2007-11)									
Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate		
2196	Mean	7.7	2.7	20.9	258.8	1626.2	4.9	0.3		
	Std.dev	0.38	1.55	10.01	80.92	225.30	6.48	0.32		
(2008-2011)	No of Samples	42	35	43	43	42	42	42		
	% Exceedance	0.0	82.9	100.0		0.0	71.4	0.0		
2690	Mean	7.7	3.1	15.3	224.8	1357.4	6.6	0.5		
	Std.dev	0.46	1.87	5.73	96.13	551.97	9.40	0.71		
	No of Samples	46	45	45	46	43	45	45		
	% Exceedance	8.7	71.1	100.0		0.0	75.6	0.0		
100	Mean	7.8	2.4	22.7	145	763	13.6	0.5		
	Std.dev	0.46	0.97	7.86	56.01	548.12	18.09	0.17		
(2007)	No of Samples	10	7	10	9	10	9	8		
	% Exceedance	0	86	100		0	89	0		
2691	Mean	7.7	2.5	18.0	238.2	1458.3	7.1	0.5		
	Std.dev	0.41	1.69	7.82	102.51	487.60	8.00	0.56		
	No of Samples	45	42	44	44	45	44	44		
	% Exceedance	4.4	88.1	100.0		0.0	70.5	0.0		
2692	Mean	7.9	6.3	5.6	76.1	522.6	0.8	0.2		
	Std.dev	0.32	0.55	3.40	73.61	423.14	1.71	0.26		
	No of Samples	45	44	44	45	45	44	44		
	% Exceedance	2.2	0.0	47.7		0.0	11.4	0.0		
2693	Mean	7.7	4.4	10.3	174.2	1155.6		0.4		
	Std.dev	0.38	1.27	4.30	75.73	482.24	2.22	0.42		
	No of Samples	44	45	45	44	45	44	44		
	% Exceedance	0.0	44.4	93.3		0.0	50.0	0.0		
2694	Mean	7.7	3.0	16.3	249.2	1350.0	5.0	0.4		
	Std.dev	0.36	1.95	8.39	109.16	540.41	6.84	0.40		
	No of Samples	41	37	41	42	42	41	41		
	% Exceedance	0.0	75.7	100.0		0.0	65.9	0.0		

The data for the station 100 i.e at Pawana River at Sangavi gaon, Pune is only for two years i.e 2007 and 08. The descriptive statistics of Pawana River showed that TC and Nitrate nitrogen complied with the MPCB standards. pH exceeded the standard marginally at Dapodi Bridge and Rivet Weir and Kasarwadi. Also, DO, BOD and Ammonical nitrogen exceeded the standards in the range of 44-88%, 48-100% and 11-89% respectively at all the stations. It could be due to release of domestic sewage into the river and some human activities.

Table 4.43(b): Water Quality Index for Pawana River

Station Code	2007	2008	2009	2010	2011
2196	-	Bad	Bad	Bad	Bad
2690	Bad	Bad	Bad	Bad	VB
2691	Bad	Bad	Bad	VB	Bad
2692	GE	MG	GE	GE	GE
2693	MG	MG	Bad	MG	Bad
2694	Bad	Bad	Bad	Bad	VB
100	Bad				`

In general the water quality of Pawana River was bad. The WQI varied between bad and very bad at Sangavi gaon; Kasarwadi; Pawana- Mulla Sangam; and Pimpri gaon. There was insufficient data for the Sangavi gaon so the WQI was calculated only for the year 2007-08 which was bad. Water Quality at Chinchwadgaon, Pune varied between Moderately Good to Bad. However, The WQI evaluated at Rivet Weir indicated that the water quality varied from moderately good to excellent. The reason for this quality of water could be due to the discharge of domestic waste and human activities like bathing, washing, fishing activity, etc.

39. Pedhi River

Pedhi River rises in the southern portion of the Morsi taluka; runs through the centre of the Amraoti talk roughly parallel to the Purna River in a south-westerly direction. It flows through Balgaon and Bhatkuli and leaves the talk at Bapori; and from there taking a bend towards the west meets the Puma. The supply of water is small but perennial. MPCB has following monitoring location of Pedhi River. Detailed analysis of monitored data is given in **Table 4.44**.

1. Pedhi river near road bridge at Dadhi- Pedhi village (2695/SWMP)

- **Station Details:** Village- Asegaon, Taluka-Chandur Bazar, District- Amravati.
- **Pollution source:** Sewage from Amravati M.C and other nearby villages.

Table 4.44(a): Four years Descriptive Statistics for Pedhi River (2008-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2695	Mean	8.0	4.5	12.8	207.6	737.4	1.0	4.0
	Std.dev	0.62	1.37	7.20	145.72	508.87	0.85	2.95
	No of Samples	31	31	30	29	31	31	31
	% Exceedance	25.8	32.3	90.0		0.0	19.4	0.0

It was observed that that TC and Nitrate nitrogen complied with the MPCB standards. However, pH, DO, BOD and Ammonia exceeded by 25%, 32%, 90% and 19% respectively at Pedhi River near Road Bridge. The reason for such exceedance could be sewage released from Amravati M.C and other nearby villages.

Table 4.44(b): Water Quality Index for Pedhi River

Station Code	2007	2008	2009	2010	2011
2695		Bad	MG	Bad	MG

The WQI evaluated for the available data from the year 2008 -11 of the Pedhi River indicated that the water quality varied from bad to moderately good. It could be due to the sewage released from Amravati M.C and other nearby villages. It was found medium to good in the months of Jan -9, Feb 09, Sep-10, Apr-11, Jun-11, Aug-11, Nov-11.

40. Pehlar River

Pelhar is a minor river flowing through Pehlar Village in Vasai Taluka of Thane district. Pehlar Dam is constructed on Pehlar River. MPCB has following monitoring location of Pehlar River. Detailed analysis of monitored data is given in **Table 4.45**.

1. Pehlar Dam on Pehlar River - Inlet of water works (2696/SWMP)

- Station Details: Village-Pehlar, Taluka-Vasai, District-Thane.
- **Pollution source:** No industries nearby. Tabela is at downstream.

Table 4.45(a): Four years Descriptive Statistics for Pehlar River (2008-11)

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2696	Mean	7.8	6.9	3.6	45.3	94.1	0.2	0.4
	Std.dev	0.23	0.31	0.61	44.83	68.55	0.18	0.24
	No of Samples	35	36	36	34	34	34	34
	% Exceedance	0.0	0.0	0.0		0.0	0.0	0.0

The descriptive statistics of Pehlar River showed that all the parameters pH, DO, BOD, TC, Ammonical and Nitrate nitrogen complied with the MPCB standards and the water quality was excellent.

Table 4.45(b): Water Quality Index for Pehlar River

Station Code	2007	2008	2009	2010	2011
2696	-	GE	GE	GE	GE

The WQI evaluated for the available data of the Pehlar River indicated that the water quality was good to excellent.

41. Purna River

Purna River rises in the eastern Satpura Range of southern Madhya Pradesh state, and flows westward, draining Maharashtra's Marathwada, Vidarbha region before emptying into the Tapti River. The watershed lies mostly in eastern Vidarbha region of Maharashtra state and is nearly 7500 km. It originates in Pokhran village which is 2 km away from Bhaisdehi. Bhaisdehi is a district place in Madhya Pradesh adjoining Amravati district of Maharashtra and flows through Akola, Buldhana, Jalgaon, Jalna, Parbhani districts. The river empties into the Gulf of Khambhat near the city of Navsari in Southern Gujarat. Length of Purna River is 170 km. MPCB has following three monitoring locations of Purna River. Detailed analysis of monitored data is given in **Table 4.46**.

1. Purna river at Dhupeshwar at U/s of Malkapur water works (1913/NWMP)

- Station Details: Village- Malkapur, Taluka- Akola, District- Akola.
- **Pollution source:** No industries nearby. No discharge points for industrial and domestic effluents.

2. Purna river at D/s of confluence of Morna and Purna, at Andura village (2155/SWMP)

- Station Details: Village- Andura, Taluka- Balapur, District- Akola.
- **Pollution source:** Sewage from Akola city, Amravati city and villages located on the river bank.

3. Purna river near Achalpur- Amravati road bridge, Asegaon (2700/SWMP)

- Station Details: Village- Asegaon, Taluka-Chandur Bazar, District- Amravati.
- **Pollution source:** Sewage from Chandur Bazar M.C and other nearby villages.

Table 4.46(a) I: Five years Descriptive Statistics for Purna River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1913	Mean	8.2	5.4	6.8	144.6	388.2	1.3	2.1
	Std.dev	0.33	0.65	1.41	149.93	276.30	1.41	1.22
	No of Samples	22	22	21	22	22	22	22
	% Exceedance	13.6	4.5	90.5	-	0.0	27.3	0.0
2155	Mean	101.1	4.9	8.8	204.5	650.5	1.0	2.6
	Std.dev	447.73	0.85	3.63	146.17	510.98	1.07	1.43
	No of Samples	23	22	22	21	22	21	21
	% Exceedance	8.7	13.6	86.4		0.0	23.8	0.0

Table 4.46(a) II: Three years Descriptive Statistics for Purna River (2008, 10 & 11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2700	Mean	8.2	5.2	8.2	126.9	244.3	1.0	3.2
	Std.dev	0.53	1.10	3.59	88.84	102.18	0.81	3.39
	No of Samples	15	15	15	15	14	14	14
	% Exceedance	33.3	6.7	73.3	-	0.0	28.6	0.0

Here for the station 2700 i.e at Achalpur-Amravati Road Bridge the data available is only for 3 years i.e of the year 2008, 2010 and 11.It was observed that TC and Nitrate nitrogen complied with the MPCB standards at all the stations of Purna River. However, DO and Ammonical nitrogen exceeded by 4-13% and 23-28% respectively at D/s of confluence of Morna and Purna and near Achalpur. pH exceeded the standards by 8-33%. Also, 73-90% exceedance was observed for BOD. It could be due to sewage from Akola city, Amravati city, from Chandur Bazar M.C and nearby villages located on the river bank.

Table 4.46(b): Water Quality Index for Purna River

Station Code	2007	2008	2009	2010	2011
1913	MG	MG	MG	MG	MG
2155		MG	MG	Bad	MG
2700		MG	-	MG	MG

The monthly WQI evaluated for the available data of the Purna River indicated that the water quality varied from moderately good to good to excellent at U/s of Malkapur water works. At D/s of confluence of Morna and Purna, the water quality varied from bad to moderately good.

However it was moderately good near Achalpur- Amravati Road Bridge. The reason for such water quality could be the sewage released from nearby villages and Akola city. There was insufficient data at some stations for the year 2007 and 2009.

42. Rangavali River

Rangavali River flows through Navapur Village of Navapur Taluka in Nandurbar district. MPCB has following monitoring location of Rangavali River. Detailed analysis of monitored data is given in **Table 4.47.**

1. Rangavali river at D/s of Navapur near Rangavali bridge (1907/NWMP)

- Station Details: Village- Navapur, Taluka- Navapur, District- Nandurbar.
- **Pollution source:** Pollution due to domestic waste and human activities.

Table 4.47(a): Three years Descriptive Statistics for Rangavali River (For 2007-09)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1907	Mean	8.2	6.2	7.3	15	44	0.3	0.7
	Std.dev	0.30	1.07	2.29	8.67	39.83	0.37	0.86
	No of Samples	10	10	10	9	10	10	10
	% Exceedance	10	0	80		0	0	0

It was observed that DO, TC, Ammonical and Nitrate nitrogen complied with the MPCB standards. However, 10% and 80% exceedance was there for pH and BOD respectively. It could be due to domestic waste and human activities.

Table 4.47(b): Water Quality Index for Rangavali River

Station Code	2007	2008	2009	2010	2011
1907	MG	GE	MG	I	I

The WQI evaluated for the available data of the Rangavali River indicated that the water quality varied from moderately good to good to excellent.

43. Savitri River

River Savitri is one of the five rivers which originate from Mahabaleshwar (Maharashtra). It originates in Mahabaleshwar and flows through Raigad district and eventually meets Arabian Sea at Harehareshwar. It passes through Poladpur, Mahad, Mangaon and Shrivardhan talks. There are many Shiva temples along the banks of river Savitri. MPCB has following seven monitoring locations of Savitri River. Detailed analysis of monitored data is given in **Table 4.48**.

1. Savitri River at Goregaon (HP_SV_1/HP)

- Station Details: Village-Goregaon, Taluka- Mahad, District- Raigad
- **Pollution sources :** Domestic as well as industrial discharges

2. Savitri River at Kangule (HP_SV_2/HP)

- Station Details: Village-Kangule, Taluka- Poladpur, District- Raigad
- **Pollution sources :** Domestic as well as industrial discharges

3. Savitri river at Ovale Village (2199/SWMP)

- Station Details: Village-Ovale, Taluka-Mahad, District-Raigad.
- **Pollution sources :**D/s of CETP disposal point.

4. Savitri river jack well at Upsa Kendre (2701/SWMP)

- Station Details: Village-Nangalwadi, Taluka-Mahad, District-Raigad.
- **Pollution sources :** No industries nearby. No effluent disposal point. Water is used for drinking by Birwadi & MIDC Mahad, after filtration

5. Savitri riverat Shedav Dov (2702/SWMP)

- Station Details: Village-Shedav Dov, Taluka-Mahad, Distict-Raigad.
- **Pollution sources :** No industries nearby. No effluent disposal point. Water is used for drinking by Rajewadi village and surrounding areas

6. Savitri river at Dadli road bridge (2703/SWMP)

- Station Details: Village-Dadli, Taluka-Mahad, District-Raigad.
- Pollution sources: No industries nearby. No effluent disposal point.

7. Savitri river at Muthavali Village (2704/SWMP)

- Station Details: Village-Muthavali, Taluka-Mahad, District-Raigad.
- **Pollution sources :** No industries nearby. No effluent disposal point at present. Accidental discharge possible

Table 4.48(a)I: Five years Descriptive Statistics for Savitri River (2007-10)

Stn.Code	-	pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_SV_1	Mean	7.7	7.0	1.8	3299.0	4049.7	0.1	
	Std.dev	0.51	0.69	0.95	2805.32	3201.23	0.04	
	No of Samples	41	41	41	41	40	41	
	% Exceedance	2.4	0.0	0.0		45.0	0.0	
HP_SV_2	Mean	7.9	7.2	1.8	2322.5	3140.3	0.1	
	Std.dev	0.55	0.58	0.63	1831.28	2635.93	0.03	
	No of Samples	41	41	40	39	39	40	
	% Exceedance	4.9	0.0	0.0		23.1	0.0	

Table 4.48(a)II: Four years Descriptive Statistics for Savitri River (2008, 09-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2199	Mean	7.3	6.1	3.2	4.8	112.7	0.7	2.1
	Std.dev	0.56	1.47	3.48	2.16	26.00	0.55	2.20
	No of Samples	40	39	37	39	39	38	36
	% Exceedance	0.0	7.7	8.1		0.0	10.5	0.0
2701	Mean	7.4	6.7	2.1	3.3	79.8	0.4	0.9
	Std.dev	0.64	0.61	0.43	1.86	33.35	0.18	0.90
	No of Samples	37	37	36	35	36	37	36
	% Exceedance	2.7	0.0	0.0		0.0	0.0	0.0
2702	Mean	7.6	6.5	2.3	3.6	81.3	0.7	0.9
	Std.dev	0.53	0.71	0.61	2.37	39.79	0.72	0.58
	No of Samples	36	36	36	35	35	35	35
	% Exceedance	2.8	0.0	0.0		0.0	11.4	0.0

Table 4.48(a)II: Four years Descriptive Statistics for Savitri River (2008, 09-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2703	Mean	7.5	6.5	2.2	5.3	81.5	0.5	4.3
	Std.dev	0.61	0.71	0.44	4.13	41.55	0.20	5.44
	No of Samples	35	35	35	32	32	35	35
	% Exceedance	5.7	0.0	0.0		0.0	0.0	0.0
2704	Mean	7.5	6.3	2.7	3.7	82.7	0.5	3.7
	Std.dev	0.58	0.95	2.35	2.06	35.89	0.20	4.97
	No of Samples	37	36	36	34	35	37	37
	% Exceedance	5.4	2.8	2.8	-	0.0	0.0	0.0

Here for the station 2199 i.e at Ovale village data was also available for the year 2010. It was observed that TC and Nitrate nitrogen complied with the MPCB standards at all the stations. However, pH exceedance was 3-6% at Goregaon, Kangule and Muthavali village respectively. DO did comply at all stations except at Ovale and Muthavali; exceedance was 8% and 3% resp. The exceedance could be due to domestic sewage from villages and accidental discharge from nearby industries.

Table 4.48(b): Water Quality Index for Savitri River

= 0.00 = 0 = 0 (0) 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
Station Code	2007	2008	2009	2010	2011				
HP_SV_1	GE	GE	MG	GE					
HP_SV_2	GE	GE	GE	GE					
2199		GE	GE	GE	GE				
2701		GE	GE	GE	GE				
2702		GE	GE	GE	GE				
2703		GE	GE	GE	GE				
2704		GE	GE	GE	GE				

The WQI evaluated for the available data of the Savitri River indicated that the water quality was good to excellent at all the stations except at Goregaon, Mahad in Raigad District where the monthly WQI varied between moderately good to excellent.

44. Sina River

Sina River rises in Ahmadnagar district near Pimpalgaon. River flows through the district border between Ahmadnagar and Solapur and finally enters in Solapur district. River stream covers longest distance in solapur includes Karmala, Madha and Mohol talukas. Sampling location under water monitoring network is located at Lamboti toll naka which comes under Mohol tehsil. MPCB has following monitoring location of Sina River. Detailed analysis of monitored data is given in **Table 4.49**.

1. Sina river near Laboti toll naka, Solapur (2705/SWMP)

- Station Details: Village- Laboti, Taluka- Mohal, District- Solapur
- **Pollution source:** Pollution due to human activities and domestic waste.

Table 4.49(a): Five years Descriptive Statistics for Sina River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2705	Mean	8.1	5.7	8.3	125.5	935.9	0.9	0.5
	Std.dev	0.30	0.98	5.08	77.95	549.63	0.95	0.60
	No of Samples	44	43	43	37	43	43	43
	% Exceedance	2.3	7.0	74.4		0.0	20.9	0.0

It was observed that TC and Nitrate nitrogen complied with the MPCB standards. However, pH, DO, BOD and Ammonical nitrogen exceedance was 2%, 7%, 74% and 21% respectively. It could be due to human activities and domestic waste.

Table 4.49(b): Water Quality Index for Sina River

tuble 4.45(b): Water Quanty mack for Sma River										
Station Code	2007	2008	2009	2010	2011					
2705	GE	MG	MG	MG	MG					

45. Shastri River

Shastri River is located in Sangameshwar taluka under Ratnagiri district. The river begins in the Western Ghats and flows westwards towards the Arabian Sea located at Jaigad. At most of the places the river is also called as Jaigad River. The River forms its main flow by combining large network of small water streams. There is only one sampling location on this river. Detailed analysis of monitored data is given in **Table 4.50**.

1. Shastri River at Kumbharkhani village (HP_SH_1)

- Station Details: Village-Kumbharkhani, Taluka-Chiplun, District-Ratnagiri
- **Pollution Source** : Domestic discharges

Table 4.50(a): Five years Descriptive Statistics for Shastri River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_SH-1	Mean	7.7	7.2	1.5	1519.1	2533.9	0.1	0.1
	Std.dev	0.32	0.45	0.70	1375.14	2672.57	0.00	0.15
	No of Samples	37	36	37	37	37	37	11
	% Exceedance	0.0	0.0	0.0		16.2	0.0	0.0

From the descriptive statistics it is observed that only total coliform was exceeding the standard. TC values were exceeding the standard 23% of the time.

Table 4.50(b): Water Quality Index for Shastri River

Station Code	2007	2008	2009	2010	2011
HP_SH_1	GE	GE	GE	GE	GE

Monthly water quality index for Shastri River at the Kumbharkhani village is mainly categorized in two main classes namely good to excellent and moderately good. In the year 2007, out of six months four times WQI was found to be good to excellent and for remaining it was moderately good. In 2008 and 2009, WQI was found to be moderately good for 3 and 4 months out of 8 and 9 months monitored data. Remaining months were found to be good to excellent in respective year.

46. Surya River

Surya River is one of the important Rivers in Thane district which flows through two talukas namely Vikramgad and Palghar. River starts with small water streams which form the main stream of Surya. Finally it meets River Vaitarna at Dhuktan village. The river water is used for Tarapur MIDC and Boisar Palghar area for drinking purpose. Detailed analysis of monitored data is given in **Table 4.51.**

1. Surya River, U/S of Surya Dam (2706/SWMP)

- Station Details: Village-Dhammi, Taluka-Vikramgad, District-Thane.
- **Pollution sources**: No development zone upto 1 km. Drinking water reservoir.

2. Surya River at MIDC Pumping Station, Garvshet (2707/SWMP)

- **Station Details:** Village-Garvshet, Taluka-palghar, District- Thane.
- **Pollution sources**: No development zone upto 1 km. Used for drinking by Tarapur MIDC and Boisar- Palghar area..
- 3. Surya River at intake of Vasai-Virar w/s Scheme, Masvan (2708/SWMP)
 - Station Details: Village-Masvan, Taluka-Palghar, District- Thane.
 - **Pollution sources**: No development zone upto 1 km. Intake of Vasai- Virar water scheme.

Table 4.51(a): Four years Descriptive Statistics for Surva River (for the year 2007-11)

Stn.Code		рĤ	DO	BOD	FC	TC	Ammonia	Nitrate
2706	Mean	7.9	7.1	3.5	39.1	80.5	0.2	0.4
	Std.dev	0.57	0.27	0.69	25.61	41.34	0.18	0.38
	No of Samples	34	34	34	28	28	33	27
	% Exceedance	11.8	0.0	2.9	-	0.0	0.0	0.0
2707	Mean	8.1	7.0	3.7	41.3	80.1	0.2	0.3
	Std.dev	0.33	0.30	0.67	27.38	48.80	0.18	0.35
	No of Samples	33	33	33	28	28	32	28
	% Exceedance	9.1	0.0	0.0	-	0.0	0.0	0.0
2708	Mean	8.1	7.0	3.5	53.3	108.2	0.1	0.3
	Std.dev	0.33	0.42	0.60	30.86	64.57	0.15	0.35
	No of Samples	30	32	32	27	27	29	27
	% Exceedance	10.0	0.0	0.0	-	0.0	0.0	0.0

Here the data is not available for the year 2007. Descriptive statistics shows that DO, BOD, TC, Ammonia and Nitrate values complied with the standards. In case of pH, at station numbers 2706, 2707 and 2708, % exceedance was 12%, 9 and 14% respectively.

Table 4.51(b): Water Quality Index for Surva River

Station Code	2007	2008	2009	2010	2011
2706		GE	GE	GE	GE
2707		GE	GE	GE	GE
2708		GE	GE	GE	GE

Water quality indices at three stations of Surya River show that the water quality category as good to excellent during all the years from 2008-11. For the year 2007 water quality index could not be calculated due to missing values.

47. Tansa River

The Tansa River is a small river on Salsett Island near Mumbai, and is one of Mumbai's water sources via Tansa Lake. It is embanked by one of the largest masonry dams in the world, built in 1892. The embankment is nearly 2 m. long, 118 ft. high and 30 m. thick at the base. The dam has 1310 mcm capacity of water retention. Detailed analysis of monitored data is given in **Table 4.52.**

1. Tansa River Dakewali village road bridge (2709/SWMP)

- Station Details: Village-Dakewali, Taluka-Wada, District-Thane
- **Pollution sources**: Small scale industries prevalent. Air pollution present.

Table 4.52(a): One years Descriptive Statistics for Tansa River (2011)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2709	Mean	7.9	6.8	4.2	29.5	76.3	0.1	0.3
	Std.dev	0.61	0.67	1.92	5.50	14.82	0.08	0.25
	No of Samples	18	18	18	10	8	17	17
	% Exceedance	11.1	0.0	16.7		0.0	0.0	0.0

Here the data were not available for the year 2007, 09 and 2010.

Descriptive statistics shows that, 11% of pH and 17% of BOD values were not complying with the standards whereas other parameters were within the standard. Exceedance in DO and BOD values indicate the localized sources of pollution i.e. sewage disposal in main stream.

Table 4.52(b): Water Ouality Index for Tansa River

Station Code	2007	2008	2009	2010	2011
2709					GE

Water quality index for Tansa River for 2007-2010 could not be calculated due to missing fecal coliform (FC) data. However for the year 2011 the water quality index indicated Good to Excellent quality of water from the given data.

48. Tapi River

The Tapi River is one of the major rivers with a length of around 724 km. The river rises in the eastern Satpura Range of Madhya Pradesh, and flows westward, through, Maharashtra's Kandeshand, East Vidarbha regions in the northwest corner of the Deccan Plateau and south Gujarat, before emptying into the Gulf of Cambay of the Arabian Sea, in the Surat District of Gujarat. The Tapi River basin encompasses an area of 65,145 km². The basin lies in the states of Maharashtra (51,504 km²), Madhya Pradesh (9,804 km²) and Gujarat (3,837 km²). In Maharashtra state, Tapi River flows through Amravati, Akola, Buldhana, Washim, Jalgaon, Dhule, Nandurbarand Nasik districts. MPCB has 21 monitoring locations of Tapi River under NWMP, SWMP and Hydel Project. **Table 4.53** gives the descriptive statistics of these locations.

Monitoring Locations at Tapi River

Sr.	Station Name /Code	Station Details
1	Akkalpada (HP_TP-1)	Taluka- Sakri, District- Dhule
2	Bhusawal (HP_TP-2)	Taluka- Bhusawal, District- Bhusawa
3	Daryapur (HP_TP-3)	Taluka- Daryapur, District- Amravati.
4	Dhule (HP_TP-4)	Taluka- Dhule, District- Dhule
5	Hingona (HP_TP-5)	Taluka- Yawal, District- Jalgaon
6	Kawtha (HP_TP-6)	Taluka- Balapur, District- Akola
7	Khariya (HP_TP-7)	Taluka- Dharni, District- Amravati
8	Lakhpuri (HP_TP-8)	Taluka- Murtizapur, District- Akola
9	Malegaon Mosam (HP_TP-9)	Taluka- Malegaon, District- Nasik.
10	Manasgaon (HP_TP-10)	Taluka- Shehgaon, District- Buldhana
11	Padalse (HP_TP-11)	Taluka- Amalner, District- Jalgaon
12	Sarangkheda (HP_TP-12)	Taluka- Shahadai, District- Nandurbar
13	Sawkheda (HP_TP-13)	Taluka- Mahuli, District- Satara
14	Sukwad (HP_TP-14)	Taluka- Shirpur, District- Dhule
15	Suple (HP_TP-15)	Taluka- Kalwan, District- Nasik
16	TakliKhetri (HP_TP-16)	Taluka- Patur, District- Akola
17	Vishroli (HP_TP-17)	Taluka- Chandurbazar, District- Amravati
18	Warkhed (HP_TP-18)	Taluka-Telhara District- Akola
19	Bhusawal (1251)	Taluka- Bhusawal, District- Jalgaon
20	Ajnad village (1313)	Taluka- Raver, District- Jalgaon
21	Ubad village near Gujrat border (1314)	Taluka- Shahada, District- Nandurbar

Table 4.53(a): Three years Descriptive Statistics for Tapi River

Stn.Code	•	pН	DO	BOD	FC	TC	Ammonia
HP_TP_8	Mean	8.3	6.3	2.5	54	223	0.1
	Std.dev	0.12	0.41	0.47	50.13	237.65	0.02
(2007-2009)	No of Samples	32	32	28	24	27	13
	% Exceedance	9	0	0	-	0	0
HP_TP_12	Mean	7.8	6.2	11.8	1746	2957	0.1
	Std.dev	0.39	1.09	6.01	1282.10	1799.76	0.00
(2007-2009)	No of Samples	14	14	14	13	13	14
	% Exceedance	0	7	100	-	8	0
HP_TP_13	Mean	8.1	6.1	2.0	11.4	25.4	0.2
	Std.dev	0.40	0.24	0.84	7.83	15.28	
(2008-2010)	No of Samples	7	7	7	7	7	1
	% Exceedance	0.0	0.0	0.0	0.0	0.0	0.0
HP_TP_18	Mean	8.3	6.2	2.5	42	147	0.1
(2007-2009)	Std.dev	0.12	0.74	0.74	33.24	118.15	0.01
	No of Samples	31	33	29	22	25	15
	% Exceedance	3	0	0	-	0	0

4-72

Table 4.53(a): Three years Descriptive Statistics for Tapi River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia
HP_TP_3	Mean	8.3	5.4	3.6	130.3	538.9	0.1
	Std.dev	0.31	1.56	0.97	122.26	518.62	0.15
(2007-2008	No of Samples	22	22	17	20	20	12
& 2010)	% Exceedance	13.6	18.2	5.9	•	0.0	0.0
HP_TP_4	Mean	7.6	5.8	9.0	3854	11856	0.1
	Std.dev	0.17	1.09	2.97	4236.86	7345.60	0.01
(2008)	No of Samples	9	8	6	9	9	9
	% Exceedance	0	13	100	•	89	0
HP_TP_6	Mean	8.4	6.6	2.6	61.0	215.7	0.0
	Std.dev	0.11	0.41	0.48	75.37	274.63	0.02
(2007-2009)	No of Samples	32	31	29	31	30	10
	% Exceedance	6.3	0.0	0.0	-	0.0	

Table 4.53(a): Four years Descriptive Statistics for Tapi River

Stn.Code	. Four years Desc	pН	DO	BOD	FC	TC	Ammonia
HP_TP_1	Mean	8.4	5.9	11.8	1377.5	2400.0	0.1
	Std.dev	0.32	0.76	5.41	408.95	439.01	0.01
(2007-2010)	No of Samples	12	12	12	12	12	4
	% Exceedance	25.0	0.0	100.0	-	0.0	0.0
HP_TP_2	Mean	8.1	6.1	1.9	5.1	44.5	0.0
	Std.dev	0.49	0.83	0.80	5.58	75.78	0.00
(2007-2010)	No of Samples	16	16	15	15	15	0
	% Exceedance	0.0	0.0	0.0	-	0.0	
HP_TP_5	Mean	8.0	6.4	1.5	5.9	26.9	2.4
	Std.dev	0.33	0.70	0.46	5.70	35.11	
(2007-2010)	No of Samples	11	11	11	10	10	1
	% Exceedance	0.0	0.0	0.0	-	0.0	100.0
HP_TP_9	Mean	8.0	6.3	10.6	2882.5	4396.9	0.1
	Std.dev	0.52	0.40	3.75	2142.88	2733.20	0.02
(2007-2010)	No of Samples	16	15	16	16	16	16
	% Exceedance	12.5	0.0	100.0	-	31.3	0.0
HP_TP_11	Mean	8.1	6.6	2.7	7.1	49.4	0.1
	Std.dev	0.35	0.74	0.91	6.82	100.62	0.08
(2007-2010)	No of Samples	12	12	11	12	11	3
	% Exceedance	0.0	0.0	0.0	-	0.0	0.0
HP_TP_14	Mean	8.0	6.1	13.1	1136.3	2417.9	0.1
	Std.dev	0.36	0.73	11.03	691.22	1139.65	0.01
(2007-2010)	No of Samples	19	19	18	19	19	17
	% Exceedance	10.5	5.3	100.0	-	5.3	0.0
HP_TP_15		8.1	6.6	10.3	5097.9	8338.5	0.1
	Std.dev	0.36	0.81	3.75	4191.19	6948.75	0.01
(2007-2010)	No of Samples	21	21	21	21	20	21
	% Exceedance	9.5	0.0	100.0	-	60.0	0.0

Table 4.53(a): Five years Descriptive Statistics for Tapi River (2007-11)

Table 4.53(a): Five years Descriptive Statistics for Tapi River (2007-11)									
Stn.Code		pН	DO	BOD	FC	TC	Ammonia		
HP_TP_7	Mean	8.3	6.2	2.9	104.4	361.3	0.0		
	Std.dev	0.13	0.62	0.72	178.24	576.69	0.01		
	No of Samples	14	13	13	14	14	7		
	% Exceedance	0.0	0.0	0.0	•	0.0			
HP_TP_10	Mean	8.4	6.3	2.6	53	133	0.1		
	Std.dev	0.16	0.53	0.35	50.84	136.41	0.00		
	No of Samples	32	33	28	26	30	9		
	% Exceedance	9	0	0	-	0	0		
HP_TP_16	Mean	8.4	6.3	2.7	55	138	0.1		
	Std.dev	0.09	0.53	0.46	47.06	107.94	0.01		
	No of Samples	31	32	28	27	29	8		
	% Exceedance	6	0	0	-	0	0		
HP_TP_17	Mean	8.3	6.2	2.6	38		0.1		
	Std.dev	0.14	0.61	0.39	38.95	131.52	0.02		
	No of Samples	33	33	28	28	29	10		
	% Exceedance	3	0	0	-	0	0		
1251	Mean	7.9	5.8	7.7	12.3	39.0	0.3		
	Std.dev	0.49	0.86	3.80	8.45	34.03	0.28		
	No of Samples	54	53	54	47	47	44		
	% Exceedance	11.1	3.8	74.1	•	0.0	0.0		
1313	Mean	8.0	5.9	7.9	14.3	43.5	0.3		
	Std.dev	0.45	0.92	3.89	11.95	40.72	0.28		
	No of Samples	55	55	54	50	49	47		
	% Exceedance	10.9	5.5	68.5		0.0	0.0		
1314	Mean	7.9	6.0	7.1	14.5	47.1	0.3		
	Std.dev	0.45	0.82	3.58	10.07	49.87	0.16		
	No of Samples	54	53	53	46	47	45		
	% Exceedance	5.6	3.8	58.5	-	0.0	0.0		

The data observed at these 21 locations showed that at 15 locations, out of these 21 locations, pH did not meet the standards. The highest exceedance for pH was observed to be 29% at HP_TP_1. BOD did not meet the standard at 10 locations out of which at 6 locations, 100% of the samples did not meet the standards. At 6 locations, DO was below the MPCB standard. At 5 locations TC exceeded the MPCB standard. Ammonical Nitrogen and Nitrate were within the standards at all locations.

Table 4.53(b): Water Quality Index for Tapi River

Sr.	Station Code	2007	2008	2009	2010	2011
1	HP_TP_1	VB	MG	Bad	Bad	
2	HP_TP_2	GE	GE	GE	GE	
3	HP_TP_3	MG	GE		MG	
4	HP_TP_4		MG	-	-	

Table 4.53(b) (Contd..): Water Quality Index for Tapi River

Sr.	Station Code	2007	2008	2009	2010	2011
5	HP_TP_5	GE	GE	GE	GE	
6	HP_TP_6	GE	GE	GE		
7	HP_TP_7	GE	GE	GE	GE	GE
8	HP_TP_8	GE	GE	GE		
9	HP_TP_9	MG	MG	Bad	Bad	
10	HP_TP_10	GE	GE	GE	GE	GE
11	HP_TP_11	GE	GE	GE	GE	
12	HP_TP_12	MG	Bad	MG		
13	HP_TP_13		GE	GE	GE	
14	HP_TP_14	MG	MG	MG	Bad	
15	HP_TP_15	MG	MG	Bad	Bad	
16	HP_TP_16	GE	GE	GE	GE	GE
17	HP_TP_17	GE	GE	GE	GE	GE
18	HP_TP_18	GE	GE	GE		
19	1251	MG	GE	GE	GE	GE
20	1313	MG	GE	GE	GE	GE
21	1314	MG	GE	GE	GE	GE

WOI evaluated at these 21 locations indicate that:

	· (· · · · · · · · · · · · · · · ·				
Good to Excellent	Bhusawal, Hingona, Kawtha, Khariya, Lakhpuri,				
	Manasgaon, TakliKhetri, Vishroli, Warkhed,				
Moderately Good to excellent Daryapur, Bhusawal Railway Colony, Ajnad village					
	Ubad village near Gujarat border,				
Bad to moderately good	Malegaon Mosam, Sukwad, Suple, Sarangkheda				
Between Very Bad to Bad	Akkalpada				
At Sawkheda there was very few data available to evaluate the WQI.					

The water quality at Tapi was poor at several locations.

Table 4.53(c) gives the number of sites out of 21 sites of Tapi with percent exceedances in different ranges for BOD, DO, TC and pH.

Table 4.53(c): Number of Sites with Percent Exceedances for BOD, DO, TC and pH

Percent Exceedance	BOD	DO	TC	pН
0%	11	14	16	6
1-20%	1	6	2	14
20-40%	0	1	1	1
40-60%	1		1	
60-80%	2		0	
80-100%	6		1	

Figures 4.7 present the pie charts for percent exceedances for BOD, DO, pH and TC for 21 locations of Tapi River.

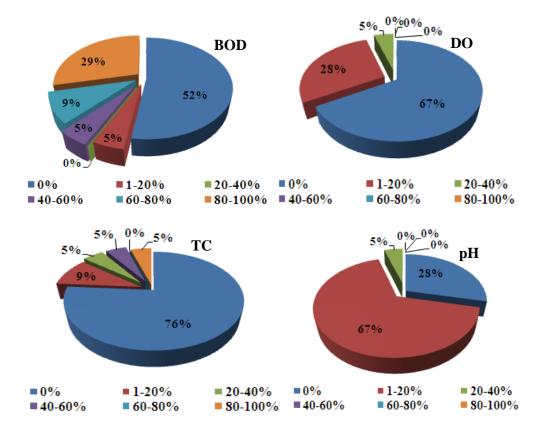


Figure 4.7: Percent Exceedances at 21 Monitoring Locations of Tapi River

The average water quality index for five years evaluated at 21 sites is presented in **Figure 4.8**. It shows that 67% of the locations had water quality "Good to Excellent", 24% had water quality "Medium to Good" and at 9% locations (2 locations viz. Akkalpada and Dhule) water quality was bad.

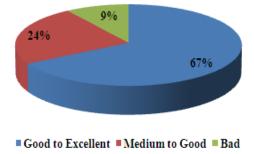


Figure 4.8: Water Quality Index of 21 Monitoring Locations of Tapi River

49. Titur River

Titur River is one of the tributaries of Tapi River which rises near Chalisgaon in the Jalgaon district and empties down into the Girna River .There is only one monitoring location on this river. Detailed analysis of monitored data is given in **Table 4.54.**

1. Titur River D/s of Chalisgaon (2710/SWMP)

- Station Details: Village-Chalisgaon, Taluka-Jalgaon, District-Jalgaon
- **Pollution sources**: Sewage from Chalisgaon

Table 4.54(a): Five years Descriptive Statistics for Titur River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2710	Mean	5.8	8.0	17.6	52.1	1.8	0.5	16.9
	Std.dev	1.53	4.92	11.14	65.46	1.31	0.36	9.49
	No of Samples	31	29	31	28	28	29	32
	% Exceedance	41.9	20.7	83.9	-	0.0	0.0	0.0

From the descriptive statistics it is seen that TC, Ammonia and Nitrate values complied with the standard. From the data set it can observed that 41%, 20%, 84% of the samples did not meet the standards for pH, DO and BOD respectively. High exceedance in BOD and DO could be due to the domestic sewage disposal in river water.

Table 4.54(b): Water Quality Index for Titur River

Station Code	2007	2008	2009	2010	2011
2710	MG	MG	MG	GE	GE

50. Ulhas River

Ulhas River originates near Karjat in the Western Ghat Range, and flows westward through Raigad and Thane districts. The River flows through Kulgaon-Badlapur, north of Ulhasnagar and Kalyan, where it turns west wards to Thane. Near Raw water pump house of MIDC Jambhul, Barvi Dam is located. The confluence is a tourist and fishing hub for villagers around. At Thane, the river splits into two branches which flow west and south, respectively, around Salsette Island, on which lies the metropolis of Mumbai. Both branches are estuarine, and lie on seismic fault lines. There are six monitoring locations on this river which are listed below. Detailed analysis of monitored data is given in **Table 4.55**.

1. Ulhas River near Kambe (HP_UH_1)

- **Station Details:** Village- Kambe, District- Thane.
- **Pollution sources :** Domestic activities
- 2. Ulhas River near Khapari (HP_UH_2)
 - **Station Details:** Village- Khapari, District- Thane.
- 3. Ulhas River near Manda (HP UH 3)
 - Station Details: Village- Manda, District- Thane.
- 4. U/s of NRC Bunder Mohane village (1093)
 - **Station Details:** Village- Mohane, Taluka-Kalyan, District- Thane.
 - **Pollution sources :** Domestic discharges/ sewage and industrial waste
- 5. U/S of Badalapur waterworks, kulgaon village (1094)
 - Station Details: Village-Kulgaon, Taluka- Ambernath, District- Thane.
 - **Pollution sources :** Domestic discharges/ sewage and industrial waste
- 6. Jambhul Water Works(2162)
 - **Station Details:** Village-Jambhul, Taluka-Anbernath, District- Thane.
 - **Pollution sources :** Domestic discharges/ sewage and industrial waste

Table 4.55(a): Descriptive Statistics for Ulhas River

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_UH_1	Mean	7.8	54.1		1286.6	4793.3	0.1	
	Std.dev	0.38	35.65		1129.71	6379.29	0.01	
(2010-2011)	No of Samples	26	26	0	25	6	25	
	% Exceedance	5.4	0.0		0.0	33.3	0.0	
HP_UH_2	Mean	7.7	6.3	7.0	706.6	1631.2	0.1	
	Std.dev	0.56	0.88	2.62	1079.12	2683.93	0.00	
(2010-2010)	No of Samples	18	18	17	17	17	17	
	% Exceedance	5.6	0.0	82.4	0.0	11.8	0.0	
2162	Mean	7.6	6.8	3.5	97.5	204.1	0.2	0.6
	Std.dev	0.37	0.33	0.48	96.14	156.78	0.31	0.37
(2008-2011)	No of Samples	37	35	36	35	33	30	36
	% Exceedance	0.0	0.0	0.0	-	0.0	3.3	0.0
HP_UH_3	Mean	7.2	2.6	24.3	12260.0	21397.1	0.5	
	Std.dev	0.27	2.02	17.16	15599.42	25109.5	0.84	
	No of Samples	36	33	37	35	35	36	
	% Exceedance	0.0	90.9	94.6	0.0	71.4	16.7	
1093	Mean	7.6	6.7	3.7	355.9	683.4	0.2	0.5
	Std.dev	0.38	0.47	0.78	574.22	658.56	0.23	0.38
	No of Samples	52	49	52	52	52	45	51
	% Exceedance	0.0	0.0	3.8		0.0	0.0	0.0
1094	Mean	7.6	6.9	3.6	101.9	344.6	0.1	0.4
	Std.dev	0.35	0.38	0.57	248.59	479.90	0.17	0.32
	No of Samples	54	52	54	53	54	47	53
	% Exceedance	0.0	0.0	0.0		0.0	0.0	0.0

Table 4.55(b): Water Quality Index for Ulhas River

Station Code	2007	2008	2009	2010	2011
HP_UH _1	ŀ	ŀ	i	GE	GE
HP_UH _2	MG	MG	MG	GE	
HP_UH _3	Bad	VB	VB	Bad	VB
1093	GE	GE	GE	GE	GE
1094	GE	GE	GE	GE	GE
2162	-	GE	GE	GE	GE

Water Quality Indices of Ulhas River showed good to excellent WQI category for the station near U/S of NRC Bunder, Mohane, U/S of Badalapur water work, Kulgaon village and Jambhul water work for the years 2007-11. In case of Jambhul Water works, WQI for year 2007 could not be calculated due to missing data set. Similarly for Ulhas River at Kambe village WQI could be evaluated only for 2011 due to insufficient data. Ulhas River near Khapari varies between moderately good and good to excellent for the year 2007to 2011. At Manda village WQI varied between very bad to bad.

51. Urmodi River

Urmodi River is one of the minor tributary of Krishna River in Satara district. Detailed analysis of monitored data is given in **Table 4.56.**

1. Urmodi River near Nagthane village (2711/NWMP)

- Station Details: Village- Nagothane, Taluka-Satara, District-Satara.
- **Pollution sources**: Domestic, Agricultural runoff and Human activity

Table 4.56(a): Five Year Descriptive Statistics for Urmodi River (2007-11)

Stn.		pН	DO	BOD	FC	TC	Ammonia	Nitrate
Code								
2711	Mean	7.9	5.6	7.2	131.8	908.7	0.6	0.4
	Std.dev	0.37	0.78	2.69	86.17	479.12	0.99	0.43
	No of Samples	45	46	46	44	45	45	46
	% Exceedance	2.2	0.0	73.9	-	0.0	4.4	0.0

From the statistics of Urmodi River it was found that high exceedance in BOD value of 74% is indicative for domestic pollution caused by various human activities by nearby villagers. Other than BOD, pH and ammonical nitrogen showed exceedance of 2 and 4% in monitored values. Whereas all other measured parameter concentrations complied with the standards.

Table 4.56(b): Water Quality Index for Urmodi River
Station Code 2007 2008 2009 2010 2011

Station Code	2007	2008	2009	2010	2011
2711	MG	MG	MG	MG	MG

52. Vaitarna River

Vaitarna is an important river in Thane District that flows across Shahapur, Wade and Palghar talukas. The tributaries of this river are Dahreja, Surya, and Tansa. A dam has been built on the river. Datiware Creek is near the mouth of the river. Detailed analysis of monitored data is given in **Table 4.57.**

- 1. Vaitarna River near Alman village (HP_VN_1)
 - Station Details: Village- Alman, Taluka-Wada, District-Thane.
- 2. Vaitarna River near Alman village (HP_VN_2)
 - Station Details: Village- Chinchara, Taluka-Wada, District-Thane.
- 3. Vaitarna River near Kasa (HP_VN_3)
 - Station Details: Village-Kasa, Taluka-Wada, District-Thane.
- 4. Vaitarna River near Waghivali(HP_VN_4)
 - Station Details: Village-Waghivali, Taluka-Wada, District-Thane.
- 5. Vaitarna River near Gandhare (2712/NWMP)
 - Station Details: Village-Gandhare, Taluka-Wada, District- Thane.

Pollution sources of all these stations: Domestic discharges and human activities

Table 4.57(a): Four years Descriptive Statistics for Vaitarna River (2007-10)

Stn.Code	y. 1 our years 2 es	pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_VN_1	Mean	7.7	7.0	8.6	1450.3	8198.9	0.1	
	Std.dev	0.41	0.71	4.65	1208.29	23792.42	0.00	-
	No of Samples	15	16	16	15	15	15	-
	% Exceedance	0.0	0.0	75.0		6.7	0.0	•
HP_VN_2	Mean	7.6	6.4	8.9	4612.4	7921.5	0.1	•
	Std.dev	0.48	0.85	4.84	16332.56	25728.08	0.01	
	No of Samples	19	18	19	18	18	18	•
	% Exceedance	0.0	0.0	78.9		11.1	0.0	1
HP_VN_3	Mean	7.6	6.1	19.9	16662.2	30193.9	0.1	•
	Std.dev	0.43	0.77	29.92	51006.72	95364.49	0.03	-
	No of Samples	19	19	19	19	19	19	-
	% Exceedance	0.0	0.0	78.9		10.5	0.0	-
HP_VN_4	Mean	7.5	6.6	6.4	1223.9	1855.9	0.1	
	Std.dev	0.52	0.90	3.12	1042.50	1424.47	0.02	
	No of Samples	18	18	17	18	17	18	
	% Exceedance	0.0	0.0	70.6		5.9	0.0	•
2712	Mean	7.9	6.6	4.3	28.6	65.6	0.1	0.4
	Std.dev	0.63	0.86	1.94	11.98	28.55	0.20	0.31
(2011)	No of Samples	19	19	18	9	9	17	18
	% Exceedance	10.5	0.0	16.7		0.0	0.0	0.0

Only two years data i.e 2008 and 2011 is available for the station 2712. The descriptive statistics for five stations of Vaitarna River showed that water parameters such as DO, and Ammonical nitrogen complied with the state board standards. Nitrate was monitored only at Station number 2712 where the values were within the standard.

Table 4.57(b): Water Quality Index for Vaitarna River

Station Code	2007	2008	2009	2010	2011
HP_VN _1	MG	MG	MG	GE	1
HP_VN _2	MG	MG	MG	GE	
HP_VN _3	MG	MG	MG	GE	
HP_VN _4	MG	MG	MG	GE	
2712					GE

For Vaitarna River Water monitoring was carried out in the period of June to October during all four years. From the water quality indices of sampling stations under HP network it was categorized in groups as good to excellent and moderately good. WQI could not be estimated for station number 2712 for four years 2007-10 due to unavailability of FC.

53. Vashishti River

It is one of the larger rivers in Konkan coast of Maharashtra. The town of Chiplun lies on its banks. The river begins in the Western Ghats and snakes its way westwards towards the Arabian Sea. Kolkiwadi Dam, near Alore has a vast reservoir which feeds a tributary of the river. Many villages and some industries are located on its bank. Detailed analysis of monitored data is given in **Table 4.58.**

- 1. U/s of Three M Paper Mills near M/s Multifilms Plastic Pvt. Ltd. (2164/NWMP)
 - Station Details: Village- Kherdi, Taluka- Chiplun, District- Ratnagiri.
 - **Pollution sources**: Industrial and Domestic pollution
- 2. D/s of Three M Paper Mills near M/s Multifilms Plastic Pvt. Ltd. (2713/NWMP)
 - Station Details: Village- Kherdi, Taluka- Chiplun, District- Ratnagiri.
 - **Pollution sources**: Industrial and Domestic pollution
- 3. U/s of Pophali near Konphansawane Bridge. (2714/NWMP)
 - Station Details: Village- Konphanawane, Taluka- Chiplun, District- Ratnagiri.
 - **Pollution sources**: Domestic and Human activity
- 4. Vashshti river near Pimpali village (HP_VA_2)
 - Station Détails: Village-Pimpali, Taluka-Chiplun, District-Ratnagiri.
 - **Pollution sources**: Domestic and Human activity

Table 4.58(a): Four years Descriptive Statistics for Vashishti River (2008-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2164	Mean	7.0	6.9	2.1	3	72	0.5	1.1
	Std.dev	0.37	0.40	0.28	0.89	33.25	0.13	0.73
	No of Samples	17	18	18	16	17	17	18
	% Exceedance	0	0	0		0	0	0
2713	Mean	7.1	6.8	2.2	2	53	0.4	0.7
	Std.dev	0.59	0.48	0.28	0.00	26.33	0.18	0.17
	No of Samples	19	18	19	16	17	16	14
	% Exceedance	0	0	0		0	0	0
2714	Mean	7.1	6.9	2.1	3	49	0.4	0.6
	Std.dev	0.57	0.37	0.46	1.01	20.79	0.11	0.36
	No of Samples	12	12	12	11	12	12	12
	% Exceedance	0	0	0		0	0	0

Here data was not available for the year 2007 at all stations.

Table 4.58(a): Five years Descriptive Statistics for Vashishti River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
HP_VA_2	Mean	7.7	7.0	1.3	1411.1	1869.1	0.1	0.2
	Std.dev	0.26	0.78	0.53	1035.17	1460.72	0.00	0.33
	No of Samples	45	46	45	45	45	45	12
	% Exceedance	0.0	0.0	0.0		6.7	0.0	0.0

From the descriptive statistics, for all four locations of Vashshti River, it was observed that parameters such as DO, BOD, Ammonia and Nitrate complied with the standard. pH and TC values are within the standard for other three locations.

Table 4.58(b): Water Quality Index for Vashishti River

Station Code	2007	2008	2009	2010	2011
2164	-	GE	GE	GE	GE
2713	-	GE	GE	GE	GE
2714		GE	GE	GE	GE
HP_VA_2	GE	GE	GE	GE	GE

54. Vel River

Vel River originates from the Pune district it is a small tributary of Bhima River. It covers many villages belongs to Shirur and Ranger nagar (Khed) taluka. Detailed analysis of monitored data is given in **Table 4.59**.

1. Vel River near Shikrapur village (2715/NWMP)

- **Station Details:** Village-Shikrapur, Taluka-Shirur, District- Pune.
- **Pollution sources** : Domestic discharges

Table 4.59(a): Five years Descriptive Statistics for Vel River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2715	Mean	8.1	5.7	7.5	131.3	934.8	0.8	0.3
	Std.dev	0.55	0.75	3.12	93.25	522.34	1.04	0.37
	No of Samples	32	31	32	30	32	31	31
	% Exceedance	9.4	3.2	71.9	-	0.0	19.4	0.0

The descriptive statistics of Vel river location showed that DO, BOD, Ammonia and pH exceeded the standards in 3.2, 72%, 19% and 9% samples respectively. However TC and Nitrate were within the standards. The probable reason for exceedance could be the organic content of domestic sewage from nearby villages of Shirur and Khed talukas.

Table 4.59(b): Water Quality Index for Vel River

Station Code	2007	2008	2009	2010	2011
2715	MG	MG	MG	MG	MG

Monthly Water quality index of the Vel River near Shikrapur is most of the time moderately good. However it was found good to excellent in the year 2010 and 2011 except in the month of Oct and Nov of 2011 when it was found to be bad.

55. Venna River

Venna River one of the tributary of Krishna River rises near Parli village under Satara district and taluka. Many small villages are located along the length of the river which mostly utilize the river water for domestic and irrigation purpose. River gets drain down in main flow of Krishna at Koparde village. Detailed analysis of monitored data is given in **Table 4.60**.

- 1. Venna River near Varye village (2186/NWMP)
 - Station Details: Village- Varye, Taluka- Satara, District- Satara.
- 2. Venna River near Mahabaleshwar (2716/NWMP)
 - Station Details: Village/Taluka-Mahabaleshwar, District- Satara.
- 3. Venna River near Mahuli (2717/NWMP)
 - Station Details: Village-Mahuli, Taluka-Satara, District- Satara.

Table 4.60(a): Five years Descriptive Statistics for Venna River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2186	Mean	7.9	5.9	7.3	140.0	938.1	0.4	0.5
	Std.dev	0.29	0.68	4.02	110.34	480.18	0.61	0.52
	No of Samples	53	53	52	52	52	52	53
	% Exceedance	1.9	0.0	76.9		0.0	1.9	0
2716	Mean	7.9	6.1	5.8	59.1	457.5	0.4	0.2
	Std.dev	0.49	0.70	2.60	52.85	403.15	0.65	0.27
	No of Samples	45	46	45	45	46	45	45
	% Exceedance	4.4	0.0	55.6		0.0	2.2	0
2717	Mean	7.9	5.7	7.4	148.7	932.1	0.7	0.4
	Std.dev	0.41	0.77	2.67	95.45	544.68	0.81	0.59
	No of Samples	46	45	45	46	45	45	45
	% Exceedance	2.2	0.0	80.0	-	0.0	11.1	0

It is seen that at all three stations 55-80% of BOD values are not within the standard. For pH 2-4% of values were exceeding the standard. 2-11% of Ammonical nitrogen values were exceeding the standard. Remaining parameters were found to be below the standard. Significant exceedance of BOD could be the result of large domestic and human activities by nearby villages in the river basin.

Table 4.60(b): Water Quality Index for Venna River

Station Code	2007	2008	2009	2010	2011
2186	MG	MG	MG	MG	MG
2716	GE	GE	MG	GE	GE
2717	MG	MG	MG	MG	MG

Monthly Water quality index of Venna River at vary village and Mahuli village most of the time varied between moderately good to excellent. While at Mahabaleshwar it was seen to be good to excellent. At Mahuli village, WQI during November 07-08, May-08 and Apr-10 was bad.

56. Waghur River

Waghur River is one of the tributaries of Tapi River It begins near Jamner Taluka of Jalgaon district and flows to Bhusaval it covers many small villages and finally meets Tapi River. There is one monitoring location on this river. Detailed analysis of monitored data is given in **Table 4.61.**

1. Waghur river, At- Sakegaon before, Confluence with Tapi river (2718/NWMP)

• Station Details: Village-Sakegaon, Taluka-Bhusaval, District- Jalgaon.

Table 4.61(a): Five years Descriptive Statistics for Waghur River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2718	Mean	8.1	5.9	7.8	14.3	33.6	0.9	1.5
	Std.dev	0.44	0.98	5.16	10.75	15.46	1.17	1.12
	No of Samples	32	29	31	26	26	27	32
	% Exceedance	18.8	3.4	61.3	-	0.0	25.9	0.0

From the descriptive statistics of Waghur River it was seen that 18% in pH, 3% of DO, 61% of BOD and 25% of Ammonia values were exceeding the standard, this is mainly due to the domestic activities carried out by the villagers. There is no exceedance observed for the other parameters clearly indicating that the domestic and human activities are the main source responsible to affect the river water quality.

Table 4.61(b): Water Quality Index for Waghur River

Station Code	2007	2008	2009	2010	2011
2718	GE	GE	GE	GE	GE

Monthly WQI calculation for the sampling station at Sakegaon village near confluence point of Waghur and Tapi River shows most of the time good to excellent and moderately good water quality.

57. Wardha River

Wardha River originates at an altitude of 777 meters at Satpura Range near Multai in Betul District of Madhya Pradesh. From the origin it flows 32 km in Madhya Pradesh and then enters into Maharashtra. After traversing 528 km, it joins Wainganga and ultimately flows into the Godavari River. A huge dam (Upper Wardha Dam) is built on Wardha River near Morshi and considered as lifeline for Amravati city, Morshi and Warud Talukas. Detailed analysis of monitored data is given in **Table 4.62.**

1. Wardha River at Rajura bridge (1212/NWMP)

- Station Détails: Village-Rajura, Taluka-Chandrapur, District-Chandrapur.
- **Pollution sources**: Industrial effluent from Pulp & Paper industry and sewage from Municipal Councils are discharged.

2. Wardha River at Pulgaon Railway Bridge (1315/NWMP)

- Station Details: Village-Pilgaon, Taluka-Wardha, District-Wardha.
- **Pollution sources**: Pollution due to agricultural runoffs. Domestic wastes from local bodies are discharged into river.

3. Wardha River at confluence point of Penganga & Wardha. (2156/SWMP)

- **Station Details:** Village-Jugad, Taluka-Wani, District-Yavatmal.
- 4. Wardha River at D/S of ACC Ghuggus. (2174/SWMP)
 - Station Détails: Village-Ghuggus, Taluka-Chandrapur, District- Chandrapur.
 - Pollution sources: Domestic & industrial pollution.

5. Wardha River at D/s of Erai River at Hadasti near Arun Engg. Works. (2719/SWMP)

- Station Details: Village-Hadasti, Taluka-Chandrapur, District- Chandrapur.
- **Pollution sources**: Domestic & industrial pollution.
- 6. Wardha River at U/s of ACC Ghuggus. (2721/SWMP)
 - Station Details: Village-Ghuggus, Taluka-Chandrapur, District- Chandrapur.
 - Pollution sources: Domestic & industrial pollution.
- 7. Wardha River at U/s of Erai River, Hadasti. (2720/SWMP)
 - Station Details: Village- Hadasti, Taluka- Chandrapur, District- Chandrapur
 - **Pollution sources**: Domestic & industrial pollution.

Table 4.62(a): Five Years Descriptive Statistics for Wardha River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1212	Mean	8.0	5.6	6.7	80.1	161.4	0.7	1.6
	Std.dev	0.42	0.85	2.43	79.05	109.09	0.70	0.95
	No of Samples	23	23	22	23	22	22	22
	% Exceedance	8.7	0.0	77.3	-	0.0	9.1	0.0
1315	Mean	8.1	5.6	7.0	102.5	252.7	1.0	1.5
	Std.dev	0.44	0.76	2.28	122.12	245.26	1.06	1.70
	No of Samples	56	55	55	54	55	56	55
	% Exceedance	14.3	0.0	81.8	-	0.0	25.0	0.0

Table 4.62(a): Four Years Descriptive Statistics for Wardha River (2008-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2156	Mean	8.0	5.7	7.0	55.4	118.4	0.8	3.5
	Std.dev	0.45	0.65	2.39	38.72	77.76	0.91	3.33
	No of Samples	30	28	30	28	29	29	30
	% Exceedance	10.0	0.0	76.7	0.0	0.0	10.3	0.0
2174	Mean	8.0	5.4	7.4	79.9	171.5	1.1	1.4
	Std.dev	0.48	0.62	2.51	47.81	89.85	1.30	0.86
	No of Samples	35	35	34	31	31	35	33
	% Exceedance	11.4	2.9	85.3	0.0	0.0	22.9	0.0
2719	Mean	7.9	5.4	8.0	74.5	150.0	1.1	1.6
	Std.dev	0.49	0.82	4.20	66.97	99.27	1.26	1.00
	No of Samples	30	29	29	24	23	29	29
	% Exceedance	13.3	6.9	82.8		0.0	24.1	0.0
2721	Mean	7.9	5.8	5.9	43.3	96.4	1.1	1.3
	Std.dev	0.48	0.63	1.72	28.93	51.82	1.20	0.64
	No of Samples	33	33	33	26	26	33	32
	% Exceedance	6.1	0.0	72.7		0.0	24.2	0.0

Table 4.62(a): Four Years Descriptive Statistics for Wardha River (2008-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2720	Mean	8.0	5.8	6.6	40.7	112.3	1.0	1.5
	Std.dev	0.48	0.78	2.60	33.03	110.92	1.11	0.98
	No of Samples	31	31	31	24	24	30	30
	% Exceedance	12.9	3.2	71.0		0.0	20.0	0.0

From the descriptive statistics for Wardha River for the period 2007-11, it can be observed that pH and BOD values were exceeding in the range of 6-14% and 71-85% resp. This could be due to the domestic activities by nearby villagers as well as discharge of industrial effluent from the industries in main stream of the river. Station No. 2174, 2719 and 2720 shows 3%, 7% and 3% exceedance in DO values for available month's data. In case of Ammonical nitrogen the exceedance was ranging between 9-25 % at all seven stations of Wardha River. TC and Nitrate nitrogen values were complying with MPCB standards for the available data sets.

Table 4.62(b): Water Quality Index for Wardha River

Station Code	2007	2008	2009	2010	2011
1212	GE	MG	MG	MG	GE
1315	MG	MG	MG	MG	MG
2156	-	MG	GE	MG	MG
2174	ŀ	MG	MG	MG	MG
2719	ŀ	MG	GE	MG	MG
2720		MG	MG	GE	GE
2721	1	GE	GE	GE	GE

From the monthly WQI it is observed that during the year 2007 water quality at Rajura and Pulgaon village was most of the time moderately good whereas in monsoon period it was good to excellent. This could be mainly due to dilution effect due to rain water. In case of other five stations, in 2007 WQI could not be calculated due to missing data. In year 2008 to 2011, water quality at all stations varied between moderately good and good to excellent.

58. Wainganga River

The Wainganga originates about 12 km from Mundara village of Seoni district in the southern slopes of the Satpura Range of Madhya Pradesh, and flows south through Madhya Pradesh and Maharashtra in a very winding course of approximately 360 miles. After joining the Wardha, the united stream, known as the Pranahita, ultimately falls into the River Godavari. The river has developed extensive flood plains with sweeping graceful meanders and low alluvial flats and meander terraces. The Wainganga river receives numerous tributaries on either bank and drains the western, central and eastern regions of the Chandrapur, Gadchiroliand Nagpur districts. The chief tributaries of the Wainganga are

the Garhavi, Khobragadi, Kathani and Potphondi on the western bank and Andhari on the eastern bank. Detailed analysis of monitored data is given in **Table 4.63**.

1. Wainganga river at Ashti bridge (11/NWMP)

- Station Details: Village- Ashti, Taluka-Gondpipri, District-Chandrapur.
- Pollution source: Domestic and city sewage and industrial discharges

2. Wainganga after confluence with Kanhan (1910/NWMP)

- Station Details: Village- Ambhora, Taluka- Kuhi, District- Nagpur.
- Pollution sources: Domestic discharges and agricultural runoff

3. Wainganga river at D/s of Ellora Paper Mill (2172/NWMP)

- Station Details: Village- Tumsar, Taluka-Tumsar, District-Bhandara.
- **Pollution source :** Domestic and industrial discharges

4. Wainganga river at U/s of Ellora Paper Mill (2173/NWMP)

- Station Details: Village- Tumsar, Taluka-Tumsar, District-Bhandara.
- **Pollution source :** Domestic and industrial discharges

5. Wainganga river at U/s of Gaurav Paper Mill (2175/NWMP)

- Station Details: Village- Bramhapuri, Taluka-Chandrapur, District-Chandrapur.
- **Pollution source :** Domestic and industrial discharges

6. Wainganga river at D/s of Gaurav Paper Mill (2176/NWMP)

- Station Details: Village- Bramhapuri, Taluka- Chandrapur, District Chandrapur
- **Pollution source :** Domestic and industrial discharges

Table 4.63(a): Five years Descriptive Statistics for Wainganga River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
11	Mean	8.0	5.8	6.5	86.0	193.1	0.8	0.9
	Std.dev	0.47	0.68	2.36	75.89	103.19	0.72	0.81
	No of Samples	56	56	56	55	55	55	55
	% Exceedance	12.5	0.0	69.6	•	0.0	9.1	0
1910	Mean	7.9	5.8	6.3	108.3	415.0	1.1	1.5
	Std.dev	0.50	0.65	1.68	124.06	491.50	1.01	1.22
	No of Samples	23	22	22	22	23	22	22
l	% Exceedance	13.0	0.0	81.8		0.0	27.3	0

Table 4.63(a): Four years Descriptive Statistics for Wainganga River (2008-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2172	Mean	7.9	5.2	7.9	126.0	259.8	0.7	1.7
	Std.dev	0.38	0.71	2.63	97.85	179.03	0.74	1.93
	No of Samples	43	43	42	42	41	42	42
	% Exceedance	4.7	4.7	90.5	•	0.0	11.9	2
2173	Mean	8.0	5.9	6.0	64.0	141.3	0.6	1.6
	Std.dev	0.35	0.63	1.47	40.45	75.49	0.63	2.38
	No of Samples	42	42	41	41	40	41	42
	% Exceedance	4.8	2.4	70.7	-	0.0	9.8	7
2175	Mean	8.0	6.0	5.9	81.8	156.0	0.7	1.2
	Std.dev	0.39	0.70	1.85	59.41	66.28	0.58	0.65
	No of Samples	30	30	29	30	30	29	29
	% Exceedance	10.0	0.0	58.6	-	0.0	6.9	0

Here in the above table data is not available for the year 2007.

Table 4.63(a): Two years Descriptive Statistics for Wainganga River (2010-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2176	Mean	8.0	5.2	7.1	113.5	278.7	0.7	8.0
	Std.dev	0.40	0.67	2.34	79.67	140.50	0.55	0.40
	No of Samples	15	15	15	15	15	14	15
	% Exceedance	6.7	0.0	73.3	-	0.0	7.1	6.7

It was observed that BOD values were exceeding the MPCB standard in the range of 70-90%. Ammonical nitrogen was exceeding in the range of 7-12%. TC values were within the standard. pH values were exceeding in the range of 4-13%. DO was observed within the standards except at the station 2172 and 2173. And also Nitrate was exceeding from the range of 2-7%. The exceedance could be mainly due to domestic activities by nearby villagers as well as discharge of industrial effluent from the industries in main stream of the river.

Table 4.63(b): Water Quality Index for Wainganga River

Station Code	2007	2008	2009	2010	2011
11	MG	MG	MG	MG	GE
1910	MG	MG	GE	MG	GE
2172		MG	MG	MG	MG
2173		GE	GE	MG	GE
2175		MG	MG	MG	GE
2176				MG	MG

From the water quality indices it was observed that during all five years water quality was between good to excellent for upstream of Wainganga river.

The total numbers of monitoring sites of Wardha and Wainganga rivers are 13. Percent exceedances in different ranges for BOD, DO, TC and pH are given **Table 4.63(c)**.

Table 4.63(c): Number of Sites of Wardha and Wainganga Rivers with Percent Exceedances for BOD, DO, TC and pH

Percent Exceedance	BOD	DO	TC	pН
0%	0	8	13	0
1-20%	0	5	0	13
20-40%	0	0	0	0
40-60%	1	0	0	0
60-80%	7	0	0	0
80-100%	5	0	0	0

Percent exceedances for BOD and DO for 13 locations in Wardha Wainganga Rivers are shown in **Figures 4.9**. TC concentrations are within the standard at all the sites. Percent exceedances of pH at all the sites range between 5-14%.

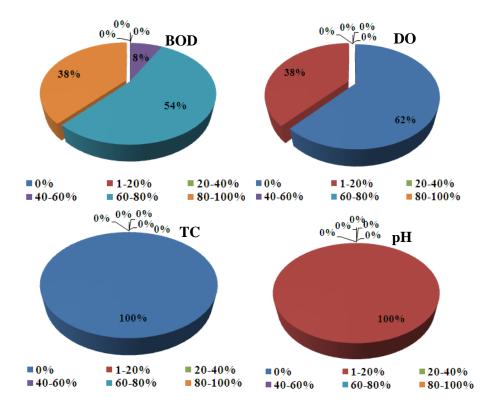


Figure 4.9: Percent Exceedances at 13 Monitoring Locations of Wardha Wainganga River

The water qualities of Wardha Wainganga Rivers were "Medium to Good" at 9 sites and "Good to Excellent at 4 sites." None of the sites had "Bad" water quality (**Figure 4.10**).

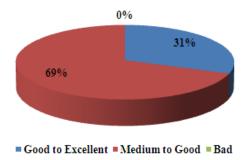


Figure 4.10: Water Quality Index of 13 Monitoring locations of Wardha and Wainganga Rivers

59. Wena River

Wena River mainly flows from Wardha district where it covers two talukas viz Samudrapur and Hinganghat. Wena is one of the tributary of Wardha River. Vena river get together with other two small rivers flowing from the same district namely Pothara and Lai before confluence with Wardha River. Detailed analysis of monitored data is given in **Table 4.64.**

- 1. U/s of Mohata Mills, near Railway bridge on Wardha Chandrapur Railway line(2722/NWMP)
 - Station Details: Village-Hinganghat, Taluka-Wardha, District- Wardha.
 - **Pollution sources**: Domestic & industrial pollution
- 2. D/s.Mohata Mills, near road bridge on Hinganghat- Wadner road (2723/NWMP)
 - **Station Details:** Village-Hinganghat, Taluka-Wardha, District- Wardha.
 - **Pollution sources**: Domestic & industrial pollution

Table 4.64(a): Five years Descriptive Statistics for Wena River (2007-11)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2722	Mean	8.1	5.8	6.2	41.4	119.2	1.2	1.6
	Std.dev	0.43	0.63	1.87	29.19	78.52	0.89	1.99
	No of Samples	38	38	38	37	37	38	38
	% Exceedance	18.4	0.0	71.1	-	0.0	23.7	0.0
2723	Mean	8.1	5.2	8.3	76.4	285.9	1.5	1.3
	Std.dev	0.48	0.71	2.64	40.05	270.83	1.22	1.11
	No of Samples	36	36	36	35	36	36	35
	% Exceedance	13.9	5.6	91.7	-	0.0	36.1	0.0

Percentage exceedance of BOD was significantly high at both the locations i.e 72 and 92%. pH values were found to be exceeding 14% time at downstream of the river whereas 18% time at upstream. Similar trend could be marked in Ammonical nitrogen values i.e 23% and 36%. For Nitrate and TC values, the concentrations were within the standard. DO was found to be exceeded by 5% at the downstream.

Table 4.64(b): Water Quality Index for Wena River

Station Code	2007	2008	2009	2010	2011
2722	MG	GE	GE	MG	GE
2723	MG	MG	MG	MG	MG

From the water quality indices it was observed that during all five years water quality was between good to excellent for upstream of Wena river whereas for downstream location it was moderately good. From the WQI it could be inferred that water quality towards the downstream gets affected by the nearby industrial activity. In Apr Dec -10 and Feb-11 the WQI was found bad.

Evaluation of Sea Water Quality

With a 720 km long coast line, the beaches of Maharashtra extends from Dahanu and Bordi in the north up to Goa in south. From adventurous sea surfing, to irresistible sand bath to the grandeur of warm sands, to catching the exquisite sun setting in the blue Arabian Sea, beaches of Maharashtra offers you everything. Mangrove forests on creeks are habitat to a variety of fish and crustaceans, as well as serve as a sanctuary for migratory birds. **Table 5.1** gives the list of 34 water quality monitoring stations along the seafronts and creeks of Maharashtra.

Table 5.1: Water Monitoring Network of Beaches, Seafronts and Creeks

Sr.	Sea/Creek Name	No. of	Sr.	Sea/Creek Name	No. of
		Stations			Stations
1	Arnala Sea	1	16	Mahim creek	1
2	Bassein Creek	1	17	Malabar Hill	1
3	Bhagwati Bunder	1	18	Mandavi Bunder	1
4	Bhayander Creek	1	19	Nariman point	1
5	Charni Road Chowpatty	1	20	Navapur Sea	1
6	Dadar Chowpatty	1	21	Panvel creek	1
7	Dahanu Creek	1	22	Saravli Creek	1
8	Dandi Creek	1	23	Sawta Creek	1
9	Ganpatipule	1	24	Thane creek	1
10	Gateway of India	1	25	Ulhas Creek	5
11	Sea water at Haji Ali	1	26	Uttan Sea	1
12	Sea water at Juhu Beach	1	27	Vashi creek	2
13	Kharekuran Murbe Cr.	1	28	Versova	1
14	Kalwa creek	1	29	Worli Seaface	1
15	Karambhavane Creek	1			34

5.1 Sea Water Quality Evaluation

The water quality of seafronts and creeks were evaluated by identifying the parameters which exceed the permissible limits stipulated by CPCB. Percentage of time, the monitored data exceeded the standards has been calculated. This exercise helps to identify the most critical sampling locations, which warrant immediate action to minimize the pollution. The water quality data for selected physico-chemical parameters for the years 2007-11 were compared with the central pollution control board (CPCB) water quality standards of class SW-II for commercial fishing, contact recreation, bathing water. Monthly and yearly average WQI categories at different locations are given in **Annexure VIII.** The pictorial view of three years WQI for the locations located on the coastal line of Maharashtra is given in **Annexure VII.**

5.2 Summary Observation

Water quality at Ganapatipule, Bhagwati Bunder, Karambhavanene creek and Mandavi Bunder is good. At these four sites FC is within CPCB water quality standards of class SW-II throughout the year for the period 2007 to 2011. At Bhagawati Bundar, Mandavi Bander, Ganapatipule the percent exceedance for BOD is 7% at all three sites. At Karambhane creek the percent exceedance for BOD is 15%. At Karambhane creek and Mandavi Bander the percent exceedance for DO is 5 and 7% respectively. However, the percent exceedance for pH at Bhagwati Bunder, Ganapatipule, Karambhane creek and Mandavi Bunder, are 19, 35, 5 and 29% respectively. Water quality index evaluated for each month for the period 2007-2011 show that at Ganapatipule, Bhagwati Bunder, Karambhane creek and Mandavi Bunder water quality index lie between good to excellent.

The water quality of all other Seafronts and Creeks of Maharashtra are poor. Percent exceedance of BOD in all these 30 beaches and seafronts are 100%. WQI evaluated for 29 beaches and seafronts for each month for the period 2007-2011 is bad to moderately good. Percent exceedance of pH, DO, BOD and TC for the sea water for the period 2007-11 are given in **Table 5.2.**

Table 5.2: Percent Exceedance of pH, DO, BOD and FC for the Sea Water During the Period 2007-2011

Sr.	Location	Station	pН	DO	BOD	FC
		Code				
1	Arnala Sea	2805	0	25	100	70
2	Bassein Creek at Vasai Fort, Thane.	1316	0	16	100	78
3	Bhagawati Bunder, Ratnagiri,	2814	19	0	7	0
4	Bhayandar Creek at D/s of Railway Bridge, Jesal	2797	0	26	100	80
	Park Choupatty					
5	Charni Road Chowpatty, Mumbai.	2166	0	27	100	87
6	Shivaji Park, Dadar Chowpatty, Mumbai	2811	4	35	100	96
7	Dahanu Creek at Dahanu Fort	2802	0	26	100	94
8	Dandi Creek	2799	0	29	100	29
9	Ganapatipule, Ratnagiri	2813	35	0	7	0
10	Gateway of India, Mumbai	2165	0	38	100	83
11	Haji Ali	2810	4	44	100	87
12	Juhu Beach	2812	0	13	100	78
13	Kharekuran Murbe Creek	2798	0	7	100	100
14	Kalwa Creek	2793	0	38	100	79
15	Karambhavane Creek at Chiplun Village	2804	5	5	15	0
16	Mahim creek at Mahim Bay, Mumbai	1318	6	31	100	72
17	Malabar Hill	2809	4	36	100	92
18	Mandavi Bunder	2815	29	7	7	0
19	Nariman Point	2808	4	46	100	96
20	Navapur Sea	2807	0	13	100	100

Table 5.2: (Contd.): Percent Exceedance of pH, DO, BOD and FC for the Sea Water During the Period 2007-2011

Sr.	Location	Station	pН	DO	BOD	FC
		Code				
21	Panvel Creek, Kopra	2803	0	43	100	100
22	Sarwali Creek	2800	0	27	100	88
23	Savta Creek	2801	4	16	100	59
24	Thane Creek at Elephanta Island. Mumbai	1317	0	14	100	63
25	Ulhas Creek at Retibunder,	2791	0	36	100	100
	D/S of Kalyan Bhiwandi Bridge					
26	Ulhas Creek at Versova bridge.	2796	0	26	100	86
27	Ulhas Creek at Gaimukh at Nagla Bunder	2795	0	26	100	91
28	Ulhas Creek at Mumbra Reti Bunder	2792	0	28	100	87
29	Ulhas Creek at Kolshet Reti Bunder	2794	0	24	100	83
30	Uttan Sea	2806	0	30	100	84
31	Vashi Creek at Airoli Bridge, Thane.	2184	0	35	100	85
32	Vashi Creek at Vashi Bridge, Mumbai	2185	0	39	100	73
33	Versova, Mumbai.	2169	0	28	100	56
34	Worli Seaface, Mumbai.	2167	0	19	100	81

The details of the monitoring locations, the mean and standard deviation of the parameters after removing the outliers, percent exceedance with respect to the CPCB standards are given below.

1) Arnala Sea

Arnala Sea is located in the Virar region of Mumbai. MPCB has one sampling location on Arnala Sea under GEMS/MINARS programme.

1. Arnala Sea (2805 /SWMP)

- Station Details: Village-Arnala, Taluka-Vasai, Distinct-Thane
- **Pollution sources**: No industries nearby. Domestic effluents from nearby villages are discharged.

Table 5.3(a): Four Years Descriptive Statistics for Arnala Sea

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2805	Mean	7.9	4.7	9.8	188.1	387.4	0.2	1.3
	Std.dev	0.3	1.09	4.1	153.1	302.1	0.2	0.7
	No of Samples	24	24	24	23	23	22	23
	% Exceedance	0.0	25.0	100.0	69.6	-	-	-

pH complied with the SW II standard whereas DO, BOD and FC showed 25, 100 and 70% exceedance respectively. Such exceedance may be due to the domestic effluents discharged from nearby villages.

Table 5.3(b): Water Quality Index for Arnala Sea

Station Code	2007	2008	2009	2010	2011
2805		MG	Bad	MG	MG

Water quality indices for the available data of Arnala Sea showed that the water quality varied from bad to moderately good. The probable reason could be the discharge of domestic effluent from nearby village.

2. Bassein Creek

Bassein Creek is located in Bassein village of Vasai taluka in Thane district. MPCB has one monitoring location on Bassein Creek under GEMS/MINARS programme. **Table 5.4** gives five years descriptive statistics for Bassein Creek for the period 2007 to 2011.

1. Bassein Creek at Vasai Fort, Thane (1316/NWMP)

- Station Details: Village- Bassein, Taluka- Vasai, District- Thane.
- **Pollution source**: Domestic and industrial waste from Mumbai, Thane, Mira-Bhayander area is discharged.

Table 5.4(a): Five years Descriptive Statistics for Bassein Creek Water

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1316	Mean	7.9	5.0	9.0	297.6	761.1	0.2	1.4
	Std.dev	0.26	1.07	3.22	207.33	500.56	0.24	0.72
	No of Samples	20	19	20	18	19	20	19
	% Exceedance	0.0	15.8	100.0	77.8	-	-	-

It was observed that pH complied with the CPCB standards. However, DO, BOD and FC showed 16, 100 and 78% exceedance respectively to the CPCB standards. The reason for this exceedance could be the domestic and industrial waste discharged from Mumbai, Thane, Mira-Bhayander areas.

Table 5.4(b): Water Quality Index for Bassein Creek

Station Code	2007	2008	2009	2010	2011
1316	MG	MG	MG	Bad	MG

The WQI evaluated for Bassein creek showed that the water quality mostly varied from bad to moderately good. This could be due to domestic and industrial waste discharge from Mumbai, Thane, Mira-Bhayander areas.

3. Bhagwati Bunder Creek

Bhagwati Bunder Creek is located in Mirkarwada village of Ratnagiri district. MPCB has following monitoring location on Bhagwati Bunder Creek under GEMS/MINARS programme. **Table 5.5** gives four years descriptive statistics for Bhagwati Bunder Creek for the period 2008-2011.

1. Bhagwati Bunder, Ratnagiri near Ultra Tech Cement Jetty. (2814/SWMP)

- Station Details: Village- Mirkarwada, Taluka-Ratnagiri, District- Ratnagiri.
- Pollution source: Pollution due to shipping and other related activities.

Table 5.5(a): Four years Descriptive Statistics for Sea Water at Bhagwati Bunder

Stn. Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2814	Mean	7.1	5.9	2.5	2.9	57.6	0.6	3.4
	Std.dev	0.73	0.56	0.39	1.01	30.05	0.18	1.20
	No of Samples	31	29	30	28	30	28	29
	% Exceedance	19.4	0.0	6.7	0.0	-	-	-

DO and FC were the SWII standards. pH and BOD exceeded the standards by 19 and 7% respectively.

Table 5.5(b): Water Quality Index for Bhagwati Bunder

Station Code	2007	2008	2009	2010	2011
2814		GE	GE	GE	GE

4. Bhayander Creek

Exactly below Mumbai Western Railway Bridge between Naigaon and Bhayander lies the Creek of Bhayander, well known as *Bhayander ki khadi*. Widely used during Ganesh visarjan at bhayander, it is famous for fishing and sand business which villagers get from this creek. This creek contains lot of Fish and is widely used for disposal of flowers and other stuff that is used for worshipping, which makes it dirty. MPCB has the following monitoring location on Bhayander Creek under GEMS/MINARS programme. **Table 5.6** gives four years descriptive statistics for Bhayander Creek for the years 2008 to 2011.

1. Bhayander Creek at D/s of Railway Bridge at Jasal park Chowpatty (2797 /SWMP)

- Station Details: Village-Navghar, Taluka-Bhayander, District-Thane
- **Pollution source**: Industrial & domestic effluent through local nalla and drains.

Table 5.6(a): Four years Descriptive Statistics for Bhayander Creek Water

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2797	Mean	7.8	4.6	9.8	281.0	461.0	0.1	2.2
	Std.dev	0.30	1.17	3.65	250.85	240.03	0.19	1.17
	No of Samples	23	23	22	20	20	21	23
	% Exceedance	0.0	26.1	100.0	80.0	•	-	-

It was observed that pH complied with the CPCB standards. However, DO, BOD and FC exceeded 26, 100 and 80% respectively. It could be due to the industrial & domestic effluent discharged through local nallas and drains and the prevailing fishing activity.

Table 5.6(b): Water Quality Index for Bhayander Creek Water

Station Code	2007	2008	2009	2010	2011
2797		Bad	Bad	MG	MG

The WQI evaluated for Bhayander Creek showed that the water quality was moderately good most of the time. However, it was bad in few months. It could be due to excess discharge of untreated waste from industries in those months.

5. Charni Road Chowpatty

Charni Road Chowpatty is located in Girgaon area of Mumbai. MPCB has the following monitoring location at Charni Road Chowpatty under GEMS/MINARS programme. **Table 5.7** gives four years descriptive statistics for Charni Road Chowpatty for the period 2008-2011.

1. Sea water at Charni Road Chowpatty (2166/SWMP)

- Station Details: Village-Girgaon, Taluka-Mumbai, District-Mumbai
- Pollution source: Tourist spot. Domestic pollution

Table 5.7(a): Four years Descriptive Statistics for Sea water at Charni Road Chowpatty

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2166	Mean	7.7	4.8	10.6	465.4	819.8	0.3	1.3
	Std.dev	0.33	0.92	3.81	486.09	582.50	0.35	0.75
	No of Samples	33	30	32	30	30	29	32
	% Exceedance	0.0	26.7	100.0	86.7	-	-	-

It was observed that pH complied with the CPCB standards. However, DO, BOD and FC exceeded 27, 100 and 87% respectively. Charni Road Chowpatty could be polluted from domestic pollution.

Table 5.7(b): Water Quality Index for Charni Road Chowpatty

Station Code	2007	2008	2009	2010	2011
2166		MG	Bad	MG	MG

The WQI evaluated for the available data of Charni Road Chowpatty indicated that the water quality varied from bad to moderately good. It could be due to the domestic pollution as well as the waste dumped by tourists.

6. Shivaji Park (Dadar Chowpatty)

MPCB has following monitoring location of Sea Water at Shivaji Park (Dadar Chowpatty) under GEMS/MINARS programme. **Table 5.8** gives four years descriptive statistics for Shivaji Park (Dadar Chowpatty) for the period 2008-2011.

1. Sea water at Shivaji Park (Dadar Chowpatty) (2811/SWMP)

- Station Details: Village-Dadar, Taluka-Dadar, District-Mumbai.
- Pollution source: Tourist Spot. Domestic effluent is discharged through nallas

Table 5.8(a): Four years Descriptive Statistics for Sea Water at Shivaji Park (Dadar Chowpatty)

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2811	Mean	7.7	4.6	10.3	754.6	1016.0	0.2	1.3
	Std.dev	0.39	1.01	4.03	595.54	562.22	0.15	0.95
	No of Samples	26	23	24	22	22	23	26
	% Exceedance	3.8	34.8	100.0	95.5	-	-	-

The descriptive statistics showed that pH, DO, BOD and FC exceeded 5%, 38%, 100% and 93% respectively to the CPCB standards. It could be due to the domestic effluent discharged through nallas and the waste dumped by tourists at the Chowpatty.

Table 5.8(b): Water Quality Index for Shivaji Park (Dadar Chowpatty)

Station Code	2007	2008	2009	2010	2011
2811		Bad	Bad	Bad	Bad

The monthly water quality of Sea Water at Shivaji Park was found to vary from very bad to moderately good. It could be due to the waste dumped by tourists and the domestic effluent. The annual average water quality at Shivaji park was bad.

7. Dahanu Creek

Dahanu Creek is located in Danugaon village of Dahanu taluka in Thane district. MPCB has following monitoring location Dahanu Creek under GEMS/MINARS programme. **Table 5.9** gives four years descriptive statistics for Dahanu Creek for the period 2008 to 2011.

1. Dahanu Creek at Dahanu Fort (2802 /SWMP)

- Station Details: Village-Danugaon, Taluka-Dahanu, District-Thane
- **Pollution sources**: Domestic effluent from Dahanu Municipal Corporation. Thermal Power Plant nearby.

Table 5.9(a): Four years Descriptive Statistics for Dahanu Creek Water

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2802	Mean	8.0	4.9	10.9	262.8	596.3	0.1	0.7
	Std.dev	0.24	1.01	3.30	212.68	240.33	0.11	0.41
	No of Samples	22	23	23	16	16	22	21
	% Exceedance	0.0	26.1	100.0	93.8	-	-	-

pH complied with the CPCB standards. However, percentage exceedance for DO, BOD and FC were 26,100 and 94% respectively. The reason for such an exceedance could be the domestic effluent released from Dahanu Municipal Corporation and Thermal Power Plant situated nearby.

Table 5.9(b): Water Quality Index for Dahanu Creek Water

Station Code	2007	2008	2009	2010	2011
2802		MG	Bad	GE	Bad

The WQI evaluated for the available data set of Dahanu creek indicated that the water quality varied from bad to moderately good. It could be due to the waste released from Thermal Power Plant located nearby and the domestic effluent released from Dahanu Municipal Corporation.

8. Dandi Creek

Dandi creek meets Arabian Sea near Dandi Village at Dahanu taluka in Thane district. MPCB has following monitoring location at Dandi creek under GEMS/MINARS programme. **Table 5.10** gives three years descriptive statistics for Dandi Creek for the years 2008, 2010 and 2011.

1. Dandi Creek (2799 145/SWMP)

- Station Details: Village-Dandi, Taluka-Palghar, District-Thane.
- **Pollution source**: Effluent discharge from MIDC Tarapur. Domestic sewage from nearby villages.

Table 5.10(a): Three years Descriptive Statistics for Dandi Creek

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2799	Mean	7.9	4.6	10.1	129.3	265.0	0.5	1.7
	Std.dev	0.25	0.71	3.85	120.98	146.88	0.60	0.81
	No of Samples	15	14	16	7	7	14	16
	% Exceedance	0.0	28.6	100.0	28.6	•	-	-

It was observed that pH was as per the CPCB standards. However, DO, BOD and FC exceeded the CPCB standards by 29,100 and 29% respectively. The exceedance could be due to the effluent discharge from MIDC Tarapur and domestic sewage from nearby villages.

Table 5.10(b): Water Ouality Index for Dandi Creek

-	\ /					
	Station Code	2007	2008	2009	2010	2011
Ī	2799		Bad		GE	MG

The data available was very less. Based on the available data the water quality indices varied between bad to good to excellent.

9. Ganapatipule

Ganapatipule is a small village in Ratnagiri district of Konkan region. Ganapatipule is a popular beach haven. MPCB has following monitoring location at Ganapatipule under GEMS/MINARS programme. **Table 5.11** gives four years descriptive statistics for Ganapatipule for the period 2008 to 2011.

1. Sea Water at Ganapatipule (2813/SWMP)

- Station Details: Village- Ganapatipule, Taluka-Ratnagiri, District- Ratnagiri
- Pollution source: Pollution due to domestic waste and other human activities

Table 5.11(a): Four years Descriptive Statistics for Sea water at Ganpatipule

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2813	Mean	7.0	6.0	2.4	2.2	58.4	0.5	3.7
	Std.dev	0.77	0.48	0.33	0.56	30.35	0.15	0.91
	No of Samples	29	25	28	24	28	25	27
	% Exceedance	34.5	0.0	7.1	0.0			

pH and BOD exceeded the CPCB standards by 35 and 7% respectively, whereas DO and FC were as per the standards.

Table 5.11(b): Water Quality Index for Ganpatipule

Station Code	2007	2008	2009	2010	2011
2813		GE	GE	GE	GE

The water quality indices evaluated for the available data set of Ganapatipule indicated that the water quality was good to excellent.

10. Gateway of India

Gateway of India is located in Apollo Bunder area in South Mumbai. MPCB has following monitoring location at Gateway of India under GEMS/MINARS programme. **Table 5.12** gives four years descriptive statistics for the years 2008-2011 for Gateway of India.

1. Sea Water at Gateway of India (2165/SWMP)

- Station Details: Village-Colaba, Taluka-Colaba, District-Mumbai
- Pollution sources: Tourist spot. Domestic pollution

Table 5.12(a): Four years Descriptive Statistics for Sea water at Gateway of India

Stn.Code	•	рĤ	DO	BOD	FC	TC	Ammonia	Nitrate
2165	Mean	7.7	4.6	10.6	550.3	743.7	0.4	1.4
	Std.dev	0.40	1.06	3.66	533.06	497.12	0.57	0.58
	No of Samples	34	32	32	30	27	31	34
	% Exceedance	0.0	37.5	100.0	83.3	-	-	-

It was observed that pH complied with the CPCB standards whereas non-compliance for DO, BOD and FC was 38%, 100% and 83% respectively. It could be due to the domestic waste and also the waste dumped by tourists.

Table 5.12(b): Water Quality Index for Gateway of India

Station Code	2007	2008	2009	2010	2011
2165		MG	Bad	MG	Bad

The water quality indices evaluated for the available data set showed that the water quality varied from bad to moderately good. It could be due to the domestic waste and the waste dumped by tourists.

11. Haji Ali

Haji Ali is in the Worli region of Mumbai. Near the heart of the city proper, the dargah is one of the most recognizable landmarks of Mumbai. MPCB has following monitoring location at Haji Ali under GEMS/MINARS programme. **Table 5.13** gives four years descriptive statistics for the years 2008-2011 for Haji Ali.

1. Sea water at Haji Ali (2810 /SWMP)

• Station Details: Village-Worli, Taluka-Worli, District-Mumbai

• Pollution source: Tourist spot. Domestic pollution

Table 5.13(a): Three years Descriptive Statistics for Sea water at Haji Ali

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2810	Mean	7.8	4.4	10.7	512.4	900.1	0.3	1.2
	Std.dev	0.39	1.33	4.30	478.58	453.63	0.36	0.72
	No of Samples	26	25	25	23	22	25	26
	% Exceedance	3.8	44.0	100.0	87.0	-	-	-

It was observed that pH was as per the CPCB standards for the available data set. However, DO, BOD and FC exceeded 44%, 100% and 87% respectively. It could be due to the domestic pollution and the waste dumped by tourists.

Table 5.13(b): Water Quality Index for Haji Ali

				<u> </u>	
Station Code	2007	2008	2009	2010	2011
2810		MG	Bad	Bad	Bad

The monthly water quality indices evaluated for the available data set of Sea water at Haji Ali showed that the water quality varied from very bad to moderately good. It could be due to the domestic waste and the waste dumped by tourists.

12. Juhu Beach

Juhu Beach is one of the most famous beaches in Mumbai. It is situated on the shores of Arabian Sea in Juhu suburb. There are three main entrances to the beach. One is from the Vile Parle side, another is from the Santacruz side and the third one is from the Andheri side. Many tourists make it a point to visit the beach when they come to Mumbai. MPCB has following monitoring location at Juhu Beach under GEMS/MINARS programme. **Table 5.14** gives four years descriptive statistics for the years 2008 to 2011 for Juhu Beach.

1. Sea water at Juhu Beach (2812/SWMP)

• Station Details: Village-Juhugaon, Taluka-Santacruz, District-Mumbai

Pollution sources: Tourist spot. Domestic pollution present

Table 5.14(a): Four years Descriptive Statistics for Sea water at Juhu Beach

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2812	Mean	7.9	4.6	11.0	204	321	0.2	1.0
	Std.dev	0.4	0.6	3.0	156.7	185.6	0.1	0.5
	No of Samples	18	16	18	14	14	15	16
	% Exceedance	0	13	100	64			

At Juhu Beach pH complied with the CPCB standards. However, DO, BOD and FC exceeded the standards by 13, 100 and 64% respectively. It could be due to the domestic pollution and waste dumped by tourists.

Table 5.14(b): Water Quality Index for Juhu Beach

Station Code	2007	2008	2009	2010	2011
2812		MG	Bad	Bad	Bad

The water quality indices evaluated for the available data set of Sea water at Juhu Beach showed that the water quality varied from bad to moderately good. It could be due to the domestic waste and the waste dumped by tourists.

13. Kharekuran Murbe Creek

MPCB has following monitoring location at Kharekuran Murbe Creek under GEMS/MINARS programme. **Table 5.15** gives three years descriptive statistics for Kharekuran Murbe Creek for the years 2008, 2010 and 2011.

1. Sea water at Kharekuran Murbe Creek (2798 /SWMP)

- Station Details: Village-Kharekuran, Taluka-Palghar, District-Thane
- Pollution source: Effluent discharge from MIDC Tarapur. Domestic sewage from nearby villages

Table 5.15(a): Two years Descriptive Statistics for Kharekuran Murbe Creek

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2798	Mean	7.7	5.0	10.8	142.9	337.5	0.8	1.9
	Std.dev	0.40	0.92	4.57	12.54	30.62	1.40	1.19
	No of Samples	16	14	16	7	6	16	15
	% Exceedance	0.0	7.1	100.0	100.0			

The descriptive statistics of Kharekuran Murbe Creek indicated that pH was as per the CPCB standards. DO, BOD and FC exceeded by 7,100 and 100% respectively. It could be due to effluent discharge from MIDC Tarapur and domestic sewage from nearby villages.

Table 5.15(b): Water Quality Index for Kharekuran Murbe Creek

Station Code	2007	2008	2009	2010	2011
2798			1	MG	MG

The data available for this site is scarce. The water quality indices could not be evaluated for 2007-2009. Water quality indices evaluated for 2010 and 2011 show that the water quality varied between bad to moderately good.

14. Kalwa creek

MPCB has following monitoring location at Kalwa Creek under GEMS/MINARS programme.

1. Sea Water at Kalwa Creek (2793 SWMP)

• Station Details: Kalwa

• Pollution source: Domestic effluent

Table 5.16(a): Four years Descriptive Statistics for Sea water at Kalwa Creek Sea face

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2793	Mean	7.4	4.7	8.6	638.9	902.6	0.9	2.4
	Std.dev	0.34	1.21	2.90	571.01	558.09	1.24	1.52
	No of Samples	20	21	20	19	19	19	21
	% Exceedance	0.0	38.1	100.0	78.9	-	-	

The descriptive statistic of Kalwa creek showed that pH was in compliance with CPCB standards. However, percentage exceedance for DO, BOD and FC were 38, 100 and 79% respectively. It could be due to the municipality effluents.

Table 5.16(b): Water Quality Index for Kalwa Creek Sea face

Station Code	2007	2008	2009	2010	2011
2793		MG	MG	MG	MG

The water quality indices evaluated for the period 2008 to 2011 for the available data set of Kalwa Creek indicated that the water quality varied from bad to excellent.

15. Karambhavane Creek

MPCB has following monitoring location at Karambhavane Creek under GEMS/MINARS programme.

1. Sea water at Karambhavane Creek (2804 /SWMP)

• Station Details: Village- Karambavane, Taluka-Chiplun, District- Ratnagiri

• **Pollution sources**: Industrial and domestic pollution

Table 5.17(a): Four years Descriptive Statistics for Karambhavane Creek

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2804	Mean	7.4	6.1	2.4	3.1	78.3	0.6	1.3
	Std.dev	0.58	1.08	0.59	1.03	28.91	0.21	1.16
	No of Samples	21	21	20	19	20	20	19
	% Exceedance	4.8	4.8	15.0	0.0		-	

It was observed that 95% pH and DO samples and 85% BOD samples were as per the SWII standards. Non compliance of few samples could be due to Industrial and domestic pollution.

Table 5.17(b): Water Quality Index for Karambhavane Creek

Station Code	2007	2008	2009	2010	2011
2804		GE	GE	GE	GE

The water quality indices evaluated for the available data set of Karambhavane Creek indicated that the water quality was good to excellent.

16. Mahim Creek

Mahim Creek (locally known as *Bandra ki Khadi*) is a creek in Mumbai, India. The Mithi River drains into the creek which drains into the Mahim Bay. The creek forms the boundary between the city and suburbs. The creek is swamped by mangroves and has a miniecosystem within it. The waters of the creek are foul smelling due to the dumping of untreated industrial effluents further upstream. In recent years, the mushrooming of slums around the waters has caused concern for the mangrove ecosystem, vital to the ecosystem of Mumbai. MPCB has following monitoring location at Mahim Creek under GEMS/MINARS programme. **Table 5.18** gives five years descriptive statistics for Karambhavane Creek for the period 2007-2011.

1. Mahim creek at Mahim Bay (1318/SWMP)

- Station Details: Village-Mahim, Taluka-Bandra, District- Mumbai
- Pollution source: Industrial and domestic pollution

Table 5.18(a): Five years Descriptive Statistics for Mahim Creek

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1318	Mean	7.8	4.0	28.3	660.4	1020.4	1.1	1.6
	Std.dev	0.50	1.55	52.37	678.37	651.02	1.76	0.78
	No of Samples	18	16	18	18	18	18	18
	% Exceedance	5.6	31.3	100.0	72.2	-	-	-

It was observed that pH, DO, BOD and FC exceeded by 6, 31, 100 and 72% respectively. It could be due to Industrial and domestic pollution.

Table 5.18(b): Water Quality Index for Mahim Creek

Station Code	2007	2008	2009	2010	2011
1318	Bad	MG	Bad	Bad	Bad

The water quality indices evaluated for the available data set of Mahim Creek indicated that the water quality varied from very bad to moderately good. The probable reason could be the industrial and domestic pollution.

17. Malabar Hill

MPCB has following monitoring location at Malabar Hill under GEMS/MINARS programme.

1. Sea water at Malabar Hill (2809 /SWMP).

- Station Details: Village-Walkeshwar, Taluka-Mumbai, District-Mumbai
- Pollution source: Tourist spot. Domestic pollution

Table 5.19(a): Four years Descriptive Statistics for Sea water at Malabar Hill

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2809	Mean	7.8	4.5	11.3	658.7	959.7	0.4	1.1
	Std.dev	0.37	1.07	4.37	571.36	493.47	1.02	0.68
	No of Samples	27	25	26	24	24	26	27
	% Exceedance	3.7	36.0	100.0	91.7	-	-	-

At Malabar Hill pH, DO, BOD and FC exceeded the standards by 4, 36, 100 and 92% respectively. This is due to domestic pollution from non-point sources.

Table 5.19(b): Water Quality Index for Malabar Hill

Station Code	2007	2008	2009	2010	2011
2809		Bad	Bad	Bad	Bad

The water quality indices evaluated for the available data set of Sea water at Malabar Hill indicated that the water quality varied from very bad to moderately good. The reason for such water quality could be the domestic pollution and the waste dumped by tourists.

18. Mandvi Bunder

Mandvi Bunder is located in Ratnagiri district. MPCB has following monitoring location at Mandvi Bunder under GEMS/MINARS programme.

1. Sea Water at Mandvi (2815 /SWMP)

- Station Details: Village- Sadanand Wadi, District-Ratnagiri
- **Pollution sources**: Fishing activity and domestic discharges

Table 5.20(a): Four years Descriptive Statistics for Sea water at Mandvi Bunder

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2815	Mean	7.2	5.9	2.5	2.2	60.3	0.6	3.3
	Std.dev	0.74	0.90	0.60	0.62	28.39	0.21	1.24
	No of Samples	31	30	30	29	30	29	29
	% Exceedance	29.0	6.7	6.7	0.0	-	-	-

For the available data set of Sea water at Mandavi Bunder, it was observed that pH showed 29% exceedance to CPCB standards whereas DO and BOD showed 7 % exceedance to standards. FC complied with the standards.

Table 5.20(b): Water Quality Index for Mandvi Bunder

Station Code	2007	2008	2009	2010	2011
2815		GE	GE	GE	GE

The water quality indices evaluated for the available data set of Sea water at Mandavi Bunder indicated that the water quality was good to excellent.

19. Nariman Point

Nariman point is located in south of Mumbai on Back Bay. MPCB has following monitoring location at Nariman Point under GEMS/MINARS programme.

1. Sea water at Nariman Point (2808 /SWMP)

Station Details: Village-Colaba, Taluka-Colaba, District-Mumbai

Pollution source: Tourist spot. Domestic pollution

Table 5.21(a): Four years Descriptive Statistics for Sea Water at Nariman Point

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2808	Mean	7.8	4.4	11.0	529.6	799.1	0.5	1.2
	Std.dev	0.36	1.07	4.03	507.89	515.78	1.01	0.73
	No of Samples	25	24	25	23	23	23	26
	% Exceedance	4.0	45.8	100.0	95.7	-	-	-

It was observed that pH, DO, BOD and FC exceeded the CPCB standards and the exceedance was 4, 46, 100 and 96% respectively. The reason for such high exceedance could be the presence of non point sources

Table 5.21(b): Water Quality Index for Nariman Point

Station Code	2007	2008	2009	2010	2011
2808		Bad	Bad	MG	Bad

The water quality indices evaluated for the available data of Sea water at Nariman point indicated that the water quality varied from very bad to moderately good. It could be due to the domestic pollution and the waste dumped by the tourists.

20. Navapur Sea

MPCB has following monitoring location at Navapur Sea in Thane region under GEMS/MINARS programme. **Table 5.22** gives two years descriptive statistics for Navapur Sea.

1. Navapur Sea (2807 /SWMP)

- Station Details: Village-Navapur, Taluka-Palghar, District-Thane
- Pollution sources: Effluent discharge from MIDC Tarapur. Domestic sewage from nearby villages

Table 5.22(a): Two years Descriptive Statistics for Navapur Sea

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2807	Mean	7.9	5.0	9.8	292.5	600.0	0.2	1.7
	Std.dev	0.19	0.92	4.44	257.04	448.01	0.29	0.87
	No of Samples	15	15	16	8	8	16	15
	% Exceedance	0.0	13.3	100.0	100.0	-	-	-

It was observed that pH was as per the CPCB standards. However DO, BOD and FC showed 13, 100 and 100% exceedance respectively. It could be due to effluent discharge from MIDC Tarapur and domestic sewage from nearby villages.

Table 5.22(b): Water Quality Index for Navapur Sea

Station Code	2007	2008	2009	2010	2011
2807				MG	MG

The water quality indices could not be evaluated for Navapur Sea for 2007, 2008 and 2009 due to insufficiency of data. Water quality evaluated for 2010 and 2011 showed that it varied between bad and moderately good.

21. Panvel Creek

MPCB has following monitoring location at Panvel Creek in Thane region under GEMS/MINARS programme. The data is limited. **Table 5.23** gives one year descriptive statistics for Panvel Creek for the year 2011.

1. Panvel Creek (2803 /SWMP)

- Station Details: Village-Kopra, Tal. Panvel, Dist. Thane
- Pollution sources: Domestic sewage from nearby villages

Table 5.23(a): One year Descriptive Statistics for Panvel Creek

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2803	Mean	7.3	3.8	9.7	158.6	464.3	0.1	1.8
	Std.dev	0.30	1.71	2.60	66.19	106.90	0.09	1.26
	No of Samples	7	7	6	7	7	6	7
	% Exceedance	0.0	42.9	100.0	100.0	•	•	•

It was observed that pH was as per the CPCB standards whereas 43, 100 and 100% exceedance was observed for DO, BOD and FC respectively.

Table 5.23(b): Water Quality Index for Panvel Creek

Station Code	2007	2008	2009	2010	2011
2803					MG

For 2011 the water quality was bad to moderately good.

22. Sarwalli Creek

MPCB has following monitoring location at Sarwali Creek in Thane region under GEMS/MINARS programme. **Table 5.24** gives three years descriptive statistics for Sarvalli Creek for the years 2008, 2010 and 2011. The data is limited.

1. Sarwalli Creek (2800 /SWMP)

- Station Details: Village-Sarwalli, Taluka-Palghar, District-Thane
- Pollution source: Effluent discharge from MIDC Tarapur. Domestic sewage from nearby villages

Table 5.24(a): Two years Descriptive Statistics for Sarwalli Creek

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2800	Mean	7.7	4.8	9.2	413.1	750.0	0.1	2.0
	Std.dev	0.31	1.41	3.84	195.17	187.08	0.14	1.61
	No of Samples	16	15	16	8	7	15	16
	% Exceedance	0.0	26.7	100.0	87.5	-	-	-

It was observed that pH was as per the CPCB standards whereas 27, 100 and 88% % exceedance was there for DO, BOD and FC respectively. It could be due to effluent discharge from MIDC Tarapur and domestic sewage from nearby villages.

Table 5.24(b): Water Quality Index for Sarwalli Creek

Station Code	2007	2008	2009	2010	2011
2800				MG	MG

The water quality indices could not be evaluated for Sarvalli Creek for 2007, 2008 and 2009 due to insufficient data. For 2010 and 2011 the water quality was moderately good.

23. Savta Creek

MPCB has following monitoring location at Savta Creek in Thane Region under GEMS/MINARS programme. **Table 5.25** gives four years descriptive statistics for Savta Creek for the period 2008 to 2011.

1. Savta Creek (2801 /SWMP)

- Station Details: Village-Savta, Taluka-Dahanu, District-Thane
- Pollution source: No polluting industries nearby. Intake point of Thermal Power Plant

Table 5.25(a): Four years Descriptive Statistics for Savta Creek

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2801	Mean	8.1	5.4	8.5	124.1	370.6	0.2	0.7
	Std.dev	0.29	1.22	3.98	52.42	121.59	0.16	0.50
	No of Samples	23	25	25	17	17	22	24
	% Exceedance	4.3	16.0	100.0	58.8	-	-	-

All the parameters i.e. pH, DO, BOD and FC exceeded the CPCB standards and the exceedance was 4, 16, 100 and 59% respectively. It could be due to waste released from Thermal Power Plant.

Table 5.25(b): Water Quality Index for Savta Creek

Station Code	2007	2008	2009	2010	2011
2801		MG	MG	MG	MG

The monthly water quality indices evaluated for the available data set of Savta creek indicated that the water quality varied from bad to excellent. The probable reason for decreased water quality could be the waste released from Thermal Power Plant.

24. Thane Creek

MPCB has one monitoring location at Thane creek under GEMS/MINARS programme. **Table 5.26** gives five years descriptive statistics for Thane Creek.

1. Thane creek at Elephanta Island (1317/NWMP).

- Station Details: Elephanta Island, Mumbai
- **Pollution sources**: Domestic and industrial waste from Mumbai, and surrounding areas are discharged. Human activities such as fishing, boating etc

Table 5.26(a): Two years Descriptive Statistics for Thane Creek

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
1317	Mean	7.8	5.0	10.1	493.1	742.8	0.2	1.3
	Std.dev	0.28	0.99	2.57	644.69	630.12	0.15	0.67
	No of Samples	19	7	18	19	19	18	18
	% Exceedance	0.0	14.3	100.0	63.2	-	-	-

It was observed that pH complied with CPCB standards.. However, exceedance for DO, BOD and FC was 14, 100 and 63% respectively. Human activities such as fishing, boating etc. at the island could be the reason for exceedance.

Table 5.26(b): Water Quality Index for Thane Creek

Station Code	2007	2008	2009	2010	2011
1317				Bad	Bad

Water quality data for 2007 to 2009 being insufficient, WQI could not be evaluated for this period. The water quality indices evaluated for 2010 and 2011 indicated that the water quality varied from bad to moderately good. The probable reason for bad water quality could be the human activities and discharge of domestic and industrial waste from Mumbai, and surrounding areas.

25. Ulhas Creek

MPCB has following five monitoring locations at Ulhas Creek under GEMS/MINARS programme. **Table 5.27** gives four years descriptive statistics for Ulhas Creek for the period 2008 to 2011.

1. Ulhas Creek at Reti Bunder at D/s of Kalyan- Bhiwandi bridge (2791 /SWMP).

- Station Details: Village-Kalyan, Taluka-Kalyan, District-Thane
- Pollution source: Domestic and industrial effluent from Badlapur, Ambernath and Ulhas nagar

2. Ulhas Creek at Mumbra Reti Bunder (2792 /SWMP)

- Station Details: Village-Mumbra, Taluka-Thane, District-Thane
- Pollution source: No Polluting industries nearby. Domestic pollution present.

3. Ulhas Creek at Kolshet Reti Bunder (2794 /SWMP)

- Station Details: Village-Kolshet, Taluka-Thane, District-Thane
- Pollution source: Industries are 1-2 km away. Industrial effluents from Kolshet, Dhokali area are discharged through nalla. Sandoz nalla meets here.

4. Ulhas Creek at Gaimukh at Nagla Bunder on Ghod Buder road (2795 /SWMP)

- Station Details: Village-Nagla, Taluka-Thane, District-Thane
- Pollution source: Industries are 1-2 km away. No approach nalla here

5. Ulhas Creek at Versova bridge (2796 /SWMP)

- Station Details: Village-Versova, Taluka-Vasai, District-Thane
- Pollution source: Industrial effluent from Kalyan, Ambernath & Thane

Table 5.27(a): Four years Descriptive Statistics for Ulhas Creek

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2791	Mean	7.4	4.5	9.1	1580.0	1760.0	0.8	2.1
	Std.dev	0.44	1.86	4.99	389.87	89.44	1.42	1.74
(2011)	No of Samples	14	14	13	5	5	12	14
	% Exceedance	0.0	35.7	100.0	100.0	•	•	•
2792	Mean	7.5	5.0	8.2	476.7	748.9	0.4	2.2
	Std.dev	0.22	1.27	1.97	534.97	613.04	0.48	1.82
	No of Samples	24	25	24	23	23	24	25
	% Exceedance	0.0	28.0	100.0	87.0	•	ı	•
2794	Mean	7.5	4.8	8.9	763.1	947.2	0.4	2.4
	Std.dev	0.27	1.07	2.89	693.57	657.49	0.48	1.69
	No of Samples	24	25	25	23	23	23	24
	% Exceedance	0.0	24.0	100.0	82.6	•	ı	•
2795	Mean	7.5	4.8	9.5	280.1	581.1	0.2	2.8
	Std.dev	0.25	1.29	3.16	161.87	276.47	0.15	1.81
	No of Samples	22	23	23	22	22	22	23
	% Exceedance	0.0	26.1	100.0	90.9	•	•	•
2796	Mean	7.6	4.7	9.7	502.2	737.2	0.2	2.4
	Std.dev	0.29	1.36	4.11	538.65	551.42	0.20	1.34
	No of Samples	23	23	21	22	22	21	23
	% Exceedance	0.0	26.1	100.0	86.4	-	-	-

The descriptive statistics of the stations of Ulhas creek showed that pH complied with the CPCB standards at all the stations. DO and FC exceeded in the range of 24-36% and 83 -

100% respectively at all the stations. BOD exceedance was 100% at all the stations. The reason for this exceedance could be the domestic and industrial effluents discharged from Thane, Kalyan, Ulhasnagar, Ambernath and Badlapur areas.

Table 5.27(b): Water Quality Index for Ulhas Creek

Station Code	2007	2008	2009	2010	2011
2791			-		Bad
2792		MG	MG	MG	MG
2794		MG	MG	MG	Bad
2795		MG	MG	MG	MG
2796		MG	Bad	MG	MG

At Reti Bunder at D/s of Kalyan- Bhiwandi Bridge WQI could not be evaluated for 2007-2011 as data was not available for this period. At Mumbra Reti Bunder and Gaimukh at Nagla Bunder water quality was moderately good At Kolshet Reti Bunder and Versova bridge water quality varied between bad to moderately good.

26. Uttan Sea

Uttan Beach is located in Uttan village approximately 7-8 kilometers from the city of Bhayander. MPCB has following monitoring location at Uttan Sea under GEMS/MINARS programme. **Table 5.28** gives four years descriptive statistics for Uttan Sea for the period 2008 to 2011.

1. Uttan Sea at Bhayander (2806 /SWMP)

- Station Details: Village-Uttan, Taluka-Bhayander, District-Thane
- Pollution source: Domestic effluent from nearby villages. Fishing activity prevalent

Table 5.28(a): Four years Descriptive Statistics for Uttan Sea

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2806	Mean	8.0	4.7	10.1	210.6	543.6	0.1	1.7
	Std.dev	0.22	0.87	3.71	166.44	393.84	0.13	0.91
	No of Samples	22	23	23	19	20	22	23
	% Exceedance	0.0	30.4	100.0	84.2			

It was observed that pH complied with the CPCB standards. However, exceedance for DO, BOD and FC was 30, 100 and 84% respectively. The exceedance could be due to domestic effluents from nearby villages and prevailing Fishing activity.

Table 5.28(b): Water Quality Index for Uttan Sea

Station Code	2007	2008	2009	2010	2011
2806		MG	Bad	MG	Bad

The water quality indices evaluated for the available data set of Uttan Sea indicated that the water quality was bad to moderately good. It could be due to domestic effluents from nearby villages and prevailing Fishing activity

27. Vashi Creek

MPCB has following monitoring location at Vashi Creek under GEMS/MINARS programme. **Table 5.29** gives four years descriptive statistics for Versova Beach for 2008-2011.

1. Vashi Creek at Airoli bridge (2184/SWMP)

- Station Details: Village-Airoli, Taluka-Thane, District-Thane
- **Pollution sources**: Industries 1.5 km away. Domestic pollution from nearby residential area

2. Vashi Creek at Vashi bridge (2185/SWMP)

- Station Details: Village-Airoli, Taluka-Thane, District-Thane
- Pollution sources: MIDC, TTC effluent disposal point

Table 5.29(a): Four years Descriptive Statistics for Vashi Creek

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2184	Mean	7.7	4.7	9.9	298.7	666.1	0.3	1.8
	Std.dev	0.38	1.04	3.77	334.94	511.38	0.40	0.86
	No of Samples	28	29	29	26	27	28	28
	% Exceedance	0.0	34.5	100.0	84.6	-	-	-
2185	Mean	7.6	4.4	10.9	282.5	599.8	0.2	1.8
	Std.dev	0.27	0.79	3.25	226.56	422.93	0.24	0.67
	No of Samples	28	26	28	26	26	25	27
	% Exceedance	0.0	38.5	100.0	73.1	-	-	-

Exceedance for DO was 35 and 39% at Airoli Bridge and Vashi Bridge respectively. Exceedance for FC was 85 and 73% at Airoli Bridge and Vashi Bridge respectively. Also, 100% exceedance was observed for BOD at both the stations. It could be due to MIDC, TTC effluents and domestic non point sources from nearby residential areas.

Table 5.29(b): Water Quality Index for Vashi Creek

Station Code	2007	2008	2009	2010	2011
2184		MG	MG	MG	Bad
2185		Bad	MG	MG	Bad

The monthly water quality indices evaluated for the available data set of Vashi Creek at Airoli Bridge indicated that the water quality varied from bad to excellent. The water quality indices evaluated for Vashi Creek at Vashi Bridge indicated that the water quality varied from bad to moderately good. It could be due to MIDC, TTC effluents and domestic pollution from nearby residential areas. The annual WQI showed that the water quality at both the sites varied between where moderately good to bad.

28. Versova Beach

The Versova Beach is located North of Juhu Beach in Greater Mumbai and faces the Arabian Sea. Versova Beach is among Mumbai's hot attractions. As a continuation of Juhu

Beach, is separated by a creek. It is also home to Mumbai's largest fishing community - the Kolis. MPCB has following monitoring location at Versova beach under GEMS/MINARS programme. **Table 5.30** gives four years descriptive statistics for Versova Beach for 2008-2011.

1. Sea Water at Versova beach (2169/SWMP)

- Station Details: Village-Versova, Taluka-Andheri, District-Mumbai
- Pollution source: Domestic pollution. Fishing activity

Table 5.30(a): Four years Descriptive Statistics for Sea water at Versova

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2169	Mean	7.8	4.4	11.1	488.5	672.5	0.3	1.2
	Std.dev	0.34	0.84	3.58	635.73	675.45	0.33	0.72
	No of Samples	34	32	33	32	31	33	34
	% Exceedance	0.0	28.1	100.0	56.3	-	-	-

It was observed that pH complied with the CPCB standards. However, DO, BOD and FC showed exceedance of 28, 100 and 56% respectively. It could be due to domestic pollution and fishing activity at the Versova Beach.

Table 5.30(b): Water Quality Index for Versova

Station Code	2007	2008	2009	2010	2011
2169		MG	MG	MG	VB

The water quality of Versova beach in 2008 to 2010 was moderately good but in 2011 it deteriorated to very bad. The reason for this could be the domestic pollution at the Versova Beach.

29. Worli Seaface

Worli is a part of South Mumbai bounded by the Arabian Sea to the west. The Worli Seaface is a major residential area extending from Worli Fort in the north to Narayan Pujari Nagar in the south. Worli Seaface has been a very pretty landmark for Mumbai so it has become a tourist spot. MPCB has following monitoring location at Worli Seaface under GEMS/MINARS programme. **Table 5.31** gives three years descriptive statistics for Worli Seaface.

1. Sea Water at Worli Seaface (2167/SWMP)

- Station Details: Village-Worli, Taluka-Worli, District-Mumbai
- Pollution source: Tourist spot. Domestic effluent from Worli Dairy. Large scale industries nearby

Table 5.31(a): Four years Descriptive Statistics for Sea water at Worli Seaface

Stn.Code		pН	DO	BOD	FC	TC	Ammonia	Nitrate
2167	Mean	7.7	4.9	12.5	489.9	772.2	0.3	1.3
	Std.dev	0.32	0.97	12.51	478.78	540.40	0.65	0.62
	No of Samples	35	32	34	32	30	30	34
	% Exceedance	0.0	18.8	100.0	81.3	-		

The descriptive statistic of Worli Seaface showed that pH was in compliance with CPCB standards. However, % exceedance for DO was 19, 100 and 81% respectively. It could be due to the effluents from Worli Dairy and Large scale industries situated nearby.

Table 5.31(b): Water Quality Index for Worli Seaface

Station Code	2007	2008	2009	2010	2011
2167	-	MG	MG	MG	Bad

The water quality indices evaluated for the available data set of Worli Seaface indicated that the water quality varied from bad to moderately good. The reason for this may be the effluents from Worli Dairy and Large scale industries situated nearby.

Evaluation of Groundwater Quality

6.1 Ground Water Monitoring in Maharashtra

Groundwater contamination occurs due to either natural causes or anthropogenic activities. It needs regular monitoring to device ways and means to protect it. Groundwater Survey and Development Agency (GSDA), Central Ground Water Board (CGWB) and MPCB conduct groundwater quality monitoring in various Districts of Maharashtra. It involves identification of major pollutants and confirmation of suitability of groundwater for human consumption.

6.2 Sources of Pollution in Ground Water

pH: Low pH is one of the common problems of ground water. The primary cause of low pH is addition of acidic rain water. Other ions found in ground water such as nitrates and sulfates may result in lower pH. The negative effects of acidic water are many. Highly acidic water may result in pipe corrosion, release of iron, lead, or copper into the tap water. A low pH may discolor the water and give it a bitter taste.

TDS: Total dissolved solids (TDS) is defined as the concentration of all dissolved minerals in water. The results of early epidemiological studies suggest that even low concentrations of TDS in drinking-water may have beneficial effects, although adverse effects have been reported in two limited investigations. Water containing TDS concentrations below 1000 mg/litre is usually acceptable to consumers, although acceptability may vary according to circumstances (WHO/SDE/WSH/03.04/16). BIS desirable limit for TDS is 500 mg/l whereas permissible limit is 2000 mg/l. The presence of high levels of TDS in water may be objectionable to consumers owing to the resulting taste and to excessive scaling in water pipes, heaters, boilers, and household appliances. Sources for TDS include agricultural runoff, urban run-off, industrial wastewater, sewage, and natural sources such as leaves, silt, plankton, and rocks.

Hardness: Hardness of water is related to presence of Ca⁺ and Mg⁺ in water basically depending on soil type of that area. No evidence is available to document harm to human health from harder drinking water. Perhaps only high magnesium content (hundreds of mg/l) coupled with a high sulphate content may cause diarrhea. In areas supplied with drinking water harder than 500 mg/l CaCO₃, higher incidence rates of gallbladder disease, urinary stones, arthritis and arthropathies as compared with those supplied with softer water were reported (*Muzalevskaya et al., 1993*). An epidemiological study carried out in a particular region (Tambov) found hard water (more than 400-500 mg/l of CaCO₃) to be possible cause

of higher incidence rates of some diseases including cancer (*Golubev et al.*, 1994). (http://www.lenntech.com/health-risks-demineralized-water.htm#ixzz2psvEbb3A). Hardness in groundwater naturally occurs from weathering of limestone, sedimentary rocks and calcium bearing minerals. Hardness can also occur locally in groundwater from chemical and mining industry effluent.

Sulphate (SO₄⁻²): The existing data do not identify a level of sulfate in drinking-water that is likely to cause adverse human health effects. The data from the liquid diet piglet study and from tap water studies with human volunteers indicate a laxative effect at concentrations of 1000–1200 mg/litre, but no increase in diarrhea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste; the lowest taste threshold concentration for sulfate is approximately 250 mg/litre as the sodium salt. Sulfate may also contribute to the corrosion of distribution systems. In the light of the above considerations, no health-based guideline value for sulfate in drinking water is proposed. However, there is an increasing likelihood of complaints arising from a noticeable taste as concentrations in water increase above 500 mg/litre. (WHO/SDE/WSH/03.04/114). Sulphate can be found in almost all natural water. The origin of most Sulphate compounds is oxidation of sulfite ores, presence of shales, or the industrial wastes. Excess sulphate in water could be due to soil type as some soils contain sulphite minerals. As groundwater moves through these, some of the sulphate is dissolved into the water. Some minerals that contain Sulphate are Sodium Sulphate (Glauber's salt), Magnesium Sulphate (Epsom salt), and Calcium Sulphate (gypsum).

Fluoride (F): Fluoride has beneficial effects on teeth at low concentrations in drinking water but excessive exposure to fluoride in drinking water can give rise to a number of adverse effects. These range from mild dental fluorosis to crippling skeletal fluorosis as the level and period of exposure increases. Fluoride is a common constituent of groundwater. Natural sources are connected to various types of rocks. Agricultural (use of phosphatic fertilizers) and industrial activities (clays used in ceramic industries or burning of coals) also contribute to high fluoride concentrations in groundwater. During weathering and circulation of water in rocks and soils, fluorine can be leached out and dissolved in groundwater and thermal gases. The fluoride content of groundwater varies greatly depending on the geological settings and type of rocks. The most common fluorine-bearing minerals are fluorite, apatite and micas. Therefore, fluoride problems tend to occur in places where these minerals are most abundant in rocks.

Nitrate (NO_3): Nitrate levels above the BIS drinking water quality standard of 45 mg/l may cause methemoglobinemia in infants. Proper management of fertilizers, manures, and other

nitrogen sources can minimize contamination of drinking water supplies. The formation of nitrates is an integral part of the nitrogen cycle in our environment. In moderate amounts, nitrate is a harmless constituent of food and water. Plants use nitrates from the soil to satisfy nutrient requirements and may accumulate nitrate in their leaves and stems. Due to its high mobility, nitrate also can leach into groundwater. Nitrates form when microorganisms break down fertilizers, decaying plants, manures or other organic residues. Usually plants take up these nitrates, but sometimes rain or irrigation water can leach them into groundwater. Although nitrate occurs naturally in some groundwater, in most cases higher levels are thought to result from human activities. Common sources of nitrate include: fertilizers and manure, animal feedlots, municipal wastewater and sludge, septic systems, N-fixation from atmosphere by legumes and bacteria.

Chloride (Cl⁻): The concentration of Chlorine is high in the regions of high temperature and less rainfall. Soil porosity and permeability can build up chloride ions in water.

Micro-organisms- Microorganisms, more specifically bacteria, can be found virtually in any water sample. Most microorganisms contained within normal well water supplies do not pose a threat to human health. Bacteria are generally introduced into a well by foreign means. Bacteria thrive in environments which contain iron, nitrogen, or sulfur compounds. Sources of these compounds may be derived from sewage, animal manure, and leaky septic systems. Well water serves as excellent living environment for bacteria. Wells high in nitrate (>10 mg/L) and sulfate levels should be bacteriologically tested. Bacteria can convert nitrate in water to the more dangerous nitrite. Water rich in sulfur could contain bacteria which may convert sulfate ions to potentially toxic sulfide ions.

6.3 Ground Water Network

The number of ground water monitoring stations (villages) in each Taluka is listed in **Table 6.1.**

Table 6.1: Number of Ground Water Monitoring Stations in Each Taluka

Sr.	District	Talukas (No. of Villages Monitored)
1	Ahmednagar	Ahmednagar (21), Akole (11), Jamkhed (7), Karjat (11), Kopargaon (16),
	(167)	Newasa (18), Parner (11), Rahata (1), Rahuri (14), Sangamner (16),
		Shevgaon (11), Shrigonda (14), Srirampur (15), Pathardi (1)
2	Akola	Akola (29), Akot (23), Balapur (10), Barshi Takli (11), Murtizapur (11),
	(104)	Patur (11), Telhara (9)
3	Amravati	Achalpur (2), Amravati (13), Anjangaon Surji (4), Bhatkuli (17),
	(183)	Chandurbazar (9), Chandur Railway (9), Chikhaldara (15), Daryapur (16),
		Dhamangaon railway (8), Dharni (26), Morshi (18),
		Nandgaon khandeshwar (17), Tiwasa (4), Warud (25)

 $Table \ 6.1 \ (Contd..): Number \ of \ Ground \ Water \ Monitoring \ Stations \ in \ Each \ Taluka$

Sr.	District	Talukas (No. of Villages Monitored)
4	Aurangabad	Aurangabad (14), Kannad (12), Khultabad (8), Paithan (13), Phulambri
	(96)	(9), Sillod (13), Soygaon (6), Vaijapur (10), Gangapur (11)
5	Beed	Ambejogai (7), Ashti (11), Beed (7), Dharur (3), Gewrai (10), Kej (3),
	(67)	Majalgaon (8), Parli (6), Patoda (7), Shirur Kasar (3), Wadwani (2)
6	Bhandara	Bhandara (12),Lakhandur (6), Lakhani (2), Mohadi (11), Pauni (12),
	(68)	Sakoli (12), Tumsar (13)
7	Buldhana	Buldhana (10), Chikhali (11), Jalgaon jamod (5), Khamgaon (15),
	(139)	Lonar (13), Malkapur (6), Mehkar (12), Motala (11), Nandura (12),
		Sangrampur (11), Shegaon (14), Sindhkhedraja (10), Deolgaonraja (9)
8	Chandrapur	Ballarpur (3), Bhadrawati (7), Brahmapur (7), Chandrapur (19),
	(113)	Chimur (14), Gondpipri (6), Jiwati (1), Korapna (1), Mul (11), Nagbhid
		(8), Rajura (14), Pombhurna (1), Sawali (1), Sindewahi (13), Waroda (7)
9	Dhule (100)	Dhule (27), Sakri (18), Shirpur (26), Sindkheda (29)
10	Gadchiroli	Aheri (16), Armori (8), Bhamragarh (5), Chamorshi (11),
	(117)	Desaiganj/Wadsa (5), Dhanora (12), Etapalli (12), Gadchiroli (14),
		Korchi (9), Kurkheda (15), Mulchera (6), Sironcha (4)
11	Gondia	Amgaon (7), Arjuni Moregaon (12), Deori (10), Gondia (14), Goregaon
	(68)	(1), Sadak Arjuni (6), Salekasa (6), Tiroda (12)
12	Hingoli	Aundha-Nag (4), Basmatnagar (10), Hingoli (9), Sengaon (3),
	(31)	Kalmnuri (5)
13	Jalgaon	Amalner (11), Bhadgaon (6), Bhusawal (3), Bodwad (1), Chalisgaon (12),
	(120)	Chopda (11), Dharangaon (2), Erandol (13), Jalgaon (15), Jamner (5),
		Mukainagar (1), Parola (10), Pachora (7), Raver (11), Yaval (12)
14	Jalna	Ambad (13), Badnapur (12), Bhokardan (29), Ghansawangi (12),
	(116)	Jafrabad (17), Jalna (16), Mantha (9), Parthur (8)
15	Kolhapur	Ajra (8), Bhudargad (13), Chandgad (16), Gadinglaj (11), Gagan bauda
	(138)	(4), Hatkanangale (17), Kagal (12), Kolhapur (21), Panhala (7),
1.5	-	Radhanagari (9), Shahuwadi (8), Shirol (12)
16	Latur	Ahmadpur (13), Ausa (17), Chakur (11), Jalkot (2), Latur (16), Mahroli
	(95)	(Chemur) (1), Nilganga (14), Renapur (7), Udgir (9), Deoni (3),
17	Month	Shirur Anantpal (3)
17	Mumbai	City & Suburban: Borivali (1), Goregaon East (1), Kurla(1), Mahroli
	(8)	Chembur (1), Church Gate (1), Colaba (Dandi) (1), Deulwadi (1),
18	Nagpur	Mahim (1) Bhivapur (7), Hingna (9), Kalmeshwar (9), Kamptee (8), Kuhi (5),
10	(124)	Mouda (6), Nagpur (23), Narkhed (11), Parseoni (11), Ramtek (9),
	(124)	Saoner (11), Umred (7), Katol (5), Nagpur Rural (3)
19	Nanded	Ardhapur (3), Bhokar (6), Biloli (1), Deglur (8), Dharmabad (4), Mahur
17	(106)	(3), Hadgaon (12), Himayat nagar (4), Kinmat (15), Kandhar (9), Mukhed
	(100)	(11), Mudkhed (2), Nanded (12), Naigaon (6), Loha (5), Umri (5)
20	Nandurbar	Akkalkuva (7), Dhadgaon (5), Nandurbar (16), Nawapur (15),
	(63)	Shahada (14), Taloda (6)
21	Nasik	Baglan (13), Chandwad (7), Deola (2), Dindori (14), Igatpuri (10),
	(174)	Kalwan (11), Malegaon (19), Nandgaon (17), Nasik (25), Niphad (19),
		Peinth (5), Satana (3), Sinnar (14), Surgana (3), Trimbakeshwar (3),
		Yeola (9)
22	Osmanabad	Bhum (5), Kalambh (14), Lohara (1), Omerga (13), Osmanabad (21),
	(76)	Paranda (8), Tuljapur (14)

Table 6.1 (Contd..): Number of Ground Water Monitoring Stations in Each Taluka

Sr.	District	Talukas (No. of Villages Monitored)
23	Parbhani	Gangakhed (12), Jintur (11), Manwat (2), Palam (6), Parbhani (16),
	(68)	Pathari (8), Purna (4), Selu (7), Sonpeth (2),
24	Pune	Ambegaon (7), Baramati (17), Bhor (3), Daund (12), Pune Haveli (19),
	(148)	Indapur (16), Junnar (15), Mawal (6), Mulshi (7), Purandar (13),
		Rajgurnagar(Khed) (12), Shirur (19), Wadgaon (1), Wehle (1)
25	Raigad	Alibag (14), Karjat (13), Khalapur (5), Mahad (12), Mangaon (5),
	(113)	Mhasala (15), Murud (6), Panvel (10), Pen (9), Poladpur (2), Raigad (3),
		Roha (7), Sudhagad (3), Shrivardhan (4), Tala (2), Uran (3)
26	Ratnagiri	Chiplun (20), Dapoli (11), Guhagar (17), Khed (20), Lanja (3),
	(133)	Mandangarh (5), Rajapur (25), Ratnagiri (19), Sangameshwar (13)
27	Sangli	Atpadi (18), Islampur (1), Jath (23), Kadegaon (6), Kavathemahankal
	(148)	(17), Khanapur (21), Miraj (21), Palus (4), Shirala (10), Tasgaon (9),
		Walwa (18)
28	Satara	Javali (2), Karad (18), Khandala (9), Khatav (19), Koregaon (11),
	(146)	Mahabaleshwar (3),Man-dahivadi (19), Medha (2), Patan (16),
		Phaltan (16), Satara (22), Wai (9)
29	Sindhudurg	Devgad (13), Dodamarg (11), Kankavali (14), Kudal (18), Malvan (15),
	(105)	Sawantwadi (11), Vaibhavwadi (8), Vengurla (15)
30	Solapur	Akkalkot (4), Barshi (6), Karmala (3), Madha (3), Malshiras (6),
	(48)	Mangalvedhe (4), Mohol (4), North Solapur (4), Pandharpur (7),
		Sangola (3), Solapur (3), South Solapur (1)
	Thane	Ambernath (4), Bhiwandi (14), Dahanu (12), Jawhar (7), Kalyan (4),
31	(137)	Mokhada (6), Murbad (7), Murud (6), Palghar (17), Shahapur (12),
		Thane (14), Talasari (5), Ulhasnagar (4), Vasai (15), Wada (10)
32	Wardha	Arvi (15), Ashti (11), Deoli (13), Hinganghat (18), Karanja (8),
	(128)	Samudrapur (18), Seloo (28), Wardha (17)
33	Washim	Karanja (12), Mangrulpir (8), Malegaon (9), Manora (8), Risod (17),
	(67)	Washim (13)
34	Yavatmal	Arni (15), Babhulgaon (15), Darwha (12), Digras (11), Ghatanji (11),
	(180)	Kalamb (16), Kelapur (13), Mahagaon (6), Maregaon (4), Ner (11),
		Pusad (9), Ralegaon (11), Umarkhed (12), Wani (13),
		Yavatmal (11), Zari Jamni (10)

6.3.1 Summary Observations

During 2007 to 2009 some of the talukas in Akola, Amravati, Buldhana, Washim and Yavatmal districts do not have concentrations of Fe; which was available for 2010 and 2011; accordingly data sets were arranged and water quality indices calculated. We observe that out of 369 Talukas there are 36 Talukas in Maharashtra where water quality is within permissible limits i.e. pH, Total Dissolved solids, Total hardness, Fluoride and Nitrate do not exceed the standards throughout the study period i.e. 2007 to 2011. Table 6.2 gives the list of these Talukas. Theses 36 Talukas with good ground water include 9 Talukas in Raigad, 5 Talukas in Mumbai and 4 Talukas in Kolhapur district, 3 Talukas in Chandrapur and Ratnagiri.

Table 6.2: Talukas in Maharashtra With No Exceedance for Selected Parameters

Sr.	District	Taluka	Sr.	District	Taluka
1	Ahmednagar	Pathardi	19		Khalapur
2	Beed	Ambejogai	20		Panvel
3	Chandran.	Jiwati	21		Poladpur
4	Chandrapur	Pombhurna	22	D : 1	Raigad
5		Korapna	23	Raigad	Roha
6	Gondia	Goregaon	24		Sudhagad
7	Gadchiroli	Bhamragarh	25		Shrivardhan
8		Gaganbawada	26		Tala
9	Kolhapur	Panhala	27		Uran
10		Radhanagari	28	D atm a aini	Chipalun
11		Shahuwadi	29	Ratnagiri	Mandangarh
12		Kurla	30		Lanja
13	N/Ll	Church Gate	31	Sangli	Walwa
14	Mumbai	Deulwadi	32	Satara	Mahabaleshwar
15		Mahim	33		Medha
16		Mahroli (Chembur)	34	Sindhudurg	Devagad
17	Nagpur	Umred	35	Thane	Wada
18	Nanded	Biloli	36		Talasari

We observe that out of 369 Talukas, in 76 Talukas in Maharashtra, Total Hardness and Nitrate exceed BIS permissible limits 100% of the time during 2007 to 2011. Table 6.3 gives the name and district of these Talukas. It is observed that NO₃ in ground water exceed the permissible limit of 45 mg/l in 3 Talukas in Maharashtra 100% of the time. Total Hardness in ground water exceeds the permissible limit of 600 mg/l; 100% of the time in 74 Talukas in Maharashtra. TDS, pH and F do not exceed 100% of the time in any Taluka.

Table 6.3: Talukas in Maharashtra with 100% Exceedance for Selected Parameters

Sr.	District	Taluka	pН	TDS	TH	F	NO_3
1	Ahmednagar	Hahata	0	0	100	0	100
2	Jalgaon	Dharangaon	0	0	20	0	100
3		Bodwad	0	0	0	0	100
4		Dhadgaon	35	0	100	0	0
5		Shahada	25	25	100	0	0
6	Nandurbar	Akkalkuva	25	17	100	0	0
7		Nandurbar	14	39	100	0	10
8		Navapur	13	9	100	0	7
9		Taloda	12	6	100	0	0
10	Nasik	Yeola	53	35	100	6	12
11		Surgana	50	0	100	0	0

Table 6.3 (Contd..): Talukas in Maharashtra with 100% Exceedance

Sr.	District	Taluka	pН	TDS	TH	F	NO_3
12		Kalwan	46	21	100	0	0
13		Nandgaon	38	62	100	3	10
14		Deola	33	83	100	17	17
15		Sinnar	30	63	100	3	8
16		Peinth	29	0	100	0	0
17		Baglan	27	46	100	2	2
18	Nasik	Chandwad	27	13	100	0	0
19	(Contd)	Igatpuri	26	5	100	0	0
20		Niphad	22	59	100	7	20
21		Malegaon	16	63	100	3	3
22		Dindori	16	9	100	6	3
23		Nasik	14	32	100	0	9
24		Satana	0	83	100	0	33
25		Trimbakeshwar	0	0	100	0	0
26		Paranda	40	30	100	10	20
27		Tuljapur	32	35	100	6	0
28		Kallam	28	24	100	0	7
29	Osmanabad	Omerga	26	16	100	6	5
30		Bhoom	25	17	100	0	8
31		Osmanabad	13	45	100	5	18
32		Lohara	0	0	100	0	33
33		Palam	14	71	100	14	7
34		Pathri	6	33	100	17	6
35		Gangakhed	4	29	100	17	0
36	5 11 .	Jintur	0	57	100	22	4
37	Parbhani	Manwat	0	50	100	33	33
38		Sonpeth	0	50	100	25	0
39		Parbhani	0	46	100	20	14
40		Selu	0	44	100	28	0
41		Purna	0	25	100	0	0
42		Indapur	36	48	100	0	31
43		Baramati	19	51	100	0	54
44		Ambegaon	16	37	100	0	47
45		Shirur	10	51	100	0	49
46		Daund	8	59	100	0	32
47	Pune	Pune (Haveli)	6	42	100	2	38
48		Junnar	5	18	100	0	20
49		Purandar	0	29	100	0	39
50		Khed	0	13	100	0	50
51		Bhor	0	0	100	0	33
52		Mawal	0	0	100	0	0
53		Mulshi	0	0	100	0	0

Table 6.3 (Contd..): Talukas in Maharashtra with 100% Exceedance

Sr.	District	Taluka	pН	TDS	TH	F	NO ₃
54	Pune	Wadgaon (Maval)	0	0	100	0	0
55	(Contd)	Wehle	0	0	100	0	0
56		Karanja	18	32	100	3	39
57	Washim	Manora	15	37	100	0	44
58	w asnim	Malegaon	14	49	100	0	49
59		Mangarulpir	10	33	100	0	43
60		Risod	8	89	100	1	62
61		Digras	9	55	100	0	42
62		Pusad	8	25	100	0	25
63		Zari Jamni	7	14	100	21	14
64		Wani	7	86	100	31	38
65		Ner	7	50	100	0	57
66		Umarkhed	4	48	100	0	39
67		Darwha	3	36	100	0	33
68	Yavatmal	Arni	0	52	100	0	48
69		Ralegaon	0	42	100	0	48
70		Kalamb	0	40	100	0	50
71		Bhabhulgaon	0	37	100	0	53
72		Yavatmal	0	33	100	0	39
73		Ghatanji	0	29	100	6	44
74		Pandharkawada(Kelapur)	0	26	100	3	32
75		Maregaon	0	25	100	0	25
76		Mahagaon	0	25	100	0	6

Table 6.4 gives the percent exceedances of all Talukas for selected parameters in ground water in Maharashtra.

Table 6.4: Percent Exceedance for Selected Parameters in Ground Water in Maharashtra

Sr.	District	Taluka	pН	TDS	TH	F	NO_3
		Ahmednagar	4	14	36	0	16
		Akole	12	6	24	0	24
		Jamkhed	9	0	9	9	9
		Karjat	0	9	22	4	26
		Kopargaon	12	12	24	3	18
		Newasa	9	13	38	0	23
1	Ahmadnagar	Parner	0	4	9	4	4
1	Ahmednagar	Pathardi	0	0	0	0	0
		Rahuri	19	23	32	0	21
		Hahata	0	0	100	0	100
		Sangamner	7	23	30	0	5
		Shevgaon	0	14	34	0	31
		Shrigonda	5	5	30	0	38
		Srirampur	14	6	18	0	0

Table 6.4 (Contd..): Percent Exceedance for Selected Parameters in Ground Water

Sr.	District	Taluka	pН	TDS	TH	F	NO_3
		Akola	13	16	26	1	53
		Akot	3	23	38	2	46
2	A 1 1 -	Balapur	10	2	7	0	44
2	Akola	Barshi-takli	6	3	17	0	51
		Murtizapur	6	9	19	2	57
		Patur	11	0	0	0	39
		Telhara	8	25	14	0	44
		Achalpur	0	20	40	0	40
		Amravati	14	0	17	7	59
		Anjangaon	11	22	0	0	44
		Bhatkuli	20	18	37	2	51
		Chandur bazar	18	9	9	0	50
		Chandur railway	4	4	11	0	63
3	Amravati	Chikhaldara	2	0	4	2	21
3	Ailiavau	Daryapur	34	16	31	0	69
		Dhamangaon railway	13	0	0	6	56
		Dharni	0	0	3	3	29
		Morshi	4	1	21	0	51
		Nandgaon khandeshwar	0	4	11	0	64
		Tiwasa	5	0	16	0	68
		Warud	1	0	1	1	50
		Aurangabad	14	0	12	9	22
		Kannad	16	2	7	7	18
		Khultabad	14	0	0	5	5
		Paithan	20	25	28	20	19
4	Aurangabad	Phulambri	10	0	3	3	13
		Sillod	16	0	2	2	11
		Soygaon	17	0	10	4	7
		Vaijapur	14	17	17	7	5
		Gangapur	13	19	19	4	2
		Ambejogai	25	0	0	0	15
		Ashti	29	4	13	0	4
		Beed	19	0	0	0	6
		Dharur	0	0	29	29	29
		Ambejogai	0	0	0	0	0
5	Beed	Gewrai	13	9	17	0	9
3	Deed	Kej	25	0	0	0	25
		Parli	11	0	22	11	33
		Patoda	23	0	8	0	23
		Shirur	0	0	20	0	80
		Wadwani	0	0	40	0	60
		Majalgaon	11	0	0	0	0
		Bhandara	7	4	22	15	19
		Lakhandur	0	0	8	23	23
6	Bhandara	Lakhani	0	0	0	0	40
U	Difailuara	Mohadi	4	0	20	4	24
		Pauni	8	0	13	25	4
		Sakoli	11	0	4	4	11
		Tumsar	6	3	3	9	27

Table 6.4 (Contd..): Percent Exceedance for Selected Parameters in Ground Water

Sr.	District	Taluka	pН	TDS	TH	F	NO ₃
		Buldhana	10	0	16	3	65
		Chikhali	0	0	0	5	21
		Jalgaon jamod	0	0	0	0	75
		Khamgaon	3	0	11	5	84
		Lonar	28	0	11	0	56
		Malkapur	7	29	36	0	79
7	Buldhana	Mehkar	5	0	0	0	50
		Motala	0	0	0	0	92
		Nandura	11	0	11	11	67
		Sangrampur	24	0	5	5	29
		Shegaon	15	4	12	8	65
		Sindkhed Raja	0	0	20	0	20
		Deolgaon Raja	0	0	0	0	33
		Ballarpur	0	17	0	17	50
		Bhadrawati	0	0	0	13	0
		Brahmapuri	0	0	19	0	25
		Chandrapur	0	0	11	6	33
		Chimur	0	4	4	20	15
		Jiwati	0	0	0	0	0
		Mul	7	0	21	14	0
8	Chandrapur	Nagbhid	7	0	29	7	50
	1	Pombhurna	0	0	0	0	0
		Rajura	5	0	5	10	40
		Sawali	0	0	0	67	67
		Sindewahi	5	0	16	16	11
		Waroda	0	0	9	55	45
		Gondipipri	0	0	14	14	14
		Korapna	0	0	0	0	0
_		Dhule	23	0	5	4	17
9	Dhule	Sakri	31	0	0	4	4
		Shirpur	26	0	0	5	7
		Sindkheda	28	3	11	1	7
		Amgaon	0	0	0	6	18
		Arjuni Moregaon	0	0	5	0	35
		Deori	25	0	0	0	19
10	C 1' .	Gondia	10	0	3	3	17
10	Gondia	Goregaon	0	0	0	0	0
		Sadal Arjuni	38	0	0	0	13
		Tiroda	30	0	10	15	40
		Salekasa	63	0	0	0	13
		Aheri	16	0	19	3	38
		Bhamragarh	0	0	0	0	0
		Chamorshi	21	0	14	7	21
1 1	Co.1-1:1:	Desaiganj (Wadsa)	27	0	0	0	27
11	Gadchiroli	Dhanora	12	0	0	0	24
		Etapalli	13	0	0	6	44
		Gadchiroli	0	0	7	0	21
		Korchi	33	0	11	0	11

Table 6.4 (Contd..): Percent Exceedance for Selected Parameters in Ground Water

Sr.	District	Taluka	pН	TDS	TH	F	NO ₃
		Kurkheda	0	0	0	0	6
	Gadchiroli	Mulchera	20	0	40	10	60
11	(Contd)	Sironcha	14	0	14	0	57
	, ,	Armori	0	0	0	0	7
		Aundha (Nag.)	30	0	0	20	0
		Basmatnagar	5	0	0	11	16
12	Hingoli	Hingoli	21	0	8	4	8
		Sengaon	17	0	0	17	0
		Kalmnuri	0	0	14	0	0
		Amalner	38	25	38	6	25
		Bhadgaon	0	0	20	0	30
		Bhusawal	14	0	0	14	0
		Bodwad	0	0	0	0	100
		Chalisgaon	0	0	6	0	31
		Chopda	10	0	10	3	3
10		Dharangaon	0	0	20	0	100
13	Jalgaon	Erandol	12	0	12	0	15
		Jamner	0	0	9	0	64
		Parola	11	0	0	0	11
		Raver	17	0	0	4	17
		Yaval	32	0	0	0	0
		Jalgaon	7	0	7	4	30
		Pachora	57	0	0	0	29
		Ambad	8	8	5	14	19
		Badnapur	45	0	10	15	15
		Bhokardan	20	2	15	11	24
1.4	T 1	Ghansawangi	24	0	10	31	17
14	Jalna	Jafrabad	17	21	29	0	33
		Jalna	19	3	10	10	23
		Mantha	12	6	29	6	41
		Parthur	17	0	17	13	22
		Ajra	29	0	0	0	10
		Bhudargad	19	0	0	0	4
		Chandgad	9	0	0	0	3
		Gadinglaj	7	0	0	0	29
		Gaganbawada	0	0	0	0	0
1.5	17. 11	Hatkanangale	0	0	3	0	23
15	Kolhapur	Kagal	0	0	0	0	4
		Kolhapur	0	0	4	0	9
		Panhala	0	0	0	0	0
		Radhanagari	0	0	0	0	0
		Shahuwadi	0	0	0	0	0
		Shirol	0	0	4	0	63
		Ahmadpur	16	0	10	0	13
		Nilanga	17	0	0	0	9
1.0	Turk	Ausa	3	0	3	3	6
16	Latur	Chakur	25	0	4	0	17
		Jalkot	24	0	0	0	0
		Latur	24	0	3	0	21

Table 6.4 (Contd..): Percent Exceedance for Selected Parameters in Ground Water

Sr.	District	Taluka	pН	TDS	TH	F	NO_3
	T .	Renapur	20	0	0	7	0
16	Latur	Udgir	26	0	0	0	0
	(Contd)	Deoni	17	0	0	0	0
		Shirur Anantpal	17	0	0	0	0
		Borivali	0	0	0	0	50
		Goregaon East	0	0	0	0	33
		Kurla	0	0	0	0	0
17	Maranha:	Bombay (Church Gate)	0	0	0	0	0
17	Mumbai	Colaba (Dandi)	0	0	0	0	33
		Deulwadi	0	0	0	0	0
		Mahim	0	0	0	0	0
		Mahroli (Chemur)	0	0	0	0	0
		Bhivapur	0	0	18	18	18
		Hingna	0	0	42	0	47
		Kalmeshwar	0	18	24	18	41
		Kamptee	0	0	0	6	24
		Kuhi	0	0	44	33	0
		Mouda	0	0	7	21	0
1.0	Nicon	Nagpur	0	0	8	12	23
18	Nagpur	Nagpur(Rural)	33	0	0	0	0
		Narkhed	0	0	29	0	52
		Parseoni	0	0	0	12	15
		Ramtek	0	0	18	27	36
		Saoner	3	0	14	3	34
		Umred	0	0	0	0	0
		Katol	0	0	9	9	0
		Ardhapur	67	0	0	0	0
		Bhokar	33	0	11	0	22
		Hadgaon	29	0	0	24	6
		Himayat Nagar	40	0	20	20	25
		Kinwat	19	0	0	50	0
		Mahur	33	0	0	0.0	33
		Mukhed	10	0	0	10	33
10	Mandad	Mudkhed	25	0	0	25	0
19	Nanded	Nanded	17	0	0	0	50
		Biloli	0	0	0	0	0
		Naigaon	14	0	14	33	0
		Deglur	36	0	0	29	0
		Dharmabad	60	0	0	20	0
		Kandhar	42	0	0	17	0
		Loha	29	0	0	43	17
		Umri	60	0	0	10	0
		Akkalkuva	25	17	100	0	0
		Nandurbar	14	39	100	0	10
20	Monderale a "	Navapur	13	9	100	0	7
20	Nandurbar	Taloda	12	6	100	0	0
		Dhadgaon	35	0	100	0	0
		Shahada	25	25	100	0	0

Table 6.4 (Contd..): Percent Exceedance for Selected Parameters in Ground Water

Sr.	District	Taluka	pН	TDS	TH	F	NO_3
		Baglan	27	46	100	2	2
		Deola	33	83	100	17	17
		Dindori	16	9	100	6	3
		Igatpuri	26	5	100	0	0
		Kalwan	46	21	100	0	0
		Malegaon	16	63	100	3	3
		Nandgaon	38	62	100	3	10
21	Nasik	Nasik	14	32	100	0	9
21	INASIK	Niphad	22	59	100	7	20
		Peinth	29	0	100	0	0
		Satana	0	83	100	0	33
		Trimbakeshwar	0	0	100	0	0
		Yeola	53	35	100	6	12
		Sinnar	30	63	100	3	8
		Surgana	50	0	100	0	0
		Chandwad	27	13	100	0	0
		Bhoom	25	17	100	0	8
		Kallam	28	24	100	0	7
		Lohara	0	0	100	0	33
22	Osmanabad	Osmanabad	13	45	100	5	18
		Omerga	26	16	100	6	5
		Paranda	40	30	100	10	20
		Tuljapur	32	35	100	6	0
		Jintur	0	57	100	22	4
		Manwat	0	50	100	33	33
		Parbhani	0	46	100	20	14
		Palam	14	71	100	14	7
23	Parbhani	Pathri	6	33	100	17	6
		Selu	0	44	100	28	0
		Gangakhed	4	29	100	17	0
		Purna	0	25	100	0	0
		Sonpeth	0	50	100	25	0
		Ambegaon	16	37	100	0	47
		Baramati	19	51	100	0	54
		Daund	8	59	100	0	32
		Pune (Haveli)	6	42	100	2	38
		Indapur	36	48	100	0	31
		Junnar	5	18	100	0	20
24	Pune	Mawal	0	0	100	0	0
		Mulshi	0	0	100	0	0
		Purandar	0	29	100	0	39
		Khed	10	13	100	0	50
		Shirur (Manal)	10	51	100	0	49
		Wadgaon (Maval)	0	0	100	0	0
		Wehle	0	0	100	0	0
<u> </u>		Bhor	0	0	100	0	33

Table 6.4 (Contd..): Percent Exceedance for Selected Parameters in Ground Water

Sr.	District	Taluka	pН	TDS	TH	F	NO_3
		Alibag	7	0	0	0	0
		Karjat	0	0	4	0	0
		Khalapur	0	0	0	0	0
		Mahad	0	9	9	0	0
		Mangaon	7	0	0	0	0
		Mhasala	10	0	0	0	0
		Panvel	0	0	0	0	0
25	D ' 1	Pen	0	7	7	0	0
25	Raigad	Poladpur	0	0	0	0	0
		Raigad	0	0	0	0	0
		Roha	0	0	0	0	0
		Sudhagad	0	0	0	0	0
		Shrivardhan	0	0	0	0	0
		Tala	0	0	0	0	0
		Uran	0	0	0	0	0
		Murud	8	0	0	0	0
		Chipalun	0	0	0	0	0
		Dapoli	0	0	0	0	2
		Guhagar	5	0	0	0	0
		Khed	8	0	0	0	2
26	Ratnagiri	Mandangarh	0	0	0	0	0
		Rajapur	4	2	2	0	0
		Ratnagiri	3	0	0	0	3
		Sangameshwar	6	0	0	0	0
		Lanja	0	0	0	0	0
		Atpadi	19	0	3	0	13
		Islampur	0	0	0	0	50
		Jath	2	6	23	0	30
		Kadegaon	0	0	0	0	22
		Kavathemahankal	0	6	13	0	22
	a 11	Khanapur	24	0	7	0	7
27	Sangli	Miraj	0	11	15	0	48
		Palus	0	0	0	0	50
		Shirala	9	0	0	0	9
		South Solapur	0	0	67	0	0
		Tasgaon	0	8	17	0	42
		Walwa	0	0	0	0	0
		Javali	25	0	0	0	25
		Karad	29	0	0	0	13
		Khandala	0	0	0	0	19
		Khatav	8	0	0	0	16
		Koregaon	31	0	0	0	27
	~	Mahabaleshwar	0	0	0	0	0
28	Satara	Man	15	0	4	0	38
		Medha	0	0	0	0	0
		Satara	3	0	8	3	5
		Patan	18	11	11	0	18
		Phaltan	17	0	9	0	35
		Wai	17	0	0	0	0

Table 6.4 (Contd..): Percent Exceedance for Selected Parameters in Ground Water

Sr.	District	Taluka	pН	TDS	TH	F	NO_3
		Devagad	0	0	0	0	0
		Dodamarg	5	0	0	0	0
		Kankavali	11	0	0	5	0
29	Cindhudura	Kudal	5	0	2	5	0
29	Sindhudurg	Malwan	5	0	0	0	0
		Sawantwadi	7	0	0	0	0
		Vaibhawadi	0	0	6	0	0
		Vengurla	4	0	4	0	0
		Akkalkot	0	0	29	0	43
		Barshi	0	0	25	0	58
		Karmala	0	0	0	0	40
		Madha	0	0	17	0	83
		Malshiras	0	0	13	0	38
30	Solapur	Mangalvedhe	0	0	20	0	40
		Mohol	0	0	33	0	44
		N.Solapur	0	0	38	0	25
		Pandharpur	0	20	47	0	47
		Sangola	0	0	0	0	60
		Solapur	0	0	0	0	20
		Bhivandi	12	0	0	2	2
		Dahanu	0	0	3	0	0
		Jawhar	0	0	0	0	6
		Mokhada	0	0	0	0	10
		Murbad	3	0	0	6	0
		Palghar	0	2	0	2	2
		Shahapur	16	0	0	0	0
31	Thane	Thane	6	2	4	2	0
		Vasai	11	0	9	0	0
		Wada	0	0	0	0	0
		Ambernath	17	8	0	0	0
		Kalyan	0	0	0	7	0
		Murud	83	0	0	0	0
		Talasari	0	0	0	0	0
		Ulhasnagar	0	0	0	18	0
		Arvi	0	0	13	0	57
		Ashti	0	0	25	5	50
		Deoli	0	0	13	0	64
32	Wardha	Hinganghat	5	0	20	14	77
32	vv ar arra	Karanja	0	0	14	0	36
		Samudrapur	0	2	5	4	55
		Seloo	5	5	17	3	73
		Wardha	0	8	28	0	64
		Karanja	18	32	100	3	39
		Mangarulpir	10	33	100	0	43
33	Washim	Malegaon	14	49	100	0	49
	,, 40111111	Manora	15	37	100	0	44
		Risod	8	89	100	1	62
		Washim	14	41	95	2	38

Table 6.4 (Contd..): Percent Exceedance for Selected Parameters in Ground Water

Sr.	District	Taluka	pН	TDS	TH	F	NO_3
		Arni	0	52	100	0	48
		Bhabhulgaon	0	37	100	0	53
		Darwha	3	36	100	0	33
		Digras	9	55	100	0	42
		Ghatanji	0	29	100	6	44
		Kalamb	0	40	100	0	50
		Pandharkawada(Kelapur)	0	26	100	3	32
34	Yavatmal	Mahagaon	0	25	100	0	6
34	i availilai	Maregaon	0	25	100	0	25
		Ner	7	50	100	0	57
		Pusad	8	25	100	0	25
		Ralegaon	0	42	100	0	48
		Umarkhed	4	48	100	0	39
		Wani	7	86	100	31	38
		Yavatmal	0	33	100	0	39
		Zari Jamni	7	14	100	21	14

The frequency distribution of selected parameters and contour maps of average concentrations of pH, TDS, TH, Fluoride and Nitrate are given in **Figure 6.1** and **Figures 6.2 through 6.6**. From Figures we observe the following:

- 216 Talukas from Ahmednagar, Akola, Amravati, Aurangabad, Beed, Bhandara, Buldhana, Chandrapur, Dhule, Gadchiroli, Gondia, Hingoli, Jalgaon, Jalna, Kolhapur, Latur, Nagpur, Nanded, Nandurbar, Nashik, Osmanabad Parbhani, Pune, Raigad, Ratnagiri, Sangli, Satara, Sindhudurg, Thane and Wardha, Washim and Yavatmal districts have pH concentrations not complying with the BIS standard of 6.5-8.5 mg/l.
- 137 Talukas in 27 districts have Fluoride levels above permissible limits of 1.5 mg/l. Chandrapur, Nanded, Nagpur, Parbhani, Jalna and Yavatmal have high Fluoride levels.
- 3 Talukas in Ahmednagar and Jalgaon districts have shown nitrate levels above desirable limits, 100% of the time. The districts with high concentrations of Nitrate are Aurangabad, Ahmednagar, Amravati, Buldhana, Beed, Chandrapur, Dhule, Gadchiroli, Jalna, Jalgaon, Solapur, Washim and Wardha.
- The analysis shows that 124 Talukas of Maharashtra show exceedance of permissible limit. Total dissolved solids in ground water exceeded the BIS standard of 2000 mg/l in most of the Talukas of Amravati, Ahmednagar, Akola, Buldhana, Dhule, Nadurbar, Nashik, Parbhani and Washim having high concentrations of TDS in ground water.
- Groundwater in 74 Talukas in 17 Districts shows Total Hardness exceeding the permissible limits (600mg/l) 100% of the time. In Talukas of Amhednagar, Aurangabad, Dhule and Nagpur, and in certain part of Nashik and Pune; Washim and Yavatmal where total hardness in ground water exceeded 100% of the time.

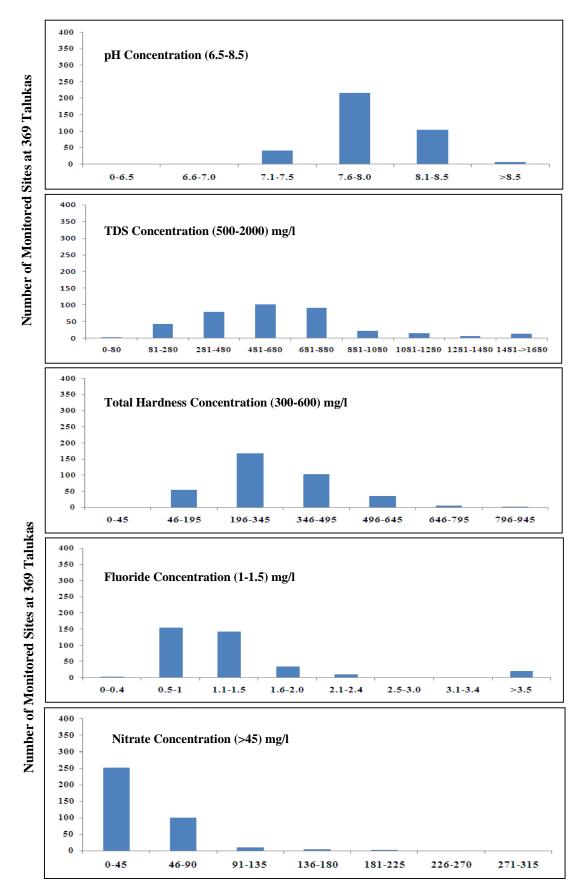


Figure 6.1: Frequency Distribution of Average Concentration of Selected Parameters in Ground Water of Maharashtra

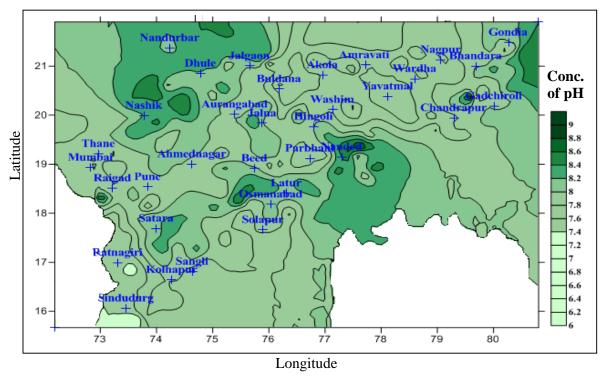


Figure 6.2: Contour Map of Average Concentration of pH

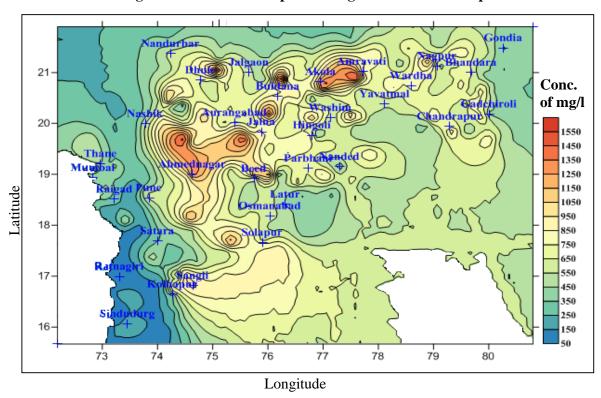


Figure 6.3: Contour Map of Average Concentration of Total Dissolved Solids

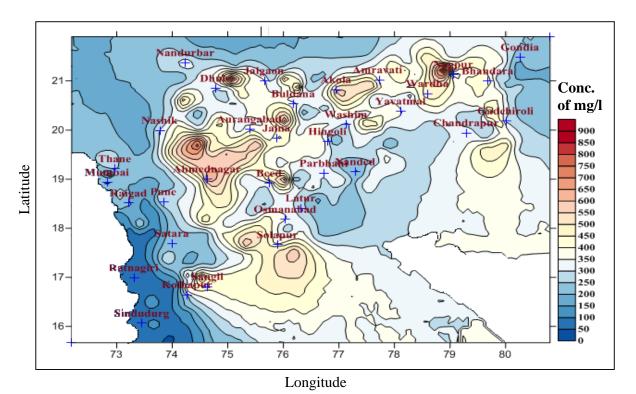


Figure 6.4: Contour Map of Average Concentration of Total Hardness

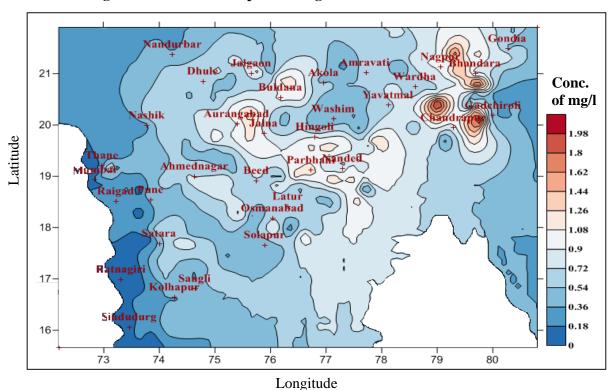


Figure 6.5: Contour Map of Average Concentration of Fluoride

6-19

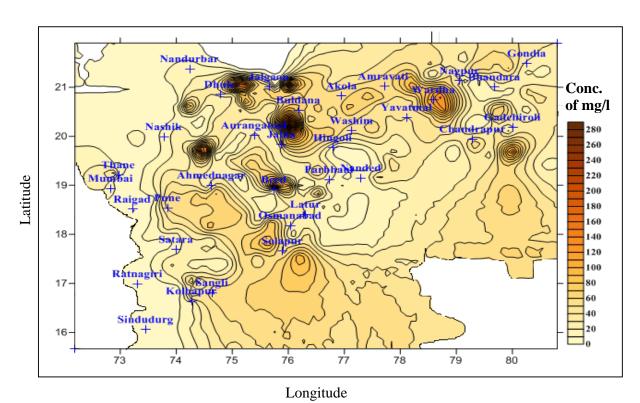


Figure 6.6: Contour Map of Average Concentration of Nitrate

6.3.2 Correlation Matrix for Different Ground Water Parameters

Table 6.5 presents the correlation coefficient matrix between major parameters of ground water. Significant correlation between NO_3^- and SO_4^{2-} concentration at 5% (*) level of significance was observed in ground water samples collected from districts namely, Amravati (r=0.654), Aurangabad (r=0.608), Bhandara (r=0.638), Buldhana (r=0.511), Chandrapur (r=0.494), Dhule (r=0.943),and Washim (r=0.7). Similarly 1% (**) level of significance were observed at, Gadchiroli (r=0.927), Gondia (r=0.880), Kolhapur (r=0.947), Latur (r=0.856), Nandurbar (r=0.664), Nasik (r=0.646), Osmanabad (r=0.624),Pune (r=0.826),Satara (r=0.927),and Wardha (r=0.870). Such high correlation indicates contamination of groundwater with nitrate and sulphate from point sources, i.e. fertilizers, sewage and animal wastes. While studying nitrate concentrations in ground water of some rural areas of Rajasthan, *Suthar et al.*, 2009 also reported a significant relationship between NO_3^- and SO_4^{2-} .

NO₃ showed good correlation with Cl at the significance level of 5% (*) at Bhandara (r=0.564), Dhule (r=0.811), Gondia (r=0.743), Gadchiroli (r=0.635), Mumbai (r=0.577), Nadurbar (r=0.68), Sangli (r=0.525), Wardha (r=0.632) and Washim (r=0.565); whereas, significance level of 1% (**) where observed at Ahmednagar (r=0.662), Amravati (r=0.671), Aurangabad (r=0.846), Jalgaon (r=0.661), Jalana (r=0.931), Kolhapur (r=0.955), Latur (r=0.726), Nasik (r=0.768), Osmanabad (r=0.598), Pune (r=0.856) and Satara (r=0.913).

Table 6.5: District Wise Correlation Matrix for Different Ground Water Parameters

1	1			NO -			CO -2	10-	NO -
1.	CIT	SO ₄ -2	F 0.116	NO ₃	2.	CI:	SO ₄ -2	F 0.417	NO ₃
Ahmedna	Cl ⁻	-0.068	-0.116	.662**	Akola	Cl	.905(**)	0.417	0.261
gar (n. 14)	SO ₄ -2	1	602*	0.126	(n-7)	SO ₄ ⁻²	1	0.454	0.442
(n-14)	F		1	-0.168		F.		1	-0.262
3.		SO ₄ -2	F ⁻	NO ₃	4.		SO ₄ -2	F ⁻	NO ₃
3. Amravati	Cl	.844**	-0.399	.671**	Aurangabad	Cl	.740*	-0.267	.846**
(n-14)	SO2	.077	-0.116	.654*	(n=9)	SO2	./+0	-0.351	0.608
(11 11)	SO ₄ ⁻² F		-0.110	-0.013	(22)	SO ₄ -2 F		-0.331	-0.166
	1 *	1 2				1			
5.		SO ₄ -2	F	NO ₃	6.		SO ₄ -2	F	NO ₃
Beed	Cl ⁻	.787**	.768**	-0.02	Bhandara	Cl ⁻	.923**	-0.281	0.564
(n=11)	SO_4^{-2}	1	.972**	0.14	(n=7)	SO ₄ -2 F	1	-0.174	0.638
	F-		1	0.133		F ⁻		1	-0.454
7.		SO ₄ -2	F ⁻	NO ₃	8.		SO ₄ -2	F ⁻	NO ₃
Buldhana	Cl ⁻	0.336	0.446	0.194	Chandrapur	Cl	0.475	-0.231	0.422
(n=13)	SO ₄ -2 F	1	-0.198	0.511	(n=15)	SO ₄ -2 F	1	-0.261	0.494
	F ·		1	-0.318		F		1	0.117
0	<u> </u>	CO -2			10		CO -2	10-	
9. Dhule	CI.	SO ₄ -2 .959*	F 0.103	NO ₃ 0.811	10. Gadchiroli	CI.	SO ₄ ⁻² .730**	F 0.498	NO ₃ .635*
(n=4)	Cl ⁻				(n=12)	Cl ⁻		.720**	
(11–4)	SO ₄ -2 F	1	0.38	0.943	(II-12)	SO ₄ -2 F	1		.927**
	<u> </u>	<u> </u>	1	0.000	<u> </u>	F		1	.672*
11.		SO_4^{-2}	F ⁻	NO ₃	12.		SO ₄ -2	F ⁻	NO ₃
Gondia	Cl	.877**	0.546	.743*	Hingoli	Cl.	0.873	0.736	-0.155
(n=8)	SO_4^{-2}	1	0.634	.880**	(n=5)	SO ₄ -2	1	0.392	0.323
	F ⁻		1	0.248		F ⁻		1	-0.47
13.		SO ₄ -2	F ⁻	NO ₃	14.		SO ₄ -2	F ⁻	NO ₃
Jalgaon	Cl	.875**	0.171	.661**	Jalana	Cl ⁻	0.386	820*	.931**
(n=15)	Cl ⁻ SO ₄ -2	1	0.286	0.48	(n=8)	SO ₄ -2	1	-0.17	0.239
	F	İ	1	-0.246		F		1	741*
15	I	CO -2			16		CO -2		I
15.	CI.	SO ₄ -2 .953**	F-	NO ₃	16.	CI.	SO ₄ -2 .787**	F 0.565	NO ₃
Kolhapur (n=12)	Cl' SO ₄ -2		0.51	.955**	Latur (n=10)	CI SO ₄ -2	./ð/ ^{**}	-0.565	.726*
(11—1 <i>4)</i>	F	1	0.433	.947** 0.559	(11–10)	F -	1	-0.304 1	.856**
	F	<u> </u>	1		1	F		1	
17.		SO ₄ -2	F ⁻	NO ₃	18.		SO ₄ -2	F ⁻	NO ₃
Mumbai	Cl ⁻	.692**	0.45	0.577	Nagpur	Cl.	0.195	0.118	0.342
(n=8)	SO ₄ -2	1	0.139	.765*	(n=14)	SO_4^{-2}	1	0.031	0.339
	F ⁻		1	-0.225		F ⁻		1	-0.165
19.		SO ₄ -2	F-	NO ₃	20.		SO ₄ -2	F ⁻	NO ₃
Nanded	Cl	.836**	.586*	0.075	Nandurbar	Cl.	.965**	0.685	0.68
(n=16)	SO ₄ -2	1	0.233	0.426	(n=6)	SQ ₄ -2	1	0.768	0.664
- /	F	1	1	-0.43		SO ₄ ⁻²	-	1	0.333
	. = T	1 0 0 2			1				
21.		SO ₄ ⁻²	F-	NO ₃	22.	O**-	SO ₄ -2	F	NO ₃
Nasik	Cl	.954**	0.412	.768**	5** (n=7)	Cl	.798*	-0.365	0.598
(n=16)	SO ₄ -2	1	0.378	.646**		SO ₄ -2	1	-0.625	0.624
	$\mathbf{F}^{\text{-}}$		1	0.289		F ⁻		1	-0.56

Note: ** Correlation is significant at 0.01 levels (2 tailed)* Correlation is significant at 0.05 levels (2 tailed)

Table 6.5 (Contd..): Correlation Matrix for Different Ground Water Parameters

23.		SO ₄ -2	F	NO ₃	24.		SO ₄ -2	F	NO ₃
Parbhani	Cl ⁻	0.44	0.164	-0.016	Pune	Cl	.961**	.611*	.856**
(n=9)	SO ₄ -2	1	0.247	0.147	(n=14)	SO ₄ -2	1	.545*	.826**
	F ⁻		1	-0.123		F		1	.726**
25		GO -2	т-	NO :	26	Ī	GO -2	т-	NO:
25.	CI:	SO ₄ -2	F	NO ₃	26.	- CIT	SO ₄ ⁻²	F	NO ₃
Raigad	Cl ⁻	.778**	0.092	0.06	Ratnagiri	Cl	-0.151	0.408	0.121
(n=15)	SO ₄ -2	1	0.092	0.36	(n=9)	SO_4^{-2}	1	-0.337	-0.066
	F ⁻		1	-0.073		F		1	0.189
27.	<u> </u>	SO ₄ -2	F-	NO ₃	28.		SO ₄ -2	F-	NO ₃
Santali	Cl ⁻	0.322	-0.185	0.525	Satara	Cl	.860**	0.554	.913**
(n=12)	SO ₄ -2	1	0.108	0.224	(n=12)	SO ₄ -2	1	.592*	.927**
	F		1	-0.292		F	_	1	.712**
			1	0.272				1	1712
29.		SO ₄ -2	F ⁻	NO ₃	30.		SO ₄ -2	F ⁻	NO ₃
Sindhudurg	Cl ⁻	0.196	0.341	0.331	Solapur	Cl	.856**	0.333	0.177
(n=8)	SO_4^{-2}	1	.859**	-0.37	(n=12)	SO ₄ -2	1	0.299	-0.013
	F-		1	-0.578		F-		1	-0.089
31.		SO ₄ -2	F	NO ₃	32.		SO ₄ -2	F	NO ₃
Thane	Cl	.851**	-0.214	-0.069	Wardha	Cl	.783*	0.223	0.632
(n=15)	SO ₄ -2		0.073		(n=8)	C1		0.689	.870**
(11–13)	F -	1		0.167	(H=0)	SO ₄ ⁻²	1		
	r		1	0.028		r		1	0.601
33.		SO ₄ -2	F-	NO ₃	34.		SO ₄ -2	F ⁻	NO ₃
Washim	Cl ⁻	0.629	0.364		Yavatmal	Cl	0.373	-0.051	.572*
Washim (n=6)	Cl ⁻ SO ₄ ⁻²		0.364 0.417	0.565	Yavatmal (n=16)	Cl ⁻ SO ₄ -2	0.373	-0.051 0.443	.572* 0.011

Note: ** Correlation is significant at 0.01 levels (2 tailed)* Correlation is significant at 0.05 levels (2 tailed)

Similarly SO₄²⁻ also exhibited good relationship with Cl⁻ for groundwater samples found to be at significance level of 5% (*) at Aurangabad (r=0.740), Dhule (r=0.959), Hingoli (r=0.873), Osmanabad (r=0.798), Wardha (r=0.783). Whereas, 1% (**) significance level was observed at Akola (r=0.905), Amravati (r=0.844), Beed (r=0.787), Bhandara (r=0.923), Gadchiroli (r=0.730),Gondia (r=0.877),Kolhapur (r=0.953),Latur (r=0.787),Mumbai (r=0.692), Nanded(r=0.836), Nandurbar(r=0.965), Nasik (r=0.954), Pune (r=0.961), Raigad (r=0.778), Satara (r=0.860) and Thane (r=0.851). The correlation matrix between important parameters of water (**Table 6.5**) suggested that major source of NO₃⁻ and SO₄²-, in ground water of this region were nitrogenous fertilizers, sewerage, animal waste, organic manure, non-point sources etc.

Based on water quality index calculated as per the methodology given in *Chapter 3*, the list of Talukas having the ground water quality Excellent, Good, Poor, Very Poor and Unsuitable for drinking based on the monitored data is given in **Table 6.6** The pictorial view of five years WQI for the approx.369 talukas (3694 villages) in 34 district of Maharashtra is given in **Annexure XI**.

Table 6.6: Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name		ellent	Good	Water	Poor	r Water	Very	Poor		iitable	No.of Samples
	Taluka /Villages		NS/	(%)	NS/	(%)	NS	5/(%)	NS/	(%)	NS	/ (%)	(5 Yrs.)
1.	Ahmadnagar	Ahmednagar	4	7	25	44	20	35	2	4	6	11	57
	14/ 167	Akole	4	25	6	38	4	25	2	13			16
	(418 Samples)	Jamkhed			8	80	2	20					10
		Karjat			11	50	9	41	1	5	1	5	22
		Kopargaon	4	12	12	36	14	42	2	6	1	3	33
		Newasa			26	55	12	26	6	13	3	6	47
		Parner	2	9	11	48	9	39	1	4			23
		Pathardi			1	50	1	50					2
		Rahata					2	67	1	33			3
		Rahuri	9	19	13	28	16	34	8	17	1	2	47
		Sangamner	3	7	25	58	6	14	7	16	2	5	43
		Shevgaon	4	14	8	28	14	48	2	7	1	3	29
		Shrigonda			18	49	15	41	3	8	1	3	37
		Srirampur	11	22	26	53	9	18	2	4	1	2	49
2.	Akola	Akola	3	3	45	48	36	38	7	7	3	3	94
	7/104	Akot	7	8	34	39	31	36	10	11	5	6	87
	(393 Samples)	Balapur			34	83	5	12	1	2	1	2	41
		Barshi-takli	2	6	27	77	3	9	2	6	1	3	35
		Murtizapur	3	6	24	44	21	39	3	6	3	6	54
		Patur	8	17	34	74	4	9					46
		Telhara	8	22	15	42	10	28	2	6	1	3	36

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District Taluka /Villages	Taluka Name		ellent '(%)		Water (%)		r Water		y Poor		itable '(%)	No.of Samples (5 Yrs.)
2			110/	(70)			3		145	(%)	No /	(70)	`
3.	Amravati	Achalpur			21	40		60					5
	14/183	Amravati			21	72	8	28					29
	(527 Samples)	Anjangaon	1	11	4	44	4	44					9
		Bhatkuli			17	35	28	57	3	6	1	2	49
		Chandur Bazar	1	5	18	82	3	14					22
		Chandur Rly.	3	11	18	67	6	22					27
		Chikhaldara	12	25	34	71	2	4					48
		Daryapur	1	3	16	52	11	35	3	10			31
		Dhamangaon Rly.	3	19	8	50	5	31					16
		Dharni	21	29	48	67	3	4					72
		Morshi	7	10	34	49	28	41					69
		Nandgaon Kh.	3	5	33	60	18	33	1	2			55
		Tiwasa			13	68	6	32					19
		Warud	4	5	64	84	8	11					76
4.	Aurangabad	Aurangabad	1	2	26	52	23	46					50
	9/96	Gangapur	1	2	35	73	8	17	3	6	1	2	48
	(378 Samples)	Kannad			33	75	10	23	1	2			44
		Khultabad			20	91	2	9					22
		Paithan	2	3	26	38	30	43	6	9	5	7	69
		Phulambri	1	3	20	67	9	30					30
		Sillod	4	9	32	73	7	16			1	2	44
		Soygaon	1	3	22	76	6	21					29
		Vaijapur	1	2	21	50	15	36	3	7	2	5	42

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name		ellent				Water		Poor	Unsui		No.of Samples
	Taluka /Villages			(%)	NS /	`		/ (%)	NS.	/ (%)	NS/	(%)	(5 Yrs.)
5.	Beed	Ambejogai	6	30	12	60	2	10					20
	10/67	Ashti	1	4	17	71	6	25					24
	(126 Samples)	Beed			13	81	3	19					16
		Dharur			5	71	2	29					7
		Gewrai	1	4	13	57	9	39					23
		Kej	0	0	3	75	1	25					4
		Majalgaon	4	44	5	56							9
		Patoda	1	8	10	77	2	15					13
		Shirur Kasar			2	40	1	20	2	40			5
		Wadwani			2	40	2	40	1	20			5
6.	Bhandara	Bhandara	3	11	15	56	9	33					27
	7/68	Lakhandur			6	46	7	54					13
	(154 Samples)	Lakhani			5	100							5
		Mohadi	2	8	13	52	10	40					25
		Pauni	1	4	16	67	5	21	2	8			24
		Sakoli	6	22	17	63	4	15					27
		Tumsar			24	73	8	24	1	3			33
7.	Buldhana	Buldhana	1	3	13	42	17						31
	13/139	Chikhali	3	16	13	68	3	16					19
	(294 Samples)	Deolgaon Raja	1	8	4	33	7	58					12
		Jalgaon jamod	1	6	11	69	4	25					16
		Khamgaon			17	45	21	55					38
		Lonar			10	56	8	44					18
		Malkapur			5	36	6	43	2	14	1	7	14

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Excel	llent	Good V	Water	Poor '	Water	Ver	y Poor	Unsuitab	_
	Taluka /Villages		NS/	(%)	NS/	(%)	NS/	(%)	NS	/(%)	NS / (%)	(5 Yrs.)
7.	Buldhana	Mehkar			13	59	9	41				22
	Contd	Motala	1	4	14	54	11	42				26
	13/139	Nandura	1	3	23	64	12	33				36
	(294 Samples)	Sangrampur	2	10	16	76	3	14				21
		Shegaon			12	46	13	50	1	4		26
		Sindkhed Raja	3	20	9	60			3	20		15
8.	Chandrapur	Ballarpur			5	83			1	17		6
	15/113	Bhadrawati	1	13	5	63	2	25				8
	(186 Samples)	Brahmapuri			9	56	7	44				16
		Chandrapur	4	11	18	50	14	39				36
		Chimur	1	4	18	69	6	23	1	4		26
		Gondipipri			5	71	2	29				7
		Jiwati			2	100						2
		Korapna			2	100						2
		Mul			4	29	10	71				14
		Nagbhid			3	21	11	79				14
		Pombhurna			2	100						2
		Rajura			13	65	7	35				20
		Sawali			1	33	2	67				3
		Sindewahi	3	16	6	32	10	53				19
		Waroda			6	55	5	45				11

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name		llent		Water		Water		y Poor		itable	No.of Samples
	Taluka /Villages		NS/	(%)	NS /	(%)	NS /	(%)	NS	/ (%)	NS /	(%)	(5 Yrs.)
9.	Dhule	Dhule	14	19	48	64	10	13	3	4			75
	4/100	Sakri	16	33	30	63	2	4					48
	(253 Samples)	Shirpur	7	12	47	81	4	7					58
		Sindkheda	3	4	49	68	19	26	1	1			72
10.	Gadchiroli	Aheri	3	9	18	56	11	34					32
	12/117	Armori	2	14	11	79	1	7					14
	(182 Samples)	Bhamragarh			8	100							8
		Chamorshi			9	64	5	36					14
		Desaiganj-Wadsa	3	27	6	55	2	18					11
		Dhanora	7	41	9	53	1	6					17
		Etapalli	1	6	14	88	1	6					16
		Gadchiroli	11	39	14	50	3	11					28
		Korchi	4	44	4	44			1	11			9
		Kurkheda	7	44	9	56							16
		Mulchera	1	10	3	30	4	40	2	20			10
		Sironcha	1	14	3	43	3	43					7
11.	Gondia	Amgaon	6	35	8	47	3	18					17
	(8/68)	Arjuni Moregaon	8	40	7	35	5	25					20
	(121 Samples)	Deori	4	25	12	75							16
		Gondia	15	52	11	38	3	10					29
		Goregaon			3	100							3
		Sadal Arjuni	2	25	6	75							8
		Salekasa	3	38	4	50	1	13		_			8
		Tiroda			14	70	5	25	1	5			20

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Excel			Water		Water		y Poor		itable	No.of Samples
	Taluka /Villages		NS/ (<u>%) </u>	NS /	(%)	NS /	(%)	NS	/ (%)	NS /	(%)	(5 Yrs.)
12.	Hingoli	Aundha (Nag)			7	70	3	30					10
	5/31	Basmatnagar	2	11	15	79	2	11					19
	(66 Samples)	Hingoli	1	4	17	71	6	25					24
		Kalmnuri			6	86	1	14					7
		Sengaon	1	17	5	83							6
13.	Jalgaon	Amalner			6	38	6	38	1	6	3	19	16
	15/120	Bhadgaon			8	80			2	20			10
	(223 Samples)	Bhusawal			7	100							7
		Bodwad			2	100							2
		Chalisgaon			15	94	1	6					16
		Chopda	2	6	17	55	12	39					31
		Dharangaon			2	40	2	40	1	20			5
		Erandol	2	8	19	73	4	15	1	4			26
		Jalgaon			21	78	4	15	2	7			27
		Jamner	1	9	6	55	4	36					11
		Mukainagar					1	100					1
		Pachora			5	71	2	29					7
		Parola			14	74	5	26					19
		Raver	2	9	20	87	1	4					23
		Yaval	5	23	16	73	1	5					22

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District Taluka /Villages	Taluka Name	Exce NS/			Water (%)		Water '(%)		y Poor /(%)	Unsui NS /	itable (%)	No.of Samples (5 Yrs.)
14.	Jalna	Ambad			12	32	25	68					37
	8/116	Badnapur	1	5	12	60	7	35					20
	(235 Samples)	Bhokardan			39	72	12	22	3	6			54
		Ghansawangi	2	7	21	72	6	21					29
		Jafrabad	2	8	13	54	5	21	1	4	3	13	24
		Jalna			17	55	12	39	1	3	1	3	31
		Mantha	2	12	6	35	8	47			1	6	17
		Parthur	1	4	12	52	10	43					23
15.	Kolhapur	Ajra	9	43	12	57							21
	12 /138	Bhudargad	11	41	16	59							27
	(311 Samples)	Chandgad	26	74	9	26							35
		Gadinglaj	7	25	18	64	3	11					28
		Gaganbawada	12	100									12
		Hatkanangale			24	69	11	31					35
		Kagal	4	16	19	76	2	8					25
		Kolhapur	18	39	26	57	2	4					46
		Panhala	11	61	7	39							18
		Radhanagari	19	90	2	10							21
		Shahuwadi	10	53	9	47							19
* 11C	N 1 CC 1	Shirol	1	4	6	25	17	71					24

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District Taluka /Villages	Taluka Name	Exce NS/			Water (%)		Water (%)		Poor (%)		uitable /(%)	No.of Samples (5 Yrs.)
16.	Latur	Ahmadpur	11	35	16	52	4	13	1107	(/ 0)	110	(70)	31
200	12 /95	Ausa	7	23	20	65	4	13					31
	(209 Samples)	Chakur	5	21	16	67	3	13					24
		Deoni	2	33	3	50	1	17					6
		Jalkot	1	25	3	75							4
		Latur	12	32	22	58	4	11					38
		Nilanga	9	26	24	69	2	6					35
		Renapur	4	27	10	67	1	7					15
		Shirur Anantpal	2	33	4	67							6
		Udgir	4	21	13	68	2	11					19
17.	Mumbai	Bombay											
	9 /8	(Church Gate)			1	100							1
	(15 Samples)	Borivali	1	50	1	50							2
		Colaba (Dandi)			3	100							3
		Deulwadi			1	100							1
		Goregaon East	2	67	1	33							3
		Kurla	1	100									1
		Mahim	3	100									3
	N. 1. CG	Mahroli(Chembur)			1	100							1

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce			Water		Water		y Poor		itable	No.of Samples
	Taluka /Villages		NS/	(%)	NS /	/ (%)	NS /	(%)	NS	/ (%)	NS.	/ (%)	(5 Yrs.)
18.	Nagpur	Bhivapur	1	9	4	36	6	55					11
	14/124	Hingna	2	11	6	32	11	58					19
	(264 Samples)	Kalmeshwar			5	29	8	47	2	12	2	12	17
		Kamptee			11	65	6	35					17
		Katol			8	73	3	27					11
		Kuhi	2	22	2	22	5	56					9
		Mouda			11	79	3	21					14
		Nagpur	5	10	36	69	10	19	1	2			52
		Nagpur (Rural)			3	100							3
		Narkhed			18	58	13	42					31
		Parseoni	2	8	22	85	2	8					26
		Ramtek			5	45	6	55					11
		Saoner	2	6	21	60	11	31	1	3			35
		Umred	1	13	6	75	1	13					8
19.	Nanded	Ardhapur			3	100							3
	16/106	Bhokar			6	67	3	33					9
	(153 Samples)	Biloli	1	50	1	50							2
		Deglur			12	86	2	14					14
		Dharmabad			5	100							5
		Hadgaon			16	94	1	6					17
		Himayat Nagar			4	80	1	20					5
		Kandhar	1	8	10	83	1	8					12
		Kinwat	2	13	14	88							16
		Loha			5	71	2	29					7
		Mahur	1	33	2	67							3

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce			Water		Water		y Poor	Unsui		No.of Samples
	Taluka /Villages		NS/	(%)	NS /	/ (%)	NS /	/ (%)	NS	/(%)	NS/	(%)	(5 Yrs.)
19.	Nanded	Mudkhed			4	100							4
	Contd	Mukhed	2	10	16	76	3	14					21
	16/106	Naigaon			5	71	2	29					7
	(153 Samples)	Nanded##			13	72	5	28					18
		Umri	2	20	7	70	1	10					10
		Mudkhed			4	100							4
20.	Nandurbar	Akkalkuva	10	42	13	54	1	4					24
	6/63	Dhadgaon	13	76	4	24							17
	(186 Samples)	Nandurbar	11	22	34	67	5	10	1	2			51
		Navapur	15	33	30	67							45
		Shahada	15	47	14	44	3	9					32
		Taloda	7	41	10	59							17
21.	Nasik	Baglan	10	21	31	65	7	15					48
	16/174	Chandvad	3	20	12	80							15
	(434 Samples)	Deola			2	33	4	67					6
		Dindori	12	38	18	56	2	6					32
		Igatpuri	21	54	18	46							39
		Kalwan	4	14	21	75	3	11					28
		Malegaon	4	11	20	53	14	37					38
		Nandgaon	4	14	16	55	8	28	1	3			29
		Nasik	21	30	42	61	6	9					69
		Niphad	4	10	23	56	12	29	2	5			41
		Peinth	10	71	4	29							14

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District Taluka /Villages	Taluka Name	Exce NS/			Water (%)		Water '(%)		y Poor /(%)		itable / (%)	No.of Samples (5 Yrs.)
21.	Nasik	Satana	1	17	3	50			2	33			6
	Contd	Sinnar	3	8	25	63	10	25	2	5			40
	16/174	Surgana	3	50	3	50							6
	(434 Samples)	Trimbakeshwar	5	83	1	17							6
		Yeola	6	35	7	41	4	24					17
22.	Osmanabad	Bhum	2	17	10	83							12
	7/76	Kalambh	7	24	18	62	2	7	2	7			29
	(142 Samples)	Lohara			3	100							3
		Omerga	2	11	15	79	1	5			1	5	19
		Osmanabad##	2	5	27	71	9	24					38
		Paranda			9	90	1	10					10
		Tuljapur	8	26	20	65	3	10					31
23.	Parbhani	Gangakhed	1	4	22	92	1	4					24
	9/68	Jintur	2	9	12	52	9	39					23
	(150 Samples)	Manwat			4	67	2	33					6
		Palam			12	86	2	14					14
		Parbhani##			27	77	8	23					35
		Pathari	1	6	12	67	5	28					18
		Purna			8	100							8
		Selu	1	6	14	78	3	17					18
		Sonpeth	1	25	2	50	1	25					4

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District Taluka /Villages	Taluka Name	Exce NS/			Water (%)		Water '(%)		y Poor 5/(%)		itable '(%)	No.of Samples (5 Yrs.)
24.	Pune	Ambegaon	3	16	10	53	6	32	110	(/ (/ 0)	1107	(70)	19
	14/148	Baramati	1	3	18	49	13	35			5	14	37
	(371 Samples)	Bhor			3	100							3
		Daund	2	5	21	57	8	22	6	16			37
		Indapur			25	60	15	36	1	2	1	2	42
		Junnar	7	18	28	70	5	13					40
		Mawal	10	77	3	23							13
		Mulshi	15	94	1	6							16
		Pune (Haveli)	11	21	28	54	12	23	1	2			52
		Purandar	8	20	22	54	11	27					41
		RajgurNgr(Khed)	7	29	12	50	5	21					24
		Shirur	4	10	22	54	13	32	2	5			41
		Wadgaon(Maval)	2	100									2
		Wehle	4	100									4
25.	Raigad	Alibag	13	46	15	54							28
	16/113	Karjat	18	69	7	27	1	4					26
	(244 Samples)	Khalapur	11	79	3	21							14
		Mahad	19	83	2	9			1	4	1	4	23
		Mangaon	13	93	1	7							14
		Mhasala	18	90	2	10							20
		Murud	9	69	4	31							13
		Panvel	12	55	9	41	1	5					22
	N1	Pen	18	67	7	26	1	4	1	4			27

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce			Water		Water		y Poor	U ==.0 U	itable	No.of Samples
	Taluka /Villages		NS/	(%)	NS /	′ (%)	NS /	(%)	NS	/ (%)	NS /	(%)	(5 Yrs.)
25.	Raigad	Poladpur	5	100									5
	16/113	Raigad	4	57	3	43							7
	(244 Samples)	Roha	22	100									22
		Shrivardhan	5	56	4	44							9
		Sudhagad	4	80	1	20							5
		Tala	2	50	2	50							4
		Uran	5	100									5
26.	Ratnagiri	Chipalun	47	98	1	2							48
	9/ 133	Dapoli	40	95	2	5							42
	(368 Samples)	Guhagar	42	100									42
		Kehd	64	97	1	2			1	2			66
		Lanja	7	100									7
		Mandangarh	18	100									18
		Rajapur	46	96			2	4					48
		Ratnagiri	60	95	2	3	1	2					63
		Sangameshwar	34	100									34
27.	Sangli	Atpadi	1	3	25	78	6	19					32
	11/148	Islampur			1	50	1	50					2
	(241 Samples)	Jath			30	57	21	40			2	4	53
		Kadegaon	4	44	5	56							9
		Kavathemahankal	2	6	19	59	9	28			2	6	32
		Khanapur	5	17	21	72	3	10					29
		Miraj	3	11	10	37	13	48	1	4			27
		Palus			4	67	2	33					6

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce			Water		Water		y Poor		itable	No.of Samples
	Taluka /Villages		NS/	` ,	NS /	/ (%)	NS /	(%)	NS	/ (%)	NS /	(%)	(5 Yrs.)
27.	Sangli Cond	Shirala	3	27	7	64	1	9					11
	11/148	South Solapur			1	33	2	67					3
	(241 Samples)	Tasgaon	2	17	4	33	5	42	1	8			12
		Walwa	11	44	12	48	2	8					25
28.	Satara	Javali	2	50	2	50							4
	12/146	Karad	4	17	18	75	2	8					24
	(246 Samples)	Khandala	12	46	14	54							26
		Khatav	10	40	13	52	2	8					25
		Koregaon	2	8	18	69	6	23					26
		Mahabaleswar	8	89	1	11							9
		Man(dahivadi)	2	8	17	65	7	27					26
		Medha	5	100									5
		Patan	9	32	13	46	3	11	3	11			28
		Phaltan	2	9	12	52	9	39					23
		Satara	18	47	17	45	3	8					38
		Wai	1	8	9	75	2	17					12
29.	Sindhudurg	Devgad	26	100									26
	8/105	Dodamarg	20	100									20
	(242 Samples)	Kankavli	34	89	4	11							38
		Kudal	35	81	6	14	2	5					43
		Malvan	35	88	5	13							40
		Sawantwadi	29	100									29
		Vaibhavwadi	13	72	4	22	1	6					18
		Vengurla	22	79	5	18	1	4					28

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce			Water		Water		y Poor		itable	No.of Samples
20	Taluka /Villages		NS/	(%)		(%)	<u> </u>	(%)		/(%)	IND.	/ (%)	(5 Yrs.)
30.	Solapur	Akkalkot			5	71	1	14	1	14			7
	12/48	Barshi	2	17	4	33	6	50					12
	(60 Samples)	Karmala			3	60	2	40					5
		Madha			2	33	4	67					6
		Malshiras			3	38	5	63					8
		Mangalwedha			3	60	2	40					5
		Mohol			5	56	4	44					9
		N.Solapur			4	50	4	50					8
31.	Thane	Ambernath	6	50	5	42	1	8					12
	15/137	Bhivandi	24	59	16	39	1	2					41
	(439 Samples)	Dahanu	27	79	4	12	3	9					34
		Jawhar	12	71	5	29							17
		Kalyan	11	73	4	27							15
		Mokhada	16	80	4	20							20
		Murbad	21	64	10	30	2	6					33
		Murud	6	100									6
		Palghar	28	54	23	,			1	2			52
		Shahapur	24	75	8	25							32
		Talasari	22	88	3	12							25
		Thane	24	48	24	48	2	4					50
		Ulhasnagar	3	27	6	55	2	18					11
		Vasai	22	47	19	40	6	13					47
		Wada	29	66	15	34							44

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce			Water		Water		y Poor	Unsui		No.of Samples
	Taluka /Villages		NS/	(%)	NS /	/ (%)	NS /	(%)	NS	/(%)	NS/	(%)	(5 Yrs.)
32.	Wardha	Arvi			17	74	4	17	1	4	1	4	23
	8/128	Ashti			11	55	8	40	1	5			20
	(293 Samples)	Deoli			25	64	11	28	2	5	1	3	39
		Hinganghat	1	2	18	41	19	43	6	14			44
		Karanja	2	14	7	50	5	36					14
		Samudrapur	2	4	26	47	26	47	1	2			55
		Seloo			27	46	26	44	2	3	4	7	59
		Wardha	2	5	22	56	11	28			4	10	39
33.	Washim	Karanja	2	5	31	82	5	13					38
	6/67	Mangarulpir			20	95	1	5					21
	(260 Samples)	Malegaon			23	66	12	34					35
		Manora	1	4	23	85	3	11					27
		Risod	3	4	53	70	20	26					76
		Washim	6	10	54	86	3	5					63
34.	Yavatmal	Arni	1	4	20	74	6	22					27
	16/180	Babhulgaon			24	80	6	20					30
	(417 Samples)	Darwha			29	81	7	19					36
		Digras	1	3	18	55	14	42					33
		Ghatanji	1	3	27	79	6	18		_			34
		Kalamb			24	80	6	20					30
		Kelapur	1	3	27	87	3	10				_	31

^{*} NS= Number of Samples

Table 6.6 (Contd..): Classification of Ground Water Quality of Talukas as Excellent, Good, Poor, Very Poor and Unsuitable for Drinking

Sr.	District	Taluka Name	Exce	llent	Good	Water	Poor	Water	Ver	y Poor	Unsui	itable	No.of Samples
	Taluka /Villages		NS/	(%)	NS /	′ (%)	NS/	(%)	NS	5/(%)	NS/	(%)	(5 Yrs.)
34.	Yavatmal	Mahagaon	1 6		15	94							16
	Contd	Maregaon	1 13		6	75	1	13					8
	16/180	Ner	2	7	22	73	6	20					30
	(417 Samples)	Pusad	2	2 17		83							12
		Ralegaon			22	71	9	29					31
		Umarkhed	1	4	18	78	4	17					23
		Wani			16	55	13	45					29
		Yavatmal	2 6		29	88	2	6					33
		Zari Jamni	1	7	10	71	3	21					14

^{*} NS= Number of Samples

Districts with very poor quality of ground water (more than 10% of the Talukas) is presented in **Table 6.7**

Table 6.7: Districts with Very Poor Quality of Ground Water (More than 10% of the Talukas)

District	No of Talukas with	No of Talukas with
District	Very Poor Water Quality	Unsuitable Ground Water
Ahmednagar	5	1
Akola	1	-
Beed	2	-
Buldhana	2	-
Chandrapur	1	-
Gadchiroli	2	-
Jalgaon	2	1
Jalna		1
Nagpur	1	1
Nasik	1	-
Pune	1	1
Satara	1	-
Solapur	1	-
Wardha	1	1

Technologies for water quality improvement are given in **Appendices I toVI**.

6.4 District Wise Ground Water Status of Maharashtra (CGWB and GSDA)

Ground water is one of the sources for drinking, domestic and irrigation purposes. In the present study, ground water quality was evaluated based on five years monitored data by different agencies. Based on the selected inorganic and physical parameters, ground water quality is estimated. District wise ground water quality status of Maharashtra with respect to BIS standards and water quality index is described in subsequent sections.

1) Ahmednagar District

Ahmednagar district is the largest district of Maharashtra state. There are hilly off-shoots of Sahayadris in the western part of the district. In the northern part of the district, plains are found along the banks of rivers Godavari and Pravara as well as in the southern part, along the rivers Bhima -Mula, Ghod, Dhora and Sina. Physiologically, the Ahmednagar district is divided into three divisions: (a) Western Hilly Region,(b) Central Plateau Region and (c) the region of northern and southern plains.

General Information:

Geographical Area: 17412 sq. km

Taluka-14: Ahmednagar, Akole, Jamkhed, Karjat, Kopargaon, Newasa, Parner, Rahata,

Rahuri, Sangamner, Shevgaon, Shrigonda, Srirampur and Pathardi

Villages: 1581, Population: 40,88,000

Soil Type:

The soil type in the district can generally be classified into three groups:

1) black or *kali*, 2) red or *tambat*, and 3) laterite and the gray of inferior quality locally known as *barad* including white or *pandhari*. Of these, *barad* soils are very poor in fertility.

Annual Rainfall: 566 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Major Ground Water Problems and Issues:

In most of the parts of this district, water is generally good for both domestic and irrigation purposes. Generally the ground water levels are up to eight to nine meters during the summer.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

In Ahmadnagar, 167 villages in 14 talukas were monitored. The descriptive statistics of ground water quality carried out are given in **Annexure IX. Table 6.8 and Annexure X(1)** gives the water quality index of ground water for five years in Ahmednagar district.

Ahmadnagar, Akole, Karjat, Shrigonda and Shevgaon: From the descriptive statistics of these talukas, it was observed that in most of the villages of these talukas, nitrate levels were very high and also the concentration of TDS and hardness. The percentage of samples exceeding the permissible limits ranged from 15-37% for nitrate, 21-35% for total hardness, and 5-14% for TDS during the five years' time period. The water quality indices calculated for the villages of these talukas showed that the average five year ground water quality of these locations were poor, except Akole. The Ahmednagar taluka showed trend of a poor water quality continuously for five years.

In *Ahmednagar taluka*, water quality of Manjur village remained unsuitable over the years, Jakhangaon village showed slight improvement in water quality during 2010. The water quality of Walki and Burudgaon village worsened in 2011 leading it to unsuitable. In *Akole taluka*, Rajur, Parakadpur and Vadegaon Madhe villages are having poor water quality. Kolwadi, Rassin, Mahi jalgaon villages in *Karjat Taluka* also showed poor water quality.

Dahigaon, Ghotan, Jeur, Hingangaon villages of *Shevgaon taluka* indicate poor water quality, while Khanapur and Antrawali shows good water quality. In *Shrigonda taluka*, village Chikhale and Banpimpri show continuously degraded water quality, whereas Kokangaon indicated good water quality.

The probable sources of contamination of ground water could be over-application nitrate based fertilizers in farms, agricultural run-off, leaking storage tanks, etc. and contamination by micro-organisms from domestic activity etc. in the vicinity of ground water resources.

Sangamner and Shrirampur: Descriptive statistics showed that samples from Shrirampur did not exceed the permissible limits, but in Sangamner Taluka there was 30-32% exceedance for Total Hardness and Magnesium and 23% for TDS. Water quality at Ambikhalsa, Chandanapuri and Sangamner villages were all reported good to excellent in Sangamner taluka. Ghulewadi, Chikhali. Hangewadi and Nimgaonjali villages regularly showed poor water. At Srirampur taluka, villages viz. Bote, Srirampur, Undirgaon, Eklahare, Rajankhol showed good WQI, whereas, Rampur, Bableshwar, Belapur kh showed very poor water quality. The WQI was deteriorating at Chitali, Loni kh for 2011. Five years WQI clearly indicated that over the year's water quality varied between good to poor. This may be due to eutrophication caused by human activities and agricultural runoff.

Jamkhed: For Jamkhed taluka water quality of villages Arangaon, Nanaj and Jamkhed were varied between from good to poor.

Kopargaon: Exceedance of TH- 24%, Mg²⁺-30%, TDS -12% and nitrate 18% were reported for this taluka. Kolpewadi and Talegaon Male village showed good WQI, whereas, Apegaon, Chas Takali and Shinganapur villages had good to poor WQI. Dhamori, Shahajapur, Derde korhale and Puntamba villages showed poor water quality in 2011. Changes in water quality may be due to mineral deposits in the taluka.

Nevasa: Statistical analysis showed that TH was exceeded 38% of the time. Magnesium and nitrate for 23% of the time. Water quality of Vadala Bhairoba, Belpandhari Watapur, Galnimb and Kukana were reported to be poor to unsuitable. Whereas, Newasa kh, and Suregaon dahigaon showed good to excellent water quality. Water qualities were uneven at Bambori and Babulwedhe Villages. Five years WQI indicates poor water quality for all the years. The most common source of nitrate in the soil could be e use of nitrate containing fertilizers whereas, the hardness in water is mostly due to Ca²⁺ and Mg²⁺ naturally occurring from weathering of limestone, sedimentary rock and calcium bearing minerals.

Parner, Rahata, Rahuri and Pathardi: In *Parner taluka*, Supe, Chambut and Devibhoire were reported to have unsuitable WQI, whereas, WQI at Deswade and Tas were excellent. WQI in Village *Rahata* was consistently reported bad, because 100% exceedance was observed for hardness, magnesium and nitrate. Maximum concentration for TH - 1058 mg/l, magnesium -233 mg/l and nitrate 205 mg/l was observed. WQI in Rahuri bk, and Wambori

village were also reported unsuitable, whereas, Warshinde, Devlali, Malharwadi water quality were uneven. At Kendal kh, Tambhere and Warshinde villages WQI were reported to be good in 2011. Kasar Pimpalgaon village of *Pathardi taluka* showed improvement in water quality from poor to good.

WQI of 5 years for *Parner taluka* showed that it improved to good. As against this, at Rahuri, no improvement in water quality was observed for 5 years. Water is not potable and proper treatment is required. Water quality for *Rahuri* was excellent in 2007 and poor in 2008 to 2011. Exceedance was observed to be 30-40% for TDS and TH, 21% for nitrate and 19% for sulphate. The sources for these ions could be natural weathering of limestone and calcium bearing minerals, over application of fertilizers. In *Pathardi* taluka, average WQI for 2 years was reported to be good.

Table 6.8: Water Quality Index of Groundwater of Ahmednagar District

Talukas	2	007	20	008	20	009	20	10	20	11	5 Yrs.	WQI
	WQI	Catg.	WQI	Catg.								
Ahmednagar	164	PW	142	PW	212	VPW	119	PW	124	PW	130	PW
Akole	135	PW	146	PW	143	PW			64	GW	96	GW
Jamkhed	64	GW	104	PW	100	PW	106	PW	76	GW	85	GW
Karjat	167	PW	136	PW	196	PW	120	PW	79	GW	115	PW
Kopargaon	117	PW	60	GW	63	GW	120	PW	128	PW	115	PW
Nevasa	142	PW	97	GW	117	PW	166	PW	116	PW	129	PW
Parner	328	UNS	84	GW	116	PW	79	GW	94	GW	96	GW
Rahata	210	VPW	253	VPW	194	PW					195	PW
Rahuri	49	EXL	180	PW	170	PW	143	PW	118	PW	126	PW
Sangamner	60	GW	87	GW	70	GW	145	PW	123	PW	120	PW
Shevgaon	207	VPW	139	PW	166	PW	86	GW	112	PW	125	PW
Shrigonda	147	PW	173	PW	143	PW	117	PW	99	GW	125	PW
Srirampur	54	GW	61	GW	61	GW	89	GW	104	PW	90	GW
Pathardi		-					113	PW	74	GW	93	GW

From the overall five years WQI of Ahmadnagar district, it was observed that talukas namely Akole, Jamkhed, Parner, Shrirampur and Pathardi were good; while others Ahmednagar, Karjat, Kopargaon, Nevasa, Rahata, Rahuri, Sangamner, Shevgaon and Shrigonda zwere reported to be poor. The cause of this is natural deposition of minerals, hardness in soil and excessive use of fertilizers, which deposit nitrates and sulphates. Proper precautionary measures are required to be taken to improve the water quality.

2) Akola District

Akola district is one of the eleven districts of Vidarbha region of Maharashtra. It is situated in the northern part of the State. The northern fringe of the district is hilly and forms part of Satpura Range. South of these hill ranges, covering almost entire north-central part constitutes the alluvial plain. Southern part of the district is characterized by hilly rugged terrain as a part of Deccan Plateau. Purna is the main river flowing through the district. Other important rivers are Man, Murna and Kate.

General Information:

Geographical Area: 5417 sq. km.

Taluka-7: Akola, Akot, Balapur, Barshi Takli, Murtijapur, Patur and Telhara

Villages: 1009 Population: 16,30,239

Soil Type:

Two types of soils have been observed in the district namely medium black soil occurring in plain central part of trap origin and deep black soil occurring in valley in northern part.

Annual Rainfall: 750 to 950 mm

Geology: Pliestocene-Recent: Alluvium,

Upper Cretaceous-Lower Eocene: Basalt (Deccan Traps)

Major Ground Water Problems and Issues:

The areas of Purna River covering Akot and Telhara talukas and northern parts of Akola and Balapur talukas are affected by inland salinity problem coupled with the problems of drought and water level decline. Wide range of problems were faced during exploratory drilling operations in hard rock areas of Akola district i.e., mainly encountering of caving formation (red bole) and loss of drilling medium.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

In Akola district some of the villages under different talukas are monitored by two different agencies where Fe was monitored by GSDA along with other parameter. Whereas, CGWB data excluded Fe in ground water quality analysis. Due to this non uniformity in monitored data, WQI was estimated considering Fe weightage at respective monitoring stations. In Akola district 7 talukas were monitored for 104 villages. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX. Table 6.9 and Annexure X(2)** gives the water quality indices of ground water for five years at Akola district.

Akola: The overall water quality of this taluka was poor, for all the five years. High concentrations of TDS, hardness, Mg^{2+} , nitrate and sulphate ions were observed. The observed concentrations exceeded the permissible limit in 16% of the samples for TDS, 12%

for pH, 25% for TH and Mg²⁺, and 55% for nitrate. Water quality indices show that water quality varied from good to unsuitable for drinking. Kurankhed, Akola, Agar, Apatapa, Katyar, Palso Bk, Kati were reported to be very poor and unsuitable over the years. In some of the villages i.e. Ugwa, Dhamna, water quality further declined in 2010-11, whereas, some improvement was observed in Wanirambhapur, Kapileshwar and Palso Bk villages. Overall water quality of the taluka was poor. The excess level of inorganic pollutants could be due to over application of fertilizers in farms along with natural weathering of limestone and calcium bearing minerals.

Akot: As observed from the descriptive statistics of this taluka, TDS exceeded the permissible limit in 23-30%, TH in 37-45%, Mg²⁺ and nitrate in 40% of the samples. The WQI calculated for the villages Patsula, Palsad, Devarda, Kinkhed, Hilaladad, Girijapur were reported unsuitable for all 5 years. In villages, viz. Deori, Mundgaon water quality varied over the years. Poptkhed, Shahanur showed excellent WQI over the period. The overall quality of ground water in the taluka was poor.

Balapur: In the initial years, poor water quality could be due to exceedance of hardness and nitrate. Nitrate was exceeded in 48% of samples. WQI evaluated for the Ural, Wadegaon, Gaigaon and Wyala villages varied from poor to good. The overall quality of ground water in this taluka was poor in 2007- 2009, while later it changed towards good.

Barshi Takli: As per the statistics of this taluka, the major pollutants of ground water were hardness, Mg²⁺ and nitrate as they exceeded the permissible limit 51, 14 and 17% of the time for nitrate, TH and Mg²⁺. WQI evaluated for the villages, Dhaba, Hatola, Kajaleshwar, Kasarkhed, and Barshi Takli were reported to vary between good to excellent for these 5 years. Village Rahit is all together polluted. When iron was considered, poor WQI was reported for 2008-2009, but overall trend showed good water quality for the taluka.

Murtizapur: Maximum concentration of TDS was 8490 mg/l, TH -2010 mg/l, Mg²⁺- 454.7 mg/l, NO₃-682 mg/l, Cl⁻-2090 mg/l, and SO₄-² -1149 mg/l in this taluka. Percent exceedances with respect to permissible limits of BIS were 57, 18 and 27% for nitrate, TH and Mg²⁺. Murtizapur, Rasalpur, Dapura and Kinkhed villages of this taluka showed poor quality in 2007-2009, and when Fe was considered for WQI, its quality varied from poor to good. WQI of Kolsara village was all together unsuitable. Madhapuri village showed excellent water quality for 5 years.

Patur: In Parur taluka, 39 and 10% exceedance for nitrate and pH respectively was reported. WQI for the villages Khetri, Chikhalwal, Sawarkhed, Chani and Patur, both with

and without Fe showed good to excellent water quality. Water quality of this taluka for 5 years was observed to be good to excellent.

Telhara: It was observed that some of the parameters showed percent exceedance in the range of 20-50% during five years. In this taluka, monitoring of Telhara village was done for the year 2007 only without iron, which showed poor water quality. Water quality of villages Adsul, Wangargaon was unsuitable and Hingani, Wariwarkhed were excellent. Overall 5 years WQI varied between poor and good.

Table 6.9: Water Quality Index of Groundwater of Akola District

Talukas	20	007	200)8	20	09	20	10	20	11	5 Yrs.	WQI
	WQI	Catg	WQI	Catg								
Akola (*)	142	PW	174	PW	122	PW					146	\mathbf{PW}
Akola (+)			152	PW	129	PW	88	GW	96	GW	119	PW
Akot (*)			171	PW	175	PW						
Akot (+)	182		172		115	PW	106	PW	118	PW	136	PW
Balapur (*)	177	PW	151	PW	166	PW						
Balapur (+)	80	GW	158	PW	97	GW	76	GW	82	GW	96	GW
Barshi T. (*)	80	GW	84	GW	73	GW						
Barshi Takli(+)	84	GW	152	PW	112	PW	75	GW	79	GW	98	GW
Murtizapur (*)	297	VPW	149	PW								
Murtizapur (+)	179	PW	162	PW	133	PW	88	GW	91	GW	125	PW
Patur (*)	71	GW	62	GW	73	GW						
Patur (+)	75	GW	83	GW	77	GW	56	GW	59	GW	68	GW
Telhara (*)	187	PW										
Telhara (+)	125	PW	179	PW	92	GW	61	GW	89	GW	102	PW

^{*} Wt_Fe: Without Fe, + W_Fe: With Fe; UNS- Un-suitable

From five years ground water quality it was found that, Balapur and Patur Talukas had good water quality, whereas others are indicted as poor to very poor. The villages namely Wanirambhapur, Akolkhed, Popatkhed, Ruikhed, Wadegaon, Shahanpur, Kajaleshwar, Madhapuri, Hingani Bk, Chikhalwal, and Sawarkhed have excellent water quality. The other villages where the water quality was unsuitable for drinking are namely Agar, Katyar Patsul, Girijapur, Rahit, Kolsara, Wangargaon, Hilaldad, Panhagavan and Lohara.

3) Amravati District

Amravati District is one of the district of Vidarbha regions of Maharashtra. Wardha River forms the eastern boundary of the district. The district can be broadly divided into two physiographic unit's viz., Melghat Hill range made up of Gawilgarh hills, which are a part of the Satpura hill ranges and plain area of the Paynghat. The eastern part of the district falls under Godavari basin and consists of 20 watersheds, whereas the western and north western parts fall in Tapi basin and consists of 23 watersheds. It is situated in the northern part of the State. The major part of the district comes under Purna- Tapi and Wardha River basins. The important rivers flowing through the district are Tapi, Purna, Wardha, Pedhi and Chandrabhaga.

General Information:

Geographical Area: 12210 sq. km

No of Talukas -14: Achalpur, Amravati, Anjangaon Surji, Bhatkuli, Chandurbazar,

Chandur Rly. Chikhaldara, Daryapur, Dhamangaon Railway, Dharni,

Morshi, Nandgaon khandeshwar and Tiwasa, Warud

Villages: 1698; Population: 26,06,063

Soil Type:

Medium to deep black soil and deep brown to red soil (Regur)

Annual Rainfall: 700 to 1700 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Basalt (Deccan Traps)

Turonian: Lameta Beds, Upper Carboniferous - Permian: Gondwana, Archean:

Metamorphics (Gneisses /Granites)

Major Ground Water Problems and Issues:

Drought area has been observed in south-western parts of the district. Deeper water levels of more than 20m below ground level are also observed in small isolated areas in parts of Achalapur, Chandur Bazar talukas, in central part of the district and in part of Chandur Railway in southern part of the district. The areas of Purna River Alluvium covering southern parts of Anjangaon and Achalpur talukas and entire Daryapur taluka are affected by inland salinity problem.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

In all 183 villages in Amravati ground water was monitored by two different agencies where Fe was monitored by GSDA along with other parameters. CGWB data excluded Fe in ground water analysis. Due to this non uniformity in monitored data, WQI was estimated considering Fe weightage at respective monitoring stations. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX. Table 6.10** and **Annexure X(3)** gives the water quality index of ground water for five years at Akola district.

Achalpur: The WQI evaluated for the villages Devgaon, Nimbhari and Pathrot without taking iron into consideration showed that the water quality was good in 2007 and poor in 2009. Chaushala village of this Taluka, showed poor water quality for 2009 and later years. Fe was considered for evaluating WQI for 2009 and later years.

Amravati: The water quality varied from good to poor for drinking, as overall water quality was poor from 2007 to 2009, which varies in 2010 and 2011. The unsuitable villages are Walgaon, Kher and Sindola, whereas, Pimpri, Arao and Chinkhedi showed good to excellent water quality. When iron was considered in WQI calculations, it was observed that villages including Nandgaonpeth, Mardi and Amla had poor water quality, which may due to exceedance of pH, TH, Mg²⁺ and nitrate as 13, 17, 10 and 58% respectively.

Anjangaon Surji: The water quality indices evaluated for Kolkaz village of Anjangaon taluka without taking iron into consideration showed that the water quality was excellent during all three years. WQI of Anjangaon Surji, Bhandaraj and Karla villages was good in 2007 and 2009. Samsherpur village had poor quality throughout the years. The overall exceedance of BIS standards was observed in the range of 20-30% of the samples for pH, TDS, Mg²⁺, F⁻ and nitrate.

Bhatkuli : In this taluka percent exceedances are 20,18, 37,37, and 53% for pH, TDS, TH, Mg²⁺ and nitrate respectively. The WQI evaluated for Bhatkulijain, Ganori, Sayat, Nimbha and Khar Talegaon showed poor quality for 2007-2009. Slight improvement in water quality was observed for the villages Bhatkulijain and Sayat in 2010-11. Five year WQI was poor as parameters exceeded the standards.

Chandur Bazar: Exceedance of 53% for nitrate, 18% for pH and 10% for both TDS and TS was observed in this taluka. WQI evaluated for Chandur Bazar and Kurha villages showed good water quality without Fe. WQI calculated for later years for the villages Belora, Vishroli and Ghatladki varied from year to year, but cumulative effect showed good water quality.

Chandur Railway: WQI evaluated for Anjansingi, Chandur Railway and Shendurjana villages without taking iron into consideration showed that the overall water quality was poor during 2007-2009, but if iron was included for WQI calculation, then it showed reverse trend of good water quality for all the years. Shendurjana Khurd is the village of good water quality, whereas, Baggi and Borgaon showed varying quality. 63% exceedance for nitrate and 11% for TH and Mg was observed in this taluka. Irregular trend of WQI was observed for 5 years.

Chikhaldara : Ground water quality parameters were found to be less than desirable limit of BIS standards. WQI evaluated for Silona, Adhav, Chunkhadi, Semadoh, Ghular Gh. Barukheda and Hatru villages showed good to excellent water quality for all the five years.

Daryapur: In the Daryapur and Wadnergangai villages of this taluka the overall water quality was very poor in 2007-08 and unsuitable in 2009 to 2011. WQI of other villages of this taluka varied from good to poor but the overall water quality was poor during all five years. Percent exceedance observed were 15% for TDS, 30-40% for pH, TH and Mg²⁺ and 68% for nitrate. The maximum concentration was observed to be 4524 mg/l for TDS and 360 mg/l for nitrate. The overall trend for 5 years indicates that water quality was poor and unsuitable for drinking.

Dhamangaon Railway: Borgaon Dhan and Titamba villages showed that the water quality varied from excellent to poor. Shendurjana Kh. and Gavhanipani villages showed poor water. Titamba and Degaon villages showed excellent water quality. The overall water quality of the taluka was good in 2007 and 2009 while it was poor in 2008.

Dharni Taluka: The WQI for most of the villages' viz. Malkapur, Ranpisa, Dhulghat Rly, Gobarkhau, Chandpur, Cahuryakund, Rangubeli, Diya, Khongda, Sawalikheda, Tarubanda, Lawada and Harisal varied from excellent to good in all five years. However, Bhokarbardi and Wairgad villages showed slightly poor water quality. At all villages, parameters were found to be within desirable limit of BIS standard.

Morshi and Nandgaon Khandeshwar: Percent exceedance of 50 to 60% for nitrate and 10 to 15% for TH and Mg²⁺ was observed. In *Morshi* taluka, Pala, Rithpur villages showed poor to very poor water quality. In Khanapur village water quality improved to good quality in 2008. Nershipur, Chikhalsawgi and Dapori also showed good water quality. But in Umarkhed, Yerla and Morshi it deteriorated in later years. When Fe was included for calculating WQI, then at *Nandgaon Khandeshwar*, Mahuli Chor and Pimpri Nipani varying water quality trends were observed, however most of the time it was poor water quality. If 5 years trend was calculated for WQI considering Fe than it showed Good water quality, and without Fe it showed Poor water quality for these talukas.

Tiwasa and Warud taluka: WQI for Teosa village in *Tiwasa taluka* showed poor quality without considering Fe, but if Fe was included for evaluating WQI, then overall pattern changed to good for five years. In *Warud taluka*, Jamgaon (via Khadka), Mahendri, Pandhari, Mangruli, Ekdara showed good to excellent water quality as compared to villages Tembhurkheda, Wadgaon (Fattepur), Warud where water was almost poor for all the years.

50-60% exceedance for nitrate was observed in both the talukas. If iron was taken for calculation then good water quality and if Fe was not included then poor water quality indices were noticed for these 5 years.

Table 6.10: Water Quality Index of Groundwater of Amravati District

Talukas		007		008		009		10	20	11		. WQI
	WQI	Catg										
Achalpur (*)	64	GW	127	PW							96	GW
Achalpur (+)				-			85	GW	111	PW	109	PW
Amravati (*)			219	VPW	207	VPW					196	PW
Amravati (+)	80		71		76	GW	93	GW	89	GW	87	GW
Anjangaon (*)	39	EXL	43	EXL	39	EXL					40	EXL
Anjangaon (+)	91	GW	84	GW			118	PW	101	PW	93	GW
Bhatkuli (*)	172	PW	172	PW	215	VPW					186	PW
Bhatkuli (+)	141	PW	152	PW	143	PW	118	PW	107	PW	132	PW
Chandur Bz. (*)	84	GW	98	GW	78	GW					87	GW
Chandur Bz. (+)	106	PW	57	GW	45	EXL	92	GW	87	GW	82	GW
Chandur Rly (*)	120	PW	118	PW	112	PW					117	PW
Chandur Rly (+)	126	PW	69	GW	73	GW	83	GW	78	GW	85	GW
Chikhaldara (*)	69	GW	72	GW	60	GW					67	GW
Chikhaldara (+)	65	GW	149	PW	51	GW	57	GW	63	GW	60	GW
Daryapur (*)	275	VPW	300	VPW	332	UNS					302	UNS
Daryapur (+)	127	PW	124	PW	108	PW	232	VPW	95	GW	124	PW
Dharni (*)	91	GW	60	GW	65	GW					72	GW
Dharni (+)	67	GW			61	GW	75	GW	59	GW	63	GW
DhamGa.Rly (+)	91	GW	145	PW	63	GW	85	GW			86	GW
Morshi(*)	187	PW	183	PW	137	PW					169	PW
Morshi (+)	130	PW	108	PW	69	GW	91	GW	91	GW	97	GW
Nandgaon Kh.(*)	190	PW	185	PW	116	PW					164	PW
Nandgaon Kh.(+)	99	GW	109	PW	101	PW	98	GW	84	GW	95	GW
Tiwasa (*)	102	PW	101	PW	100	PW					101	PW
Tiwasa (+)	109	PW	96	GW	91	GW	97	GW	84	GW	96	GW
Warud (*)	100	GW	130	PW	98	GW					109	PW
Warud (+)	67	GW			77	GW	81	GW	84	GW	78	GW

^{*} Wt_Fe: Without Fe, + W_Fe: With Fe; UNS- Un-suitable; EXL - Excellent; DamGa= Dhamangaon

Anjangaon, Dharni, Chandur bazar, Chikaldhara, Dhamangaon Rly had good water quality during 2007-2011. Ground Water quality at Bhatkuli and Daryapur was poor. Water quality at Achalpur, Amravati, Chandur Rly, Morshi, Nandgaon Kh, Tiwasa, Warud varied between good and poor throughout these 5 years.

4) Aurangabad District

Aurangabad district is one of the largest districts in Maharashtra; the urban area is around 37.53% as on 2001 census. The district is divided into two distinct sections: 1) the 'Uplands' to the north- between the basins of the three rivers which take their rise in the higher lands of Takli, Kanhar, and Ajanta and parallel with the course of the rivers, there are flat-topped ranges of hills enclosing valleys of much beauty and fertility. 2) The 'Lowlands' in the valley of the Godavari to the south. The lowland area presents little diversity in its physical aspect, and consists of wide undulating plains to the south, south-east, and west. Aurangabad district is located mainly in the Godavari River Basin and partly in the Tapi Basin.

General Information:

Geographical Area: 10,100 sq. km

Taluka-9: Aurangabad, Kannad, Khultabad, Paithan, Phulambri, Sillod,

Soygaon, Vaijapur, Gangapur Villages: 1581 Population: 28,97,013

Soil Type:

There are two kinds of superficial formations: 1) one consisting of upland soil derived from the decomposition of the rocks on the spot, peculiar to the hilly region, and 2) the alluvial soil, deposited by water, belonging to the plains and to the hollows in the valleys of rivers.

Annual Rainfall: 734 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Ground Water Quality with Respect to BIS Standard and Water Quality Index

Out of 9 talukas of Aurangabad, 96 villages were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.11and Annexure X(4)** give the water quality index of ground water for five years at Aurangabad district.

Aurangabad and Kannad: Nitrate exceeded 18-22% and pH-15% of the permissible limit of these talukas. In *Aurangabad taluka* Kinnal, Walur Tanda, Apatgaon showed poor quality for years 2007-2009. For these villages data is not available for 2010 and 2011. But Golthgaon, Kadrabad and Shendra villages show varying water quality. Shekta village inclined towards poor water quality. In *Kannad Taluka*, Digar Pishore, Hatnur, Hingni and Saigavan villages showed poor to very poor water quality indices. Other villages have good water quality. As first three years poor water quality and for 2010 and 2011 good water quality was observed for these two talukas, cumulative WQI was poor for Aurangabad and good for Kannad. The probable reason for poor water quality is the nitrate levels in ground water.

Khultabad: All parameters were within desirable limits, except pH which did not comply 15% of the time. Only villages Wanegaon and Deolena BK showed poor water quality during 2011. Five years WQI was good.

Paithan: It was observed that 10-20% exceedances for TDS, hardness, Ca²⁺, Mg²⁺, SO₄²⁻ and nitrate. In Adul village, the higher levels of inorganic pollutants resulted in unsuitable water quality for drinking purpose in 2007-2009. Thergaon, Bidkin, Murma and Dera also showed the same, whereas Ektuni, Telwadi and Takali Ambad showed variable water quality.

Phulambri and Sillod: pH and nitrate did not comply with the standards in Phulambri and Sillod talukas. Gevrai and Gungi villages showed excellent water quality. In *Silod Taluka*, Ajanta, Madani, Mangrul and Bhavan villages had poor water quality. Wadala, Sillod, Jamthi showed varying water quality. Five years cumulative WQI was good for both the talukas.

Soygaon: Comparison with standards showed that all the values were within the permissible limits. The WQI calculated for Fardapur village of Soygaon taluka showed that the water quality was good in 2007 and poor in 2008-09. Village Galwada showed good to excellent water quality, whereas Jarandi and Ghanegaon were poor. The probable contaminating sources could be the micro-organisms entering through the contaminated drilling tools and improperly sealed well casing.

Vaijapur: The levels of TDS, hardness, Mg²⁺, and nitrate exceeded in 10-25% of the samples. WQI indicated that water quality in Rotegaon was good, whereas for Tunki it was unsuitable for drinking for 2007-2009. At Vajapur, Borsar and Jambargaon poor quality was noticed and other villages had varying WQ. The overall water quality of the taluka was very poor.

Gangapur: Parameters pH, hardness, TDS and magnesium did not comply with the standards at Gangapur taluka. Kinhala, Kaigaon and Agathan had very poor to unsuitable water quality, whereas Dahegaon was reporting good to excellent. Sufficient data is not available for calculation of five years trend, as it's actually ranging between poor to good, but inclined towards poor.

Table 6.11: Water Quality Index of Groundwater of Aurangabad District

Talukas	20	007	20	08	20	09	20)10	20)11	5 Yrs.	WQI
	WQI	Catg	WQI	Catg								
Aurangabad	143	PW	155	PW	129	PW	95	GW	96	GW	101	PW
Kannad	123	PW	126	PW	107	PW	81	GW	89	GW	88	GW
Khultabad	87	GW	85	GW	82	GW	74	GW	81	GW	78	GW
Paithan	704	UNS			330	UNS	141	PW	133	PW	147	PW
Phulambri	137	PW	92	GW	131	PW	88	GW	88	GW	91	GW
Sillod	94	GW	92	GW	91	GW	98	GW	74	GW	86	GW
Soygaon	77	GW	103	PW	115	PW	85	GW	80	GW	83	GW
Vaijapur	204	VPW			241	VPW	114	PW	110	PW	122	PW
Gangapur							93	GW	109	PW	101	PW

UNS- Un-suitable; VPW- Very Poor Water

Five years water quality of Aurangabad district indicated that the water quality in talukas namely Kannad, Khultabad, Phulambri, Sillod and Soygaon was good. Whereas, Aurangabad, Paithan, Vaijapur and Gangapur showed poor quality. Paithan and Gangapur which are religious places have human activities which affect the water quality.

5) Beed District

It is flanked by Aurangabad and Jalna districts in the north, Parbhani in the east, Latur in the south east, Osmanabad in south and Ahmadnagar district in the west and southwest. The district can be broadly divided into 3 physiographic units: 1) Lowland Beed- the low lying northern part comprising of Godavari valley and is also known as Gangathari. 2) Highland Beed- occupies the southern part forming a part of Balaghat Plateau 3) Sina basin- low lying undulating area southwest and west of Highland Beed comprising almost whole of Ashti taluka. The major part of the district comes under Godavari basin. Godavari, Manjra and Sina are the major rivers that drain the district along with their tributaries.

General Information:

Geographical Area: 10615 sq. km.

Taluka- 11: Ambejogai, Ashti, Beed, Dharur, Gewrai, Kej, Majalgaon, Parli,

Patoda, Shirur Kasar, Wadwani

Villages: 1282 Population: 21,61,000

Soil Type:

Rocky and thin layered soil is observed in major part of the district except on the banks of Godavari and Sindphana Rivers, where dark brown to black and clayey loamy to loamy soils are observed. The nutrient levels in almost all the soils are low.

Annual Rainfall: 600 mm to 800 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Major Ground Water Problems and Issues:

The drought area has been observed in entire district except the western part of the district around Ashti. In major parts of the district low water level is observed which include Georai, Majalgaon, Ambejogai talukas and parts of Kaij, Beed and Patoda talukas. Thus ground water conservation and recharge need to be prioritized in these areas.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

Out of 11 talukas of Beed, 67 villages are monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.12and Annexure X(5)** gives the water quality index of ground water for five years at Beed district.

Ambejogai and Beed: Descriptive statistics showed that none of the samples except pH complied with the permissible limit. *Ambejogai taluka* had excellent water quality for all the consecutive years. Kumbhephal, Talni and Sonawala villages also showed good water quality. In *Beed taluka* Pali, Pithi and Bhend Takli and Beed also had good water quality. Dharur village showed poor quality in 2011.

Ashti, Gewrai and Kej: In *Ashti taluka*, the WQI of Ashti village was poor but improvement was observed in 2011, whereas, reverse trend was observed for Kuntephal village, where it changed from excellent to poor. Nimgaon choba village showed poor water quality in 2011. In *Gewrai taluka*, exceedance of 10-15% of TDS, TH were observed, villages' viz. Patrud, Georai, Hirapur had poor WQI. Tagadgaon, Mahar takli showed poor quality, and Talwada showed excellent water quality in 2011. In *Kaij taluka*, Bansarola and Malegaon villages had good water quality in 2010 to 2011, whereas Kej village had poor quality in 2009. Five year WQI for all these talukas were good.

Dharur and Parali : Water quality indices for Dharur village of *Dharur taluka* showed that WQI was poor. The poor water quality could be due to nitrate and hardness, where 20-50% of these samples exceeded the permissible limit. Sirsala and Parli villages in *Parli taluka* showed poor water quality in 2007-2009. Dharmapuri, village was good in 2008. At the same time villages Wadgaon and Pimpri bk. showed excellent water quality in 2011. The five years WQI for Dharur was good and for Parli it was poor.

Patoda: As per descriptive statistics of Patoda taluka all the samples were within the desirable limit except pH. WQI for Patoda and Daskhed villages were poor and good respectively. However, the overall water quality of the taluka was poor in 2007 which is improved in consecutive years.

Shirur Kasar Wadwani and Majalgaon: The village viz. Manur and *Shirur Kasar* showed poor quality, as also Telgaon and Wadwani villages of *Wadwani taluka*. The overall water quality of Shirur Kasar and Wadwani were reported poor. As seen from the descriptive statistics, around 40-50% samples of Mg²⁺, nitrate and total hardness exceeded the permissible limit. The natural source of Mg⁺ and Ca⁺ in the soil could be the weathering of limestone and minerals. The *Majalgaon taluka's* villages viz. Roshanpuri, Khamgaon and Longaon Camp were reported from good to excellent and all parameters are within permissible limits.

Table 6.12: Water Quality Index of Groundwater of Beed District

Talukas	20	007	20	08	20)09	20	10	20	11	5 Yrs.	. WQI
	WQI	Catg	WQI	Catg								
Ambejogai	66	GW	96	GW	79	GW	65	GW	63	GW	67	GW
Ashti	113	PW	121	PW	-		66	GW	97	GW	83	GW
Beed	58	GW	66	GW	87	GW	53	GW	73	GW	69	GW
Dharur	104	PW	135	PW	63	GW			80	GW	92	GW
Gewrai	-				155	PW	86	GW	81	GW	86	GW
Kej					130	PW	69	GW	67	GW	80	GW
Parli	194	PW	134	PW	162	PW			62	GW	103	PW
Patoda	105	PW	98	GW	89	GW	63	GW	72	GW	75	GW
Shiruru Kasar	242	VPW	177	PW	99	GW			122	PW	148	PW
Wadwani	158	PW	120	PW	242	VPW					142	PW
Majalgaon		-	-		-			-	52	GW	52	GW

Five years water quality of Beed indicated that talukas namely Ambejogai and Beed were good for all 5 years. Talukas namely Ashti, Dharur, Gewrai Kej and Patoda reported poor ground water in 2007 but improvement was observed in following years. From analyzed data it was found that WQI at Parli, Shirur Kasar and Wadwani talukas were poor to very poor as hardness, minerals and nitrate contamination are the major issues of these talukas.

6) Bhandara District

Bhandara district is situated on the left bank of river Wainganga. It is fondly called as the 'District of Lakes'. Hilly region of the northern side consists of Satpuda range, Bhivsen Koka are small hillocks in this range. Gaymukh and Ambagad are prominent hills in northern hilly region. The Wainganga is the principal river in the district, and the only stream that does not dry up in the hot weather.

General Information:

Geographical Area: 3716.65 sq. km

Taluka-7: Bhandara, Lakhandur, Lakhani, Mohadi, Pauni, Sakoli, Tumsar

Villages: 870, Population: 11,35,835

Soil Type:

The soils of the district are varied, arising out of the weathering of crystalline metamorphic and igneous rocks. Along the southern extremes of the Wainganga valley, alluvial soils predominate. Kali or black regur soils derived from the weathering of basalts generally have an admixture of sands or lime or both. Khardi soils are dark in colour with a considerable admixture of lime; they are generally shallow.

Annual Rainfall: 1470.6 mm

Geology: Recent: Alluvium (Soil, kankar, laterite) Upper Cretaceous-Lower Eocene: Deccan Trap Basalt Archean: Older granites and gneiss

Ground Water Quality with Respect to BIS Standard and Water Quality Index

All 7 talukas of Bhandara district including 68 villages were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX. Table 6.13 and Annexure X(6)** give the water quality index of ground water for five years at Bhandara district.

Bhandara, Lakhandur, Lakhani and Pauni: Exceedance for magnesium ranged from 10-12%, nitrate from 8-40%. At Lakhani, Nitrate exceeded upto 40% of the samples. It could be due to soil pattern, and use of chemical fertilizers. Poor water quality was reported for Sakra, Pahela and Varti villages in *Bhandara taluka*. Water quality at Dighori, Lakhandur, Palandur and Soni villages in *Lakhandur taluka* varied as also villages of Adyal, Kanhalgaon, Nilaj (Amgaon) and Bhavad in *Pauni taluka*. Villages Dighori and Soni showed poor water quality. Variable water quality in other villages at *Lakhani taluka* was observed. The five year evaluations for these talukas show that WQI irregularly changed.

Mohadi and Sakoli: The statistical analysis of this taluka shows 20-30% of times samples were exceeding the TH, Mg²⁺ and nitrate. In *Mohadi taluka*, the water quality index for Jamb, Kharbi, Chicholi and Wasera were reported poor. At Koka and Ussara villages' water quality in 2008 to 2010 varied. The common sources of contamination could be leaking of storage tanks, use of chemicals in farms, etc. Nitrate concentrations exceeded 11% of the time in *Sakoli taluka*. Village Pitezari reported poor water quality in 2009, Parsodi and Sakoli in 2010. Ekodi and Mundipar villages of this taluka indicated good to excellent WQI.

Tumsar: This taluka indicated that all the parameters were within the permissible limit except pH, nitrate and fluoride, which showed exceedance of 6, 27 and 10% respectively. The overall ground water quality was good in the year 2007-08, whereas it was poor in 2009, which once again improved in 2010-11. Tumsar Khapa and Sihora villages showed poor WQI, whereas, Chikhli (kamkasur) and Khapa (Tumsar) showed good water quality.

Table 6.13: Water Quality Index of Groundwater of Bhandara District

Talukas	2	007	200)8	20)09	20	10	20	11	5 Yrs.	WQI
	WQI	Catg	WQI	Catg								
Bhandara	66	GW	99	GW	90	GW	102	PW			96	GW
Lakhandur	90	GW	81	GW	101	PW	109	PW			106	PW
Lakhani	68	GW	66	GW	70	GW					68	GW
Mohadi	93	GW	143	PW	136	PW	97	GW			104	PW
Pauni	67	GW	57	GW	59	GW	103	PW			97	GW
Sakoli	49	EXL	51	GW	80	GW	83	GW			73	GW
Tumsar	88	GW	91	GW	105	PW	102	PW			93	GW

Five years water quality of Bhandara district showed good water quality at Bhandara, Lakhani, Pauni, Sakoli and Tumsar talukas and poor at Mohadi and Lakhandur. In general water quality was good in 2007 but water quality deteriorated in later years in all the talukas. As nitrate and fluoride exceedance was reported in specific talukas, they need a special attention.

7) Buldhana District

Buldhana is the western district of Vidarbha. In the north is a hilly strip of the Satpudas, Purna plains in the middle and the Ajanta range comprising of Buldhana plateau in the south. The northern region forms a part of Satpudas, which rise to general elevation of 600 to 700 m above mean sea level with occasional peaks rising up to 1000 meter from sea level or more. Purna plain is the main lowland region of the district, with average elevation ranging between 250 to 270 m. The Ajanta range covers the southern part of the district. The district forms part of Godavari and Tapi basin. Purna and Penganga are the main rivers flowing through the district.

General Information:

Geographical Area: 9670 sq. km.

Taluka- 13: Buldhana, Chikhali, Jalgaon jamod, Khamgaon, Lonar, Malkapur,

Mehkar, Motala, Nandura, Sangrampur, Shegaon, Sindhkhedraja,

Deolgaonraja

Villages: 1427 Population: 22,32,480

Soil Type:

The Satpudas have shallow, gravely and stony reddish soil. The soil over the piedmont deposits is coarse, highly friable and is locally known as Malli soil and is well suited for horticulture. To the south of the Satpuda piedmont, the Alluvial plains are covered by deep Alluvial soil, locally known as Bharkali soil, which are deep black, very fine in texture and highly retentive of moisture. Southwards away from the river, the soils are replaced by Kali regular soils, which are moderately deep. The soils of the plateau are Bhorandi or Khelk, a thin yellowish coarse soil, often less than half meter deep. The upper plateau is generally covered by shallow, black, brown or reddish soil. These are locally known as Barad soils.

Annual Rainfall: 500 to 900 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Basalt (Deccan Traps)

Major Ground water problems and issues:

Northern part of the district comprising of Jalgaon (Jamod) and the southern part comprising of Chikhli, Mehkar, Donegaon and Deolgaon Raja talukas comes under "Drought Area". Deeper water levels of more than 20 m below ground level are observed in parts of Malkapur, Nandura and Jalgaon (Jamod) talukas. Ground water quality is affected by nitrate contamination. In north eastern part of Shegaon taluka brackish to saline ground water is observed.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

All 13 talukas were monitored for 139 villages by CGWB and GSDA. CGWB data excluded Fe in ground water analysis. Due to this non uniformity in monitored data, WQI was estimated considering Fe weightage at respective monitoring stations. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.14** and **Annexure X(7)** gives the water quality index of ground water for five years at Buldhana district.

Bludhana and Chikhali: Considering with and without Fe parameters for calculation of WQI, the five year trend of the water quality is almost poor to unsuitable. The villages affected are Buldhana, Dongar Khandala, Kolori, Dattapur, Dhad, Mhasala BK, Nandrakoli and Mondhala. The major reason for unsuitability at *Buldhana taluka* was exceedance of TDS, pH, hardness, calcium, and magnesium around 10-30%, whereas nitrate exceedance is almost about 67% of the samples. At *Chikhali taluka* Khamgaon, Kelwad villages have poor water quality in 2007-09, Sawana and Undri villages have poor water quality in 2011 as Calcium and nitrate levels are high. Borgaon Kakde and Pimpalgaon Raja villages showed good water quality. In general good water quality was observed at chikhali taluka.

Khamgaon and Jalgaon Jamod: In *Khangaon taluka*, water quality at village Garadgaon is good for all the years. Khamgaon improved in 2010 from poor to good. However, villages Hiwarkhed, Kokta, Lakhanwada, Nimkawada, Nipana, Divthana, and Sutala had poor water quality, the reason could be exceedanc of calcium and nitrate which is higher in 2010-11, so water quality in these years are poor. But in other villages WQI improved to good,. 75% exceedance of nitrate was observed at *Jalgaon Jamod taluka*.

Lonar and Malkapur: The water quality of villages Dhad, Wadhav, Lonar, Dhayaphal, Shara of *Lonar taluka* and Malkapur, Hingana Kazi, Umali, Wagola of *Malkapur taluka* is

almost poor to unsuitable; the quality deteriorated ever year. Statistical analysis showed exceedance of TDS, pH, hardness, calcium and magnesium is about 10-22%, whereas for nitrate exceedance is about 56%. Both these talukas have poor WQI.

Mehakar and Motal: Villages Ajani Bk., Fardapur, Mehkar and Wishvi of *Mehakar taluka* had poor WQI. Nitrate exceeded 55% of the time in Mehekar Taluka. As also for five year WQI, if Fe was not considered for calculation the quality is poor. Otherwise, almost all villages showed good water quality. At *Motal taluka* Rohinkhed, Motala, Pimpalgaon Devi villages showed poor to very poor WQI for 2007-2009. Nimkhed, Dhamangaon Bade and Shlelapur for 2010-11 showed poor WQI. Exceedance of nitrate is highest i.e 92% and calcium is 38% at Motala Taluka.

Nandura and Sangrampur: In *Naduara taluka*, exceedance of nitrate is 67%; exceedance of 11-16% for hardness and magnesium. In *Sangrampur taluka* exceedance of nitrate is 33%. Patorka, Khiroda and Dhamangaon had poor WQI. Other villages had good to excellent WQI.

Shegaon, Sindkhed Raja and Deolgaon Raja: *Shegaon* village was consistently unsuitable from 2007 onward. Bhongaon, Amsari, Manasgaon, Matargaon Bk. Nagzari and Nimbhi villages had poor quality. The exceedance of nitrate is almost 65% and hardness, calcium and magnesium is around 11-38% for Shgaon Taluka. The place is of religious importance and is a drought area. Kingaon Raja village of *Sindkhed Raja taluka* had unsuitable Water quality. The percent exceedances of NO₃⁻ and Mg²⁺ are 20%. In *Deolgaon Raja taluka* nitrate and Calcium exceedances are 33 and 41% respectively. At Mehuna and Mahi poor water quality was noticed. In Shegaon and Sindkhed Raja talukas poor water quality is observed. The WQI in Deolgaon Raja was good.

Table 6.14: Water Quality Index of Groundwater of Buldhana District

Talukas	2	2007		2008		2009		2010		11	5 Yrs	. WQI
	WQI	Catg	WQI	Catg								
Buldhana(*)	211	VPW	181	PW	98	GW					163	\mathbf{PW}
Buldhana(+)	92	GW			107	PW	107	PW	123	PW	107	PW
Chikhali(*)	82	GW	89	GW	109	PW					93	GW
Chikhali(+)					76	GW			71	GW	73	GW
Khamgaon(*)	91	GW	84	GW	86	GW					87	GW
Khamgaon(+)	116	PW			73	GW	109	PW	102	PW	105	PW
Lonar(*)	126	PW	189	PW	158	PW					158	PW
Lonar(+)			107	PW					100	GW	103	PW

^{*} Wt_Fe: Without Fe, + W_Fe: With Fe; UNST- Un-suitable; EXL - Excellent; DamGa= Dhamangaon

Table 6.14 (Contd..): Water Quality Index of Groundwater of Buldhana District

Talukas	20	007	2008		20	009	20	10	20	11	5 Yrs	. WQI
	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg
Malkapur(*)					171	PW					171	\mathbf{PW}
Malkapur(+)	174	PW			50	GW	145	PW	153	PW	148	PW
Mehkar(*)	204	VPW	193	PW							199	PW
Mehkar(+)			91	GW			88	GW	91	GW	91	GW
Motala(*)	204	PW	180	PW	180	PW					188	PW
Motala(+)					84	GW	94	GW	109	PW	96	GW
Nandura(*)	104	PW	134	PW	91	GW					110	PW
Nandura(+)	119	PW			107	PW	85	GW	89	GW	95	GW
Sangrampur(*)					131	PW					131	PW
Sangrampur(+)	87	GW			107	PW	61	GW	80	GW	76	GW
Shegaon(*)	409	UNS	430	UNS	374	UNS					404	UNS
Shegaon(+)	127	PW	95	GW			102	PW	113	PW	112	PW
Sindkhed	180	PW	172	PW	140	PW			69	GW	100	PW
Raja(*)	180	I VV	1/2	L AA	140	T VV			09	UW	100	I VV
Deolgaon	147	PW	135	PW	130	PW			85	GW	94	GW
Raja(*)	147	1, 44	133	1 77	130	1. 44			65	UW	94	GW
Jalgaon					51	GW	86	GW	83	GW	80	GW
Jamod(+)					51	0 11	00	UW	0.5	UW	00	911

^{*} Wt_Fe: Without Fe, + W_Fe: With Fe; UNS- Un-suitable; EXL - Excellent; DamGa= Dhamangaon

Buldhana, Lonar, Malkapur, Shegaon, Sindkhed Raja Talukas had poor 5 year WQI. Chikali, Deolgaon Raja and Jalgaon Jamod had good WQI. At Mehkar, Khamgaon, Motala, Nandura, Sangrampur, water quality varied between poor and good. The major reasons for the poor or unsuitable water quality could be hardness, Ca²⁺, Mg²⁺ and nitrate levels exceeding the permissible limit in most of the villages. For improving the ground water quality status, urgent action required with special attention.

8) Chandrapur District

Chandrapur district is located in Vidarbha region of Maharashtra. Wardha River forms the western boundary, whereas Wainganga River forms the eastern boundary of the district. Chandrapur district can be divided into two physiographic regions: 1) *Plane region in valleys of Wardha*, *Penganga and Wainganga Rivers*- The plane region is made up of widely spread and flat terrain occurring mostly along Wardha River. In Wainganga valley, flat terrain exhibits rolling topography with residual hills in the southern part, while in the northern part wide alluvial flood plains are observed. In Penganga valley, flat terrain covers very little area in south western part of the district. 2) *Upland Hilly Region*- It lies between Wardha and Wainganga rivers comprising parts of Warora, Chandrapur, Mul and Brahmapuri talukas. The south western part of the district in Penganga basin and covering

parts of Rajura and Chandur talukas exhibit hilly topography. The entire area of the district falls in Godavari basin. Wardha, Wainganga and Penganga are the main rivers flowing through the district.

General Information:

Geographical Area 10920 sq. km

Taluka- 15: Ballarpur, Bhadrawati, Brahmapur, Chandrapur, Chimur, Gondpipri,

Jiwati, Korapna, Mul, Nagbhid, Rajura, Pombhurna, Sawali,

Sindewahi and Waroda

Villages: 1791, Population: 20,71,000

Soil Type: Three types of soil, Shallow course, Medium black and Deep black

Annual Rainfall: 1200 to 1450 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Upper Carboniferous – Triassic: Gondwana, Pre-Cambrian: Vindhyan

Archean: Crystalline and Older metamorphics

Major Ground Water Problems and Issues:

The major parts of the district show decrease in ground water levels, mainly in southern, north western and north eastern parts of the district comprising almost entire Rajura, Gondpipri, Chandrapur, Bhadravati, Warora and parts of Chimur, Brahmapuri and Sindewahi, The ground water quality is mainly affected by nitrate. Apart from these, the ground water quality is getting affected due to industrial pollution in and around Ballarpur, whereas, fluoride contamination is also observed in parts of Rajura, Warora and Chimur talukas of the district.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

Out of 15 talukas of Chandrapur, 113 villages were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.15 and Annexure X(8)** give the water quality index of ground water for five years at Chandrapur district.

Ballarpur, Brahmapuri and Bhadrawati: The poor ground water quality as per the descriptive statistics could be due to higher levels of fluoride and nitrate, i.e. 16-50% of the samples, probably due to weathering and circulation of water in rocks and soils causing leaching of fluorine and over application of chemicals in farms. The water quality indices evaluated for the Chora village at *Ballarpur taluka*; Ralegaon, Khatoda and Bhadrawati villages of *Bhadrawati taluka* and villages viz; Mangli, Mendki, Aksapur and Surbodi from *Brahmapuri taluka* shows very poor water quality during 2007 to 2009. Whereas, other villages of these talukas had overall good indices. Ground water quality of Moharli village from Bhadrawati was reported to be excellent for the year 2010. As per five year WQI, at

initial year during 2007 all villages accounted as poor, but gradual changes towards good was noticed.

Chandrapur, Chimur and Gondipipri: Exceedance of 6-14% of fluoride, and 14-33% of nitrate was observed in collected sample of these areas. The total hardness was also reported high i.e. 15-18%. The water quality indices thus evaluated for the villages indicated that the water quality varied from good to poor during the five years. Shergaon, Wihar Khurd, Dabha, Ghugus, Tadali and Padoli villages of *Chandrapur Taluka* were reported to have poor water quality for all the years. Similarly Jambhulghat, Shedgaon, Wadala had very poor water quality during 2010; WQI in Shankarpur village in *Chimur Taluka* varied between good to poor. Tadoba village of Chimur taluka in 2007 had excellent water quality. Ganpur and Wadholi villages of *Gondipipri taluka* also reported as poor in 2010. Other villages of these talukas reported good WQI.

Jiwati, Korapna and Mul: All five years data was not available. Ballarsha from *Jiwati taluka* and Gadchandur from *Korapna taluka* were reported to be good. Villages namely Rajoli Tukkum, Mul, Susi dabgaon, Pardi and Vyahad Kh. of *Mul Taluka* had poor water quality during all the five years. Magnesium, fluoride and total hardness exceeded in 14-21% of the samples. The five year trend shows that Mul taluka was poor to very poor for all the years. Other two taluka's with limited data showed good water quality indices.

Nagbhid, Pombhurna and Rajura: Exceedance 40-50% for nitrate and 5-28% for total hardness was observed at Rajura and Nagbhid talukas. Fluoride also exceeded 10-50% for all the three talukas. Mohadi Mokasa, Nagbhir, Chikalgaon, Kirmiti mendha and Talodhi villages of Nagbhid Taluka and Mahurli, Wirur, Gadegaon, Sasti (census town), Virur Stn. of Rajura Taluka, reported poor water quality for all the five years. The five year trend for Nagbhid showed poor water quality. Rajura taluka reported poor quality in 2008, but overall water quality was good. At Pombhurna taluka limited samples were analyzed and water quality was reported as good.

Sawali, Sindewahi and Warora Taluka: Exceedance of 10-60% for nitrate, 54-80% for fluoride, 9-15% for total hardness and 5-9% for was observed. Poor water quality at *Sawali taluka* was reported for 2007-2009; villages of *Sindewahi taluka* namely Gadbori, Gadmaushi chak, Sindewahi, Purkepar and Ratnapur and villages of *Warora taluka* Bhandak, Chargaon, Dongargaon, Chargaon, Chikni had poor to very poor water quality. But some places like Salori and Shegaon bk. (Warora); Niphandra (Sindewahi) reported excellent water quality for all the years. The three taluka's five year trend shows poor water quality indices.

Table 6.15: Water Quality Index of Groundwater of Chandrapur District

Talukas	20	07	200)8	20)09	20	10	20	11	5 Yrs	. WQI
	WQI	Catg	WQI	Catg								
Ballarpur	151	PW	94	GW	81	GW					107	\mathbf{PW}
Bhadrawati	103	PW			80	GW	87	GW			86	GW
Brahmapuri	122	PW	141	PW	123	PW	76	GW			103	PW
Chandrapur	98	GW	109	PW	105	PW	86	GW			91	GW
Chimur	81	GW	94	GW	81	GW	114	PW			89	GW
Gondipipri							100	GW			100	GW
Jiwati			65	GW	67	GW					59	GW
Korapna							77	GW			77	GW
Mul	152	PW	147	PW			104	PW			108	PW
Nagbhid	136	PW	160	PW	134	PW	106	PW			115	PW
Pombhurna	81	GW	96	GW							79	GW
Rajura	99	GW	118	PW	99	GW	99	GW			96	GW
Sawali	108	PW	125	PW	116	PW					104	PW
Sindewahi	119	PW	133	PW	44	EXL	100	PW			101	PW
Waroda	112	PW	103	PW	78	GW	134	PW			111	PW

UNS- Un-suitable; EXL – Excellent

Out of 15 talukas poor water quality indices was observed at Ballarpur, Brahmapuri, Mul, Nagbhid, Sawali, Sindewahi and Waroda talukas. Exceedance of nitrate, fluoride, total hardness could be due to weathering and circulation of water in rocks and soils causing leaching of fluorine, and also municipal and industrial discharges and excessive use of chemical fertilizers/ pesticides.

9) Dhule District

Dhule district is located in northern part of Maharashtra State. The district can be broadly divided into 2 physiographic units: 1) Tapi valley proper- The Tapi River valley is observed in parts of Shirpur and Sindkhed talukas. 2) The region of the dykes and residual hills of the Sahayadri Spurs- It comprises southern part of Sindkheda and entire Sakri and Dhule talukas. Tapi River flows westward through the central part of the district. Panjra and Aner rivers are the main tributaries of Tapi flowing northward and southward respectively to join Tapi River. Agriculture is the main occupation of the people.

General Information:

Geographical Area: 8061 sq. km.

Taluka- 4: Dhule, Sakri, Shirpur and Shindkheda

Villages: 681; Population: 17,08,000

Soil Type:

In Tapi valley proper, the soil is deep black and extremely fertile except in some portions near the main river and its tributaries, which have cut down the land very badly and removed the top soil. Otherwise the soil grade from deep fertile soil to coarse shallow

and stony is away from the river either northwards towards the Satpudas or south ward towards the residual hills and dykes.

Annual Rainfall: 500 mm to 655 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Middle - Upper Cretaceous Bagh Beds

Major Ground Water Problems and Issues:

The drought area has been observed in western and southern parts of the district occupying parts of Sakri and Dhule talukas. Moderate to deeper water levels of 10 to 20 m below ground level (parts of Shirpur and Sindkheda talukas) are observed in most parts of the district, occupying Dhule and Shirpur talukas and eastern parts of Sindkheda and parts of Sakri talukas.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

In 4 talukas of Dhule, 100 villages were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in Annexure IX. Table 6.16 and Annexure X(9) gives the water quality index of ground water for five years at Dhule district.

Dhule: Villages namely Avdhan, Mukti, Walwadi, Hisala and Ner are reported to have poor to very poor water quality in 2007 to 2009. Other villages reported to be excellent, are Khordad, Bendrapada, Sadgaon, Dhamanar, Purmepada and Nimdale. The overall quality is good for this taluka.

Sakri and Shirpur: Gondas, Lonkhede, Akkalpada, Umarpata and Khampada villages, showed excellent water quality, and the overall taluka indicated good quality. In *Shirpur* Taluka all the villages had good water quality except Kherde, Khmkheda and Palasner in 2008. Villages Wagjadi, Thalner, Boradi, Nimzari, Shirpur and Kolid during 2010 and 2011 reported excellent water quality.

Sindkheda: This taluka showed poor quality in 2007 and 2008 as some of the villages Nardana, Dalwade, Chimthane, Mahalsar, Sindkheda, Takarkhede and Varpada always showed poor to very poor WQI. The pH of this region showed 27% exceedance. Only at Betavad, Shevade and Degaon water quality is excellent during 2010. The 5 yr WQI was good for all four talukas of Dhule district.

Table 6.16: Water Quality Index of Groundwater of Dhule District

Talukas	2007		2008		2009		2010		2011		5 Yrs. WQI	
	WQI	Catg	WQI	Catg								
Dhule	124	PW	120	PW	115	PW	66	GW	63	GW	79	GW
Sakri	102	PW	108	PW	67	GW	49	EXL	63	GW	60	GW
Shirpur	62	GW	103	PW			68	GW	65	GW	68	GW
Sindkheda	188	PW	148	PW			85	GW	80	GW	88	GW

UNS- Un-suitable; EXL – Excellent

10) Gadchiroli District

Gadchiroli District is situated in the North-eastern side of Maharashtra. The district is divided into three Sub-Divisions i.e. Gadchiroli, Aheri and Desaiganj and each sub-division has four talukas. The main river basin of the district is Godavari which borders the southern boundary of the district and flows west to east. The eastern part of district ie, Dhanora, Etappali, Aheri and Sironcha talukas are covered by the forest. Hills are located in Bhamaragad, Tipagad, Palasgad and Surjagad.

General Information:

Geographical Area: 14,412 sq. km

Taluka-12; Aheri, Armori, Bhamragarh, Chamorshi, Desaiganj/Wadsa, Dhanora,

Etapalli, Gadchiroli, Korchi, Kurkheda, Mulchera, Sironcha

Villages: 1679 Population: 9,70,294

Soil Type:

The predominant soil cover in the district is clay, clay-gravel, sandy loam, deep black soil, reddish and yellowish brown soils on hill slopes, brown & gray soils of plains and laterite & lateritic soil.

Annual Rainfall: 892.9 mm

Geology: Recent: Alluvium, Laterite, Gondwana: Upper Sand stone, clays,

Lower Kamthi Ferruginous Sandstone and clays,

Pre-Cambrian: Vindhyan Sandstone, Limestone, Conglomerates, Cuddapaha Shales, Archeans: Oldest crystalline and metamorphic

Ground Water Quality with Respect to BSI Standard and Water Quality Index

All 12 talukas of Gadchiroli district were monitored for 117 villages by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX. Table 6.17 and Annexure X(10)** gives the water quality index of ground water for five years at Gadchiroli district.

Aheri, Armori and Bhamragarh: Nitrate exceedance was reported as 40% and 7% of the samples at Aheri and Armori taluka respectively. High nitrate levels could be due to mineral deposition and chemical fertilizers and use of pesticides. Govindpur, Allapalli, Rajeram and Modumadgu villages reported to have poor WQI in *Aheri* Taluka. Talodhi Rampur showed

excellent WQI in Aheri. Five year WQI was reported to be good. Armori village of *Armori* taluka had poor water quality during 2008. Other villages had good WQI. Excellent WQI was observed Delanwadi and Wairagarh villages in Armori Taluka. Limited data was available for *Bhamragarh* taluka, and the analysis indicated as good WQI for most of the villages as all the values are within the desirable or permissible limits.

Chamorshi, Mulchera and Korchi: Exceedance of parameters viz. pH, hardness, magnesium, fluoride and nitrate are reported at Chamorshi (21, 14, 7, 7 and 21%); Mulchera (20, 40, 20, 10, 60%) and Korchi (33, 11, 11, 0, 11%) respectively. This could be due to lime deposition and excessive use of chemicals in agricultural field. The village's viz. Konsari, Kurud and Shankarpur Heti in *Chamorshi* taluka, and Chaudampalli and Ghot in *Mulchera* Taluka was reported to have poor to very poor WQI over the years. In *Korchi* taluka Bori village also showed poor water quality. Bedgaon, Malewara and Zankargondi villages had excellent WQI. The five year WQI shows that, at initial years it was reporting poor and later years it improved to good WQI.

Desaiganj (wadsa), **Dhanora and Etapalli**: Exceedance of pH was reported to be 11-27% and nitrate was 27-43% of the times. It is due to weathering and circulation of water in rocks and soils and excessive use of chemical fertilizers. Shankarpur village in *Desaiganj* taluka was reported as poor in 2007 -08, which showed improvement in 2009. Poor water quality was reported in Elchil and Aldandi villages of *Etapalli* taluka during 2007. As this region comes under forest area and Godavari basin most of villages are reported to have good to excellent WQI. Some of the villages viz. Shankarpur and Vihirgaon in Desaiganj taluka; Dhanora, Murumgaon and Chatgaon in Dhanora taluka had excellent water quality indices.

Gadchiroli, Sironcha and Kurkheda: Percent exceedance for Nitrate was 21% and 6% in Gadchiroli and Khurkheda Talukas. It is 57% for nitrate, and 14% for pH, hardness and magnesium in Kurkheda taluka. Villages with excellent WQI are Porla, Gowardha, Erkar and Khondala in *Gadchiroli taluka*; Bijarpurtola, Gothangaon, Gargada, Wadhona, Yengelkheda and Mendha in *Kurkheda* taluka. Five year trend also shows good WQ indices as most of the parameters were within the desirable or permissible limits.

Table 6.17: Water Quality Index of Groundwater of Gadchiroli District

Talukas	20	007	20	08	20	009	2	010	20	11	5 Yrs	. WQI
	WQI	Catg	WQI	Catg								
Aheri	91	GW	123	PW	98	GW	95	GW			94	GW
Armori	66	GW	99	GW	46	EXL	67	GW	-	1	67	GW
Bhamragarh	59	GW					72	GW			70	GW
Chamorshi	110	PW	112	PW	103	PW	80	GW			87	GW
Desaiganj	88	GW	107	PW	73	GW	64	GW			72	GW
(wadsa)												
Dhanora	78	GW	59	GW	52	GW	60	GW			60	GW
Etapalli	76	GW	98	GW	78	GW	76	GW			74	GW
Gadchiroli	74	GW	68	GW	45	EXL	78	GW			63	GW
Korchi	226	VPW	61	GW			49	EXL			64	GW
Mulchera	153	PW	181	PW	197	PW	72	GW			130	PW
Sironcha	104	PW	98	GW	117	PW	75	GW			88	GW
Kurkheda			92	GW			53	GW			55	GW

UNS- Un-suitable; EXL – Excellent

Five years trend shows, water quality of Gadchiroli is good except at Mulchera taluka. At initial year's upto 2009, it showed poor WQI, but significant improvement was noticed in later years. Sandstone, clays and limestone are the major soil constituents, which may cause the contamination in ground water quality. Forest area maintains the ground water recharging.

11) Gondia District

Gondia district is situated on North-Eastern side of Maharashtra state having state borders of Madhya Pradesh and Chattisgarh. This is undeveloped district and most of the land is covered with forest. The main profession of people is farming. There are many rice mills in the district as paddy is the main agriculture produce. Geomorphologically the district can be divided into two parts 1) North-Western, north eastern, south-eastern and central parts which have structural units like hills and ridges. 2) The northern, north-central, west central, south and south-west portions having undulating topography over denudational units like pediments and fluvial units. Wainganga River is the largest and most important river. Rivers like Bagh, Chulbandh, Gadhavi and Bavanthadi are the tributaries of river Wainganga.

General Information:

Geographical Area: 4843.13 sq. km

Taluka-8: Amgaon, Arjuni Moregaon, Deori, Gondia, Goregaon, Sadak Arjuni,

Salekasa and Tiroda

Villages: 954, Population: 1200151

Soil Type:

The soil is sandy to sandy-loam in texture and reddish in colour.

Annual Rainfall: 1197 mm

Geology: Pleistocene to Recent: Alluvium and Lalerite; Protozoic: Vindhyan Super Group Archaean: Granite & Gneisses

Major Ground Water Problems and Issues:

In most of the parts of Gondia district, high amount of fluoride is observed. This has caused many diseases due to excessive fluorine.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

All 8 talukas of Gondia district were monitored for 68 villages by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.18 and Annexure X(11)** give the water quality index of ground water for five years at Gondia district.

Amgaon, Arjuni Moregaon and Deori: Overall five year water quality indices show that this talukas have good water quality. 17-35% noncompliance with the standards for nitrate was observed in these three talukas. 25% non compliance with the standard for pH was observed at Deori taluka. Only villages' viz., Navegaon Kh. Karandli, Tadgaon and Zanshinagar in *Arjuni Moregaon* taluka and Amgaon and Padmapur in *Amgaon* taluka showed poor water quality during 2009-2011. There are no major pollution sources, which results in overall good to excellent WQI. Villages with excellent WQI are Dongargaon and Kalimati in Amgaon taluka; Bondgaon, Navegaon and Karandli in Arjuni Moregaon and Chichgarh and Borgaon Bazar in *Deori* taluka.

Gondia, Goregaon and Sadal Arjuni: The overall water quality of these talukas was excellent during 2007-11. All the parameters were within the permissible limits in *Goregaon Taluka*. Percent non compliance for nitrate and pH at *Gondia taluka* were 17 and 10% respectively. Percent non compliance for nitrate and pH at *Sadal Arjuni* were 13 and 38% respectively.

Tiroda and Salekasa: As per descriptive statistics 30% (pH) and 40% (nitrate) exceedance was reported for Trioda taluka, whereas it was 63 and 13% respectively for Salekasa taluka. All other parameters were within the permissible limits. Village's viz. Salebardi, Tiroda during 2008-2009 and Chorkhamara, Kawalewada and Rustampur during 2010 showed poor WQI in *Tiroda* taluka. Poor water quality may be due to excessive use of fertilizers in rice fields. *Salekasa taluka* showed good water quality.

Table 6.18: Water Quality Index of Groundwater of Gondia District

Talukas	2007		20	2008		09	20	010	20	11	5 Yrs.	WQI
	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg
Amgaon	48	EXL	51	GW	56	GW	101	PW			66	GW
Arjuni Moregaon	55	GW	58	GW	91	GW	88	GW	1	1	72	GW
Deori	59	GW	59	GW	76	GW	59	GW			57	GW
Gondia	41	EXL	45	EXL	64	GW	89	GW			55	GW
Goregaon	73	GW	61	GW	57	GW					56	GW
Sadal Arjuni	58	GW	52	GW	52	GW	67	GW	1	1	60	GW
Tiroda	89	GW	80	GW	89	GW	120	PW			96	GW
Salekasa	41	EXL	37	EXL		-	72	GW			62	GW

UNS- Un-suitable; EXL - Excellent

Yearly water quality of Gondia district showed excellent water quality at Salekasa and Gondia talukas in 2007 and 08. Good WQI was observed at Arjuni Moregaon, Deori, Goregaon and Sadal Arjuni. Talukas viz. Amgaon, Gondia, and Tiroda with problems of fluoride contamination needs special attention.

12) Hingoli District

It is situated at the northern part of Marathwada region. Borders of Hingoli are surrounded by Akola and Yavatmal in northern side, Parbhani in western side and Nanded at southeastern side. This district is part of Aurangabad division.

General Information:

Geographical Area: 4,526 sq. km

Taluka-5: Aundha-Nag, Basmatnagar, Hingoli, Kalmnuri, Sengaon

Population: 9,87,160

Soil Type:

Two types of soil is found in this district. They are: 1. Heavy soil: Clay- more than 40%; silt- 25 to 30%. 2. Medium soil: sand 23 to 52%; silt- 28 to 50%; Clay- 7 to 27%; depth- 25 to 50 cm.

Annual Rainfall: 895 mm

Ground Water Quality with Respect to BIS Standard and Water Quality Index

Out of 5 taluka's 31 villages were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.19 and Annexure X(12)** give the water quality index of ground water for five years at Hingoli district.

Aundha (Nag), Basmatnagar and Hingoli –20% percent exceedance of fluoride, and 30% noncompliance of pH was noticed in *Aundha taluka*. Fluoride and Nitrate did not comply

with the standards in 11 and 16% of the samples in *Basmatnagar taluka*. Nitrate and pH did not comply in 8 and 21% of the samples in *Hingoli taluka*.

Kalmnuri and Sengaon: Percent exceedance was 14% for in *Kalmunri* taluka, whereas fluroide and pH exceedance were 17% for *Sengaon* taluka. From limited data Tuppa village in Kalmunri taluka showed poor WQI.

Table 6.19: Water Quality Index of Groundwater of Hingoli District

Talukas	2007		2008		2009		2010		2011		5 Yrs. WQI	
	WQI	Catg	WQI	Catg								
Aundha (Nag)	66	GW	68	GW	1	1	90	GW	91	GW	84	GW
Basmatnagar	76	GW	60	GW			67	GW	77	GW	70	GW
Hingoli	117	PW	153	PW	139	PW	69	GW	84	GW	85	GW
Sengaon	55	GW	61	GW			54	GW	73	GW	57	GW
Kalmnuri					-		94	GW	75	GW	83	GW

The overall water quality of Hingoli district showed good water quality, but Hingoli Taluka was found to be poor during 2007-09.

13) Jalgaon District

Jalgaon district is situated in north western part of Maharashtra. The district is bounded on the north by Madhya Pradesh State. The district can be divided into three main physiographic divisions i.e. Satpura hill ranges in the northern part with dense forest; Tapi valley consisting of alluvial plain in the central part of the district and Ajanta hill ranges, in the southern part of the district. The major part of the district comes under Tapi basin.

General Information:

Geographical Area: 11,765 sq. km.

Taluka-15: Amalner, Bhadgaon, Bhusawal, Bodwad, Chalisgaon, Chopda, Dharangaon,

Erandol, Jalgaon, Jamner, Mukainagar, Parola, Pachora, Raver and Yaval

Villages: 1519 Population (2001): 36,82,690

Soil Type:

The soils in Jalgaon district are essentially derived from the basaltic lava flows and are classified as follows: a) **Deep black soil**- observed in northern part of Amalner, Erandol, Jalgaon, Bhusaval and Edilabad talukas. b) **Medium black soil**- occur over large areas in the district viz.; the central belt of the wide Tapi valley and southern hills. c) **Loamy and sandy soil**- observed in the southern-most part of Amalner, Erandol, Jalgaon and Bhusaval. d) **Forest soil**- observed on the foothills of Satpura ranges and near southern hillocks and occur on slopes mainly in the Satpura ranges.

Annual Rainfall: 669.86 mm

Geology: Alluvium, Quaternary to Recent: Bazada (Talus and Screen), Younger Alluvium, Older Alluvium, Upper Cretaceous-Lower Eocene: Basalt (Deccan Traps)

Major Ground Water Problems and Issues:

Deeper water levels have been observed in parts of Yaval, Raver and Chopda talukas. Ground water quality is affected at many places by high concentration of nitrate and fluoride.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

Out of 15 talukas, 120 villages were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.20**and **Annexure X(13)**gives the water quality index of ground water for Jalgaon district.

Amalner, Bhadgaon, Bhusawal and Bodwad: Nearly 30% exceedance of pH, magnesium and hardness, 18% for calcium, chloride and sulphate and 25% for dissolved solids and nitrate was observed in the samples of *Amalner* taluka. Maximum concentration of 1153 mg/l for nitrate and 2080 mg/l for TDS was reported at Amalner taluka. 10-30% exceedance of hardness, calcium, magnesium and nitrate was observed in *Bhadgaon* Taluka. At *Bhusawal* taluka 14% exceedance for pH and fluoride was observed. Maximum exceedance of 90% for nitrate was reported at *Bodwad* taluka. Unsuitable and very poor water quality was reported at Sadavan Bk., Bodwad, and Dhar and Mehergaon villages of Amalner taluka. Villages Varkhedi of Bhadgaon taluka and nearly all villages of Bodwad reported poor water quality. Domestic and small industrial discharges, excessive use of fertilizers in agricultural, mineral deposition in soil reflected the water quality. The five year trends show at Amalner and Bhadgaon had unsuitable to poor water quality. Bhusawal had good WQI.

Chalisgaon, Chopda, Dharangaon and Erandol: Percent exceedances of 31, 3, 90 and 15% respectively for Nitrate were reported for these talukas. Exceedances of 6-12% for pH, TH, calcium, magniusm and fluoride were also observed. *Chalisgaon* water quality was reported to be very poor for consecutive years. Dhanora, Deoziri, Adgaon, Hated bk., Chahardi villages of *Chopad* taluka and Dharangaon and Pimpalkotha of *Dharangaon* taluka also reported poor water quality during the analyzed years. Village Kasoda in *Erandol taluka* was noticed to have poor WQI during 2007-09. Poor quality of water could be due to chemical fertilizers, pesticides and sewerage contamination.

Jamner, Mukainagar, Parola and Raver: The maximum exceedance of nitrate was 100% at Mukainagar and Parola; whereas Jamner and Raver Talukas reported 64 and 22% respectively. Exceedance of 10% for hardness and magnesium was also reported at Jamner. It was observed that Jamner reported poor and overall WQI for *Jamner* taluka varied from good to poor in all the five years. With limited data available, Narvel village in *Mukainagar*

taluka reported poor water quality, similarly poor water quality was observed at Raver and Talwade Kd. villages of *Raver* taluka. Villages Adgaon, Rajwad, Mhasve and Undirkheda in *Parola* taluka reported poor water quality. The other villages of this talukas had good water quality.

Jalgaon, Pachora and Yaval: Nearly 30% exceedance was reported for nitrate in Jalgaon and Pachora talukas. Similarly Non compliance of pH ranged between 30-58% in Pachora and Yaval talukas. Other WQI parameters were marginally exceeded as 5-9%. Villages' viz. Naseerabad, Higone, Mendhoda and Vakdi of *Jalgaon* taluka during 2007-2009; Vadgaon ambe and Khurad bk. of *Pachora* taluka during 2011 was observed to have poor water quality. In *Yaval* taluka village namely Bamnod was reported as poor in 2010, but same is showing excellent in 2011, which may be due local forces affecting the quality for particulate year.

Table 6.20: Water Quality Index of Groundwater of Jalgon District

Talukas	20	007	20	008	20)09	20	10	20		5 Yrs.	WQI
	WQI	Catg	WQI	Catg								
Amalner	449	UNS	726	UNS	615	UNS	105	PW	110	PW	188	PW
Bhadgaon	152	PW	145	PW	-	1		1	77	GW	110	PW
Bhusawal	84	GW	73	GW	68	GW	81	GW	1	-	69	GW
Bodwad	82	GW	1	I	101	PW		1	1	-	81	GW
Chalisgaon	138	PW	83	GW	100	GW		-	68	GW	79	GW
Chopda	46	EXL	134	PW	54	GW	119	PW	81	GW	93	GW
Dharangaon	193	PW	117	PW	108	PW					128	PW
Erandol	132	PW	96	GW	112	PW	101	PW	76	GW	90	GW
Jamner	119	PW	96	GW	84	GW					87	GW
Mukainagar	156	PW									139	PW
Parola			126	PW	130	PW	88	GW	67	GW	80	GW
Raver	80	GW	83	GW	87	GW	80	GW	57	GW	68	GW
Yaval	62	GW	46	EXL	52	GW	75	GW	69	GW	68	GW
Jalgaon	125	PW	107	PW	87	GW	82	GW			92	GW
Pachora		-		-					86	GW	86	GW

UNS-Un-suitable; EXL-Excellent

Five years water quality of Jalgaon district showed good water quality at Bhusawal, Bodwad, Chalisgaon, Chopda, Erandol, Jamner, Parola, Raver, Yaval, Jalgaon, Pachora; whereas poor water quality was observed in Bhadgaon, Dharangaon and Mukainagar talukas. In case of Amalner taluka water quality was found to be unsuitable for drinking. In most of the regions of Jalgaon district, ground water is mainly affected by excess concentration of nitrate along with other inorganic pollutant such as TDS, TH, Ca⁺² and Mg⁺². Higher surrounding temperature increases the evaporation rate and lower down the ground water levels and results in accumulation of the pollutants in water. Apart from this, human activities, agricultural runoff and domestic discharges resulting deterioration of ground water quality.

14) Jalna District

The district has moderately to gently sloping undulated topography. The Northern part of the district is occupied by Ajanta and satmala hill ranges. 95% area of the district falls in the Godavari basin. The river Godavari flows along the Southern boundary from West to East direction. The rivers Dudhana, Gulati, Purna are the principal tributaries of river Godavari, which flow through the district. The major part of the district falls in the Purna sub basin. The river Purna flows from the central part of the district and meets river Godavari in the neighboring district. The southern part of the district falls in Godavari sub basin. A small part of the district located in the North East falls in the Tapi basin.

General Information

Geographical Area: 7612 sq. km

Taluka-8: Ambad, Badnapur, Bhokardan, Ghansawangi, Jafrabad, Jalna, Mantha, Parthur

Villages: 970 Population: 16,12,357

Soil Type:

The soils of the district are black with considerable variation in texture and depth. They are light, medium and heavy soils. The soils along the river banks especially in Ambad and Partur blocks are deep black and fertile. The soils in northern part of the district i.e. in Jalna, Bhokardan and Jaffrabad blocks are coarser.

Annual Rainfall: 763 mm

Geology: Recent: Alluvium, Upper Cretaceous to Lower Eocene: Basalt (Deccan Trap)

Major Ground Water Problems and Issues:

The major part of the district forms the moderately dissected basaltic plateau, which has moderate to good groundwater potential. The northern part forms the highly dissected basaltic plateau; the ground water potential is expected to be poor.

Ground Water Quality with Respect to BSI Standard and Water Quality Index

All 8 talukas covering 116 villages were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.21** and **Annexure X(14)** gives the water quality index of ground water for five years at Jalna district.

Ambad, Badnapur, Bhokardan and Ghansawangi: As per descriptive statistics, exeedance of permissible limit for pH was 8-20%, hardness, dissolved solids, calcium, magnesium, iron, sulphate and fluoride 5-14% and nitrate 15-24%. In *Ambad* taluka, the villages namely Ambad and Shahagad show poor to very poor water quality for all the reported years. Most of the villages' viz. Rohilagad, Shevga, Pangarkheda and Tahadgaon also show poor quality. In 2007, Dungaon was observed to be good but deteriorated in 2010. Similarly Shahapur showed poor water quality in 2010 which improved in 2011 to good.

The villages Silegaon, Dhopteshwar and Chanegaon were observed poor, whereas Kandari kh was reported excellent in *Badnapur taluka*. In Bhokardan taluka, Hasnabad and Longaon were observed to have poor water quality for all consecutive years. Mixed trend was observed for villages namely Malkapur, Gosegaon and Khandala. The ground water quality of Rajani, Tirthpuri and Masegaon villages were also noticed as poor in Ghansawangi taluka, Water quality of Ghonshi bk. and Raniunchagaon villages were observed to vary between poor and good.

Jafrabad, Jalna, Mantha and Parthur: The percent exceedance of pH, TDS, TH, Ca²⁺ and Mg²⁺ were reported to be 10-25%. 21-41% exceedance of nitrate, 5-13% of chloride, sulphate and fluoride were noticed in these talukas. Water quality was unsuitable at *Jafrabad* for almost all the years. Water quality was poor at Bhutkheda village for all the years. However, Mahora and Revgaon villages in Jafrabad taluka had excellent water quality during 2010-11. At *Jalna taluka*, Jalna, Tirthpuri, Viregaon, Badnapur and Rohanwadi villages were observed to have very poor to unsuitable water.

Table 6.21: Water Quality Index of Groundwater of Jalna District

Talukas	20	007	20	08	20	009	20	10	20	11	5 Yrs	s. WQI
	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg
Ambad	144	PW	119	PW	151	PW	122	PW	87	GW	116	PW
Badnapur	132	PW	92	GW			94	GW	67	GW	92	GW
Bhokardan	202	VPW	160	PW	318	UNS	98	GW	75	GW	99	GW
Ghansawangi	76	GW	179	PW			96	GW	67	GW	88	GW
Jafrabad	385	UNS	1311	UNS	647	UNS	113	PW	91	GW	206	VPW
Jalna	150	PW	115	PW	93	GW	115	PW	85	GW	109	PW
Mantha	135	PW	290	VPW	73	GW	125	PW	63	GW	115	PW
Parthur	152	PW	157	PW	166	PW	99	GW	71	GW	99	GW

UNS- Un-suitable; EXL - Excellent

Five years water quality of Jalna district showed poor water quality at Ambad, Jalna and Mantha talukas whereas; Jafrabad ground water quality was found to be unsuitable for drinking in 2007-2009. Significantly high concentrations of TDS, TH, Ca²⁺, Mg²⁺ and nitrate affecting the overall water quality could be due to geological and soil texture of this region. The Purna River carries wastewater from nearby cities impact the ground water recharge. Proper implementation of STPs and demarcation of ground water recharge zone can improve the quality. The ground water requires proper treatment before using for drinking purpose.

15) Kolhapur District

Kolhapur district is the southernmost district of Maharashtra. The city is situated on the banks of river Panchganga. Two distinct trends in the hill ranges are seen in the district. One runs roughly north-south, along the main range of the Western Ghats presenting wild and picturesque hill slopes and valleys. The other one comprises the narrow broken-crested ridges and flat topped masses stretching eastwards and merging gradually into the plains in the east. The rivers Hiranyakeshi, Krishna, Vedganga, Dudhganga, Bhogvati and Panchganga drain the area towards east.

General Information:

Geographical Area: 7692 sq. km

Taluka-12: Ajra, Bhudargad, Chandgad, Gadinglaj, Gagan bauda, Hatkanangale,

Kagal, Kolhapur, Panhala, Radhanagari, Shahuwadi, Shirol

Villages: 1009, Population: 35,15,413

Soil Type:

The district is covered by the basaltic Sahayadri ranges. The land gradually slopes towards the east into the Deccan plateau which is gently undulating with ridges and valleys. Due to these topographical features, the soils in the district vary from tract to tract, so much so that even in a single village, as between field and field, a variety of soils from rich-loam to poor thin *murmad* is met with. The soils are derived mainly from trap, except in the forest covered mountainous area in the west where they are of lateritic origin. The laterite overlies the trap rock. Consequently, in the western portion the hill tops and ridges are covered with lateritic soils; while in the valleys the soils are of mixed character, varying in colour from brownish to reddish. In the eastern portion, due to its undulating nature, deeper soils are formed in the low-lying parts, while the ridges are covered by shallow soils, more or less partially eroded. Physiographically, Kolhapur district can be divided into three broad soil zones: (a) the western part, with heavy rainfall (is mountainous and woody and is covered with lateritic soils); (b) the fertile central part, with brownish well-drained soils of neutral reaction; and (c) the dry eastern zone, with precarious rainfall and covered with medium black soil of varying depth.

Annual Rainfall: 1138.5 mm

Geology: Recent and Sub-Recent: Soil and Laterite, Lower Eocene: Deccan trap

Cuddapah: Lower Kaladgi Series, Archaean: Granite-gneiss Dharwars

Ground Water Quality with Respect to BIS Standard and Water Quality Index

Out of 12 talukas 138 villages were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.22** and **Annexure X(15)** give the water quality index of ground water for five years at Kolhapur district.

Ajra, Bhudargad and Chandgad: Percent exceedances for pH were in the ranges of 9-29% and 3-10% for nitrate. Fe also exceeded the standard 11-14% of the time at Ajra and Bhudargad talukas respectively. Many rivers like Panchganga, Krishna and dudhganga are

flowing in this region and annual rainfall is also high resulting in good ground water recharge. The overall water quality indices were observed to be good. Villages' viz. Harur, Gavase and Lakudwadi reported excellent quality at *Ajra* taluka. Similarly, Nitawade, Naganwadi, Karadwadi, Gargoti, Tiravade, Patgaon and Pimpalgaon villages of *Bhudargad* taluka also showed excellent quality. The same trend was also reported at Karve, Adkur, Chandgad, Hajgoli, Shinoli Bk. and Tambulwadi villages of *Chandgad* taluka for all the years.

Gadinglaj, Gagan bauda, Hatkanangale: At Gadinglaj and Hatkanangale talukas percent exceedance of nitrate were 29 and 23% respectively. TH, SO₄-2 and Fe also exceeded the standards slightly. At location Halkarni and Kasba Nool water quality was poor during 2010; excellent water quality was reported at Nesari, Mahagaon, Donewadi and Gadhinglaj villages at *Gadinglaj* taluka. The whole *Gaganbawada* taluka was observed to be excellent for given samples in all the years. The villages of Halondi, Ichalkarnji, Kabnoor, Pargaon, Vadgoan and Halondi *of Hatkanangale* taluka were observed to have poor water quality during 2010.

Kagal, Kolhapur and Panhala: All the parameters were within the desirable or permissible limits except nitrate which exceeded the permissible standards 4-8% of the time. The villages of *Kagal* taluka viz. Walve Kh. and Murud had excellent WQI and other villages showed good WQI. Ground water recharge and proper precautionary measures taken by Municipal Corporation's resulted in good to excellent water quality in Kolhapur district. Some of the villages viz. Authur, Shiroli and Halkarne of *Kolhapur taluka*, showed poor WQI during 2007 and 2008. Kurukali, Kerli, Partangale and Kogli Bk had excellent water quality. *Panhala* taluka had good to excellent WQI as it is situated in the hilly region. Excellent WQI was reported for Pimplethane, Kisrool, Panhala and Marali villages of Panhala taluka for all the years.

Radhanagari, Shahuwadi and Shirol: All the parameters at Radhanagari and Shahuwadi taluka were within the permissible limits. Only at Shirol taluka, nitrate exceedance was reported 63% of the time. Magnesium, TH, calcium, sulphate also exceeded the permissible limit and percent exceedance ranged between 4-8%. At *Radhanagari* and *Shahuwadi* talukas most of the villages reported to have excellent water quality. The reverse trend was observed at *Shirol* taluka where 80-90 percent villages had poor WQI. Danwad Nave, Ghosarwad, Kurundwad, Ganeshwadi and Jambhali villages of Shirul taluka had poor WQI. This is due to high nitrate in this region because of excessive use of fertilizer and soil structure.

Table 6.22: Water Quality Index of Groundwater of Kolhapur District

Talukas	20	007	20	008	20	009	20	010	20	11	5 Yrs	. WQI
	WQI	Catg	WQI	Catg								
Ajra	78	GW	55	GW	64	GW	58	GW	-		58	GW
Bhudargad	28	EXL	66	GW	39	EXL	55	GW	1	-	51	GW
Chandgad	22	EXL			22	EXL	44	EXL			41	EXL
Gadinglaj	47	EXL	47	EXL	45	EXL	76	GW	-		68	GW
Gaganbawada	17	EXL	23	EXL	17	EXL	33	EXL	-		26	EXL
Hatkanangale	94	GW	92	GW	79	GW	96	GW			94	GW
Kagal	64	GW	80	GW	57	GW	69	GW			68	GW
Kolhapur	70	GW	72	GW	60	GW	59	GW			60	GW
Panhala	33	EXL	32	EXL	24	EXL	55	GW	-		46	EXL
Radhanagari	53	GW	33	EXL	42	EXL	43	EXL			42	EXL
Shahuwadi	33	EXL	59	GW	46	EXL	51	GW	-		47	EXL
Shirol							120	PW			120	PW

UNS- Un-suitable; EXL – Excellent

Five years water quality of Kolhapur district showed excellent water quality at Chandgad, Gaganbawada, Panhala, Radhanagari and Shahuwadi. Only at Shirol it's observed to be poor, with limited data available for 2010. Heavy rainfall in this district helps to recharge the ground water.

16) Latur District

Latur is one of the drought districts of Marathwada region of Maharashtra State. It is situated in the south-eastern part of the state, and at the border of Maharashtra and Karnataka states. The district forms part of Godavari basin. Manjra River is the main river flowing through the district.

General Information:

Geographical Area: 7157 sq. km.

Talukas -10: Ahmadpur, Ausa, Deoni, Chakur, Jalkot, Latur, Nilganga, Renapur,

Shirur Anantpal and Udgir

Villages: 945, Population (2001): 20,80,285

Soil Type:

The district can be divided into the following two zones based on soil characteristics i.e., the first zone which occurs in eastern part of the district comprises of Ahmedpur, Udgir and parts of Latur and Ausa talukas. It consists of light and light medium soil of inferior type. They are not retentive of moisture and are therefore suitable for the cultivation of Kharif crops only. The second zone which occurs in western part of the district has heavy deep black cotton soil. Owing to the peculiarity of the soil, both Kharif and Rabi crops are cultivated in this zone.

Annual Rainfall: 650 mm to 800 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Major Ground Water Problems and Issues

The entire district comes under "drought area". In major parts of the district in almost entire Nilanga, Ausa, Latur and Renapur talukas and northern part of Ahmadpur and southern part of Udgir taluka falling/declining water levels have been observed. These areas have deeper pre-monsoon water levels in the range of 10 to 20 m below ground level.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

95 villages in 10 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.23** and **Annexure X(16)** give the water quality index of ground water in Latur district for five years.

Ahmadpur, Ausa, Chakur and Deoni: Exceedance of TH, iron and nitrate (10-16%) was observed in *Ahmadpur* taluka. Most of the villages had good water quality except Kingaon, Ahmasdpur.

Exceedance of pH, TH, iron, Fluoride and nitrate (3-7%) were observed in Ausa taluka The WQI for *Ausa* taluka was good throughout the years, except for Belkund (2007) and Shivali (2010) where it was poor. The overall ground water quality was found to be good in 2008-09, and in 2010 villages' namely Kharosa, Killari, Borgaon, Kharosa and Talni showed excellent water quality.

Exceedance of pH(25%), TH(4%), iron(8%), and nitrate (17%) were observed in Chakur taluka. At *Chakur* taluka villages of Chapoli, Ashta showed poor water quality and also Shivankhed village in 2010. WQI for Ashta, Latur road and Kabansangvi were excellent; whereas, villages of *Deoni* taluka showed mixed WQI.

Jalkot, Latur, Nilanga and Renapur: Exceedance of 10-24% in pH and nitrate were observed in these talukas. The Patoda and Kolnoor villages of *Jalkot* taluka showed good WQI from 2007 to 2010. In *Latur* taluka Borgaon Kale, Murud- Akola and Panderwadi villages indicated poor water quality in 2007 to 2009. This may due to intensive fertilizer in agriculture use, intrusion of un-sewered sanitation. Improvement was observed in 2010. Villages Bhatkheda, Bhisewagholi, and Karsa had good to excellent WQI. Village Kasar Sirsi of *Nilanga* taluka showed good water quality in all the years except 2009 when it was poor. Other villages had good to excellent water quality. Sarwadi, Shivni kothal, Nilanga, Barmachiwadi, Garsuli, Sindgoan and Dawangaon villages of *Renapur* taluka indicated good to excellent water quality in all the years.

Shirur Anantpal and Udgir: The ground water quality indices evaluated for the villages of these talukas indicated that the water quality was good throughout the years. All the parameters were within the permissible limits except pH which ranged between (17-26%).

Table 6.23: Water Quality Index of Groundwater of Latur District

Talukas	20	07	20	008	20	009	20)10	20	11	5 Yrs	. WQI
	WQI	Catg	WQI	Catg								
Ahmadpur	122	PW	113	PW	108	PW	69	GW	54	GW	68	GW
Ausa	179	PW	76	GW	68	GW	68	GW	ł	-	70	GW
Chakur	94	GW	97	GW	90	GW	65	GW			71	GW
Deoni							67	GW	-		67	GW
Jalkot			54	GW	58	GW	64	GW	-		57	GW
Latur	101	PW	112	PW	99	GW	57	GW	1	-	68	GW
Nilanga	79	GW	81	GW	94	GW	57	GW	62	GW	63	GW
Renapur	67	GW	45	EXL			56	GW	-		55	GW
Shirur												
Anantpal				-			60	GW	-		60	GW
Udgir	72	GW		-	62	GW	66	GW	-		65	GW

UNS- Un-suitable; EXL – Excellent

Five years water quality of Latur district showed good water quality for whole district. Being a drought district, drinking water problems are severe, especially during summer season. At some places pH and nitrate contamination is the major issue for this district which needs a special attention.

17) Mumbai District

The broad physiographic feature of the Mumbai district is broad and flat terrain flanked by north - south hill ranges. The hill ranges form almost parallel ridges in the eastern and western part of the area. The Powai - Kanheri hills form the largest hilly terrain in the central part of the Salsette Island and are the feeder zone for the three lakes viz., Powai, Vihar and Tulsi. The area is drained by Mahim, Mithi and Dahisar rivers.

General Information:

Geographical Area: 630 sq. km. (Mumbai City- 69 sq. km.; Mumbai Suburb- 561 sq. km.

Taluka/ Villages /Wards: Churchgate, Colaba, Deulwadi, Mahim, Borivali,

Goregaon-Andheri and Kurla Population (2001): 1,77,02,761

Soil Type: Medium to deep black and reddish coloured soil

Annual Rainfall: 1800 mm to 2400 mm

Geology: Recent: Alluvium, Upper Cretaceous to Lower Eocene: Basalt (Deccan Trap),

Rhyolite and Trachyte

Major Ground Water Problems and Issues

Drinking water supply is provided through water reservoirs like Modak sagar, Tansa and Vaitarna located in Thane district from where water is pumped to Mumbai city. Ground water exploitation for commercial purposes like construction, hotel industry and domestic purposes of the housing societies is carried out in entire district. Water is extracted from existing dug wells and bore wells, even new bore wells are being drilled for this purpose. Being complex city, underground sewer system leakage affect the ground water resources. Geologically existing rivers viz. Mithi and Dahisar are now a days highly polluted due to non point discharges of domestic sewage and industrial effluents. In addition to this various dumping locations, oil refineries, reactors, fertilizers industry are also affecting the ground water quality in nearby areas.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

Out of 24 wards in Mumbai, 8 locations were monitored by CGWB. The city is mainly divided into main city and suburban area. The descriptive statistics of ground water monitoring carried out in Mumbai district are given in **Annexure IX**. **Table 6.24** and **Annexure X(17)** give the water quality index of ground water for five years for Mumbai district.

Mumbai City: Data for 2010 and 2011 is not available. With the available data it was observed that all the parameters except nitrate were within permissible levels. Percent exceedances of Nitrate in Colaba, Borivali (Dahisar) and Goregaon east talukas were 33, 50 and 33% respectively. The WQI evaluations of Mumbai (Churchgate) and Colaba (Dandi) indicated that the ground water quality was good for given years. Mahim taluka indicated that the ground water quality varied between good and excellent during 2007 to 2009. Ground water monitoring of Kurla was done in 2008 and the water quality was excellent. At Andheri water quality varied between good and excellent. Ground water monitored in Deulwadi in 2007 had good water quality. Dahisar village in Borivali taluka was monitored in the years 2007 and 09 and it showed having poor water quality during 2007 which improved to excellent in 2009. In Mahroli (Chemur) area water quality was observed to be good in 2009.

Table 6.24: Water Quality Index of Groundwater of Mumbai District

Talukas	20	007	20	008	20	009	20	10	20	11	5 Yrs	s. WQI
	WQI	Catg.	WQI	Catg	WQI	Catg.	WQI	Catg	WQI	Catg	WQI	Catg.
Mumbai City	7											
Church Gate	75	GW	90	GW	70	GW					70	GW
Colaba	58	GW	76	GW	58	GW					57	GW
Deulwadi	63	GW									57	GW
Mahim	49	EXL	54	GW	37	EXL					41	EXL
Chembur					73	GW					65	GW
Mumbai Sub	urban	Area										
Borivali			109	PW	46	EXL					69	GW
Goregaon	38	EXL	60	GW	38	EXL					40	-
-Andheri											40	EXL
Kurla			25	EXL							22	EXL

Even though the overall water quality is good, but still the city is facing problem of water contamination by local activities like sewer lines. Salinity and hardness is of major concern because of coast line area. As very limited data is available conclusions can not be drawn and requires extensive data collection.

18) Nagpur District

Nagpur district is one of the districts of Vidarbha Region of Maharashtra State. The district forms part of Deccan Plateau. Eastward and northeastwards the landscape changes due to the change in the underlying rocks. On the north, the upland ranges are the extension of Satpuras which gradually narrow down towards west. South of these upland range stretches the Ambegad hills, the western extremity of which is the Nagpur district. The northeastern and east central parts of the district are drained by the Wainganga and its tributaries. The central and western portion is drained by Wena which is a tributary of Wardha River. The district forms part of Godavari basin. Wainganga River is the main river flowing through the district.

General Information:

Geographical Area: 9892 sq. km.

Taluka-14: Bhiyapur, Hingna, Kalmeshwar, Kamptee, Kuhi, Katol, Mouda Nagpur,

Narkhed, Nagpur Rural, Parseoni, Ramtek, Saoner, Umred

Villages: 1562 Population: 40.51 Lakh

Soil Type:

Some of the soil pattern found in Nagpur district are : 1) Kali soils: These are black cotton soils which are fine grained clayey in texture and varies in depth from 1 m to 6 m or more and retain moisture. They are found around Kalmeshwar, Saoner and Nagpur. 2) Morand soils: These are predominant in the district. They are black cotton soils with higher percentage of lime than the Kali soils. They are black, grey or light to dark brown in colour, clayey in texture and have a depth of about 1 to 3 m. 3) Khardi soils: They are shallow soils mixed with sand and found mainly in hills. These are grey in colour, clay loam in texture. 4) Bardi soils: They are red gravel covered with boulders found on

summits and slopes of trap hills and are less fertile in nature. 5) Kachchar soils: They are mainly found in the banks of Kanhan River and are alluvial soils, loamy in nature and vary in depth from 1 to 3 m. 6) Wardi soils: They are red soils with a large amount of sand. They are shallower and clayey loam in nature. They are mainly found in the paddy tracts in the eastern part of the district.

Annual Rainfall: 1000 mm to 1200 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt, Cretaceous: Lameta, Permian to Carboniferous: Gondwana, Archean: Crystalline rocks

Major Ground Water Problems and Issues

Ground water quality in parts of Nagpur city is adversely affected by nitrate contamination, whereas in Kalmeshwar and Hingna MIDC areas the contamination of ground water has taken place due to discharge of industrial effluents.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

124 villages in 14 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.25** and **Annexure X(18)** give the water quality index of ground water of Nagpur district for five years.

Bhivapur, Hingna, Kalmeshwar, Kamptee: As per descriptive statistics the exceedance of TH reported as 10-30%, Ca²⁺, Mg²⁺and Fluoride (5-20%), and nitrate exceedance 20-40% was observed in these talukas. The village of Nawegaon *Bhivapur* taluka shows good WQI for 2007-09, whereas Zamkoli, Kargaon, Kargaon and Panjrepar villages are showing poor water quality, if Fe was considered as WQI parameter in 2010. *In Hingna* taluka, village of Amgaon indicated good WQI in 2007-2009. Otherwise mix trend pointing towards poor WQI was observed in this taluka and affected villages are Kanholibora, Saongi Deoli, Takalghat and Mangli. The unsuitable water quality was observed at Kalmeshwar village which reflects to all the years, as also Telkamthi, Khumari and Telkamthi reported poor in *Kalmeshwar* taluka. Mix trend also observed at *Kamptee* taluka were most of the villages namely Kamptee, Koradi and Adka are reported very badly. The unprecedented city growth of Nagpur and lack of awareness programme impacted this region. Five years trend also shows quality of water decline over the years.

Kuhi, Katol, Mouda, Nagpur, and Narkhed: As per BIS standard, hardness exceeded 44% at Kuhi and 29% at Narkhed. Exceedance of Fluoride about 11-30% at Kuhi and Mouda; and nitrate exceedance of 20% at Nagpur and 52% at Narkhed was reported in given samples.

The mineral deposition and rock pattern affect the fluoride and nitrate contamination. In 2007 *Kuhi* taluka was showing good quality which deteriorated in 2010 as also village namely Gothangaon and Mandhal shows poor WQI. Most of the villages of *Katola* taluka spotted towards good WQI only at Katol and Dhotiwada villages it impacted as poor, if Fe was considered as indicator. All the villages of *Mouda* taluka showing good WQI except at Chacher and Mathni it was poor. Overall *Nagpur* taluka city is impacted as good WQI as city civic authorities and local body movement helps to rejuvenate ground water quality programme, but some places namely Mangli, Kanholi bara, Bokhara and Gonhi villages are showing poor WQI. Similarly mix trend was observed at *Narkhed* taluka where quality is replicated towards poor and good, affected villages are Narkhed, Sawargaon and Belona.

Nagpur Rural, Parseoni, Ramtek, Saoner, Umred and Katol: The overall water quality of *Rural Nagpur* was good as not major interference of anthropogenic activities, which also reflect in *Parseoni* taluka only fluoride and nitrate exceedance of 10-15% was reported. In *Ramtek* taluka villages namely Ramtek, Karwahi, Salai and Chorbaoli reported poor, if we considered iron as a parameter. Most of the times *Saoner* taluka inclined towards poor WQI, the village namely Kothulna reported all the time bad as against Khubala village shows good to excellent in 2007 to 2008, other villages are in mix trend. *Umred* taluka, monitored data showed that the water quality was good to excellent as all the parameters were within the desirable or permissible limit. *Katol* taluka is also indicating mix status ie. good to poor and impacted villages are Katol and Dhotiwada. As observed from all these taluka exceedance of TH (14-18%), Fluoride (3-20%), and nitrate (15-30%) were observed, which the probable reasons for poor water quality.

Table 6.25: Water Quality Index of Groundwater of Nagpur District

Talukas	20	007	20	008	20	009	20	10	201	11	5 Yrs	. WQI
	WQI	Catg.	WQI	Catg	WQI	Catg.	WQI	Catg	WQI	Catg	WQI	Catg.
Bhivapur	65	GW	53	GW	61	GW	116	PW			99	GW
Hingna	53	GW	64	GW	51	GW	122	PW			111	PW
Kalmeshwar	283	VPW	313	UNS	129	PW	123	PW			156	PW
Kamptee	133	PW	110	PW	110	PW	92	GW			97	GW
Kuhi	49	EXL	40	EXL			115	PW			98	GW
Mouda	78	GW	65	GW	66	GW	103	PW			89	GW
Nagpur	89	GW	79	GW	92	GW	96	GW			83	GW
Narkhed	125	PW	86	GW	103	PW	107	PW	-		103	PW
Parseoni	83	GW	63	GW	70	GW	84	GW			78	GW
Ramtek	175	PW	169	PW			108	PW			116	PW
Saoner	116	PW	97	GW	85	GW	93	GW			91	GW
Umred			48	EXL			86	GW			81	GW
Nagpur Rural							70	GW			70	GW
Katol							94	GW			94	GW

UNS- Un-suitable; EXL - Excellent

Five years water quality of Nagpur district showed that good to excellent water quality at Umred and Rural Nagpur, Parseoni area. The other parts of the district showed mixed trend as initially at some place good impacted bad visa versa. Kalmeshwar, Kamptee and Ramtek are all the time poor WQI as indicator. The high concentration of TH, Mg²⁺ and nitrate along with fluoride exceedance in some part of this region indicated mineral deposition. The poor water quality could also be due to contaminated water from Wainganga, Wena and Wardha tributaries, which submerge with cities pollution load and impacted ground water recharge phenomenon. The proper precautionary measures and ground water recharge programme needs to be implemented.

19) Nanded District

Nanded District is located in the south eastern part of the state of Maharashtra, bordering Andhra Pradesh. The area has undulating topography with uneven hills, plateau, gentle slopes and valley planes. Physiographically, the district can be divided in to 2 major parts, the hilly region on the North and North East and low lying area on the banks of the rivers Godavari, Manjra, Manyad, Penganga etc. The main river in the district is Godavari which flows through the centre of the district.

General Information:

Geographical Area: 10,332 sq. km

Taluka-16: Ardhapur, Bhokar, Biloli, Deglur, Dharmabad, Hadgaon, Himayat nagar,

Kinmat, Kandhar, Mahur, Mukhed, Mudkhed, Nanded, Naigaon,

Loha andUmri

Villages: 1572, Population: 28,76,259

Soil Type:

Soils along the banks of rivers are deep and clayey. Except for the depth, the soils of the district do not show much variation in physical and chemical properties. Soils have light grey-brown to grey-brown colour on the surface, clayey texture and blocky structure. Soils are highly clayey with clay content varying from 45.5 to 69.5%. The high exchangeable capacity of the soil indicates high soil fertility.

Annual Rainfall: 953.8 mm

Geology: Recent- Soil and gravel, Cretaceous to Eocene- Deccan trap flows, Archaean:

Peninsular granite complex-pink and grey granites and quartz veins. Banded haematite-quartzites and epidiorites of the Dharwar system

Ground Water Quality with Respect to BIS Standard and Water Quality Index

106 villages in 16 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.26 and Annexure X(19)** give the water quality index of ground water for five years at Nanded district.

Ardhapur, Bhokar, Biloli and Deglur: With Limited available data all parameters are within permissible limit at *Ardhapur* taluka except pH. pH exceeded the permissible limit 67% of the time. Percent exceedances of pH, TH, and Nitrate are 33, 11 and 22% at Bhokar taluka. Poor water quality was reported at *Bhokar* village in 2007-08 and good water quality in 2011.All parameters are within permissible limit at *Biloli*. Percent exceedances of pH, TH, and Fluoride are 36, and 29% at *Deglur* taluka.

Dharmabad, Hadgaon, Himayat nagar and Kinwat: Percent exceedances of pH and Flouride were 60 and 20% respectively at Dharmabad taluka. Villages of Yeoti, Dharmabad and Karegaon in *Dharmabad* taluka was found to be good from given data. Percent exceedances of pH, Flouride and nitrate were 29,24 and 6% respectively at *Hadgaon* taluka. pH, Flouride and Nitrate exceed by 40, 20 and 20% at Himayatnagar taluka. *Himayat nagar* village had poor water quality in 2007 but improved to good in 2011.pH and Flouride exceed by 19, and 50% respectively at Kinwat taluka. Village of Bothroad and Islapur in *Kinwat* taluka had excellent water quality and other villages had good WQI.

Kandhar, Mahur, Mukhed, Mudkhed: Percent exceedances in *Kandhar* taluka are 42 and 17% for pH and Fluoride respectively. Kandhar village had poor WQI in 2007. Other villages including Bhadurpura, Bachoti, Banni, Osmanagarh, Pethwadaj, Warwant had good water quality. With limited data available for *Mahur* taluka, percent exceedances observed are 33% for both pH and Nitrate.Percent exceedances in Mukher taluka are 15, 10 and 33% for pH, Fluoride and nitrate respectively. Poor water quality was noticed in Sikarghat and Lahan in 2007-08 and Barhali had mixed trend. Excellent WQI was found at Malegaon (I) village in *Mukhed* taluka in 2009.25% exceedances of pH and Fluoride are observed in Mudkhed taluka. In *Mudkhed* taluka Mudkhed and Mugat had good WQI.

Nanded, Naigaon, Loha and Umri: Percent exceedances in Nanded taluka are 17 and 50% for pH and Nitrate respectively. At *Nanded* taluka villages namely Jamb Buzurg, Narwat, Markand and Adampur had poor WQI.Percent exceedances in *Naigaon* taluka are 14, 14, and 28% for pH, TH and Fluoride respectively.Percent exceedances in *Loha* taluka are 29, 43 and 14% for pH, Fluoride and Nitrate respectively. In *Umri* taluka, percent exceedances are 60 and 10% for pH and Fluoride respectively.

Average water quality of Nanded district varied between good to poor, intensive data collection is required to understand the ground water quality. Most of the time poor water quality was reported in Talukas Bhokar, Himayat Nagar and Loha. Higher values of pH, nitrate and fluoride are the major issues for this region.

Table 6.26: Water Quality Index of Groundwater of Nanded District

Talukas	20	007	20	08	20	09	20	10	20)11	5 Yrs	. WQI
	WQI	Catg.	WQI	Catg	WQI	Catg.	WQI	Catg	WQI	Catg	WQI	Catg.
Bhokar	168	PW	136	PW			60	GW	71	GW	84	GW
Hadgaon	68	GW	148	PW	-		79	GW	72	GW	76	GW
HimayatNgr.	173	PW		-	-			1	79	GW	94	GW
Kinwat	61	GW	83	GW					66	GW	65	GW
Mahur	84	GW							49	EXL	58	GW
Mukhed	88	GW	95	GW	85	GW	94	GW	71	GW	79	GW
Nanded	85	GW	91	GW	94	GW	120	PW	82	GW	82	GW
Biloli	53	GW	73	GW						-	56	GW
Ardhapur	-	1		-	-			-	63	GW	63	GW
Mudkhed							76	GW	69	GW	72	GW
Naigaon		-							83	GW	83	GW
Deglur							79	GW	76	GW	77	GW
Dharmabad							66	GW	72	GW	71	GW
Kandhar							75	GW	74	GW	74	GW
Loha							114	PW	85	GW	93	GW
Umri							63	GW	82	GW	73	GW

UNS- Un-suitable; EXL – Excellent

20) Nandurbar District

Nandurbar district was part of Dhule district and made as a district on 1st July 1998. It is surrounded by Dhule district in the south and east, Gujarat State in the west and Madhya Pradesh State in the north. Agriculture is the main occupation of the people. The district forms part of Tapi and Narmada basins. The district can be broadly divided into following four distinct physiographic units i.e., Satpura Hilly Region, Tapi River Valley proper, Region of the dykes and residual hills of the Sahayadri Spurs. North of Tapi River, the whole length of the rich alluvial plain is bounded by the steep southern face of the Satpudas.

General Information:

Geographical Area: 5034 sq. km.

Taluka- 6: Akkalkuva, Dhadgaon, Nandurbar, Nawapur, Shahada and Taloda

Villages: 864, Population: 13,09,135

Soil Type:

Mainly three types of soils are observed in the district i.e., coarse shallow soils, medium deep soils and deep black soils. The northern part of the district has dark brown to yellowish brown coarse shallow to medium deep soils, with clayey loamy deep soils of Tapi River and Narmada River valley to its south and north respectively. Below the Tapi River valley comes the belt of medium deep soils mostly with interception of medium and shallow soils in scattered patches, depending on the local conditions.

Annual Rainfall: 650 mm to 1100 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt,

Middle-Upper Cretaceous: Bagh Bed

Major Ground Water Problems and Issues

Almost entire Akkalkuwa taluka and parts of Akrani, Nawapur and Nandurbar talukas are categorized as 'drought area'. Deeper water levels are also observed in northern part of the district i.e., in almost entire Akrani taluka and northern parts of Akkalkuva, Taloda and Shahada talukas during both pre-monsoon and post monsoon seasons. Thus the deeper water levels are mostly confined to alluvial areas and hilly basaltic areas.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

63 villages in 6 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.27 and Annexure X(20)** give the water quality index of ground water for five years at Nandurbar district.

Akkalkuva, Dhadgaon and Nandurbar: Exceedance of pH ranging from 13-35% and TH, magnesium and nitrate ranging from 2-10% was observed in given samples. Villages namely Akkalkuva, Kathi, Raisingpur, Moramba and Karanpada of *Akkalkuva taluka* and Chinalkuva, Mandvi Bk., Dhadgaon and Umarani Kh. of *Dhadgaon taluka* were observed to be excellent. Same status is observed for Kuntumwadi, Ranala, Vadkolambi and Nimboni villages of *Nadurbar taluka*. Other villages had good WQI. Only Shanimandal village reported poor to very poor WQI. Bhadavad village (in 2007 and 2009) and also Wadali Shivar village (in 2007) of Nandurbar taluka showed poor water quality.

Nawapur, Shahada and Taloda: Nitrate exceedance of 7% in Navapur taluka and pH exceedance ranging from 12-25% was observed in Nawapur, Shahada and Taloda talukas. Most of the villages of *Nawapur taluka* had good WQI. Excellent water quality was observed in Kamod, Vadkhut, and Visarwadi and Sonkhamb villages of this taluka. Similarly Mandane, Sarangkheda and Sonwad in *Shahada taluka* and Rozwe, Umari and Gopalpur in *Taloda taluka* had excellent WQI. All other villages of these talukas showed

Table 6.27: Water Quality Index of Groundwater of Nadurbar District

Talukas	20	007	20	08	20	09	20	10	20)11	5 Yrs	. WQI
	WQI	Catg.	WQI	Catg	WQI	Catg.	WQI	Catg	WQI	Catg	WQI	Catg.
Akkalkuva	58	GW	53	GW	60	GW	81	GW	47	EXL	57	GW
Nandurbar	77	GW	69	GW	77	GW	70	GW	90	GW	74	GW
Navapur	78	GW	79	GW	83	GW	54	GW	58	GW	57	GW
Taloda	72	GW	59	GW	64	GW	50	GW	52	GW	53	GW
Dhadgaon		-					55	GW	43	EXL	46	EXL
Shahada							59	GW	60	GW	60	GW

UNS- Un-suitable; EXL – Excellent

Five years trend for Nadurbar district shows good to excellent water quality index. Excellent water quality was observed in Kuntumwadi, Rajhava, and Vadkolambi and Rojwe villages of this district for all the years. Even though all locations showed good water quality, this region has the problem of low water level.

21) Nasik District

Nasik district is situated in north western part of Maharashtra. Nasik is one of the largest districts in Maharashtra in terms of area and population. The district forms part of Godavari basin (southern part) and Tapi basin (northern part). Godavari and Girna are the main rivers flowing through the district. The district forms part of Western Ghat and Deccan Plateau. Physiographically Nasik district comprises of varied topography. The main system of hills is Sahayadri and its offshoots viz., Satmala, Selbari and Dolbari hill ranges. These hill ranges along with eastern and southern plains and Godavari valley are the distinct physiographic units.

General Information:

Geographical Area: 15530 sq. km

Taluka-16: Baglan, Chandwad, Deola, Dindori, Igatpuri, Kalwan, Malegaon, Nandgaon,

Nasik, Niphad, Peinth, Satana, Sinnar, Surgana, Trimbakeshwar and Yeola

Villages: 1931 Population: 49,94,000

Soil Type:

The soils of the district are the weathering products of Basalt and have various shades from gray to black, red and pink color. The soils occurring in the district are classified in four categories namely lateritic black soil (Kali), reddish brown soil (Mal), coarse shallow reddish black soil (Koral), medium light brownish black soil (Barad). In general the soils are very fertile and suitable for growing cereals and pulses. The black soil contains high alumina and carbonates of calcium and magnesium with variable amounts of potash, low nitrogen and phosphorus. The red soil is less common and is suitable for cultivation under a heavy and consistent rainfall.

Annual Rainfall: 500 mm to 3400 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Major Ground Water Problems and Issues:

Major part of the district (about 75%) falling east of Western Ghats comprising almost entire Sinnar, Niphad, Surgana, Kalvan, Satana, Chandwad, Yeola talukas and parts of Dindori, Peint and Malegaon talukas is classified as 'drought areas'. Major parts of the district show fall in water level during pre monsoon period.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

174 villages in sixteen talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.28**

and Annexure X(21) give the water quality index of ground water of Nasik district for five years

Baglan, Deola, Chandwad and Dindori: Exceedanace of pH at Baglan was 27%. Exceedances of TH, Mg²⁺, F and NO₃ were in the range of 2-6%. Exceedanaces of pH, SO₄²⁻ F and Nitrate were 33, 33, 17 and 17% respectively at Deola taluka. All parameters of Chandvad taluka were within the permissible limits except pH whose percent exceedance was 27%. Exceedanace of pH at Dindori was 16%. Exceedances of F and NO₃ in Dindori taluka were low and ranged between 3-6%. Villages viz. Satana, Deopurpada and Karanjad villages of *Baglan taluka* varied between poor to excellent WQI. Excellent WQI was observed at Sogras and Vadbare villages of *Chandwad talka*. From taluka *Deola*, Gunjalnagar village reported poor water quality. At *Dindori taluka*, most of the time water quality observed was good; and excellent water quality was observed at Nalegaon, Nanashi, Kona and Umrale Bk villages of Dindori Taluka.

Igatpuri, Kalwan, Malegaon and Nandgaon: Comparison with BIS standards shows that pH exceeded the permissible limit 16-46% of the time in these talukas. Only pH exceeded the standard at Igatpuri (26% exceedance). Nearly all the villages come under the category of good to excellent category at *Igatpuri taluka*. Wadi, Varhe, Igatpuri and Take Deogaon villages of Igatpuri taluka had excellent water quality. TH, Ca²⁺, Mg²⁺, and SO₄²⁻ exceed the standards (4-11%) of the time in **Kalwan taluka**. Inshi, Pilakos and Sakore villages had poor water quality in Kalwan taluka. All other villages had good or excellent water quality. TDS, TH, Mg²⁺, Fe, TA, SO₄²⁻, F and NO₃⁻ exceeded the standards (3-13%) of the time at Malegaon. Jalgaon, Daregaon, Agar bk, Ravalgaon, Karanjagavan, Gilene, Ajande, Umarane, Saudane of *Malegaon* had poor WQI. Other villages had good WQI. At *Nandgaon* TDS, TH, Mg²⁺, TA and F exceeded the standards (3-10%) of the time. Nandgaon, Bolthan, Jawalki, Khadgaon, Panewadi villages of Nandgaon taluka had poor WQI. Other villages had good water.

Nasik, Niphad, Peinth and Satana: Exceedance of TH (5-33%); Mg²⁺ (4-16%) and NO₃⁻ (8-33%) was reported for these three talukas except Peinth. The exceedance of pH was in the range of 14-28%. The water quality of *Nasik taluka* mainly varied between good to excellent, except at Jakhori, Botgaon Pimpri and Raslapur villages, where water quality was poor in 2007. Village Pimpalgaon Baswant in *Niphad taluka* had poor water quality for all the years. Savargaon village showed mixed trend; *Satana* village of Nasik taluka was observed to have poor, whereas at Nampur it varied between good and poor. Very limited data is available for this talukas; the probable reason for declining water quality could be the

high nitrate levels. The *Peinth taluka* was observed to have good to excellent water quality for these 5 years. Satna village of Satana taluka Taluka had poor water quality. Nampur village of Satana Taluka had good water quality.

Sinnar, Surgana, Trimbakeshwar and Yeola: pH, TDS, TH, Mg²⁺, TA, F, NO₃ exceeded the standards by 30, 5, 18, 10, 3, 3, and 10% respectively at Sinnar Taluka. At Surgana taluka all the parameters were within the standard except pH which exceeded the standard 50% of the time. At Trimbakeswar taluka all the parameters were within the standard. At Yeola taluka, pH, TDS, TH, F and NO₃ exceeded the standards 53, 12, 12, 6 and 12 % of the time.WQI if Sinnar village of *Sinnar* taluka was reported as very poor in 2008-09, which improved in 2010, and villages Ujjani, Chondhi and Musalgaon was reported poor in 2010-11. At other sites most of the time water quality indices were good. Surgana and Chikadi villages of *Surgana taluka* were observed as excellent from a limited data available for analysis. Similarly Dahalewadi and Harsul villages of *Trimbakeshwar taluka* were reported to have excellent water quality. At *Yeola taluka*, villages namely Mukhed, Ankai and Nagarsal had WQI varying between from poor to excellent.

Table 6.28: Water Quality Index of Groundwater of Nasik District

Talukas	2	007	2	008	20)09	20	10	201	11	5 Yrs	. WQI
	WQI	Catg.	WQI	Catg	WQI	Catg.	WQI	Catg	WQI	Catg	WQI	Catg.
Baglan		-					75	GW	73	GW	74	GW
Chandwad		-	38	EXL			68	GW	65	GW	64	GW
Deola		-			124	PW	65	GW	106	PW	101	PW
Dindori	60	GW	56	GW	80	GW	65	GW	60	GW	60	GW
Igatpuri	63	GW	71	GW	61	GW	48	EXL	47	EXL	48	EXL
Kalwan	60	GW	65	GW	68	GW	62	GW	73	GW	68	GW
Malegaon	116	PW	94	GW	90	GW	91	GW	97	GW	93	GW
Nandgaon	226	VPW	174	PW			75	GW	87	GW	89	GW
Nasik	84	GW	86	GW	95	GW	66	GW	61	GW	68	GW
Niphad	78	GW	145	PW	122	PW	104	PW	90	GW	98	GW
Peinth			77	GW	71	GW	40	EXL	43	EXL	45	EXL
Satana	182	PW	178	PW	80	GW					131	PW
Sinnar			233	VPW	257	VPW	81	GW	96	GW	93	GW
Surgana							49	EXL	57	GW	53	GW
Trimbakeshwar	38	EXL	51	GW	41	EXL					40	EXL
Yeola	61	GW					63	GW	85	GW	75	GW

UNS- Un-suitable; EXL - Excellent

From the overall ground water quality of Nasik district, it was observed that talukas namely Igatpuri Peinth and Trimbakeshwar had excellent water quality, whereas Dindori and Satana had poor water quality. Remaining taluka's had good water quality indices.

22) Osmanbad District

Osmanabad is one of the districts of Marathwada region of Maharashtra and famous for Tuljabhavani temple at Tuljapur. It is situated in the southern part of the State. The district forms part of Deccan Plateau, locally known as Balaghat Plateau, with slope towards southwest and south and has a varied topography consisting of hills, plains and undulating topography near riverbanks. The district forms a part of Godavari basin. Many of the tributaries to Godavari River originate from the Balaghat Plateau. Manjra River is the main river flowing through the district.

General Information:

Geographical Area: 7512 sq. km.

Taluka-7: Bhum, Kalambh, Lohara, Omerga, Osmanabad, Paranda and Tuljapur

Villages: 729 Population: 14,86,586

Soil Type:

The soil of the district is basically derived from Deccan Trap Basalt and the district broadly has three major soil types. Shallow Soils occur in small patches in western and northwestern parts of the district. These soils are light brown to dark grey in colour and loamy to clayey loamy in texture. Medium Soils are found in parts of Bhum, Kalambh and Osmanabad talukas. They are dark brown to dark grey in colour. Medium deep soils occur in patches in Tuljapur taluka. The colour of these soil varies from dark grey brown to very dark grey. They are clayey in texture.

Annual Rainfall: 600 mm to 850 mm

Geology: Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Major Ground Water Problems and Issues

In almost all talukas of Osmanabad district with some exceptions, the 'severe drought conditions' are experienced. It results in low water levels in major parts of the district, both during pre and post monsoon periods. The ground water quality in deeper aquifers is generally affected by fluoride and nitrate contamination in Osmanabad, Tuljapur and Omerga talukas and also some parts of urban areas.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

Out of 7 talukas, 76 villages were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.29 and Annexure X(22)** give the water quality index for five years at Osmanabad district.

Bhum, Kalambh, Lohara and Omerga: At Bhum Taluka, pH and NO₃ exceeded the standards 25 and 8% of the time. The Bhum village of *taluka Bhum* had poor water quality in 2007 which improved to good quality in 2009 and 2010. Other villages had good to excellent water quality. At *Kalambh Taluka*, pH, TH, Ca²⁺, Mg²⁺ and NO₃⁻ exceed the standards 28, 14,7,7,7 % of the time. In Kalambh taluka, all the villages had good to

excellent water quality except village Pimpalwandi which had very poor water quality. Shiradhone, Lakhangaon and Stra had mostly excellent water quality. Very limited data is available for *Lohara taluka*. At *Lohara Taluka* all the parameters were within the standards except NO₃ which exceeded the standard 33% of the time. Percent exceedances for pH, Mg²⁺, F and NO₃ were 26, 5, 5 and 5% respectively at *Omerga Taluka*. Gunjoti and Turori villages of Omerga taluka had unsuitable and poor water quality. Other villages had good to excellent water quality

Osmanabad, Paranda and Tuljapur: Nitrate exceedance of 18-20% at Osmanabad and Paranda talukas were observed. Fluoride and TH was also reported to exceed 5-13% of the time in these talukas.

Dhoki, Yedshi and Goverdhanwadi are some place where indices reported as poor; and Kanagara and Jagji noticed as excellent in *Osmanabad taluka*. Most of the times water quality is good at *Paranda taluka* only at Wangi Kd. it was poor in 2011.

The overall villages of *Tuljapur taluka* showing good indices and excellent reported villages are Mangrul Naldurg and Kemwadi in 2011. The five year trend shows these talukas mainly influenced as good.

Table 6.29: Water Quality Index of Groundwater of Osmanbad District

		Z	,									
Talukas	20	007	20	08	20	009	20	10	20	11	5 Yrs	s. WQI
	WQI	Catg.	WQI	Catg	WQI	Catg.	WQI	Catg	WQI	Catg	WQI	Catg.
Bhum	104	PW	104	PW	74	GW	58	GW	67	GW	64	GW
Kalambh	274	VPW	238	VPW			72	GW	67	GW	79	GW
Lohara	97	GW	80	GW	72	GW					74	GW
Osmanabad	80	GW	105	PW	90	GW	77	GW	83	GW	83	GW
Omerga	97	GW	115	PW	92	GW	112	PW	53	GW	100	GW
Paranda	85	GW			67	GW	65	GW	133	PW	72	GW
Tuljapur			68	GW	57	GW	80	GW	56	GW	66	GW

Osmanabad district comes under the drought area. The average rainfall is very less, which results into less recharging of ground water. Soil and geological nature play a significant role in affecting the water quality in-terms of high nitrate and fluoride. Five year data analysis showed that water quality in general good.

23) Parbhani District

Parbhani district is located in Marathawada region of Maharashtra State. Ajanta Hill ranges which passes through Jintur Tahsil is located on the north east. Balaghat Hill ranges are located on the southern side.

General Information:

Geographical Area: 6,14,064 sq. km

Taluka-9; Gangakhed, Jintur, Manwat, Palam, Parbhani, Pathari, Purna, Selu and Sonpeth

Villages: 852, Population: 15,27,715

Soil Type:

Most of the soil in Parbhani district is black cotton soil. The soil nearby Godavari River is deep and fertile. Middle part of the district viz. Selu, Pathri, Parbhani and Purna talukas and some of the part of Jintur taluka have medium and black soil. Gangakhed and Palam Talukas have light soils.

Annual Rainfall: 957.2 mm

Geology: Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Ground Water Quality with Respect to BIS Standard and Water Quality Index

Out of 9 talukas 68 villages are monitored by CGWB. The descriptive statistics of ground water quality are given in **Annexure IX**. **Table 6.30 and Annexure X(23)** give the water quality index of ground water for five years at Parbhani district.

Jintur, Manwat and Gangakhed: Percent exceedance of Fluoride was 22% in **Jintur taluka**. TH, Mg²⁺, and NO₃ also exceeded the standards by 13, 9 and 4% respectively. Overall water quality of the villages was poor for *Jintur Taluka*. Limited data was available for analysis for *Manwat taluka*. Percent exceedance of Fluoride and Nitrate were as high as 33% in *Manwat taluka*. Percent exceedance of Fluoride was 17% in **Gangakhed** *taluka*. The overall water quality was good at Gangakhed taluka and excellent water quality was reported for Chukar village in 2011.

Palam, Parbhani and Pathari: Fluoride exceedances were reported to be in the range 14-20% in these talukas. Nitrate exceedances were reported to be 6-14%. Overall WQI was observed to be good for *Palam taluka*. At Parbhani taluka most of the villages had good water quality except Singanapur, Todkalas, Asola, Zari, Tadlimla, Balas Kh, Parbhani village of *Parbhani taluka*. Very poor quality was noticed at Babulgaon in 2007.Poor quality was also observed at Banegaon, Pathri villages of *Pathari taluka* as nitrate levels were high.

Selu, Purna and Sonpeth: At selu and Sonpeth the exceedances of fluoride were in the range of 25-28%. In *Selu taluka*, the overall water quality was good except at Dhengali

pimpalgaon and Sindhe villages where it was observed to be poor in 2011. A very limited data was available for *Sonpeth taluka* which showed a mixed result of good and poor. In *Purna Taluka* all parameters complied with the standards and good water quality was observed in all the villages.

Table 6.30: Water Quality Index of Groundwater of Parbhani District

Talukas	20	007	20	08	20	009	20	10	20	11	5 Yrs	. WQI
	WQI	Catg.	WQI	Catg	WQI	Catg.	WQI	Catg	WQI	Catg	WQI	Catg.
Gangakhed		-	1	1	-	ŀ	74	GW	70	GW	72	GW
Jintur	83	GW	52	GW			70	GW	118	PW	90	GW
Manwat	141	PW			139	PW	74	GW	71	GW	90	GW
Palam	75	GW	75	GW			109	PW	79	GW	90	GW
Parbhani	96	GW	87	GW	62	GW	88	GW	76	GW	81	GW
Pathari	222	VPW			74	GW	76	GW	82	GW	85	GW
Purna							64	GW	63	GW	64	GW
Selu	72	GW	81	GW	76	GW	71	GW	113	PW	84	GW
Sonpeth							99	GW	53	GW	76	GW

As per five year WQI the overall water quality of Parbhani district was good. At initial at Manwat and Pathari taluka showed poor quality in 2007, this improved in later years. Fluoride and Nitrate level exceedances are the issues in this district.

24) Pune District

Pune is the second largest district of Maharashtra State in respect of area. The district forms part of Western Ghat and Deccan Plateau. Physiographically, the district can be divided into three distinct belts, western belt cut by deep valleys, divided and crossed by hill ranges, central belt in which a series of small hills stretch in to valleys and eastern belt with the low hills sinking slowly into the plains with relatively broader valleys. The major rivers in this district are Bhima, Ghod, Mula, Mutha and Nira.

General Information:

Geographical Area: 15642 sq. km

Taluka – 14: Ambegaon, Baramati, Bhor, Daund, Pune Haveli, Indapur, Junnar, Mawal,

Mulshi, Purandar, Rajgurnagar (Khed), Shirur, Wadgaon and Wehle

Villages: 1866 Population: 72,33,000

Soil Type: Two types of soils are found in this district: Medium Black and Deep Black soil

Annual Rainfall: 468 mm to 4659 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Major Ground Water Problems and Issues

Most of the parts of Pune district fall under rain shadow zone of Maharashtra State. Indapur, Baramati, Jujuri, Daund, Talegaon, Dhamdhare, Alandi, Shirur and Bhor covering around 50% area of the district are classified as drought areas. The ground water development in

Baramati, Ambegaon, Purandhar and Junnar talukas have already reached up to 100% and these talukas fall under "Semi-Critical" category. The ground water quality is mainly affected by localized nitrate contamination.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

148 villages in 14 talukas were monitored by CGWB. The descriptive statistics of ground water quality are given in **Annexure IX**. **Table 6.31 and Annexure X(24)** give the water quality index of ground water for five years at Pune district.

Ambegaon, Baramati, Bhor and Daund: Nitrate concentrations were very high in these 4 talukas. Percent exceedance of NO3 in Ambegaon Taluka was 47%. Exceedance of pH was 16%. At Ambegaon taluka village Kalamb had poor water quality and other villages had water quality varying between good and poor. Water quality was excellent in Chinchle Bk and Karanjv villages in 2008-09. In *Baramati taluka*, percent exceedance of NO₃ was 54%. Exceedances of pH, TDS, TH, Ca²⁺, Mg²⁺, Fe, Cl⁻, and SO₄²⁻ were 19, 16, 22, 11, 24, 8, 8, and 14% respectively in *Baramati taluka*. Loni Bhapkar, Morgaon, Medad, Ambi Bk and Karanje villages of *Baramati taluka* showed unsuitable water quality in 2010 and most of the other villages had poor water quality, some of them are Pandare, Sangvi and naira. With limited data available for **Bhor Taluka** it was observed that all parameters were within the standards except NO₃ which exceeded the standard 33% of the time. In Daund taluka exceedances of pH, TDS, TH, Ca²⁺, Mg²⁺, Cl⁻, SO₄²⁻ and NO₃⁻ were 8, 5, 19, 14, 14, 5, 16 and 32% respectively. The maximum concentration of nitrate was 553.8 mg/l and 288.0 mg/l at Baratmati and Daund talukas respectively, the reported villages Nasarapur, Bholawade and Bhor showing good indices for 2010. The probable sources of contamination of ground water could be the over-application nitrate based fertilizers in farms, agricultural run-off, etc.

Pune Haveli, Indapur, Junnar, Mawal and Wadgaon: The nitrate concentration exceeded 39% of the time in *Pune (Haveli)* taluka. The exceedance of pH, TH, Mg²⁺, SO₄²⁻, F and NO₃⁻ were in the range 2-6%. Wagholi, Parne, Undavri Kade Pathar and Alandi Mhatobachi villages showed poor water quality; whereas Kasarwadi, Shivpur Khed and Bukum reported excellent water quality, other villages had mixed trend. In *Indapuri taluka*, the exceedance of pH, SO₄²⁻ and NO₃⁻ were 36, 15 and 31% respectively. The exceedance of TDS, TH, Mg²⁺ and Fe, were in the range 5-10%. The nitrate concentration exceedance was 31 % in *Junnar* taluka. The maximum concentration of nitrate is in the range of 256- 531 mg/l at Pune Haveli, Indapur and Junnar talukas. The exceedance of pH, Mg²⁺ and Fe, were in the range 3-8%. All parameters complied with the standards at *Mawal* and *Wadgaon Talukas*.

Mulshi, Purandar, Rajgurnagar (Khed), Shirur and Wehle: At *Purander*, *Rajgurnagar* (*Khed*), *Shirur taluka*s the nitrate exceedance was about 39 to 51% of the samples. The maximum concentration of nitrate is in the range of 150- 310 mg/l at Purandar, Rajgurnagar (Khed) and Shirur talukas. At *Purander taluka only* 2-7% of exceedance was observed for TH, Ca²⁺ and Mg²⁺. At *Shirur* other parameters exceeded the standards by 2 to 10%. Excellent water quality was observed for almost all the samples of *Mulshi taluka* where all the parameters complied with the standards. With limited data available, the given samples of *Wehel taluka* showed excellent water quality with all the parameters complying with the standards.

Table 6.31: Water Quality Index of Groundwater of Pune District

Talukas	20	007	20	08	20	009	20	10	20	11	5 Yrs	s. WQI
	WQI	Catg.	WQI	Catg	WQI	Catg.	WQI	Catg	WQI	Catg	WQI	Catg.
Ambegaon	101	PW	93	GW	84	GW	72	GW			77	GW
Baramati	140	PW	137	PW	118	PW	153	PW			144	PW
Bhor							59	GW			59	GW
Daund	88	GW	75	GW	87	GW	84	GW	137	PW	110	PW
Pune	99	GW	96	GW	86	GW	87	GW			85	GW
(Haveli)												
Indapur	129	PW	108	PW	83	GW	111	PW			109	PW
Junnar	63	GW	87	GW	70	GW	70	GW			68	GW
Mawal	85	GW	73	GW	77	GW	42	EXL			49	EXL
Wadgaon			40	EXL	32	EXL					32	EXL
(Maval)												
Mulshi	36	EXL	34	EXL	33	EXL	43	EXL			38	EXL
Purandar	77	GW	58	GW	67	GW	109	PW	77	GW	81	GW
Rajgurnagar	47	EXL	36	EXL	80	GW	78	GW			72	GW
(Khed)												
Shirur	84	GW	81	GW	87	GW	109	PW			100	GW
Wehle	31	EXL	29	EXL		-	48	EXL			31	EXL

UNS- Un-suitable; EXL - Excellent

Five years water quality of Pune district showed excellent water quality at Mawal, Mulshi, Wadgaon (Maval), and Wehle; whereas poor quality was observed at Baramati, Daund and Indapur. In most of the region of Pune district ground water is mainly affected by excess concentration of nitrate along with other inorganic pollutant such as TDS, TH, Ca²⁺ and Mg²⁺.

25) Raigad District

Raigad district is situated along the western coast of the State. It is bounded by Thane district in the north, Ratnagiri district in the south, Pune district in the east and Arabian Sea forms the western boundary having a length of about 250 km. The district has three physiographic divisions i.e. (i) Coastal zone in west covers about 20% percent of the district

(ii) Central zone covers about 1/3rd of the district, consisting of fertile land in low lying area

(iii) Hilly zone in the eastern part highly uneven in altitude and covered with forests. Ulhas,

Panvel and Patalganga are the three main rivers in northern part. Kundalika River is the main river in central part, whereas in the southern part Savitri is the main river.

General Information:

Geographical Area: 7152 sq. km

Taluka-16: Alibag, Karjat, Khalapur, Mahad, Mangaon, Mhasala, Murud, Panvel, Pen,

Poladpur, Raigad, Roha, Sudhagad, Shrivardhan, Tala and Uran

Villages: 1919 Population: 22,08,000

Soil Type:

The soils in the district are formed from the Deccan Trap which is predominating rock formation with small crops of Laterite at a few places in the Poladpur taluka and Matheran hill. The soils are grouped as Forest, Varkas, Rice, Khar or Saline, Coastal Alluvium and Laterite as per the location and topographical situation.

Annual Rainfall: 2200 mm to 5000 mm

Geology: Pleistocene – Recent: Alluvium, Upper Cretaceous-Lower Eocene: Basalt

(Deccan Traps)

Major Ground Water Problems and Issues

About 32000 ha of land in parts of Uran, Alibagh, Pen, Panvel, Murud, Roha, Mangaon, Mahad, Mhasala, Shrivardhan talukas along the coast and creek have been rendered saline due to breach in age old bunds. In affected areas, ground water quality has also become saline therefore rendering it unsuitable for irrigation. The prominent hill ranges, isolated hillocks, undulation etc., in the district give rise to higher runoff, rather than natural recharge. These aquifers then are drained naturally due to slopping and undulation topography. As a result, the dug wells become dry by the month of February onwards.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

113 villages in 16 talukas were monitored by CGWB. The descriptive statistics of ground water are given in **Annexure IX**. **Table 6.32 and Annexure X(25)** give the water quality index of ground water for five years at Raigad district.

Khalapur, Poladpur, Murud, Panvel, Mangaon, Roha, Raigad, Sudhagad, Shrivardhan, Tala and Uran Talukas: All parameters in these talukas complied with the standards and WQI varied between good and excellent except Roha and Uran where the water quality was excellent. Data for 2010 and 11 were only available for Shrivardhan, Tala Uran and Murud talukas.

Alibag, Mhasala, Mahad and Karjat and Pen: Only pH exceeded the standard at *Alibag* and *Mhasala taluka*. Other parameters were within the standards. The water quality of the

villages in Alibag and Mhasala varied between good to excellent. Only 5-8% exceedance of standards was observed for TDS, TH, Ca²⁺, Mg²⁺, Cl⁻ and SO₄²⁻ at *Mahad Taluka*. All villages of Mahad taluka had good or excellent water quality except Dapoli which had very poor to unsuitable water. At *Karjat taluka* exceedance of TH and Mg was low and only 4% and water quality varied between good to excellent. Only 6-8% exceedance of standards was observed for TDS, TH, Ca²⁺, Mg²⁺ and Cl⁻ at Mahad Taluka. All villages of *Pen taluka* had good or excellent water quality except Vadkhal village which had very poor water.

Table 6.32: Water Quality Index of Groundwater of Raigad District

Talukas	2007		20	008	20	009	20	010	20)11	5 Yrs. WQI	
	WQI	Catg.	WQI	Catg	WQI	Catg.	WQI	Catg	WQI	Catg	WQI	Catg.
Alibag	47	EXL	53	GW	54	GW	48	EXL	50	EXL	48	EXL
Karjat	46	EXL	47	EXL	49	EXL	51	GW	45	EXL	46	EXL
Khalapur	35	EXL	44	EXL	38	EXL	40	EXL	48	EXL	40	EXL
Mahad	142	PW	255	VPW	27	EXL	39	EXL	35	EXL	61	GW
Mangaon	30	EXL	37	EXL	39	EXL	45	EXL	43	EXL	40	EXL
Mhasala	26	EXL	24	EXL	16	EXL	42	EXL	40	EXL	38	EXL
Panvel	53	GW	28	EXL	57	GW	52	GW	56	GW	52	GW
Pen	50	EXL	241	VPW	122	PW	47	EXT	48	EXL	58	GW
Poladpur	54	GW	48	EXL	41	EXL	23	EXL	29	EXL	36	EXL
Raigad	51	GW	53	GW	65	GW					48	EXL
Roha	43	EXL	43	EXL	47	EXL	38	EXL	37	EXL	38	EXL
Sudhgad	52	GW	57	GW	29	EXL	38	EXL			42	EXL
Shrivardhan							35	EXL	58	GW	45	EXL
Tala							51	GW	59	GW	55	GW
Uran							41	EXL	43	EXL	42	EXL
Murud							41	EXL	43	EXL	42	EXL

UNS- Un-suitable; EXL – Excellent

As per five years, trend of Raigad taluka talukas namely Mahad, Panvel, Pen and Tala had good water and others had excellent water. Soil texture in this region changes from place to place i.e areas close to sea have saline soil, which affects the ground water quality of these areas. Sufficient annual rain fall in this district helps in recharging of ground water resources.

26) Ratnagiri District

Ratnagiri is one of the coastal districts of Maharashtra and forms part of the Konkan region. It is situated in between the Western Ghats and the Arabian Sea. Savitri, Vashisthi, Shastri, Ratnagiri, Jaitapur and Wagothan are the main rivers flowing through the district. About 45% of the area in Ratnagiri district is hilly. The physiography of the area has given rise to

five characteristic landforms: Coastline, estuarine plains and river basins, lateritic plateaus, residual hills and scarp faces of the Sahayadri.

General Information:

Geographical Area: 8326 sq. km.

Taluka-9: Chiplun, Dapoli, Guhagar, Khed, Lanja, Mandangarh, Rajapur, Ratnagiri, and

Sangameshwar

Villages: 1543 Population: 16,97,000

Soil Type:

Based on the physical characteristics of the soils, they can be classified into five major groups viz. *Coarse Shallow Soil*: They are reddish brown in colour and occur on the slopes of the hills and are partly eroded, poor in fertility, shallow in depth and coarse in texture. *Medium Deep Soil*: These are reddish yellow in colour and have various names depending upon the place of occurrence. Those situated at higher elevations are known as *Mal*, while at slightly lower levels are known as *Kuyat*. Near water courses, which have a fair supply of water during Rabi season are known as *Panthal* or *Vaigan*. *Deep Soil*: They are yellowish red to brown in colour. They are light, easily workable, well drained and fairly fertile. *Coastal Alluvial Soil*: They are found along the coastal strip and consist of deep sandy loams suitable for Coconut and Areca nut. *Coastal Saline Soil*: They are formed due to the inundation of the sea, whereby part of coastal soils becomes salty. They are found along coastal strip of Dapoli, Guhagar and Ratnagiri tehsils.

Annual Rainfall: 2658 mm to 3973 mm

Geology: Recent to sub-Recent: Alluvium, beach sand, Cretaceous to Eocene: Deccan Trap Basalt lava flows; Upper Pre-Cambrian Kaladgi Series: quartzite, sandstone, shale and associated limestone.

Major Ground Water Problems and Issues

Even though the district receives rainfall in excess of 3500 mm/year, many villages face water scarcity in the summer. There is a lack of effort to harness and harvest the rain water in the region.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

133 villages in 9 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring are given in **Annexure IX. Table 6.33 and Annexure X.26** give the water quality index of ground water for five years at Ratnagiri district.

Chiplun, Guhagar, Mandangarh, Sangameshwar and Lanja: All the parameters were within permissible limits in these talukas. The water quality indices reported for *Guhagar*, *Mandangarh*, *Sangameshwar and Lanja* talukas were excellent for all the years. At *Chiplun taluka* water quality was almost excellent in all villages.

Rajapur, Dapoli, Khed, and Ratnagiri: At *Rajapur taluka* the exceedances of 2% of the given samples for TDS, TH, Mg²⁺ and bicarbonate were observed. Almost all the villages in this taluka are reported to be excellent for given years except Jaitapur and Date which had poor water quality in 2008 and 2009 respectively. At *Dapoli taluka*, negligible exceedance of 2% for F was observed and the water quality indices varied between good and excellent. At *Khed Taluka*, pH and NO₃⁻ exceeded the standards by 8%. All villages had excellent water quality except Dabhil village which had very poor water quality in 2009. WQI at Awashi village varied between good and excellent. At *Ratnagiri taluka* the exceedances of pH and NO₃⁻ were very negligible around 5% of the given samples. Almost all the villages in this taluka had excellent water quality.

Table 6.33: Water Quality Index of Groundwater of Ratnagiri District

Talukas	2007		20	008	2009 2		20	10	2011		5 Yrs	. WQI
	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg	WQI	Catg
Chiplun	30	EXL	31	EXL	29	EXL	30	EXL	27	EXL	28	EXL
Dapoli	33	EXL	33	EXL	20	EXL	27	EXL	30	EXL	27	EXL
Guhagar	28	EXL	27	EXL	22	EXL	28	EXL	23	EXL	26	EXL
Khed	24	EXL	23	EXL	29	EXL	33	EXL	25	EXL	28	EXL
Mandangarh	25	EXL	25	EXL	27	EXL	25	EXL	32	EXL	27	EXL
Rajapur	22	EXL	20	EXL	21	EXL	43	EXL	30	EXL	33	EXL
Ratnagiri	22	EXL	21	EXL	28	EXL	35	EXL	29	EXL	28	EXL
Sangameshwar	34	EXL	26	EXL	21	EXL	27	EXL	27	EXL	26	EXL
Lanja							29	EXL	23	EXL	26	EXL

UNS- Un-suitable; EXL - Excellent

In Ratnagiri district, the five years ground water quality indices were excellent in all the talukas. Significant annual rainfall and well connecting river network with large constructed water reservoirs under hydrological projects on major rivers of this district helps in recharging the ground water resources.

27) Sangli District

Sangli district is located in the western part of Maharashtra. Sangli district is situated in the river basins of Warna and Krishna rivers. Land in this region is suitable for agriculture. The climate ranges from the wettest in the Chandoli (Shirala) region, which has an average annual rainfall of over 4000 mm, to the driest in Atpadi and Jath Taluka where the average annual rainfall is about 500 mm. The plant cover too varies from the typical monsoon forest in the western parts to scrub and poor grass in the eastern parts. Sangli district comes under Deccan plateau geographic region.

General information:

Geographical Area: 8577 sq. km

Taluka-11; Atpadi, Islampur, Jath, Kadegaon, Kavathemahankal, Khanapur, Miraj, Palus,

Shirala, Tasgaon and Walwa, Villages: 731 Population: 25,81,835

Soil:

The district has three distinct climatic zones: 1) The western zone- receives very heavy rainfall, has lateritic soils on up-ghats and reddish brown soils on hill slopes the latter being developed on parent material of trap rock. The soils are poor in fertility. 2) The transition zone of Krishna valley- has deep black soils of alluvial origin. Soils are moderately alkaline and are moderate in contents of total soluble salts and calcium carbonate. Soils are fair in nitrogen and very poor in phosphate and potash contents. 3) The third is the eastern drier zone, which consists largely of granular black soils and poor shallow soils. Contents of total soluble salts and calcium carbonate are moderate. Soils show wide variations in total exchangeable capacity. Deep soils from the low rainfall areas, unless properly managed, develop saline-alkaline conditions.

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Basalt (Deccan Traps)

Major Ground Water Problems and Issues

The rapid rate of industrialization, construction, and conversion of agricultural land for other developmental purposes has caused haphazard growth of Sangli city. There are no sufficient facilities for wastewater collection, treatment and disposal. In Sangli city sewage treatment plant is absent hence sewage from different parts of city is disposed off in Krishna River which may influence ground water resources.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

148 villages in 11 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.34 and Annexure X(27)** give the water quality index of ground water for five years at Sangli district.

Atpadi, Islampur, Jath and Kadegaon: Percent exceedances of pH and NO₃⁻ at *Atpadi taluka* were 19 and 13% respectively. TH and SO₄²- also showed negligible exceedance of 3% in this taluka. Ghanand village in 2010; Atpadi in 2008; Pimpri Kh in 2008; Shetphale in 2008 and 2011; Gomewadi in 2009 had poor water quality. Other villages had good water quality. In *Islampur taluka* data was available for 2008 and 2009 only. Nitrate exceedance in this taluka was as high as 50%. None other parameter exceeded the standards at Islampur taluka. Takari village had poor water quality in 2008 and 09. At *Jath taluka* nitrate exceedance was 30%. Total hardness, Ca and SO₄ exceeded the standards by 23, 13 and 15% respectively. Percent exceedances of pH, TDS, Mg and Cl were 2, 6, 9 and 4% respectively. The maximum concentration of TDS was 3283 mg/l. 1812 mg/l for TH and 290 mg/l for nitrate was observed at Jath taluka. Water quality indices mainly observed were mostly poor except few villages where it was good. Jadarbablad and Borgi bk. villages were reported to have very poor to unsuitable water. None of the parameters exceeded the standards at *Kadegaon taluka* except NO₃⁻ which exceeded by 22%. Data for 2007 for

Kadegaon taluka was not available. Kadepur village in this taluka in 2009 had poor water quality. Other villages had good or excellent water quality

Kavathemahankal, Khanapur, Miraj and Palus: Nitrate exceedances at Palus and Miraj talukas were as high as 50 and 48% respectively. At Kavathemahankal and Khanapur nitrate exceedances were 22 and 7% respectively. TDS, TH, Ca²⁺, Mg²⁺, Fe and SO₄²⁻ exceedances were in the range of 6-11%, 12-14%, 3-7%, 4-7%, 16% and 3-6% respectively in the given talukas. The maximum concentration for TDS, TH and nitrate were in the range of 1278-4012 mg/l; 1612- 1400 mg/l; and 110-256 mg/l respectively. Very poor to unsuitable water quality indices were reported at Kavathe mahankal and Haingangaon villages of *Kavathemhankal taluka*. Other villages had good category of water. Excellent water quality was observed in Kokale, Salshinge, and Walkhed and Sulewadi villages of *Khanapur taluka*. Mixed trend was observed at *Miraj taluka* where excellent water was reported at Kalambi and Kavathepiran; whereas Dhavali village had very poor water quality. A limited data was available for *Palus taluka*, where water quality varied between good and poor quality.

Shirala, Tasgaon, South Solapur and Walwa: Percent exceedances of pH, Fe and NO₃ were low (all 9%) in *Shirala Taluka*. Here overall good quality was noticed. At Chikhalwadi and Mandur villages excellent water quality was reported. Nitrate exceedance at *Tasgaon taluka* was as high as 42%. Here TDS, TH, Ca²⁺, Mg²⁺ and Cl⁻ also exceeded the standards by 8, 17, 17, 17 and 8% respectively. At Tasgaon, maximum concentration of 2400 mg/l for TDS, 1625 mg/l for TH and 186 mg/l for nitrate were observed. Percent exceedances of Total hardness, Ca²⁺ and SO₄²⁻ were as high as 67, 33 and 67% respectively at *S.Solapur*. At Walwa taluka, all parameters were within the standards except the negligible exceedance of NO₃ by 4%. In *Walwa taluka* almost all villages had good water quality and villages viz. Wategaonm, Rethre, Walwa and Yellur had excellent water quality.

Table 6.34: Water Quality Index of Groundwater of Sangli District

Talukas	20	07	20	008	20	009	20	010	20	11	5 Yrs. WQI	
	WQI	Catg	WQI	Catg								
Atpadi	69	GW	96	GW	94	GW	83	GW	73	GW	78	GW
Islampur			114	PW	103	PW					97	GW
Jath	155	PW	123	PW	134	PW	97	GW	125	PW	114	PW
Kadegaon			76	GW	102	PW	48	EXL	61	GW	58	GW
K.Mahankal	130	PW	101	PW	114	PW	127	PW	77	GW	106	PW
Khanapur	63	GW	58	GW	112	PW	64	GW	73	GW	68	GW
Miraj			56	GW	71	GW	117	PW	96	GW	108	PW
Palus			62	GW	93	GW	118	PW			102	PW
Shirala			48	EXL			65	GW			63	GW
Tasgaon			216	VPW	154	PW	91	GW	79	GW	104	PW
Walwa	59	GW	75	GW	81	GW	55	GW			59	GW

UNS- Un-suitable; EXL - Excellent

Sangli is one of the most important districts for its agricultural crops. The five years water quality of the district showed mixed trend. Atpadi, Kadegaon, Khanapur, Shirala and Walwa talukas had good water quality, whereas Jath, Islampur, K.Mahankal, Miraj, Palus and Tasgaon talukas were reported to have poor water quality. This may be due to contamination by human activity and agricultural runoff resulting in deterioration of ground water quality. Natural factors such as geology and soil texture of this region also affect the ground water.

28) Satara District

Satara district is one of the five districts of Western Maharashtra. Sahayadri hills of western ghat forms the western boundary, while Nira River forms the northern boundary of the district. The district forms part of Deccan Plateau of Sahayadri hill ranges. Physiographically the district can be broadly divided in four major units: (i) Hills and Ghats, (ii) Foothills zones, (iii) Plateaus and (iv)Plains. The major rivers of this district are Krishna, Nira and Man.

General Information:

Geographical Area: 10480 sq. km.

Taluka – 12; Javali, Karad, Khandala, Khatav, Koregaon, Mahabaleshwar, Man-dahiyadi,

Medha, Patan, Phaltan, Satara and Wai Villages: 1739 Population: 28,09,000

Soil Type:

The whole of Satara district falls within the Deccan Traps area; the hills consist of trap intersected by strata of basalt and topped with laterite, while, of the different soils on the plains, the commonest is the black loamy clay containing carbonate of lime. This soil, when well watered, is capable of yielding heavy crops.

Annual Rainfall: 473 mm to 6209 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap (Basalt)

Major Ground Water Problems and Issues

Satara contains some important irrigation works, including the Krishna canal. In some of the western parts of the district the average annual rainfall exceeds 5 m.; but on the eastern side water is scanty, the rainfall varying from 1 m in Satara town to less than 30 cm in some places farther east. Deeper water levels are also seen in northern part around Mahabaleshwar, Khandala and Wai and in south eastern part of the district in parts of Man and Khatav talukas. Apart from this 5474 ha of land has been demarcated as water logged area by Irrigation Department, Govt. of Maharashtra in Nira canal command area.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

146 villages in 12 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.35 and Annexure X(28)** give the water quality index of ground water for five years at Satara district.

Javali, Karad, Khandala and Khatav: As per BIS standards nitrate exceedance of 13-25% was noticed in these area. Around 25% of exceedance of pH was observed at Javali and Karad. At *Javali taluka* good to excellent water quality was observed. Malkapur village of *Karad taluka* had excellent water and almost all the villages in this taluka had good water quality. At *Khandala taluka*, the entire taluka was observed to have good to excellent water quality except few villages. Poor water quality was observed at Bhade and Shirwal Villages in 2009 and Surur village in 2007-08. Similar trend was observed for *Khatav taluka*. Only at Khatav, Katarkhatav and Pusegaon villages poor water quality was observed in 2008-09.

Koregaon, Mahabaleshwar, Man-dahivadi and Medha: Exceedance of Fe and Nitrate were observed as 7-11% and 26-38% respectively in these talukas. Mixed trend i.e. poor, good and excellent water quality was reported at *Koregaon taluka*. Entire taluka of *Mahabaleshwar* was observed to have excellent water quality. Water quality indices of *Man (Dahivadi) taluka* were observed as poor to good. Pingli village in 2007-08 was observed as excellent, which slightly shifted towards good in 2009. With limited data availability, *Medha taluka* had good water quality.

Patan, Phaltan, Satara and Wai: As per BIS standards, nitrate exceedance was 6-34% and all other parameters viz. TDS, TH, Mg²⁺, Ca²⁺ exceeded the standards around 10% of the time except at Wai taluka. Very poor water quality was noticed in Nimbore village of *Patan taluka* from 2007-09; other villages had good to excellent water quality. A mixed trend was observed i.e. poor to good at *Phaltan taluka*, As data is not available for 2010 in *Satara taluka*, for given years Pimpalwadi and Udtara villages were observed to have poor to very poor water quality in 2008-09, otherwise all the villages had good to excellent water quality. Entire *Wai taluka* was observed to have good to excellent water quality, as many cannels and dam are set off in this region which recharges ground water.

The five years water quality of Satara district shows excellent water quality at Mahabaleswar and Medha talukas, whereas other talukas are reported to have good water quality. Places like Khatav, Patan and Phaltan showed poor water quality in 2009. Nitrate is the major contaminant responsible for deteriorating ground water.

Table 6.35: Water Quality Index of Groundwater of Satara District

Talukas	20	007	20	008	20	009	20	10	20	11	5 Yrs	. WQI
	WQI	Catg	WQI	Catg								
Javali			47	EXL	99	GW			73	GW	69	GW
Karad	56	GW	42	EXL	63	GW			67	GW	61	GW
Khandala	98	GW	97	GW	96	GW			54	GW	64	GW
Khatav	58	GW	71	GW	111	PW			60	GW	64	GW
Koregaon	60	GW	84	GW	94	GW			79	GW	77	GW
Mahabaleswar	25	EXL	25	EXL	27	EXL			51	GW	33	EXL
Man	49	EXL	56	GW	104	PW			100	GW	91	GW
(Dahivadi)												
Medha	42	EXL	38	EXL	55	GW					38	EXL
Satara	41	EXL	72	GW	67	GW			60	GW	58	GW
Patan	98	GW	98	GW	111	PW			69	GW	82	GW
Phaltan	78	GW	83	GW	108	PW			98	GW	92	GW
Wai	63	GW	69	GW	73	GW			72	GW	69	GW

UNS- Un-suitable; EXL – Excellent

29) Sindhudurg District

Sindhudurg district is located in the Konkan region of Maharashtra State and covers a geographical area of 5087 sq.km out of which about 390 sq. km. is covered by forest, whereas cultivable area is 2495 sq. km. and net sown area is 1354 sq. km. The district has three major physiographic divisions from east to west. The eastern part close to the Western Ghats is highly dissected with deep valleys. The middle part of the district is occupied by flat-topped hills with undulating plateau with elevations up to 300 meter above mean sea level covered by Laterite. The five major rivers flowing in the district are Gad, Karli, Terekhol, Tillari, Deogad and Wagothan. During monsoon the rivers carry heavy load of water having tremendous headword eroding capacity and ultimately drain in the Arabian Sea.

General Information:

Geographical Area: 5087 sq. km.

Taluka- 8: Devgad, Dodamarg, Kankavali, Kudal, Malvan, Sawantwadi,

Vaibhavwadi, and Vengurla

Villages: 743, Population: 8,69,000

Soil Type:

Most of the soils are derived from Lateritic rocks. *Rice soil* also termed as 'Mali soils' found in higher levels, 'Karat soils' in lower levels and 'Panthar or Vaigam' situated near water courses. Garden soil is of mixed origin, yellow red to brown in color and is located in the valley portions. These soils are light, well drained and fairly fertile. Varkas soil is reddish brown to yellowish red in colour and is situated on hill slopes. These soils are poor in fertility, shallow in depth and coarse in texture. Alluvial soil is recent deposits found along the coastal tracts and constitutes deep loam. Due to inundation of sea, part of the coastal soils has become salty. In the Deogad, Malwan and Vengurla talukas practically entire strip is salty.

Annual Rainfall: 2300 mm to 3200 mm

Geology: Recent to sub-Recent: Alluvium, beach sand, Laterite, Deccan Trap Basalt lava flows Sandstone and associated limestone.

Major Ground Water Problems and Issues

Even though the district receives high rainfall in the range of 2300 to 3200 mm/year, water scarcity in the non-monsoon seasons is the major issue of concern and many villages faces water scarcity in the summer. The district has a coastline of 121 km and has 14 creeks, about 76900 ha of agricultural land is reported to be saline due to sea water ingress along the coast and creeks.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

105 villages in 8 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.36 and Annexure X(29)** give the water quality index of ground water for five years at Sindhudurg district.

Devgad, Dodamarg, Kankavali and Kudal: In all these talukas of Sindhudurg district, the water quality was found to be excellent during all five years. As per BIS standard comparison, only small amount i.e. 2 to 5% of exceedance in pH, TH, Ca²⁺ and F were noticed. Almost all the villages are reported to have excellent water quality. In villages namely Harkul Kh., Kankavli and Nardave in *Kankavali taluka*, Zarap and Mangaon B. in *Kudal taluka* had good water quality indices. Poor quality was reported for village Awalegaon in *Kudal taluka* in 2009 and 2011.

Malvan, Sawantwadi, Vaibhavwadi and Vengurla: Percent exceedances of TH (4-6%) and Fe (11-14%) were observed in *Vaibhavwadi and Vengurla taluka*; Only small amount i.e. 3 to 7% of exceedance in pH was noticed in *Malvan and Sawantwadi talukas*. All other parameters were within permissible limits of BIS standards in reported talukas. Malwan in *Malvan taluka* and Mangavli in *Vaibhavwadi taluka* had good indices, whereas in *Vengurla taluka* villages namely Vajrat, Vengurla, Wargaon showed good and Redi had poor.

Sindhudurga district shows the excellent water quality but still salinity could be major source of contamination at coastal zone which affect the ground water as well as rice paddies to some extent. High temperature during summer and drying of river basine tends to declining in ground water level. Highly hilly region many part of the district has lagging in water restoration.

Table 6.36: Water Quality Index of Groundwater of Sindhudurg District

Talukas	20	07	20	08	20	09	20	10	20	11	5 Yrs	s. WQI
	WQI	Catg	WQI	Catg								
Devgad	29	EXL	27	EXL	23	EXL			33	EXL	31	EXL
Dodamarg	22	EXL	23	EXL	25	EXL	26	EXL	32	EXL	25	EXL
Kankavli	27	EXL	26	EXL	27	EXL	24	EXL	34	EXL	31	EXL
Kudal	37	EXL	39	EXL	39	EXL			43	EXL	39	EXL
Malvan	32	EXL	31	EXL	33	EXL			33	EXL	31	EXL
Sawantwadi	25	EXL	35	EXL	24	EXL	21	EXL	29	EXL	27	EXL
Vaibhavwadi	31	EXL			49	EXL	45	EXL	49	EXL	48	EXL
Vengurla	26	EXL	26	EXL	24	EXL			33	EXL	36	EXL

UNS- Un-suitable; EXL - Excellent

30) Solapur District

The district is situated on the south east fringe of Maharashtra State and lies entirely in the Bhima and Seena basins. Whole of the district is drained either by Bhima River or its tributaries. Shrikshetra Pandharpur is considered as 'Southern Kashi' of India and Kuldaivat of Maharashtra State. There are also a few scattered hills in Karmala, Madha and Malshiras Talukas. The district in general has flat or undulating terrain. The low table land and small separate hills in Karmala and Madha Talukas act as a Watershed between Bhima and Sina rivers.

General Information:

Geographical Area: 14,844.6 sq. km

Taluka-12: Akkalkot, Barshi, Karmala, Madha, Malshiras, Mangalvedhe, Mohol, North

Solapur, Pandharpur, Sangola, Solapur and South Solapur

Villages: 1150 Population: 38,49,543

Annula Rainfall: 545.4 mm

Soil Type:

The soils of the district can be classified into three types black, coarse gray and reddish *Eastern Zone* comprises of Barshi, North Solapur, South Solapur and Akkalkot Talukas. The soil is medium to deep black and of rich quality. *Central or Transitional Zone* comprises of Mohol, Mangalwedha, eastern part of Pandharpur and Madha Taluka. Like to moderate soil and uncertain rainfall marks this zone. *Western Zone* comprises of Karmala, Sangola and Malshiras Talukas and western parts of Pandharpur come under this zone. Shallow and poor type of soil, not retentive of moisture marks this part.

Geology: As in most of the Deccan, the general geological formation is trap, covered in most places with a shallow over-layer of very light soil, and in parts by a good depth of rich loam suited for cotton.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

48 villages in all 12 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.37 and Annexure X(30)** give the water quality index of ground water for five years for Solapur district.

Akkalkot, Barshi, Karmala and Madha: Data for theses talukas is not available for 2010 and 2011. Nitrate exceedance in Akkalkot, Barshi, Karmala and Madha were 43, 67, 40 and 84% respectively. *At Akkalkot taluka* exceedances of Ca²⁺ and Mg²⁺ is 14%, and TH is 29%. At *Barshi* exceedances of TH and Mg²⁺ are 25 and 8% respectively. At *Madha taluka* exceedance of TH is 17%. At *Akkalkot taluka* villages Akkalkot; in *Barshi taluka* villages Rople, Manegaon and Nari; in *Karmala taluka*, Karmala village; in *Madha taluka*, Tembhurni and Parite were reported to have poor water quality during 2007 to 2009. Nagansur in Akkalkot taluka had unsuitable Water quality in given years. Excellent WQI was observed for Dhanore village in Barshi.

Malshiras, Mangalvedhe, Mohol and North Solapur: Data for theses talukas is also not available for 2010 and 2011. Nitrate exceedance in Malshiras, Mangalvedhe, Mohol and North Solapur were 38, 40, 44, 25% respectively. At Malshiras, Mangalvedhe, Mohol and North Solapur exceedances of TH are 13, 20, 33 and 38% respectively. The water quality indices varied between poor and good. The villages namely Velapur and Malsiras in *Malsiras taluka*; Mangalvedha and *Mangalvedha taluka*; Sohole in *Mohol taluka* and Soregaon, Nannaj and Vadval in *North Solapur taluka* were reported to have poor WQI during 2007-2009.Poor water quality in these villages could be due to agricultural runoff, moderate soil texture and scanty rainfall.

Pandharpur, Sangola, Solapur and South Solapur: Hardness and nitrate were the major problems as they exceeded the permissible limit in around 33-100% of the samples resulting in poor water quality. In *Pandharpur*, TDS, Ca^{2+} and Mg^{2+} exceedances were around 6 to 26% and SO_4^{2-} around 33%, which resulted into poor to very poor water quality indices.

Table 6.37: Water Quality Index of Groundwater of Solapur District

Talukas	20	07	20	08	20	09	20	10	20	11	5 Yrs	s. WQI
	WQI	Catg	WQI	Catg								
Akkalkot	92	GW	152	PW	184	PW					124	PW
Barshi	195	PW	104	PW	100	PW	-	-	-		98	GW
Karmala	110	PW	98	GW			-	-	-		92	GW
Madha	130	PW	109	PW	109	PW	-	-	-		100	GW
Malshirs	107	PW	104	PW	115	PW					96	GW
Mangal- wedha	136	PW	145	PW	74	GW					90	GW
Mohol	141	PW	126	PW	122	PW					116	PW
N.Solapur	63	GW	119	PW	110	PW					97	GW
Pandharpur	64	GW	155	PW	152	PW					131	PW
Sangoola	73	GW	74	GW	100	GW					75	GW
Solapur			67	GW	105	PW					80	GW
South Solapur	166	PW	159	PW	67	GW					115	PW

UNS- Un-suitable; EXL - Excellent

Three years water quality of this district showed good to excellent water quality at Sangoola taluka. Most of the time, for these 3 years, WQI varied between poor and good. From given analysis, Akkalkot, Mohol, Pandharpur and South Solapur talukas need major attention. High concentrations of Total hardness and nitrate in ground water were observed in this district.

31) Thane District

Thane is the third-most industrialised district in Maharashtra. It comprises Ulhas basin on the south and hilly Vaitama valley on the north together with plateaus and slopes of Sahayadri. From the steep slopes of the Sahayadri in the east, the land falls through a succession of plateaus in the north and centre of the district to the Ulhas valley in the south. These lowlands are separated from the coast by a fairly well-defined narrow ridge of hills that runs north-south to the east of the Thane creek, parallel to the sea keeping a distance of about 6 to 10 km from the shores. The two main rivers flowing through the district are the Ulhas and the Vaitarna. On the basis of its topography, the district is divided into three parts viz. The *eastern portion* having Sahayadri ranges, which comprises mainly forest area. Central region covers mainly paddy area. Western parts of the coastal area where horticultural plantation, fodder production and vegetable cultivation are being practiced.

General information:

Geographical Area: 9387 sq. km

Talukas-15: Ambernath, Bhiwandi, Dahanu, Jawhar, Kalyan, Mokhada, Murbad, Murud,

Palghar, Shahapur, Thane, Talasari, Ulhasnagar, Vasai and Wada

Villages: 1748 Population: 81,31,849

Soil:

Black soil containing sand is mainly found at Dahanu, Palghar, Vasai and Thane tehsils. Red soil is found in eastern region, mostly on the slopes of Mokhada, Jawhar and Talasari tahsils. Whereas, Brownish black soils is mostly observed in the patches of valleys lying between the coastal plain and the hilly slopes of Bhivandi, Kalyan and Shahapur tahsils.

Average Rainfall: 2576 mm

Ground Water Quality with Respect to BIS Standard and Water Quality Index

137 villages in 15 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.38 and Annexure X(31)** give the water quality index of ground water for five years at Thane district.

Ambernath, Bhiwandi, Dahanu, Jawhar and Kalyan: As per BIS standards not significant amount of exceedance was observed. Exceedances of TH (2-8%), Mg²⁺ and

Fe (8%), F⁻ (2-6%) and nitrate (2-6%) were reported in given samples. All most all the villages in these talukas were observed to have good to excellent water quality indices. Only at some places i.e. Angaon (2008), Khoni (2010) villages in *Bhiwanditaluka*; Bramhanwadi (2009) and Sariwali (2010) villages in *Dahanu taluka* were reported as poor.

Mokhada, Murbad, Murud, Palghar and Shahapur: Nitrate exceedance was 10% in *Mokhade taluka*. In *Murbad taluka*, pH and F exceedances were in the range of 3 to 6%. pH exceedance was reported as high as 83% in *Murud taluka*. At *Palghar* all parameters were within the standards except TDS, F and NO₃⁻ which exceeded by 2% only. At *Shahapur taluka* pH exceedance was 16%. Tokwade village of *Murbad taluka* in 2009 was reported as poor, whereas Mahim in *Palghar taluka* in 2010 was observed as very poor. Other villages in these talukas had good to excellent WQI.

Thane, Talasari, Ulhasnagar, Vasai and Wada: At *Thane Taluka*, exceedances of 2-6% was observed for pH, TDS, TH, Ca²⁺, Mg²⁺ and F⁻. At *Talasari taluka* all parameters were within the standards. Exceedance of Fluoride was reported as 18% at *Ulhasnagar taluka*, whereas at *Vasai taluka* percent exceedances of TH (9%), Mg²⁺ (13%) and pH (11%) were observed in given samples. The Khairne village in *Thane taluka* showed mixed trend i.e poor to good in 2010. Other villages of this taluka had good to excellent WQI. The Wasar village in *Ulhasnagar taluka* and Sandor and Agashi villages of *Vasai taluka* were reported to have poor water quality in 2007, which improved to good quality in later years. Villages of *Wada and Talsari taluka* were reported as good to excellent for given years.

Table 6.38: Water Quality Index of Groundwater of Thane District

Talukas	20	007	20	008	20	009	20	010	20)11	5 Yrs	s. WQI
	WQI	Catg	WQI	Catg								
Bhiwandi	42	EXL	60	GW	51	GW	52	GW	60	GW	52	GW
Dahanu	62	GW	58	GW	67	GW	56	GW	33	EXL	48	EXL
Jawahar	66	GW	54	GW	52	GW	34	EXL	42	EXL	42	EXL
Mokhada	90	GW	95	GW	80	GW	39	EXL	36	EXL	44	EXL
Murbad	79	GW	48	EXL	57	GW	57	GW	39	EXL	52	GW
Palghar	57	GW	51	GW	51	GW	47	EXL	65	GW	53	GW
Shahapur	38	EXL	41	EXL	41	EXL	44	EXL	43	EXL	43	EXL
Thane	60	GW	50	EXL	51	GW	60	GW	63	GW	56	GW
Vasai	82	GW	72	GW	77	GW	57	GW	58	GW	62	GW
Wada	41	EXL	35	EXL	43	EXL	49	EXL	50	EXL	48	EXL
Ambernath							51	GW	63	GW	58	GW
Kalyan							47	EXL	46	EXL	47	EXL
Murud									30	EXL	30	EXL
Talasari							44	EXL	39	EXL	42	EXL
Ulhasnagar							65	GW	35	EXL	63	GW

UNS- Un-suitable; EXL – Excellent

From five years water quality of district, it was observed that water quality was excellent at Dahanu, Jawahar, Mokhada, Shahapur and Wada taluka; whereas, good at Bhiwandi, Murbad, Palghar, Thane, Jawahar, Mokhada, Palghar and Vasai talukas.

32) Wardha District

Wardha is one of the districts of Vidarbha region of Maharashtra. The district forms part of Godavari basin. Wardha River is the main river flowing through the district. The general slope is southwards and gentle towards Wardha River, but tends to become steeper in the northern uplands. The entire district is mainly drained by Wardha River and its tributaries viz., Yashoda, Wunna and Bakli.

General Information:

Geographical Area: 6310 sq. km.

Taluka-8; Arvi, Ashti, Deoli, Hinganghat, Karanja, Samudrapur, Seloo and Wardha

Villages: 1361 Population: 12,30,640

Soil Type:

The soil of the district is basically derived from Deccan Trap Basalt and almost entire district consists of black or dark brown soil over a sheet of Deccan Trap Basalt. The soil varies in depth from few centimeters to 3 meters with average thickness being about 0.75 meters. The soils of the district can be grouped under four main local categories viz., Kali, Morand, Khardi and Bardi, with major part of the district being occupied by Kali soil.

Annual Rainfall: 985 mm to 1100 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Basalt (Deccan Trap),

Middle Cretaceous: Infra-trappean beds

Major Ground Water Problems and Issues

The moderate drought has been observed in the north western parts of the district i.e., in major parts of Ashti, Karanja and Arvi talukas. Ground water quality is mostly affected by nitrate contamination.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

128 villages in all 8 talukas were monitored by CGWB. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.39 and Annexure X(32)** give the water quality index of ground water for five years at Wardha district.

Arvi, Ashti and Deoli: Hardness and nitrate exceeded the permissible limit in around 12-25% and 50-65% respectively of the samples. Ca and Mg also exceeded the standards in 4-9% of the samples. At *Arvi taluka* village Alipur is reported to have very poor to unsuitable WQI during 2007 and 08, whereas Nandpur village was observed to have very poor WQI

during 2010. At *Ashti taluka* village Antora had very poor WQI in 2011. Giroli and Deoli villages of *Deoli taluka* also had poor/very poor water quality during 2008 and09. Other villages poor to good WQI.

Hinganghat, Karanja and Samudrapur: NO₃ exceedances in Hinganghat, Karanja and Samudrapur were as high as 77, 36 and 55% respectively. Exceedances were reported for hardness, Ca²⁺, Mg²⁺ and F in the range 6-21%,2-7%, 9% and 4-13% respectively in the given samples. In *Hinganghat taluka*, villages' viz. Allipur, Wadner, Gadegaon, Kanchangaon, and Kangaon are reported to be very poor to unsuitable during 2008 or 2009.Daroda had excellent WQI during 2007. The other villages had mixed trend i.e from poor to good. In *Karanja taluka* village Junapani was reported as excellent. Nandori and Ajda villages of *Samudrapur taluka* were observed to have excellent WQI during 2007. Chikhli village was observed to have very poor water quality in 2010. In other village's water quality varied between poor and good.

Seloo and Wardha: Nitrate exceedance was 60-70%, as also hardness (17-28%), Mg²⁺(17-21%), Ca²⁺ (2-10%), TDS (5-8%) and TA (5%) were observed in the given samples. Both the talukas Seloo and Wardha had poor water quality indices. The villages viz. Giroli, Kopra, Ramna, Chanki and Zadsi were reported to be very poor to unsuitable during 2007 to 2010 in *Seloo taluka*, whereas Khandali and Barbadi villages in *Wardha taluka* were also reported to be very poor to unsuitable during 2007-08. The other villages had poor to good water quality.

Table 6.39: Water Quality Index of Groundwater of Wardha District

Talukas	20	007	20	008	20)09	20	010	20)11	5 Yrs	. WQI
	WQI	Catg	WQI	Catg								
Arvi	117	PW	172	PW			103	PW	106	PW	110	PW
Ashti	88	GW	81	GW			105	PW	156	PW	109	PW
Deoli	101	PW	120	PW	98	GW	115	PW	129	PW	108	PW
Hinganghat	64	GW	66	GW	65	GW	141	PW	150	PW	127	PW
Karanja	87	GW	50	GW			73	GW	132	PW	80	GW
Samudrapur	101	PW	83	GW	99	GW	109	PW	118	PW	101	PW
Wardha	126	PW	104	PW	93	GW	137	PW	189	PW	124	PW
Seloo	-					-	135	PW	136	PW	132	PW

The five year water quality of Wardha district was observed to be good only at Karanja taluka. For Arvi, Deoli and Seloo taluka's most of the year's WQI was poor. Significant exceedances with respect to nitrate and hardness resulted into deterioration of ground water quality.

33) Washim District

Washim is located in Vidarbha region and was carved out of Akola district recently. It is situated in the north eastern part of the State. The district forms part of Deccan Plateau with slope towards southeast from Sahayadri hills and has a varied topography consisting of hills, plains and undulating topography near riverbanks. The district forms a part of Godavari and Tapi basin. Many of the tributaries to Godavari and Tapi rivers originate from Balaghat Plateau. Penganga River is the main river flowing through the district. Other rivers are Adol, Aran, Kapsi and Nirguna.

General Information:

Geographical Area: 5196 sq. km.

Taluka-6: Karanja, Mangrulpir, Malegaon, Manora, Risod and Washim

Villages: 789 Population: 10,19,000

Soil Type:

The soil of the district is basically derived from Deccan Trap Basalt and major part of the district is occupied by medium black soil of 25-50 cm depth occurring in the plains in entire south western, north eastern and northern parts of the district. Shallow black soil of 7.5 to 25cm depth occurs in restricted hilly parts of the district in central elongated part and the northern peripheral part.

Annual Rainfall: 872 mm to 966 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Major Ground Water Problems and Issues

The western part of this district is affected by drought conditions. The normal annual rainfall is also less in the Rasod taluka during the period. Thus water conservation and artificial recharge structures in the district may be prioritized in this part of the district. Ground water quality is adversely affected by nitrate contamination. Continuous intake of high nitrate concentration water causes infant methaemoglobinamea, popularly known as Blue Babies disease.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

67 villages in 6 talukas were monitored by CGWB and GSDA. CGWB data excluded Fe in ground water analysis. Due to this non uniformity in monitored data, WQI was estimated considering Fe weightage at respective monitoring stations. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.40** and **Annexure X(33)** give the water quality index of ground water for five years at Washim district.

Karanja, Mangrulpir and Malegaon: As per BIS standard comparsion, nitrateexceedance ranged between 40 to 50%. Exceedance of pH ranged between 10 to 18%, Mg²⁺ 3 to 20%.

Panvihir and Tuljapur villages of *Karanja taluka* were reported as excellent. For other villages, water quality was mostly good except a few villages. The villages Bitoda and Shelu Bazar of *Mangrulpir taluka*had poor water quality indices during 2007, otherwise mixed trend was observed for the whole taluka. In *Malegaon taluka*, village Medshi had excellent water quality. In other villages WQI varied between good and poor.

Manora, Risod and Washim: NO₃ exceedance in these talukas were also very high. Nitrate exceedance ranged between 44 to 63%. pH exceeded by 8-14%. TH, Flouride and magnisium also exceeded marginally. Excellent water quality was reported at Umari Bk. in *Manora taluka*, Mohaja Bandi and Shelgaon in Risod taluka and Bitoda Teli, Kapase and Sawargaon in *Washim taluka*. For all other villages, mixed trend was noticed i.e. from poor to good for given years. The exceedance of nitrate, fluoride, total hardness etc., could be due to weathering and circulation of water in rocks and soils as also from municipal and industrial discharges, excessive use of chemical fertilizers/ pesticides in farms.

Table 6.40: Water Quality Index of Groundwater of Washim District

Talukas	20	07	20	008	20	009	20	10	20	11	5 Yrs	. WQI
	WQI	Catg	WQI	Catg								
Karanja (*)	111	PW	93	GW	90	GW					98	GW
Karanja (+)	74	GW	54	GW	79	GW	93	GW	67	GW	73	GW
Malegaon (*)	91	GW	71	GW	49	EXL					70	GW
Malegaon (+)	81	GW	80	GW	86	GW	98	GW	80	GW	86	GW
Mangulpir (*)	117	PW	103	PW	97	GW					106	PW
Mangrulpir(+)	86	GW	79	GW	82	GW	78	GW	65	GW	77	GW
Manora (*)	79	GW	119	PW							99	GW
Manora (+)	70	GW	63	GW	76	GW	92	GW	82	GW	78	GW
Risod (*)	104	PW	98	GW	78	GW					93	GW
Risod (+)	85	GW					83	GW	76	GW	84	GW
Washim (*	94	GW	65	GW	76	GW					78	GW
Washim (+)	68	GW	64	GW	78	GW	76	GW	70	GW	72	GW

^{*} Wt_Fe: Without Fe, + W_Fe: With Fe; UNST- Un-suitable; EXL - Excellent

From the five years water quality analysis it was found that, water quality was poor at Karanja, Mangulpir, Manora and Risod talukas during initial years which was improved in 2010 and 2011. Nitrate is the major contaminant for deteriorating ground water of this district. The western part of this district is affected by drought conditions. Low rainfall also affects the recharging of ground water in this district.

34) Yavatmal District

Yavatmal district is one of the districts of Vidarbha region of Maharashtra. The northern fringe of the district is hilly and forms part of Satpura range. South of these hill ranges, covering almost entire north-central part constitute the alluvial plain. Southern part of the district is characterized by hilly rugged terrain as a part of Deccan Plateau. Purna is the main river flowing through the district. Wardha River forms the northeastern boundary of the district. The district is well drained by Wardha and Penganga rivers and their tributaries.

General Information:

Geographical Area 13582 sq. km

Taluka-16: Arni, Babhulgaon, Darwha, Digras, Ghatanji, Kalamb, Kelapur, Mahagaon, Maregaon, Ner, Pusad, Ralegaon, Umarkhed, Wani, Yavatmal and Zari Jamni

Villages: 2108 Population: 24,58,271

Soil Type:

Three types of soil are observed in the district. **The shallow coarse soil,** which is reddish brown and brownish in colour, occurs at higher elevations along the ridges and foothill zones of the major hills. The tributary drainage's and along the intermediate gradient area has **medium black soil**. Lower reaches of Wardha and Penganga river beds have **deep black soil**. They differ from medium black soil in depth and fertility. The soils in the district are slightly alkaline, clayey loamy in texture and contain calcium carbonate.

Annual Rainfall: 850 mm to 1150 mm

Geology: Recent: Alluvium, Upper Cretaceous-Lower Eocene: Deccan Trap Basalt

Major Ground Water Problems and Issues

Most parts of the district i.e., Kelapur, Maregaon and Wani talukas are affected by high fluoride concentrations in ground water. The villages like Dharna, Sakhra, Sonurli, Susuri, Wadhona (Bk.), Wadhona (Kh.), Runjha and Govarai have been found to be affected by Fluorosis. Mottled teeth, stiff joints and muscular pain are reported in these villages. Artificial recharge techniques can be used to dilute the fluoride concentration.

Ground Water Quality with Respect to BIS Standard and Water Quality Index

180 villages in all 16 talukas were monitored by CGWB and GSDA. CGWB data excluded Fe in ground water analysis. Due to this non uniformity in monitored data, WQI was estimated considering Fe weightage at respective monitoring stations. The descriptive statistics of ground water monitoring carried out in the villages are given in **Annexure IX**. **Table 6.41 and Annexure X(34)** give the water quality index of ground water for five years at Yavatmal district.

Arni, Babhulgaon, Darwha and Digras: Exceedance of nitrate 40-50%, magnesium 15-36% and total hardness 3-15% were observed in given samples. In *Arni taluka*, village's viz. Borgaon Punji and Malhiwara were reported to have poor water quality indices. Village Dabhadi had excellent WQI. Most of the villages had good water quality. A very poor water quality at Pahur and poor at Umarda, Shindi and Virkhed was observed in *Bahulgaon taluka*. Village Talegaon in *Darwha taluka* had excellent water quality during 2007. Mangkinhi, Sangavi (Rly) and Mohatali are the places where water quality was poor. Most of the villages of these talukas showed water quality varying between poor and good. From give data, villages Digras, Harsul, Tiwari and Arambhi in *Digras taluka* were found to have poor water quality. Excellent water quality at Digras (Shankartaki) was observed in 2011.

Ghatanji, Kalamb, Kelapur and Mahagaon: Nitrate exceedance of 19-53% was observed in these talukas. Magnesium and fluoride exceedance of 3-6% was observed in Ghatanji and Kelapur talukas. Most of the villages had good water in Ghatanji taluka. Ghatanji and Yerandgaon villages had poor WQI. In Manoli village, poor water quality was observed in 2008 which improved to excellent during 2009. In Kalamb taluka, villages Kalamb, Kotha, Dongarkharda and Umari had poor water quality. Excellent water was observed in Chaparda village during 2007, which slightly declined to good during later years. In Kelapur (Pandharkawada) taluka, villages Pahapal, Mohada and Khairgaon Bk. had poor water quality, whereas Warha had excellent water quality. Similarly in Mahagaon taluka, village Mohgaon Kasba had poor and Kaurwadi had excellent water quality; other villages mostly had good quality in Kelapuur and Mahagaon talukas.

Maregaon, Ner, Pusad and Ralegaon: In *Maregaon and Pusad talukas* NO₃⁻ exceeded 25% of the time. In *Ner and Ralegaon* talukas Nitrate exceedance was as high as 60 and 53% respectively. In Ner and Ralegaon Taluka magnesium exceedance was 13-7% and TH exceedance was 7% of the time. In *Maregaon taluka*, Mardi and Maregaon villages were reported to have poor WQI; and Jalaka village had good water quality which improved to excellent in later years. At *Ner taluka*, Manekwada village mostly showed very poor water quality for all the years, whereas excellent WQI was observed for Yelgunda and Watfali villages. The other villages had poor to good water quality. Pusad and Marwadi Khurd villages of *Pusad taluka* had poor WQI and Chondhi and Warud villages had excellent water quality. In *Ralegaon taluka also* water quality mainly varied from poor to good.

Umarkhed, Wani, Yavatmal and Zari Jamni: The exceednace of nitrate 20-45%, fluoride 20-30%, magnesium and hardness 4-6% was observed at these talukas. At *Umarkhed taluka* village Marsal had excellent and Vidul and Thakani are reported to have poor WQI for given years. Poor water quality in *Wani Taluka* was observed at Kayar, Rasa and Wani

villages and mixed trend was observed in other villages. At *Yavatmal taluka* unsuitable and very poor quality at Vai (Lingi), Elbara and Savar were noticed during 2007 to 2009. Excellent WQI was observed at Sawargad village. With limited available data, at *Zari Jamni taluka* villages Sindhiwadhana and Katali Borgaon were found to have poor WQI.

Table 6.41: Water Quality Index of Groundwater of Yavatmal District

Talukas	200	07		008	20)09		10	20	11	5 Yrs.	WQI
	WQI	Catg	WQI	Catg								
Arni (*)	51	GW	62	GW	92	GW					68	GW
Arni (+)	77	GW	80	GW	72	GW	87	GW	95	GW	82	GW
Babhulgaon(*)	174	PW	167	PW	160	PW					167	PW
Babhulgaon(+)	68	GW	61	GW	70	GW	83	GW	86	GW	84	GW
Darwha(*)	79	GW	95	GW	81	GW					85	GW
Darwha(+)	81	GW	81	GW	82	GW	92	GW	89	GW	84	GW
Digras(*)	160	PW	147	PW							154	\mathbf{PW}
Digras(+)	110	PW	106	PW	93	GW	122	PW	75	GW	96	GW
Ghatanji(*)	86	GW	112	PW	108	PW		-	-		102	PW
Ghatanji(+)	75	GW	80	GW	70	GW	74	GW	87	GW	80	GW
Kalamb(*)	116	PW	116	PW	97	GW					110	PW
Kalamb(+)	87	GW	76	GW	89	GW	78	GW	82	GW	81	GW
Kelapur(*)	104	PW	108	PW	132	PW						
Pandharkawada	104	1 44	100	1 **	132	1 **					115	PW
Kelapur(+)	102	PW	68	GW	77	GW		GII.		GII.		Q117
Pandharkawada							62	GW	71	GW	71	GW
Mahagaon(*)	74	GW	85	GW	67	GW					75	GW
Mahagaon(+)	83	GW	83	GW	68	GW	72	GW	67	GW	72	GW
Maregaon(*)	146	PW	166	PW							156	PW
Maregaon(+)	61	GW	54	GW	56	GW	77	GW	105	PW	69	GW
Ner(*)	151	PW	155	PW	129	PW					145	PW
Ner (+)	81	GW	74	GW	84	GW	98	GW	87	GW	84	GW
Pusad(*)	94	GW	109	PW	123	PW					109	PW
Pusad(+)	82	GW	79	GW	66	GW	52	GW	68	GW	68	GW
Ralegaon(*)	82	GW	66	GW	73	GW					74	GW
Ralegaon(+)	86	GW	90	GW	101	PW	92	GW	83	GW	86	GW
Umarkhed(*)	91	GW									91	GW
Umarkhed(+)	72	GW	91	GW	79	GW	95	GW	77	GW	81	GW
Wani(*)	118	PW	134	PW							126	PW
Wani(+)	101	PW	107	PW	95	GW	88	GW	114	PW	100	PW
Yavatmal(*)	121	PW	137	PW	106	PW					121	PW
Yavatmal(+)	90	GW	79	GW	67	GW	79	GW	78	GW	77	GW
Zari Jamni(+)	60	GW	51	GW	74	GW	76	GW			72	GW

^{*} Wt_Fe: Without Fe, + W_Fe: With Fe; UNST- Un-suitable; EXL - Excellent

The five years water quality of Yavatmal district showed good water quality at Arni, Darwha, Mahagaon, Ralegaon, Umarkhed and Zari Jamni talukas. Some of the talukas viz. Babhulgaon, Digras, Ghatanji, Kalamb, Kelapur, Maregaon, Ner, Pusad and Yavatmal had water quality varying between good to poor. Mineral deposition and rock pattern affect the fluoride and nitrate contamination, deteriorating ground water of this district.

6.5 Ground Water Monitoring Status under MPCB

To observe the trends of groundwater quality changes occurring due to either natural causes or anthropogenic activities, MPCB has conducted groundwater quality monitoring programme in the various districts of Maharashtra state. It also involves confirmation and suitability study of groundwater for drinking purposes and identification of major pollutants. MPCB has 50 monitoring locations in different districts under SWMP and NWMP programs, which are listed in **Table 6.42**.

Table 6.42: District Wise Ground Water Monitoring Station under SWMP and NWMP

District	Taluka	Villages	No. of
	(No. of villages)	(No. of stations monitored)	Stations
Ahmednagar	Ahmednagar (1),	Burudgaon (1), Chitali (1),	3
	Rahata (1), Sangamner (1)	Gunjalwadi (1)	3
Akola	Akot (1)	Anjangaon (1)	1
Amravati	Achalpur (1)	Paratwada (1)	1
Aurangabad	Gangapur (2), Paithan (2),	Pandharpur (1), Ranjangaon (1),	
	Aurangabad (1)	Katpur (1), Naregaon (1),	5
		Wahegaon (1)	
Bhandra	Tumsar (1)	Dongri-Buzurg (1)	1
Chandrapur	Ballarpur (1), Chandrapur (1)	Durgapur (1), Visapur (1)	2
Gondia	Gondia (1)	Changera (1)	1
Kolhapur	Hatkanangale (2),	Yadrav (1), Shiroli (2),	
_	Karvir (1), Shiroli (1),	Gokul Shirgaon (1),	5
	Chandgad (1)	Khanjirenagar (1)	
Nagpur	Kalmeshwar (1),	Brahmni (1), Koradi (1)	5
	Kamptee (1), Saoner (1),	Khaperkheda-Ward No.4 (1)	
	Hingna (1), Nagpur (1)	Raipur (1), Bhandewadi (1)	
Nasik	Dindori (1), Nasik (2)	Pathardi (1), Rasegaon (1),	3
		Shinde (1)	
Pune	Baramati (1),	Ralegaon (1), Moshi (1),	4
	Haweli (2), Shirur (1)	Sanaswadi (1), Malegaon (1)	
Raigad	Panvel (1)	Karawla Taloja (1)	1
Ratnagiri	Guhagar (2), Khed (2)	Ghane Kunt (1), Anjanwel (2),	4
		Arketwadi (1)	
Sangli	Miraj (2), Walwa (1)	Sambarwadi (1), Savali (1),	3
		Sakharali (1)	
Solapur	Solapur (1), Mohol (1),	Tuljapur naka (1), Chincholi (1),	3
	North Solapur (1)	Dahegaon (1)	
Thane	Dahanu (1),	Motapada (1), Kashimira (1),	5
	Mira-Bhayander (1),	Aliyali (1), MIDC-Tarapur (1),	
	Palghar (2), Vasai (1)	Gokhiware (1)	
Yavatmal	Yavatmal (1)	M.C. Village (1)	1
Wardha	Wardha (2)	Bhugaon (1), Wardha city (1)	2

The details of monitoring locations are given below.

- 1. Bore well at M/s Tata Iron & Steel Co. Ltd, S-76 (1984/NWMP)
 - Station Details: Industrial Estate, Tarapur Village- MIDC Tarapur, Taluka- Palghar, Thane
 - Pollution sources: Percolated effluent from nallas in the MIDC area.
- 2. Dug well at 5 Star Industrial Estate (1985/NWMP)
 - Station Details: Village- Kashimira, Taluka- Mira-Bhayandar, District- Thane
 - Pollution sources: Nearby polluting industries. Leaching of effluent possible. Water is used only for industrial purposes.
- 3. Bore well at Motapada (1986/NWMP)
 - Station Details: Village- Motapada, Taluka- Dahanu, District- Thane
 - Pollution sources: Thermal Power plant nearby. Water is used for drinking.
- 4. Bore well at Vasai (1987/NWMP)
 - Station Details: Village- Gokhiware, Taluka- Vasai, District- Thane
 - Pollution sources: Nearby Industrial Estate, mainly engineering units. Water is used for drinking & industrial purposes.
- 5. Bore well at Gharatwadi, Palghar (1988/NWMP)
 - Station Details: Village- Aliyali, Taluka- Palghar, District- Thane
 - Pollution sources: Small scale industries nearby.
- 6. Bore well at MWML site, Taloja (1989)
 - Station Details: Village-Karawla, Taloja Taluka- Panvel District- Raigad
 - Pollution sources: Small scale industries nearby.
- 7. Bore well at BMW Site, Burudgaon (1990/NWMP)
 - Station Details: Village-Burudgaon, Taluka- Ahmednagar, District- Ahmednagar.
 - Pollution sources: Leaching of pollutants possible from nearby industry.
- 8. Bore well at MSW Site, Nasik (1991)
 - Station Details: Village-Pathardi, Taluka- Nasik, District- Nasik
 - Pollution sources: Leaching of pollutants possible from MSW site.
- 9. Dug well at MSW Site, owned by Shri. Dattu Kondiba Borate at Borate Vasthi and near MSW Site at Pimpri-Chinchwad.(1992/NWMP)
 - Station Details: Village-Moshi, Taluka- Haveli/Pimpri-Chinchwad, District- Pune
 - Pollution sources: Leaching or percolation of pollutants from MSW site. Water used for agriculture
- 10. Dug well at Pandarpur, Gangapur, Aurangabad (1993/NWMP)
 - Station Details: Village-Pandharpur, Taluka-Gangapur, District-Aurangabad
 - Pollution sources: Industrial and domestic pollution
- 11. Dug well at TPS-Durgapur, Chandrapur (1994)
 - Station Details: Village-Durgapur, Taluka- Chandrapur, District- Chandrapur
 - Pollution sources: Industrial and domestic pollution
- 12. Gram Panchayath Dug well, Near Balaji Gajbhiye House, Khaperkheda (1995/NWMP)
 - Station Details: Village-Khaperkheda (Ward No.4), Taluka- Saoner, District- Nagpur
 - Pollution sources: Maharashtra State Power Generation Co. Ltd & Thermal Power Station.
 Water is used for drinking & other domestic uses.

- 13. Gram Panchayath Dug well, Near Jagadamba GMS Mandir Sahakari Sanstha,-Koradi (1996)
 - Station Details: Village-Koradi, Taluka- Kamptee, District- Nagpur
 - Pollution sources: Water is used for drinking & other domestic uses.
- 14. Bore well near Primary Health Centre. Raipur (1997)
 - Station Details : Bore well near Primary Health Centre. Village-Raipur, Taluka- Hingna, District- Nagpur
 - Pollution sources: Water is used for drinking & other domestic uses.
- 15. Gram Panchayat Dug well near Gram Panchayat Office, Brahmni (1998/NWMP)
 - Station Details: Village-Brahmni, Taluka- Kalmeshwar, District- Nagpur
 - Pollution sources: Wastes from MIDC Kalmeshwar & Municipal Council. Water is used for domestic purposes, except drinking.
- 16. Bore well Near Gram Panchayat, Changera. (1999/NWMP)
 - Station Details: Village-Changera, Taluka- Gondia, District- Gondia.
 - Pollution sources: Pollution due to human activities. Water used for domestic purposes
- 17. Dug well near Sarode Kirana Store. Bhandewadi (2000)
 - Station Details: Village-Bhandewadi, Taluka- Nagpur, District- Nagpur.
 - Pollution sources: Pollution due to human activities. Water used for domestic purposes
- 18. Tube well at water treatment plant of M.C.Achalpur near Post Office. (2001/NWMP)
 - Station Details: Village-Paratwada, Taluka- Achalpur, District- Amravati
 - Pollution sources: Habitation in the nearby Paratwada city. Water is used for domestic purposes.
- 19. Bore well Opp. Gajanan Maharaj Temple at Anjangaon road. (2002/NWMP)
 - Station Details : Village-Anjangaon, Taluka- Akot, District- Akola
 - Pollution sources: Habitation in the nearby Akot city. Water is used for domestic purposes.
- 20. Dug well at Plot No- 4, Street No. 49-C, at Nehru Bal Udyan Azad Maidan. (2003)
 - Station Details : Village- M.C. Village, Taluka- Yavatmal, District- Yavatmal
 - Pollution sources: Water is used for domestic purposes.
- 21. Bore well at Parvati Industrial Estate. Shirol, Kolhapur. (2004)
 - Station Details: Village-Yadray, Taluka- Shirol, District- Kolhapur
 - Pollution sources: Industrial and domestic pollution.
- 22. Bore well at Khanjirenagar. Hatkanangale, Kolhapur. (2005)
 - Station Details: Village-Khanjirenagar, Taluka- Hatkanangale, District- Kolhapur
 - Pollution sources: Khanjire old industrial Estate Ichalkaranji and domestic purposes.
- 23. Bore well at MIDC, Shiroli, Kolhapur. (2006)
 - Station Details: Village-Shinoli, Taluka- Chandgad, District- Kolhapur
 - Pollution sources: MIDC industrial area and domestic purposes.
- 24. Bore well at Savali, near Gram Panchayat office. (2007/NWMP)
 - Station Details : Village-Savali, Taluka- Miraj, District- Sangli.
 - Pollution sources: Percolation of industrial effluent and domestic waste from nearby industrial area.

- 25. Dug well at Sambarwadi, owned by Shri. Kishan Hali Rajput. (2008/NWMP)
 - Station Details: Village- Sambarwadi, Taluka- Miraj, District- Sangli.
 - Pollution sources: Percolation of industrial effluent and domestic waste from nearby industrial area.
- 26. Bore well at Katpur, near Z.PSchool. (2200/SWMP)
 - Station Details: Village-Katpur, Taluka- Paithan, District-Aurangabad
 - Pollution sources: Industrial pollution
- 27. Dug well at Ranjangaon (2201/SWMP)
 - Station Details: Village-Ranjangaon, Taluka- Gangapur, District-Aurangabad
 - Pollution sources: Industrial and domestic pollution.
- 28. Dug well at Ghane Kunt, near Awashi, owned by Shri.Rajendra Amre., Ratnagiri (2202)
 - Station Details: Village- Ghane Kunt, Taluka- Khed, District- Ratnagiri
 - Pollution sources: Water is used for domestic purposes.
- 29. Hand Pump in the premises of Zilla Parishad Primary School, Bhugaon, Wardha. (2203)
 - Station Details: Village-Bhugaon, Taluka-Wardha, District-Wardha.
 - Pollution sources: Water is used for domestic purposes
- 30. Dug well at Gunjalwadi, Sangamner near Primary Health Care Center. (2204/SWMP)
 - Station Details: Village-Gunjalwadi, Taluka- Sangamner, District- Ahmadnagar
 - Pollution sources: Leaching of pollutants possible from nearby Industrial area
- 31. Bore well at MIDC Shiroli near M/s Pratibha Enterprises. (157/SWMP 2829)
 - Station Details : Village- Shiroli, Taluka- Hatkanangale, District-Kolhapur
 - Pollution sources: Percolation of industrial effluents from nearby industrial area. Water is used for drinking.
- 32. Bore well at MIDC Gokul-Shirgaon. (158/SWMP -2830)
 - Station Details: Village-Gokul-Shirgaon, Taluka- Karvir, District-Kolhapur
 - Pollution sources: Percolation of industrial effluents from nearby industrial area.
- 33. Dug well at Sakharali, near MIDC Islampur near Krishna Milk Industry. (159/SWMP -2831)
 - Station Details: Village-Sakharali, Taluka- Walwa, District-Sangli
 - Pollution sources: Percolation of sewage from nearby Milk Industries.
- 34. Dug well No. 1 at Brahmanwadi-Anjanwel, owned by Shri. Vaidya. (160/SWMP-2832)
 - Station Details: Village-Anjanwel, Taluka- Guhagar, District-Ratnagiri
 - Pollution sources: Percolation of pollutants from nearby Gas & Power Company.
- 35. Dug well-No.-1 owned by Group Gram Panchayat Arketwadi, near Masjid (161/SWMP-2833)
 - Station Details: Village--Arketwadi, Taluka- Khed, District-Ratnagiri
 - Pollution sources: Percolation of industrial and domestic pollutants.
- 36. Dug well No.2 at Arketwadi (163/SWMP -2834)
 - Station Details: Village--Arketwadi, Taluka- Khed, District-Ratnagiri
 - Pollution sources: Percolation of sewage.

- 37. Dug well No. 2, owned by Group Gram Panchayat, Brahmanwadi- Anjanwel (164/SWMP-2835)
 - Station Details: Village-Anjanwel, Taluka- Guhagar, District-Ratnagiri.
 - Pollution sources: Percolation of pollutants from nearby Gas & Power Company
- 38. Dug well near Zilla Parishet Primary school, At Visapur (168/SWMP-2828)
 - Station Details: Village-Visapur, Taluka-Ballarpur, District-Chandrapur
 - Pollution sources: Domestic pollution due to human activities. Water used for domestic purposes
- 39. Dug well of Mr. Sampat Walunj, near M/s Mahajeet Clayton. (169/SWMP-2816)
 - Station Details: Village-Shinde village, Taluka- Nasik, District- Nasik
 - Pollution sources: M/s Mahajeet Clayton is closed. Leaching of pollutants possible
- 40. Bore well at Chitali near Wagh vasthi (171/SWMP-2817)
 - Station Details: Village-Chitali, Taluka- Rahata, District- Ahmadnagar
 - Pollution sources: Leaching of pollutants possible from nearby Chitali Distilleries.
- 41. Bore well at Spectron Ethers, Rasegaon near Siddeshwar Mahadev Mandir. (172/SWMP-2818)
 - Station Details : Village-Rasegaon, Taluka- . Dindori, District- Nasik
 - Pollution sources: Leaching of pollutants possible from Spectron Ether company
- 42. Dug well owned by Shri Deshmukh (173/SWMP-2819)
 - Station Details: Village-Malegaon, Taluka- Baramati, District- Pune
 - Pollution sources: Industrial pollution from Malegaon SSK.
- 43. Dug well owned by Shri Shivaji Baban Darekar (174/SWMP-2820)
 - Station Details: Village-Sanaswadi, Taluka- Shirur, District- Pune
 - Pollution sources: Effluents from nearby industries.
- 44. Bore well at Bale railway station premises owned by Shri. Digambar Joshi. (175/SWMP-2821)
 - Station Details: Village-Dahegaon, Taluka- North Solapur, District-Solapur
 - Pollution sources: Leaching of pollutants possible. Water used for domestic purposes.
- 45. Bore well near Chincholi MIDC (176/SWMP-2822)
 - Station Details: Village-Chincholi, Taluka- Mohol, District-Solapur
 - Pollution sources: Industrial pollution from Chincholi MIDC. Water used for drinking purposes.
- 46. Bore well at Shete Vasti, near old Tuljapur road (177/SWMP-2823)
 - Station Details: Village- Shete vasthi, Tuljapur Naka, Taluka- Solapur, District-Solapur
 - Pollution sources: Domestic pollution.
- 47. Dug well at Naregaon. Aurangabad. (2824)
 - Station Details: Village- Naregaon, Taluka- Aurangabad, District- Aurangabad.
 - Pollution sources: Domestic pollution.
- 48. Bore well at Wahegaon, near Zilla Parishet School. Aurangabad. (2825)
 - Station Details: Village- Wahegaon, Taluka- Paithan, District- Aurangabad.
 - Pollution sources: Domestic pollution.

- 49. Dug well near Railway station, Cotton Market. Wardha city (2826)
 - Station Details: Village- Wardha city, Taluka- Wardha, District- Wardha.
 - Pollution sources: Market area discharges and domestic pollution.
- 50. Bore well Near Railway crossing at Dongri Buzurg. Bandara. (2827)
 - Station Details: Village- Dongri-Buzurg, Taluka- Tumsar, District- Bandara.
 - Pollution sources: Local discharges and domestic pollution.

MPCB has monitored ground water at 50 locations during the period 2007-2011. The concentrations of the water quality parameters are given in **Table 6.43**. MPCB has brought out quality standard "A–I" for the use as unfiltered Public water supply after approved disinfection and the same are considered for evaluation of water quality. The four parameters viz. pH, DO, BOD, TC, Ammonical Nitrogen and Nitrate are compared with MPCB Class A-I for five years. The values which do not comply with the MPCB Class AI standards have been highlighted in Gray colour.

Table 6.43: Annual Ground Water Quality of MPCB Monitored Stations

Year	Station	Station Name	pН	DO	BOD	TC	Ammo	Nitrate
	No						nical-N	
2008	1984	Bore well at M/s Tata Steel Ltd.	7.5		4.0	8	0.2	3.9
2009		-76. MIDC, Tarapur.	7.9	6.6	6.0	170	0.1	
2010*			7.6	6.7	3.5	95	0.1	0.9
2011			7.8	7.0	3.0	275	1.0	0.9
2008	1985	Dug well at 5 Star Industrial	7.8		7.5	350		3.4
2009		Estate Kashimira,	8.4	6.0	7.0	20	0.3	1.4
2010*		Mira Bhayandar	8.0	5.0	12.0	70	0.8	1.8
2011*			8.1	7.0	5.4	67.5	0.3	1.3
2008	1986	Bore well at Dahanu Village	7.5		8.0		5.0	0.1
2009		Mota Pada, Dahanu	8.1	6.5	6.0	35	0.1	0.1
2010*			7.4	6.3	3.3	29.5	0.1	2.1
2011*			7.5	7.1	3.9	92.5	0.1	0.3
2008	1987	Bore well Village-Gokhiware	7.6		7.5	2		0.2
2009		Taluka- Vasai District- Thane	8.4	6.6	5.0	17		0.5
2010			8.2	6.9	4.0	70	0.0	16.0
2011*			7.6	7.0	4.1	60	0.1	0.9
2008	1988	Bore well at Gharatwadi,	7.6		4.5	225	0.1	2.6
2009		Village- Aliyali	7.9	6.6	5.0	25	0.1	3.1
2010*		Taluka- Palghar,	7.8	6.3	4.0	67.5	0.5	1.8
2011*		District- Thane	8.0	7.2	3.5	297.5	0.2	0.5
2011	1989	Bore well at MWML site,						
		Village-Karawla, Taloja Taluka-	8.2	7.2	5.0	130	0.6	0.9
		Panvel District- Raigad						

 $Table \ 6.43 \ (Contd..): Annual \ Ground \ Water \ Quality \ of \ MPCB \ Monitored \ Stations$

Year	Station No	Station Name	pН	DO	BOD	TC	Ammo nical-N	Nitrate
2007	1990	Bore well at BMW Site,	8.5	6.4	8.8	22		1.7
2011*		Burdgaon Ahmednagar	7.5	5.4	9.0		2.8	50.0
2010	1991	Bore well at MSW Site,	7.2	4.2	20.0	20	1.3	4.4
2011*		Village-Pathardi , Taluka- Nasik, District- Nasik	7.6	6.0	5.1	36	0.7	1.5
2009	1992	Dug Well Water at Borate vasti.	7.8	6.0	6.3	275	0.1	0.7
2010*		Moshi at MSW Site, Pimpri-	7.6	6.1	3.4	360	0.1	1.0
2011*		Chinchwad Moshi, Taluka- Haweli, Pune.	7.7	4.8	5.7	260	0.2	0.3
2008	1993	Dug well at Village, Pandharpur	7.2	7.0	3.8	360	0.1	0.2
2009		Taluka- Gangapur, District-	7.9	4.2	4.4	280	5	11.7
2010*		Aurangabad	8.7		3.0	80	0.2	31.0
2011*			7.9	6.7	4.9	85	0.2	23.5
2011	1994	Dug well at TPS-Durgapur Village-Durgapur Chandrapur	7.6	6.9	4.2	85	2.3	1.7
2009	1995	Gram Panchayath Dug well,	7.5	6.0	7.0	26	0.3	1.9
2010		Village-Khaperkheda, District-	8.2	4.4	9.8	30	1.2	4.1
2011		Nagpur	8.2	5.7	5.9	66.5	1.6	8.8
2010*	1996	Gram Panchayath Dug well,	7.8	4.5	11.7	31	0.8	12.4
2011*		Koradi, Taluka- Kamptee, District- Nagpur	8.1	5.2	7.0	83	3.8	9.0
2010*	1997	Bore well near Primary Health	7.9	4.9	8.3	81.5	0.4	2.1
2011*		Centre. Village-Raipur, Taluka- Hingna, District- Nagpur	7.9	6.3	22.6	120	3.1	2.2
2009	1998	Gram Panchayat Dug well near	7.6	6.8	14.0	27	0.1	3.7
2010		Gram Panchayat Office.	7.7	6.3	8.0	21	1.1	0.8
2011*		Village-Brahmni, Taluka- Kalmeshwar, District- Nagpur	8.3	5.6	6.5	55	2.4	3.4
2009	1999	Bore well Near Gram Panchayat	7.5	6.2	6.0	22	0.2	3.1
2010*		office. Village-Changera,	7.8	5.5	6.2	25.5	0.7	2.4
2011*		Taluka- Gondia, District- Gondia	8.1	6.4	6.5	38.5	2.2	2.3
2010*	2000	Dug well near Sarode Kirana Store. Village-Bhandewadi,	7.8	4.8	10.5	28	1.4	6.6
2011*		Taluka- Nagpur, District- Nagpur	8.4	5.9	6.7	102	2.4	6.8
2009	2001	Tube well at water treatment	7.8	5.2	7.2	60	0.8	5.7
2010		plant of Achalpur, Amravati	8.0	5.7	6.0	34	0.1	8.2
2011*			7.6	6.1	4.6	120	2.3	2.3

 $Table \ 6.43 \ (Contd..): Annual \ Ground \ Water \ Quality \ of \ MPCB \ Monitored \ Stations$

Year	Station No	Station Name	pН	DO	BOD	TC	Ammo nical-N	Nitrate
2009	2002	Bore well at Anjangaon	8.4	5.3	6.0	26	0.1	9.7
2010		Road, Akola	7.8	5.9	4.8	11	0.1	1.9
2011*			7.9	5.2	5.0	85	3.3	2.2
2010	2003	Dug well at Nehru Bal Udyan	8.7	5.8	7.0	22	0.5	9.6
2011*		Azad Maidan, M.C. Village, Taluka- Yavatmal	7.5	6.1	3.9	76.5	1.7	1.4
2010	2004	Bore well at Parvati Industrial	7.1	6.1	2.6		0.3	
2011*		Estate. Village-Yadrav, Taluka- Shirol, District- Kolhapur	8.0	7.4	1.7	45.0	0.5	4.2
2010	2005	Bore well at Khanjirenagar.	6.8	6.7	2.4		0.3	
2011*		Village-Khanjirenagar, Taluka- Hatkanangale, District- Kolhapur	8.5	7.1	2.0	75	0.5	4.1
2010	2006	Bore well at MIDC, Shiroli.	7.0	6.9	2.2		0.3	
2011*		Village-Shinoli, Taluka- Chandgad, District- Kolhapur	8.1	7.0	3.1	70	0.5	4.0
2009	2007	Bore well at Savali, near Gram	7.3	6.2	1.9	6		4.8
2010*		Panchayat office. Village-Savali,	7.5	6.7	2.4	55	1.4	6.2
2011*		Taluka- Miraj, District- Sangli.	7.8	7.2	2.4	95	0.4	4.3
2009	2008	Dug well at Rusulwadi-	7.4	6.0	2.8	85		4.8
2010		Sambarwadi. Village-	8.2	7.2	2.4	80	0.3	2.9
2011*		Sambarwadi, Taluka- Miraj, District- Sangli.	8.0	6.7	2.2	105	0.4	9.4
2008	2200	Bore well at Katpur, near	7.3	5.0	9.0	280	0.2	0.4
2009		Z.PSchool. Village- Katpur,	8.0	5.0	2.0	240	3.4	4.8
2010*		Taluka- Paithan,	8.4		3.0	130	0.7	30.3
2011*		District- Aurangabad.	8.4	6.6	4.2	95	0.4	6.0
2008	2201	Dug well at Ranjangaon.	7.1	6.3	4.8	280	0.1	0.5
2009		Village- Ranjangaon, Taluka-	7.9	4.0	5.2	220	5.6	12
2010*		Gangapur, District- Aurangabad.	8.0	5.8	3.7	90	0.3	13.2
2011*			7.6	6.1	4.2	85	0.1	13.3
2010	2202	Dug well at Ghane Kunt, near	7.3	7.3	2.0	80	0.5	3.9
2011		Awashi, owned by Shri.Rajendra Amre. Village- Ghane Kunt, Taluka- Khed, District- Ratnagiri.	8.5	6.8	2.0	90	0.2	0.4
2010	2003	Hand Pump in the premises of	8.4	5.2	5.0	30	0.9	0.3
2011		Zilla Parishad Primary School. Village- Bhugaon, Taluka- Wardha, District- Wardha.	8.0	6.4	5.3		6.0	2.3

 $Table \ 6.43 \ (Contd..): Annual \ Ground \ Water \ Quality \ of \ MPCB \ Monitored \ Stations$

Year	Station No	Station Name	pН	DO	BOD	TC	Ammo nical-N	Nitrate
2007	2004	Dug well at Gunjalwadi,	8.1	5.8	10.3	32.5		2.3
2010		Sangamner near Primary Health	8.1	6.2	5.0	-	0.4	2.7
2011*		Care Center. Sangamner,	7.5	5.1	9.8		1.4	7.1
		District- Ahmadnagar.	1.5	3.1	9.8		1.4	7.1
2008	157	Bore well water at MIDC Shiroli	8.0		1.8		0.8	4.8
2011*	(2829)	near Pratibha Enterprises,	8.6	7.0	2.6	50	0.5	4.4
	4.50	Kolhapur						
2008	158	Bore well water at MIDC near	8.1		3.2		0.8	4.4
2011*	(2830)	Gokul Shirgaon, Kolhapur	8.3	7.1	2.3	55	0.5	3.9
2008	159	Dug well at Sakharali, near	6.5	6.3	1.6		0.4	3.5
2011*	(2831)	MIDC Islampur near Krishna	7.9	7.0	2.2	110	0.4	1.2
	4.60	Milk Industry.						
2009	160	Dug well at Brahmanwadi-	7.8	6.8	2.0	27	0.7	1.6
2011*	(2832)	Anjanwel, owned by Shri. Vaidya	7.4	7.4	2.3	65	0.4	1.8
2009	161	Dug well owned by Group Gram	8	6.6	2.2	28	0.5	1.6
2011*	(2833)	Panchayat Arketwadi, near Masjid	7.7	7.0	2.2	80	0.4	1.2
2009	163	Dug well No.2 at Arketwadi.,	7.4	5.2	2.3	27	0.5	1.2
2011	(2834)	Khed, Ratnagiri	7.9	7.3	2.1	75	0.6	1.2
2009	164	Dug well owned by Group Gram	7.1	6.9	1.9	28	0.6	0.8
2011*	(2835)	Panchayat, Brahmanwadi-			2.4		0.4	0.0
	, ,	Anjanwel	7.7	7.5	2.4	60	0.4	0.9
2008	168	Dug well Zilla Parishad primary	7.8	5.9	6.8	27	0.9	6.7
2011*	(2828)	school Visapur	7.7	5.7	5.0	165	2.6	1.1
2007	169	Well water near M/S Mahajit	7.9	7.7	10.0	14	2.8	4.8
2011*	(2816)	Claton Ltd., Nasik	7.7	6.0	4.5		0.1	6.1
2007	171	Bore well at Chitali near Wagh	8.3	4.9	10.5	45	3.6	1.9
2011*	(2817)	Vasthi- Ahmadnagar	7.4	6.4	4.3		1.2	7.8
2007	172	Well water at M/S Spectrum	8.4	6.7	12.0		3.4	4.6
2011*	(2818)	Ethers Ltd., Rasegaon, near	7.7	5.9	5.9		0.6	4.3
		Siddeshwar Mahadev Mandir		0.,				
2007	173	Dug Well Owned by Shri	8.0	6.6	6.1	290	0.1	0.1
2008	(2819)	Deshmukh at Malegaon,	7.9	6.3	5.6	80	0.2	0
2009		Baramati	8.1	6.3	3.1	275	0.2	0.1
2011*			7.9	5.1	3.4		0.3	0.2
2007	174	Dug well owned by Shri Shivaji	7.8	4.7	6.7	498	0.3	0.4
2008	(2820)	Baban Darekar Village-	8.2	6.4	6.1	275	0.3	0.4
2009		Sanaswadi, Taluka- Shirur,	7.8	6.0	5.3	380	0.2	3
2011*		District- Pune.	7.6	5.4	4.0	365	0.3	0.3

Table 6.43 (Contd..): Annual Ground Water Quality of MPCB Monitored Stations

Year	Station No	Station Name	pН	DO	BOD	TC	Ammo nical-N	Nitrate
2007	175	Bore Well Water at Bale Rly.	7.8	5.7	6.1	198	0.3	0.8
2008	(2821)	Station premises owned by	8.0	6.6	8.4	210	0.1	0.4
2009		Shri D. Joshi	7.2	5.9	4.3	250	0.7	0.5
2011			7.8	5.6	4.0	350	0.2	0.4
2007	176	Bore well near Chincholi.	7.9	5.8	5.7	283	0.5	0.7
2008	(2822)	Village- Chincholi, Taluka-	7.9	6.7	7.0	333	0.1	0.2
2009		Mohol, District- Solapur.	7.3	5.9	4.6	275	0.6	0.4
2011			7.5	5.9	3.5	350	0.4	0.3
2007	177	Bore well at Shete Vasti,	7.9	5.6	6.0	194	0.4	1
2008	(2823)	Near old Tuljapur road	8	6.6	10.0	238	0.2	0.1
2009			7.6	5.0	6.9	350	0.6	0.4
2011			7.9	5.1	5.0	350	0.2	0.3
2011	2824	Dug well at Naregaon. Village-						
		Naregaon, Aurangabad.	8.1	6.2	3.8	140	0.0	5.2
2011	2825	Bore well at Wahegaon, near						
		Zilla Parishet School-						
		Wahegaon, Aurangabad.	8.6	6.5	4.2	47	0.3	10.7
2011	2826	Dug well near Railway station,						
		Cotton Market. Wardha city	8.5	5.6	5.5		3.1	1.0
2011	2827	Bore well Near Dongri Buzurg.						
		Tumsar, District- Bandara.	7.7	6.4	4.7	65	2.0	3.0

At most of the locations BOD did not comply with the standard. TC and Ammonical Nitrogen did not comply at few places.

Similar to river and ground water quality assessment, MPCB also monitored water quality of some of the discharge locations such as nallahs at various domestic and industrial locations. Yearly concentrations of some of the nallahs are mentioned in **Table 6.44**. Water Quality of Nallas monitored by MPCB was compared with the MPCB's General Standards for Discharge of Environmental Pollutants – Part A, Effluents (Public Sewers) [Annexure IIa]. Most of the results complied with the standards except pH not meeting at 2 nallas (Tarapur MIDC Nalla (Near Sump 1 and 3) and Ammonical Nitrogen at 1 nalla (near Sump 3) during 2010.

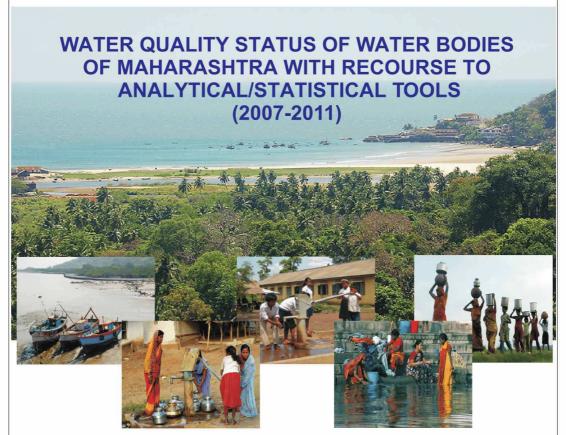
Table 6.44: Water Quality of Nallas Monitored by MPCB (2010-11)

Stn. Code	Nala Monitoring Station	Year	pН	DO	BOD	TC	Ammo nical-N	Nitrate ·
2790	Pimpal-Paneri nalla at Ratnagiri near Finolex Industries at Yahganigaon	2010	6.1	7.3	2.4	155	0.6	0.4
		2011	7.1	6.4	2.6	126	0.6	2.7
2178	Chikhli Nalla Meets Godavari River, Nasik	2010	7.8	4.4	14.7	58	4.0	4.0
2786	Tarapur MIDC Nalla	2010	4.0	BDL	220.0	1600	31.0	6.7
	(Near Sump 1) Tarapur, Palghar, Thane	2011	6.5	BDL	240.4	1273	12.1	2.1
2787	Tarapur MIDC Nala	2010	6.1	BDL	170.0	1800	46.9	1.9
	(Near Sump 2), Tarapur, Palghar, Thane	2011	7.5	4.0	196.0	1100	31.5	2.4
2788	Tarapur MIDC Nala	2010	4.0	BDL	315.0	1800	73.7	7.4
	(Near Sump 3), Tarapur, Palghar, Thane	2011	5.9	2.8	312.5	1050	36.3	3.8
2784	Sandoz Nala	2010	7.5	BDL	59.0	1800	26.5	1.8
	Sandoz baug, Thane	2011	7.5	3.2	59.7	1490	6.9	2.7
2782	Rabodi nalla, Rabodi,	2010	7.1	BDL	112.5	1800	25.2	2.4
	Thane	2011	7.2	2.6	85.3	1618	9.0	1.6
2783	Colour Chemical Nala, Village Majiwada, Thane	2010	7.2	2.3	26.0	1800	11.5	1.7
		2011	7.3	2.6	36.9	1632	5.1	1.6
2789	Nalla at D/s Alkai Mandir, Solapur, Village-Alkai,	2010	7.6	2.5	8.5	1600	1.1	0.3
	Tal: Malshiraj, Dist: Solapur	2011	8.2	3.5	9.4	1389	1.9	0.8
2785	BPT Navapur (Discharge from MIDC Tarapur)	2010	6.8	BDL	180.0	1800	56.4	3.5
	Navapur, Palghar, Thane	2011	7.2	BDL	319.5	1354	40.0	5.4
1094	Ulhas river at U/s of Badlapur water works. Village- Kulgaon, Taluka- Ambernath, Dist Thane	2011	8.0	7.2	3.4	114	0.2	0.4
1461	Bhatsa river at D/s of Pise Dam. Village- Pise, Taluka- Bhiwandi, District-Thane	2011	7.9	6.8	3.5	150	0.3	0.1

•

Introduction

Methodology for Data Interpretation


Evaluation of River Water Quality

Evaluation of Sea Water Quality

Evaluation of Groundwater Quality

Annexures & Appendices

Prepared By

Council of Scientific and Industrial Research
National Environmental Engineering
Research Institute

April, 2014

ANNEXURES & APPENDICES

Water Quality Status of Water Bodies of Maharashtra with Recourse to Analytical/Statistical Tools (2007-2011)

Maharashtra Pollution Control Board (MPCB)

CSIR- National Environmental Engineering Research Institute (NEERI)

April, 2014

LIST OF ANNEXURES

Annexure I	Water Quality Criteria (CPCB)	AI_1
Annexure II	Water Quality Standards for Best Designated Usage (MPCB)	AII_1
Annexure IIa	General Standards for Discharge of Environmental Pollutants	AII_3
Annexure III	Receiving Sea Water Standards for Different Categories, Applicable Parameters and Pertinent Issues	AIII_1
Annexure IV	Drinking Water Quality Standards	AIV_1
Annexure V	Water Quality Indices of Rivers of Maharashtra	AV_1
Annexure VI	Map of Surface and Sea Creek Water Quality Index of	AVI_1
	Maharashtra State (2007-11)	
Annexure VIa	List of Municipal Corporation / Councils Wastewater Discharges into Rivers Stream /Bassin	AVIa_1
Annexure VII	Percent Exceedance Monitoring Locations of River Water	AVII_1
Annexure VIII	Water Quality Indices for Sea Water	AVIII_1
Annexure IX	Five Years Descriptive Statistics of Ground Water Quality	AIX_1
Annexure X	District wise Water Quality Indices of Maharashtra State (2007-2011)	AX_1
Annexure XI	Map of Ground Water Quality Index of Maharashtra State (2007-2011)	AXI_1

LIST OF APPENDICES

Appendix I	Measuring, Monitoring and Controlling of	ApI_1
	Wastewater Treatment Plants using Sensor Network System	
Appendix II	Floating Wetland Ecosystem (FWE)	ApII_1
Appendix III	Application of Natural Methods for Sewage Treatment	ApIII_1
	and Polishing of Treated Wastewater	
Appendix IV	PSRT Based Improved Sanitation Treatment Unit	ApIV_1
Appendix V	Nitrate Removal from Groundwater	ApV_1
Appendix VI	Fluoride in Ground: Overview and Evaluation of	ApVI_1
	Removal Methods -IGRAC	

Annexure I Water Quality Criteria (CPCB)

Designated-Best-Use	Class of Water	Criteria
Drinking Water Source	A	1. Total Coliforms Organisms MPN/100
without conventional		ml shall be 50 or less
treatment but after		2. pH between 6.5 and 8.5
disinfections		3. Dissolved oxygen 6 mg/l or more
		4. Biochemical Oxygen Demand 5 days
		20 ^o C 2 mg/l or less
Outdoor bathing	В	1. Total Coliforms Organisms MPN/100
(Organized)		ml shall be 500 or less
_		2. pH between 6.5 and 8.5
		3. Dissolved oxygen 5 mg/l or more
		4. Biochemical Oxygen Demand 5 days
		20 ^o C 3 mg/l or less
Drinking Water Source	С	1. Total Coliforms Organisms MPN/100
after conventional treatment		ml shall be 5000 or less
and disinfection		2. pH between 6 and 9
		3. Dissolved oxygen 4 mg/l or more
		4. Biochemical Oxygen Demand 5 days
		20 ^o C 3 mg/l or less
Propagation of Wild life	D	1. pH between 6.5 and 8.5
and Fisheries		2. Dissolved oxygen 4 mg/l or more
		3. Free Ammonia (as N) 1.2 mg/l or less
Irrigation, Industrial	Е	1. pH between 6.0 and 8.5
Cooling, Controlled Waste		2. Electrical Conductivity at 25 ^o C
disposal		micromhos/cm Max. 2250
		3. Sodium absorption ration Max. 26
		4. Boron Max. 2 mg/l
	Below-E	Not meeting A,B,C,D & E Criteria

Annexure II Water Quality Standards for Best Designated Usage (MPCB)

Category of Fresh Water	A – I	A – III		A - IV	
Best Usage	Unfiltered Public water supply after approved disinfection	Public water supply with approved treatment equal to coagulation, sedimentation and disinfection	Not fit for human consumption, Fish & Wildlife Propagation	Fit for Agriculture, Industrial cooling & process water	
		wable concentration	1		
1. Toxic Substance					
Arsenic (As)	0.3 mg/l	0.3 mg/l	1.0 mg/l	0.1 mg/l	
Cadmium (Cd)	0.01 mg/l	0.01 mg/l	-	-	
Chromium (Cr)	0.05 mg/l	0.05 mg/l	0.05 mg/l	0.2 mg/l	
Cyanide (Cn)	0.05 mg/l	0.1 mg/l	0.05 mg/l	0.2 mg/l	
Lead (Pb)	0.1 mg/l	0.1 mg/l	-	0.1 mg/l	
Boron (B)	-	-	-	0.2 mg/l	
Mercury (Hg)	0.001 mg/l	0.001 mg/l	0.001 mg/l	2.0 mg/l	
Gross alpha	3 PCI/l	10-9 uc/ml	3 PCI/l	3 PCI/l	
activity					
Gross Beta	30 PCI/l	10-8 uc/ml	30 PCI/1	30 PCI/l	
activity					
2. Substances affe			T		
Fluoride (F)	1.5 mg/l	1.5 mg/l	-	1.0 mg/l	
Nitrates(NO ₃)	45 mg/l	45mg/l	-	-	
3. Substances affe	ecting the potabilit	y of water			
pН	6.5 to 8.5	6.0 to 8.5	6.5 to 9.0	6.5 to 9.0	
TDS	-	-	-	-	
Total Solids	1500 mg/l	1500 mg/l	-	-	
Total Suspended	25 mg/l	-	-	-	
Solids					
Total Hardness	50 mg/l	-	-	-	
(CaCO ₃)					
Total Residual	-	-	-	-	
Chlorine					
Electrical	-	-	1000 X 10 ⁻⁶	3000 X 10 ⁻⁶	
conduct at 25°C			mhos	mhos	
Free Carbon Di	-	-	12 mg/l	-	
Oxide					
Free Ammonical	-	-	1.2 mg/l	-	
Nitrogen					

Water Quality Standards for Best Designated Usage (MPCB)

Category of	A – I	A – II	A – III	A - IV
Fresh Water				
Best Usage	Unfiltered Public water supply after approved disinfection	Public water supply with approved treatment equal to coagulation, sedimentation and disinfection	Not fit for human consumption, Fish & Wildlife Propagation	Fit for Agriculture, Industrial cooling & process water
рН	6.5 to 8.5	6.0 to 8.5	6.5 to 9.0	6.5 to 9.0
BOD (5 days 20°C)	2.0 mg/l (monthly average of at least 10 samples)	5.0 (monthly average of at least 10 samples)	10 mg/l	30 mg/l
COD	-	-	-	150 mg/l
DO	Not less than 5 mg/l (monthly average of 100 samples)	4.0 mg/l	Not less than 3 mg/l	Not less than 2 mg/l
Bacteriological	Coliform	Not greater than		
Standards: MPN/100 ml	Bacteria 250	5000		
Total Ammonical Nitogen	1.5 mg/l	1.5 mg/l	-	50 mg/l

Annexure II_a General Standards for Discharge of Environmental Pollutants

Part – A: Effluents

Sl.	Parameter Parameter			Standards	
No.		Inland Surface Water	Public Sewers	Land of Irrigation	Marine/ Coastal Areas
1.	Colour and	Of		See 6 of	See 6 of
	odour	Annexure-1		Annexure -1	Annexure -1
2.	Suspended solids mg/1, max.	100	600	200	 a. For process wastewater 100 b. For cooling water effluent 10 per cent above total suspended mater of influent
3.	Particle size of suspended solids	Shall pass 850 micron IS Sieve			a. Floatable solids, solids max.3mm b. Settleable solids. Max 856 microns
4.	pH value	5.5 to 9.0	5.5 to 9.0	5.5 to 9.0	5.5 to 9.0
5.	Temperature	Shall not exceed 5°C above the receiving water temp.			Shall not exceed 5°C above the receiving water temperature
6.	Oil and grease, mg/1 max.	10	20	10	20
7.	Total residual chlorine, mg/1 max	1.0			1.0
8.	Ammonical nitrogen (as N), mg/l, max.	50	50		50
9.	Total nitrogen (as N), mg/l, max.	100			100
10.	Free ammonia (as NH ₃), mg/l, max	5.0			5.0
11.	Biochemical oxygen demand (3 days at 27°C), mg/l, max	30	350	100	100
12.	Chemical oxygen demand, mg/l, max	250			250

General Standards for Discharge (Contd..)

		or Discharge (Cor	ıtd)		
Sl.	Parameter			Standards	
No.		Inland	Public	Land of	Marine/
-10		Surface Water	Sewers	Irrigation	Coastal Areas
13.	Arsenic (as As)	0.2	0.2	0.2	0.2
1.4	mg/l, max	0.01	0.01		0.01
14.	Mercury (as	0.01	0.01		0.01
1.5	Hg), mg/l, max	0.1	0.1		2.0
15.	Lead (as Pb), mg/l, max	0.1	0.1		2.0
16.	Cadmium (as	2.0	1.0		2.0
	Cd), mg/l, max				
17.	Hexavalent	0.1	2.0		1.0
	chromium (as				
	Cr ⁺⁶), mg/l, max				
18.	Total chromium	2.0	2.0		2.0
	(as Cr), mg/l,				
- 10	max				* 2
19.	Copper (as Cu),	3.0	3.0		30
20	mg/l, max	5.0	1.5		1.5
20.	Zinc (as Zn),	5.0	15		15
21.	mg/l, max	0.05	0.05		0.05
21.	Selenium (as Se), mg/l, max	0.03	0.03		0.03
22.	Nickel (as Ni),	3.0	3.0		50
22.	mg/l, max	3.0	5.0		30
23.	Cyanide (as	0.2	0.2	0.2	0.2
	CN), mg/l, max	· · · ·	·. <u>-</u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 _
24.	Fluoride (as F),	2.0	15		15
	mg/l, max				
25.	Dissolved	5.0			
	phosphates (as				
	P), mg/l, max				
26.	Sulphide (as S),	2.0			5.0
	mg/l, max				
27.	Phenolic	1.0	5.0		5.0
	compounds (as				
	C_6H_5OH), mg/l,				
	max				
28.	Radioactive mate		15.7	100	10.7
	a. α emitters	10-7	10 ⁻⁷	10-8	10^{-7}
	micro cure				
	mg/l, max	10-6	10-6	10-7	1.0-6
	β emitters	10-6	10 ⁻⁶	10-7	10^{-6}
	micro cure				
	mg/l, max				

General Standards for Discharge (Contd..)

Sl.	Parameter			Standards	
No.		Inland Surface Water	Public Sewers	Land of Irrigation	Marine/ Coastal Areas
29.	Bio-assay test	90 % survival of fish after 96 hours in 100 % effluent	90 % survival of fish after 96 hours in 100 % effluent	90 % survival of fish after 96 hours in 100 % effluent	90 % survival of fish after 96 hours in 100 % effluent
30.	Manganese (as Mn)	2 mg/l	2 mg/l	2 mg/l	2 mg/l
31.	Iron (as Fe)	3 mg/l	3 mg/l	3 mg/l	3 mg/l
32.	Vanadium (as V)	0.2 mg/l	0.2 mg/l		0.2 mg/l
33.	Nitrate Nitrogen	10 mg/l			20 mg/l

^{*} These standards shall be applicable for industries, operations or processes other than those industries. Operations or process for which standards have been specified in Schedule of the Environment Protection Rules 1

Annexure III Receiving Sea Water Standards for Different Categories, Applicable Parameters and Pertinent Issues

Categories	Major parameters	Rationale/Remarks	Issues
Salt pans, shell fish, ecologically sensitive zones (SW I)	pH-6.5-8.5, no colour and floating matter	General broad range, conductive for propagation of aquatic lives, is given. Value largely dependent upon soil-water interaction.	This category could also be applicable to the bathing water quality
	DO- 5.0 mg/l Oil & Grease-	Never less than 3.5 mg/l at any time of the year for protection of aquatic lives. Concentration should not exceed 0.1 mg/l	No value assigned to bacterial density
	0.1 mg/l	as because it has effect on fish eggs and larvae.	
	Heavy metals- 0.01mg/l (Hg, Pb and Cd)	Value depends on: i. Concentration in salt, fish and shell fish. ii. Average per capita consumption per day. iii. Minimum ingestion rate that induces symptoms of resulting diseases.	
Commercial fishing, contact recreation, bathing water	pH- 6.5-8.5	Range does not cause skin or eye irritation and is also conducive for propagation of aquatic lives.	Commercial fishing generally not undertaken near shore where bathing, recreational activities are
(SW II)	DO- 4.0 mg/l	Not less than 3.5 mg/l at anytime for protection of aquatic lives.	common. Length (seaward) upto which bathing is undertaken should be also
	No noticeable colour, odour and floating matters	Specially caused by chemical compounds like creosols, phenols, naphtha, benzene, pyridine, toluene etc. causing visible colouration of water and tainting of and odour in fish flesh.	taken into consideration. Sampling schedule suggested (average 200/ 100ml not to exceed in 20 % of the sample and 3 consecutive samples in monsoon) may give varied results depending upon tide
	Turbidity	30 NTU (Nephelo Tur- bidity Unit) Measured at 0.9 depth	timings and location of sampling
	BOD ₅ - 3 mg/l	Restricted for bathing (aesthetic quality of water). Also prescribed by IS:2296-1974.	
	Fecal Coliform - 100/100 ml	The average value not exceeding 200/100 ml in 20 percent of samples in the year and in 3 consecutive samples in monsoon months.	

Receiving Sea Water Standards for Different Categories, Applicable Parameters and Pertinent Issues (Contd..)

Categories	Major parameters	Rationale/Remarks	Issues
Industrial Cooling (SW III)	pH - 6.5-8.5	The range is conducive for propagation of aquatic species and restoring natural system.	The presence of fecal coliform for the industrial cooling is not very relevant
	DO - 3.0	To protect aquatic lives.	
	No noticeable colour and floating matter, odour	None in such concentration that would impair usages specifically assigned to this class.	
	Turbidity	30 NTU Reasonably clear water for Recreation, Aesthetic appreciation and Industrial cooling purposes	
	Fecal Coliform- 500/ 100 ml	Not exceeding 1000/100 ml in 20 percent of samples in the year and in 3 consecutive samples in monsoon months.	

Annexure IV: Drinking Water Quality Standards

Table 1: Organoleptic and Physical Parameters (Clause 4)

		BIS – 10500 (2004-2005) Subst- Require- Undesirable Permissible Method Remarks				CPHE (1998	-	BIS-10500	(1991)	WHO Health based Guidelines		EU (1998) Para - metric Values	USEPA (June 2003)	Reasons for Inclusion Or Change	Sources of Contami- nation /	
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5•)	Method of test (Ref to IS) (6)	Remarks (7)	Acceptable	Cause of Reject- ion	3®	5♦	1993	2006				Entry in Water body
1	Colour, Hazen Units, Max	5	Above 5, Consumer acceptance decreases	25	3025 (Part 4) *Visual Compari son Co-Pt scale	Extended to 25 only if toxic substances are not suspected, in absences of alternate sources	5.0	25	NC	NC	Desirable 15	NM	Acceptable to consumer and no abnormal change in appearance	15 (Color Units)	NA	Industrial Wastewater, Color organic matter, natural impurities, corrosion
2	Odor	Agreeable	-	Agreeable	3025 (Part 5) *Thresho Id Odor test *Olfacto -meter *Human sense	a) Test cold and when heated b) Test at several dilution	Unobject- ionable	Objectio nable	Unobject- ionable	NM	-	-	Acceptable to consumer and no abnormal change as far as smell (Olphact- rometrically)	3 Threshold Odor Number	Termino- logy changed as per Latest Convention	Sewage, Effluent, synthetic chemical, natural inorganic and organic contaminant and biological sources or processes.

[®] Changes in Revised BIS 10500 2004-2005

		BIS – 10500 (2004-2005)			CPHE (199	-		5-10500 1991)	WHO Health based Guideli	ines	EU (1998) Para - metric Values	USEPA (June 2		Reasons for Inclusion Or	Sources of Contami- nation /		
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5♦)	Method of test (Ref to IS) (6)	Remarks (7)	Acceptable	Cause of Reject- ion	3®	5♦	1993	2006				Change	Entry in Water body
3	Taste	Agreeable	-	Agreeable	3025 (Part 7 & 8) Flavor Threshold test	Test to be conducted only after safety has been established	Unobject- ionable	Object- ionable	NC	NC	-	-	Acceptable to consumer and no abnormal change in taste	-		-	Synthetic chemical, natural inorganic and organic contaminant and biological sources or processes.
4	Turbi- dity, NTU	5	Above 5, consumer acceptance decreases	10	3025 (Part 10) Nephelo- metric	-	1.0	10	NC	NC	<5	NM	Acceptable to consumer and no change	MCLG NA	MCL or TT	May permit growth of disease causing organisms	Soil Runoff, Particulate matter, inadequate filtration, inorganic matter.
5	Dissolv ed Solids mg/l	500	Beyond this palatability decreases and may cause gastro intestinal irritations	2000	3025 (Part 16) Evaporation	-	500	2000	NC	NC	NG	NG	NM	500		Scaling in water pipelines, boilers, gastro intestinal irritation	Soil runoff and erosion

		BIS – 10500	(2004-2005)				CPHE (199	-		-10500 991)	WHO Health based Guideli		EU (1998) Para - metric Values	USEPA (June 2003)	Reasons for Inclusion Or	Sources of Contami- nation /
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5 •)	Method of test (Ref to IS) (6)	Remarks (7)	Acceptable	Cause of Reject- ion	3®	5♦	1993	2006			Change	Entry in Water body
6	pH Value	6.5-8.5	Beyond this range the water will affect the mucus membrane and/or water supply system	No relaxation	3025 (Part 11) Electro- metric By pH meter	-	7.0-8.5	<6.5 or >9.2	NC	NC	6.5- 8.5	NG	>6.5 and <9.5	6.5-8.5	Corrosion of water pipes and household water systems	Change in pH due to accidental spillage,
7	Total hardnes s (as CaCO3) mg/l Max	300	Encrustation in water supply structure and adverse effects on domestic use	600	3025 (Part 21) EDTA	-	200	600	NC	NC	150- 500	NG	NM	-	Scale deposition in pipelines, excessive soap consumpti on Ξ	Dissolution of Natural rock, erosion

 $Table\ 2\ : General\ Parameters\ Concerning\ Substances\ Undesirable\ in\ Excessive\ Amounts\ (Clause\ 4)$

		BIS - 10500 (2004-2005)				CPHE (199			5-10500 1991)	WHO Health based Guideli	ines	EU (1998) Para - metric Values	USEF (June	PA 2003)	Reasons for Inclusion Or Change	Sources of Contami- nation /	
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5 •)	Method of test (Ref to IS) (6)	Remarks (7)	Acceptable	Cause of Reject- ion	3®	5♦	1993	2006					Entry in Water Body
1	Copper (as Cu) mg/l, Max	0.05	Astringent taste, discoloration and corrosion of pipes, fittings, and utensils will be caused beyond this	1.5	3025 (Part 42) *ICP *Colori- metric Neocu- proine	-	0.05	1.5	NC	NC	2	2	2	MC LG	MCL /TT TT 8 Action level = 1.3	Gastro intestinal distress, liver/ kidney damage	Corrosion, Erosion from copper pipes
2	Iron (as Fe) mg/l, Max	0.3	Beyond this limit taste/ appearance are affected, has adverse effect on domestic uses and water supply structures, and promotes iron bacteria	1.0	3025 (Part 53) * ICP *Colorimetric Phenan- throline		0.1	1.0	NC	NC	0.3	NG	0.2	0.3 m	g/l	Promotes growth of iron bacteria, accumulation of deposits in distribution systems	Soil runoff, erosion, mine waste
3	Manga nese (as Mn) mg/l, Max		Beyond this limit taste/ appearance are affected, has adverse effect on domestic uses and water supply structures	0.3	35 of 3025 *ICP *Per- sulphate	-	0.05	0.5	NC	NC	0.5	0.4	0.05	0.05		Neurological effet, essential micro nutrient	Industrial wastes, steel alloys, Batteries

							CPHE (1998	-		-10500 (991)	WHO Health based Guideli	nes	EU (1998) Para - metric Values	USEPA (June 20		Reasons for Inclusion Or Change	Sources of Contami- nation /
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5 •)	Method of test (Ref to IS) (6)	Remarks (7)	Acceptable	Cause of Reject- ion	3®	5♦	1993	2006					Entry in Water Body
4	Nitrate (as NO3) mg/l, Max	45	Beyond this methaemoglo binemia take place/ may be indicative of pollution	No relaxation	3025 (Part 34) UV- *Spectro photomet er *Phenol- Di- sulphoni c acid	-	45	45	NC	100	Total nitrog en	50	50	Measure nitrogen MCLG		Blue baby syndrome	Fertilizer runoff, erosions, leaching from sewage
5	Fluorid e (as F) mg/l, Max	1.0	Fluoride may be kept as low as possible. High fluoride may cause fluorosis	1.5	23 of 3025 Θ *Ion selective electrode *SPDAN S	-	1.0	1.5	NC	NC	1.5	1.51	1.5	2.0 mg/l	Fluor osis	Industrial wastes	

		BIS - 10500 (2004-2005) Subst. Require. Undesirable Permissible Method Re			CPHE (199			5-10500 1991)	WHO Health based Guideli	ines	EU (1998) Para - metric Values	USEPA (June 2		Reasons for Inclusion Or Change	Sources of Contami- nation /		
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5♦)	Method of test (Ref to IS) (6)	Remarks (7)	Acceptable	Cause of Reject- ion	3®	5♦	1993	2006					Entry in Water Body
6	Zinc (as Zn) mg/l, Max	5	Beyond this limit it can cause astringent taste and an opalescence in water	15	3025 (Part 49) *Zincon	-	5.0	15	NC	NC	3.0	NG	NM	5.0		Astringent taste to water, develops a greasy film on boiling	Industrial waste
7	Alumin ium (as Al) mg/l, Max	0.03	Cumulative effect is reported to cause dementia	0.2	3025 (Part 49) *ICP *Erichro me Cyanine R	-	0.03	0.2	NC	NC	0.2	0.2	0.2	0.05-0.3	2	Dementia, Alzheimer disease ∂	Mining runoff, erosion from naturally occurring aluminum and aluminum salts
8	Chlorid es (as Cl) mg/l, Max	250	Beyond this limit, taste, corrosion and palatability are affected.	1000	3025 (Part 32) *Argentometric	-	200	1000	NC	NC	250	NG	250	250		Corrosion of metals in distribution systems	Sewage, industrial effluent runoff, natural sources
9	Seleniu m (as Se) mg/l, Max	0.01	Beyond this, the water become toxic	No relaxation	3025 (Part 56) *ICP *Colori- metric		0.01	0.01	NC	NC	0.01	0.01	0.01		MCL or TT	Circulatory problems	discharge from Mine, petroleum refineries, erosion

		BIS – 10500 (2004-2005) Subst- Require- Undesirable Permissible Method Remai			CPHE (199	-		10500 991)	WHO Health based Guideli	ines	EU (1998) Para - metric Values	USEPA (June 2003)	Reasons for Inclusion Or Change	Sources of Contami- nation /		
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5 •)	Method of test (Ref to IS) (6)	Remarks (7)	Acceptable	Cause of Reject- ion	3®	5♦	1993	2006				Entry in Water Body
10	Sulphat e (as SO4) mg/l, Max	200	Beyond this causes gastro intestinal irritation when Mg or Na are present	400 (see col 7)	3025 (Part 24) *Turbidi -metric	May be extended up to 400 provided that Mg does not exceed 30	200	400	NC	NC	500	NG	250	250	Gastro intestinal irritations, laxative effet	Leaching from sulphite ore, industrial wastes
11	Alkan- ility as CaCO3 , mg/l, Max	200	Beyond this limit taste becomes unpleasant	600	3025 (Part 23) *Titri- metric	-	200	600	NC	NC	-	-	-	-		
12	Calciu m (as Ca) mg/l, Max	75	Encrustation in water supply structure and adverse effect on domestic use	200	3025 (Part 40) ⊕ *AAS *ICP *EDTA titrimetri c	-	75	200	NC	NC	-	-	-	-	Corrosive	Leaching from Ca ores
13	Magne sium (as Mg) mg/l, Max	30	Encrustation in water supply structure and adverse effect on domestic use	100	3025 (Part 46) ⊕ *AAS *ICP *Gravi- metric	-	<=30	150	Newl y added	-	-	-	-	Laxative if SO ₄ is more	Leaching from Mg ores	

		BIS - 10500	(2004-2005)				CPHE (199			10500 991)	WHO Health based Guideli		EU (1998) Para - metric Values	USEPA (June 2003)	Reasons for Inclusion Or Change	Sources of Contami- nation /
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5•)	Method of test (Ref to IS) (6)	Remarks (7)	Acceptable	Cause of Reject- ion	3®	5♦	1993	2006				Entry in Water Body
14	Residu al, free Chlorin e, mg/l, Min	0.2	-	1	3025 (Part 26) *Iodome tric *DPD	To be applicable only water is chlorinated. Tested at consumer end. When protection against viral infection is required, it should be minimum 0.5 mg/l	0.2	> 1.0	NC	NC	-	-	-	-	Harms growing plant. Alter taste	Leakage of salt water, industrial process
15	Phenoli c compo und (as C6H5 OH) mg/l, Max	0.001	Beyond this, it may cause objectionable taste and odour	0.002	3025 (Part 43) *Chlorof orm Extractio n Direct photomet ric	-	0.001	0.002	NC	NC	-	-	-	-	Odoriferrous Toxic	Industrial Waste, Oil and Grease waste
16	Minera l Oil mg/l, Max	0.01	Beyond this limit undesirable taste and odor after chlorination take place	0.03	APHA55 20 C and IS 3025 (Part 39) *Infrared partition	-	0.01	0.03	NC	NC	-	-	-	-	Sticky layer	

		BIS - 10500	(2004-2005)					HEEO 1998)	BIS-10 (199		WHO Healtl based Guide	h	EU (1998) Para - metric	USEPA (June 2003))	Reasons for Inclusion Or Change	Sources of Contami- nation /
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5♦)	Method of test (Ref to IS) (6)	Remarks (7)	Accept -able	Cause of Reject- ion	3®	5♦	1993	2006	Values				Entry in Water Body
17	Anioni c deterge nts (as MBAS) mg/l, Max	0.2	Beyond this limit it can cause a light froth in water	1.0	Annex K IS 13428 Θ *Methyl ene Blue extractio n	-	0.2	1.0	NC	NC	-	-	-	-		Foam formation	Soap manufacturing laundering
18	Boron (as B) mg/l, Max	0.3	-	1.5	29 of 3025:196 4 Θ *Potenti o-metric	-	-	-	1	5	0.3	0.5	1	-		Affect Central Nervous System 'Borism'	Irrigation Water, soap, glass industries or sewage or rock runoff
19	Barium (as Ba) mg/l, Max	0.7	May lead to cardiovascula r problem	No relaxation	Annex F IS 13428*/I S 15302 ⊕ *AAS * ICP		-	-	Newly added	0.3	0.7	NM	MCLG	MCL /TT	Increase in BP, hyperten sion	Discharge drillinfg,Met al refineries, Erosion	
20	Molyb denum (as Mo) mg/l, Max	0.07	Beyond this it may cause otsteoporosis/ bone disorders	No relaxation	3025 (Part 2;2002) / ISO 11885:19 96 ⊕ *ICP		-	-	Newly added	0.7	0.7	NM	-	Essential element	Wastew ater, Drainag e water, steel tungsten and pigment industry contami nation		

							_	HEEO 998)	BIS-10 (199		WHO Health based Guidel	1	EU (1998) Para - metric	USEPA (June 2003)	Reasons for Inclusion Or Change	Sources of Contami- nation /
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5 •)	Method of test (Ref to IS) (6)	Remarks (7)	Accept -able	Cause of Reject- ion	3®	5♦	1993	2006	Values			Entry in Water Body
21	Sulphide (as H ₂ S) mg/l, Max	0.05	Beyond this it may cause objectionable taste and odor	No relaxation	IS 325 (Part 29) *Methyl ene blue		-	-	Newly added	NG	NG	-	-	Odor nuisance, Toxic	Sewage, oxygen depletion leading to subsequent reduction of sulphate by bacterial activity	

Table 3 : Parameters Concerning Toxic Substances (Clause 4)

		BIS - 10500	(2004-2005)					HEEO 1998)	BIS-1 (199		WHO Health based Guidelin	nes	EU (1998) Para - metric	USEPA (June 2003))	Reasons for Inclusion Or Change	Sources of Contami- nation /
Sr (1)	Substance Or Chara cteristics (2)	Requirement (Desireable limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5♦)	Method of test (Ref to IS) (6)	Remarks (7)	Accept -able	Cause of Reject- ion	3®	5♦	1993	2006	Values				Entry in Water Body
1	Mercury (as Hg) mg/l,	0.001	Beyond this, the water becomes	No relaxation	3025 (Part 48) *Mercury	To be tested when pollution is	0.001	0.001	NC	NC	0.001	0.006	0.001	MCLG	MCL/TT	Kidney Damage, Minamata	Erosion, discharge from refineries,
	Max		toxic		analyzer *AAS *Dith- izone	suspected								0.002	0.002	disease	factories, landfill runoff
2	Cadmi um (as Cd) mg/l, Max	0.003	Beyond this the water becomes toxic	No relaxation	3025 (Part 41) *ICP *Dith- izone	To be tested when pollution is suspected	0.01	0.01	0.01	NC	0.003	0.003	0.005	0.005	0.005	Kidney damage	Erosion, corrosion, discharge from metal, steel and plastic industries, refineries
3	Arsenic (as As) mg/l, Max	0.01	Beyond this the water becomes toxic	No relaxation	3025 (Part 37)/ Θ * ICP *Silver- di - carbothio mate	To be tested when pollution is suspected	0.01	0.05	0.05	NR	0.01	0.01	0.01	0	0.010 as of 01/25/06	Risk of Cancer, Skin damage	Erosion, electronic production waste runoff, alloy industry
4	Cyanide (as CN) mg/l, Max	0.05	Beyond this the water becomes toxic	No relaxation	3025 (Part 27) Ø *Cyanide- selective electrode *Colori- metric method	To be tested when pollution is suspected	0.05	0.05	NC	NC	0.07	0.07	0.05	0.2 Free Cyani	0.2 de	Nerve damage, Thyroid problem, Fatal in high concentr- ation	Discharge from steel, metal refineries, fertilizers

	В	IS – 10500 ((2004-2005)				_	HEEO (998)	BIS-10 (199		WHO Health based Guidelin	nes	EU (1998) Para - metric	USEPA (June 200	3)	Reasons for Inclusion Or Change	Sources of Contami- nation /
Sr (1)	Substance Or Characteristics (2)	Require -ment (Desire- able limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5 •)	Method of test (Ref to IS) (6)	Remarks (7)	Accept -able	Cause of Reject- ion	3®	5♦	1993	2006	Values				Entry in Water Body
5	Lead (as Pb) mg/l, Max	0.01	Beyond this the water becomes toxic	No relaxation	3025 (Part 47) * ICP *Dithioz one	To be tested when pollution is suspected	0.05	0.05	0.05	NC	0.01	0.01	0.01	0	TT ⁸ action level= 0.015	Delay in physical and mental develop- ment, Bone damage	Corrosion, erosion, lead acid battery and alloy industry
6	Chro- mium (as Cr ⁶⁺) mg/I, Max	0.05	May be carcinogenic above this limit	No relaxation	3025 (Part 52) * ICP *Colori- metric	To be tested when pollution is suspected	0.05	0.05	NC	NC	0.05	0.05	0.05	0.1 Total Cr	0.1	Allergic dermatitis, Carcino- genic	Discharge from steel, pulp mill, erosion
7	Poly nuclear Aromatic Hydrocar bons (as PAH) mg/l, Max	0.0001	May be Carcinogenic	No relaxation	APHA 6440 *Liquid - Liquid Extraction chromato graphic	To be tested when pollution is suspected	0.2	0.2	NM	NM	0.7	NM	0.0001	0	0.0002	Cancer, reproductive difficulty	Leaching from coal tar coated pipeline

8. Pesticide (Refer Table 5)

9	Nickel	0.02	Beyond this	No	3025	-	-	Newly added	0.02	0.07	0.02	-	Get absorbs	Leaching from	
	(as Ni)		it may cause	relaxation	(Part 54)								into	electroplating,	
	mg/l, Max		allergic		* ICP								intestine,	steel nickel	
			reaction		*AAS,								allergic	alloy industries	
					*Dimeth								_	-	
					yl-										
					glyoxine										
															l

			(2004-2005)					HEEO (1998)	BIS-10 (199		WHO Health based Guidelin		EU (1998) Para - metric	USEPA (June 20	03)	Reasons for Inclusion Or Change	Sources of Contami- nation /
Sr (1)	Substance Or Characteristics (2)	Require -ment (Desire- able limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5 •)	Method of test (Ref to IS) (6)	Remarks (7)	Accept -able	Cause of Reject- ion	3®	5♦	1993	2006	Values				Entry in Water Body
10	Polychlori nated biphenyls (PCBs) mg/l, Max	0.0005	May be carcinogenic	No relaxation	ASTM 5175/ APHA 6630 *GC/MS *Liquid liquid extractio n GC	-	-	-	Newly ad	lded	-	-	-	MCLG 0	MCL or TT 0.0005	Cancer, immune deficiencies, nervous system difficulty	Landfill run off, waste chemical run off
11	Trihalome thane				*GC *GC/MS									MCLG	MCL or TT 0.1 0.08	Carcino- genic	Byproduct of chlorination of drinking water
A	Bromofor m mg/l, Max	0.1	May be carcinogenic above this limit	No relaxation	ASTM D 3973-85/ APHA	-	-	-	Newly ac	lded	-	-	-	-	0	Genotoxic	Byproduct of chlorination of drinking water
В	Dibromo chloro methane mg/l, Max	0.1	May be carcinogenic above this limit	No relaxation	ASTM D 3973-85/ APHA	-	-	-	Newly ac		-	-	-	-	0	Genotoxic	Byproduct of chlorination of drinking water
С	Bromo dichlorom ethane mg/l, Max	0.06	May be carcinogenic above this limit	No relaxation	ASTM D 3973-85/ APHA	-	-	-	Newly ac		-	-	-	-	0.06	Carcinogenic	Byproduct of chlorination of drinking water
D	Chlorofor m mg/l Max	0.2	May be carcinogenic above this limit	No relaxation	ASTM D 3973-85/ APHA	-	-	-	Newly ac	lded	-		-	-	No MCLG	Liver damage	Byproduct of chlorination of drinking water

Table 4: Parameters Concerning Radioactive Substances (Clause 4)

	В	IS – 10500 ((2004-2005)					HEEO (998)	BIS-10 (199		WHO Health based Guidelin	ies	EU (1998) Para - metric	USEPA (June 200	3)	Reasons for Inclusion Or Change	Sources of Contami- nation /
Sr (1)	Substance Or Characteristics (2)	Require -ment (Desire- able limit) (3 ®)	Undesirable effect outside desirable limit (4)	Permissible limit in absence of alternate source (5•)	Method of test (Ref to IS) (6)	Remarks (7)	Accept -able	Cause of Reject- ion	3®	5♦	1993	2006	Values				Entry in Water Body
1 : Ra	dioactive mate	rials				•						•	•	•			
a	Alpha emitters Bq/l, Max	0.1	May be carcinogenic above this limit	1.0	IS 14194 (Par2) *Countin	-	0.1	0.1	NM	0.1	-		-	MCLG 0	MCL or TT 15pci/l	Cancer	Erosion of radioactive mineral decay
b	Beta emitters Bq/l, Max	1.0	-	1.0	IS14194 (Pt 1) *Countin	-	1.0	1.0	NM	1.0	-		-	0	4 milli rans/yr	Cancer	Erosion of radioactive mineral decay

Table 5: Pesticide Residues Limits and Test Method

Sr. no	BIS – 10500 (2004-2005)			BIS- 10500 (1991)	CPHEEO (1998)	WHO Health I Guidelin		EU (1998) Parametr ic values	USEPA (June 20	003)	Reasons for Inclusion Or Change	Sources Of Contami- nation /
	Pesticides	Limit µg/l	Test method USEPA AOAC/ISO			1993 (μg/l)	2006 (μg/l)					Entry in Water Body
1	DDT (o,p and p, p-Isomers of DDT, DDE and DDD)	1	508 AOAC 990.06	N W	-	2	1	-	-		Cell necrosis or mitogenic effect	Insecticide runoff
2	Gamma-HCH (Lindane)	2	508 AOAC 990.06	E L	-	2	2	-	0.0002	0.0002	Kidney liver problem	Insecticide runoff
3	2,4D	3	515.1	Y	-	30	30	-	0.07	0.07	Kidney liver problem	Herbicide runoff
4	Isoproturon	9	532		-	-	-					
5	Alachor	20	525.2, 507	A	-	201	20	-	0	0.002	Cancer, Anemia	Herbicide runoff
6	Atrazine	2	525.2, 8141A	D D E	-	2	2	-	0.003	0.003	Cardiovascular and reproductive problems	Herbicide runoff
7	Aldrin/ Dieldrin	0.03	508	D	-	0.03	0.03	-				
8	Alpha HCH	0.01	508		-	-	-	-	-	-	-	-
9	Beta HCH	0.04	508		-	-	-	-	-	-	-	-
10	Delta HCH	0.04	508		-	-	-	-	-	-	-	-
11	Endosulfan (Alpha, beta and sulphate)	0.41	508 AOAC 990.06		-	-	-	-	-	-	Э	-
12	Monocrotophos	1	8141A		-	-	-	-	-	-	-	-
13	Ethion	3	1657 A		-	-	-	-	-	-	=	-
14	Chloropyriphos	30	525.2, 8141 A		-	-	-	-	-	-	-	-
15	Phorate	2	8141 a		-	-	-	-	-	-	-	-
16	Butachor	125	525.2, 8141A		-	-	-	-	-	-	э	-
17	Methylparathion	0.3	8141A ISO 10695		-	-	-	-	-	-	-	-
18	Malathion	190	8141A		-	-	-	-	-	-	-	-

References:

- > DOC 1: Revised BIS 10500: 2004-05
- DOC 2: BIS 10500:1991
- > DOC 3: WHO Drinking water standard, 1993

(www.lenntech.com/who's-drinking-water-standards.htm)

> DOC 4: WHO Drinking water standard, 2006

(www.lenntech.com/who's-drinking-water-standards06.htm)

DOC 5: EU Drinking water standard, 1998

(www.lenntech.com/EU's-drinking-water-standards.htm)

> DOC 6: USEPA Drinking water standard, June 2003

(www.epa.gov/safewater/contaminants/index.html)

- DOC 7: Guidelines for Drinking Water Quality, 3rd Edition, Volume 1 Recommendations, WHO, Geneva, 2004.
- ➤ CPHEEO
- APHA (American Public Health Association), 17th edition
- ➤ Guidance manual for Drinking water quality monitoring and assessment, 1st edition

Key:

NG: No Guideline, NM: Not Mentioned NR: No Relaxation NC: No Change

NA: Not Applicable TT: Treatment Technique

MCL: Maximum Contaminant Level MCLG: Maximum Contaminant Level Goal

Short form of Method:

AAS: Atomic Absorption Spectrophotometer

DPD: Diethyl-p-phenylene-diamine PDA: Phenoldisulfonic Acid ICP: Inductive Couple Plasma

GC/MS: Gas Chromatography and Mass Spectrophotometer

Symbol:

- Θ BIS method No. not mentioned in Guidance book
- ⊕ Not included in Guidance book
- Σ Not of health concern at concentration normally observed in drinking water and taste and appearance of water affected below the health based value.
- Owing to limitation in the animal data as model for human and the uncertainty surrounding the human data, a health based guideline optimization of the coagulation process in the drinking water plants using aluminium based coagulants are derived: 0.1 mg/l or less in large water treatment facilities and 0.2 mg/l or less in small facilities.
- Example 2 Occurs in drinking water at concentration well below at which toxic effect may occur.
- ® Changes in Revised BIS 10500 2004-2005
- ♦ Changes in Revised BIS 10500 2004-2005

Notes:

- Should include ammonium (NH₃) standard as large amount of sewage is getting into raw water sources and no simple method of removal of ammonia is available.
- In addition, instead of indicating BIS number of test method, indicate the method like AAS, colorimeter, GC etc.

Parameters newly added in BIS 10500:2004 are:

- Magnesium
- Barium
- Molybdenum
- Sulphide
- Nickel
- Polychlorinated biphenyls
- Trihalomethane
- Pesticide residues

Parameter	BIS	BIS10500:2004	WHO		EU 1998	USEPA J	Tune 2003	Reason for change or	Source of
	10500:1991		1993	2006		MRDL	MRDL	inclusion	contamination
			(mg/l)	(mg/l)		G	(mg/l)		
						(mg/l)			
Ammonia	-	-	NG	NG	As NH4	-	-	Toxicological effect about	Metabolic,
(NH_3)					0.5 mg/l			200 mg per kg of body	agriculture,
								weight 3	industrial processes,
									from disinfection
									with chloramine
Chloramine	-	-	3	NM	-	4.0	4.0	Eyes nose irritation,	Water additive used
s (as Cl ₂)								anemia, stomarch	to control microbe
								discomfort	

MRDLG: maximum residual disinfectant level goal. MRDL: maximum residual disinfectant level.

Annexure VWater Quality Indices of Rivers of Maharashtra

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Amba R	River											
Station	No : H	P_AM	_1 Stati	ion Nai	me : Pa	li						
2007	GE	GE	MG	GE	MG	GE	MG	MG	MG	GE	MG	MG
2008	GE	GE	MG	MG	MG	MG	GE	MG	MG	MG	MG	MG
2009	MG	MG	MG	MG	MG	MG	GE	MG	GE	MG	MG	MG
2010						GE	GE		GE	GE		
Station	No : 26	651 Sta	tion Na	me : I	O/s of W	aken l	ridge					
2008				GE				GE		GE	GE	GE
2009			GE	GE	GE		GE	-			GE	GE
WQI wa	s not c	alculate	ed due to	o un-av	ailabilit	y of da	ta [Stn.	2651: 2	2007, 20	010 & 2	2011;	•

WQI was not calculated due to un-availability of data [Stn.2651: 2007, 2010 & 2011; Stn. HP_AM_1 during 2011]

Amrava	ti Rive	er													
Station	No : 26	552 Sta	tion Na	me : I	D/s of D	hondai	cha, D	hule							
2007	Station No : 2652 Station Name : D/s of Dhondaicha, Dhule 2007 MG														
2008	MG		MG				MG				GE				
WQI wa	s not ca	alculate	ed due to	un-av	ailabilit	y of dat	ta for 2	009 to 2	2011						

Bhatsa 1	River													
Station	No : 14	161 Sta	tion Na	me : I)/s of Pi	se Dan	n, Tal:	Bhiwai	ndi, Dis	st:Thai	ne			
2007	GE	-	1	GE			GE	1	-	GE	1	-		
2008	GE	1	1	GE			I	1	-		1			
2009 GE GE GE GE														
WQI wa	WQI was not calculated due to un-availability of data for 2010 to 2011													
Station	Code:	2653 S	Station 1	Name :	D/s of	Libert	y Oil N	Aills, Sa	atnel, S	hahap	ur, Tha	ne		
2011		GE	GE	GE	GE	GE	GE		GE		GE			
Station Code: 2654 Station Name: U/s of Liberty Oil Mills, Satnel, Shahapur, Thane														
2011		GE	GE	GE	GE	GE	GE	GE	GE	GE	GE			
Stations	2653 8	2654	WQI w	as not c	calculate	ed due t	o un-a	vailabil	ity of d	ata for	2007 to	2010		

Bhima I	River														
Station	No : 28	Statio	n Nam	e : Tak	li Villag	ge Near	r Karn	ataka 🛚	Border						
2007	GE	GE	GE	GE	MG	GE	GE	GE	MG	MG	MG	MG			
2008	MG		MG	MG	GE	MG		MG	MG	MG	MG				
2009 MG MG Bad Bad MG MG MG MG MG MG MG															
WQI wa	WQI was not calculated due to un-availability of data for 2010 to 2011														
Station	Station No : 1188 Station Name : Narsingpur Near Sangam Bridge After Confluence														
with Ni	with Nira, District-Solapur														
2007		MG	GE	GE	MG	GE	GE	GE	GE	GE	GE	MG			
2008	GE	Bad	MG	MG	MG	MG		MG	MG	MG	MG	MG			
2009	MG	1	MG		Bad	MG	MG	Bad	MG	MG	MG	MG			
2010		-		MG	MG	GE	GE	MG	MG	GE	MG	MG			
2011	GE	GE	MG	MG	MG	MG	MG	MG	MG	MG	Bad				

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Bhima I				Арі	May	Jun	Jui	Aug	БСР	Oct	1101	Dec
Station				ame :	U/s of V	ithalw	adi Ne	ar San	kar Ma	andir. l	DistP	une
2007	MG			MG			MG			MG		
2008	Bad						MG			Bad		
2009	Bad			VB			Bad			MG		
2010			-				Bad			Bad	-	
2011	Bad		-	Bad	MG	Bad	MG	MG	MG	Bad	Bad	
Station		90 Sta	ation Na	ame:	D/s of B	undga	rden, l	District	-Pune			
2007	Bad			Bad			MG			VB		
2008	Bad						MG			VB		
2009	MG						VB			VB		
2010							VB			VB		
2011	VB			VB	Bad	VB	Bad	Bad	Bad	VB	VB	
Station Pargaor					Atter co	nfluen	ce with	ı Mula-	wutha	at		
2007	GE	v asam	Danua	GE			GE			MG		
2008	Bad			MG			OL			MG		
2009	MG			MG			MG			MG		
2010				Bad			GE					
2011	VB			VB	Bad	VB	MG	MG	MG	MG	Bad	
Station		192 St	ation N	ame :	Near M	lahade		ple, Ta	luka-D	aund,		une
2007	GE						GE					
2008	1	I	-	MG			GE		1	GE	-	
2009	MG	-	1	MG			GE		-	MG	1	
2010				Bad			GE			MG		
2011	Bad				Bad	Bad	MG	MG	MG	Bad	Bad	
Station		655 S			At Koi		Near 1					
2007	GE		GE	GE		GE		GE	MG	GE	MG	MG
2008	MG	MG	MG	GE	MG	Bad				MG		
2009	GE		 D - 1				 CE	 CE	 CE	MC		MG
2010 2011	VB		Bad	MG MG	MG GE	GE GE	GE MG	GE MG	GE GE	MG MG	GE Bad	MG
Station 2		 (56 St	otion N							MG	Dau	
Raw Wa								Dain N	tai			
2007	GE							GE	MG		MG	MG
2008	MG	MG	MG	GE	MG	MG	MG	MG	MG	MG	GE	MG
2009	MG	MG	MG									GE
2010			MG	GE	GE	GE	GE	MG	MG	GE	GE	GE
2011	GE	GE	GE	MG	MG	GE	GE	GE	GE	GE	MG	
Station	Name	: Nars	hinpur									
2010			-					MG	MG	MG	MG	MG
2011	MG	MG	MG	MG								
Station	Name	: Sara	ti		Т	T	ī			T		
2010								MG	MG	MG	MG	MG
2011	MG	MG		MG								
WQI wa	s not ca	alculate	ed due to	un-av	<u>ailabilit</u>	y of dat	ta for 2	2007 to 2	2009			

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Bhima I	Bhima River (Contd)														
Station Name: Near Intake Water Pump House, Dam at Paligaon, District-Beed															
2008	GE	GE	GE	GE	GE	MG	GE	GE	GE	GE	GE	GE			
2009										GE		MG			
WQI wa	s not ca	alculate	d due to	un-av	ailabilit	y of dat	ta for 2	007, 20	10 to 2	011					

Bindusa	ra Riv	er												
Station 1	Station No: 2657 Station Name: Beed, near intake water pump house at Dam													
Kumbargaon, Taluka- Indapur, District- Pune														
2008	GE	GE	GE	GE	GE	MG	GE		GE	GE	GE	GE		
2009										GE		MG		
Stn. 265	7 : WQ	I was n	ot calcu	ılated d	ue to ur	ı-availa	bility o	of data f	for 200'	7, 2010	to 201	1		

Bori Riv	ver													
Station	Station No: 2658 Station Name: D/S of Amalner, District- Jalgaon													
2007				MG				GE	Bad	MG	MG			
2008	MG	MG		MG		GE	GE				GE			
2009												MG		
2010						MG	GE	GE	GE			MG		
2011	GE	GE	GE								GE	GE		

Burai R	iver														
Station	Station No: 2659 Station Name: Before Confluence to Tapi River at Mukudas Village,														
Taluka-	Taluka-Pandharpur, District-Solapur														
2007	2007 GE GE GE														
2008	MG	GE	1	GE	I	GE	MG	1	-	-	ŀ				
2009		GE	1		1			1	1	1	1	MG			
2010		-	1		I			GE	GE	-	ŀ	GE			
2011	GE	GE	GE		1	-	-	1	-		-	GE			

Chandr	abagha	River												
Station	No.: 19	11 Stat	tion Na	me: U/	s of Pan	dharp	ur Tov	wn, Par	dharp	ur, Sol	apur			
2007	-		-	GE	-		GE			MG				
2008	MG			MG			MG			GE				
2009	MG		-	MG	-		MG			MG				
2010				MG			GE			GE		-		
2010														
Station	No.: 19	12 Sta	tion Na	me: D	s of Pa	ndharp	our To	wn, Pa	ndharp	our, So	lapur			
2007	GE		-	GE	-		GE			MG				
2008	MG	-	1	Bad	1		Bad	1	-	MG				
2009	MG	-	-	MG	1		Bad	1	-	MG				
2010				MG			MG			MG				
2011	Bad			MG	MG	MG	GE	MG	MG	MG	Bad			

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Daman	Ganga	River										
Station 1	No : H	P_DG_	1 Stat	ion Na	me : Da	aman-(Ganga	River	at Kha	dadi		
2007						MG	GE	GE				
2008						MG	MG	MG	MG	MG		
2009								MG	Bad	MG		
2010							GE	GE	GE	GE		
Stn. HP_	DG_1	: WQI	was not	calcula	ated due	to un-a	vailab	ility of	data for	r 2011		
Station 1	No : H	P_DG_	2 Stat	ion Na	me : Da	aman-	Ganga	River	at Kha	dadi		
2007		1			-		MG	MG	MG			
2008						MG	MG	MG	Bad	MG		
2009		1		-	-	MG	MG	MG	MG	MG		
2010							GE	GE	GE	GE	GE	GE
2011	GE	GE	GE	GE	GE		-	-	-			
Station 1	No : H	P_DG_	3 Stat	ion Na	me : D	aman-(Ganga		at Shin	dayacl	na Pada	a
2007							MG	MG	MG			
2008						MG	MG	Bad	VB	MG		
2009						MG	MG	GE	MG	GE		
2010							GE	GE	GE	GE		
Darna F	Pivor											
Station 1		60 Stat	tion Na	me · A	t Cheh	adi Pın	mning	Station	Dietr	ict· Na	cik	
2007				MG			iipiiig 	GE				
2008				MG	MG	GE	GE				GE	
2010			GE	GE	GE	GE		GE	GE		GE	GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
Stn. 266											GL	GE
Station 1											t: Nasil	k
2007				GE				GE				
2008				GE		GE	GE				GE	
2009		GE										
2010			GE	GE	GE	GE	GE	GE	GE		GE	GE
2011	GE		GE	GE	GE	GE	GE	GE	GE		GE	GE
Station 1	No : 26	62 Stat	tion Na	me : N			oing St	ation,		, Distr	ict: Na	sik
2007			GE	MG				MG		GE	MG	
2008	GE	GE	GE	GE	GE	GE	GE				GE	
2009		GE										
2010		GE	GE		GE	GE	GE	GE	GE	MG	GE	GE
2011	MG	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
Station 1	No : 26	63 Stat	tion Na	me : B	hagur, l	Pumpii	ng Stat	tion, Pa	ndhur	li Brid	ge, Nas	ik
2007			GE	MG				GE		MG	MG	
2008	GE	GE	GE	GE	GE	GE	GE				GE	
2009		GE										GE
2010			GE	GE	GE	GE	GE	GE	GE		GE	
2011	GE	GE	GE		GE	GE	GE	GE	GE	GE	GE	
Station 1	No : 26	64 Sta	tion Na	me : A	t Sassa	ri, Dist	rict: N	lasik				
2007			GE	MG				MG		MG	GE	
2008	GE	MG	GE	GE	GE	MG	GE				GE	
2009		GE										GE
2010		GE	GE		GE	GE	GE	GE	GE		MG	MG
2011	MG	-	GE	GE	GE	GE	GE	GE	GE	GE	GE	
			•									

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Deoghai	Deoghar (Ghonsari) River														
Station	Station No. HP_DH_2 Station Name : Deoghar River at Ghonsari Village														
2007						GE	MG		MG		GE				
2008	GE	GE	GE	MG	1	GE	GE	GE	GE	-	GE	GE			
2009	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE			
2010			-		1	GE									
2011	GE	GE	GE	GE	GE										

Ghod R	iver													
Station	Station No. 2665 Station Name : Ghod River at Shirur													
2007			GE	Bad		MG		GE	MG	Bad	MG	Bad		
2008	MG	Bad	VB	MG	MG	MG				VB				
2009	GE	MG	-		1					-		MG		
2010			Bad	MG	-	GE	GE	MG	MG	GE	MG	MG		
2011	MG	MG	MG	Bad	MG	Bad	MG	MG	MG	Bad	MG			

Girna R	liver												
Station	No : 12	52 Sta	tion Na	me : A	t Intak	e of Gi	rna Pu	ımp Ho	use, D	istrict-	Jalgaoi	1	
2007	GE			MG			MG			GE			
2008		1	-		1		GE	-	1	GE			
2009	GE	-		GE	-		MG		-	GE			
2010		1	MG		1				1	-			
2010 MG GE MG GE GE GE													
Station	No : 12	53 Sta	tion Na	me : N	Ialegao	n at M	alegao	n Road	Bridg	e, Dist	rict-Na	sik	
2007	GE	1	-	MG	1		MG		1				
2008	GE						GE			GE			
2009	GE	-		MG	-		GE		-	GE			
2010		-	GE		-		MG		-				
2011	GE	GE						GE					

Godava	ri Rive	r												
Station 2	No : H	P_GD_	2 Stati	on Nar	ne : Dh	alegao	n, Tal.	- Majal	lgaon;	Dist I	Beed			
2007							GE	GE	GE	GE				
2008		1			-			GE	GE	-		-		
2009		-			GE		-							
Stn. HP_GD_2 : WQI was not calculated due to un-availability of data for 2010 & 2011														
Station	Station No : HP_GD_4 Station Name : Hirapur, Tal Georai; Dist Beed													
2008		1		-	1	-	I	GE	GE	-	1	1		
2009		1		-	1	-	GE		-	-	1	1		
2010		1		-	1	1	1	MG	GE	1	GE	GE		
2011	GE	1		-	1	-	I		-	-	1	1		
Stn. HP_	GD_4	: WQI	was not	calcula	ated due	to un-a	availab	ility of	data for	r 2007				
Station	No : H	P_GD_	5 Stati	on Nar	ne : Ke	srali, T	al Bi	loli; Di	st Na	nded		•		
2010									GE					
Stn. HP_	GD_5	: WQI	was not	calcula	ated due	to un-a	availab	ility of	data for	r 2007-	09 & 2	011		

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Godava	0 00			71pi	IVIA	Juli	Jui	riug	БСР	Oct	1101	Dec			
Station 2				on Nar	ne · Kil	lari T	al . Ge	orai: D	ist - Re	eed					
2007										GE	GE				
2008										GE	GE	GE			
2009								GE	GE		GE	GE			
2010							GE	GE	GE		GE	GE			
Stn. HP					ited due			l			GL	GL			
Station 2											gahad				
2007								GE	GE	GE	GE				
2008										GE	GE				
2009								GE		GL					
Stn. HP		l				l .	l .			r 2010					
Station 1		_													
2007			15 Sta				uge, 17	GE	GE	GE	GE	_			
2007							GE	GE	GE	GE	GE				
2009							GE			GE	GE				
2010								GE	GE	GE					
					lated du					or 2011					
Stn. HP_GD_15 : WQI was not calculated due to un-availability of data for 2011 Station No : HP_GD_20 Station Name : Takli, Tal Devni; Dist Latur															
	Station No : HP_GD_20 Station Name : Takli, Tal Devni; Dist Latur 2007 <														
2007									GE	GE	GE				
2009								GE			GE				
2010							GE	GE	GE		GE	GE			
					loted du			l				GE			
Stn. HP_												a			
	Station No : HP_GD_21 Station Name : Taklidhangar, Tal Nanded; Dist Nanded 2007 GE GE GE GE														
	2007 GE GE GE GE 2008 GE GE GE														
	1						GE			GE	GE				
2009 2010							GE	 CE	GE	GE					
Stn. HP	CD 21			t colou	loted du		ovoile	GE hilitu o		 or 2011					
Station 2007															
2007						CE	GE	GE	GE	GE	GE				
2008						GE	GE	GE		GE	GE				
2009							GE GE	GE GE	GE	GE	GE	GE			
2010 Stn. LID	CD 2) · W/O1		 ot color-	 loted d	o to ::::				GE or 2011		GE			
Station												1			
Station 2007							ĺ								
2007								GE	GE	GE	GE				
2008						GE	GE	GE	GE	GE	GE				
2009						GE	GE	 CE	 CE	GE	 CE	 CE			
2010	CD 21				1.4.1.1			GE	GE	GE	GE	GE			
Stn. HP_											-				
Station						l					OF.				
2007							GE	GE	GE	GE	GE				
2008									GE	GE	GE				
2009							GE	GE		GE					
2010							GE	GE		GE					
Stn. HP_	_GD_24	1 : WQ]	l was no	ot calcu	lated du	e to un	-availa	bility of	f data fo	or 2011					

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Godava	ri Rive	r (Con	td)									
Station 1	No : H	P_GD_	25 Sta	tion Na	me : Za	ari, Ta	l Par	bhani;	Dist I	Parbha	ni	
2007								GE	GE	GE		
2008											GE	
2009		-			-		GE			GE	GE	
Stn. HP_	GD_25	5 : WQ	I was no	t calcu	lated du	e to un	-availa	bility o	f data f	or 2010	& 11	
Station 1	No : H	P_GD_	1 Stati	on Nar	ne : Bh	andard	lara, T	al Na	nded;	Dist N	landed	
2007			MG				GE					
2008							MG					
Stn. HP_	GD_1	: WQI	was not	calcula	ited due	to un-a	availab	ility of	data for	r 2009 t	to 2011	
Station 1	No : H	P_GD_	3 Stati	on Nar	ne : Ga	ngapu	r Dam	, Tal 1	Nasik ;	Dist	Nasik	
2007			MG						GE			
2008							Bad					
Stn. HP_	GD_3	: WQI	was not	calcula	ited due	to un-a	availab	ility of	data for	r 2009 1	to 2011	
Station 1	No:H	P_GD_	7 Stati	on Nar	ne : Ko	pargao	n, Tal	Kopa	argaon	Dist	Ahmed	nagar
2008								MG	Bad	Bad		
2010	1	1		-	1			VB	VB	Bad	1	
Stn. HP_	GD_7	: WQI	was not	calcula	ited due	to un-a	availab	ility of	data foi	r 2009 a	& 2011	
Station 1	No : H	P_GD_	26 Sta	tion Na	me : A	nantwa	adi, Ta	ıl Mal	nagaon	; Dist	Yavatı	nal
2007						GE	MG		GE	GE	GE	GE
2008	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE	
2009	GE	GE	GE	GE	MG	GE		MG	GE			
2010							GE	MG	GE	GE	GE	GE
2011	GE	GE	GE	GE								
Station 1	No : H	P_GD_	27 Sta	tion Na	me : D	amren	cha, Ta	al Aho	eri; Dis	t Gad	lchiroli	
2007					GE						GE	
2008		GE			GE				GE			
2009			GE			GE			GE			
2010									GE			GE
2011			GE									
Station 1	No : H	P_GD_	28 Sta	tion Na	me : D	eori, T	al Go	ndia; I	Dist G	ondia		
2007					GE			GE			GE	
2008		GE			GE				GE			
2009	1	1	GE	1	I	GE			GE	-	1	
2010	-	-			-				GE		-	GE
Stn. HP_	GD_28	3 : WQ	I was no	t calcu	lated du	e to un	-availa	bility o	f data fo	or 2011		
Station 1	No: H	P_GD_	29 Sta	tion Na	me : D	haba, T	Гal G	ondpip	ri; Dis	t Cha	ndrapı	ır
2007					MG	MG	MG	MG	GE	MG	GE	GE
2008	GE	GE	GE	GE	GE		MG	MG	MG	MG	MG	
2009	MG	MG	MG	MG		MG	MG	MG		MG	MG	
2010						MG	GE	GE	MG	GE	GE	GE
2011	GE	GE	GE	GE	GE							
Station 1	No : H	P_GD_	30 Sta	tion Na	me : D	rugwa	da, Tal	l Asht	i; Dist.	- Ward	lha	
2008								GE				
2009	ı	GE		1	GE				-	-	-	
2010	-	1		-	I	GE			1	-	-	GE
2011			GE									
4 011												

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Godavari l				Арг	Wiay	Jun	Jui	Aug	БСР	Oct	1101	Dec
Station No				n Nam	e : Kan	ntheek	hairi.	Tal P	arseon	i: Dist.	- Nagn	ıır
2007				GE								
2008	GE			GE				GE				
2009		GE			GE			MG				
2010						GE			GE			GE
2011			GE									
Station No	: HP_	GD_32	Statio	n Nam	e : Kar	dha,Ta	al Bh	andara	; Dist.	- Bhan	dara	
2007				GE						GE		
2008	GE			GE				GE				
2009	1	GE	1		GE			GE				i
2010	1		I	-	1	-			GE		-	GE
2011	1		GE	-	-	-					1	1
Station No	: HP_	GD_33	Statio	n Nam	e : Kol	gaon,T	al W	ani; Di	ist Ya	vathm	al	
2007					MG	GE	MG	GE		GE	GE	GE
2008	GE	GE	MG	GE	GE		GE	MG	MG	GE	GE	
2009	GE	GE	GE	GE	GE	MG		MG	GE	GE	GE	
2010							MG	MG	GE	GE	GE	GE
2011	GE	GE	GE	GE	GE							
Station No	: HP_	GD_34	Statio		e : Mal	nagaon	,Tal	Aheri	; Dist.		chiroli	
2007				GE						GE		
2008	GE			GE				GE				
2009		GE										
					ed due 1							
Station No	: HP_	GD_35	Statio			hani,T	al M	ouda;			•	
2007				GE						GE		
2008	GE	CE		GE				GE				
2009		GE		1 1 4	GE			MG	1	2010		
Stn. HP_GI												
Station No 2007							1					
2007				GE	GE			GE		GE	 CE	
2009		MG			GE						GE 	
Stn. HP_GI	7 36 ·			 ralculat			vailahi	lity of a		2010		
Station No												
2007				GE			GE			GE		
2008				GE			GE			GE		
2009				GE				MG				
2010												GE
2011			GE									
Station No		GD 38			e : Din	dora.T	al W	arora:	Dist			
2007					GE	GE	MG	GE	MG	GE	GE	GE
2008		GE	GE	GE	GE		GE	MG	MG	GE	GE	
2009	GE	GE	GE	MG	GE	MG		GE	GE	GE	GE	
2010						MG	GE		MG	GE		GE
2011	GE	GE	GE	GE	GE							
4 011	OL	OL	OL	OL	UL		_	L				_

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Godava				Арі	May	Jun	Jui	Aug	БСР	Oct	1101	DCC
Station 1		•		tion Na	me : To	emhur	doh Ta	al - Sao	ner: Di	ict - Na	gnur	
2007			_ <u>57 5ta</u>	GE			MG			GE		
2008	GE			GE				GE				
2009		GE						MG				
2010						GE			MG			GE
2011			GE									
Station 1					me : C	hincho	li.Tal.	- Brahr	napuri.			
2008	GE			GE				GE				
2009		GE			GE			GE				
2010						GE						GE
2011			GE									
Stn. HP_	GD 40): WOI		t calcul	ated due	e to un-	availat	oility of	data fo	or 2007		
Station 1								•			andrar	our
2007				GE						GE		
2008	GE			GE				GE				
2009		GE			GE			GE				
2010						GE						GE
2011			GE									
Station 1	No : H	P_GD_	42 Sta	tion Na	me : W	arud l	Bagaji,	Tal 7	Tiwasa	Dist	Amrav	ati
2007					GE	GE	GE		MG	GE	GE	MG
2008	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE	
2009	GE	GE	GE	GE	GE	GE	GE	GE	MG	GE	GE	
2010							GE		GE	GE		GE
2011	GE	GE	GE	GE	GE							
Station 1	No : 12	Statio	n Nam	e : Dha	legaon,	Tal	Pathar	ri; Dist.	- Parbl	hani		
2007	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2008	GE	GE	GE	GE				GE	GE	GE	GE	GE
2009			GE		-			GE	GE	GE	GE	MG
2010							GE	GE	GE		GE	GE
2011	GE		GE	GE	-			GE	-	GE	GE	
Station 1	No : 10	95 Sta	tion Na	me : U	J/S of G	angapı	ur Dan	n, Tal	Nasik ;	; Dist	Nasik	
2007	GE	GE	GE	GE	GE	GE	GE			GE	GE	GE
2008	GE	-	GE	GE	GE		GE		-	GE	GE	GE
2009	GE		GE	GE		GE	GE	GE	GE	GE	GE	GE
2010			GE	GE	GE	GE	GE	GE	GE		GE	GE
2011	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE	
Station 1	No: 10											
2007		GE	GE	GE	GE	MG	MG	MG	MG	MG	GE	MG
2008	GE		GE	MG	MG	GE	GE	GE	GE	GE	GE	GE
2009	GE		GE	MG	MG	MG	MG	GE	MG	MG	GE	MG
2010			MG	MG	GE	MG	MG	MG	GE	Bad	MG	MG
2011	MG	MG	GE	MG	MG	MG	MG	MG	GE	GE	GE	
Station 1												
2007	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2008	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2009			GE	GE	GE		GE	GE	GE	GE	GE	MG
2010					GE		GE	GE	GE		GE	GE
2011		GE	GE	MG	GE	GE	GE	GE	GE	GE	GE	

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Godava						, , , , , , , , , , , , , , , , , , , ,		8			_ , , ,	
Station			,	me : I	ntake P	ump H	ouse, '	TalVi	shnupi	ıri; Dis	t Nan	ded
2007			GE	GE	GE	GE	GE	GE	GE	ĞЕ	GE	GE
2008	GE	GE	GE	GE				GE	GE	GE	GE	GE
2009				GE			GE					
2010					1						GE	GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	
Station 1	No : 12	11 Sta	tion Na	me : N	asik D/	s Near	Amar	dham,	TalN	ashik;	Nasik	
2007		MG	GE	MG	MG	MG	MG	MG		MG	MG	MG
2008	GE		GE	MG	MG	MG	MG	MG	GE	GE	GE	GE
2009	GE		MG		MG	GE	GE	GE	GE	MG	MG	MG
2010			GE		GE	MG	MG	MG	GE	Bad	MG	MG
2011	MG	MG	GE	Bad	MG	MG	MG	MG	GE	Bad	GE	
Station 1	No : 13	12 Sta									_	
2007			GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2008	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2009			GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2010					GE		GE	GE	GE		GE	GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	
Station 1	No : 21	57 Sta	tion Na	ıme : L		ater In	take,					3.50
2009										GE	GE	MG
2010	 CE	 CF	 CF		 CE		 CE	GE		 CE	GE	GE
2011	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE	
Stn.2157												-11
Station 2008						I		1	f -	·		
2009	GE		GE GE	GE GE	GE GE	GE GE	GE GE	GE GE	GE GE	GE GE	GE GE	GE MG
2010								GE	GE		GE	GE
2010	GE	GE	GE	GE	GE	GE	GE	OL.	GE	GE		
Stn.2158								data fo		OL		
Station 1										e. Aura	ngaha	1
2008			GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2009	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	MG
2010								GE	GE		GE	GE
2011		GE	GE	GE	GE	GE		GE	GE	GE		
Stn.2159	: WOI						ility of			1		
Station 1										1 Deori		
Tal Ga	ngapur	; Dist	Auran	gabad								
2008			GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2009	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	MG
2010	-	-			GE		-	GE	GE	GE	GE	MG
2011	GE	GE	GE	MG	GE	GE	GE	GE	GE	GE		
Stn.2160): WQI	was no	t calcul	ated du	e to un-	availab	ility of	data fo	r 2007			

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Godava			17141	11p1	IVIU	oun	Jui	riug	БСР	OCT	1101	Dec
Station I			ion Nar	ne : Jal	ana Inta	ake Wa	ter Pu	mp Ho	use. Sha	ahabad	Deori	
Tal An								•	,			
2008			GE	GE	GE	GE	GE	GE	GE	GE		GE
2009	GE		GE	GE			GE	GE	GE	GE	MG	MG
2010							GE				GE	GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE		
Stn.2161												
Station	No : 21	.77 Sta			lear Sor		ar Ten				st Nas	ik
2007						 CE	 CE			MG		
2008			GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2009	GE		MG	GE	GE	GE	GE	GE	GE	GE	GE	MG
2010	GE	CE	GE GE	GE GE	GE GE	MG GE	GE	GE MG	GE GE	GE	GE GE	GE
2011 Station	l	GE 78 Sto					Moote	l			l	
2008		.70 Sta	GE		Bad	11a11d		MG	Bad	Bad	ISIK 	MG
2009	MG		Bad			MG	MG	GE	GE	MG	MG	MG
Stn.2178	l	was no			e to un-a						l	
Station												
2008		GE	GE		Bad	Bad	Bad	MG	GE	GE	MG	GE
2009	GE		MG		GE	MG	GE	MG	GE			MG
Stn.2178	3: WQI	was no	t calcula	ated du	e to un-a	availab	ility of	data fo	r 2007	and 20	10 -201	1
Station	No : 21	80 Sta	tion Na	me : N	lear Taj	ovan.	Village	e- Tapo	van, N	asik		
2008		GE	MG	Bad	Bad	Bad	Bad	MG	GE	GE	GE	MG
2009	MG		MG	Bad	GE	MG	MG	GE	MG	MG	MG	Bad
2010			MG	MG	GE	MG	MG	MG	MG	Bad	MG	GE
2011	GE	GE	MG	Bad	MG	MG		Bad	GE		MG	
Stn.2180										NT '1		
Station												MC
2008 2009	GE	GE	MG	Bad	MG GE	Bad MG	Bad MG	MG MG	GE MG	GE MG	MG MG	MG MG
2010			MG GE	Bad MG	GE	GE	GE	GE	MG	MG	GE	GE
2011	GE	MG	GE	Bad	MG	MG	Bad	MG	GE		Bad	
Stn.2181											Dad	<u> </u>
Station							•			dia		
2008				GE	GE	GE	GE	GE	GE	GE		
2009	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	MG
2010			GE	GE	GE	GE	GE	GE	GE	MG	GE	GE
2011	GE	MG	GE	GE	GE	GE	GE	GE	GE	MG		
Stn.2182												
Station	No : 21	83 Sta							_			
2008			GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2009	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2010			GE	GE	GE	GE	GE	GE	GE		GE	GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE			
Stn.2183	3: WQI	was no	t calcula	ated du	e to un-	availab	ılity of	data fo	r 2007			

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Gomai l	Gomai River													
Station	Station No: 2666 Station Name: D/s of Shahada, Tal Dhule, District- Dhule													
2007					MG					MG	MG			
2008	MG	GE	GE				GE				GE			
2009												MG		
2010			GE	GE								MG		
2011	MG	GE	GE							GE	GE	GE		

Hiwara	River														
Station	Station No: 2667 Station Name: D/s of Pachora, Tal. Jalgaon, District- Jalgaon														
2007															
2008		MG	MG	MG		MG	GE								
2010			-		1				-	GE	MG				
2011	MG	GE	GE		-						GE	GE			
Stn. 266	7: WQI	was no	ot calcul	lated du	ie to un-	availat	ility of	f data fo	or 2009						

Indraya	ni Rive	er										
Station	No : 21	97 Stat	tion Na	me : D	s of Ala	andiga	on, Tal	l. Haw	eli, Dis	trict -]	Pune	
2007	GE	1	MG	MG	1	MG	ł	GE	MG	MG	GE	Bad
2008	Bad	Bad	I	Bad	VB		MG	Bad	GE	Bad	VB	MG
2009	MG	1	I	MG	Bad	Bad	MG	MG	MG	MG	MG	Bad
2010		1	MG	MG	MG	Bad	Bad	VB	MG	MG	MG	MG
2011	MG	1	MG	MG	MG	MG	MG	MG	MG	MG	MG	
Station No: 2668 Station Name: D/s of Moshi village, Tal. Haveli, District - Pune												
2007		1	MG	Bad	ŀ	GE	-	MG	MG	Bad	MG	Bad
2008	MG	Bad	MG	MG	Bad	Bad	MG	MG	MG	MG	MG	MG
2009			MG									Bad
2010			Bad	Bad	-	VB	Bad	MG	MG	MG	GE	MG
2011	Bad	-	MG	MG	Bad	MG	MG	MG	MG	Bad	Bad	
Station	No : 26	69 Stat	tion Na	me : U	s of Mo	shigad	n, Tal	. Have	li, Dist	rict - P	une	
2007		-	MG	MG	1	MG		GE	MG	MG	MG	Bad
2008	MG	MG		MG	VB	Bad	MG	MG	MG	MG	Bad	Bad
2009	GE		GE		-							MG
2010	GE		GE		-			-		-		MG
2011			MG	MG		VB	GE	MG	GE	MG	GE	GE

Kajvi R	iver											
Station	No : H	P_KJ_ :	1 Statio	n Nam	e : Anja	anari, '	Tal. La	anja, Di	istrict-	Ratna	giri	
2007		GE	GE	GE	GE	GE	GE	MG	MG	GE	GE	
2008	GE	GE	MG	MG	I	GE	GE	GE	GE	GE	GE	GE
2009	GE	GE	GE	GE	GE	GE	MG	GE	GE	GE	GE	GE
2010	1	I	1		I	GE	GE	GE	GE	GE	GE	GE
2011	GE	GE	GE	GE	GE				-		-	
Station	No : H	P_ KJ _2	2 Statio	n Nam	e : Past	ewadi,	TalS	Sangme	shwar,	Distri	ct- Rati	nagiri
2007		GE	-		1	GE	MG	GE	-	GE	MG	
2008	GE	GE	ŀ		I	MG	GE	GE	GE		GE	GE
2009	GE	GE	-		1	GE	GE	GE	GE	GE	GE	GE
2010						GE		GE	GE	GE	GE	GE
2011	GE	GE			-							

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Kalu Ri	ver													
Station	Station No: 1092 Station Name: Atale, Taluka- Kalyan, District- Thane													
2007	MG			MG			GE			GE				
2008	GE			Bad			GE			MG				
2009	GE						GE			GE				
2011			-	GE	MG	MG	GE	GE	GE	GE	GE			
Stn.1092	2: WQI	was no	t calcula	ated du	e to un-a	availab	ility of	data fo	r 2010					

Kan Riv	Kan River												
Station No: 2670 Station Name: Sakri Water Works, Tal. Dhule, District- Dhule													
2007					GE					MG	MG		
2008	GE	GE	GE	GE		GE	GE				GE		
2009		GE										GE	
2010								GE	GE			MG	
2011	MG	GE	GE		1				-			MG	

Kanhan	Kanhan River											
Station	No :190	09 Stati	ion Nar	ne : D/s	s of Nag	gpur, T	al. Ku	hi, Dis	trict- N	agpur		
2007	MG		VB	GE	VB	VB	VB	VB	VB	MG	VB	VB
2008	MG		1	MG					-	-		
2009	GE	1	1	GE		1	MG	1	1	1	1	
2010	-	-	1	MG		-	MG	-	-	MG	-	
2011	GE		MG	MG	Bad	MG	MG	GE	MG	GE	MG	
Station No : 2170 Station Name : U/s of M/s Vidarbha Paper M., Tal. Parseoni, Nagpur												gpur
2008		MG	GE	GE	GE	GE	GE	GE		GE	GE	
2009	MG		GE	GE	MG	GE	MG	GE				GE
2010			MG	MG	GE	GE		GE	GE	GE	GE	MG
2011	GE	GE	MG	GE	GE	GE	MG	MG	MG	GE	GE	
Stn.2170): WQI	was no	t calcula	ated du	e to un-a	availab	ility of	data fo	r 2007			
Station	No : 21	71 Stat	tion Na	me : D	s of M/	s Vida	rbha P	aper M	I., Tal.	Parsec	ni, Nag	gpur
2008	-	-	MG	GE	MG	MG	MG	MG	-	GE	-	
2009	MG		GE	GE	MG	MG	MG	MG			MG	MG
2010	-	-	MG	MG	MG	MG	1	MG	MG	Bad	MG	MG
2011	MG	MG	MG	MG	MG	MG	MG	MG	MG	GE	MG	
Stn.2171	: WQI	was no	t calcula	ated due	e to un-a	availab	ility of	data fo	r 2007			

Kodava	Kodavali River											
Station No: HP_KV_1 Station Name: Rajpatan, Taluka-Rajapur, District- Ratnagiri												
2007	GE	GE	GE	GE	GE	MG	GE	MG	MG	MG	MG	1
2008	GE	GE	MG	GE		MG	MG	GE	GE		MG	GE
2009	GE	GE	GE	GE	GE	MG	MG	GE	MG	MG	GE	GE
2010						MG	GE	MG	GE	GE	GE	GE
2011	GE	GE	GE	GE	GE							

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Kolar River												
Station No: 1908 Station Name: Before Confluence with Kanhan River at												
Warega	on Bri	dge, Ta	luka-K	ampte	e, Distri	ict-Nag	gpur					
2007	MG			MG	-		MG			MG		
2008				MG			MG					
2009	GE			MG			MG			MG		
2010			-		-				-	MG		
2011	GE		MG	GE	MG	GE	GE	MG	MG	MG	MG	

Koyna River												
Station No: 2189 Station Name: Village- Karad, Taluka- Karad, District- Satara												
2007				MG	-	GE			MG	MG	MG	MG
2008	MG	MG	MG	GE		MG	MG	MG	GE	GE	Bad	
2009	MG	-	MG	MG	MG	MG	GE	MG	MG	MG	GE	MG
2010		-	MG	GE	GE	GE	GE	MG	MG	MG	GE	MG
2011	MG		MG	MG	MG	MG	GE	MG	MG	MG	Bad	

Krishna	River											
Station	No: H	P-KR_	3 Stati	ion Nai	ne : An	nbegha	r-Kar	anje, T	alBho	r, Dist	Pune	,
2007	GE	MG	GE	GE	MG		I					
2010	-		-		-		MG	MG	MG	MG	MG	MG
2011	MG	MG	MG	MG	MG		I					
Stn.HP-KR_3: WQI was not calculated due to un-availability of data for 2008 and 2009)	
Station No: HP-KR_4 Station Name: Bandalgi, TalSolapur, District-Solapur												
2007	I	MG	MG		I	GE	MG	GE	GE	GE	GE	MG
2008	-		-					Bad	MG	MG	MG	MG
2009	MG	MG	Bad			MG			MG	MG	MG	MG
2010	-		-		-		-		MG	MG		
2011	MG	MG			1							
Station	No: H	P-KR_	5 Stati	ion Nai	ne : Ba	rur-Ta	kli, Ta	alSola	pur, Di	istrict-	Solapui	r
2007	GE	Bad	MG		1	MG	GE	MG	MG	Bad	MG	MG
2008	MG	MG	MG	MG	1	MG	GE	MG	MG	MG	MG	MG
2009	MG	Bad	MG	MG	MG	MG	MG	MG	MG	MG		
2010	I	-	1		1		1	MG	MG	MG		
2011	MG											
Station	No: H	P-KR_	7 Stati	ion Nai	ne : Bu	bnal, T	alSh	irol, Di	strict-	Kolha	pur	
2007		GE	GE	GE	GE	GE	GE	MG	MG	MG	MG	
2008	MG	GE	MG	MG	MG	MG	MG	MG	MG		MG	MG
2009	MG	MG	MG	GE	GE	GE	MG	MG	MG	MG	MG	MG
2010	1		1			MG	MG	MG	MG	MG		
Stn.HP-1	KR_7:	WQI w	as not c	calculat	ed due t	o un-av	ailabil	ity of d	ata for	2011		
Station	No: H	P-KR_	8 Stati	ion Nai	ne : Bu	ndgaro	len, B	ridge, T	Րal Ha	aweli, I	Dist P	une
2007		Bad	MG		Bad				VB	MG	VB	

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Krishna												
Station		_		ion Nai	ne : Ch	askma	n, Tal	.:-Khed	l, Distr	ict- Pu	ne	
2007	MG	MG	GE	GE	GE		ĞE	MG	MG	MG	MG	GE
2008	GE	MG	MG	MG	MG	MG	MG	MG	MG			MG
2009	MG	MG	MG	MG	MG		MG	MG	MG	MG	MG	MG
2010								MG	MG	MG	MG	MG
2011	MG											
Station	No: H	P-KR_	10 Sta	tion Na	ame : D	attawa	di, Ta	l Haw	eli, Dis	t Pur	ie	•
2007	VB	Bad	Bad	VB			MG	MG	GE		Bad	Bad
2008	VB			VB		Bad	MG	MG	MG	MG	Bad	Bad
2009	VB	VB	VB			VB	VB	VB				
Stn.HP-1	KR_10	: WQI	was not	calcula	ited due	to un-a	vailab	ility of	data for	r 2010	and 201	1
Station 1	No: H	P-KR_	11 Sta	tion Na	ame : D	aund, '	TalD	aund, I	District	-Pune		
2010								MG	MG	MG	MG	MG
2011	MG	MG	MG									
Stn.HP-1	KR_11	: WQI		calcula	ited due	to un-a	vailab	ility of	data for	r 2007	to 2009	
Station	No: H	P-KR	13 Sta	tion Na	ame : K	ale Co	lony, I	ГаlМа	val, Di	st Pu	ne	
2007		GE	GE	MG	GE	MG	GE	MG	MG	MG	GE	GE
2008	GE	GE	MG	GE	GE	MG	MG	MG	MG	GE	MG	MG
2009	MG	MG	MG	GE	MG	MG	MG	MG	MG	MG	GE	MG
2010					-			GE	GE	MG	MG	MG
2011	MG	GE	GE	MG								
Station 2	No: H	P-KR	14 Sta	tion Na	ame : K	ashti, '	ΓalSl	nrigond	la, Dist	rict-Al	nmedna	agar
2007								MG	MG			
2008									MG	MG		
2009							MG		MG	MG	MG	MG
Stn.HP-l	KR_14	: WQI	was not	calcula	ited due	to un-a	availab	ility of	data for	r 2010	and 201	1
Station 1												
2010									MG	MG	MG	MG
2011	MG	MG	MG	MG			-					
Stn.HP-l	KR_15	: WQI	was not	calcula	ited due	to un-a	availab	ility of	data for	r 2007	and 200	9
Station	No: H	P-KR_	16 Sta	tion Na	ame: Kı	ırundy	vad-W	adi, Ta	d. Shir	ol, Kol	hapur	
2007	GE	MG	MG	GE		GE	GE	GE				
2008	MG	MG	MG	MG	MG	MG	MG	MG	MG		MG	GE
2009	MG	MG	GE	GE	GE	MG	MG	MG		MG	MG	Bad
2010						MG	MG	MG	MG	MG		
Stn.HP-l	KR_16	: WQI	was not	calcula	ited due	to un-a	availab	ility of	data for	r 2011		
Station 1	No: H	P-KR_	17 Sta	tion Na	ame: M	haisal,	Tal l	Miraj, l	Dist S	angli		
2007	GE	GE	GE	GE	GE	GE	GE	GE	MG	MG	GE	
2008	MG	GE	GE	GE	MG	MG	MG	GE	MG		GE	GE
2009	GE	MG	MG	MG	MG	MG	MG	GE	MG	MG	MG	MG
2010						MG	MG	MG	GE	MG		
Stn.HP-1	KR_17	: WQI	was not	calcula	ated due	to un-a	availab	ility of	data for	r 2011		
Station 2	No: H	P-KR_	19 Sta	tion Na	ame: Ni	ghoje,	Tal I	Khed, I	Dist P	une		
2007	MG	GE	MG	GE		GE	GE	GE	GE	MG	MG	MG
2008	GE	MG	MG	GE	MG	MG	GE	GE	MG	MG	MG	MG
2009	MG	MG	MG		MG	MG	MG	MG	MG	MG	MG	MG
2010					I		MG	MG	MG	MG	MG	MG
2011	MG	GE	MG		-							

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Krishna	River	(Conto	l)									
Station	No: H	P-KR_	20/ 25	Station	n Name	: Shiru	ır, Nin	igaon, i	Karjat	Ahme	dnagar	•
2007										GE	GE	
2008		-								GE	1	
2010								MG	MG	MG	MG	
Stn.HP-	KR_20/	25 : W	QI was	not cal	culated o	due to t	ın-avai	lability	of data	for 20	09 & 2	011
Station	No: H	P-KR_	_21 Sta	tion Na	ame: Pa	ndhar	pur, D	istSol	apur			
2007	GE	MG	MG	MG	MG							
Stn.HP-			`								08 to 20)11
Station			_23 Sta			ud, Ta	ıl Mu		ist Pu			
2007	GE	GE	MG	GE	GE	MG		GE	GE	MG	MG	GE
2008	MG	MG	MG	MG	MG	MG	MG	GE	MG	MG	MG	MG
2009	MG	GE	MG	MG	MG	MG	MG	MG	MG	MG	MG	
2010								MG		MG	MG	MG
2011	MG	MG	MG									
Station				tion Na								e
2007	VB	VB	VB	Bad	VB	VB	Bad	MG	MG	VB	Bad	
2008						Bad	MG	MG	MG	MG	Bad	
2009					VB		VB	VB		Bad		
2010								VB	VB			
2011		VB										
Station	No: H		_25 Sta		ame: Ra							
2010								MG	MG	MG	MG	
Stn.HP-												11
Station	1				ishna b							7.50
2007	GE	GE	GE	GE	GE	GE	GE	GE	GE	MG	GE	MG
2008	MG	MG	Bad	MG	GE	MG	GE	MG	MG	GE	MG	MG
2009	MG		MG	MG	GE	MG	MG	MG	MG	MG	MG	MG
2010			MG	MG	MG	MG	MG	MG	MG	MG	GE	Bad
2011	MG	MG	MG	MG	MG	MG	GE	MG	MG	GE	Bad	
Station					ighat, S	sangii,					CE	CE
2007	GE	GE	GE	GE	CE	CE	GE	GE	GE	GE	GE	GE
2008	GE	GE	GE	GE	GE	GE	CE	GE	GE	GE	GE	GE
2009	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2010	CE		GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2011 Station	GE No. 11	GE 53 Sto	GE No	GE		GE Wein '	GE	GE birol I	GE Vict V	GE		
Station 2007												CE
2007	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2008 2009	GE	GE	GE	GE GE	GE	GE	GE	GE	GE	GE	GE	GE
	GE		GE		GE	GE	GE	GE	GE	GE	GE	GE
2010		CE	GE	GE	 CE		GE	GE	GE	GE	GE	GE
2011	GE	GE			GE	GE	GE	GE	GE	GE	GE	

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Krishna	River	(Conto	l)		Ť							
Station	No : 11	94 Stat	tion Na	me: Dh	om Da	m, Tal.	:- Mal	nabales	hwar,	Dist.:-S	Satara	
2007	GE	GE	GE	GE	GE	GE	1	1	GE	GE	GE	GE
2008	GE	GE	GE	GE	1	GE	GE	GE	GE	GE	MG	GE
2009	GE	-	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2010		-	GE	GE	MG	GE	GE	GE	GE	GE	GE	GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	
Station	No : 13	10 Stat	tion Na	me: Kı	ırundw	ad Nea	r S. G	horpad	le Ghat	t, Shiro	l, Kolh	apur
2007	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2008	GE	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE
2009	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2010			GE		GE		GE	GE	GE	GE	GE	GE
2011	GE	GE	MG	GE	GE	GE	GE	GE	GE	GE		
Station 1							lampu					angli
2007	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2008	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2009	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2010			GE		GE	GE	GE	GE	GE	GE	GE	GE
2011	GE	GE	GE	GE		GE	GE	GE	GE	GE		
Station		87 Stat			hetra N		Satar			1	1	
2007	GE		GE	MG		GE		MG	MG	MG	MG	MG
2008	MG	MG	MG	GE	MG	MG	MG	MG	MG	MG	MG	GE
2009	MG		MG	MG	MG	MG	MG	MG	MG	Bad	MG	MG
2010			MG	MG	MG	MG	MG		MG	GE	GE	MG
2011	GE	MG	MG	Bad	MG	GE	MG	MG	MG	MG	MG	
Station		88 Stat			<u>ishnaV</u>		angan	•				
2007	GE		GE	MG		GE		MG	MG	MG	MG	MG
2008	MG	MG	MG	MG	Bad	Bad	MG	MG	MG	MG	MG	MG
2009	MG		GE	MG	MG	MG	GE	MG	MG	Bad	MG	MG
2010			MG	GE	MG	MG	GE	MG	MG	MG	GE	MG
2011	GE	MG	MG	MG	MG	MG	GE	MG	MG	MG	MG	
Station 1											3.50	1.60
2007			GE	MG		GE	MG		MG	MG	MG	MG
2008	MG	MG		MG	MG	MG	GE	MG	MG	MG	MG	MG
2009	MG		MG	MG	MG	MG	MG	MG	MG	MG	MG	MG
2010			MG	MG	GE	GE	GE	MG	MG	MG	GE	GE
2011	MG	MG	MG	MG	MG	MG	GE	GE	MG	MG	MG	

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Kundali	ka Riv	er											
Station 1	No :HI	P_KD_ :	1 Statio	n Nam	e: Vara	sgaon,	Tal. F	Roha, D	istrict-	Raiga	d		
2007	GE	GE	GE	GE	GE	GE	MG	MG	GE	GE	GE	MG	
2008	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	MG	GE	
2009	GE		MG	MG	GE	MG	GE	GE	MG	GE	MG	GE	
Stn.HP-I	KD_1:	WQI w	as not o	calculat	ed due t	o un-a	vailabil	lity of d	ata for	2010&	11(Mis	sing)	
Station 1	No :11:	52 Stat	ion Nar	ne: Ro	ha Brid	ge, Tal	l. Roha	ı, Distr	ict- Ra	igad			
2007	GE									GE			
2008	GE												
2009	GE			GE			GE			GE			
2010				GE									
2011	GE			GE	GE	GE		GE	GE	GE			
Station No : 2198 Station Name: AreKhurd, Tal. Roha, District-Raigad													
2008			Bad	Bad		Bad	GE	MG	MG			GE	
2009	GE		GE	MG	Bad	MG	Bad	MG	Bad		GE	GE	
2010											GE	MG	
2011	MG	GE	MG	GE	MG	GE	MG	GE	GE	GE			
Stn.2198	3 : WQI	was no	ot calcul	lated du	ie to un-	availat	oility of	f data fo	or 2007				
Station 1	No : 26	71 Stat	tion Na	me: Sa	lav brid	lge, Ta	luka-F	Roha, D	istrict-	Raiga	d.		
2007	GE		MG	MG		GE	GE	MG	MG			GE	
2008			Bad	Bad		Bad	GE	MG	MG			GE	
2009	GE		GE	MG	Bad	MG	Bad	MG	Bad		GE	GE	
2010						MG			GE		MG	GE	
2011	GE	GE	GE	Bad	MG	GE	MG	GE	GE	MG			
Station 1	No: 26	72 Stat	tion Na	me: Dh	atav Ja	ckwell	, Talu	ka-Roh	a, Dist	rict-Ra	aigad.		
2007	GE			GE		GE	GE	GE	GE	GE			
2008		GE		GE									
2010	-		GE	GE				GE	GE		GE	GE	
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE			
Stn.2672	2 : WQI	was no	ot calcul	lated du	ie to un-	availat	oility of	f data fo	or 2009				

Manjra	River													
Station No : 2673 Station Name: D/s of Latur, near Latur- Nanded Bridge														
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec														
2009										GE	MG			
2010					-				-			GE		
2011	GE	GE	MG	GE				GE	GE	GE	GE			
Stn.2673	3 : WOI	was no	ot calcu	lated du	ie to un-	availal	oility o	f data fo	or 2007	and 20	008			

Mithi R	iver														
Station 1	Station No: 2168 Station Name: Near Road bridge, Taluka-Bandra, District-Mumbai														
	JanFebMarAprMayJunJulAugSepOctNovDec														
2008					VB						Bad				
2009															
2010				VB				VB		MG					
2011	Bad		VB		VB	Bad	VB	Bad	MG		MG				
Stn.2168	3 : WQI	was no	ot calcul	lated du	ie to un-	availat	oility o	f data fo	or 2007	•	•	·			

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Mor Riv	er														
Station 1	Station No : 2674 Station Name: Padalashe village, Tal. Jalgaon, Dist. Jalgaon														
2007	I			1	1			GE	1	Bad	1				
2008	I			1	1				1		GE				
2009	-			-								MG			
2011	-										GE				
Stn.2674	: WQI	was no	ot calcul	ated du	ie to un-	availat	oility o	f data fo	or 2010						

Morna l	River												
Station No: 2675 Station Name: D/s of Railway Bridge, Tal. Akola, District- Akola													
2007								GE		Bad			
2008											Bad		
2009			-		-							MG	
2010			1		1		Bad	MG	Bad	MG	VB	VB	
2011			-		-			MG	MG	GE	Bad		

Muchku	ındi Ri	ver													
Station	No :HF	P_MU_	1 Stati	on Nar	ne: Paw	arwad	i, Tal.	Lanja,	Distri	ct- Rat	nagiri				
2007	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE				
2008	GE	GE	GE	GE	GE	MG	GE	GE	GE		GE	GE			
2009															
2010 GE GE GE GE GE GE															
2011 GE GE GE GE GE															
Station No : 2676 Station Name: Near M/s Asahi Maharashtra Glass Ltd,															
Tal. Lan	Tal. Lanja, District- Ratnagiri														
2008	GE				GE	GE		GE	GE	GE	GE				
2009		GE	GE		GE	GE	GE	GE		GE	GE	GE			
2010			-		-		-				GE	GE			
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE		GE			
Stn.2676	5 : WQI	was no	ot calcul	lated du	ie to un-	availat	oility of	f data fo	or 2007	•					

Mula-M	lutha R	liver												
Station	No : 21	91 Sta	tion Na	me: Sa	angam l	Bridge	Near (Ganapa	thy Gl	nat, Pu	ne			
2007		I	1	-	1			1	Bad					
2008									VB		VB	Bad		
2009	Bad	I	1	-	1		Bad	1			VB			
2010		1	1	-	1	VB	VB	VB	VB	VB	VB	VB		
2011		-		VB	VB	VB	VB	VB	Bad	VB				
Station	Station No :2192 Station Name: Mundhawa Bridge, Tal. Haweli, District- Pune													
2007		1	Bad	1	1			VB	Bad					
2008		VB	1	-	1		Bad	Bad	Bad	Bad	VB	MG		
2009	MG	1			-		VB	1	VB	VB	VB	VB		
2010		-	VB		VB		VB	VB	VB	VB	Bad	Bad		
2011	VB	-	1	-	VB	Bad	Bad	Bad	MG	VB	VB			

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mula-M												
Station	No : 21	93 Sta	tion Na	me:Au	ındh Br	idge, A	undga	aon, Ha	weli, P	une		
2007	GE	-	MG	Bad		GE		MG	MG	Bad	Bad	VB
2008	VB			MG				Bad	Bad	MG	VB	Bad
2009	MG	VB					Bad	Bad	Bad	Bad	Bad	Bad
2010				Bad	MG	VB	Bad	MG	MG	VB	Bad	Bad
2011	VB	Bad	VB	Bad	MG	Bad	Bad		MG	Bad	Bad	
Station 1	No :219	4 Statio	on Nam		ison Br	idge No	ear Mu			ngam, l	Haweli,	Pune.
2007			Bad	Bad				MG	MG	Bad	VB	Bad
2008	VB			MG			Bad	Bad	Bad	Bad	VB	MG
2009	MG						VB	Bad	VB	VB	Bad	Bad
2010				Bad		VB	VB	Bad	Bad	VB	MG	VB
2011	VB	VB	VB	VB	Bad	Bad	VB	Bad	Bad	VB	VB	
Station 1	No : 26	77 Sta	tion Na	me: D	s of Th	eur, Ta	aluka-	Haweli	i, Distr	ict- Pu	ne	
2007	MG		MG	MG		Bad		MG	MG	MG	Bad	VB
2008	MG	Bad	VB		Bad	MG	MG			VB		
2009	GE	Bad										VB
2010			Bad	MG	Bad	VB	GE	GE	VB	GE	Bad	MG
2011	VB	VB	VB	VB	Bad	Bad	Bad	Bad	Bad	Bad	Bad	
Station 1	No : 26	78 Sta	tion Na	me: N	<u>ear Vee</u>	r Sava	rkar B	havan,	Pune	1		
2007			Bad					Bad	MG			
2008	Bad			Bad	MG				VB	Bad		MG
2009	MG		VB									
2010					VB	VB	VB	Bad	VB	VB	Bad	VB
2011	VB	VB	VB	VB	Bad	Bad	VB	GE	Bad	VB	VB	
Station 1		79 Sta			eccan B	ridge,		ī				
2007									Bad			
2008			Bad		Bad			Bad	VB	Bad		Bad
2010			MG		VB	VB		VB	VB	VB	VB	VB
2011				VB	VB	VB		Bad	Bad	VB	VB	
Stn.2679												
Station 1												~-
2007	GE			GE						GE	GE	GE
2008	GE	GE	GE		GE	GE	GE	GE	GE	GE	GE	
2009	GE	GE	GE									GE
2010				GE	GE	GE	GE			MG	GE	GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	

Nira Ri	ver														
Station	Station No :1463 Station Name: Sarola bridge, Tal. Bhor, District- Pune														
2007	GE	GE	GE	GE	GE	GE	GE	GE	GE	MG	GE	MG			
2008	GE	MG	GE	MG	MG	Bad		GE	GE	MG	MG	MG			
2009	MG		MG	GE	MG	MG	MG	MG	MG	MG	MG				
2010			-	GE	1		GE	MG	GE	Bad	GE	MG			
2011	MG	GE	MG	MG	Bad	GE	GE	GE	MG	MG	MG	-			

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Nira Riv	ver (Co	ntd)										
Station 1	No : 21	95 Sta	tion Na	me: D	s of Jul	bilant (Organ	osis, Ta	ıl. Bara	ımati, l	Pune	
2007			VB	MG		MG		GE	MG	MG	Bad	
2008	MG	MG		VB	VB	MG	MG	Bad	MG	MG	VB	VB
2009	MG		Bad	MG	MG	MG	MG	MG	MG	MG	MG	MG
2010			Bad	MG	MG	GE		MG	MG	Bad	MG	Bad
2011	MG	MG	Bad	VB	VB	MG	MG	MG	MG	MG		
Station 1	No : 26	81 Stat	tion Na	me: at	Sungar	i, Tal.	Phalta	n, Dist	rict- Sa	tara		
2007			GE	GE		GE		GE	MG	GE	MG	MG
2008	MG	MG	GE	GE	GE	Bad	MG	MG	MG	MG	GE	
2009	MG	1	MG	GE	ŀ				1			Bad
2010			Bad	MG	MG	VB	Bad	MG	GE	MG	GE	MG
2011	Bad		Bad	Bad	Bad	MG	Bad	MG	MG	Bad	MG	
Station 1	No : 26	82 Stat	tion Na	me: U/	s of Jub	ilant ()rgano	sis, Ta	l. Bara	mati, P	une	
2007	MG	1	MG	MG		GE		MG	MG	MG	Bad	Bad
2008	MG	MG	1	MG	GE	MG	MG	MG	MG	MG	MG	MG
2009	MG	MG	Bad	-	I				1			MG
2010		1	MG	GE	MG	GE	GE	MG	MG	Bad	GE	MG
2011	GE	GE	MG	MG	MG	GE	MG	MG	MG	MG	MG	
Station 1	No : 26	83 Stat	tion Na	me: Sh	irwal, S	Satara,	Tal. K	Chanda	la, Dist	rict- S	atara	
2007	GE		GE	GE		GE		MG	MG	GE		MG
2008	MG	MG	GE	GE	GE	MG	MG	MG	MG	GE	MG	GE
2009	GE	MG	-		-				-			MG
2010			Bad	GE	MG	Bad	Bad	MG		GE	GE	GE
2011	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	

Pengang	ga Rive	r													
Station	No : 26	97 Stat	tion Na	me: Ne	ar Wat	er Sup	ply Sc	heme o	f Umai	khed I	M.C,				
Tal. Um	Tal. Umarkhed, District- Yavatmal														
2008															
2010															
Station	No : 26	98 Stat	tion Na	me: D/	s of Isap	our Da	m, Tal	l. Pusac	l, Distr	ict- Ya	vatmal				
2008		GE	GE		MG		MG	GE	GE	GE	GE	-			
2010					-		-	MG	MG	-	GE	-			
Stn.2697	7 & 269	8 : WQ	I was n	ot calcu	ılated dı	ie to ur	ı-availa	ability o	of data t	for 200	7, 09 an	d 11			

Panchga	anga Ri	iver											
Station No: 1311 Station Name: Ichalkaranji Near MIDC Intake Well, Hatkanangale													
2007	GE	1	I	MG	I		GE	1		GE	1		
2008	GE	-	-	GE	-		GE			GE			
2009	GE			GE			GE			GE			
2010							GE						
2011	GE		-	GE									

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Panchga	anga Ri	iver (C	ontd)									
Station 1	No : 19	04 Stat	tion Na	me: U/:	s of Kol	hapur	Town	Near E	Balinga			
Pumpin	g Statio	on, Kai	rvir, Ko	lhapuı	r							
2007	GE		GE	GE			GE	GE	GE	GE	GE	GE
2008	GE	GE	GE		GE	GE		GE	GE	GE	GE	GE
2009	GE		GE		GE	GE	GE	GE	GE	GE	GE	GE
2010				GE	GE		GE	GE	GE	GE	GE	GE
2011	GE	GE	GE	GE	GE	GE	1	GE	GE	GE	GE	GE
Station 1	No : 19	05 Stat	tion Na	me: D /s	s of Kol	hapur	Town	at Gan	dhi Na	gar		
Near NI	I -4, Br	idge ar	nd MID	C Inta	ke Well	, Kolha	apur					
2007	MG		GE	GE	MG		GE	GE	GE	GE	GE	GE
2008	GE	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE
2009	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2010				MG	GE		GE	GE	GE	GE	GE	GE
2011	GE	GE	Bad	GE	GE	GE	GE	GE	GE	GE	GE	GE
Station 1	No : 21	63 Stat	tion Na	me: Sh	irol Int	ake we	ll, Shi	rol, Ko	lhapur			
2008		GE	GE		GE	GE	GE	GE	MG	GE	GE	GE
2009	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2010			GE	GE		GE	GE	GE	GE	GE	GE	GE
2011	GE	GE	MG	GE	GE	GE		GE	GE	GE	GE	GE
Stn.2163	: WQI	was no	ot calcul	lated du	ie to un-	availat	oility of	f data fo	or 2007			
Station 1	Name:	Wadaı	nge, Ko	lhapur								
2010					-	GE	MG	GE	GE	GE	MG	VB
2011			MG	MG					-	-		
Stn: V	WQI wa	as not c	alculate	d due to	o un-ava	ailabilit	y of da	ita for 2	007 to	2009		

Panzara	River														
Station	Station No :2684 Station Name: Near Panzarakan SSK. Ltd														
2007	2007 MG MG MG														
2008	200.														
2009		GE										MG			
Stn.2684	1 : WQI	l was no	ot calcu	lated du	ie to un-	availat	oility o	f data fo	or 2010	to 2011	-				

Patalga	nga Riv	er										
Station	No :HF	P_PG _1	lStatior	ı Name	: Turac	le, Tal	. Panv	el, Dist	rict- Ra	aigad		
2007	GE	GE	GE	GE	MG	GE	MG	GE	GE	GE		MG
2008	GE	MG	MG	GE	MG	MG	GE	GE	GE	MG	MG	MG
2009	MG	MG	MG	MG	MG	MG	GE	MG	MG	MG	GE	MG
2010		1	-		1	GE	GE		GE	GE	GE	GE
2011	GE	GE	GE	GE	GE				-		-	
Station	No :115	51 Stat	ion Nar	ne: Shi	lphata	bridge,	, Tal. I	Khalap	ur, Dis	trict- R	Raigad	
2007	GE	GE	GE	GE	MG	GE	GE	GE	GE	MG	GE	GE
2008	GE	GE	GE	GE	-	GE	GE	GE	GE	GE	GE	GE
2009	GE	1	GE	GE	GE	GE	GE	GE	GE	GE	GE	
2010		1	GE	GE	GE	GE	GE	MG	MG	-	-	GE
2011	GE	GE	GE	GE	GE	MG	GE	GE	GE	GE	GE	

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Patalgai	nga Riv	ver (Co	ntd)		•							
Station 1	No : 14	62 Stat	tion Na	me: Ne	ar Inta	ke of N	IIDC '	Waterv	vorks (Turado	e w/w)	
2007	GE	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE
2008	GE		GE	GE	1	MG	GE	GE	GE		GE	GE
2009	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2010	I		GE	GE	GE	GE	-		GE	GE	-	GE
2011	GE			GE		GE	GE	GE	GE	GE	GE	
Station 1	No :268	35 Stati	ion Nar	ne: D/s	of Kha	rpada	bridge	e, Tal. I	Khalap	ur, Ra	igad	
2008	GE	MG			GE	GE	GE	GE	GE	GE	GE	
2009	GE		GE	GE	GE				GE			GE
2010			MG	GE	GE	GE		GE	GE			
2011		MG	MG	MG	GE	GE	GE	GE	GE	GE	GE	
Stn. 268:							•					
Station 1			ion Nar								Raigad	
2008	GE	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE
2009			GE	GE	GE				GE			GE
2010			GE	GE	GE	GE		GE		GE		GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	
Stn. 268												
Station 1				me: K							igad	
2008	GE	GE	GE		GE	GE	GE	GE	GE	GE		GE
2009			GE	GE	GE				GE			GE
2010			GE	GE	GE	GE		GE	GE			GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	
Stn. 268							•					
Station 1												
2008	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	MG	GE
2009			GE	GE	GE				GE			GE
2010			GE	GE	GE	GE		GE	GE	GE		GE
2011	GE	GE	MG	GE	GE		GE	GE	GE	GE	GE	
Stn. 268	_											
Station 1		89 Sta										
2008	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE	GE
2009			GE	GE	GE							GE
2010			GE	GE	GE	GE		GE	GE	GE		GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	
Stn. 2689	9: WQI	was no	ot calcul	ated du	e to un-	availat	oility of	f data fo	or 2007			

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Pawana	River													
Station	Station No :2196 Station Name: Sangavigaon, Tal. Haweli, District- Pune													
2008				VB		VB		VB	Bad	Bad	VB	MG		
2009	MG		Bad	Bad			VB	VB		VB	VB			
2010			VB	Bad			Bad	Bad	Bad	Bad	Bad	MG		
2011		VB	VB	Bad	Bad	VB	Bad	Bad	Bad	VB	VB			
Stn. 219	6: WQI	was no	ot calcul	lated du	ie to un-	availat	oility of	f data fo	or 2007					

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pawana	River (Contd.	.)									
Station N	No : 269	00 Stati	on Nam	e: Kas	arwadi,	Tal. H	aweli, l	District	- Pune			
2007	Bad	- 1	Bad	GE	1	Bad		MG	Bad	Bad	Bad	VB
2008	VB	VB	Bad	VB	-	MG	-	MG	Bad	MG	Bad	GE
2009	GE	MG	VB	1	1			-	1	1	1	
2010		1	VB	VB	MG	VB	Bad	VB	Bad	VB	VB	MG
2011	VB	VB	VB	Bad	Bad	Bad	VB	Bad	Bad	VB	VB	
Station I	No : 269	91 Stati	on Nam	e: Dap	odi brid	lge, at l	Pawana	a- Mull	aSanga	m, Pun	ie	
2007	Bad	1	VB	Bad	1			MG	Bad	Bad	Bad	Bad
2008	VB	1	Bad	1	1	Bad	Bad	MG	MG	Bad	VB	MG
2009	MG	Bad	1	1	1			-	1	1	1	
2010		1	VB	VB	1	VB	VB	Bad	Bad	VB	VB	Bad
2011	VB	1	VB	Bad	Bad	Bad	VB	Bad	Bad	Bad	VB	
Station 1	No : 269	92 Stati	on Nam	e: Rav	et Weir,	Pune,	Tal. H	aweli, I	District	- Pune		
2007	GE		GE	GE		GE		GE	MG	GE	MG	GE
2008	GE	GE	GE	GE	GE		MG	MG	MG	Bad	GE	MG
2009	GE		GE									MG
2010			MG	GE	GE	GE	GE	GE	GE	GE	GE	GE
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	
Station N	No: 269	93 Stati	on Nan	e: Chi	nchwadą	gaon, T	al. Ha	weli, Di	strict-	Pune		
2007	GE		Bad	GE		MG			MG	Bad	Bad	MG
2008	Bad	Bad	MG	MG	Bad	MG	Bad	MG	MG	MG	GE	GE
2009	GE	Bad	VB									Bad
2010			Bad	MG		Bad	Bad	MG	MG	MG	MG	MG
2011	VB		Bad	MG	Bad	MG	VB	MG	MG	Bad	Bad	
Station N	No: 269	94 Stati	on Nan	e: Pim	prigaon	, Tal. I	ławeli,	Distric	t- Pune	;		
2007				Bad					MG	Bad	Bad	Bad
2008	VB			VB		MG		MG	Bad	Bad	MG	GE
2009	GE	Bad	VB									
2010			VB	Bad	Bad	VB	VB	Bad	Bad	Bad	Bad	Bad
2011		VB	Bad	VB	Bad	VB	VB	VB	Bad	Bad	VB	
Station 1	No :100	Station	n Name	Sanga	vigaon,	Tal. H	aweli,	District	- Pune			
2007				Bad		Bad			Bad	Bad	VB	
Stn. 100:	WQI w	as not o	calculate	ed due t	o un-ava	ilabilit	y of dat	ta for 20	08 to 20	011		

Pedhi Ri	iver												
Station No: 2695 Station Name: Near Road Bridge at Dadhi- Pedhi Village, Amravati													
2008		-	GE		Bad		Bad		Bad	VB	Bad	MG	
2009	MG	GE											
2010			Bad	Bad	Bad			Bad	MG	Bad	VB	VB	
2011	GE		Bad	MG	Bad	MG	Bad	MG	Bad	GE	MG		
Stn.2695	: WQI v	was not	calculat	ed due	to un-av	ailabilit	ty of da	ta for 20	007				

Pehlar F	River												
Station No: 2696 Station Name: Inlet of Waterworks, TalVasai, District-Thane													
2008 GE GE GE GE GE GE GE GE GE													
2009			GE	GE	GE	GE						GE	
2010			GE	GE		GE		GE	GE		GE	GE	
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE		
Stn.2696	: WQI v	was not	calculat	ed due	to un-av	ailabilit	y of da	ta for 20	007				

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Purna R	River													
Station 1	No : 19	13 Sta	tion Na	me: D	hupesh	war at	U/s of	Malka	pur Wa	aterwo	rks, Ak	cola		
2007	GE			MG			MG			MG				
2008	MG		-	MG	1			-			-	-		
2009				MG			MG			Bad				
2010				MG	1		Bad			GE				
2011		GE	MG	GE	MG		MG	Bad	GE	GE	MG			
Station 1	Station No : 2155 Station: D/s of Confluence of Morna & Purna, AnduraVil., Akola													
2008		MG	GE	Bad	Bad						MG	GE		
2009			MG											
2010			-		1			-	VB	Bad	Bad	MG		
2011	MG	Bad		MG	MG	MG	Bad		Bad	MG	MG			
Stn.2155	S: WQI	was no	t calcula	ated du	e to un-a	availab	ility of	data fo	r 2007					
Station 1	No : 27	'00 Sta	tion Na	me: N	ear Ach	alpur-	Amra	vati Ro	ad Bri	dge, A	segaon			
2008	Bad				-	Bad	-			Bad	Bad			
2010								Bad	MG	MG	Bad	MG		
2011	MG				-		-	GE	MG	GE	GE			
Stn.2700): WQI	was no	t calcula	ated du	e to un-a	availab	ility of	data fo	r 2007	and 200	09			

Rangava	ali Rive	er													
Station N	No : 190	7 Statio	n Name	: D/s of	Navapu	r Near	Ranga	vali Bri	dge, Na	vapur,	Nandur	bar			
2007															
2008															
2009	GE			MG			MG								
Stn.2700): WQI	was no	t calcul	ated du	e to un-a	availab	ility of	data fo	r 2010	and 20	11				

Savitri l	River													
Station	No :HF	_SV_1	Station	n Namo	e: Gore	gaon, I	Tal. Ma	ahad, D) istrict	- Raiga	ıd			
2007	GE	GE	MG	GE	GE	MG	MG	MG	GE	GE	MG	GE		
2008	GE	GE	MG	GE	MG	GE	GE	MG	GE	MG	GE	GE		
2009	MG	MG	MG	MG	-		MG	MG	GE	MG	GE	GE		
2010	1		1		1	MG	GE	GE	GE	GE	-	-		
Stn. HP_SV_1: WQI was not calculated due to un-availability of data for 2011														
Station No : HP_SV_2 Station Name: Kangule, Tal. Poladpur, District- Raigad														
2007	GE	GE	GE	GE	MG		GE		MG	GE	GE	MG		
2008	GE	GE	MG	MG	MG	GE	GE	MG	MG	MG	GE	GE		
2009	MG	MG	MG	MG	MG	MG	GE	MG	GE	MG	MG	MG		
2010					-		GE	GE	GE	GE				
Stn. HP_	_SV_2:	WQI w	as not o	calculat	ed due t	o un-a	vailabil	lity of d	ata for	2011				
Station	No : 21	99 Stat	tion Na	me: Ov	ale, Ta	l. Mah	ad, Dis	strict-R	aigad.					
2008						GE	GE	GE	GE	GE	GE	GE		
2009	GE		GE		GE	GE	GE	GE	GE	GE	GE	GE		
2010			GE	MG	GE	GE	GE		GE	GE	GE	GE		
2011	GE	GE			GE		GE	GE	GE	GE	GE	GE		
Stn.2199	: WQI	was no	ot calcul	lated du	ie to un-	availat	oility o	f data fo	or 2007					

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Savitri I	River (Contd	.)												
Station 1	No: 27	'01 Stat	tion Na	me: Ja	ck Well	at Up	sa Ken	dre, Ta	al. Mah	ad, Di	strict-R	Raigad			
2008			GE	GE			GE	GE	GE	GE	GE	GE			
2009		GE	GE		GE	GE	GE	GE	GE	GE	GE	GE			
2010											GE	GE			
2011	GE	GE			GE		GE	GE	GE	GE	GE	GE			
Stn. 270	1 : WQ	I was n	ot calcu	lated d	ue to un	-availa	bility o	f data f	or 2007	7					
Station No: 2702 Station Name: Shedav Dov, TalMahad, District-Raigad															
2008 GE															
2009	GE	GE	GE	GE	GE	GE	GE	GE		GE	GE	GE			
2010											GE	GE			
2011 GE															
Stn. 2702	Stn. 2702 : WQI was not calculated due to un-availability of data for 2007														
Station 1	No : 27	03 Stat	tion Na	me: Da	dli Roa	d Brid	ge, Ta	l. Maha	ad, Dis	trict-R	aigad				
2008			GE	GE	GE	GE	GE	GE	GE	GE	GE				
2009	GE		GE	GE	GE	GE	GE	GE		GE		GE			
2010											GE	GE			
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE			
Stn. 2703	3 : WQ	I was n	ot calcu	lated d	ue to un	-availa	bility o	of data f	or 2007	7					
Station 1	No : 27	04 Stat	tion Na	me: M	uthaval	i, Tal.	Mahad	l, Distr	ict -Ra	igad					
2008					GE	GE	GE		GE	GE					
2009		GE	GE	GE	GE	GE	GE	GE		GE	GE	GE			
2010											GE	GE			
2011	GE	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE			
Stn. 2704	4 : WQ	I was n	ot calcu	lated d	ue to un	-availa	bility o	of data f	or 2007	7					

Sina Riv	ver													
Station	Station No : 2705 Station Name: Near Laboti Toll Naka, Solapur, Mohal, Solapur													
2007	GE		GE	GE	-	GE		MG	MG	MG		MG		
2008	MG	MG	MG	MG		MG	MG							
2009												MG		
2010			MG	MG	MG	MG	GE	GE		MG	MG	MG		
2011	MG	Bad	Bad	MG	MG	MG	GE	MG	MG	Bad	MG			

Shastri	River											
Station 2	No : H	P_SH_	1 Statio	n Nam	e: Kum	bhark	hani V	⁷ illage,	Chiplu	n, Rat	nagiri	
2007		GE	GE			GE	MG	GE	MG	GE	MG	
2008	GE	MG				MG	GE	MG	GE		GE	GE
2009	MG	MG				GE	MG	GE	GE	GE	MG	GE
2010						MG	GE	GE	GE	GE	GE	GE
2011	GE	GE	GE	GE								

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Surya R	iver												
Station 1	No :270	06 Stati	ion Nar	ne: U/S	of Su	rya Da	m, Tal	. Vikra	mgad,	Distric	t -Thai	ne	
2008	GE			-	-				GE	GE	-	GE	
2009			GE	GE	GE	GE	GE						
2010	1	1	GE	GE	GE			GE	GE	MG	-	GE	
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE		-		
Stn. 2706 : WQI was not calculated due to un-availability of data for 2007													
Station No: 2707 Station Name: MIDC Pumping Station, Garvshet, Palghar, Thane													
2008	GE	1	-	1	-				GE	GE	-	GE	
2009	1	GE	GE	GE	GE			GE			-		
2010	1	1	GE	1	GE			GE	GE	GE	-	GE	
2011	GE	GE	GE	GE	GE	GE		GE	GE	GE	-		
Stn. 270	7 : WQ	I was n	ot calcu	lated d	ue to un	-availa	bility o	of data f	or 2007	7			
Station 1	No: 27	08 Stat	tion Na	me: In	take of `	Vasai-	Virar v	w/s Sch	eme, N	Iasvan	, Palgh	ar	
2008	GE	1	-	1	1				GE	GE	GE	GE	
2009	1	GE	GE	GE	GE						GE	GE	
2010			GE	GE	GE			GE	GE	GE		GE	
2011	GE	GE	GE	GE	GE	GE		GE	GE	GE			
Stn. 270	8 : WQ	I was n	ot calcu	lated d	ue to un	-availa	bility o	of data f	or 2007	7			

Tansa R	River											
Station	No: 27	'09 Stat	tion Na	me: Da	kewali	village	road l	bridge,	Tal. W	ada, T	hane	
2011		GE	GE	MG	GE	GE	GE	GE	GE	GE		GE
Stn. 270	9 : WQ	I was n	ot calcu	lated d	ue to un	-availa	bility o	f data f	or 2007	7 to 201	.0	

Tapi Riv														
Station 1		P TP.1	Statio	n Nam	e· Akka	lnada	Tal S	akri D	istrict.	Dhule	<u> </u>			
2007									VB					
2008								MG	MG	MG	Bad			
2009							Bad							
2010	1	1						Bad	VB	Bad	Bad	VB		
Stn.HP_TP-1: WQI was not calculated due to un-availability of data for 2011														
Station No : HP_TP-2 Station Name: Bhusawal, Tal. Bhusawal, District- Jalgaon														
2007 GE GE GE GE														
2008								GE	GE	GE	GE			
2009						GE	GE				GE			
2010							GE	GE						
Stn.HP_	TP-2:	WQI w	as not c	alculate	ed due to	un-av	ailabili	ity of da	ata for 2	2011				
Station 1	No : H	P_TP-3	Statio	n Nam	e: Dary	apur, T	Γal. Da	ryapu	r, Distr	ict- Ar	nravati			
2007					MG	MG	MG			GE	GE	Bad		
2008	MG	GE					GE	GE	MG	MG	GE			
2010							GE	MG	GE					
Stn.HP_								•			nd 2011			
Station 1	No : H	P_ TP- 4	Statio	n Nam	e: Dhul	e, Tal.	Dhule	, Distri	ct- Dhu	ıle				
2008								Bad	Bad	MG	MG	MG		
Stn.HP_	TP-4:	WQI w	as not c	alculate	ed due to	o un-av	ailabili	ity of da	ata for 2	2007, 2	009 to 2	2011		

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Tapi Ri		ontd)	ı.						_			
Station	No : H	P_TP-5	Statio	n Nam	e: Hing	ona, Ta	al. Ya	wal, Di	strict-	Jalgao	n	
2007											GE	
2008								GE	GE	GE		
2009							GE					
2010					1			GE	-		-	
Stn.HP_	TP-5:	WQI w	as not c	alculate	ed due to	o un-av	ailabili	ity of da	ata for 2	2011		
Station	No : H	P_TP-6	Statio	n Nam	e: Kawt	ha, Ta	l. Bala	apur, D	istrict-	- Akola	1	
2007									GE	GE	GE	GE
2008	GE	GE					GE	GE	GE	GE	GE	
2009	GE	GE	GE	GE			GE	GE	GE			
Stn.HP_		_										
Station	No : H	P_TP-7	7 Statio	n Nam		iya, Ta	ıl. Dha		strict- 2	Amrav		Г
2007					GE			MG			GE	
2008		GE	 CE		GE				GE			
2009			GE			GE						
2010						GE			MG			GE
2011			GE									
Station 1			Statio									GE.
2007					GE	GE	GE		MG	GE	GE	GE
2008		GE		GE	GE		GE	GE	GE	GE	GE	
2009	GE	GE	GE	GE	GE	GE	GE	GE		GE	GE	
Stn.HP_												•1
Station 2007						gaon N MG		í –		l É		ISIK
2007 2008							MG	MG MG	 Bad	MC	MG	MG
2009							Bad	Bad	Dau	MG	MO	MO
2010							Dau	Bad	Bad	Bad	Bad	Bad
Stn.HP_	TP-8 · `	WOI w			ed due to) iin_av	ailahili				Dad	Dad
Station 1								•			Ruldha	nna
2007					GE	GE	GE		MG	GE	GE	GE
2008		GE	GE	GE	GE		GE	GE	GE	MG	GE	
2009	GE	GE	GE	GE	GE	GE		GE	GE	GE	GE	
2010							MG	MG	MG	GE	GE	GE
2011	GE	GE	GE									
Station	No : H	P_TP-1	1 Stati	on Nan	ne: Pad	alse, T	al. Am	alner,	Distric	t- Jalga	aon	
2007									GE			
2008								GE	GE	GE		
2009							GE	GE		GE		
2010							GE	GE				
Stn.HP_	TP-11:	WQI w	as not o	calculat	ed due t	o un-av	vailabil	lity of d	ata for	2011		
Station	No: H	P_TP- 1	12 Stati	on Nan	ne: Sara	angkhe	da, Ta	ıl. Shah	adai, I	District	- Nand	urbar
2007						Bad	MG	MG				
2008								Bad	VB	VB	MG	MG
2009							MG	MG	MG	Bad	MG	
Stn.HP_	TP-12:	WQI w	as not o	calculat	ed due t	o un-av	vailabil	lity of d	ata for	2010 a	nd 2011	-

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Tapi Riv			112002		1,100	0 0222		1200	г		2101			
Station 1	`		3 Statio	on Nan	ne: Saw	kheda	Tal. I	Mahuli.	Distri	ct- Sata	ara			
2008									GE	GE	GE			
2009								GE		GE				
2010							GE	GE						
Stn.HP_	TP-13:	WQI w	as not c	calculat	ed due t	o un-av	vailabi	lity of d	ata for	2007 a	nd 2011			
Station 1	No : H	P_TP-1	4 Statio	on Nan	ne: Suk	wad, T	al. Shi	irpur, I	District	- Dhul	e			
2007						MG			MG					
2008								MG	Bad	Bad	MG	Bad		
2009							GE	Bad	MG	Bad	MG			
2010								Bad	Bad	Bad	VB	Bad		
Stn.HP_	TP-14:	WQI w	as not c	calculat	ed due t	o un-av	vailabil	lity of d	ata for	2011				
Station 1	No: H	P_TP-1	5 Statio	on Nan	ne: Sup	le, Tal.	Kalw	an, Dis	trict- N	lasik				
2007						MG			Bad					
2008	1	-	-	-	1	MG	MG	MG	MG	MG	GE	MG		
2009							Bad	MG	Bad	MG	MG			
2010	l	1	1	1	1		Bad	Bad	Bad	Bad	MG	Bad		
Stn.HP_TP-15: WQI was not calculated due to un-availability of data for 2011														
Station No: HP_TP-16 Station Name: TakliKhetri, Tal. Patur, District- Akola														
2007 GE GE GE MG GE GE GE														
2008	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE			
2009	GE	GE	GE	GE	GE	GE	GE	GE		GE	GE			
2010									MG	GE	GE	GE		
2011	GE		GE											
Station 1	No : H	P_TP-1	7 Stati	on Nan	ne: Visl	roli, T	al. Ch	andurl	azar, l	District	t- Amra	vati		
2007					GE	GE	GE	MG	MG	GE	GE	GE		
2008	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE			
2009	GE	GE	GE	GE	GE	GE	GE	GE			MG			
2010			GE						MG	GE	GE	GE		
2011	GE	GE	GE											
Station 1	No : H	P_TP-1	8 Stati	on Nan				elhara						
2007					GE	GE	GE		GE	GE	GE	GE		
2008	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE			
2009	GE	GE	GE	GE	GE	GE		MG	GE	GE	MG			
Stn.HP_														
Station 1						í								
2007	GE	MG	MG	MG	Bad	GE	MG	MG	GE	GE	MG	GE		
2008	GE		Bad		MG	GE	GE	GE	GE	GE	GE	GE		
2009	GE		GE	GE	GE	GE	MG	GE	GE	GE	GE	MG		
2010			GE	GE	GE	MG	MG	GE	GE			MG		
2011	GE	GE	GE		GE									

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Tapi Ri	ver (Co	ntd)										
Station 2	No : 13	13 Stat	tion Na	me: Aj	nad Vil	lage, T	al. Ra	ver, Dis	strict	Jalgaoi	1	
2007	GE	MG	MG	GE	Bad	GE	MG		MG	MG	MG	GE
2008	MG	GE	Bad	-	MG	GE	GE	GE	GE	GE	GE	GE
2009	GE	-	GE	GE	GE	GE	MG	GE	GE	GE	MG	MG
2010			GE	GE	GE	MG	MG	MG	GE	MG		MG
2011	GE	GE	GE		GE	MG				GE		
Station	No : 13	14 Stat	tion Na	me: Ub	adVill.	Near (Gujara	it Bord	er, Sha	hada, l	Nandu	rbar
2007	GE	GE	MG	GE	MG	MG	Bad		MG	GE	Bad	GE
2008	GE	GE	GE		MG	GE	GE	GE	GE	GE	GE	GE
2009	GE	1	GE		GE	GE	GE	GE	GE	GE	GE	MG
2010			GE	GE	GE	MG	MG	GE	GE			MG
2011	MG	GE	GE		GE	MG				GE		

Titur R	iver														
Station	Station No: 2710 Station Name: D/s of Chalisgaon, Tal. Jalgaon, District-Jalgaon														
2007															
2008	MG	MG	GE	GE		MG	MG				GE				
2009		GE										MG			
2010			-		GE	GE	GE	GE	GE			MG			
2011	MG	GE	GE							-	GE	GE			

T.111 D	•												
Ulhas R													
Station	No : H	P_UH_	<u> 1 Statio</u>	on Nan	ne: Near	r Kam	be, Vil	lage Ka	ambe, I	District	- Than	e	
2010			1		1		MG	GE	GE	GE	GE	GE	
2011	GE	GE	GE	GE									
Stn.HP_	UH-1:	WQI w	as not c	alculate	ed due to	o un-av	ailabili	ity of da	ata for 2	2007 to	2009		
Station No: HP_UH_2 Station Name: Near Khapari, Village Khapari, District- Thane													
2007						MG		MG					
2008					MG	MG	GE	GE	GE				
2009					MG	MG	MG	Bad	Bad				
2010						GE	GE	GE	GE				
Stn.HP_UH-1: WQI was not calculated due to un-availability of data for 2011													
Station	No : H	P_UH_	3 Statio	on Nan	ne: Near	r Mano	la, Vill	lage Ma	anda, I	District	- Than	e	
2007					MG		MG	Bad	VB		-		
2008			1		1		VB	Bad	VB	VB	VB	1	
2009								VB	-		VB		
2010			-		-	VB	MG	GE	Bad	Bad	VB		
2011			1	VB	1		-	-	I	-	1	1	
Station	No : 10	93 Stat	tion Na	me: U/	s of NR	C Bun	der Mo	ohane \	Village,	Kalya	n, Tha	ne	
2007	GE	VB	MG	GE	GE	GE	GE	GE	GE	GE	GE	GE	
2008	GE			GE	GE	GE	GE		GE		GE	GE	
2009	GE		GE	GE	GE	GE	GE	GE	GE		GE		
2010			GE	GE	GE	GE			MG		MG	MG	
2011	MG	MG	MG	GE	GE	GE	GE	GE	GE	GE	GE		

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Ulhas R	iver (C	ontd)												
Station N	No: 1094	4 Station	n Name:	: U/S of	Badalap	our Wa	terwor	ks, Kulg	gaon, A	mberna	th, Tha	ne		
2007	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE		
2008	GE	1	GE	GE	GE	GE		GE	GE	-	-	GE		
2009	GE		GE	GE	GE	GE	GE	GE	GE		GE			
2010			GE	GE	GE	GE		GE	MG	GE	GE	GE		
2011	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	GE	-		
Station	Station No: 2162 Station Name: Jambhul Waterworks, Ambernath, Thane													
2008			-		GE	GE		GE			GE	GE		
2009	GE		GE	GE	GE	GE	GE	GE	GE		GE			
2010			GE	GE	GE			GE	GE	GE	GE	GE		
2011	GE	GE	GE	GE	GE	GE	GE		GE	GE	GE			
Stn.2162	2: WQI	was no	t calcula	ated du	e to un-a	availab	ility of	data fo	r 2007	•	•			

Urmodi	River												
Station No: 2711 Station Name: Near Nagothane Village, Satara													
2007			GE	GE		MG	GE		MG	MG	MG	MG	
2008	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	
2009	MG	Bad	MG									MG	
2010			MG	GE	GE	MG			MG	GE	GE	GE	
2011	MG	MG	MG	MG	MG	GE	GE	MG	GE	GE	MG		

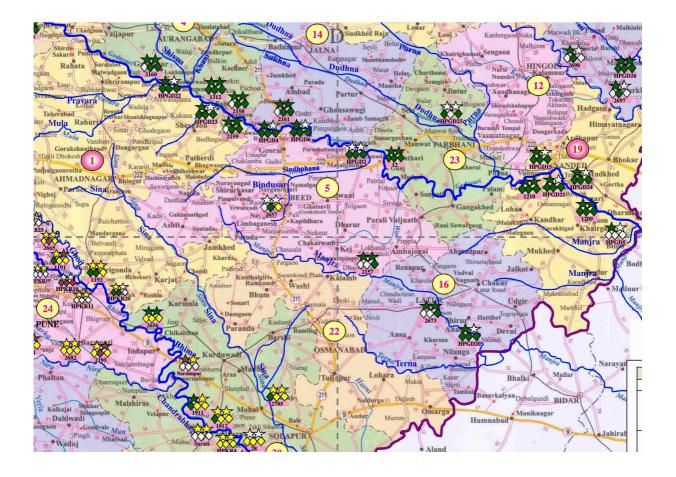
Vaitarn	a River	•												
Station 1	No: HP	_VN _1	l Statio	n Nam	e: Near	Almai	ı Villa	ge, Tal	. Wada	, Distr	ict-Tha	ne		
2007						MG	GE		MG					
2008		1	-		1		MG	MG	Bad	Bad				
2009		1	-	-	1		MG	Bad	MG		-			
2010								GE	GE	GE				
Stn.HP_VN_1: WQI was not calculated due to un-availability of data for 2011														
Station 1	Station No: HP_VN_2 Station Name: Near Alman Village, Tal. Wada, District-Thane													
2007							MG		Bad					
2008						Bad	MG	MG	MG	MG				
2009						Bad	MG	MG	MG					
2010						GE	GE	GE	GE	GE				
Stn.HP_	VN_2:	WQI w	as not c	alculat	ed due t	o un-av	ailabil	ity of d	ata for	2011				
Station 1	No: HP	_VN_3	3 Statio	n Nam	e: Near	Kasa,	Tal. V	Vada, D	istrict-	Thane	;			
2007						Bad								
2008						MG	Bad	Bad	Bad	Bad				
2009						MG	MG	MG	MG	MG				
2010						GE	GE	GE	GE	GE				
Stn.HP_	VN_3:	WQI w	as not c	alculat	ed due t	o un-av	ailabil	ity of d	ata for	2011				

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Vaitarn	a Rivei	· (Cont	d. .)									
Station 1	No: HF	_VN_4	4 Statio	n Nam	e: Near	Wagh	ivali, T	Γal. Wa	da, Di	strict-T	Thane	
2007	I	1	1	1	1	l	MG	Bad	MG		-	1
2008	I	1	1	1	1	MG	MG	MG	Bad	Bad	-	I
2009	-			-	-	-	MG	Bad	Bad	MG		-
2010	1					GE	GE	GE	GE	GE		1
Stn.HP_	VN_4:	WQI w	as not c	alculat	ed due t	o un-av	ailabil	ity of d	ata for	2011		
Station 1	No: 27	12 Stat	ion Nar	ne: Nea	ar Gand	lhare,	Tal. W	ada, D	istrict-	Thane		
2011	1	GE	GE	MG	GE	1	I	GE	GE	GE	GE	GE
Stn.HP_	VN_4:	WQI w	as not c	alculat	ed due t	o un-av	ailabil	ity of d	ata for	2007 to	2010	

Vashish	ti Rive	r												
Station	No: 210	64 Stat	tion Na	me: U/	s of Thi	ee M I	Paper I	Mills N	ear M/	's Mult	ifilms			
Plastic I	Pvt. Lto	l. Tal. (Chiplui	n, Distr	ict- Ra	tnagiri								
2008			GE		-	GE	GE	GE		GE		GE		
2009	GE		GE		GE	GE	GE	GE	GE		GE	GE		
2010			GE		GE	GE	GE	GE	GE	GE	GE	GE		
2011	GE	GE	GE	GE	GE	GE		GE	GE	GE	GE	GE		
Station 1	No: 27	13 Stat	tion Na	me: D/	s of Thi	ee M I	Paper I	Mills N	ear M/	s Mult	ifilms			
Station No: 2713 Station Name: D/s of Three M Paper Mills Near M/s Multifilms Plastic Pvt. Ltd. Tal. Chiplun, District- Ratnagiri														
2008 GE GE GE GE GE GE														
2009		GE	GE	GE	GE	GE	GE	GE		GE	GE	GE		
2010			GE		GE	GE	GE	GE	GE	GE	GE	GE		
2011 GE														
Station No: 2714 Station Name: U/s of Pophali Near Konphansawane Bridge														
Tal. Chi	iplun, I	District	- Ratna	giri										
2008							GE	GE	GE	GE	GE			
2009			GE		GE		GE	GE		GE	GE	GE		
2010			GE	GE	GE	GE	GE	GE	GE	GE	GE	GE		
2011	GE	GE	GE		GE	GE	GE	GE	GE	GE	GE	GE		
Stn.2164												7		
Station					ne: Vasl	ıshti R	iver N	ear Pin	npali V	'illage,				
Tal. Chi				giri			1							
2007	GE	VB	GE	GE	GE	GE	GE	GE	MG	GE	MG	GE		
2008	MG	MG	MG	GE	GE	MG	MG	GE	MG	GE	MG	MG		
2009	GE	MG	GE	GE	MG	GE	GE	GE	GE	GE				
2010						GE	GE	GE	GE	GE	GE	GE		
2011	GE	GE	GE	MG	MG									

Vel Rive	er							Vel River													
Station No: 2715 Station Name: Near Shikrapur Village, Tal. Shirur, District- Pune																					
2007	GE			MG				MG	MG	MG	MG										
2008	MG		MG	MG						MG											
2009												MG									
2010			MG		MG	GE	GE	MG	MG	GE	GE	MG									
2011			MG	MG	MG	MG			GE	Bad	Bad										

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Venna I	River													
Station	No: 218	86 Stat	ion Nar	ne: Ne	ar Vary	e Villa	ge, Ta	l. Sata	ra, Dis	trict- S	atara			
2007			MG	GE			GE		MG	GE	MG	MG		
2008	MG	MG	GE	MG	ŀ	MG	GE	GE	MG	MG	MG	GE		
2009	GE		MG	MG	MG		GE	MG	GE	MG	GE	MG		
2010	1	-	MG	MG	MG	GE	MG	MG	GE	GE	GE	MG		
2011	GE	MG	MG	Bad	MG	MG	GE	MG	MG	MG	MG			
Station No: 2716 Station Name: Near Mahabaleshwar, Satara														
2007	GE		GE	GE		GE	GE		MG	GE	MG	GE		
2008	GE	GE	GE	GE	1	GE	GE	GE	GE	MG	MG	MG		
2009	MG	MG	1	1	ŀ				1		1	-		
2010			MG	GE	GE	GE	GE		GE	GE	GE	GE		
2011	GE	GE	ŀ	MG	GE	GE	GE	GE	GE	GE	GE	-		
Station	No: 27	17 Stat	tion Na	me: Ne	ar Mah	uli, Sa	tara							
2007	GE	-	GE	MG	ŀ	GE		MG	MG	MG	Bad	MG		
2008	MG	MG	GE	GE	Bad	MG		MG	MG	MG	Bad	MG		
2009	MG	MG	MG									MG		
2010			MG	Bad	MG	GE	GE	MG	MG	GE	GE	MG		
2011	MG	MG	MG	MG	MG	GE	MG	GE	MG		MG			


Waghui	r River															
Station	Station No: 2718 Station Name: Sakegaon Before, Confluence with Tapi River															
TalBh	TalBhusaval, District- Jalgaon															
2007		GE MG MG														
2008	MG	GE	GE	GE		GE	GE				GE					
2009		GE	1	1	1		-		1	-	-	1				
2010					1	GE	GE	GE	GE	GE		GE				
2011	MG	GE	GE			MG					MG	GE				

Wardha	River											
Station	No: 12	12 Stat	tion Na	me: Ra	jura br	idge, T	Tal. Ch	andraj	our, Di	strict-(Chandr	apur
2007	GE	1	1	MG	I		GE	1	1	GE		-
2008				MG	-							
2009	GE			MG								
2010							Bad			GE		
2011	MG			GE	GE	MG	MG	MG	GE	GE	MG	
Station	No: 13	15 Stat	tion Na	me: Pu	lgaon F	Railway	y Bridg	ge, Tal.	Ward	ha, Wa	rdha	
2007	MG	MG	MG	MG	MG	MG	GE	MG	MG	MG	MG	MG
2008	MG	MG	GE		Bad	Bad	Bad	MG	GE	GE	MG	GE
2009			MG	GE	MG	GE	GE	GE	GE	GE	MG	
2010			GE	MG	MG	MG	MG	MG	MG	MG	GE	MG
2011	GE	GE	MG	GE	MG	MG	MG	GE	MG	GE	MG	

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Wardha	River	(Conto	l)												
Station N					uence Po	oint of I	Pengan	ga &Wa	ardha,						
Taluka-V	Vani, D	istrict-		al			1			1					
2008			MG			MG	MG	GE	GE	GE	GE				
2009	MG			MG		GE	GE		GE						
2010				MG				GE	GE		MG	GE			
2011	GE	GE	MG	GE	MG	Bad	MG	MG	GE	GE	MG				
Stn.2156	: WQI	was no	t calcula	ated du	e to un-a	availab	ility of	data fo	r 2007						
Station No: 2174 Station Name: D/S of ACC Ghuggus, Chandrapur															
2008															
2009			MG		MG	MG		GE				GE			
2010									MG		Bad	MG			
2011	MG	GE	MG	GE	GE	MG	MG	MG	GE	GE	MG				
Stn.2174	: WQI	was no	ot calcul	lated du	ie to un-	availab	oility of	f data fo	or 2007						
Stn No: 2		ation N	ame: D/	s of Era	i River	at Hada	asti nea	r Arun	Engg. V	Vorks.,	Chandr	apur			
2008	MG	GE	GE	Bad	MG				MG						
2009	MG											GE			
2010								MG	GE	GE	MG	Bad			
2011	MG	GE	MG	GE	MG		MG	MG	GE	GE	GE				
Stn.2719	: WQI	was no	ot calcul	lated du	e to un-	availab	oility of	f data fo	or 2007						
Station 1	No: 272	20 Stat	tion Na	me: U/:	s of Era	i River	r, Hada	asti, Cl	nandra	pur					
2008		GE	MG	MG	GE	GE	MG		MG						
2009									MG						
2010								GE	GE	GE	MG	GE			
2011	GE	GE	GE	GE	GE		MG	GE	GE	GE	GE				
Stn.2720															
Station 1	No: 272	21 Stat	tion Na	me: U/	s of AC	C Ghu	ggus, (Chandı	rapur						
2008		MG	MG	MG	GE	GE	MG	GE	MG			GE			
2009						GE						GE			
2010			-		1		-	GE	GE	GE	MG	GE			
2011	GE	GE	GE	GE	GE	MG	GE	MG	GE	GE					
Stn.2721	: WQI	was no	ot calcul	lated du	ie to un-	availab	oility o	f data fo	or 2007						

Wena R	liver													
Station	No: 272	22 Stat	tion Na	me: U/	s of Mo	hata N	Iills, N	ear Ra	ilway I	Bridge,	Wardh	na		
2007		1	GE		1	GE	MG			MG		1		
2008	GE	1		MG	1		GE		GE		GE	GE		
2009		1	MG		1	GE	GE			GE	MG	GE		
2010		1	1		MG	MG	GE	MG	GE	GE	GE	MG		
2011	MG	GE	MG	GE	GE	MG	MG	GE	GE	GE	GE	MG		
Station	Station No: 2723 Station Name: D/s.Mohata Mills, Near Road Bridge on													
Hingang	ghat, W	adner	Road											
2007		ŀ	MG		1	MG	MG				MG	1		
2008		-					MG		MG		MG	MG		
2009		-	-	MG	-	MG		MG			MG	-		
2010		-	MG	Bad	MG	MG	MG	MG	MG	MG	MG	Bad		
2011		GE	Bad	MG	MG	MG	MG	MG	MG	GE	MG	MG		

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Wainga	nga Ri	ver										
Station 1	No: 11	Station	n Name	: Ashti	Bridge	e, Tal.	Gondp	ipri, D	istrict-	Chand	rapur	
2007	GE	MG	GE	MG	MG	MG	MG	MG	MG	GE	MG	MG
2008	MG	GE	GE	MG	MG	Bad	Bad	GE	GE	GE	GE	GE
2009	MG		GE	MG	GE	MG	MG	MG	MG	MG	MG	GE
2010	1		GE	MG	MG	MG	Bad	GE	GE	GE	MG	GE
2011	GE	GE	MG	GE	GE	MG	GE	MG	GE	GE	MG	
Station No: 1910 Station Name: After Confluence with Kanhan, Tal. Kuhi, District-Nagpur									ur			
2007	MG			GE			MG			GE		
2008	MG		-	MG			1	-	-			
2009	GE			GE								
2010	1		1	Bad			MG	-	1	MG		
2011	GE		GE	GE	GE	MG	GE	GE	MG	GE	MG	
Station No: 2172 Station Name: D/s of Ellora Paper Mill, Tal. Tumsar, District-Bhandara												
2008		MG	GE	MG	MG			GE	MG	GE	MG	MG
2009	MG		GE	MG	Bad	MG	MG	MG	MG		MG	MG
2010			MG	MG	MG	MG		Bad	MG	MG	Bad	MG
2011	Bad	GE	MG	GE	MG	MG	MG	GE	MG	GE	GE	
Stn.2172												
Station N	lo: 2173			: U/s of	Ellora I				ar, Dis	trict-Bh	andara	
2008		MG	GE		MG	MG	MG	MG		GE	GE	MG
2009	GE		GE	GE	MG	MG	MG	MG	GE	GE	GE	GE
2010			GE	MG		MG		MG	GE	MG	MG	GE
2011	GE	GE	MG	GE	GE	MG	GE	MG	MG	GE	GE	
Stn.2173												
Station N	lo: 2175			: U/s of	Gaura			TalCha			-Bhand	
2008		MG	GE			MG	MG		GE	GE		MG
2009				GE	MG	MG			GE			GE
2010								MG	GE		GE	MG
2011	GE	GE	MG	GE	MG	GE	MG	MG	GE	GE	GE	
Stn.2175												
Station No: 2176 Station Name: D/s of Gaurav Paper Mill, TalChandrapur, DistBhandara												
2010								MG	MG		MG	Bad
2011	MG	GE	MG	GE	MG	MG	MG	MG	GE	GE	MG	
Stn.2176	: WQI	was no	ot calcul	ated du	e to un-	availat	oility of	f data fo	or 2007	to 200	9	

Annexure VIa

List of Municipal Corporation / Councils Wastewater Discharges into Rivers Stream /Bassin

Sr.	Municipal Corporations	Population Census 2001	Wastewater Discharges (MLD) Domestic Wastewater Discharge (MLD)		River Stream /Bassin
1	/Councils	27064	2.5	2.5	II/C C 1 .
1	Waijapur Kanad	37064	3.5	2.5	U/S Godavari
2		34408 22,835	2.8	2 1.5	U/S Godavari
3	Pathadi	-	1.9		U/S Godavari
4	Devlali Pravra	30,334	1.05	0.6	U/S Godavari
5	Shrirampur	81,270	3.3	2	U/S Godavari
6	Rahuri	34,465	2.2	1.7	U/S Godavari
7	Rahata	19,019	1.4	1	U/S Godavari
8	Shrigonda	26,324	1.25	0.6	U/S Godavari
9	Sangamner	61,958	6.7	4	U/S Godavari
10	Salod	43867	2	1.6	D/S Godavari
11	Khuldabad	12704	0.5	0.38	D/S Godavari
12	Jalna	235625	23	18.5	D/S Godavari
13	Partur	28941	2.4	2.32	D/S Godavari
14	Ambad	26,096	2.9	2.5	D/S Godavari
15	Bokhardan	16950	0.8	0.7	D/S Godavari
16	Beed	138091	14	11	D/S Godavari
17	Ambejogai	69227	5.5	5	D/S Godavari
18	Parli Vaijanath	38,510	5	4	D/S Godavari
19	Dharoor	11350	1.8	1.45	D/S Godavari
20	Latur	299985	24.5	21	D/S Godavari
21	Ahmedapur	35786	24	18	D/S Godavari
22	Udgir	100000	67	54.2	D/S Godavari
23	Nilanga	31660	21.5	17.5	D/S Godavari
24	Osa	30876	2	1.8	D/S Godavari
25	Kalamb	23016	1.85	1.5	D/S Godavari
26	Kandhar	20,678	1.4	1.2	D/S Godavari
27	Hadgaon	23,328	2	1.6	D/S Godavari
28	Loha	20135	1.3	1.04	D/S Godavari
29	Kinwat	24,868	1.5	0.8	D/S Godavari
30	Dharmabad	29,952	1.5	1.2	D/S Godavari
31	Umeri	11151	0.55	0.44	D/S Godavari
				3.2	
32	Deglur	48,024	4		D/S Godavari
33	Kundalwadi	14,355	1.2	0.96	D/S Godavari
34	Biloi	13,330	0.52	0.4	D/S Godavari
35	Mukhed	18,700	1	0.8	D/S Godavari
36	Mudkhed	25,936	1.5	1.2	D/S Godavari
37	Purna	39,854	5	4	D/S Godavari
38	Pathari	29,218	3	2.4	D/S Godavari
39	Jitur	40,428	5	4	D/S Godavari
40	Seloo	33,225	4	3.2	D/S Godavari
41	Gagankhed	38,111	5	4	D/S Godavari
42	Manwat	31,997	4	3.2	D/S Godavari
43	Parbhani	2,59,171	30	24	D/S Godavari
44	Hingoli	69,442	7	5.5	D/S Godavari
45	Wasmatnagar	57,360	6	4.5	D/S Godavari
46	Kalamnoori	20,632	2.5	2	D/S Godavari
47	Deulgaon Raja	24372	2.4	1.9	D/S Godavari
48	Sindhkhed Raja	14000	1.3	1	D/S Godavari
49	Lonar	20000	2	1.6	D/S Godavari
50	Sinnar	31,724	4.5	3.15	D/S Godavari

Sr.		Donulatian	Wastssta	Domostic Wasts	River Stream
Sr.	Municipal	Population	Wastewater	Domestic Wastewater	
	Corporations	Census 2001	Discharges (MLD)	Discharge (MLD)	/Bassin
<i>-</i> 1	/Councils	10.457	1.2	0.07	D/0 C 1 :
51	Bhugar	12,457	1.3	0.87	D/S Godavari
52	Yevala	43,207	3.5	2.6	D/S Godavari
53	Igatpuri	31,539	6	4.2	U/S Godavari U/S Godavari
54	Gangapur	22325		1.2 0.9	
55	Paithan	34518	5	2	D/S Godavari
56	Gevrai	23665	3.014	2.2	D/S Godavari
57	Kopargaon	59,970	11	7	U/S Godavari
58	Trimbkeshwar	9,804	1	0.07	U/S Godavari
59	Majalgaon	44442	3.5	2.8	D/S Godavari
60	Sonpeth	30,222	4	3	D/S Godavari
61	Pusad	67152	4.7	3.7	Penganga
62	Digras	39169	2	1.4	Penganga
63	Darwa	23306	4.7	2.8	Penganga
64	Wani	52814	5	4	Penganga
65	Yavatmal	120763	16	13	Penganga
66	Pandharwada	26567	2	1.6	Penganga
67	Umerkhed	34084	2.5	2	Penganga
68	Ghataji	19347	1.5	1	Penganga
69	Washim	62967	5	4	Penganga
70	Rasod	27000	2	1.6	Penganga
71	Karanja	60152	3.5	2	Penganga
72	Mangruleer	27686	3.3	2.4	Penganga
73	Buldhana	63000	6.2	4.9	Penganga
74	Mahekar	37716	3.7	3	
75	Chikhali			3.8	Penganga
75		48414	4.8		Penganga
7.0	Mowada	8,735	0.6	0.34	Penganga, Wardha
76	<u> </u>	26.621		0.70	and Wainganga
	Savner	26,631	1.4	0.79	Penganga, Wardha
77	3.6.1	7.066	0.4	0.20	and Wainganga
70	Mohapa	7,066	0.4	0.28	Penganga, Wardha
78					and Wainganga
	Katol	37,744	1.8	0.94	Penganga, Wardha
79					and Wainganga
	Narkhed	19,423	1.1	0.77	Penganga, Wardha
80					and Wainganga
	Kalmeshwar	17,241	0.9	0.65	Penganga, Wardha
81					and Wainganga
	Khapa	14,972	0.8	0.45	Penganga, Wardha
82					and Wainganga
	Ramtek	22,000	1.035	0.55	Penganga, Wardha
83					and Wainganga
	Wardha	129,700	9	5.18	Penganga, Wardha
84					and Wainganga
	Sindhi	15,000	0.675	0.38	Penganga, Wardha
85					and Wainganga
	Hinganghat	78,715	7.87	5.12	Penganga, Wardha
86					and Wainganga
	Arvi	32,000	1.4	0.8	Penganga, Wardha
87					and Wainganga
	Devli	13,734	0.961	0.55	Penganga, Wardha
88					and Wainganga

Cont	d				
Sr.	Municipal Corporations /Councils	Population Census 2001	Wastewater Discharges (MLD)	Domestic Wastewater Discharge (MLD)	River Stream /Bassin
89	Phulgaon	36,296	3.9	2.54	Penganga, Wardha and Wainganga
90	Umred	43,578	45	2.83	Penganga, Wardha and Wainganga
91	Bhandara	90,000	8	4.5	Penganga, Wardha and Wainganga
92	Tumsar	42,018	4	2.3	Penganga, Wardha and Wainganga
93	Gondiya	1,20,878	8.44	4.83	Penganga, Wardha and Wainganga
94	Tirora	22,527	1.8	0.68	Penganga, Wardha and Wainganga
95	Chandrapur	2,97,000	86	29.7	Penganga, Wardha and Wainganga
96	Balarpur	89,995	6.3	3.6	Penganga, Wardha and Wainganga
97	Bhadravati	56,679	5	2.6	Penganga, Wardha and Wainganga
98	Varora	41,966	7.135	4.2	Penganga, Wardha and Wainganga
99	Vadsa	28,000	2.8	1.68	Penganga, Wardha and Wainganga
100	Gadchiroli	42,464	6.5	3.82	Penganga, Wardha and Wainganga
101	Kamthi	22,517	1.3	0.72	Penganga, Wardha and Wainganga
102	Pauni	22,583	0.95	0.56	Penganga, Wardha and Wainganga
103	Mul	22,256	1.02	0.56	Penganga, Wardha and Wainganga
104	Bhrampuri	31,200	2	0.94	Penganga, Wardha and Wainganga Penganga, Wardha
105	Savner	26,631	1	1	and Wainganga
106 107	Khapa Murum	14,972 17232	1 1.5	0	Penganga, Wardha and Wainganga D/S Bhima
107	Umraga	40000	2.8	2.4	D/S Blillia D/S Bhima
109	Naldurga	17600	1.4	1.2	D/S Bhima
110	Tuljapur	31714	2.2	1.9	D/S Bhima
111	Usmanabad	80612	6.3	5.3	D/S Bhima
112	Paranda	16987	1.2	1	D/S Bhima
113	Bhoom	17509	1.5	1.3	D/S Bhima
114	Shirur	26,999	2.4	1.6	D/S Bhima
115	Bhor	17,882	1.3	0.9	D/S Bhima
116	Jejuri	12,000	0.5	0.2	D/S Bhima
117	Saswad	26,689	1.5	1.2	D/S Bhima
118	Baramati	51,342	5	3.5	D/S Bhima
119	Talegaon Dabhde	40,344	7	6	D/S Bhima
120	Alandhi	17,564	1	0.9	D/S Bhima
121	Phaltan	50,798	5.08	4.06	D/S Bhima
122	Mahaswad	20,494	0.3	0.2	D/S Bhima
123	Akalkot	33,295	0.5	0.4	D/S Bhima
124	Medarangi	12,483	0.9	0.77	D/S Bhima
125	Kudrudwadi	22,773	1.8	1.4	D/S Bhima
143	ixuuruuwaur	44,113	1.0	1.4	שווווום פיש

Cont		1		T =	T = -
Sr.	Municipal	Population	Wastewater	Domestic Wastewater	River Stream
	Corporations	Census 2001	Discharges (MLD)	Discharge (MLD)	/Bassin
	/Councils				
126	Sagola	28,103	2.3	1.8	D/S Bhima
127	Barshi	1,04,786	8.4	6.7	D/S Bhima
128	Dhudhani	13,890	0.9	0.75	D/S Bhima
129	Karmala	22,670	1.75	1.4	D/S Bhima
130	Idapur	21584	1	0.8	Neera
131	Junar	24,760	3	2	U/S Bhima
132	Pandharpur	91,318	13	10	D/S Bhima
133	Daund	41,907	0.7	0.4	D/S Bhima
134	Mangalveda	24,853	1.57	1.25	D/S Bhima
					D/S Bhima
135	Mahabaleshwar	12,736	200	1	
136	Lonaval	55,650	20	15	U/S Bhima
137	Achalpur	107304	10	8.5	U/S Tapi/ Purna
138	Ajangaon Surji	51163	2.85	2.28	U/S Tapi/ Purna
139	Chandur Rly	17720	3.3	3.2	U/S Tapi/ Purna
140	Chikhaldara	4718	0.5	0.4	U/S Tapi/ Purna
141	Dhamangaon	21430	1.9	1.5	U/S Tapi/ Purna
142	Daryapur	34398	1.9	1.5	U/S Tapi/ Purna
	Shendurjana	21080	1	0.8	U/S Tapi/ Purna
143	Ghat				1
144	Warud	41005	1	0.8	U/S Tapi/ Purna
145	Morshi	33607	4.1	3.2	U/S Tapi/ Purna
146	Chandur Bazar	17635	1.4	0.8	U/S Tapi/ Purna
147	Malkapur	61015	6.1	4.8	U/S Tapi/ Purna
148	Nandura	45000	4.5	3.6	U/S Tapi/ Purna
149	Jalgaon	26000	2.6	2	U/S Tapi/ Purna
150	Khamgaon	88670	8.8	7.08	U/S Tapi/ Purna
151	Shegaon	52000	5.2	4.1	U/S Tapi/ Purna
152	Akot	80000	8	6.4	U/S Tapi/ Purna
153	Telhara	18906	1.8	1.4	U/S Tapi/ Purna
154	Balapur	39000	3.9	2.3	U/S Tapi/ Purna
155	Patur	23000	2.2	1.7	U/S Tapi/ Purna
		38851			
156	Murtizapur		3.8	3.1	U/S Tapi/ Purna
157	Shirpur	61,248	4	3.2	U/S Tapi/ Purna
158	Nadurbar	94,365	5.5	4.5	U/S Tapi/ Purna
159	Navapur	29,974	1.2	1	U/S Tapi/ Purna
160	Shahada	40,000	1.5	1.2	U/S Tapi/ Purna
1.51	Satana Corp.	32,551	2.1	1.47	U/S Tapi/ Purna
161	Nashik	22.107	1.7	1.2	II/O T :/ D
162	Nandgaon	23,195	1.5	1.2	U/S Tapi/ Purna
163	Manmad	72,401	6.5	6	U/S Tapi/ Purna
164	Erandol	30,120	1.3	0.91	U/S Tapi /Purna
165	Parola	34,800	6.66	3.49	U/S Tapi /Purna
166	Savada	19,332	0.7	0.57	U/S Tapi /Purna
167	Raveer	25,993	1.3	1.1	U/S Tapi /Purna
168	Faizapur	23,690	2.1	0.7	U/S Tapi /Purna
169	Yaval	31806	0.364	0.28	U/S Tapi /Purna
170	Chopada	60,465	4	3.2	U/S Tapi /Purna
171	Jamner	36,098	13	11	U/S Tapi /Purna
172	Bhusawal	1,72,384	40	11.4	D/S Tapi
173	Pachora	31,350	4	3.2	D/S Tapi
174	Dandocha	44,000	2	1	D/S Tapi
175	Dharangaon	33,618	12	8.4	D/S Tapi
176	Amalner	91,426	10.5	3.15	D/S Tapi
			* * *	<u> </u>	

Sr.	Municipal	Population	Wastewater	Domestic Wastewater	River Stream
	Corporations	Census 2001	Discharges (MLD)	Discharge (MLD)	/Bassin
	/Councils				
177	Chalisgaon	91,110	8	7.21	D/S Tapi
178	Taloda	20,000	2	1	D/S Tapi
179	Kundarwad	21,325	1	0.8	Krishna
180	Kagal	23,775	3	2.4	Krishna
181	Gadhinglaj	25,536	3	2.4	Krishna
182	Murgud	10,285	0.8	0.64	Krishna
183	Malkapur	10280	0.3	0.2	Krishna
184	Islampur	58303	4.4	4	Krishna
185	Wita	41797	5	3.25	Krishna
186	Tasgaon	33435	7.6	6.08	Krishna
187	Satara	108,043	13	11	Krishna
188	Karad	56,819	14	11.2	Krishna
189	Wai	31,090	4.3	3.4	Krishna
190	Panahala	5040	0.45	0.36	Krishna
191	Wadgaon	22,754	1.2	0.9	Krishna
192	Jaisinghpur	43055	5.8	4.64	Krishna
193	Ashti	33000	1.2	0.96	Krishna
194	Ichalkaranji	2,70,000	50	37	Krishna
195	Murgud	10,285	1	1	Krishna
196	Rahitpur	16,539	2	1	Krishna
197	Panchgani	13,280	3.4	2.7	Krishna
	Kulgaon -				
198	Badalapur	1,03,000	23	18	Ulhas
199	Karjat	25,544	3	2	Ulhas
200	Matheran	5,132	2	1	Ulhas
201	Khopoli	58,657	8	6	Ulhas
202	Uran	24000	3.1	2.1	Patalgaga

Percent Exceedance Monitoring Locations of River Water

Table AVII.1: List of Monitoring Stations where Percent Exceedance of any of Parameters is more than 50%

Sr.	Station No.	River	pН	DO	BOD	TC	Ammonical-N	Nitrate
1	HP_AM_1	Amba	5	0	0	63	0	0
2	2652	Amravati	20	0	67	0	82	0
3	1190		4	77	100	0	71	0
4	1189		0	64	100	0	44	0
5	1191		0	29	88	0	50	0
6	1192		0	25	83	0	61	0
7	1188		14	2	75	0	9	0
8	2655	Bhima	16	7	68	0	11	0
9	2656		17	0	57	0	5	0
10	No Stn.Num.	Bindusara	7	14	62	0	10	0
11	2658	Bori	14	4	62	0	29	0
12	2659	Burai	10	4	52	0	37	0
13	1912	Chandrabhaga	25	0	75	0	30	0
14	1911		13	0	58	0	13	0
15	HP_DG_3		6	6	78	0	0	0
16	HP_DG_1	Daman Ganga	6	0	73	0	0	0
17	HP_DG_2		0	0	54	0	0	0
18	2660	Darna	0	9	52	0	30	0
19	2665	Ghod	14	14	79	0	12	0
20	1253	Girna	11	0	59	0	7	0
21	1252		17	0	57	0	0	0
22	HP_GD_3		33	33	100	0	0	0
23	HP_GD_1		0	0	100	0	0	0
24	2180		9	23	93	0	28	0
25	2178		18	41	91	0	65	0
26	1211		3	6	91	0	3	0
27	2181		9	26	91	0	23	0
28	1096		4	0	86	0	2	0
29	2179		6	16	84	0	18	0
30	HP_GD_7		0	0	63	50	0	0
31	2182		5	3	60	0	8	0
32	2177	Godavari	4	0	57	0	19	0
33	HP_GD_5		67	0	0	50	100	0
34	2666	Gomai	10	0	62	0	32	0
35	2667	Hiwara	23	0	66	0	32	0
36	2668		9	25	93	0	7	0
37	2197	Indrayani	2	19	87	0	19	0
38	2669		5	12	84	0	7	0
39	1092	Kalu	0	33	50	0	4	0
40	2670	Kan	16	0	53	0	63	0

Table AVII.1 (Contd..): Percent Exceedance50%

	,	d) : Percent			DOD	TT C		N794
Sr.	Station No.	River	pН	DO	BOD	TC	Ammonical-N	Nitrate
41	2171		13	5	92	0	13	0
42	1909	Kanhan	0	4	87	0	32	0
43	2170	77 1	18	0	63	0	8	0
44	1908	Kolar	4	0	83	0	17	0
45	2189	Koyna	9	2	77	0	6	0
46	HP_KR_8		0	0	100		100	20
47	2188		11	0	81	0	2	0
48	36		4	0	80	0	0	0
49	2187		2	0	77	0	2	0
50	HP_KR_24		0	93	77	91	21	0
51	2190		6	2	75	0	2	0
52	HP_KR_10		0	77	71	98	18	0
53	HP_KR_15		0	0	67	100	0	0
54	HP_KR_11		0	0	56	100	0	0
55	1194		5	0	51	0	0	0
56 57	HP_KR_21 HP_KR_14		60 17	0	0 8	100	0	0
58	HP_KR_23		0	0	0	78	0	0
59	HP_KR_19		11	0	0	67	0	0
60	HP_KR_3		0	0	0	63	0	0
61	HP_KR_13	Krishna	2	0	0	61	0	0
62	HP_KR_5	KHISHIIG	12	0	3	50	0	0
63	2671	Kundalika	0	6	61	0	0	0
64	2198	Tunumu	0	21	54	0	30	0
65	2168	Mithi	0	75	95	0	44	0
66	No Stn.Num.	Morna	13	23	93	0	21	0
67	2192		2	87	100	0	90	0
68	2194		2	77	100	0	85	0
69	2193		2	60	100	0	82	0
70	2678		0	82	100	0	76	0
71	2679		2	84	100	0	73	0
72	2191	MulaMutha	0	100	98	0	87	0
73	2677		11	49	91	0	38	0
74	2195		8	24	96	0	29	0
75	2681		19	21	87	0	4	0
76	2683		9	4	73	0	5	0
77	1463	Nira	7	2	70	0	23	0
78	2682		9	4	67	0	7	0
79	No Stn.Num.	Panchaganga	0	25	25	75	0	0
80	No Stn.Num.	Panzara	19	8	87	0	62	0
81	HP_PG_1	Patalganga	0	0	100	53	0	_
82	100		0	86	100	0	89	0
83	2690		9	71	100	0	76	0
84	2196		0	83	100	0	71	0
85 86	2691	Downer -	4 0	88 76	100	0	71	0
87	2694 2693	Pawana	0	76 44	100 93	0	50	0
0/	2093		U	44	93	U	30	

Table AVII.1 (Contd..): Percent Exceedance50%

		d) : Percent			non	TT C		
Sr.	Station No.	River	pН	DO	BOD	TC	Ammonical-N	Nitrate
88	2695	Pedhi	26	32	90	0	19	0
89	2697	Penganga	0	0	73	0	100	0
90	2698		0	0	67	0	92	0
91	1913	_	14	5	91	0	27	0
92	2155	Purna	9	14	86	0	24	0
93	No Stn.Num.		33	7	73	0	29	0
94	1907	Rangavali	10	0	80	0	0	0
95	HP_SV_1	Savitri	3	0	0	51	0	0
96	2705	Sina	2	7	74	0	21	0
97	HP_TP_14		0	13	100	89	0	0
98	HP_TP_15		13	0	100	43	0	0
99	HP_TP_9		9	0	100	27	0	0
100	HP_TP_12		0	7	100	8	0	0
101	HP_TP_14		7	7	100	7	0	0
102	HP_TP_1 1251		29 11	0 4	100 74	0	0	0
103		Т:	-					
104	1313	Tapi	11	6	69 59	0	0	0
105 106	1314 2710	Titur	6 42	21	84	0	0	0
107	HP_UH_3		0	77	100	80	0	0
107	HP UH 2	Ulhas	7	0	100	15	0	0
109	2711	Urmodi	2	0	74	0	4	0
110	HP_VN_3	Offilodi	0	0	100	8	0	0
111	HP_VN_1		0	0	100	0	0	0
112	HP VN 2	Vaitarna	0	0	100	0	0	0
113	HP_VN_4	v artarria	0	0	71	6	0	0
114	2715	Vel	9	3	72	0	19	0
115	2717	V C1	2	0	80	0	11	0
116	2186	Venna	2	0	77	0	2	0
117	2716	Vomina	4	0	56	0	2	0
118	2718	Waghur	19	3	61	0	26	0
119	2172		5	5	91	0	12	2
120	1910		13	0	82	0	27	0
121	2176		7	0	73	0	7	0
122	2173		5	2	71	0	10	7
123	11	Wainganga	13	0	70	0	9	0
124	2175		10	0	59	0	7	0
125	2174		11	3	85	0	23	0
126	2719		13	7	83	0	24	0
127	1315		14	0	82	0	25	0
128	1212		9	0	77	0	9	0
129	2156		10	0	77	0	10	0
130	2721	Wardha	6	0	73	0	24	0
131	2720		13	3	71	0	20	0
132	2723	Wena	14	6	92	0	36	0
133	2722		18	0	71	0	24	0

Table AVII.2: List of Monitoring Stations where Percent Exceedance of any of Parameters is more than 75%

Sr.	Station No.	River	pН	DO	BOD	TC	Ammonical-N	Nitrate
1	2652	Amravati	20	0	67	0	82	0
2	1190		4.2	77.3	100	0	70.8	0
3	1189		0	63.6	100	0	43.5	0
4	1191	Bhima	0	29.2	87.5	0	50	0
5	1192		0	25	82.6	0	60.9	0
6	1912	Chandrabhaga	25	0	75	0	30.4	0
7	HP_DG_3	Daman Ganga	5.6	5.6	77.8	0	0	0
8	2665	Ghod	14	14.3	78.6	0	11.6	0
9	HP_GD_3		33.3	33.3	100	0	0	0
10	HP_GD_1		0	0	100	0	0	0
11	2180		9.3	23.3	93	0	28.2	0
12	2178		18.2	40.9	90.9	0	65	0
13	1211		2.9	5.9	90.9	0	3.1	0
14	2181		9.3	25.6	90.7	0	22.9	0
15	1096		3.6	0	85.7	0	1.9	0
16	2179	Godavari	5.6	15.8	84.2	0	17.6	0
17	HP_GD_5		66.7	0	0	50	100	0
18	2668		8.9	25	93.2	0	6.8	0
19	2197	Indrayani	1.9	19.2	86.5	0	19.2	0
20	2669		4.8	11.6	83.7	0	7.1	0
21	2171	Kanhan	12.8	5.1	92.1	0	12.8	0
22	1909		0	4.3	87	0	31.8	0
23	1908	Kolar	4.2	0	82.6	0	16.7	0
24	2189	Koyna	9.4	1.9	76.9	0	5.8	0
25	HP_KR_8		0		100		100	20
26	2188		11.3	0	80.8	0	2	0
27	36		3.6	0	80.4	0	0	0
28	2187		1.9	0	77.4	0	2	0
29	HP_KR_24		0	92.6	76.7	90.7	20.9	0
30	2190		5.7	1.9	75	0	1.9	0
31	HP_KR_15		0	0	66.7	100	0	0
32	HP_KR_11		0	0	55.6	100	0	0
33	HP_KR_14		17	0	8	100	0	0
34	HP_KR_10	Krishna	0	76.9	71.1	97.7	18.2	0
35	HP_KR_23		0	0	0	78.4	0	0
36	2168	Mithi	0	75	94.7	0	44.1	0
37	No Stn.Num.	Morna	13.3	23.1	92.9	0	21.4	0
38	2192		1.9	86.8	100	0	90.4	0
39	2194		1.9	77.4	100	0	84.6	0
40	2193		1.9	59.6	100	0	82.4	0
41	2678	[0	82.2	100	0	75.6	0
42	2679	[2.2	84.4	100	0	73.3	0
43	2191	MulaMutha	0	100	98.1	0	86.5	0
44	2677		10.9	48.9	91.3	0	37.8	0

Table AVII.2 (Contd..): Percent Exceedance75%

Table	11 V 11:2 (COIII	u i el celli Ex	cccuunc	.01070				
Sr.	Station No.	River	pН	DO	BOD	TC	Ammonical-N	Nitrate
45	2195	Nira	7.7	24	96.1	0	29.4	0
46	2681		19.1	21.3	87	0	4.3	0
47	No Stn.Num.	Panchaganga	0	25	25	75	0	0
48	No Stn.Num.	Panzara	19	8	87	0	62	0
49	100		0	86	100	0	89	0
50	2690		8.7	71.1	100	0	75.6	0
51	2196		0	82.9	100	0	71.4	0
52	2691		4.4	88.1	100	0	70.5	0
53	2694	Pawana	0	75.7	100	0	65.9	0
54	2693		0	44.4	93.3	0	50	0
55	2695	Pedhi	25.8	32.3	90	0	19.4	0
56	2697	Penganga	0	0	72.7	0	100	0
57	2698	Penganga	0	0	66.7	0	91.7	0
58	1913	Purna	13.6	4.5	90.5	0	27.3	0
59	2155		8.7	13.6	86.4	0	23.8	0
60	1907	Rangavali	10	0	80	0	0	0
61	HP_TP_14		0	12.5	100	88.9	0	0
62	HP_TP_15		12.5	0	100	42.9	0	0
63	HP_TP_9		9.1	0	100	27.3	0	0
64	HP_TP_12		0	0.8	100	7.7	0	0
65	HP_TP_14	Tapi	7.1	7.1	100	7.1	0	0
66	HP_TP_1		28.6	0	100	0	0	0
67	2710	Titur	41.9	20.7	83.9	0	0	0
68	HP_UH_3	Ulhas	0	76.9	100	80	0	0
69	HP_UH_2		7.1	0	100	15.4	0	0
70	HP_VN_3		0	0	100	8	0	0
71	HP_VN_1	Vaitarna	0	0	100	0	0	0
72	HP_VN_2		0	0	100	0	0	0
73	2717	Venna	2.2	0	80	0	11.1	0
74	2186		1.9	0	76.9	0	1.9	0
75	2172	Wainganga	4.7	4.7	90.5	0	11.9	2.4
76	1910		13	0	81.8	0	27.3	0
77	2174		11.4	2.9	85.3	0	22.9	0
78	2719		13.3	6.9	82.8	0	24.1	0
79	1315		14.3	0	81.8	0	25	0
80	1212	Wardha	8.7	0	77.3	0	9.1	0
81	2156		10	0	76.7	0	10.3	0
82	2723	Wena	13.9	5.6	91.7	0	36.1	0

Annexure VIII Water Quality Indices for Sea Water

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Station	Station No: 2805 Station Name: Arnala Sea												
2008	2008 Bad Bad MG MG MG GE MG MG MG MG												
2009			MG	Bad	Bad						Bad		
2010	MG								MG				
2011	2011 Bad MG MG MG Bad MG												
At statio	At stations 2805, WQI was not calculated due to un-availability of data for 2007												

Station	No : 13	316 Sta	ation N	ame :	Bassein	creek	at Vas	ai Fort	, Than	e		
2007	Bad		1				MG			MG	-	
2008	MG			GE			MG			0		
2009	GE			Bad			GE			MG		
2010												Bad
2011		Bad		MG		Bad		MG	Bad	MG	MG	

Station 1	Numb	er: 281	4 Stati	on Nan	ne: Bha	gwati l	Bunde	r, Ratn	agiri			
2008	MG	MG	1	GE	GE	GE	GE	GE	GE	GE	GE	GE
2009 GE MG GE												
2010	GE									GE		
2011			GE	GE	GE		GE				GE	
At statio	ns 281	4, WQI	was no	t calcul	lated du	e to un-	availal	bility of	data fo	or 2007		

Station	Numb	er: 279	7 Statio	n Nam	e: Bhay	yandar	Creek	at D/s	of Rai	lway B	ridge	
2008	MG	Bad	VB	VB	MG	Bad		MG	MG	MG	MG	MG
2009			MG	MG	Bad	Bad						
2010										MG		
2011			Bad	Bad		MG	MG	MG				
At statio	ns 279	7, WQI	was no	t calcul	lated du	e to un-	-availa	bility of	f data fo	or 2007		

Station 1	Numb	er:2166	Statio	n Nam	e: Cha	rni Ro	ad Ch	owpath	y. Mu	mbai		
2008				Bad	MG	MG	Bad		Bad		Bad	GE
2009			MG	Bad	Bad	MG	Bad	MG	MG	Bad	MG	VB
2010			MG	Bad	MG	MG			MG			
2011			MG		Bad		Bad	MG	MG			
At statio	ns 216	6, WQI	was no	t calcul	lated du	e to un-	-availa	bility of	data fo	or 2007		

Station 1	Numb	er: 281	1 Stati	on Nan	ne: Shiv	aji Pa	rk (Da	dar Ch	owpati	ty)				
2008					Bad	MG	Bad		Bad	Bad	MG			
2009														
2010		Bad							MG					
2011					VB	MG	Bad	MG	Bad					
At statio	ns 281	1, WQI	was no	t calcu	ated du	e to un-	availal	bility of	data fo	or 2007				

Station	Numb	er:2802	Statio	n Nam	e: Daha	anu Cr	eek at	Dahan	u Fort			
2008	MG								MG	Bad	MG	MG
2009 MG MG Bad Bad B												
2010			GE									
2011					Bad		MG		Bad	Bad		MG
At statio	ns 280	2. WOI	was no	t calcu	lated due	e to un-	availa	bility of	data fo	or 2007		

Station	Numbe	er:2799	Statio	n Nam	e: Dano	di Cree	ek					
2008	Bad	VB			VB	Bad	Bad					
2010			GE									
2011	Bad		Bad	MG	GE	GE		Bad				
At statio	ns 279	9, WQI	was no	t calcul	lated due	e to un-	-availal	bility of	data fo	or 2007	and 20	09

Station	Numb	er: 281	3 Stati	ion Na	me: Gai	napatij	oule, R	atnagi	ri			
2008	GE	GE		GE		GE	GE	GE	GE	GE	GE	GE
2009	GE		GE	GE	GE		GE	GE		GE	GE	
2010	GE											
2011	GE		GE				GE			GE		
At statio	ns 281	3, WQI	was no	t calcul	lated du	e to un-	availal	oility of	data fo	or 2007		

Station	Numbe	er: 216	5 Stati	ion Na	me: Gat	teway (of Indi	a				
2008	1	-		MG	Bad	MG	MG	1	Bad	MG	Bad	MG
2009	MG		MG	Bad	Bad	Bad	Bad	MG	MG	Bad	Bad	VB
2010			MG	Bad	Bad	MG		Bad	MG			
2011			Bad	VB	Bad		MG	MG				
At statio	ns 216:	5, WQI	was no	t calcul	lated du	e to un-	-availa	bility of	data fo	or 2007		

Station 1	Numbe	er: 281	0 Statio	n Nam	e: Haji	Ali, M	umbai	i					
2008	1	-	İ	Bad	Bad	MG	MG	1	Bad	Bad	MG	1	
2009													
2010									Bad				
2011			Bad	VB	Bad	MG	MG	MG					
At statio	ns 281	0, WQI	was no	t calcul	lated du	e to un-	-availal	bility of	data fo	or 2007			

Station	Numb	er: 281	2 Stati	ion Na	me: Juh	u Bea	ch, Mu	mbai						
2008	1	MG	1	MG	MG	GE	MG	Bad	-	Bad	MG	Bad		
2009														
2010						Bad								
2011			Bad	Bad	Bad		Bad	Bad	MG					
At statio	ns 281	2, WQI	was no	t calcul	lated due	e to un-	-availa	bility of	data fo	or 2007				

Station	Numb	er: 279	8 Stati	ion Nai	me: Kh	arekur	an Mu	ırbe Cr	eek			
2010	-		MG									
2011			MG	GE	MG	MG	MG	Bad				
At statio	ns 279	8, WQI	was no	t calcul	lated du	e to un-	-availa	bility of	f data fo	or 2007	to 2009)

Station	Numb	er:2793	Stati	on Nan	ne: Kal	wa Cre	ek					
2008	MG	Bad	-		MG	Bad	Bad	MG		MG	MG	GE
2009			MG	Bad								
2010			MG					MG				
2011					MG	MG	MG		Bad	MG		
At statio	ns 279	3, WQI	was no	t calcul	lated du	e to un-	availal	bility of	f data fo	or 2007		

Station	Numb	er: 280	4 Stati	on Nan	ne: Kar	ambha	ne Cr	eek, Ch	iplun			
2008	1						-	GE		GE	-	GE
2009				GE	GE	GE	GE	GE		GE	GE	
2010												GE
2011	GE	GE			GE		GE	GE		GE	GE	
At statio	ns 280	4, WQI	was no	t calcul	lated du	e to un-	availal	bility of	f data fo	or 2007		

Station	Numbe	er:1318	Statio	n Nam	e: Mal	nim Ba	y, Mu	mbai				
2007	Bad			VB	1		Bad	1	-	MG	1	1
2008	MG			MG	1		Bad	-	-		1	1
2009	VB			MG	1			-	-		1	1
2010									Bad			
2011				Bad	VB	VB		MG	MG	MG		

Station 1	Numb	er:2809	Statio	n Nam	e: Mal	abar E	[ill					
2008	Bad	VB	Bad	Bad	Bad	Bad	MG	-	Bad	Bad	MG	
2009	MG	MG	Bad	Bad	Bad			Bad		Bad		
2010	-				-	-	-		Bad			
2011			Bad	VB	Bad	MG	Bad	MG	Bad			
At statio	ns 280	9, WQI	was no	t calcul	lated du	e to un-	availa	bility of	data fo	or 2007		

Station	Numb	er: 281	5 Stati	on Nan	ne: Ma	ndavi l	Bunde	r				
2008	GE	GE		GE	GE	GE	GE	GE	GE	GE	GE	GE
2009			GE	GE	GE	GE	GE	GE		GE	GE	GE
2010	GE				-			-				1
2011			GE	GE	GE		GE		GE		GE	
At statio	ns 281:	5, WQI	was no	t calcul	lated du	e to un-	availal	bility of	data fo	or 2007		

Station	Numb	er: 280	8 Stati	on Nan	ne: Nar	iman F	Point						
2008	I	I		VB	Bad	MG	MG	1	-	Bad	Bad		
2009													
2010									MG				
2011			MG	VB	Bad	Bad	MG	MG					
At statio	ns 280	8, WQI	was no	t calcul	lated du	e to un-	-availal	bility of	data fo	or 2007			

Station 1	Numb	er: 280	7 Stati	on Nan	ne: Nav	vapur S	Sea					
2010			MG						MG			
2011		Bad	MG	MG	MG	MG		Bad				
At statio	ns 280	7, WQI	was no	t calcul	lated du	e to un-	-availa	bility of	f data fo	or 2007	to 2009)

Station	Numb	er : 280	3 Stati	ion Nai	me: Pai	nvel C	reek, F	Kopra				
2011			MG	MG	Bad	Bad		MG	MG			
At statio	ns 280	3, WQI	was no	t calcul	lated due	e to un-	availa	bility of	f data fo	or 2007	to 2010)

Station	Numb	er:2800	Statio	n Nam	e: Sarv	vali Cr	eek					
2010			MG						-			-
2011	Bad	Bad	MG	VB	GE	Bad		MG				
At statio	ns 280	0, WQI	was no	t calcul	lated du	e to un-	-availa	bility of	data fo	or 2007	to 2009)

Station	Numb	er: 280	1 Stati	on Nan	ne: Sav	ta Cre	ek						
2008	MG		1	-	1	1	1	1	GE	MG	MG	GE	
2009													
2010			MG						GE				
2011				MG		GE	MG			Bad	GE		
At statio	ns 280	1, WQI	was no	t calcul	lated du	e to un-	availal	bility of	data fo	or 2007			

Station 1	Numbe	er: 131	7 Statio	n Nam	e: Tha	ne Cre	ek at l	Elephai	nta Isla	nd, M	lumbai	
2010		-	1				1	-	Bad	Bad		
2011				MG		Bad		Bad	MG	Bad		
At statio	ns 131'	7, WQI	was no	t calcul	lated du	e to un-	availa	bility of	f data fo	or 2007	to 2009)

St. No:2	791 St	tation:	Ulhas	Creek	at Reti	Bunde	r, D/S	of Kaly	an Bh	iwandi	Bridge	
2011	Bad		Bad		MG		VB					
At station	ns 2791	, WQI	was not	calcula	ted due t	o un-av	ailabili	ity of da	ta for 2	007 to 2	2010	

Station Number: 2792 Station Name: Ulhas Creek at Mumbra Reti bunder												
2008		Bad	-		Bad	MG	MG	MG	GE	GE	MG	GE
2009			MG		Bad	Bad						
2010			MG					MG				
2011				MG	MG	Bad	MG	Bad	MG	MG		
At statio	At stations 2792, WQI was not calculated due to un-availability of data for 2007											

Station Number: 2794 Station Name: Ulhas Creek at Kosher Reti bunder												
2008	1	Bad	-		GE	Bad	MG	MG	MG	MG	MG	MG
2009	MG		MG	MG		Bad						
2010			MG					MG				
2011				Bad	MG	MG	Bad	Bad	Bad	Bad		
At stations 2794, WQI was not calculated due to un-availability of data for 2007												

Station 1	Numb	er: 279	5 Stati	on Nan	ne: Ulh	as Cre	ek at (Gaimul	ch at N	agla B	under		
2008		VB			MG	VB	MG	MG	MG	MG	MG	GE	
2009													
2010			Bad					MG					
2011				MG	MG	Bad	Bad	MG	MG	MG			
At statio	ns 279	5, WQI	was no	t calcul	lated du	e to un-	-availa	bility of	data fo	or 2007			

Station 1	Numbe	er:2796	Statio	n Nam	e: Ulha	s Cree	k at V	ersova	Bridge			
2008	MG	-	1		MG	1	Bad	MG	GE	MG	MG	MG
2009	- 1	I	MG	Bad	Bad	Bad	-	-	1			1
2010									MG	Bad		
2011			VB	Bad		Bad	MG	MG	GE			
At statio	ns 279	6, WQI	was no	t calcul	lated du	e to un-	availal	bility of	data fo	or 2007		

Station	Numb	er: 280	6 Stati	on Nan	ne: Utta	n Sea,	Thane	e				
2008	MG	MG			MG	MG	MG		MG	MG	MG	MG
2009			MG	Bad	Bad	Bad		1	-	-		-
2010	MG								MG			
2011				MG			Bad		Bad			
At statio	ns 280	6, WQI	was no	t calcul	lated du	e to un-	-availal	bility of	f data fo	or 2007		

Station 1	Numbe	er: 218	4 Stati	on Nan	ne: Vas	shi Cre	ek at A	Airoli B	ridge,	Thane		
2008		-	MG		MG			GE	GE	MG	Bad	Bad
2009	MG		MG	Bad	Bad	MG	Bad	MG	MG	MG	MG	MG
2010						MG			GE			
2011			Bad			Bad	MG	Bad	Bad			
At statio	ns 218	4, WQI	was no	t calcul	lated du	e to un-	-availal	bility of	f data fo	or 2007		

Station	Numbe	er: 218	5 Stati	on Nan	ne: Vas	shi Cre	ek at A	Airoli B	Bridge,	Thane		
2008	I	1	Bad		MG	1	MG	Bad	MG	Bad	MG	MG
2009	MG	1	MG		Bad	MG	Bad	MG	MG	MG	MG	Bad
2010					MG				MG			
2011				MG		Bad		Bad	Bad			
At statio	ns 218:	5, WQI	was no	t calcul	ated du	e to un-	availa	bility of	f data fo	or 2007		

Station	Numb	er: 216	9 Statio	n Nam	e: Ver	sova, A	ndher	i, Mun	ıbai				
2008	I	I	1	MG	1	Bad	MG	Bad	Bad	1	MG		
2009													
2010	MG	MG		MG		Bad	Bad	Bad			-		
2011			Bad	VB	VB	VB	VB	Bad	Bad				
At statio	ns 216	9, WQI	was no	t calcul	lated du	e to un-	-availa	bility of	data fo	or 2007			

Station	Numbe	er:2167	Statio	n Nam	e: Wor	li Sea f	ace					
2008	I	1	1	Bad	Bad	MG	Bad	1	MG		MG	GE
2009	MG		MG	Bad	Bad	MG	Bad	MG	MG	MG	MG	Bad
2010			MG	MG	-	-	MG	MG	MG			1
2011			MG	Bad	MG	Bad	Bad	Bad	MG			
At statio	ns 216'	7, WQI	was no	t calcul	lated du	e to un-	-availal	bility of	f data fo	or 2007		

Annexure IX

Five Years Descriptive Statistics of Ground Water Quality

1. AHMEDNAGAR

Taluka : Ahmednagar (Ambilwadi, Arangaon, Bhitkewadi, Bolhegaon, Burudgaon, Chinchandi Patil, Dehre, Hatwalan, Jakhangaon, Jeur, Kamargaon, Mandve, Manjur, Mehekari, Nandgaon, Nepti, Pargaonmaulla, Ruichhattishi, Shiradhon, Takalikazi, Wakodi)

	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.3	115.0	84.0	16.0	2.9	0.0	48.0	42.4	16.0	5.8	0.1	0.2
Max	9.2	5382.0	2492.0	563.2	335.3	0.3	636.0	775.9	2180.0	1359.0	1.4	606.4
Average	7.9	1314.1	649.0	108.6	91.7	0.1	286.2	346.1	343.8	182.6	0.7	36.5
Stdev	0.4	1129.8	546.8	110.8	78.3	0.1	143.9	178.6	408.3	256.5	0.3	83.0
% < Des	0.0	12.3	21.1	59.6	17.5	98.2	24.6	0.0	59.6	78.9	89.5	84.2
% P	94.7	73.7	43.9	26.3	49.1	1.8	70.2	0.0	29.8	12.3	10.5	0.0
% > Ex P	5.3	14.0	35.1	14.0	33.3	0.0	5.3	0.0	10.5	8.8	0.0	15.8

Taluka : Ak	cole (K	alas kh., K	Cotul, May	veshi, Pa	rakadpui	r, Rajur,	Tahakali	, Takali, T	ambhol,	Unch kha	dak,		
Vadegaon Madhe, Waki)													
Min 7.5 134.0 76.0 6.4 7.8 0.0 56.0 52.6 22.0 1.0 0.2 0.1													
Max	8.8	2220.3	1630.6	520.0	144.8	0.2	312.0	380.6	340.0	1445.0	1.1	67.0	
Average	8.0	823.5	519.1	123.6	51.1	0.0	169.9	197.4	119.8	253.6	0.5	22.9	
Stdev	0.4	608.2	474.9	167.2	36.7	0.1	67.0	86.0	100.8	451.4	0.3	24.4	
% < Des	0.0	37.5	43.8	62.5	43.8	100.0	62.5	0.0	81.3	81.3	87.5	75.0	
% P	93.8	56.3	31.3	18.8	43.8	0.0	37.5	0.0	18.8	0.0	12.5	0.0	
% > Ex P	6.3	6.3	25.0	18.8	12.5	0.0	0.0	0.0	0.0	18.8	0.0	25.0	

Taluka: Ja	mkhed	(Jamkhed	l, Aranga	on, Nana	j, Jamkh	ed)						
Min	7.3	375.1	244.0	12.8	25.3	0.0	116.0	141.5	60.0	35.0	0.1	2.0
Max	8.5	1683.0	860.0	131.2	139.0	0.3	338.0	412.4	370.0	270.0	1.7	103.0
Average	8.0	707.4	368.2	52.9	57.3	0.1	247.8	285.6	165.1	93.6	0.7	20.4
Stdev	0.3	383.1	186.3	36.9	29.7	0.1	77.3	96.0	102.5	71.9	0.5	29.3
% < Des	0.0	36.4	45.5	81.8	9.1	90.9	27.3	0.0	81.8	90.9	72.7	90.9
% P	90.9	63.6	45.5	18.2	81.8	9.1	72.7	0.0	18.2	9.1	18.2	0.0
% > Ex P	9.1	0.0	9.1	0.0	9.1	0.0	0.0	0.0	0.0	0.0	9.1	9.1

Taluka : Ka	arjat (Ba	abulgaon	khalasa, B	aradgao	n sudrik,	Chicho	ndi kalda	t, Domba	lwadi, Jal	alpur, Ko	lwadi,				
Mahi jalgao	n, Nimga	aondaku,	Pategaon,	Rashin)						-					
Min															
Max	8.5	2387.9	1235.0	396.0	144.8	2.6	372.0	453.8	692.3	311.5	1.6	509.0			
Average	7.9	959.5	490.3	99.7	58.6	0.1	212.5	255.0	251.3	124.2	0.7	64.3			
Stdev	0.3	538.1	300.1	94.3	30.5	0.5	72.6	89.3	198.3	76.6	0.3	118.8			
% < Des	0.0	13.0	17.4	52.2	8.7	95.7	52.2	0.0	60.9	87.0	82.6	73.9			
% P	100.0	78.3	60.9	34.8	82.6	0.0	47.8	0.0	39.1	13.0	13.0	0.0			
% > Ex P	0.0	8.7	21.7	13.0	8.7	4.3	0.0	0.0	0.0	0.0	4.3	26.1			

Taluka : Kopargaon (Apegaon, Chas, Dahigaon bolka, Derde korhale, Dhamori, Kolpewadi, Kopargaon Mahegaon deshmukh, Pohegaon, Puntamba, Rahata, Ranjangaon deshmukh, Shahajapur, Shinganapur, Takali, Talegaon male)

	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO ₄ -2	F ⁻	NO ₃
Min	7.4	218.0	76.0	8.0	13.6	0.0	88.0	104.0	26.0	11.0	0.1	0.2
Max	9.0	3725.0	2100.0	209.6	418.0	1.0	600.0	732.0	1540.0	580.0	1.9	126.0
Average	8.1	1115.9	512.7	68.2	83.2	0.1	300.2	357.1	337.0	142.1	0.7	27.9
Stdev	0.3	911.9	404.0	44.3	84.3	0.2	133.5	168.5	413.1	143.7	0.4	33.4
% < Des	0.0	30.3	36.4	66.7	27.3	97.0	21.2	0.0	66.7	75.8	75.8	81.8
% P	87.9	57.6	39.4	30.3	42.4	3.0	78.8	0.0	24.2	15.2	21.2	0.0
% > Ex P	12.1	12.1	24.2	3.0	30.3	0.0	0.0	0.0	9.1	9.1	3.0	18.2

Taluka : Ne	ewasa (Babulwed	he, Bamb	ori, Belp	andhari,	Belpin	palgaon,	Bhende, C	Galnimb,	Gidegaon	, Karega	aon,	
Khadka, Kukana, Newasa kh, Shirasgaon, Sonai, Suregaon dahigaon, Telkudgaon, Vadala, Bhairoba, Watapur)													
Min	7.4	308.0	168.0	16.0	10.7	0.0	90.0	109.8	39.1	16.0	0.1	1.5	
Max	8.8	4326.0	1800.0	308.8	352.8	1.9	1043.0	1272.5	1228.0	1250.0	1.1	360.2	
Average	8.0	1121.2	607.7	105.3	83.7	0.2	291.6	353.0	282.3	191.9	0.5	44.4	
Stdev	0.3	904.6	434.5	69.1	77.9	0.4	167.7	206.7	282.8	231.8	0.3	72.1	
% < Des	0.0	21.3	25.5	46.8	12.8	80.9	27.7	0.0	57.4	68.1	95.7	76.6	
% P	91.5	66.0	36.2	42.6	63.8	10.6	68.1	0.0	38.3	21.3	4.3	0.0	
% > Ex P	8.5	12.8	38.3	10.6	23.4	8.5	4.3	0.0	4.3	10.6	0.0	23.4	

Taluka: Pa	rner (A	lkuti, Cha	mbut, De	swade, I	Devibhoi	re, Dhav	alpuri, M	landve kh	, Nijhoj, S	Supe, Tas	, Vadzi	re,		
Wadegavan	Wadegavan)													
Min	7.2	171.0	92.0	19.2	10.7	0.0	92.0	112.2	28.0	14.0	0.2	0.3		
Max	8.5	2770.6	1495.0	312.0	174.0	0.1	448.0	546.6	592.0	795.0	1.6	159.0		
Average	8.0	882.9	431.8	63.8	66.2	0.0	260.8	308.6	186.7	128.8	0.8	21.9		
Stdev	0.3	533.5	262.8	61.1	35.0	0.0	99.5	124.8	129.0	166.6	0.4	32.4		
% < Des	0.0	21.7	13.0	82.6	13.0	100.0	30.4	0.0	73.9	87.0	60.9	95.7		
% P	100.0	73.9	78.3	13.0	69.6	0.0	69.6	0.0	26.1	8.7	34.8	0.0		
% > Ex P	0.0	4.3	8.7	4.3	17.4	0.0	0.0	0.0	0.0	4.3	4.3	4.3		

Taluka : Pa	athardi ((Kasar Pir	npalgaon))								
Min	7.2	600.0	424.0	36.8	64.2	0.0	240.0	292.8	108.0	89.0	0.1	3.0
Max	8.0	1238.0	524.0	64.0	105.0	0.1	328.0	400.2	144.0	280.0	0.9	5.0
Average	7.6	919.0	474.0	50.4	84.6	0.1	284.0	346.5	126.0	184.5	0.5	4.0
Stdev	0.6	451.1	70.7	19.2	28.9	0.1	62.2	75.9	25.5	135.1	0.6	1.4
% < Des	0.0	0.0	0.0	100.0	0.0	100.0	0.0	0.0	100.0	50.0	100.0	100.0
% P	100.0	100.0	100.0	0.0	50.0	0.0	100.0	0.0	0.0	50.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka · R	ahuri (T	Deolali Di	oras Guh	a Kanol	har hk K	endal kl	ı Kolhar	kh Mall	arwadi k	Pahuri Ra	ahuri hk	-		
	Taluka : Rahuri (Deolali, Digras, Guha, Kanghar bk, Kendal kh, Kolhar kh, Malharwadi, Rahuri, Rahuri bk Songaon/anapwadi, Tambhere, Umbare, Wambori, Warshinde, Warvandi)													
Min 7.2 140.0 76.0 8.0 7.8 0.0 40.0 48.8 20.0 8.0 0.1 0.3														
Max	9.2	4218.0	1800.0	289.6	296.5	1.1	640.0	780.8	1350.0	715.0	1.3	218.9		
Average	8.2	1344.7	580.7	77.0	94.4	0.1	272.4	320.7	373.7	185.6	0.5	32.0		
Stdev	0.4	1167.5	454.9	66.5	84.9	0.2	132.6	168.2	401.2	217.3	0.3	49.6		
% < Des	0.0	31.9	38.3	72.3	29.8	93.6	34.0	0.0	53.2	72.3	91.5	78.7		
% P	80.9	44.7	29.8	19.1	31.9	4.3	63.8	0.0	34.0	8.5	8.5	0.0		
% > Ex P	19.1	23.4	31.9	8.5	38.3	2.1	2.1	0.0	12.8	19.1	0.0	21.3		

Taluka: Ra	ahata (R	Rahata)										
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl ⁻	SO_4^{-2}	F-	NO ₃
Min	8.0	1334.1	665.0	34.0	119.1	0.0	200.0	244.0	358.0	88.8	0.3	189.1
Max	8.1	1888.5	1058.8	70.0	233.0	0.0	345.0	420.9	819.0	274.0	0.6	205.0
Average	8.0	1527.4	812.9	48.0	168.4	0.0	266.6	325.3	534.3	170.3	0.5	195.0
Stdev	0.1	312.9	214.4	19.3	58.5	0.0	73.2	89.3	248.9	94.6	0.2	8.7
% < Des	0.0	0.0	0.0	100.0	0.0	100.0	0.0	0.0	0.0	66.7	100.0	0.0
% P	100.0	100.0	0.0	0.0	0.0	0.0	100.0	0.0	100.0	33.3	0.0	0.0
% > Ex P	0.0	0.0	100.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0

Taluka: Sangamner (Ambikhalsa, Bota, Chandanapuri, Chikhali, Ghulewadi, Gunjalwadi, Hangewadi, Karhe, Karjule pathar, Kasare, Maldad, Nimgaon paga bk., Nimgaonjali, Raitewadi, Sangamner, Sarola pathar) 7.5 235.3 115.0 8.0 0.0 135.0 164.7 0.2 Min 18.5 30.0 6.2 1.7 600.0 440.0 Max 8.8 5402.0 2500.0 311.0 0.6 708.0 863.8 2440.0 1.0 65.0 Average 7.9 637.7 106.5 90.3 287.7 345.0 389.4 127.3 1250.6 0.1 0.6 17.6 0.2 Stdev 0.3 1150.0 576.5 116.5 76.7 0.1 108.9 138.4 544.6 124.6 15.1 % < Des 34.9 90.7 97.7 0.0 25.6 58.1 11.6 14.0 0.0 62.8 74.4 95.3 % P 93.0 51.2 34.9 20.9 55.8 9.3 83.7 0.0 25.6 18.6 2.3 0.0 0.0 % > Ex P7.0 23.3 30.2 20.9 32.6 0.0 2.3 11.6 7.0 0.0 4.7

Taluka: Shevgaon (Antrawali bk., Antre, Bodhegaon, Dahigaon, Ghotan, Hingangaon, Jeur, Karjat kh. Khanapur, Kokona, Rakshi) Min 7.4 227.3 72.0 16.0 6.8 0.0 60.0 73.0 17.8 9.0 0.1 2.0 8.4 1465.0 0.4 860.0 1048.7 762.0 944.2 0.9 Max 2762.9 326.0 176.9 651.0 7.9 Average 1107.3 103.1 72.2 0.1 262.3 312.2 235.6 195.4 0.5 72.4 554.6 Stdev 0.2 768.6 371.5 95.6 49.9 0.1 158.9 194.5 193.9 220.4 0.3 131.8 % < Des 93.1 0.0 69.0 100.0 0.0 24.1 27.6 65.5 24.1 37.9 58.6 69.0 % P 100.0 62.1 37.9 13.8 51.7 6.9 58.6 0.0 41.4 13.8 0.0 0.0 % > Ex P0.0 13.8 34.5 20.7 24.1 0.0 3.4 0.0 0.0 17.2 0.0 31.0

Taluka : Sh	_							le, Deoda	ithan, Gh	argaon, I	Kokanga	on,		
Koregavnan	Koregavhan, Rajapur, Shedgaon, Shrigonda, Takle-Kazi, Walvad)													
Min 7.3 385.0 192.0 16.0 21.4 0.0 130.0 158.6 48.0 18.7 0.4 0.7														
Max	8.6	2149.1	1449.7	282.0	232.0	0.8	452.0	551.4	901.0	540.0	1.4	481.0		
Average	7.9	1035.7	560.6	88.3	82.6	0.0	247.9	299.5	274.6	160.1	0.8	73.3		
Stdev	0.3	510.4	325.5	66.0	48.2	0.1	86.1	106.6	204.3	118.0	0.3	106.5		
% < Des	0.0	13.5	16.2	54.1	5.4	97.3	27.0	0.0	59.5	78.4	83.8	62.2		
% P	94.6	81.1	54.1	40.5	67.6	2.7	73.0	0.0	40.5	16.2	16.2	0.0		
% > Ex P	5.4	5.4	29.7	5.4	27.0	0.0	0.0	0.0	0.0	5.4	0.0	37.8		

Taluka : Sł	ıriramp	ur (Babha	aleshwar l	ok., Bela	pur bk, I	Bote, Ch	itali, Ekla	ahare, Kh	irdi, Khol	car, Loni	kh		
Rajankhol,	Rampur,	Shriramp	our, Takal	ibhan, Ta	akalibha	n, Undir	gaon, Wa	idala mah	iadeo)				
Min 7.0 97.6 60.0 16.0 2.9 0.0 59.8 57.7 14.0 2.4 0.1 0.													
Max	9.0 4448.0 2100.0 328.0 311.0 0.3 680.0 829.6 2120.0 625.0 1.4 45.0												
Average	8.2 810.1 447.8 87.8 55.5 0.1 245.3 286.4 223.4 115.8 0.6 9.6												
Stdev	0.3	779.6	363.9	73.9	54.3	0.1	119.3	147.3	326.5	125.3	0.3	9.5	
% < Des	0.0	38.8	30.6	61.2	26.5	98.0	42.9	0.0	77.6	81.6	89.8	98.0	
% P	85.7	55.1	51.0	28.6	61.2	2.0	55.1	0.0	20.4	14.3	10.2	0.0	
% > Ex P	14.3	6.1	18.4	10.2	12.2	0.0	2.0	0.0	2.0	4.1	0.0	2.0	

2. AKOLA

Taluka : Akola (Agar, Akola, Akola Camp, Apatapa, Babhulgaon, Badalpur, Chikhalgaon, Dhamana Hingana Tamas, Hingana Tawadi, Javala Bk., Kanshivani, Kapileshwar, Kati, Katyar, Mhaisang Mhaispur, Palsodbade, Rohana, Sangavi, Shivani, Shivar, Shivni, Ugwa, Wadad, Wanirambhapur)

	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F-	NO ₃
Min	6.7	268.0	124.0	11.8	9.6	0.0	36.0	24.4	34.0	7.0	0.1	3.0
Max	9.4	6441.0	2000.0	320.0	414.1	0.3	848.0	937.0	4554.0	1230.0	2.0	268.0
Average	7.6	1227.2	552.1	79.0	85.9	0.1	135.3	131.3	396.9	88.3	0.5	55.8
Stdev	0.6	922.5	443.2	68.0	90.4	0.1	139.7	140.5	587.7	148.6	0.3	39.0
% < Des	0.0	10.6	30.9	63.8	27.7	95.7	77.7	0.0	58.5	86.2	88.3	44.7
% P	87.2	73.4	43.6	30.9	47.9	4.3	21.3	0.0	35.1	12.8	10.6	0.0
% > Ex P	12.8	16.0	25.5	5.3	24.5	0.0	1.1	0.0	6.4	1.1	1.1	55.3

Taluka : Akot (Akolkhed, Akot, Chhota Bz., Deori, Devarda, Devari, Girijapur, Hilalabad, Keliveli, Kinkhed, Kutasa, Mundgaon, Nakhegaon, Palsad, Palsod, Parala, Pastul, Popatkhed, Ruikhed, Sawara, Shahanur, Takli Bk, Wadalisatvai)

Min	6.7	129.0	84.0	6.4	1.9	0.1	32.0	9.8	20.0	5.0	0.1	1.0
Max	8.7	6680.0	2000.0	364.8	413.1	0.4	726.0	885.7	3800.0	1285.0	2.2	385.0
Average	7.7	1513.1	574.8	80.0	91.6	0.2	155.0	165.0	528.2	104.1	0.7	59.2
Stdev	0.5	1447.6	440.1	83.7	92.0	0.1	164.5	185.7	686.5	195.4	0.4	59.1
% < Des	0.0	21.8	36.8	71.3	31.0	90.8	74.7	0.0	46.0	88.5	79.3	52.9
% P	96.6	55.2	25.3	18.4	39.1	9.2	21.8	0.0	40.2	4.6	18.4	0.0
% > Ex P	3.4	23.0	37.9	10.3	29.9	0.0	3.4	0.0	13.8	6.9	2.3	47.1

Taluka: B	alapur ((Balapur,	Batwadi,	Gaigaon	, Kazikh	ed, Kola	ısa, Lohar	a, Nakash	i, Paras, V	Wadegaor	n)	
Min	6.9	320.0	88.0	8.8	5.8	0.1	32.0	32.0	42.0	9.0	0.1	1.0
Max	8.7	5070.0	1496.0	169.6	278.0	0.8	1350.0	1549.4	1500.0	220.0	1.2	275.0
Average	7.6	864.4	412.6	63.9	61.8	0.1	156.2	168.1	230.7	41.6	0.5	54.3
Stdev	0.5	743.0	223.1	39.3	50.4	0.1	227.1	259.3	223.5	38.1	0.2	53.0
% < Des	0.0	24.4	24.4	65.9	26.8	92.7	75.6	0.0	73.2	97.6	92.7	51.2
% P	90.2	73.2	68.3	34.1	56.1	7.3	22.0	0.0	24.4	2.4	7.3	0.0
% > Ex P	9.8	2.4	7.3	0.0	17.1	0.0	2.4	0.0	2.4	0.0	0.0	48.8

Taluka : Ba	arshita	kli (Dhab	a, Gorwa,	Hatola,	Kajalesł	war, Ka	sarkhed, l	Pinjar, Ra	hit, Yerar	ıda)		
Min	6.9	174.0	156.0	11.2	17.3	0.1	32.0	32.0	44.0	8.0	0.1	9.0
Max	8.8	2170.0	2000.0	315.2	470.4	0.2	308.0	375.8	1384.0	170.0	0.9	600.0
Average	7.6	623.6	507.1	61.6	83.9	0.1	88.7	96.0	231.3	45.4	0.4	75.7
Stdev	0.5	480.0	404.2	66.9	94.7	0.0	66.4	79.6	276.3	41.5	0.2	102.8
% < Des	0.0	57.1	25.7	74.3	17.1	100.0	94.3	0.0	80.0	100.0	100.0	48.6
% P	94.3	40.0	57.1	20.0	68.6	0.0	5.7	0.0	17.1	0.0	0.0	0.0
% > Ex P	5.7	2.9	17.1	5.7	14.3	0.0	0.0	0.0	2.9	0.0	0.0	51.4

Taluka : Mu	ırtizapu	r (Dapura	ı, Kawath	a, Kinkh	ed, Kols	ara, Mac	lhapuri, N	Mana, Mu	rtijapur, S	helu Baza	ar,				
Sirso, Sonari	Sirso, Sonari Bopari, Yendli)														
'pH TDS TH Ca ²⁺ Mg ²⁺ Fe TA HCO3 CI SO ₄ -2 F NO															
Min	6.7	212.0	124.0	8.4	2.9	0.0	20.0	20.0	34.0	9.0	0.1	8.0			
Max	9.2	8490.0	2000.0	408.0	454.7	0.5	600.0	732.0	2090.0	1149.0	2.0	682.0			
Average	7.6	1247.4	541.7	78.3	83.9	0.1	128.1	134.2	325.7	99.1	0.6	78.5			
Stdev	0.5	1349.3	489.7	78.2	95.2	0.1	123.5	140.2	424.8	179.6	0.4	94.5			
% < Des	0.0	11.1	37.0	63.0	25.9	92.6	79.6	0.0	61.1	88.9	85.2	42.6			
% P	94.4	79.6	44.4	31.5	46.3	7.4	20.4	0.0	31.5	5.6	13.0	0.0			
% > Ex P	5.6	9.3	18.5	5.6	27.8	0.0	0.0	0.0	7.4	5.6	1.9	57.4			

Taluka: Pat	tur (Cha	tari, Chik	halgaon, (Chikhalw	al, Digr	as Kh, K	hetri, La	vkhed, Pa	tur, Pimp	alkhuta			
Sawargaon, Sawarkhed, Umra)													
Min 7.1 163.0 128.0 7.6 10.6 0.1 12.0 12.0 30.0 6.0 0.1 1.0													
Max	8.9	932.0	488.0	120.0	96.5	0.3	364.0	385.5	252.0	131.0	1.5	112.0	
Average	7.6	427.4	271.3	40.7	41.1	0.1	97.6	100.5	120.9	26.7	0.6	40.3	
Stdev	0.5	188.3	89.0	25.1	24.8	0.1	91.4	99.8	51.0	27.8	0.3	30.0	
% < Des	0.0	69.6	60.9	93.5	45.7	93.5	84.8	0.0	97.8	100.0	82.6	60.9	
% P	89.1	30.4	39.1	6.5	54.3	6.5	15.2	0.0	2.2	0.0	17.4	0.0	
% > Ex P	10.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	39.1	

Taluka : Tel	lhara (A	dsul, Dan	apur, Hin	gani Bk.	, Pancha	gavan, S	hahanur,	Tahr, Wa	adi Adam	pur,			
Wangargaon, Wari Warkhed)													
Min	6.9	188.0	76.0	8.4	5.8	0.1	0.0	0.0	36.0	6.0	0.1	3.0	
Max	8.9	5410.0	1340.0	296.0	310.1	0.5	488.0	595.4	2110.0	440.0	1.1	530.0	
Average	7.6	1088.6	357.7	48.2	57.4	0.2	117.1	117.4	297.4	62.3	0.4	62.6	
Stdev	0.5	1151.7	262.1	48.7	62.3	0.1	129.6	140.4	380.4	93.6	0.3	89.7	
% < Des	0.0	50.0	55.6	86.1	41.7	83.3	75.0	0.0	61.1	88.9	94.4	52.8	
% P	91.7	25.0	30.6	11.1	38.9	16.7	25.0	0.0	36.1	8.3	5.6	0.0	
% > Ex P	8.3	25.0	13.9	2.8	19.4	0.0	0.0	0.0	2.8	2.8	0.0	47.2	

3. AMRAVATI

Taluka : A	chalpur	(Chausal	a, Pathrot)								
	'pH	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	6.8	663.0	256.0	67.2	17.0	0.1	32.0	32.0	170.0	28.0	0.1	43.0
Max	7.6	2052.1	932.0	214.4	155.0	0.2	186.0	226.9	508.0	151.0	1.0	99.0
Average	7.3	1117.1	528.0	101.9	67.4	0.1	76.4	84.6	270.7	75.2	0.6	61.2
Stdev	0.4	583.4	322.9	63.0	58.6	0.0	67.0	84.1	147.7	52.2	0.4	25.7
% < Des	0.0	0.0	40.0	40.0	40.0	100.0	100.0	0.0	60.0	100.0	80.0	60.0
% P	100.0	80.0	20.0	40.0	40.0	0.0	0.0	0.0	40.0	0.0	20.0	0.0
% > Ex P	0.0	20.0	40.0	20.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0

Taluka : A	Amravat	i (Navsar	i, Amla,	Badnera,	Mardi,	Mogra,	Nandgao	npeth, Pir	npalvihir,	Pohara,	Revasa,	Vdali,
Wagholi)												
Min	6.9	362.0	164.0	16.0	4.0	0.1	32.0	32.0	38.0	1.0	0.1	2.0
Max	8.9	1931.0	768.0	296.0	103.0	0.2	340.0	414.8	570.0	74.0	1.7	114.0
Average	7.6	779.6	359.3	91.4	32.2	0.1	88.6	91.0	199.9	33.2	0.7	54.2
Stdev	0.6	406.1	188.8	74.0	26.9	0.0	84.7	92.7	152.9	20.7	0.5	34.3
% < Des	0.0	31.0	58.6	48.3	62.1	100.0	86.2	0.0	72.4	100.0	65.5	41.4
% P	86.2	69.0	24.1	41.4	34.5	0.0	13.8	0.0	27.6	0.0	27.6	0.0
% > Ex P	13.8	0.0	17.2	10.3	3.4	0.0	0.0	0.0	0.0	0.0	6.9	58.6

Taluka : A	njangao	n (Anjang	gaon Surji	, Bhand	araj, Kar	la, Sam	sherpur K	h.)				
Min	6.9	384.0	144.0	8.8	28.9	0.0	44.0	43.9	76.0	5.0	0.1	7.0
Max	9.4	2158.7	520.0	78.4	105.0	0.2	1348.0	912.6	346.0	69.0	1.2	85.0
Average	7.8	1151.9	337.3	34.2	61.8	0.1	276.9	236.0	233.1	34.6	0.3	42.2
Stdev	7.8	1151.9	337.3	34.2	61.8	0.1	276.9	236.0	233.1	34.6	0.3	42.2
% < Des	0.0	33.3	66.7	77.8	22.2	77.8	77.8	0.0	55.6	77.8	66.7	66.7
% P	66.7	44.4	33.3	22.2	55.6	0.0	11.1	0.0	44.4	22.2	11.1	0.0
% > Ex P	33.3	22.2	0.0	0.0	22.2	22.2	11.1	0.0	0.0	0.0	22.2	33.3

Taluka : F	Bhatkuli	(Afjalpur	Rama, A	segaon,	Bhatkuli	, Daryal	oad, Deor	i, Gannor	i, Gaurkh	eda, Jalka	Hirapu	r, Khar		
Talegaon,	Talegaon, Kholapur, Nimbha, Nimbhora Bk., Sayat, Shinganapur, Takarkheda, Sambhu, Wasewadi)													
Min	6.9	360.0	128.0	3.2	3.0	0.0	40.0	40.0	30.0	3.0	0.1	3.0		
Max	9.3	4210.0	1720.0	302.4	323.9	0.3	661.5	683.2	1448.0	310.0	1.9	200.0		
Average	7.8	1596.3	565.5	65.5	98.1	0.1	226.3	207.7	385.1	103.3	0.6	58.5		
Stdev	0.7	791.5	320.8	64.2	74.7	0.1	190.6	158.5	271.6	76.7	0.5	51.8		
% < Des	0.0	6.1	18.4	75.5	14.3	98.0	61.2	0.0	38.8	89.8	79.6	46.9		
% P	79.6	75.5	44.9	20.4	49.0	2.0	30.6	0.0	57.1	10.2	18.4	0.0		
% > Ex P	20.4	18.4	36.7	4.1	36.7	0.0	8.2	0.0	4.1	0.0	2.0	53.1		

Taluka : C	handur	Bazar (A	mla Vish	weshwai	r, Baggi,	Borgaoi	n Moh., C	hn. Rly.,	Ghatladki	, Rajura				
Shirsgaonkasba, Surali, Vishroli)														
Min 6.7 298.0 32.0 3.2 5.8 0.1 32.0 32.0 24.0 4.0 0.1														
Max	9.0	2240.0	900.0	163.2	126.4	0.2	268.0	258.1	602.0	220.0	1.5	114.0		
Average														
Stdev	0.7	531.8	186.9	45.7	26.7	0.0	73.4	70.8	150.0	55.6	0.3	34.9		
% < Des	0.0	36.4	72.7	59.1	59.1	100.0	86.4	0.0	81.8	95.5	68.2	50.0		
% P	81.8	54.5	18.2	40.9	36.4	0.0	13.6	0.0	18.2	4.5	31.8	0.0		
% > Ex P	18.2	9.1	9.1	0.0	4.5	0.0	0.0	0.0	0.0	0.0	0.0	50.0		

Taluka: C	handur	Railway	(Amla (V), Amla	Vishves	hwar, As	segaon, B	aggi, Borg	gaon, Cha	ndur Rail	way			
Kavatha Ka	Kavatha Kadu, Kharabi, Kirjawla, Shendurjana Kh.)													
	'pH TDS TH Ca^{2+} Mg^{2+} Fe TA HCO3 Cl^{-} SO_4^{-2} F NO													
Min	6.8	202.0	120.0	16.0	8.0	0.0	36.0	36.0	24.0	7.0	0.2	4.0		
Max	8.7	2070.0	908.0	186.8	156.5	0.2	351.0	428.2	475.0	311.0	1.5	108.0		
Average	7.6	690.4	373.7	65.8	51.2	0.1	120.2	131.3	172.3	48.4	0.7	48.7		
Stdev	0.5	429.1	189.7	40.8	38.3	0.0	85.8	105.9	108.9	64.3	0.3	30.8		
% < Des	0.0	44.4	37.0	59.3	40.7	100.0	81.5	0.0	85.2	96.3	77.8	37.0		
% P	96.3	51.9	51.9	40.7	48.1	0.0	18.5	0.0	14.8	3.7	22.2	0.0		
% > Ex P	3.7	3.7	11.1	0.0	11.1	0.0	0.0	0.0	0.0	0.0	0.0	63.0		

Taluka:	Chikhal	dara (Ad	dhav, Ba	rtanda, I	Barukhed	la, Baru	kheda, B	iba, Bora	ıla, Charı	ni, Chunl	khadi, (Churni,		
Dhargad, D	Dhargad, Doma, Ghular Gh., Kelapani, Makhla, Semadoh)													
Min 6.0 142.0 80.0 4.0 4.0 0.1 20.0 20.0 10.0 3.0 0.2 3.0														
Max	8.3	1160.0	640.0	160.0	132.2	0.5	272.0	317.2	250.0	125.0	1.6	140.0		
Average	7.4	353.5	215.3	38.4	29.3	0.1	74.9	76.8	89.7	31.4	0.6	33.6		
Stdev	0.4	173.3	114.3	26.6	20.1	0.1	58.5	63.0	49.2	23.4	0.3	26.3		
% < Des	2.1	89.6	91.7	93.8	56.3	89.6	91.7	0.0	97.9	100.0	87.5	79.2		
% P	97.9	10.4	4.2	6.3	41.7	10.4	8.3	0.0	2.1	0.0	10.4	0.0		
% > Ex P	0.0	0.0	4.2	0.0	2.1	0.0	0.0	0.0	0.0	0.0	2.1	20.8		

Taluka : D	aryapu	r (Ahmad	apur, Ala	mpur Bo	rala, An	ıla, Chno	licapur, D	aryapur, l	Itki, Mahi	mpur, Na	chona			
Nalwada, S	Shingana	pur, Shiva	ar BK., Sl	niwar Kh	, Takali,	Thillori	, Tongala	bad, Wadi	nergangai	, Yewada	.)			
Min	Min 7.2 130.0 120.0 3.2 9.7 0.1 40.0 0.0 38.0 24.0 0.1 4.0													
Max	9.9 4524.0 1836.0 350.4 332.4 0.2 734.0 629.5 1046.0 245.0 1.4 360.0													
Average	8.3	1370.8	556.0	53.8	104.3	0.1	210.3	141.7	319.0	82.6	0.4	69.6		
Stdev	0.7	981.2	416.6	86.1	78.5	0.0	151.3	130.5	284.2	56.5	0.3	63.3		
% < Des	0.0	3.1	31.3	87.5	15.6	100.0	53.1	0.0	62.5	90.6	93.8	31.3		
% P	65.6	81.3	37.5	3.1	43.8	0.0	43.8	0.0	34.4	9.4	6.3	0.0		
% > Ex P	34.4	15.6	31.3	9.4	40.6	0.0	3.1	0.0	3.1	0.0	0.0	68.8		

Taluka: Shendurjan		_	• .	_	Bhatkul	li, Borga	aon Dhan	., Degaor	ı, Gavhaı	nipani, M	Iangruli	Dasti,	
Min 6.9 170.0 134.0 13.6 6.0 0.1 40.0 40.0 61.0 4.0 0.2 2.0													
Max	9.1	1680.0	496.0	115.2	93.3	0.2	670.0	653.9	342.0	156.0	1.9	97.0	
Average	7.6	851.1	278.1	57.0	33.4	0.1	153.0	146.0	167.6	38.9	0.8	52.4	
Stdev	0.6	444.4	110.6	30.5	25.4	0.0	197.9	173.1	76.9	50.1	0.5	33.6	
% < Des	0.0	18.8	56.3	75.0	50.0	100.0	87.5	0.0	81.3	100.0	68.8	43.8	
% P	87.5	81.3	43.8	25.0	50.0	0.0	0.0	0.0	18.8	0.0	25.0	0.0	
% > Ex P	12.5	0.0	0.0	0.0	0.0	0.0	12.5	0.0	0.0	0.0	6.3	56.3	

Taluka : D) Dharni (I	Baru, Bha	ndum, Bh	okarbaro	li, Bhond	lhilava,	Bod, Cah	uryakund,	Chakarda	a, Chandp	ur		
Chinchgha	t, Dharni	i, Dhulgha	ıt Railway	, Dhulgl	nat Road	, Diya, C	Gangarkhe	ed, Gobarl	khau, Har	isal, Kho	ngda,		
Kutanga, Malkapur, Patia, Patiya, Rangubeli, Ranpisa, Sawalikheda, Sonarbardi, Susrda, Tarubanda, Wairgad)													
Min 6.7 70.4 60.0 3.6 5.0 0.1 28.0 28.0 20.0 6.0 0.2 1.0													
Max	8.4	1228.0	860.0	138.0	124.7	0.2	279.0	340.4	394.0	83.0	1.8	108.0	
Average	7.5	397.4	246.7	44.7	33.2	0.1	75.8	77.3	111.8	32.7	0.6	37.8	
Stdev	0.3	214.8	134.8	29.9	22.7	0.0	58.8	63.9	75.0	19.7	0.3	25.7	
% < Des	0.0	73.6	75.0	87.5	52.8	100.0	93.1	0.0	94.4	100.0	90.3	70.8	
% P	100.0	26.4	22.2	12.5	45.8	0.0	6.9	0.0	5.6	0.0	6.9	0.0	
% > Ex P	0.0	0.0	2.8	0.0	1.4	0.0	0.0	0.0	0.0	0.0	2.8	29.2	

Taluka : Morshi (Chikhal Sawangi, Chincholi Gavali, Chincholi Kawali, Churni, Dapori, Dhanora, Hiwarkhed, Kamalpur, Khanapur, Khanapur, Morshi, Nashirpur, Nershipur, Pada, Pardi, Pimpalkhuta, Riddhapur, Umarkhed, Vadali Sat, Vishnora, Yerla)

	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F-	NO ₃
Min	6.8	204.0	104.0	6.4	1.0	0.1	32.0	32.0	26.0	4.0	0.1	1.0
Max	8.8	3400.0	1990.0	290.8	306.9	0.6	400.0	488.0	893.0	449.0	1.4	137.0
Average	7.6	869.5	425.3	70.0	61.2	0.2	112.8	115.6	204.0	69.5	0.7	53.6
Stdev	0.5	557.4	307.7	53.2	57.3	0.1	82.5	91.4	163.7	70.1	0.3	37.8
% < Des	0.0	31.4	42.9	62.9	31.4	88.6	84.3	0.0	71.4	95.7	84.3	48.6
% P	95.7	67.1	35.7	35.7	52.9	11.4	15.7	0.0	28.6	2.9	15.7	0.0
% > Ex P	4.3	1.4	21.4	1.4	15.7	0.0	0.0	0.0	0.0	1.4	0.0	51.4

Taluka : Nandgaon Khandeshwar (Dhamak, Hivara Bk., Hivara Murade, Hiwara, Hiwaramurade, Jalu, Khandala Kh., Mahuli Chor, Nandgaon KH., Onkarkheda, Pimpalgaon Ipani, Pimpri Nipani, Sangrampur Shelunatwa, Shirpur, Shivani Ra., Wadhona, Yewati)

Min	6.5	178.8	84.0	16.0	4.0	0.1	36.0	36.0	24.0	4.0	0.1	7.0
Max	8.4	2631.0	1120.0	180.8	223.6	0.2	640.0	630.5	446.0	218.0	1.5	380.0
Average	7.5	829.8	385.7	74.5	48.9	0.1	98.2	108.2	206.7	51.6	0.6	68.7
Stdev	0.4	451.5	171.4	40.3	42.3	0.0	101.0	111.7	108.1	43.7	0.3	55.5
% < Des	0.0	16.4	30.9	49.1	47.3	100.0	89.1	0.0	67.3	98.2	89.1	36.4
% P	100.0	80.0	58.2	50.9	41.8	0.0	9.1	0.0	32.7	1.8	10.9	0.0
% > Ex P	0.0	3.6	10.9	0.0	10.9	0.0	1.8	0.0	0.0	0.0	0.0	63.6

Taluka: T	'iwasa (A	Anjangaor	Singhi, l	Bharwad	i, Manga	ırul Dast	gir, Tiwa	sa)				
Min	7.0	333.0	124.0	10.4	3.0	0.1	48.0	48.0	30.0	5.0	0.3	5.0
Max	8.9	1570.0	840.0	178.0	141.2	0.2	296.0	278.2	380.0	455.0	1.2	109.0
Average	7.6	844.2	409.1	76.4	53.2	0.1	112.4	121.9	199.3	73.1	0.7	57.2
Stdev	0.5	334.2	207.0	51.4	39.1	0.0	70.4	76.0	99.1	102.3	0.3	30.1
% < Des	0.0	10.5	31.6	47.4	31.6	100.0	89.5	0.0	68.4	94.7	78.9	31.6
% P	94.7	89.5	52.6	52.6	57.9	0.0	10.5	0.0	31.6	0.0	21.1	0.0
% > Ex P	5.3	0.0	15.8	0.0	10.5	0.0	0.0	0.0	0.0	5.3	0.0	68.4

Taluka : Warud (Aamner, Amdapur, Amner, Benoda, Dhaga, Dhanora, Ekaladara, Ekdara, Jamgaon, Jarud, Karajgaon, Karvat, Karwar, Mahendri, Manakapur, Mangruli, Mankapur, Musalkheda, Pandhari Pusala, Rajegaon, Satnur, Shedurjana Gh., Shendurjnaghat, Surali, Tembhurkheda, Tiwasa Gh., Wadgaon Warud, Wathoda)

Min	6.6	170.0	120.0	10.6	1.0	0.0	20.0	16.0	28.0	3.0	0.3	5.0
Max	8.6	1345.0	648.0	148.8	95.3	0.3	300.0	366.0	356.0	175.0	1.8	123.0
Average	7.5	578.2	308.2	61.0	38.3	0.1	90.9	91.8	151.7	38.5	0.7	51.5
Stdev	0.5	251.1	105.1	35.4	23.2	0.0	59.5	63.6	79.1	25.8	0.3	30.7
% < Des	0.0	47.4	44.7	67.1	38.2	97.4	93.4	0.0	88.2	100.0	84.2	50.0
% P	98.7	52.6	53.9	32.9	61.8	2.6	6.6	0.0	11.8	0.0	14.5	0.0
% > Ex P	1.3	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	50.0

4. AURANGABAD

Taluka : A	urangal	oad (Kinn	al, Walur	Tanda, S	Shendra	K., Kol	ghar)					
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F-	NO ₃
Min	7.0	80.0	84.0	16.0	10.7	0.0	0.0	20.1	32.0	12.0	0.0	0.3
Max	9.2	1996.0	980.0	238.4	120.0	1.7	460.0	561.2	526.0	352.0	2.0	207.0
Average	8.0	802.9	402.2	76.9	50.5	0.3	112.3	245.9	160.0	84.5	0.9	38.0
Stdev	0.5	406.0	182.9	51.3	26.9	0.3	127.9	127.0	108.6	63.9	0.4	52.9
% < Des	0.0	24.0	28.0	56.0	24.0	68.0	74.0	0.0	82.0	96.0	36.0	78.0
% P	86.0	76.0	60.0	40.0	70.0	30.0	26.0	0.0	18.0	4.0	56.0	0.0
% > Ex P	14.0	0.0	12.0	4.0	6.0	2.0	0.0	0.0	0.0	0.0	8.0	22.0

Taluka : K	Cannad (Digar Pisl	hore, Hatr	ıur, Kanı	nad, Hin	gni)						
Min	6.8	190.0	116.0	12.8	2.9	0.0	0.0	12.2	32.0	9.9	0.7	0.3
Max	9.4	4290.0	1172.0	240.0	139.0	0.6	375.4	459.9	982.0	241.0	1.6	149.0
Average	8.0	774.2	351.5	73.8	40.6	0.2	118.4	241.1	135.3	55.7	1.0	27.6
Stdev	0.5	648.2	183.1	50.3	26.8	0.1	123.1	121.3	150.1	42.4	0.2	35.6
% < Des	0.0	29.5	40.9	63.6	40.9	84.1	68.2	0.0	93.2	97.7	50.0	81.8
% P	84.1	68.2	52.3	34.1	54.5	15.9	31.8	0.0	6.8	2.3	43.2	0.0
% > Ex P	15.9	2.3	6.8	2.3	4.5	0.0	0.0	0.0	0.0	0.0	6.8	18.2

Taluka : K	hultaba	d (Khulta	bad, Mha	ismal, G	olegaon)							
Min	7.2	290.0	138.0	11.2	15.1	0.0	0.0	59.8	20.0	12.0	0.0	0.6
Max	9.6	1154.0	548.0	107.2	82.6	1.0	340.2	415.0	276.0	219.8	1.6	45.9
Average	8.0	594.7	310.3	47.8	46.4	0.2	94.1	249.9	83.7	48.5	0.8	14.3
Stdev	0.6	204.8	101.0	25.6	19.0	0.2	126.1	104.0	58.3	43.5	0.4	12.5
% < Des	0.0	36.4	40.9	81.8	22.7	68.2	72.7	0.0	95.5	95.5	54.5	95.5
% P	86.4	63.6	59.1	18.2	77.3	27.3	27.3	0.0	4.5	4.5	40.9	0.0
% > Ex P	13.6	0.0	0.0	0.0	0.0	4.5	0.0	0.0	0.0	0.0	4.5	4.5

Taluka: Pa	ithan ((Adul, Wa	ahegaon, V	Warwand	li kh.)							
Min	6.4	130.0	88.0	12.8	0.0	0.0	0.0	22.9	22.0	3.0	0.3	0.2
Max	9.5	7046.0	2150.0	800.0	287.0	1.8	1485.0	1811.7	2400.0	778.0	2.0	1126.0
Average	7.9	1494.2	617.6	130.1	71.1	0.4	160.1	334.7	353.8	114.2	1.1	46.4
Stdev	0.6	1409.7	464.4	151.2	62.1	0.5	235.1	333.4	432.0	118.1	0.4	145.4
% < Des	1.4	13.0	21.7	43.5	23.2	69.6	71.0	0.0	65.2	79.7	36.2	81.2
% P	79.7	62.3	50.7	43.5	56.5	15.9	24.6	0.0	27.5	18.8	43.5	0.0
% > Ex P	18.8	24.6	27.5	13.0	20.3	14.5	4.3	0.0	7.2	1.4	20.3	18.8

Taluka : Pl	nulamb	ri (Chauk	a, Pathri,	Ranjang	gaon, Wa	ghalgac	n)					
Min	7.0	207.0	104.0	14.4	5.8	0.0	0.0	24.5	14.0	1.0	0.0	0.8
Max	9.1	1534.0	800.0	264.0	89.0	2.5	280.3	342.0	464.0	246.0	1.6	177.9
Average	7.8	687.4	363.3	76.6	41.7	0.3	89.8	206.9	133.0	88.5	0.9	30.0
Stdev	0.5	320.2	151.3	50.0	20.7	0.5	102.8	93.5	90.3	69.7	0.4	45.0
% < Des	0.0	33.3	30.0	53.3	30.0	73.3	80.0	0.0	90.0	90.0	43.3	86.7
% P	90.0	66.7	66.7	43.3	70.0	23.3	20.0	0.0	10.0	10.0	53.3	0.0
% > Ex P	10.0	0.0	3.3	3.3	0.0	3.3	0.0	0.0	0.0	0.0	3.3	13.3

Taluka : Si	llod (A	janta, Wa	adala, Ja	mthi)								
	'pH	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.2	203.0	94.0	12.8	4.4	0.0	0.0	8.5	34.0	11.0	0.3	0.6
Max	9.5	1437.0	660.0	169.6	89.4	1.9	390.2	476.0	312.0	200.0	3.0	107.0
Average	7.9	623.7	340.8	72.1	39.0	0.2	115.7	207.3	116.9	60.1	1.4	21.4
Stdev	0.6	255.1	144.8	39.7	21.3	0.3	119.7	105.5	74.7	39.8	1.2	19.9
% < Des	0.0	36.4	43.2	59.1	34.1	86.4	75.0	0.0	95.5	97.7	54.5	88.6
% P	84.1	63.6	54.5	40.9	65.9	11.4	25.0	0.0	4.5	2.3	43.2	0.0
% > Ex P	15.9	0.0	2.3	0.0	0.0	2.3	0.0	0.0	0.0	0.0	2.3	11.4

Taluka: So	ygaon	(Fardapui	, Jarandi,	Palaskh	eda, Jam	thi[ts)						
Min	6.7	283.0	104.0	16.0	6.8	0.0	0.0	39.6	7.1	13.0	0.0	0.4
Max	9.3	1183.0	744.0	150.4	92.3	0.5	410.0	500.2	312.0	576.0	1.6	77.5
Average	7.9	632.4	380.8	80.9	43.4	0.2	110.5	225.1	118.6	80.2	0.8	19.6
Stdev	0.6	260.2	160.0	39.6	22.5	0.1	126.3	96.9	87.1	101.1	0.3	16.9
% < Des	0.0	37.9	31.0	41.4	34.5	79.3	72.4	0.0	86.2	96.6	62.1	93.1
% P	82.8	62.1	58.6	58.6	65.5	20.7	27.6	0.0	13.8	0.0	34.5	0.0
% > Ex P	17.2	0.0	10.3	0.0	0.0	0.0	0.0	0.0	0.0	3.4	3.4	6.9

Taluka : Va	aijapur	· (Rotegac	on, Vajapu	ır, Nagaı	nthan), l	Parsoda						
Min	6.8	278.0	88.0	16.0	8.8	0.0	0.0	18.3	26.0	16.0	0.0	0.7
Max	9.4	2873.0	1280.0	166.4	210.0	2.0	432.0	591.7	930.1	388.8	2.0	548.1
Average	8.1	1046.3	478.7	77.6	69.2	0.4	128.7	248.1	241.8	112.1	0.9	40.8
Stdev	0.5	721.6	285.5	39.1	55.6	0.5	133.4	123.5	230.9	94.9	0.4	110.6
% < Des	0.0	19.0	26.2	50.0	26.2	61.9	64.3	0.0	66.7	83.3	52.4	95.2
% P	85.7	64.3	57.1	50.0	47.6	23.8	35.7	0.0	33.3	16.7	40.5	0.0
% > Ex P	14.3	16.7	16.7	0.0	26.2	14.3	0.0	0.0	0.0	0.0	7.1	4.8

Taluka: Ga	angapu	ır (Agatha	an, Derda,	Jamgao	n, Babar	gaon)						
Min	7.1	277.0	96.0	19.2	0.0	0.1	0.0	0.0	20.0	10.0	0.0	0.9
Max	9.2	5168.0	1200.0	296.0	219.7	0.9	428.0	1037.0	1224.0	600.0	2.0	54.5
Average	7.9	958.6	421.2	87.3	49.3	0.3	102.9	230.6	198.7	103.6	1.0	11.6
Stdev	0.5	964.9	313.5	65.9	50.3	0.2	114.2	165.1	259.5	115.9	0.3	10.2
% < Des	0.0	37.5	47.9	56.3	54.2	66.7	81.3	0.0	81.3	83.3	41.7	97.9
% P	87.5	43.8	33.3	35.4	33.3	33.3	18.8	0.0	16.7	14.6	54.2	0.0
% > Ex P	12.5	18.8	18.8	8.3	12.5	0.0	0.0	0.0	2.1	2.1	4.2	2.1

5. BEED

Taluka : Aı	mbejog	ai (Ambaj	jogai, Bha	authana,	Chanai,	Kumbhe	phal, Pat	oda, Sona	wala, Tal	ni)		
	'pH	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	CI.	SO_4^{-2}	F	NO ₃
Min	7.4	161.0	94.0	12.8	7.3	0.0	80.0	78.4	22.0	0.5	0.1	0.1
Max	9.0	1437.0	600.0	116.0	94.3	0.2	235.1	286.8	336.0	149.0	1.1	216.0
Average	8.2	486.2	265.4	47.6	35.6	0.1	166.2	186.2	94.6	43.3	0.5	30.6
Stdev	0.5	345.6	146.9	28.9	24.9	0.1	49.6	68.5	82.8	38.0	0.3	50.5
% < Des	0.0	70.0	60.0	80.0	55.0	100.0	60.0	0.0	95.0	100.0	95.0	85.0
% P	75.0	30.0	40.0	20.0	45.0	0.0	40.0	0.0	5.0	0.0	5.0	0.0
% > Ex P	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.0

Taluka : A	shti (A	shta, Chi	nchpur, l	Dhanora,	Doitha	na, Dong	gargaon,	Hatola, l	Kinni, Ku	ntephal,	Loni, Ni	mgaon	
choba, Pimpri Ghumri)													
Min	7.3	334.0	104.0	20.8	1.9	0.0	40.0	21.4	44.0	0.3	0.4	0.6	
Max	9.9	2132.0	980.0	212.0	116.6	1.9	464.8	567.0	426.0	308.0	1.4	46.0	
Average	8.3	700.4	343.5	63.6	44.9	0.2	201.8	224.5	138.6	70.6	0.9	14.3	
Stdev	0.7	443.0	210.2	47.7	28.9	0.4	116.2	152.0	100.9	69.2	0.3	10.7	
% < Des	0.0	41.7	50.0	79.2	25.0	95.8	54.2	0.0	87.5	95.8	58.3	95.8	
% P	70.8	54.2	37.5	16.7	66.7	0.0	45.8	0.0	12.5	4.2	41.7	0.0	
% > Ex P	29.2	4.2	12.5	4.2	8.3	4.2	0.0	0.0	0.0	0.0	0.0	4.2	

Taluka : Bo	eed (An	nbajogai, l	Beed, Bhe	end Takl	i, Dharu	r, Nekno	or, Pali, l	Pithi)				
Min	7.3	246.0	168.0	20.0	22.4	0.0	120.0	100.2	17.7	5.0	0.2	0.3
Max	9.3	1352.0	528.0	90.0	94.3	0.2	359.8	439.0	310.0	131.0	1.2	153.0
Average	8.1	520.7	296.6	45.8	44.3	0.1	214.3	241.0	84.2	45.1	0.6	19.8
Stdev	0.5	332.7	94.7	17.4	22.5	0.1	67.7	95.7	92.2	37.0	0.3	37.3
% < Des	0.0	75.0	62.5	93.8	31.3	100.0	50.0	0.0	87.5	100.0	87.5	93.8
% P	81.3	25.0	37.5	6.3	68.8	0.0	50.0	0.0	12.5	0.0	12.5	0.0
% > Ex P	18.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3

Taluka : D	harur (I	Dharur, Ka	ari. Pimpa	lwandi)								
Min	7.4	332.0	92.0	18.0	0.2	0.0	1.7	88.0	24.8	1.8	0.5	4.0
Max	8.1	1286.4	830.0	172.0	162.0	0.1	440.1	537.0	326.0	169.0	1.7	178.0
Average	7.8	653.3	414.3	66.7	64.6	0.0	262.4	332.4	137.2	58.5	1.0	40.3
Stdev	0.3	365.9	263.8	51.8	52.4	0.0	135.0	138.1	123.2	58.0	0.5	62.6
% < Des	0.0	57.1	42.9	71.4	14.3	100.0	14.3	0.0	71.4	100.0	71.4	71.4
% P	100.0	42.9	28.6	28.6	71.4	0.0	85.7	0.0	28.6	0.0	0.0	0.0
% > Ex P	0.0	0.0	28.6	0.0	14.3	0.0	0.0	0.0	0.0	0.0	28.6	28.6

Taluka : G	ewrai (E	Shend Tak	li, Georai	, Hirapu	r, Hiwar	wadi, M	ahar takli	i, Padalsir	nghi, Patr	ud, Tagac	lgaon		
Talwada, Umapur)													
Min 7.5 274.0 92.0 12.8 6.8 0.0 44.0 16.0 34.0 9.0 0.3 0.6													
Max	9.1	2327.0	820.0	166.4	162.3	0.4	354.0	431.9	650.0	210.0	1.5	132.0	
Average	8.2	804.6	341.5	62.4	45.1	0.2	164.7	183.5	191.0	79.7	0.8	20.6	
Stdev	0.4	582.0	205.3	43.3	37.6	0.1	93.3	123.7	158.3	60.1	0.4	28.6	
% < Des	0.0	47.8	56.5	65.2	39.1	87.0	69.6	0.0	60.9	95.7	56.5	91.3	
% P	87.0	43.5	26.1	34.8	47.8	13.0	30.4	0.0	39.1	4.3	43.5	0.0	
% > Ex P	13.0	8.7	17.4	0.0	13.0	0.0	0.0	0.0	0.0	0.0	0.0	8.7	

Taluka : K	ej (Bans	sarola, Ke	j, Malega	on)								
	'pH	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	Cl	SO_4^{-2}	F-	NO ₃
Min	7.7	413.0	236.0	24.0	41.8	0.0	89.0	108.6	96.0	26.0	0.2	0.9
Max	8.9	760.0	525.0	132.0	51.3	0.2	304.9	372.0	154.0	89.5	1.0	125.0
Average	8.1	555.8	329.0	55.4	46.2	0.1	195.1	213.5	129.5	57.6	0.7	35.2
Stdev	0.5	147.4	132.2	51.6	4.0	0.1	90.1	114.0	25.1	26.5	0.4	60.2
% < Des	0.0	25.0	75.0	75.0	0.0	100.0	50.0	0.0	100.0	100.0	75.0	75.0
% P	75.0	75.0	25.0	25.0	100.0	0.0	50.0	0.0	0.0	0.0	25.0	0.0
% > Ex P	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0

Taluka: Pa	ırli (Dh	armapuri,	Pimpri b	k, Sanga	m, Sirsa	la, Wadg	gaon)					
Min	7.5	218.0	108.0	16.0	16.5	0.0	59.0	72.0	28.0	16.0	0.2	0.2
Max	8.8	1454.5	830.0	208.0	100.0	0.2	645.1	787.0	390.0	184.0	1.5	232.0
Average	7.9	833.8	381.9	65.5	53.0	0.1	271.1	325.4	191.6	68.6	0.6	73.5
Stdev	0.4	495.0	237.7	62.8	30.0	0.1	186.4	233.3	137.1	53.4	0.4	91.7
% < Des	0.0	33.3	44.4	66.7	33.3	100.0	33.3	0.0	55.6	100.0	88.9	55.6
% P	88.9	66.7	33.3	22.2	66.7	0.0	55.6	0.0	44.4	0.0	0.0	0.0
% > Ex P	11.1	0.0	22.2	11.1	0.0	0.0	11.1	0.0	0.0	0.0	11.1	44.4

Taluka: Pa	toda (A	Amalner, l	Daskhed,	Naigaon	, Patoda,	Shirapu	r ghat, S	uppa, Vid	yakinhi)			
Min	7.4	290.0	184.0	25.6	17.0	0.0	127.9	92.0	26.0	0.2	0.2	0.9
Max	8.7	1664.0	692.0	148.0	90.4	0.3	470.2	573.6	530.0	161.0	1.1	76.0
Average	8.0	585.5	322.7	59.9	42.0	0.1	224.9	250.1	124.3	52.7	0.5	26.5
Stdev	0.4	379.5	157.7	40.6	24.0	0.1	95.1	133.0	133.9	51.1	0.3	26.2
% < Des	0.0	61.5	61.5	76.9	38.5	92.3	53.8	0.0	92.3	100.0	84.6	69.2
% P	76.9	38.5	30.8	23.1	61.5	7.7	46.2	0.0	7.7	0.0	15.4	0.0
% > Ex P	23.1	0.0	7.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.8

Taluka: Sh	niruru K	Kasar (Di	nanora, M	lanur, Sh	irur kasa	ar)						
Min	7.4	678.0	130.0	27.2	6.0	0.0	195.1	238.0	135.0	82.0	0.5	18.3
Max	8.1	1591.9	900.0	152.0	126.5	0.1	302.0	368.4	425.4	206.0	0.9	343.0
Average	7.8	1180.6	491.7	68.6	77.8	0.0	262.5	320.2	271.3	126.6	0.8	160.1
Stdev	0.3	426.9	284.9	54.0	56.8	0.0	41.2	50.3	127.9	46.7	0.1	140.5
% < Des	0.0	0.0	20.0	60.0	40.0	100.0	20.0	0.0	40.0	80.0	100.0	20.0
% P	100.0	100.0	60.0	40.0	0.0	0.0	80.0	0.0	60.0	20.0	0.0	0.0
% > Ex P	0.0	0.0	20.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	80.0

Taluka : W	'adwani	(Telgaon	, Wadwa	ni)								
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F	NO ₃
Min	7.4	644.2	438.3	42.0	24.3	0.0	220.1	268.5	131.2	31.0	0.5	12.0
Max	8.2	1858.0	995.0	196.0	123.0	0.0	585.2	714.0	517.6	203.0	0.7	198.0
Average	7.7	1230.2	645.3	124.4	81.3	0.0	426.1	519.8	304.7	139.4	0.5	93.6
Stdev	0.3	512.0	262.5	63.9	39.9	0.0	172.1	209.9	186.1	68.2	0.1	87.7
% < Des	0.0	0.0	0.0	40.0	20.0	100.0	0.0	0.0	60.0	80.0	100.0	40.0
% P	100.0	100.0	60.0	60.0	40.0	0.0	100.0	0.0	40.0	20.0	0.0	0.0
% > Ex P	0.0	0.0	40.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	60.0

Taluka : M	ajalgao	n (Bavi,	Hivra bk.	, Khamg	aon, Loi	ngaon C	amp, Ma	jalgaon, R	Coshanpui	ri,			
Telgaon bk., Waghora)													
Min	7.7	176.0	120.0	11.2	15.6	0.1	84.0	80.5	16.0	19.0	0.3	0.6	
Max	8.6	702.0	376.0	56.0	57.3	0.2	233.0	284.3	116.0	67.0	0.7	11.9	
Average	8.1	340.6	203.6	38.6	26.0	0.1	152.6	156.5	50.4	35.2	0.5	4.8	
Stdev	0.3	167.9	81.6	15.1	13.0	0.0	48.8	61.7	35.1	18.9	0.1	3.6	
% < Des	0.0	88.9	88.9	100.0	77.8	100.0	77.8	0.0	100.0	100.0	100.0	100.0	
% P	88.9	11.1	11.1	0.0	22.2	0.0	22.2	0.0	0.0	0.0	0.0	0.0	
% > Ex P	11.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

6. BHANDARA

% < Des

% > Ex P

% P

0.0

92.6

7.4

55.6

40.7

3.7

37.0

40.7

22.2

55.6

37.0

7.4

25.9

63.0

11.1

Taluka : B	handaı	a (Bhanc	lara, Dhai	gaon, K	oka (Ko	kha), Ko	ondhi, M	laudi, Pah	ela, Palar	ri, Sakra,	Saori/ P	Parsodi,			
Shahapur/ Fulmogra, Varti, Mujbi, Pahela)															
	$^{\circ}$ PH TDS TH Ca ²⁺ Mg ²⁺ Fe TA HCO3 Cl SO ₄ ⁻² F NO ₃														
Min	7.4	207.7	168.0	12.8	9.7	0.2	50.0	61.0	17.8	0.5	0.1	1.0			
Max	8.7	2082.4	1320.0	390.0	122.5	0.4	364.0	336.7	1132.5	196.0	2.7	127.7			
Average	8.0	683.8	463.1	102.2	50.5	0.3	193.0	214.7	222.4	64.3	0.8	26.3			
Stdev	0.3	488.6	297.2	87.1	29.7	0.1	76.5	77.7	253.0	58.2	0.6	31.5			

123.5

35.3

0.0

59.3

40.7

0.0

0.0

0.0

0.0

74.1

22.2

3.7

100.0

0.0

0.0

70.4

14.8

14.8

81.5

0.0

18.5

Taluka: La	akhandu	ır (Bhaga	di. Digho	ri, Lakha	ındur, Pa	landur,	Soni)					
Min	7.4	335.0	240.0	34.0	20.4	0.2	90.0	109.8	82.0	10.0	0.6	1.0
Max	8.3	1104.0	714.0	151.2	81.6	0.6	384.0	468.5	348.0	115.0	3.1	65.1
Average	7.9	726.5	390.1	73.8	49.9	0.4	238.8	279.0	199.9	60.5	1.3	25.7
Stdev	0.3	224.4	137.2	33.1	20.7	0.1	89.0	105.4	72.7	31.9	0.7	21.5
% < Des	0.0	7.7	30.8	53.8	15.4	60.0	30.8	0.0	84.6	100.0	38.5	76.9
% P	100.0	92.3	61.5	46.2	84.6	70.0	69.2	0.0	15.4	0.0	38.5	0.0
% > Ex P	0.0	0.0	7.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.1	23.1

Taluka: La	akhani (l	Lakhani,	Palandur))								
Min	7.8	341.6	120.0	34.0	8.5	0.0	110.0	134.2	50.0	1.0	0.5	5.0
Max	8.2	541.4	370.0	74.0	58.3	0.0	335.2	409.0	213.0	54.0	1.2	63.2
Average	7.9	455.8	273.0	53.2	34.0	0.0	198.1	241.7	126.4	18.5	0.8	30.2
Stdev	0.2	84.5	101.1	14.6	22.1	0.0	91.0	111.0	69.8	21.1	0.3	25.4
% < Des	0.0	60.0	60.0	100.0	40.0	100.0	60.0	0.0	100.0	100.0	60.0	60.0
% P	100.0	40.0	40.0	0.0	60.0	0.0	40.0	0.0	0.0	0.0	40.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0

Taluka : M	lohadi	(Chicholi,	Dahegao	n, Dewl	nada Bk.	(narsing	tola), Jar	nb, Kharb	i, Koka,	Mohadi,	Satona,	Usarra,			
Warthi, Was	Warthi, Wasera)														
Min	7.4	281.6	145.0	16.0	12.2	0.0	45.0	54.9	40.0	18.7	0.2	1.0			
Max	8.7	1747.0	725.0	220.0	118.0	0.6	640.0	693.0	600.0	168.0	3.4	215.1			
Average	8.0	813.4	414.2	77.1	53.8	0.1	247.6	279.7	222.9	77.6	0.9	55.3			
Stdev	0.3	384.8	156.0	51.2	29.8	0.2	138.1	144.2	153.8	45.1	1.2	74.0			
% < Des	0.0	24.0	24.0	60.0	20.0	88.0	32.0	0.0	60.0	100.0	68.0	76.0			
% P	96.0	76.0	56.0	36.0	68.0	12.0	60.0	0.0	40.0	0.0	28.0	0.0			
% > Ex P	4.0	0.0	20.0	4.0	12.0	0.0	8.0	0.0	0.0	0.0	4.0	24.0			

Taluka: Pa	uni (A	dyal, Bha	vad, Chan	di, Chic	hal, Dha	mni, Go	si Bk., Ka	anhalgaon	(somnala	ı), Kondh	a,				
Nilaj (Amga	Nilaj (Amgaon), Pauni, Sindpuri, Wahi)														
Min	7.7	198.0	135.0	10.0	3.9	0.0	88.0	107.4	24.0	0.5	0.1	1.0			
Max	8.6	1243.0	832.0	147.2	144.8	0.5	364.0	405.0	442.0	127.0	3.5	69.0			
Average	8.1	549.9	353.9	66.8	45.4	0.2	238.2	264.7	133.6	34.0	2.5	13.5			
Stdev	0.3	341.2	195.3	35.6	38.1	0.1	68.3	84.7	128.3	35.4	3.5	16.4			
% < Des	0.0	54.2	54.2	66.7	50.0	83.3	25.0	0.0	75.0	100.0	58.3	91.7			
% P	91.7	45.8	33.3	33.3	37.5	16.7	75.0	0.0	25.0	0.0	16.7	0.0			
% > Ex P	8.3	0.0	12.5	0.0	12.5	0.0	0.0	0.0	0.0	0.0	25.0	8.3			

Taluka : Sa	akoli (H	Bampewa	da, Donga	argaon (l	Niharwa	ni), Eko	di, Kane	ri (dagdi),	Kesalwa	da, Khan	dala, Kı	ımbhli.
Mundipar, F	Parsodi,	Pitezari, S	Sakoli, Sa	lebhatta)							
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.6	78.0	65.0	8.0	1.2	0.0	54.9	67.0	14.0	5.0	0.1	0.1
Max	8.7	1799.0	952.0	219.2	98.2	0.9	312.0	380.6	658.0	247.0	1.6	160.0
Average	8.1	487.3	317.7	75.4	31.4	0.2	164.6	186.5	133.7	35.5	0.7	20.2
Stdev	0.3	336.0	183.3	46.3	22.2	0.2	67.3	79.4	128.9	46.4	0.4	36.1
% < Des	0.0	55.6	55.6	55.6	55.6	74.1	63.0	0.0	92.6	96.3	74.1	88.9
% P	88.9	44.4	40.7	40.7	44.4	25.9	37.0	0.0	7.4	3.7	22.2	0.0
% > Ex P	11.1	0.0	3.7	3.7	0.0	0.0	0.0	0.0	0.0	0.0	3.7	11.1

Taluka : Tu	umsar ((Ajgaon, I	Bagheda,	Chargao	n, Chikh	li (kamk	asur), Da	odipar Kh	apa, Kha	pa (Tums	ar),			
Lendezari, Madgi, Mangli (Tudka), Nilaj, Rajapur, Sihora, Tumsar Khapa)														
Min	7.5	289.0	168.0	22.0	13.6	0.0	60.0	73.2	60.0	7.0	0.3	2.0		
Max	9.1	2464.0	1076.0	260.8	103.0	0.6	400.0	488.0	716.0	181.0	3.6	137.0		
Average	7.9	635.5	382.7	75.6	47.1	0.1	194.0	226.8	169.9	62.2	1.2	38.3		
Stdev	0.3	386.8	156.8	47.2	22.4	0.2	76.4	86.6	120.8	36.1	1.3	35.3		
% < Des	0.0	36.4	21.2	45.5	12.1	81.8	57.6	0.0	78.8	100.0	66.7	72.7		
% P	93.9	60.6	75.8	51.5	81.8	18.2	42.4	0.0	21.2	0.0	24.2	0.0		
% > Ex P	6.1	3.0	3.0	3.0	6.1	0.0	0.0	0.0	0.0	0.0	9.1	27.3		

7. BULDHANA

Taluka : Bu Wadrud)	ıldhana	a (Birsing	pur, Buld	ana, Dat	tapur, Dl	had, Jam	athi, Mh	asala BK,	Mondhal	a, Nandra	ı Koli, S	agwan,
,	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cľ	SO ₄ -2	F ⁻	NO ₃
Min	6.9	308.4	100.0	12.8	1.0	0.1	24.0	24.0	46.0	10.0	0.2	6.0
Max	8.9	1771.3	732.0	496.0	121.5	0.3	188.0	229.4	628.0	135.0	1.7	220.0
Average	7.6	903.0	387.0	189.9	40.7	0.1	79.6	83.0	222.5	51.5	1.0	64.2
Stdev	0.5	420.5	182.6	159.8	31.7	0.1	53.9	61.5	155.9	37.6	0.3	40.0
% < Des	0.0	22.6	32.3	38.7	45.2	96.8	100.0	0.0	67.7	100.0	35.5	32.3
% P	90.3	77.4	51.6	22.6	48.4	3.2	0.0	0.0	32.3	0.0	61.3	0.0
% > Ex P	9.7	0.0	16.1	38.7	6.5	0.0	0.0	0.0	0.0	0.0	3.2	67.7

Taluka : 0	Chikhali	i (Borgao	n Kakad	e, Borga	aon Was	su, Chik	hali, Ha	rani, Hat	ani, Karv	vand, Kh	or, Pala	askhed,			
Sawana, Sel	Sawana, Selodi, Shelodi, Undri)														
Min	6.8	308.8	68.0	10.0	1.9	0.0	48.0	48.0	34.0	6.0	0.2	16.0			
Max	7.8	1296.8	592.0	424.0	108.6	0.2	108.0	112.2	388.0	114.0	2.1	145.0			
Average	7.4	685.5	209.7	110.1	20.3	0.1	75.6	80.5	126.9	36.8	0.7	43.9			
Stdev	0.3	314.7	169.4	121.3	25.2	0.0	15.0	20.4	108.5	27.6	0.5	31.2			
% < Des	0.0	42.1	68.4	52.6	84.2	100.0	100.0	0.0	78.9	100.0	78.9	78.9			
% P	100.0	57.9	31.6	26.3	10.5	0.0	0.0	0.0	21.1	0.0	15.8	0.0			
% > Ex P	0.0	0.0	0.0	21.1	5.3	0.0	0.0	0.0	0.0	0.0	5.3	21.1			

Taluka : Ja	lgaon Ja	amod (Ch	althana, J	Jalgaon J	amod, K	Luwarde	o, Raipur	, Umapur))			
Min	6.9	250.0	108.0	16.0	5.8	0.1	44.0	44.0	30.0	5.0	0.5	22.0
Max	7.7	1752.0	416.0	184.0	91.2	0.2	100.0	99.8	306.0	49.0	1.2	79.0
Average	7.4	684.1	221.0	106.7	26.7	0.1	61.5	61.5	132.9	21.0	0.9	55.4
Stdev	0.2	481.8	80.7	56.2	21.4	0.0	15.0	14.9	77.1	13.4	0.2	18.8
% < Des	0.0	62.5	87.5	31.3	75.0	100.0	100.0	0.0	93.8	100.0	68.8	25.0
% P	100.0	37.5	12.5	68.8	25.0	0.0	0.0	0.0	6.3	0.0	31.3	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	75.0

Taluka : K	hamga	on (Awar,	Borjawa	la, Bothl	caji, Div	thana, H	iwarkhed	l, Jaipur L	and, Jalka	a Bhadag,	, Jyapur	Lande,
Khamgaon,	Kokta,	Lakhanw	ada, Niml	kawada, l	Nipana,	Palashi l	kh, Palshi	, Sutala, T	Tandulwa	di)		
Min	6.6	306.0	40.0	4.0	1.0	0.1	28.0	28.0	51.0	1.0	0.4	5.0
Max	8.6	1986.0	853.0	404.0	159.4	0.2	508.0	571.0	446.0	234.0	2.2	100.0
Average	7.5	927.8	346.3	202.5	32.3	0.1	90.8	92.9	201.2	46.0	1.0	66.1
Stdev	0.4	385.3	178.4	119.0	42.5	0.0	99.6	105.0	104.4	58.5	0.3	21.8
% < Des	0.0	7.9	42.1	18.4	76.3	100.0	86.8	0.0	63.2	94.7	50.0	15.8
% P	97.4	92.1	47.4	28.9	13.2	0.0	13.2	0.0	36.8	5.3	44.7	0.0
% > Ex P	2.6	0.0	10.5	52.6	10.5	0.0	0.0	0.0	0.0	0.0	5.3	84.2

Taluka : I	onar	(Bhumrala	a, Bibi, l	Bibkhed,	Borkhe	di, Dha	ifal, Dha	ayaphal,	Kingaon	Urdu, Lo	nar, Piı	nplner,		
Sawaegaon	Sawaegaon Teli, Shara, Sultanpur, Wadhav)													
Min	7.7	225.0	88.0	5.6	16.0	0.1	48.0	48.0	60.0	18.0	0.1	3.0		
Max	9.1	1327.0	710.0	352.0	164.3	0.3	340.0	409.9	390.0	144.0	1.2	135.0		
Average	8.3	684.7	392.9	118.0	63.8	0.2	133.7	135.2	181.9	66.8	0.7	64.4		
Stdev	0.4	307.7	175.8	108.0	45.3	0.1	98.4	103.3	92.1	39.3	0.3	37.5		
% < Des	0.0	22.2	27.8	44.4	16.7	61.1	72.2	0.0	77.8	100.0	77.8	44.4		
% P	72.2	77.8	61.1	33.3	61.1	38.9	27.8	0.0	22.2	0.0	22.2	0.0		
% > Ex P	27.8	0.0	11.1	22.2	22.2	0.0	0.0	0.0	0.0	0.0	0.0	55.6		

Taluka: M	alkapu	r (Belad,	Dasarkhe	d, Hinga	na Kazi,	Hingna	Kaji, Mo	rkhed BK	, Umali,	Waghul, V	Wagola)	
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	6.7	364.8	80.0	11.6	1.9	0.1	40.0	40.0	50.0	4.0	0.8	7.0
Max	8.6	4409.6	1990.0	512.0	332.9	0.3	221.0	215.8	1170.0	574.0	1.4	96.0
Average	7.7	1681.2	610.4	217.4	84.8	0.1	92.4	91.1	384.1	93.6	1.1	67.6
Stdev	0.6	1530.7	535.1	172.5	93.8	0.1	60.0	61.5	369.7	148.0	0.2	27.7
% < Des	0.0	28.6	28.6	14.3	42.9	85.7	92.9	0.0	50.0	92.9	21.4	21.4
% P	92.9	42.9	35.7	35.7	14.3	14.3	7.1	0.0	42.9	0.0	78.6	0.0
% > Ex P	7.1	28.6	35.7	50.0	42.9	0.0	0.0	0.0	7.1	7.1	0.0	78.6

Taluka : M	ehkar ((Anjani B	k, Chinch	ala, Deu	lgaon Sa	karsh, D	ongaon,	Fardapur,	Gajarkhe	d, Khamk	thed	
Khandala, M	Iehkar,	Naigaon !	Dattapur,	Tembhu	rkhed, V	irvi, Wi	shvi)					
Min 7.1 366.0 80.0 4.0 12.5 0.1 44.0 44.0 44.0 11.0 0.1 2												
Max	9.2	1062.0	592.0	340.0	120.3	0.3	236.0	283.0	252.0	114.0	1.1	125.0
Average	7.8	716.0	309.4	103.0	45.5	0.2	114.3	122.6	146.5	55.2	0.6	55.6
Stdev	0.5	230.6	130.3	100.6	30.4	0.1	69.2	82.7	71.0	30.9	0.3	30.2
% < Des	0.0	27.3	50.0	54.5	31.8	77.3	81.8	0.0	95.5	100.0	86.4	45.5
% P	95.5	72.7	50.0	27.3	59.1	22.7	18.2	0.0	4.5	0.0	13.6	0.0
% > Ex P	4.5	0.0	0.0	18.2	9.1	0.0	0.0	0.0	0.0	0.0	0.0	54.5

Taluka: N	Iotala (Dhamang	aon Bade	, Hanva	tkhed, I	Liha, Mo	tala, Nir	nkhed, Pi	implgaon	devi, Rj	ur, Rohi	inkhed,	
Sarola Marc	oti, Shlel	apur, Uba	lkhed)										
Min 6.9 411.0 104.0 14.8 1.0 0.1 40.0 40.0 5.0 5.0 0.5 4.													
Max	8.0	1388.4	568.0	484.0	66.3	0.2	100.0	122.0	382.0	112.0	1.4	160.0	
Average	7.3	774.5	290.0	172.7	25.4	0.1	65.7	68.3	166.7	32.7	0.9	74.6	
Stdev	0.3	250.4	132.1	139.8	17.9	0.0	14.8	18.6	102.9	24.9	0.2	25.4	
% < Des	0.0	11.5	53.8	34.6	69.2	100.0	100.0	0.0	76.9	100.0	61.5	7.7	
% P	100.0	88.5	46.2	26.9	30.8	0.0	0.0	0.0	23.1	0.0	38.5	0.0	
% > Ex P	0.0	0.0	0.0	38.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	92.3	

Taluka: Na	andura	(Alampu	r, Chandu	r Bisawa	ı, Fuli, Is	sabpur, k	Charkund	i, Kokalw	adi, Maha	alungi, Na	dura, N	aigaon,		
Nandura, Ni	Nandura, Nimgaon, Shembha)													
Min 7.1 271.2 40.0 3.2 1.9 0.0 40.0 24.0 16.0 1.0 0.5 2														
Max	9.2	1782.0	1033.0	420.0	178.8	0.2	668.0	815.0	634.0	425.0	3.8	100.0		
Average	7.7	784.8	309.6	116.7	43.0	0.1	129.2	130.0	150.9	49.3	1.2	53.7		
Stdev	0.5	376.9	230.1	96.3	48.7	0.0	157.3	163.1	118.5	81.5	0.6	27.2		
% < Des	0.0	19.4	63.9	33.3	58.3	100.0	83.3	0.0	88.9	97.2	47.2	33.3		
% P	88.9	80.6	25.0	58.3	25.0	0.0	11.1	0.0	11.1	0.0	41.7	0.0		
% > Ex P	11.1	0.0	11.1	8.3	16.7	0.0	5.6	0.0	0.0	2.8	11.1	66.7		

Taluka: Sa	ngram	pur (Alev	vadi, Aml	oa barwa	, Awar,	Durga D	ait, Durg	adaitya, K	Khiroda, K	odri, Pate	orda Bk,				
Paturda, Tal	Paturda, Takli, Takli Panchagavan, Tunki BK)														
Min 7.2 291.0 40.0 3.2 1.9 0.1 12.0 12.0 26.0 8.0 0.3 4.0															
Max	9.7	1455.0	738.0	336.0	168.2	0.3	768.0	673.4	240.0	203.0	3.1	85.0			
Average	8.1	566.5	228.9 73.9 34.8 0.1 161.8 147.9 84.9 57.8 0.9 33.0												
Stdev	0.7	332.3	167.2	74.1	40.9	0.1	191.7	166.8	61.5	59.4	0.6	27.5			
% < Des	0.0	61.9	66.7	57.1	57.1	95.2	66.7	0.0	100.0	95.2	66.7	66.7			
% P	76.2	38.1	28.6	38.1	38.1	4.8	28.6	0.0	0.0	4.8	28.6	0.0			
% > Ex P	23.8	0.0	4.8	4.8	4.8	0.0	4.8	0.0	0.0	0.0	4.8	33.3			

Taluka : Shegaon (Alsana, Amsari, Bhongaon, Jalamb, Jawala BK, Kalkhed, Lanjud, Manasgaon, Matargaon Bk., Matergaon, Nagzari Bk., Nimbhi, Pahoorjira, Pahurpurna, Poorjira, Shegaon)

	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F-	NO ₃
Min	7.0	384.0	48.0	17.2	1.9	0.1	28.0	28.0	24.0	5.0	0.5	5.0
Max	9.8	2670.0	1088.0	740.0	145.9	0.3	928.0	819.8	904.0	392.0	3.6	105.0
Average	7.8	1043.9	390.1	154.4	54.5	0.1	164.5	151.9	238.3	82.3	1.1	53.1
Stdev	0.8	576.1	232.1	160.1	41.6	0.1	251.7	217.7	208.5	111.9	0.6	28.5
% < Des	0.0	15.4	34.6	34.6	38.5	96.2	76.9	0.0	57.7	84.6	53.8	34.6
% P	84.6	80.8	53.8	26.9	46.2	3.8	15.4	0.0	42.3	15.4	38.5	0.0
% > Ex P	15.4	3.8	11.5	38.5	15.4	0.0	7.7	0.0	0.0	0.0	7.7	65.4

Taluka: Sindkhed Raja (Adgaon Raja, Changephal, Dusrabid, Kingaon Raja, Malkapur Pangara, Nashirabad, Palaskhed Chakka, Shendurjana, Sindkhed raja, Waghora) Min 164.5 0.0 125.0 40.0 40.0 0.0 7.2 34.0 Max 8.1 1950.1 975.0 162.0 186.0 0.4 304.9 372.0 479.0 744.0 1.2 453.0

Average	7.7	638.5	319.5	106.4	41.2	0.1	94.2	108.9	112.6	116.2	0.5	97.9
Stdev	0.3	577.8	300.7	43.9	58.5	0.1	74.7	95.4	148.1	184.9	0.3	153.7
% < Des	0.0	60.0	80.0	26.7	80.0	80.0	93.3	0.0	86.7	86.7	93.3	80.0
% P	100.0	40.0	0.0	73.3	0.0	20.0	6.7	0.0	13.3	6.7	6.7	0.0
% > Ex P	0.0	0.0	20.0	0.0	20.0	0.0	0.0	0.0	0.0	6.7	0.0	20.0

Taluka : D	eolgaon	Raja (Bh	arosa, De	. Mahi, I	Deolgaoi	n Raja, C	Gunjala, N	Mehuna, N	/Iendgaor	ı, Pimpalı	ner, Yeo	ta)
Min	7.1	227.5	88.0	28.0	3.8	0.0	40.0	40.0	62.0	14.0	0.2	15.0
Max	7.9	1381.3	520.0	412.0	92.0	0.2	229.5	280.0	326.0	175.0	0.7	178.0
Average	7.5	763.1	341.3	194.2	29.8	0.1	81.0	90.1	188.1	65.2	0.5	65.9
Stdev	0.3	338.6	148.7	137.8	29.2	0.1	58.0	75.1	91.6	40.6	0.2	60.7
% < Des	0.0	25.0	33.3	25.0	66.7	100.0	91.7	0.0	66.7	100.0	100.0	66.7
% P	100.0	75.0	66.7	33.3	33.3	0.0	8.3	0.0	33.3	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	41.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3

8. CHANDRAPUR

Taluka: Ba	allarpur	(Chora, I	Kalmana,	Kothari))							
	'pH	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	CI.	SO ₄ -2	F	NO ₃
Min	7.6	527.5	195.0	16.0	23.0	0.0	175.4	214.0	74.0	43.2	0.1	18.0
Max	8.1	2801.7	575.0	96.0	95.0	0.0	380.3	464.0	823.0	754.0	1.9	166.0
Average	7.9	971.0	335.9	55.3	48.1	0.0	261.7	319.3	244.5	167.0	0.8	62.2
Stdev	0.2	899.4	134.7	30.0	31.4	0.0	75.6	92.2	285.5	287.6	0.7	56.4
% < Des	0.0	0.0	33.3	83.3	33.3	100.0	16.7	0.0	83.3	83.3	50.0	50.0
% P	100.0	83.3	66.7	16.7	66.7	0.0	83.3	0.0	16.7	0.0	33.3	0.0
% > Ex P	0.0	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.7	16.7	50.0

Taluka : Bl	hadrawa	ti (Bhadr	awati, Ch	ora, Kha	toda, M	asal visa	pur, Moh	narli, Rale	gaon, Sin	dewahi)		
Min	7.4	228.0	144.0	26.0	1.0	0.0	160.0	158.5	40.0	7.0	0.0	1.0
Max	8.4	873.0	510.0	129.6	71.9	0.4	500.0	580.7	250.0	180.0	1.9	21.0
Average	8.0	661.1	254.8	51.5	30.7	0.3	335.1	390.7	131.8	81.4	1.0	10.5
Stdev	0.3	219.1	141.5	33.5	21.3	0.2	123.5	161.7	63.0	55.9	0.7	6.7
% < Des	0.0	25.0	75.0	87.5	62.5	50.0	25.0	0.0	87.5	100.0	50.0	100.0
% P	100.0	75.0	25.0	12.5	37.5	50.0	75.0	0.0	12.5	0.0	25.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	0.0

Taluka : Bi	rahmapı	uri (Aksaj	pur, Brah	mapuri, l	Delanwa	di, Gang	galwadi, l	Mangli, M	Iendaki, S	Surbodi)		
Min	7.2	334.0	180.0	18.0	3.9	0.0	75.4	92.0	64.0	10.0	0.3	1.0
Max	8.5	1486.2	719.9	204.0	100.0	0.6	590.2	720.0	440.2	216.0	1.1	280.0
Average	7.8	841.8	396.5	82.9	46.0	0.1	263.1	309.1	233.9	79.6	0.6	61.8
Stdev	0.3	389.6	176.9	51.2	26.7	0.2	134.4	170.6	119.2	65.8	0.2	87.2
% < Des	0.0	25.0	31.3	62.5	31.3	87.5	37.5	0.0	50.0	93.8	87.5	75.0
% P	100.0	75.0	50.0	31.3	68.8	12.5	62.5	0.0	50.0	6.3	12.5	0.0
% > Ex P	0.0	0.0	18.8	6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0

Taluka : Chandrapur (Agadzari, Ballarpur, Chak Borda, Chandrapur, Chichpalli, Dabha, Durgapur, Ghuggus, Kothari, Lohara, Mul, Nandegur, Padmapur, Padoli, Pandharkawda, Shergaon Khurd, Tadali, Wadgaon, Wihar Khurd)

" augusti, "	1111011 1111											
Min	7.0	125.1	90.6	16.0	5.0	0.0	69.7	85.0	14.0	2.4	0.0	1.0
Max	8.2	1411.5	809.6	230.0	81.6	0.4	600.0	732.0	468.0	292.8	1.7	183.0
Average	7.7	698.7	347.1	70.1	41.8	0.1	266.3	322.0	145.6	75.5	0.8	44.3
Stdev	0.3	312.4	177.1	48.8	20.5	0.1	115.4	143.5	121.4	68.8	0.4	50.2
% < Des	0.0	27.8	41.7	66.7	36.1	88.9	22.2	0.0	86.1	94.4	66.7	66.7
% P	100.0	72.2	47.2	30.6	63.9	11.1	77.8	0.0	13.9	5.6	27.8	0.0
% > Ex P	0.0	0.0	11.1	2.8	0.0	0.0	0.0	0.0	0.0	0.0	5.6	33.3

Taluka:	Chimur	· (Bothal	i, Brahm	angaon,	Chimu	r, Jamb	hulghat,	Kawadsi	i, Khads	angi, M	otegaon,	Neri,
Sawargaon,	Shankar	pur, Shed	lgaon, Tac	loba, Wa	adala, W	ahangao	n)					
Min	7.3	153.9	95.0	24.0	6.0	0.0	69.7	85.0	25.0	0.4	0.0	1.0
Max	8.4	3206.0	1304.0	121.6	243.0	0.5	695.1	848.0	508.0	196.0	2.3	102.0
Average	7.9	742.6	364.1	56.2	54.3	0.1	328.3	398.2	107.9	56.2	0.9	22.4
Stdev	0.3	567.4	215.1	27.5	43.7	0.2	160.7	198.0	96.3	50.4	0.6	30.4
% < Des	0.0	38.5	38.5	84.6	19.2	88.5	26.9	0.0	96.2	100.0	57.7	84.6
% P	100.0	57.7	57.7	15.4	76.9	11.5	69.2	0.0	3.8	0.0	23.1	0.0
% > Ex P	0.0	3.8	3.8	0.0	3.8	0.0	3.8	0.0	0.0	0.0	19.2	15.4

Taluka : Ji	wati (Ba	llarsha)										
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F ⁻	NO ₃
Min	7.3	412.1	280.0	86.0	15.8	0.0	150.0	183.0	64.0	61.0	0.2	13.0
Max	7.8	450.0	299.1	90.0	18.0	0.0	204.9	250.0	88.8	90.0	0.3	32.9
Average	7.6	431.1	289.5	88.0	16.9	0.0	177.5	216.5	76.4	75.5	0.2	22.9
Stdev	0.4	26.8	13.5	2.8	1.6	0.0	38.8	47.4	17.5	20.5	0.0	14.0
% < Des	0.0	100.0	100.0	0.0	100.0	100.0	50.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	100.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Mul (Borchandali, Chandapur, Chiroli, Mahadwadi, Mul, Navegaon bhujala, Pardi kh., Rajoli, Tukkum, Susi dabgaon, Vyahad kh., Wagholi butti) Min 7.7 362.0 212.0 12.8 29.2 0.0 180.0 175.7 36.0 23.0 0.3 1.0 522.2 769.0 Max 8.9 1617.2 725.6 120.0 119.6 0.5 428.0 87.0 1.8 19.0 8.1 505.8 80.5 0.3 319.3 379.0 256.0 53.6 0.9 9.9 Average 869.2 69.8 Stdev 0.3 354.3 153.5 32.4 24.5 0.2 74.5 104.0 209.9 19.2 0.4 6.8 7.1 42.9 7.1 64.3 % < Des 0.0 14.3 14.3 42.9 57.1 100.0 100.0 0.0 % P 92.9 92.9 42.9 85.7 64.3 57.1 71.4 57.1 0.0 0.0 21.4 0.0 % > Ex P7.1 0.0 21.4 0.0 21.4 0.0 0.0 0.0 0.0 0.0 14.3 0.0

Taluka: Na	agbhid	(Balapur l	bk., Chika	algaon, K	Cirmiti m	endha, I	Kordha, N	Iohadi M	okasa, Na	gbhid, Na	agbhir,		
Talodhi, Vaijapur)													
Min 7.2 288.0 192.0 25.6 12.6 0.0 90.2 110.0 46.0 11.0 0.2 2.													
Max	8.6	1716.0	710.0	172.0	94.8	0.4	520.0	634.4	560.0	157.0	2.2	221.0	
Average	7.8	847.6	492.8	88.4	66.1	0.2	224.4	266.6	256.8	73.8	0.8	70.3	
Stdev	0.3	345.9	146.7	38.9	20.9	0.2	109.9	135.9	122.5	40.6	0.5	74.2	
% < Des	0.0	14.3	14.3	28.6	7.1	50.0	42.9	0.0	42.9	100.0	78.6	50.0	
% P	92.9	85.7	57.1	71.4	92.9	50.0	57.1	0.0	57.1	0.0	14.3	0.0	
% > Ex P	7.1	0.0	28.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.1	50.0	

Taluka : Po	ombhuri	na (Bhim	ni)									
Min	7.8	377.9	210.0	12.0	44.0	0.0	254.9	311.0	28.0	26.0	1.5	34.0
Max	8.0	493.7	315.2	52.0	45.0	0.0	375.4	458.0	35.0	34.0	1.5	36.0
Average	7.9	435.8	262.6	32.0	44.5	0.0	315.2	384.5	31.5	30.0	1.5	35.0
Stdev	0.1	81.9	74.4	28.3	0.7	0.0	85.2	103.9	4.9	5.7	0.0	1.4
% < Des	0.0	100.0	50.0	100.0	0.0	100.0	0.0	0.0	100.0	100.0	0.0	100.0
% P	100.0	0.0	50.0	0.0	100.0	0.0	100.0	0.0	0.0	0.0	50.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0

Taluka: Rajura (Arvi Chandur(gadchandur), Dabgaon, Gadegaon, Mahurli, Palezari, Patan, Rajura, Rampur, Saoli, Sasti (census town), Sondo, Tembhurwahi, Wirur) Min 7.2 348.0 100.0 14.0 12.0 0.0 85.2 104.0 30.0 8.0 0.4 1.0 Max 9.0 1258.0 612.0 122.0 105.9 0.7 512.0 571.0 320.0 160.0 1.8 131.0 Average 7.8 694.2 347.6 63.3 46.0 0.2 290.5 337.5 138.3 67.3 0.9 44.1 Stdev 0.4 247.5 139.4 25.3 26.6 0.2 121.8 141.0 79.6 35.6 0.4 47.7 % < Des 0.0 15.0 35.0 80.0 35.0 70.0 30.0 0.0 90.0 100.0 65.0 60.0 % P 95.0 85.0 60.0 20.0 60.0 30.0 70.0 0.0 10.0 0.0 25.0 0.0 % > Ex P10.0 40.0 5.0 0.0 5.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0

Taluka : Sa	wali (Sa	awali)										
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl ⁻	SO_4^{-2}	F-	NO ₃
Min	7.4	584.0	200.0	20.0	36.0	0.0	290.2	354.0	106.0	49.0	2.1	40.0
Max	8.1	692.6	318.4	50.0	47.4	0.0	390.2	476.0	138.5	56.6	2.9	54.0
Average	7.8	651.9	267.8	35.3	43.5	0.0	345.1	421.0	118.2	53.2	2.5	48.3
Stdev	0.4	59.2	61.1	15.0	6.5	0.0	50.7	61.9	17.7	3.9	0.4	7.3
% < Des	0.0	0.0	66.7	100.0	0.0	100.0	0.0	0.0	100.0	100.0	0.0	33.3
% P	100.0	100.0	33.3	0.0	100.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	66.7

Taluka: Sindewahi (Alesur, Bhanapur, Gadbori, Gadmaushi chak, Kukadheti, Meha bk., Niphandra, Palasgaon, Jat, Purkepar, Ratnapur, Sawargata chak, Sindewahi, Sindewahi, Wasera) Min 7.5 190.9 124.0 12.8 13.0 0.0 80.3 98.0 11.0 2.4 0.3 1.0 9.1 1445.4 848.9 180.8 103.0 0.3 488.0 525.0 489.0 141.0 3.7 Max 216.0 7.9 732.2 413.5 82.4 50.4 0.2 267.9 309.9 191.9 41.6 1.4 32.5 Average Stdev 0.4 370.0 198.2 50.5 28.9 0.1 109.6 119.6 137.0 39.7 1.8 63.1 % < Des 0.0 26.3 31.6 42.1 42.1 94.7 36.8 0.0 68.4 100.0 57.9 89.5 % P 94.7 73.7 52.6 57.9 52.6 5.3 63.2 0.0 31.6 0.0 26.3 0.0 % > Ex P5.3 0.0 15.8 0.0 5.3 0.0 0.0 0.0 0.0 0.0 15.8 10.5

Taluka : W	aroda (Bhandak,	Bhatala,	Chargao	n, Chikn	i, Donga	rgaon, Sa	alori, She	gaon bk.)			
Min	7.4	333.1	175.0	18.0	24.3	0.0	128.0	156.2	18.0	4.8	0.2	4.0
Max	8.5	1632.0	696.0	104.0	140.0	0.4	414.8	506.0	440.0	160.0	3.3	150.0
Average	7.9	717.3	317.8	50.4	46.6	0.1	287.3	350.5	130.8	68.8	2.6	44.5
Stdev	0.3	355.3	144.1	26.1	32.0	0.2	91.4	111.5	122.2	52.7	2.7	40.6
% < Des	0.0	27.3	63.6	81.8	18.2	81.8	18.2	0.0	90.9	100.0	18.2	54.5
% P	100.0	72.7	27.3	18.2	72.7	18.2	81.8	0.0	9.1	0.0	27.3	0.0
% > Ex P	0.0	0.0	9.1	0.0	9.1	0.0	0.0	0.0	0.0	0.0	54.5	45.5

Taluka : G	ondipip	ri (Bamhr	i Chak(k	atoli), Bl	nangaran	n talodhi	, Bhimni	, Dudharp	eth, Ganj	our, Pomb	hurna,	
Wadholi)												
Min	7.5	431.0	282.0	40.0	41.8	0.1	184.0	224.5	86.0	16.0	0.8	3.0
Max	8.0	1298.0	832.0	128.0	124.4	0.4	400.0	488.0	392.0	109.0	1.5	81.0
Average	7.8	708.1	480.3	83.1	66.2	0.2	285.4	338.8	160.0	53.6	1.1	23.3
Stdev	0.2	280.5	168.6	30.4	28.0	0.1	85.5	106.9	105.1	31.6	0.3	26.8
% < Des	0.0	14.3	14.3	42.9	0.0	71.4	28.6	0.0	85.7	100.0	42.9	85.7
% P	100.0	85.7	71.4	57.1	85.7	28.6	71.4	0.0	14.3	0.0	42.9	0.0
% > Ex P	0.0	0.0	14.3	0.0	14.3	0.0	0.0	0.0	0.0	0.0	14.3	14.3

Taluka: K	orapna ((Gadchan	dur, Jioti)	1								
Min	8.0	355.0	220.0	40.0	29.2	0.2	204.0	200.9	52.0	18.0	0.8	6.0
Max	8.2	701.0	408.0	60.8	62.2	0.3	324.0	395.3	152.0	42.0	1.0	11.0
Average	8.1	528.0	314.0	50.4	45.7	0.3	264.0	298.1	102.0	30.0	0.9	8.5
Stdev	0.1	244.7	132.9	14.7	23.4	0.0	84.9	137.4	70.7	17.0	0.1	3.5
% < Des	0.0	50.0	50.0	100.0	50.0	100.0	0.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	50.0	50.0	0.0	50.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

9. DHULE

Taluka : Dhule (Ajanale, Avdhan, Bendrapada, Borhivir, Burdi Pada, Deobhane, Dhamanar, Dhule, Hisala, Japi, Khordad, Kusumba, Laling, Mehergaon, Mukti, Nandre, Narwhal, Ner, Nimdale, Purmepada, Sadgaon, Sarwad, Songir, Talwada, Velahan, Vishwanath, Walwadi)

0,	,											
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F	NO ₃
Min	7.2	174.1	108.0	4.8	5.8	0.0	49.0	58.3	11.0	4.8	0.1	0.1
Max	9.9	1866.9	1005.0	288.0	151.0	1.2	735.0	896.7	497.0	338.0	3.0	228.2
Average	8.2	629.7	292.1	51.0	39.5	0.1	225.3	258.8	134.3	59.4	0.7	32.2
Stdev	0.6	388.7	175.8	45.9	22.8	0.2	136.2	171.2	113.9	63.0	0.4	50.6
% < Des	0.0	46.7	61.3	81.3	37.3	97.3	52.0	0.0	86.7	96.0	86.7	82.7
% P	77.3	53.3	33.3	16.0	60.0	1.3	44.0	0.0	13.3	4.0	9.3	0.0
% > Ex P	22.7	0.0	5.3	2.7	2.7	1.3	4.0	0.0	0.0	0.0	4.0	17.3

Taluka: Sakri (Aichale, Akkalpada, Bhamer, Bramnhavel, Chinchkheda, Dahiyal, Gondas, Isarde, Jaithane, Jebapur, Khampada, Lonkhede, Mahir, Pimpalner, Rojegaon, Sakri, Shelbari, Umarpata) Min 7.3 115.0 44.0 6.4 2.9 0.0 40.0 6.1 17.8 10.0 0.1 0.1 540.0 545.0 108.0 Max 10.5 1449.4 94.0 91.0 0.3 664.9 344.4 1.6 187.9 70.9 Average 8.4 452.7 200.8 28.5 31.5 0.1 203.6 217.7 35.7 0.6 16.3 Stdev 0.7 258.8 88.3 18.4 16.8 0.1 111.3 145.3 67.8 24.3 0.3 30.3 52.1 87.5 % < Des 0.0 75.0 91.7 97.9 97.9 54.2 0.0 97.9 100.0 95.8 % P 68.8 25.0 8.3 2.1 47.9 2.1 45.8 0.0 2.1 0.0 8.3 0.0 % > Ex P31.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 4.2

Taluka : Shirpur (Ajanad, Ambe, Bhatane, Boradi, Dahivad, Fattepur, Gadhadeo, Ghosdogaon, Hadakhed, Higaon, Khambale, Kherde, Khmkheda, Kolid, Mohide, Nimzari, Palasner, Sangivi, Shirpur, Songir, Sule, Tardi, Tembhe Bk., Thalner, Umarde, Wagjadi)

	,	,	· · · · · · · · · · · · · · · · · · ·	,								
Min	7.5	209.0	128.0	3.2	13.6	0.0	85.0	96.8	22.0	6.0	0.1	0.1
Max	9.1	1221.7	520.0	130.0	82.6	0.8	432.0	524.6	383.4	115.0	1.8	171.7
Average	8.3	482.7	250.0	32.9	40.7	0.1	233.9	257.5	88.0	39.7	0.6	18.1
Stdev	0.4	207.1	72.3	26.4	13.8	0.1	78.6	101.1	66.2	22.1	0.4	27.1
% < Des	0.0	56.9	77.6	93.1	24.1	87.9	29.3	0.0	96.6	100.0	86.2	93.1
% P	74.1	43.1	22.4	6.9	75.9	12.1	70.7	0.0	3.4	0.0	8.6	0.0
% > Ex P	25.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.2	6.9

Taluka : Sindkheda (Betavad, Chimthane, Dabhashi, Dalwade, Dangurne, Degaon, Dhavde, Dondaicha, Ichhapur, Kalmadi, Karle, Khalane, Mahalsar, Malpur, Methi, Nardana, Salve, Sandle, Satare, Shevade, Shinkheda, Sukvad, Takarkhede, Vaghadi, Varpada, Varshi, Varud, Varzadi, Virdel)

Min	7.5	240.0	104.0	4.8	12.6	0.0	36.0	43.7	22.0	15.0	0.1	0.1
Max	9.2	3117.0	1000.0	195.2	204.1	0.3	468.0	571.0	820.0	274.1	1.6	310.0
Average	8.2	862.2	341.0	46.5	54.6	0.1	216.9	254.1	206.6	67.7	0.6	29.9
Stdev	0.4	506.7	207.6	39.4	37.3	0.1	94.6	118.2	186.3	47.4	0.3	47.7
% < Des	0.0	20.8	58.3	81.9	16.7	100.0	50.0	0.0	72.2	97.2	86.1	93.1
% P	72.2	76.4	30.6	18.1	72.2	0.0	50.0	0.0	27.8	2.8	12.5	0.0
% > Ex P	27.8	2.8	11.1	0.0	11.1	0.0	0.0	0.0	0.0	0.0	1.4	6.9

10. GADCHIROLI

Taluka:	Aheri (.	Allapalli, (Govindgao	n, Govir	dpur, Kl	hamanc	heru, Ko	ttur, Medp	alli, Mir	kal masaha	at, Mod	lumadgu,		
Mosam, Na	Mosam, Nandigaon masahat, Permili surveyed, Pirimili, Rajeram, Repanpalli, Talodhi Rampur, Timiram, Umanur)													
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO ₄ -2	F ⁻	NO ₃		
Min	7.1	246.0	160.0	12.0	12.0	0.0	75.0	91.5	30.0	9.0	0.2	0.1		
Max	9.0	1401.0	850.9	176.0	118.6	0.9	605.0	738.1	430.0	624.0	2.4	211.0		
Average	8.0	669.0	394.9	64.3	56.9	0.1	310.1	367.8	113.7	65.1	0.7	50.8		
Stdev	0.5	277.0	187.2	47.5	27.9	0.2	142.4	177.0	109.6	106.7	0.4	45.6		
% < Des	0.0	25.0	40.6	68.8	12.5	87.5	28.1	0.0	87.5	96.9	84.4	59.4		
% P	84.4	75.0	40.6	31.3	78.1	12.5	68.8	0.0	12.5	0.0	12.5	0.0		
% > Ex P	15.6	0.0	18.8	0.0	9.4	0.0	3.1	0.0	0.0	3.1	3.1	40.6		

Taluka : Bl	hamraga	arh (Bhan	nragad, D	odepalli	, Kiyar,	Narguda	, Tadgao	n)				
Min	7.9	335.9	208.0	33.6	29.0	0.0	136.0	134.3	58.0	8.0	0.0	1.0
Max	8.4	605.0	380.0	76.8	53.5	0.5	408.0	497.8	152.0	44.0	0.9	30.0
Average	8.1	478.0	304.4	60.2	37.4	0.2	213.2	241.0	96.6	23.8	0.4	16.3
Stdev	0.2	114.0	59.1	15.2	8.9	0.1	86.1	118.0	35.9	14.0	0.3	10.0
% < Des	0.0	50.0	50.0	62.5	25.0	87.5	62.5	0.0	100.0	100.0	100.0	100.0
% P	100.0	50.0	50.0	37.5	75.0	12.5	37.5	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: C	Chamor	shi (Asht	i, Bhenda	ıla, Char	norshi, C	Shot, Ko	nsari, Ku	ırud, Naw	argaon, F	Regadi, Sl	nankarpu	ır Heti,			
Talodhi mol	Talodhi mokasa, Wagholi)														
Min	7.5	279.6	180.0	12.8	27.2	0.0	56.0	68.3	34.0	6.0	0.2	1.0			
Max	9.0	1099.0	720.0	174.0	133.2	0.4	412.0	473.4	490.0	153.6	2.5	169.9			
Average	8.2	601.6	343.1	51.5	52.1	0.1	240.3	264.8	133.3	38.4	0.8	46.7			
Stdev	0.5	265.7	169.3	43.5	28.8	0.1	99.4	114.3	120.8	37.5	0.5	62.3			
% < Des	0.0	50.0	50.0	78.6	14.3	92.9	35.7	0.0	92.9	100.0	85.7	78.6			
% P	78.6	50.0	35.7	21.4	78.6	7.1	64.3	0.0	7.1	0.0	7.1	0.0			
% > Ex P	21.4	0.0	14.3	0.0	7.1	0.0	0.0	0.0	0.0	0.0	7.1	21.4			

Taluka : Do	esaiganj	(wadsa)	(Shankar	pur, Wac	lsa)							
Min	7.5	292.9	220.0	44.0	25.5	0.0	70.0	85.4	82.0	28.0	0.1	8.0
Max	8.3	878.6	598.4	162.0	47.0	0.0	269.7	329.0	248.0	88.0	0.5	126.0
Average	7.8	539.2	384.1	91.7	37.7	0.0	169.9	201.2	151.4	49.4	0.3	60.1
Stdev	0.3	238.1	146.7	47.4	7.8	0.0	76.3	96.6	76.2	24.3	0.1	55.9
% < Des	0.0	50.0	33.3	50.0	16.7	100.0	66.7	0.0	100.0	100.0	100.0	50.0
% P	100.0	50.0	66.7	50.0	83.3	0.0	33.3	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0

Taluka : I	Dhanor	a (Chatga	aon, Cha	vela, Dh	nanora, 🛚	Kosami,	Murmac	li, Murun	ngaon, P	endhri, R	langi, S	akhera,			
Salebhatti, S	Salebhatti, Sawargaon, Yerkadmowad)														
Min 7.3 143.0 84.0 19.2 6.8 0.0 75.0 91.5 25.0 4.0 0.1 1.0															
Max	8.7	794.0	380.0	112.0	33.0	0.3	209.8	256.0	190.0	121.0	1.1	156.0			
Average	8.0	389.8	223.4	57.6	19.3	0.1	146.5	163.9	81.2	29.4	0.4	29.5			
Stdev	0.4	185.8	82.0	25.3	8.1	0.1	53.4	65.1	48.3	29.7	0.3	37.6			
% < Des	0.0	76.5	76.5	70.6	88.2	94.1	70.6	0.0	100.0	100.0	88.2	76.5			
% P	88.2	23.5	23.5	29.4	11.8	5.9	29.4	0.0	0.0	0.0	11.8	0.0			
% > Ex P	11.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.5			

Taluka :	Etapall	i (Aldan	di, Alen	ga(tola),	Dindwi	i, Elchil	, Etapal	li, Halew	ara, Kan	doli surv	eyed, N	Vender,
Parsalgondi	masaha	at, Tadgao	n, Todsa	Tola, Ye	tapalli)							
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F ⁻	NO ₃
Min	7.6	292.8	180.0	22.0	6.8	0.0	100.0	4.8	28.0	6.0	0.1	1.0
Max	11.0	834.0	480.0	97.6	76.8	0.3	548.0	610.0	170.0	57.6	1.8	88.0
Average	8.2	480.9	288.8	57.8	35.1	0.1	214.1	247.5	76.0	34.5	0.6	45.0
Stdev	0.8	151.8	92.5	22.8	18.3	0.1	116.7	143.3	35.6	17.2	0.4	29.5
% < Des	0.0	56.3	56.3	75.0	43.8	100.0	56.3	0.0	100.0	100.0	87.5	56.3
% P	87.5	43.8	43.8	25.0	56.3	0.0	43.8	0.0	0.0	0.0	6.3	0.0
% > Ex P	12.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3	43.8

Taluka: G	adchiro	li (Bamni	i, Chando	na Tola	, Erkar,	Fulbori,	Gadchir	oli, Govii	ndpur alia	as pipalkl	nut, Gov	vardha,
Jarawadi (Ir	ndiranaga	ar), Khond	dala, Mul	chera, Po	orla, Pote	egaon, S	akhara, Y	elgur Tol	a)			
Min	7.1	74.2	50.0	12.0	4.8	0.0	50.0	61.0	10.7	2.4	0.0	1.0
Max	8.4	1132.0	672.0	134.0	91.4	0.3	409.8	500.0	516.0	101.0	1.1	254.0
Average	7.9	419.8	277.5	61.8	29.9	0.0	188.8	226.2	94.8	26.2	0.4	30.4
Stdev	0.3	265.8	161.0	35.4	23.3	0.1	90.4	108.3	125.7	25.6	0.3	49.2
% < Des	0.0	71.4	60.7	71.4	60.7	96.4	57.1	0.0	89.3	100.0	96.4	78.6
% P	100.0	28.6	32.1	28.6	39.3	3.6	42.9	0.0	10.7	0.0	3.6	0.0
% > Ex P	0.0	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.4

Taluka: Ko	orchi (I	Bedgaon,	Betkathi,	Bodalda	nd, Bori,	Korchi,	Kotgul,	Malewara	, Maseli,	Zankargo	ndi)	
Min	7.4	104.5	68.0	18.0	3.9	0.0	64.8	66.3	20.0	1.0	0.2	1.0
Max	9.4	1069.9	760.0	82.0	135.0	0.3	160.0	189.0	238.0	142.0	0.5	316.0
Average	8.4	363.3	222.1	45.8	26.2	0.2	120.9	115.7	75.8	27.2	0.3	44.1
Stdev	0.6	304.7	212.4	21.8	41.8	0.1	36.6	38.9	69.1	45.2	0.1	102.4
% < Des	0.0	77.8	88.9	88.9	77.8	88.9	100.0	0.0	100.0	100.0	100.0	88.9
% P	66.7	22.2	0.0	11.1	11.1	11.1	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	33.3	0.0	11.1	0.0	11.1	0.0	0.0	0.0	0.0	0.0	0.0	11.1

Taluka : K	Kurkhed	a (Bijarpı	ırtola, Ga	argada, (Gewardh	a, Ghat	i, Gothar	ngaon, Jai	mbhulkhe	da, Kasa	ri, Khed	legaon,
Kurkheda, N	Malewad	a, Mendh	a, Shivan	i, Talega	on, Wad	lhona, Y	engelkhe	eda)				
Min	7.7	193.0	128.0	20.8	7.8	0.0	76.0	74.5	28.0	3.0	0.1	1.0
Max	8.5	694.0	448.0	107.2	47.0	0.5	209.8	256.0	230.0	60.0	0.7	67.0
Average	8.3	379.0	222.3	51.1	23.0	0.2	136.1	138.6	95.4	19.4	0.3	12.6
Stdev	0.2	148.0	91.4	23.6	11.9	0.1	44.7	51.3	50.9	16.7	0.2	16.1
% < Des	0.0	81.3	87.5	81.3	75.0	93.8	81.3	0.0	100.0	100.0	100.0	93.8
% P	100.0	18.8	12.5	18.8	25.0	6.3	18.8	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3

Taluka : M	ulcher	a (Chauda	mpalli, G	hot, Gor	nni, Kop	aralli, L	agam, Mı	ulchera)				
Min	7.3	223.0	140.0	20.8	17.0	0.0	80.0	97.6	18.0	5.8	0.2	1.0
Max	8.7	1515.0	796.0	190.0	131.0	0.2	464.8	567.0	348.0	245.8	2.0	290.2
Average	7.9	854.7	493.7	90.1	65.2	0.1	253.6	298.2	184.0	97.7	0.8	135.3
Stdev	0.5	465.9	215.4	54.4	34.9	0.1	101.8	128.2	124.2	92.5	0.6	112.0
% < Des	0.0	20.0	20.0	40.0	20.0	100.0	30.0	0.0	70.0	70.0	60.0	40.0
% P	80.0	80.0	40.0	60.0	60.0	0.0	70.0	0.0	30.0	30.0	30.0	0.0
% > Ex P	20.0	0.0	40.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	10.0	60.0

Taluka : Si	roncha	(Nandiga	on, Ranga	ayyapalli	i, Sirkon	da mal, S	Sironcha))				
	'pH	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	Cl ⁻	SO ₄ -2	F ⁻	NO ₃
Min	7.4	351.0	150.0	50.0	6.0	0.0	48.0	46.8	57.0	19.0	0.1	18.0
Max	8.6	837.0	655.0	96.0	115.0	0.4	450.0	549.0	110.0	72.0	0.7	129.0
Average	7.9	563.5	370.6	70.6	47.5	0.1	249.0	296.9	80.3	48.3	0.5	69.0
Stdev	0.5	188.8	192.1	16.5	39.4	0.1	151.9	191.9	18.3	19.5	0.3	47.7
% < Des	0.0	42.9	42.9	42.9	42.9	85.7	42.9	0.0	100.0	100.0	100.0	42.9
% P	85.7	57.1	42.9	57.1	42.9	14.3	57.1	0.0	0.0	0.0	0.0	0.0
% > Ex P	14.3	0.0	14.3	0.0	14.3	0.0	0.0	0.0	0.0	0.0	0.0	57.1

Taluka : A Wairagarh)	Armori	(Armori,	Bolddhad	chak, De	elanwadi	, Donga	argaon(bl	nusari), Ja	ambhali,	Shankarn	agar, W	addha,
Min	7.4	208.7	155.0	24.0	17.5	0.0	95.0	115.9	49.7	9.6	0.1	1.0
Max	8.4	875.0	443.4	100.0	53.5	0.7	295.1	360.0	216.0	84.0	0.6	172.0
Average	7.9	482.8	286.0	63.3	31.0	0.1	190.9	223.9	111.4	31.2	0.3	25.6
Stdev	0.3	174.2	91.2	25.2	10.4	0.2	63.7	83.7	46.4	17.9	0.2	42.8
% < Des	0.0	64.3	64.3	64.3	42.9	92.9	64.3	0.0	100.0	100.0	100.0	92.9
% P	100.0	35.7	35.7	35.7	57.1	7.1	35.7	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.1

Taluka: W	adsa (E	oddha-ga	oganna, I	Kasari t.k	c., Shank	arpur, V	ihirgaon	, Wadsa)				
Min	8.1	131.0	116.0	11.2	21.4	0.2	52.0	11.0	36.0	4.0	0.1	1.0
Max	10.6	622.0	304.0	56.0	42.8	0.4	184.0	181.8	198.0	47.0	0.7	20.0
Average	8.8	454.8	236.0	43.2	31.1	0.3	93.6	73.7	131.6	28.8	0.3	12.4
Stdev	1.0	190.4	71.4	18.2	8.9	0.1	54.5	69.3	68.9	15.8	0.2	7.3
% < Des	0.0	60.0	80.0	100.0	40.0	40.0	100.0	0.0	100.0	100.0	100.0	100.0
% P	40.0	40.0	20.0	0.0	60.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

11. GONDIA

Taluka : An	ngaon (A	Amgaon, I	Dahegaon	, Dongai	gaon, K	alimati,	Malhi, Pa	dmapur, T	Γhana, Wa	aghdongri)	
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F	NO ₃
Min	7.4	128.7	65.0	16.0	2.4	0.0	69.7	85.0	28.0	4.3	0.0	1.2
Max	8.3	821.0	440.0	92.8	58.3	0.6	348.0	424.6	222.0	73.0	1.6	126.0
Average	7.9	412.0	240.4	55.6	24.6	0.1	169.1	199.1	111.7	28.3	0.7	22.9
Stdev	0.3	212.6	120.4	25.0	16.8	0.2	73.0	84.2	72.9	22.3	0.5	33.0
% < Des	0.0	70.6	64.7	70.6	52.9	76.5	58.8	0.0	100.0	100.0	76.5	82.4
% P	100.0	29.4	35.3	29.4	47.1	23.5	41.2	0.0	0.0	0.0	17.6	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9	17.6

Taluka : A	rjuni N	Aoregaon	(Arjuni	Morgac	n, Bond	dgaon, l	Bondgaon	Devi, C	Gothangao	n, Karan	dli, Nav	egaon,
Navegaon II	(Kh.), P	andharwa	ni (mal),	Salai Bk	, Tadgao	n, Tuku	m Naraya	n, Umarp	ayali, Zan	shinagar)		
Min	7.3	160.0	115.0	22.0	5.3	0.0	65.0	79.3	11.0	0.2	0.1	0.2
Max	8.3	1019.0	684.0	126.0	100.1	0.4	260.0	317.2	336.0	98.9	1.4	142.8
Average	7.9	447.8	272.9	67.1	25.5	0.1	166.3	192.7	107.6	37.6	0.5	45.1
Stdev	0.3	257.8	148.0	34.3	20.9	0.2	53.2	64.1	90.7	34.7	0.3	52.2
% < Des	0.0	60.0	65.0	70.0	70.0	85.0	65.0	0.0	95.0	100.0	90.0	65.0
% P	100.0	40.0	30.0	30.0	25.0	15.0	35.0	0.0	5.0	0.0	10.0	0.0
% > Ex P	0.0	0.0	5.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	35.0

Taluka : De	ori (Am	bhora, Bo	nde, Borg	gaon Baz	ar, Chic	hgad, De	ori, Hard	oli, Kadik	asa, Mhai	suli, Mur	doli,		
Palandur(zamindari))													
Min	7.6	107.0	60.0	12.8	6.3	0.0	56.0	54.2	14.0	3.0	0.2	1.2	
Max	9.6	496.0	248.0	72.0	28.2	0.5	245.1	299.0	148.0	56.2	1.0	105.0	
Average	8.3	328.6	160.9	38.0	16.0	0.2	133.9	143.5	78.7	25.8	0.5	26.7	
Stdev	0.6	134.7	56.3	18.3	6.9	0.2	55.7	68.0	41.6	18.4	0.2	29.6	
% < Des	0.0	100.0	100.0	100.0	100.0	81.3	93.8	0.0	100.0	100.0	93.8	81.3	
% P	75.0	0.0	0.0	0.0	0.0	18.8	6.3	0.0	0.0	0.0	6.3	0.0	
% > Ex P	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.8	

Taluka : Go	ndia (A	rjuni, Aso	li, Bonde	, Datora,	Ekodi, (Ghattem	ni, Ghona	ri, Katang	gi Bk., Na	vegaon, P	andhara	bodi,			
Rajegaon, Sa	Rajegaon, Sangadi, Sindbiri, Sondad)														
Min	7.0	56.6	30.0	8.0	2.4	0.0	25.4	31.0	7.0	0.1	0.0	0.1			
Max	9.5	1062.0	704.0	153.6	101.1	0.6	265.0	323.3	470.0	97.9	1.6	127.7			
Average	8.0	333.0	203.9	53.6	17.0	0.1	115.1	133.9	86.6	21.7	0.5	26.1			
Stdev	0.5	251.3	143.5	32.1	20.0	0.2	59.6	77.1	101.9	29.0	0.4	31.8			
% < Des	0.0	86.2	86.2	86.2	86.2	79.3	89.7	0.0	93.1	100.0	89.7	82.8			
% P	89.7	13.8	10.3	13.8	10.3	20.7	10.3	0.0	6.9	0.0	6.9	0.0			
% > Ex P	10.3	0.0	3.4	0.0	3.4	0.0	0.0	0.0	0.0	0.0	3.4	17.2			

Taluka: Go	regaon	(Goregaoi	n)									
Min	7.5	326.4	135.0	30.0	12.2	0.0	140.0	170.8	53.3	27.4	0.8	8.1
Max	8.1	507.6	200.0	54.0	16.0	0.0	230.3	281.0	117.0	36.0	1.1	27.0
Average	7.7	396.8	173.3	46.0	14.2	0.0	183.4	223.8	88.7	32.5	0.9	17.3
Stdev	0.3	97.1	34.0	13.9	1.9	0.0	45.3	55.2	32.5	4.5	0.1	9.5
% < Des	0.0	66.7	100.0	100.0	100.0	100.0	66.7	0.0	100.0	100.0	66.7	100.0
% P	100.0	33.3	0.0	0.0	0.0	0.0	33.3	0.0	0.0	0.0	33.3	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Sac	dal Arju	ni (Khod	shioni, Ko	ohemara	, Malijur	nga, Mha	aswani, Sa	aundad, Sa	awangi)			
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.9	145.0	96.0	11.2	9.7	0.0	60.0	53.1	36.0	3.0	0.3	4.2
Max	9.1	488.0	308.0	70.4	44.7	0.5	208.0	238.0	142.0	56.0	1.4	58.8
Average	8.4	318.8	209.1	42.9	24.7	0.2	148.9	158.9	74.0	24.6	0.6	16.2
Stdev	0.4	123.7	68.6	21.0	11.3	0.2	56.3	65.5	38.8	18.7	0.4	18.0
% < Des	0.0	100.0	87.5	100.0	75.0	62.5	75.0	0.0	100.0	100.0	87.5	87.5
% P	62.5	0.0	12.5	0.0	25.0	37.5	25.0	0.0	0.0	0.0	12.5	0.0
% > Ex P	37.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.5

Taluka: Ti	iroda (E	Boda, Cho	orkhamara	ı, Ghogr	a, Kach	ewani, I	Kawalewa	da, Lonh	ara, Rusta	ampur, Sa	alebardi,	Sarra,			
Sejgaon, Tiro	Sejgaon, Tiroda, Vihirgaon)														
Min	7.3	273.2	120.0	12.8	14.6	0.0	44.0	24.4	14.0	6.0	0.3	2.4			
Max	9.4	1771.0	1220.0	275.2	129.3	0.8	448.0	449.0	608.0	197.0	2.4	285.6			
Average	8.1	604.8	367.4	86.4	36.8	0.2	160.8	184.4	191.4	60.5	0.9	62.6			
Stdev	0.7	380.1	252.5	67.6	26.8	0.2	106.5	124.6	154.3	53.1	0.6	76.4			
% < Des	0.0	45.0	40.0	50.0	65.0	65.0	75.0	0.0	80.0	100.0	70.0	60.0			
% P	70.0	55.0	50.0	45.0	30.0	35.0	25.0	0.0	20.0	0.0	15.0	0.0			
% > Ex P	30.0	0.0	10.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	15.0	40.0			

Taluka : Sal	lekasa (1	Kahali, Kl	nedepar, I	Latori, Sa	alekasa, '	Thadeza	ri, Tirkhe	di)				
Min	7.6	160.0	64.0	14.4	2.4	0.0	64.0	48.1	11.0	0.3	0.2	2.0
Max	9.5	1082.0	568.0	118.4	66.1	0.7	195.1	238.0	420.0	101.0	0.9	88.2
Average	8.6	395.4	207.4	47.2	21.7	0.3	110.4	114.5	126.8	26.9	0.6	14.9
Stdev	0.8	312.0	166.8	34.8	21.8	0.2	42.4	62.9	133.6	34.7	0.3	29.7
% < Des	0.0	75.0	75.0	87.5	75.0	62.5	100.0	0.0	87.5	100.0	100.0	87.5
% P	37.5	25.0	25.0	12.5	25.0	37.5	0.0	0.0	12.5	0.0	0.0	0.0
% > Ex P	62.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.5

12. HINGOLI

Taluka : Au	ndha (N	l ag) (Ajal	soda, Aur	ndha (Na	g), Shira	adshahap	our, Unde	gaon)				
	'pH	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	Cl	SO ₄ -2	F-	NO ₃
Min	7.2	402.0	136.0	16.0	2.9	0.0	40.4	49.0	40.0	15.0	0.2	0.5
Max	11.0	1352.0	400.0	78.0	84.1	0.8	275.4	336.0	348.0	220.0	4.1	29.0
Average	8.3	784.5	273.2	50.8	35.6	0.3	166.1	190.8	148.3	65.3	1.2	7.5
Stdev	1.1	362.4	81.7	23.4	21.5	0.2	81.3	99.6	99.4	59.8	1.1	10.3
% < Des	0.0	30.0	70.0	90.0	50.0	60.0	50.0	0.0	90.0	90.0	50.0	100.0
% P	70.0	70.0	30.0	10.0	50.0	40.0	50.0	0.0	10.0	10.0	30.0	0.0
% > Ex P	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0

Taluka: Ba	smatnag	gar (Adga	on-I, Ara	l, Babulg	gaon, Ba	smath, F	Iatta, Hing	goli, Lon	Bk, Pardi	KH,			
Sawangi bk, Telgaon)													
Min 7.3 233.0 52.0 4.8 1.0 0.0 36.0 39.9 25.0 15.0 0.3 0													
Max	11.0	1352.0	392.0	99.2	64.2	0.8	404.9	494.0	180.0	91.1	1.7	85.2	
Average	7.9	529.8	243.9	50.4	28.6	0.2	165.7	198.2	84.4	44.2	0.8	18.7	
Stdev	0.8	278.1	91.8	25.2	14.6	0.2	89.8	106.2	46.0	24.9	0.4	27.9	
% < Des	0.0	57.9	73.7	84.2	57.9	68.4	73.7	0.0	100.0	100.0	78.9	84.2	
% P	94.7	42.1	26.3	15.8	42.1	31.6	26.3	0.0	0.0	0.0	10.5	0.0	
% > Ex P	5.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.5	15.8	

Taluka : Hi	ngoli (A	legaon (O	ld), Basaı	nba, Bra	hmapur,	Chinche	oli Rumna	ı, Churaw	a, Hingol	i, Karanja	la,			
Limbala, Narsinamdeo)														
Min 7.2 222.0 48.0 8.0 1.0 0.0 32.0 0.0 20.0 2.0 0.3 0														
Max	9.0	1612.0	650.0	174.4	94.0	0.8	445.1	543.0	450.0	347.5	1.6	55.0		
Average	8.0	733.5	334.6	63.4	42.8	0.2	195.0	212.5	152.7	85.4	0.9	13.3		
Stdev	0.6	376.0	153.5	41.1	26.7	0.2	99.2	135.4	114.2	92.4	0.3	15.9		
% < Des	0.0	29.2	41.7	66.7	37.5	75.0	45.8	0.0	79.2	87.5	66.7	91.7		
% P	79.2	70.8	50.0	33.3	62.5	25.0	54.2	0.0	20.8	12.5	29.2	0.0		
% > Ex P	20.8	0.0	8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2	8.3		

Taluka : Sei	ngaon (k	Kanhergac	n, Khadk	i, Sakha	ra)							
Min	7.5	168.0	52.0	14.4	2.9	0.0	28.5	12.1	44.0	6.0	0.1	0.6
Max	10.0	724.0	304.3	74.0	44.7	0.5	250.0	305.0	136.0	50.0	1.6	9.7
Average	8.2	410.0	198.7	47.4	19.6	0.2	140.0	157.4	81.3	23.0	0.8	4.4
Stdev	0.9	188.1	116.2	24.6	18.0	0.2	95.0	129.7	33.9	15.8	0.6	3.8
% < Des	0.0	66.7	66.7	100.0	66.7	66.7	66.7	0.0	100.0	100.0	66.7	100.0
% P	83.3	33.3	33.3	0.0	33.3	33.3	33.3	0.0	0.0	0.0	16.7	0.0
% > Ex P	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.7	0.0

Taluka : Ka	lmnuri	(Bibgavha	an, Bolda,	Dongar	kada, Re	dgaon, T	Гирра)					
Min	7.6	449.0	156.0	14.4	29.2	0.1	92.0	90.9	32.0	18.3	0.8	0.8
Max	8.3	969.0	612.0	139.2	64.2	0.6	296.0	361.1	256.0	83.0	1.5	9.0
Average	7.9	624.7	313.7	58.3	40.8	0.4	184.4	210.8	132.9	49.1	1.1	3.7
Stdev	0.3	196.4	149.3	41.7	12.7	0.2	74.3	97.5	70.2	25.0	0.2	3.4
% < Des	0.0	42.9	57.1	71.4	28.6	28.6	57.1	0.0	85.7	100.0	42.9	100.0
% P	100.0	57.1	28.6	28.6	71.4	71.4	42.9	0.0	14.3	0.0	57.1	0.0
% > Ex P	0.0	0.0	14.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

13. JALGAON

Taluka: An	nalner (Amalner,	Bodwad,	Dhar, L	on Bk.,	Lone, M	Iehergaon	, Mudi pr	dangr, M	lundane.		
Pr. Amalner	., Pimpr	i. p. jalod.	, Sadavan	Bk.,Sav	kheda)							
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F	NO ₃
Min	7.4	264.0	108.0	20.8	10.7	0.0	100.0	122.0	26.0	19.0	0.2	0.3
Max	9.6	4051.0	2080.0	449.6	449.6	0.5	600.0	731.5	1263.8	757.0	1.7	1153.2
Average	8.4	1523.3	758.6	122.8	109.8	0.2	275.1	322.2	427.3	163.3	0.8	171.2
Stdev	0.6	1267.1	678.6	115.1	122.8	0.2	143.5	182.3	403.6	209.1	0.4	359.9
% < Des	0.0	18.8	25.0	50.0	25.0	75.0	37.5	0.0	43.8	81.3	75.0	75.0
% P	62.5	56.3	37.5	31.3	43.8	25.0	62.5	0.0	37.5	0.0	18.8	0.0
% > Ex P	37.5	25.0	37.5	18.8	31.3	0.0	0.0	0.0	18.8	18.8	6.3	25.0

Taluka : Bl	nadgaon	(Balad k	th., Bhadg	gaon, Ka	jgaon, N	imbhore	, Pasardi,	Varkhedi	.)			
Min	7.4	364.7	124.0	12.8	22.4	0.0	100.0	113.8	50.0	0.3	0.4	21.0
Max	8.3	1832.8	1300.0	280.0	145.9	0.2	320.0	390.4	538.8	294.0	0.7	465.0
Average	8.0	774.8	438.6	85.4	54.7	0.1	220.4	266.1	158.9	82.7	0.5	101.5
Stdev	0.3	502.7	349.8	84.2	35.1	0.1	75.1	96.3	161.5	89.2	0.1	158.3
% < Des	0.0	50.0	30.0	80.0	10.0	100.0	30.0	0.0	80.0	90.0	100.0	70.0
% P	100.0	50.0	50.0	10.0	80.0	0.0	70.0	0.0	20.0	10.0	0.0	0.0
% > Ex P	0.0	0.0	20.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	30.0

Taluka: Bh	nusawal	(Bhusawa	al (New),	Mondha	le, Thak	ali)						
Min	7.3	381.1	192.5	10.0	25.3	0.0	115.0	140.3	24.8	0.4	0.5	1.2
Max	8.8	697.0	410.0	62.0	62.0	0.4	400.0	488.0	163.1	100.8	2.2	30.0
Average	8.1	479.8	256.6	34.0	41.7	0.1	242.9	296.3	81.1	48.5	1.0	10.0
Stdev	0.5	111.1	74.7	20.6	14.3	0.2	134.7	164.3	56.1	39.6	0.6	10.0
% < Des	0.0	71.4	85.7	100.0	28.6	85.7	57.1	0.0	100.0	100.0	42.9	100.0
% P	85.7	28.6	14.3	0.0	71.4	14.3	42.9	0.0	0.0	0.0	42.9	0.0
% > Ex P	14.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.3	0.0

Taluka: Bo	dwad (I	Bodwad)										
Min	8.0	419.3	290.0	33.0	50.5	0.0	155.0	189.1	79.8	35.0	0.5	58.0
Max	8.0	593.9	400.0	60.0	60.8	0.0	190.1	231.9	156.2	105.6	0.6	60.8
Average	8.0	506.6	345.0	46.5	55.6	0.0	172.5	210.5	118.0	70.3	0.6	59.4
Stdev	0.0	123.4	77.8	19.1	7.3	0.0	24.8	30.2	54.0	49.9	0.1	2.0
% < Des	0.0	50.0	50.0	100.0	0.0	100.0	100.0	0.0	100.0	100.0	100.0	0.0
% P	100.0	50.0	50.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0

Taluka : C	halisgao	n (Adgao	on, Bhora	j, Bhora	s bk., (Chalisga	on, Hirap	ur, Kharj	ai, Mahu	nbare, Mo	ehunbare	e, Patne,			
Pimpalgaon	Pimpalgaon, Sevanagar, Wakdi)														
Min 7.4 321.4 165.0 30.0 16.0 0.0 85.0 103.7 75.0 22.0 0.3 5.0															
Max	8.2	1024.0	690.0	156.0	73.0	0.3	290.1	353.9	259.2	158.4	0.7	203.0			
Average	7.9	601.1	309.4	60.7	38.3	0.2	164.3	194.1	128.6	59.6	0.5	39.9			
Stdev	0.2	193.7	120.0	32.1	14.2	0.1	58.0	73.9	61.3	41.5	0.1	52.9			
% < Des	0.0	31.3	62.5	81.3	25.0	68.8	75.0	0.0	87.5	100.0	100.0	68.8			
% P	100.0	68.8	31.3	18.8	75.0	31.3	25.0	0.0	12.5	0.0	0.0	0.0			
% > Ex P	0.0	0.0	6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	31.3			

Taluka : Ch	nopda (A	Adawad,	Adgaon,	Chahard	i, Chopo	la, Deoz	iri, Dhan	ora, Hate	d bk., Ka	rjane, Lal	nasur, M	laratha,		
Mitawali)														
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F ⁻	NO ₃		
Min	7.9	309.0	35.0	13.0	0.6	0.0	37.5	45.8	34.0	10.0	0.1	0.0		
Max	8.9	1690.0	780.0	156.8	177.9	1.3	720.0	878.4	470.0	118.0	1.6	137.6		
Average	8.3	712.0	339.4	53.6	49.9	0.4	225.4	263.0	169.0	48.4	0.8	18.6		
Stdev	0.3	348.8	184.8	36.7	34.3	0.3	125.3	153.3	117.2	25.7	0.4	25.1		
% < Des	0.0	29.0	61.3	87.1	25.8	32.3	51.6	0.0	77.4	100.0	71.0	96.8		
% P	90.3	71.0	29.0	12.9	67.7	58.1	45.2	0.0	22.6	0.0	25.8	0.0		
% > Ex P	9.7	0.0	9.7	0.0	6.5	9.7	3.2	0.0	0.0	0.0	3.2	3.2		

Taluka: Dh	aranga	n (Dhara	ngaon, Pi	mpalkotl	ha)							
Min	7.5	480.8	310.0	32.0	48.6	0.0	115.0	140.3	159.8	24.0	0.3	83.7
Max	8.1	1454.4	930.0	204.0	102.1	0.0	210.1	256.3	510.5	148.8	0.7	290.0
Average	7.8	822.0	504.0	85.6	70.5	0.0	154.0	187.9	249.7	78.4	0.5	154.8
Stdev	0.3	374.1	245.6	71.9	21.3	0.0	40.6	49.5	147.4	47.1	0.2	81.7
% < Des	0.0	20.0	0.0	60.0	0.0	100.0	80.0	0.0	80.0	100.0	100.0	0.0
% P	100.0	80.0	80.0	20.0	80.0	0.0	20.0	0.0	20.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	20.0	20.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0

Taluka : Er	andol (A	Adgaon, C	handsar,	Eklagna	, Erando	l, Kasod	a, Kavhal	, Kharchi	bk., Nago	duli, Pald	hi kh., l	Pastane			
.kh, Pimpri s	.kh, Pimpri seem., Vankothe, Zurkheda)														
Min	7.3	255.0	165.0	24.0	19.4	0.0	120.0	138.6	37.2	12.0	0.2	1.0			
Max	8.8	1683.0	920.0	160.0	161.4	0.6	460.0	560.7	489.2	201.6	1.1	275.0			
Average	8.1	729.7	371.3	55.1	56.7	0.2	231.4	271.2	161.3	54.7	0.5	38.7			
Stdev	0.3	438.1	183.1	31.0	38.4	0.2	81.8	105.1	123.1	43.7	0.3	66.8			
% < Des	0.0	42.3	46.2	84.6	23.1	73.1	38.5	0.0	80.8	96.2	88.5	84.6			
% P	88.5	57.7	42.3	15.4	65.4	26.9	61.5	0.0	19.2	3.8	11.5	0.0			
% > Ex P	11.5	0.0	11.5	0.0	11.5	0.0	0.0	0.0	0.0	0.0	0.0	15.4			

Taluka : Jai	mner (Ja	ımner, Ke	kat Nimb	hora, Ne	ri, Shen	durni, Sh	engola)					
Min	7.3	328.0	180.0	24.0	26.7	0.0	100.0	122.0	32.0	29.8	0.4	8.7
Max	8.2	1029.5	690.0	112.0	131.3	0.0	390.1	476.0	248.2	124.8	0.9	192.0
Average	7.9	555.0	342.0	51.3	52.0	0.0	224.6	274.0	102.2	65.0	0.6	72.0
Stdev	0.3	208.5	148.1	24.6	29.2	0.0	95.5	116.6	59.0	30.6	0.1	59.2
% < Des	0.0	45.5	36.4	90.9	18.2	100.0	54.5	0.0	100.0	100.0	100.0	36.4
% P	100.0	54.5	54.5	9.1	72.7	0.0	45.5	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	9.1	0.0	9.1	0.0	0.0	0.0	0.0	0.0	0.0	63.6

Taluka : Mu	ıkainaga	ar (Narve	1)									
Min	7.4	751.6	520.0	28.0	109.4	0.0	290.1	353.9	141.8	22.0	0.4	194.0
Max	7.4	751.6	520.0	28.0	109.4	0.0	290.1	353.9	141.8	22.0	0.4	194.0
Average	7.4	751.6	520.0	28.0	109.4	0.0	290.1	353.9	141.8	22.0	0.4	194.0
% < Des	0.0	0.0	0.0	100.0	0.0	100.0	0.0	0.0	100.0	100.0	100.0	0.0
% P	100.0	100.0	100.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0

Taluka: Pa	rola (Ad	gaon, Dh	oli, Jamde	e, Karadi	i, Mhasv	e, Parola	ı, Rajwad	, Sarve. bl	c., Titvish	iv, Undirl	cheda)	
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.5	278.0	144.0	18.0	7.8	0.0	100.0	122.0	24.0	12.0	0.1	1.0
Max	8.7	1131.0	564.0	139.2	64.4	1.2	290.0	353.8	275.0	134.4	0.8	148.2
Average	8.0	587.0	311.1	64.0	36.7	0.3	212.4	237.9	104.5	41.6	0.5	26.3
Stdev	0.4	248.3	113.5	34.2	16.3	0.3	50.8	66.4	74.4	34.3	0.2	43.1
% < Des	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	100.0	0.0
% P	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0	100.0	0.0	100.0

Taluka: Raver (Ahirwadi, Balvadi, Bhokri, Lalmati, Lohara, Managalwadi, Padle bk., Rasalpur, Raver, Savkheda kh., Talwade Kd.) Min 279.2 185.0 24.3 0.0 95.0 108.9 7.5 12.0 28.4 9.0 0.1 Max 9.4 761.0 440.0 72.0 78.7 0.3 310.0 378.2 110.0 110.4 1.6 151.0 8.2 269.2 198.2 461.5 39.1 41.7 174.9 80.9 37.8 0.5 31.3 Average 0.1 Stdev 122.2 22.9 0.5 72.5 13.3 14.2 0.1 46.7 63.6 22.0 0.4 42.3 % < Des 0.0 60.9 78.3 100.0 13.0 95.7 65.2 0.0 100.0 100.0 82.6 78.3 % P 82.6 39.1 21.7 0.0 87.0 4.3 34.8 0.0 0.0 0.0 13.0 0.0 % > Ex P17.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3 21.7

Taluka: Yaval (Bamnod, Chincholi, Dujkheda, Faizpur, Gahukheda, Mohrale, Navi, Nimgaon, Ridhiri, Viroda, Waghoda, Yawal) Min 7.7 210.0 72.0 8.0 10.9 0.0 36.0 1.9 20.0 0.2 0.1 0.3 480.0 Max 10.7 1136.0 104.0 89.4 1.3 300.0 366.0 216.0 83.0 1.0 25.0 256.1 0.3 193.9 211.3 0.5 8.9 Average 8.4 505.0 42.6 36.4 98.5 33.2 24.2 Stdev 0.8 262.8 104.1 18.7 0.3 61.2 89.2 59.0 20.1 0.3 6.8 % < Des 0.0 0.0 54.5 68.2 86.4 50.0 81.8 59.1 100.0 100.0 95.5 100.0 % P 68.2 45.5 31.8 13.6 50.0 9.1 40.9 0.0 0.0 0.0 4.5 0.0 % > Ex P31.8 0.0 0.0 0.0 0.0 9.1 0.0 0.0 0.0 0.0 0.0 0.0

Taluka : Jal Jalke, Khedi									, Higone,	Jalgaon,		
Min	7.2	297.9	140.0	11.0	9.7	0.0	45.0	54.9	28.4	5.0	0.1	0.3
Max	8.8	1595.4	1050.0	196.0	136.2	0.2	650.2	793.3	581.4	148.8	2.0	409.8
Average	8.0	626.6	371.3	57.3	55.4	0.0	219.9	264.4	142.1	55.9	0.8	64.2
Stdev	0.4	336.6	190.5	37.6	29.4	0.1	113.1	139.5	138.3	38.4	0.5	96.8
% < Des	0.0	44.4	44.4	81.5	14.8	100.0	37.0	0.0	81.5	100.0	66.7	70.4
% P	92.6	55.6	48.1	18.5	77.8	0.0	59.3	0.0	18.5	0.0	29.6	0.0
% > Ex P	7.4	0.0	7.4	0.0	7.4	0.0	3.7	0.0	0.0	0.0	3.7	29.6

Taluka : Pa	chora (E	Bambrud .	kh.p., Kh	urad bk.,	Nagard	eola bk.	, Neri, Pa	chora, Sat	gaon, Vac	dgaon am	be)	
Min	8.0	438.0	156.0	30.4	18.5	0.1	164.0	149.5	10.0	6.0	0.1	2.0
Max	9.3	1199.0	544.0	113.6	66.1	0.9	484.0	590.5	210.0	96.0	1.1	72.0
Average	8.6	704.9	295.4	57.4	36.9	0.3	273.7	313.3	120.9	45.4	0.7	26.3
Stdev	0.5	332.4	172.7	37.2	19.7	0.3	144.9	194.1	63.0	28.6	0.4	30.6
% < Des	0.0	42.9	71.4	71.4	57.1	71.4	42.9	0.0	100.0	100.0	71.4	71.4
% P	42.9	57.1	28.6	28.6	42.9	28.6	57.1	0.0	0.0	0.0	28.6	0.0
% > Ex P	57.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28.6

14. JALNA

% > Ex P

45.0

0.0

10.0

0.0

Taluka : An	nbaa (A	mbad, Ch	urmapuri	, Dungac	on, Mana	ıkalwastı	i, Naiewa	di, Pangar	kneda, Ke	enapuri, K	onilagac	1,
Shahagad, Sl	hahapur,	Shevga,	Tahadgao	n, Zirpi)								
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl.	SO_4^{-2}	F ⁻	NO ₃
Min	7.3	371.0	140.0	14.4	3.9	0.0	84.0	49.3	46.0	13.0	0.1	0.8
Morr	0.5	2262.6	600 O	225 6	0.6 0	1.0	515 1	665.0	406 O	070 /	2.5	215.0

Min	7.3	371.0	140.0	14.4	3.9	0.0	84.0	49.3	46.0	13.0	0.1	0.8
Max	9.5	2263.6	608.0	225.6	98.0	1.9	545.1	665.0	496.0	878.4	2.5	215.0
Average	8.0	1037.5	370.3	87.0	37.1	0.6	225.8	271.9	192.0	119.3	1.0	31.1
Stdev	0.5	524.1	132.7	52.9	22.0	0.6	109.5	137.4	99.9	188.4	0.5	42.4
% < Des	0.0	8.1	29.7	51.4	37.8	45.9	40.5	0.0	75.7	91.9	35.1	81.1
% P	91.9	83.8	64.9	43.2	62.2	29.7	59.5	0.0	24.3	2.7	51.4	0.0
% > Ex P	8.1	8.1	5.4	5.4	0.0	24.3	0.0	0.0	0.0	5.4	13.5	18.9

Taluka: Badnapur (Badnapur, Chanegaon, Deogaon kusali, Dhabadi, Dhopteshwar, Georai bazaar, Kandari kh., Matrewadi, Pangarkheda, Roshangaon, Silegaon, Tahadgaon) Min 7.1 288.0 134.0 11.2 4.4 0.0 55.8 37.7 36.0 5.0 0.6 Max 9.9 1495.0 725.0 176.0 97.0 1.5 357.5 436.2 344.0 440.0 2.0 83.3 8.5 710.1 334.4 59.9 44.9 0.4 197.9 210.8 120.2 70.4 1.1 17.3 Average Stdev 0.8 373.6 177.8 50.9 21.8 0.5 97.6 146.4 82.1 91.3 0.4 24.5 % < Des 0.0 35.0 50.0 70.0 15.0 60.0 55.0 0.0 90.0 95.0 30.0 85.0 % P 65.0 40.0 30.0 85.0 25.0 45.0 0.0 10.0 0.0 55.0 0.0 55.0

Taluka : Bhokardan (Badnapur, Baranjala lokhande, Bharadkheda, Bhokardan, Bhutkheda, Borgaon jahagir, Chanegaon, Dhopteshwar, Gosegaon, Hasnabad, Jafrabad, Kedar kheda, Khandala, Kumbhari, Latifpur, Longaon Mahora, Malkapur, Malkheda, Matrewadi, Muthad, Pimpalgaon Renukai, Takli kolte, Talegaon, Talni, Wakadi, Walsa khalsa, Walsadawargaon)

15.0

0.0

0.0

0.0

5.0

15.0

15.0

0.0

Min	6.7	270.0	136.0	0.6	2.9	0.0	66.0	40.7	32.0	6.0	0.0	0.8
Max	10.0	3120.0	900.0	264.0	178.0	1.0	785.2	958.0	1290.0	401.0	2.0	569.8
Average	8.1	842.2	389.9	76.1	48.5	0.1	204.3	229.1	175.4	79.9	0.8	51.1
Stdev	0.8	476.3	190.7	58.9	32.4	0.2	104.8	139.2	183.8	65.9	0.5	106.2
% < Des	0.0	20.4	44.4	66.7	27.8	90.7	53.7	0.0	79.6	94.4	63.0	75.9
% P	79.6	77.8	40.7	25.9	66.7	9.3	44.4	0.0	18.5	3.7	25.9	0.0
% > Ex P	20.4	1.9	14.8	7.4	5.6	0.0	1.9	0.0	1.9	1.9	11.1	24.1

Taluka : Gl	hansawa	angi (Gh	ansawang	i, Ghon	shi bk.,	Jambsan	narth, Ku	mbharpin	palgaon,	Masegao	n, Murn	na Kh.,			
Paradgaon, F	Paradgaon, Rajani, Rani unchegaon, Ranjani, Ravna, Tirthpuri)														
Min	7.5	228.0	122.0	14.4	14.6	0.0	64.0	56.7	24.0	9.0	0.1	0.1			
Max	9.1	1638.0	800.0	147.2	139.0	0.5	300.0	366.0	470.0	150.0	1.6	206.0			
Average	8.1	692.2	357.0	60.8	49.9	0.2	191.7	222.9	154.6	56.2	1.0	28.1			
Stdev	0.5	334.2	179.6	36.5	33.2	0.1	62.5	85.9	119.4	41.9	0.5	40.6			
% < Des	0.0	34.5	41.4	69.0	31.0	93.1	44.8	0.0	82.8	100.0	44.8	82.8			
% P	75.9	65.5	48.3	31.0	58.6	6.9	55.2	0.0	17.2	0.0	24.1	0.0			
% > Ex P	24.1	0.0	10.3	0.0	10.3	0.0	0.0	0.0	0.0	0.0	31.0	17.2			

Taluka: Ja	frabad	(Bharad	kheda,Bh	utkheda,	Deoul	zari, Dl	nagi, Du	ngaon, C	ola pang	gri, Jafra	bad, K	alegaon,
Kumbhari, N	Mahora,	Pimpalga	on, Pokha	ri (singa	de), Rev	gaon, R	ohilagad,	Shevga, V	Viregaon,	Zirpi)		
'pH TDS TH Ca ²⁺ Mg ²⁺ Fe TA HCO3 Cl SO ₄ -2 F N												NO ₃
Min	7.3	224.0	116.0	17.6	4.9	0.0	48.0	42.4	26.0	9.0	0.2	0.6
Max	9.8	5648.3	3716.1	796.0	578.0	0.9	416.0	507.5	1344.0	504.0	1.3	2517.0
Average	8.1	1407.5	672.8	142.1	78.7	0.2	196.5	227.2	322.5	103.7	0.7	288.3
Stdev	0.7	1006.6	914.5	184.6	127.7	0.2	112.3	148.1	403.8	110.7	0.3	731.1
% < Des	0.0	29.2	37.5	58.3	41.7	70.8	66.7	0.0	66.7	87.5	54.2	66.7
% P	83.3	50.0	33.3	16.7	45.8	29.2	33.3	0.0	20.8	8.3	45.8	0.0
% > Ex P	16.7	20.8	29.2	25.0	12.5	0.0	0.0	0.0	12.5	4.2	0.0	33.3

Taluka : Ja	lna (Ba	dnapur, I	Dhagi, Go	la pang	ri, Jalna	, Maujpi	ıri, Ner,	Pimpalga	on, Pokha	ri (singa	de), Ran	nnagar,			
Rohanwadi,	Rohanwadi, Samangaon, Sarwadi, Seoli, Tirthpuri, Viregaon)														
Min	7.1	315.0	148.0	16.0	3.9	0.0	66.0	64.1	32.0	16.0	0.1	0.9			
Max	9.9	5122.0	1595.0	325.0	289.7	1.4	836.4	1020.4	1000.0	308.0	2.0	152.0			
Average	8.1	973.0	446.6	83.7	57.7	0.3	216.9	254.3	196.1	93.1	0.9	32.2			
Stdev	0.7	890.6	322.5	64.7	58.8	0.4	148.4	188.1	214.9	77.7	0.5	39.4			
% < Des	0.0	22.6	41.9	54.8	29.0	58.1	58.1	0.0	77.4	90.3	45.2	77.4			
% P	80.6	74.2	48.4	41.9	54.8	32.3	38.7	0.0	22.6	9.7	45.2	0.0			
% > Ex P	19.4	3.2	9.7	3.2	16.1	9.7	3.2	0.0	0.0	0.0	9.7	22.6			

Taluka: Ma	ntha (D	hoksal, H	lelas, Mar	ntha, Pan	gri waya	ıl, Patod	a kh., Talı	ni, Wadga	on saradh	, Wakdi,	Watur)	
Min	7.4	248.0	102.0	19.2	13.1	0.0	40.0	35.2	24.0	10.0	0.1	1.0
Max	9.2	2218.0	1412.3	232.0	246.0	0.7	320.0	390.4	709.0	140.0	2.0	533.0
Average	7.9	803.0	476.6	79.0	67.8	0.2	201.6	235.3	215.2	64.2	0.8	79.7
Stdev	0.5	550.2	315.2	63.8	55.3	0.2	82.4	108.8	195.0	43.3	0.5	128.7
% < Des	0.0	41.2	29.4	64.7	17.6	76.5	41.2	0.0	70.6	100.0	58.8	58.8
% P	88.2	52.9	41.2	23.5	70.6	23.5	58.8	0.0	29.4	0.0	35.3	0.0
% > Ex P	11.8	5.9	29.4	11.8	11.8	0.0	0.0	0.0	0.0	0.0	5.9	41.2

Taluka : Pa	rthur (A	sangaon,	Loni kh.,	Partur,	Satona k	h., Shres	hti, Shrist	ti, Singona	a, Watur)			
Min	7.3	143.0	78.0	8.0	14.1	0.0	32.0	36.1	30.0	6.0	0.1	1.0
Max	9.3	1807.0	720.0	152.0	122.0	0.7	394.0	480.7	490.0	658.6	1.7	147.0
Average	8.0	827.5	394.4	65.4	56.1	0.2	224.3	261.3	168.8	107.9	0.9	31.1
Stdev	0.5	455.5	184.4	43.0	32.0	0.2	95.3	121.7	119.5	166.8	0.4	41.6
% < Des	0.0	30.4	39.1	69.6	26.1	65.2	30.4	0.0	73.9	91.3	52.2	78.3
% P	82.6	69.6	43.5	30.4	65.2	34.8	69.6	0.0	26.1	0.0	34.8	0.0
% > Ex P	17.4	0.0	17.4	0.0	8.7	0.0	0.0	0.0	0.0	8.7	13.0	21.7

15. KOLHAPUR

Taluka : Aj	ra (Ajar	a, Gavase	, Harur, k	Kowade,	Lakudw	adi, Mal	ligre, Sulg	gaon, Uttu	r)			
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F	NO ₃
Min	6.9	49.9	36.0	6.4	2.4	0.0	28.0	28.0	16.0	3.8	0.1	0.9
Max	9.1	389.6	256.0	62.4	30.0	1.2	152.0	152.0	96.0	46.2	1.0	112.0
Average	8.0	209.1	114.1	26.9	13.6	0.5	87.7	89.0	50.8	15.9	0.5	19.2
Stdev	0.7	96.0	58.7	14.2	8.3	0.4	37.1	39.3	21.4	10.1	0.3	28.6
% < Des	0.0	100.0	100.0	100.0	95.2	33.3	100.0	0.0	100.0	100.0	90.5	90.5
% P	71.4	0.0	0.0	0.0	4.8	52.4	0.0	0.0	0.0	0.0	9.5	0.0
% > Ex P	28.6	0.0	0.0	0.0	0.0	14.3	0.0	0.0	0.0	0.0	0.0	9.5

Taluka:	Bhudarg	gad (Gara	goti, Hele	ewadi, k	Karadwa	di, Mad	ilge Bk.,	Madur,	Minche k	h., Naga	nwadi, l	Nilpan,
Nitawade, Pa	atgaon, P	Pimpalgao	n, Pimpal	gaon,Tii	avade, V	/engrul)						
Min	6.9	27.5	30.0	6.0	1.2	0.0	30.3	32.0	7.0	0.1	0.0	0.1
Max	9.1	348.2	289.0	70.0	35.0	1.1	219.7	268.0	70.0	36.0	0.9	82.0
Average	7.9	165.7	104.3	26.0	11.1	0.4	79.6	83.9	38.0	13.3	0.5	13.0
Stdev	0.6	100.9	65.9	17.2	7.1	0.3	51.0	61.6	18.8	9.4	0.3	17.5
% < Des	0.0	100.0	100.0	100.0	96.3	33.3	92.6	0.0	100.0	100.0	100.0	96.3
% P	81.5	0.0	0.0	0.0	3.7	55.6	7.4	0.0	0.0	0.0	0.0	0.0
% > Ex P	18.5	0.0	0.0	0.0	0.0	11.1	0.0	0.0	0.0	0.0	0.0	3.7

Taluka: Chandgad (Adkur, Chandgad, Date, Gudavale Kh., Gulumb Kodali, Hajgoli, Halkarni, Kanhur Kh., Karve,												
Kodali, Patne, Porewadi (Amroli), Saroli, Shinoli Bk., Surute, Tambulwadi)												
Min	6.8	28.8	20.0	3.2	1.2	0.0	9.8	12.0	3.5	0.1	0.0	0.0
Max	8.8	358.4	124.0	40.0	13.2	1.0	176.0	176.0	82.0	30.5	1.0	50.9
Average	7.6	99.6	56.4	15.5	5.2	0.3	43.3	44.3	28.3	7.6	0.4	14.5
Stdev	0.5	67.0	31.5	9.5	3.3	0.2	29.9	29.8	15.3	7.0	0.3	11.7
% < Des	0.0	100.0	100.0	100.0	100.0	42.9	100.0	0.0	100.0	100.0	97.1	97.1
% P	91.4	0.0	0.0	0.0	0.0	57.1	0.0	0.0	0.0	0.0	2.9	0.0
% > Ex P	8.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9

Taluka:	Gading	l aj (Done	wadi, G	adhingla	j, Halka	rni, Hai	rali Bk.,	Hebbal .	Jaldyal, I	Hidaduggi,	Kasba	Nool,
Mahagaon, Nangnur, Nesari, Nilaji)												
Min	7.2	117.6	80.0	14.4	5.0	0.0	44.0	44.0	24.0	7.1	0.0	0.4
Max	8.7	913.3	400.0	118.0	57.0	1.1	316.0	366.0	232.0	145.0	1.0	117.4
Average	7.8	442.9	190.0	41.9	24.5	0.3	127.2	135.1	110.8	41.5	0.4	33.3
Stdev	0.4	221.1	89.5	26.5	14.7	0.3	86.6	98.9	63.2	36.2	0.3	32.5
% < Des	0.0	67.9	85.7	89.3	60.7	64.3	82.1	0.0	100.0	100.0	96.4	71.4
% P	92.9	32.1	14.3	10.7	39.3	32.1	17.9	0.0	0.0	0.0	3.6	0.0
% > Ex P	7.1	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	28.6

Taluka: Gaganbawada (Asandoli, Aslaj, Gagan bauda, Tisagiwadi)												
Min	6.9	20.7	15.0	2.0	1.2	0.0	4.9	6.0	3.5	0.1	0.0	0.1
Max	8.2	137.0	84.0	22.4	9.6	0.5	72.0	79.0	30.0	16.1	0.6	15.7
Average	7.6	60.3	44.3	11.5	4.3	0.1	30.9	33.3	14.9	4.8	0.2	6.3
Stdev	0.5	37.1	24.0	6.5	2.7	0.2	20.5	22.8	8.3	5.5	0.2	5.4
% < Des	0.0	100.0	100.0	100.0	100.0	83.3	100.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	16.7	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Hatkanangale (Chokak, Halondi, Hatkanangale, Ichalkarnji(Chugulemala), Ichalkarnji(Surve mala), Kabnoor, Kini wathar, Korochi, Majale, Nej, Pargaon, Rendal, Rukadi, Shiroli, Vadgoan, Wathar T. Wadgaon, Yalgud)

	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO ₄ -2	F ⁻	NO ₃
Min	7.3	108.8	72.0	16.0	4.8	0.0	16.0	16.0	36.0	9.3	0.1	1.4
Max	8.5	1612.8	612.0	160.0	98.0	1.1	352.0	360.0	692.0	410.0	0.9	108.5
Average	7.9	621.5	308.9	60.3	46.1	0.5	146.9	151.7	176.1	111.8	0.5	39.9
Stdev	0.3	285.7	137.3	35.0	22.2	0.3	87.4	96.2	123.1	99.7	0.2	25.4
% < Des	0.0	31.4	51.4	74.3	14.3	28.6	74.3	0.0	82.9	82.9	100.0	77.1
% P	100.0	68.6	45.7	25.7	85.7	62.9	25.7	0.0	17.1	14.3	0.0	0.0
% > Ex P	0.0	0.0	2.9	0.0	0.0	8.6	0.0	0.0	0.0	2.9	0.0	22.9

Taluka:	Kagal (Galgale,	Ka. Sang	gaon, Ka	agal, Ka	pashi, k	Khadakew	ada, Kur	ıkali, Mu	ırgud, M	urud, Su	ırupali,	
Undarwadi, Walve Kh., Yamage)													
Min 7.0 80.6 28.0 8.0 2.4 0.0 52.0 52.0 36.0 1.0 0.2 0.2													
Max	8.4	782.7	460.0	72.0	122.4	1.0	300.0	366.0	452.0	91.5	0.8	48.7	
Average	7.8	306.4	215.3	38.1	34.8	0.5	163.2	168.8	80.8	23.2	0.5	18.0	
Stdev	0.4	168.8	110.2	19.9	30.1	0.3	61.2	74.4	82.7	19.2	0.2	15.7	
% < Des	0.0	92.0	84.0	100.0	60.0	24.0	76.0	0.0	96.0	100.0	100.0	96.0	
% P	100.0	8.0	16.0	0.0	32.0	76.0	24.0	0.0	4.0	0.0	0.0	0.0	
% > Ex P	0.0	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	

Taluka : Kolhapur (Authur, Girgaon, Gokul shirgaon, Halkarne, Jaital, Kerli, Khindi Varvade, Khupire, Kogli Bk., Kolhapur, Kuditre, Kurukali, Madlgi Budrukh, Nigave Du., Parite, Partangale, Sangwade, Shiradwad, Shiroli, Solankuv, Washi)

Min	7.2	52.6	30.0	8.0	2.4	0.0	30.3	37.0	11.0	2.2	0.0	0.1
Max	8.4	1059.9	735.0	174.0	98.0	1.1	275.4	336.0	291.0	258.0	0.6	62.0
Average	7.8	347.9	244.5	56.8	26.1	0.2	153.5	175.3	85.7	36.8	0.3	16.6
Stdev	0.3	225.8	161.8	38.3	23.3	0.3	64.7	84.7	74.4	47.5	0.2	16.5
% < Des	0.0	80.4	73.9	78.3	67.4	63.0	76.1	0.0	91.3	97.8	100.0	91.3
% P	100.0	19.6	21.7	21.7	32.6	34.8	23.9	0.0	8.7	2.2	0.0	0.0
% > Ex P	0.0	0.0	4.3	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	8.7

Taluka: Pa	nhala (A	Asurle, Ki	srool, Ma	ırali, Pan	hala, Pir	nplethan	e, Pimpli	Tarf Thai	ne, Punal,	Undri)		
Min	7.1	74.7	45.0	8.0	2.4	0.0	14.8	18.0	11.0	2.0	0.0	0.4
Max	8.3	725.1	336.0	112.0	38.4	0.8	300.0	300.0	172.0	41.6	0.7	35.4
Average	7.8	185.6	115.8	32.4	10.0	0.3	79.5	83.9	50.6	14.5	0.4	8.5
Stdev	0.4	154.7	72.7	25.3	8.5	0.3	66.8	68.6	43.0	13.1	0.2	10.5
% < Des	0.0	94.4	94.4	94.4	94.4	44.4	94.4	0.0	100.0	100.0	100.0	100.0
% P	100.0	5.6	5.6	5.6	5.6	55.6	5.6	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka:	Radhan	agari (C	hande, I	Dhmod,	Hasane,	Kasarw	ada, Mh	asurli, Pu	ıngaon, F	Radhanaga	ari, She	lewadi,
Solankur)												
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.4	26.2	44.0	8.0	1.2	0.0	32.0	32.0	14.0	0.3	0.0	0.4
Max	8.3	358.7	290.0	70.0	28.0	0.7	225.4	275.0	76.0	26.2	0.6	34.1
Average	7.9	132.8	99.2	25.4	9.8	0.3	74.1	79.9	38.0	13.5	0.3	8.6
Stdev	0.3	86.3	56.0	16.7	6.1	0.2	45.2	55.3	12.9	7.8	0.2	10.9
% < Des	0.0	100.0	100.0	100.0	100.0	38.1	95.2	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	61.9	4.8	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Sh	ahuwad	li (Amba,	Chandoli	, Jambur	, Malkaj	pur, Paija	arwadi, U	khalu, Wa	adgaon, W	/adichara	n)	
Min	7.5	28.8	40.0	8.0	1.2	0.0	20.0	20.0	7.0	0.4	0.0	0.1
Max	8.3	782.0	445.0	110.0	72.0	0.9	469.7	573.0	152.0	49.0	0.6	16.4
Average	7.9	191.4	125.5	31.4	12.2	0.4	117.4	132.7	41.9	13.5	0.3	4.4
Stdev	0.3	216.4	123.5	26.5	17.1	0.3	129.0	158.5	40.6	14.9	0.2	4.4
% < Des	0.0	89.5	89.5	94.7	89.5	42.1	89.5	0.0	100.0	100.0	100.0	100.0
% P	100.0	10.5	10.5	5.3	10.5	57.9	10.5	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: S	Shirol (C	Chipri, Da	anwad Na	ive, Gar	neshwadi	i, Ghosa	rwad, Jar	nbhali, Ja	ysingpur,	Kondigr	e, Kuru	ndwad,		
Shirol, Shiro	Shirol, Shiroli (Shahunagar), Takali, Udgaon)													
Min	7.3	116.5	80.0	16.0	12.0	0.2	20.0	20.0	48.0	31.1	0.1	5.8		
Max	8.4	1504.0	624.0	208.0	114.0	0.9	412.0	412.0	460.0	520.0	0.8	155.1		
Average	7.9	819.3	417.2	110.8	42.1	0.5	114.0	114.0	229.3	214.5	0.5	65.6		
Stdev	0.3	322.1	133.3	52.7	29.2	0.2	95.4	95.4	93.1	136.1	0.2	41.9		
% < Des	0.0	16.7	16.7	25.0	54.2	4.2	83.3	0.0	66.7	58.3	100.0	37.5		
% P	100.0	83.3	79.2	70.8	37.5	95.8	16.7	0.0	33.3	33.3	0.0	0.0		
% > Ex P	0.0	0.0	4.2	4.2	8.3	0.0	0.0	0.0	0.0	8.3	0.0	62.5		

16. LATUR

Taluka:	Ahmadpur	(Ahmadpur,	Andhori,	Dhalegaon,	Hipparga	kopdev,	Khandali,	Kingaon,	Kolwadi,	Mankhed,
Sindgi bk.	Tambatsang	yi, Waigaon,	Walsang	i)						

	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.6	187.9	100.0	9.6	5.8	0.0	64.0	16.0	20.0	4.8	0.0	0.1
Max	9.0	1749.0	705.0	158.0	87.5	1.3	465.0	567.3	426.0	286.0	1.1	112.2
Average	8.1	483.9	275.8	48.8	38.2	0.2	181.7	188.4	95.8	45.1	0.6	15.5
Stdev	0.4	316.6	164.6	40.0	21.7	0.2	91.9	118.6	97.5	51.1	0.3	26.6
% < Des	0.0	71.0	67.7	87.1	45.2	90.3	61.3	0.0	90.3	96.8	74.2	87.1
% P	83.9	29.0	22.6	12.9	54.8	6.5	38.7	0.0	9.7	3.2	25.8	0.0
% > Ex P	16.1	0.0	9.7	0.0	0.0	3.2	0.0	0.0	0.0	0.0	0.0	12.9

Taluka: N		_							asar Sirsi	, Kelgaon	,		
Mal Hipparga, Nilanga, Panchincholi, Sarwadi, Shelgi, Shivni kothal, Sindkhed)													
Min	7.4	150.0	100.0	12.8	9.7	0.0	52.0	41.0	18.0	3.7	0.0	0.1	
Max	9.6	672.5	455.0	110.0	70.0	2.3	355.0	433.1	205.9	65.7	1.3	112.8	
Average	8.2	385.0	233.1	43.8	30.1	0.2	172.4	181.2	72.5	34.0	0.6	16.2	
Stdev	0.5	138.7	95.0	25.9	13.5	0.4	79.2	98.7	47.0	16.5	0.3	25.8	
% < Des	0.0	82.9	80.0	88.6	54.3	85.7	57.1	0.0	100.0	100.0	80.0	91.4	
% P	82.9	17.1	20.0	11.4	45.7	8.6	42.9	0.0	0.0	0.0	20.0	0.0	
% > Ex P	17.1	0.0	0.0	0.0	0.0	5.7	0.0	0.0	0.0	0.0	0.0	8.6	

Taluka: A	usa (Aa	shiv, Ausa	a, Belkun	d, Bhada	, Borgao	n, Budh	oda, Dape	egaon, Ka	rla, Khar	osa, Khur	itegaon,	Killari,		
Lamjana Ph	Lamjana Phata, Nandurga, Selu, Shivali, Taka, Talni)													
Min	7.5	163.0	96.0	12.8	9.7	0.0	70.0	52.7	22.0	4.3	0.0	0.2		
Max	9.6	969.7	695.0	188.0	71.0	1.7	276.0	336.7	254.0	155.0	1.6	226.0		
Average	8.0	475.7	278.1	54.5	34.5	0.2	170.7	183.9	86.0	46.7	0.6	21.9		
Stdev	0.4	206.8	118.2	37.5	13.8	0.3	56.6	68.1	59.2	29.7	0.4	40.7		
% < Des	0.0	64.5	64.5	83.9	38.7	83.9	67.7	0.0	96.8	100.0	77.4	93.5		
% P	96.8	35.5	32.3	16.1	61.3	12.9	32.3	0.0	3.2	0.0	19.4	0.0		
% > Ex P	3.2	0.0	3.2	0.0	0.0	3.2	0.0	0.0	0.0	0.0	3.2	6.5		

Taluka: C	Chakur (Ashta, Ch	apoli, De	okara, G	harni, K	abansan	gvi, Latu	r road, M	ahalangra	, Nalegac	n, Shiva	ankhed,
Sugaon)												
Min	7.6	163.8	84.0	11.2	9.7	0.0	59.0	0.0	12.0	6.9	0.0	0.1
Max	9.8	820.5	610.0	150.0	57.0	1.8	290.0	353.8	228.0	132.0	1.5	133.9
Average	8.2	434.6	270.3	51.8	34.2	0.3	178.8	192.6	71.2	43.1	0.5	46.8
Stdev	0.5	162.7	122.1	37.9	12.2	0.5	76.0	9.2	102.5	29.6	0.4	40.7
% < Des	0.0	66.7	58.3	79.2	25.0	79.2	50.0	0.0	100.0	100.0	79.2	83.3
% P	75.0	33.3	37.5	20.8	75.0	12.5	50.0	0.0	0.0	0.0	20.8	0.0
% > Ex P	25.0	0.0	4.2	0.0	0.0	8.3	0.0	0.0	0.0	0.0	0.0	16.7

Taluka: Ja	alkot (K	Colnoor, Pa	atoda)									
Min	7.8	277.0	124.0	16.0	17.5	0.0	104.0	101.5	30.0	2.4	0.4	0.7
Max	8.6	323.6	290.0	60.0	36.0	1.0	245.0	298.9	74.6	38.4	1.0	3.1
Average	8.2	305.2	196.8	31.2	28.9	0.3	166.8	185.8	49.7	23.1	0.6	1.8
Stdev	0.3	20.2	68.8	19.8	8.3	0.5	58.7	82.8	21.3	15.7	0.3	1.0
% < Des	0.0	100.0	100.0	100.0	50.0	75.0	75.0	0.0	100.0	100.0	75.0	100.0
% P	75.0	0.0	0.0	0.0	50.0	25.0	25.0	0.0	0.0	0.0	25.0	0.0
% > Ex P	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: L	atur (B	abalgoan,	Bhadi, B	hatkhed	a, Bhise	wagholi	, Borgaor	bk, Chik	turda, Ch	incholirac	, Karsa,	Latur,			
Mamdapur, l	Murud, N	Murud bk.	, Murud-	Akola, N	andgaon	, Neoli,	Panderwa	adi, Patrol	i)						
	'pH TDS TH Ca ²⁺ Mg ²⁺ Fe TA HCO3 Cl SO ₄ -2 F NO ₃														
Min	7.5	163.2	96.0	4.8	5.8	0.0	60.0	32.0	14.0	4.8	0.0	0.1			
Max	9.0	864.3	610.0	170.0	72.9	0.9	292.0	354.0	213.0	152.0	1.3	261.0			
Average	8.1	438.1	266.6	48.0	35.6	0.1	167.5	176.9	83.6	48.1	0.6	31.1			
Stdev	0.4	187.0	120.8	33.8	17.5	0.2	70.1	84.4	55.7	36.8	0.3	52.5			
% < Des	0.0	57.9	57.9	81.6	44.7	97.4	68.4	0.0	100.0	100.0	81.6	78.9			
% P	76.3	42.1	39.5	18.4	55.3	2.6	31.6	0.0	0.0	0.0	18.4	0.0			
% > Ex P	23.7	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.1			

Taluka: Ro	enapur	(Dawanga	aon, Garsı	ıli, Mam	dapur, P	alshi, Pa	ngaon, R	enapur, Si	ndgoan)			
Min	7.6	239.3	92.0	12.8	8.8	0.0	44.0	36.8	16.0	15.8	0.0	0.3
Max	10.0	563.0	315.0	78.0	41.8	1.5	269.7	329.0	116.0	42.0	1.6	16.0
Average	8.3	345.8	181.3	35.5	22.5	0.2	141.4	145.7	56.1	28.2	0.6	7.2
Stdev	0.6	76.1	60.1	18.2	9.6	0.4	59.7	74.1	32.4	6.8	0.4	4.7
% < Des	0.0	93.3	93.3	93.3	86.7	86.7	86.7	0.0	100.0	100.0	80.0	100.0
% P	80.0	6.7	6.7	6.7	13.3	6.7	13.3	0.0	0.0	0.0	13.3	0.0
% > Ex P	20.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	6.7	0.0

Taluka: Ud	dgir (Ar	asnal, Ha	ibatpur, K	Ciniyalla	devi, Ko	dli, Mog	ha, Somn	athpur, Ti	ruka, Tog	gari, Udgii	:)	
Min	7.6	176.8	72.0	9.6	7.8	0.0	72.0	60.0	14.0	9.6	0.0	0.3
Max	9.1	721.0	400.0	104.0	62.2	1.8	290.2	354.0	194.0	78.0	1.0	31.0
Average	8.2	402.3	237.2	43.8	31.0	0.3	179.3	186.9	60.5	35.1	0.5	7.6
Stdev	0.4	141.6	89.0	29.0	13.2	0.4	62.8	84.0	53.5	21.6	0.4	9.2
% < Des	0.0	78.9	73.7	78.9	52.6	63.2	57.9	0.0	100.0	100.0	68.4	100.0
% P	73.7	21.1	26.3	21.1	47.4	31.6	42.1	0.0	0.0	0.0	31.6	0.0
% > Ex P	26.3	0.0	0.0	0.0	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: De	eoni (Ac	chola, Dec	oni bk., H	anchnal)								
Min	7.9	187.9	120.0	17.6	14.6	0.0	88.0	72.0	20.0	3.6	0.6	0.9
Max	8.6	607.8	324.0	46.4	61.2	1.5	276.0	276.0	46.0	47.0	1.0	10.9
Average	8.2	412.3	232.7	31.7	37.3	0.3	200.7	195.7	31.7	29.3	0.8	7.0
Stdev	0.2	161.7	91.7	10.5	18.9	0.6	84.6	87.6	8.8	16.7	0.2	3.5
% < Des	0.0	66.7	66.7	100.0	33.3	83.3	33.3	0.0	100.0	100.0	50.0	100.0
% P	83.3	33.3	33.3	0.0	66.7	0.0	66.7	0.0	0.0	0.0	50.0	0.0
% > Ex P	16.7	0.0	0.0	0.0	0.0	16.7	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Sh	irur An	antpal (S	akol, Shi	vpur, Ye	rol)							
Min	7.6	189.8	72.0	11.2	7.8	0.1	60.0	54.4	14.0	12.0	0.1	0.3
Max	9.0	603.2	328.0	116.8	56.4	0.7	252.0	247.3	68.0	67.0	1.0	17.1
Average	8.2	369.4	205.3	41.1	24.9	0.3	168.7	166.5	41.0	35.9	0.7	5.5
Stdev	0.5	153.9	101.8	38.9	17.9	0.2	84.2	84.3	20.4	18.4	0.4	6.5
% < Des	0.0	83.3	66.7	83.3	66.7	66.7	50.0	0.0	100.0	100.0	50.0	100.0
% P	83.3	16.7	33.3	16.7	33.3	33.3	50.0	0.0	0.0	0.0	50.0	0.0
% > Ex P	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

17. MUMBAI

Taluka: Bo	rivali (D	ahisar)										
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.8	310.0	195.0	38.0	24.0	0.0	180.3	220.0	53.0	38.0	0.0	0.5
Max	8.0	724.1	386.7	102.0	32.0	0.0	219.7	268.0	135.0	105.0	0.2	95.0
Average	7.9	517.1	290.8	70.0	28.0	0.0	200.0	244.0	94.0	71.5	0.1	47.8
Stdev	0.1	292.8	135.5	45.3	5.7	0.0	27.8	33.9	58.0	47.4	0.1	66.8
% < Des	0.0	50.0	50.0	50.0	50.0	100.0	50.0	0.0	100.0	100.0	100.0	50.0
% P	100.0	50.0	50.0	50.0	50.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0

Taluka: Go	oregaon	East (A.N	M.C. Colo	ony)								
Min	7.9	192.6	125.0	32.0	6.0	0.0	100.0	122.0	32.0	21.0	0.1	9.0
Max	8.0	301.3	185.8	48.0	16.0	0.0	109.8	134.0	50.0	32.0	0.2	52.0
Average	8.0	231.3	148.6	40.0	11.7	0.0	103.3	126.0	39.0	25.0	0.2	23.7
Stdev	0.1	60.7	32.6	8.0	5.1	0.0	5.7	6.9	9.6	6.1	0.1	24.5
% < Des	0.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	66.7
% P	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3

Taluka: Kı	urla (Ch	embur)										
Min	7.6	99.3	59.7	14.0	6.0	0.0	45.1	55.0	18.0	10.0	0.0	6.0
Max	7.6	99.3	59.7	14.0	6.0	0.0	45.1	55.0	18.0	10.0	0.1	6.0
Average	7.6	99.3	59.7	14.0	6.0	0.0	45.1	55.0	18.0	10.0	0.1	6.0
% < Des	0.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Bo	mbay (Church G	ate)									
Min	7.7	460.0	300.0	24.0	53.0	0.0	290.2	354.0	67.0	36.0	0.2	12.0
Max	8.1	682.1	348.1	52.0	58.0	0.0	330.3	403.0	110.0	97.0	0.4	24.0
Average	8.0	545.7	327.7	39.3	55.7	0.0	310.1	378.3	86.3	62.7	0.3	16.7
Stdev	0.2	119.4	24.9	14.2	2.5	0.0	20.1	24.5	21.8	31.2	0.1	6.4
% < Des	0.0	66.7	0.0	100.0	0.0	100.0	0.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	33.3	100.0	0.0	100.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Co	olaba (D	andi)										
Min	7.6	425.0	205.0	24.0	27.0	0.0	235.2	287.0	60.0	22.0	0.0	1.0
Max	8.1	492.1	256.1	58.0	39.0	0.0	304.9	372.0	78.0	48.0	0.1	54.0
Average	7.9	455.4	233.7	38.0	33.7	0.0	281.7	343.7	67.3	34.7	0.1	19.0
Stdev	0.3	34.0	26.1	17.8	6.1	0.0	40.2	49.1	9.5	13.0	0.0	30.3
% < Des	0.0	100.0	100.0	100.0	33.3	100.0	0.0	0.0	100.0	100.0	100.0	66.7
% P	100.0	0.0	0.0	0.0	66.7	0.0	100.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3

Taluka: De	eulwadi	(Deulwad	li)									
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	8.1	447.8	235.0	56.0	23.0	0.0	304.9	372.0	53.0	23.0	0.4	9.0
Max	8.1	447.8	235.0	56.0	23.0	0.0	304.9	372.0	53.0	23.0	0.4	9.0
Average	8.1	447.8	235.0	56.0	23.0	0.0	304.9	372.0	53.0	23.0	0.4	9.0
% < Des	0.0	100.0	100.0	100.0	100.0	100.0	0.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: M	ahim (M	Iahim Vil	lage)									
Min	7.8	190.0	150.0	34.0	6.0	0.0	150.0	183.0	18.0	6.0	0.0	5.0
Max	8.0	339.3	224.7	80.0	26.0	0.0	240.2	293.0	32.0	21.0	0.1	19.0
Average	7.9	268.4	189.9	50.0	16.0	0.0	191.8	234.0	25.0	15.3	0.1	13.3
Stdev	0.1	74.9	37.6	26.0	10.0	0.0	45.4	55.4	7.0	8.1	0.1	7.4
% < Des	0.0	100.0	100.0	66.7	100.0	100.0	66.7	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	33.3	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: M	ahroli (Chembur)									
Min	8.1	505.0	310.0	54.0	43.0	0.0	354.9	433.0	71.0	25.0	0.4	9.0
Max	8.1	505.0	310.0	54.0	43.0	0.0	354.9	433.0	71.0	25.0	0.4	9.0
Average	8.1	505.0	310.0	54.0	43.0	0.0	354.9	433.0	71.0	25.0	0.4	9.0
% < Des	0.0	0.0	0.0	100.0	0.0	100.0	0.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

18. NAGPUR

Taluka : Bh	ivapur	(Besur, B	ordikala,	Kargaon	, Naweg	aon (De	shmukh),	Naxhi, Pa	ınjrepar (nand), Za	mkoli)	
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F ⁻	NO ₃
Min	7.1	251.9	105.0	16.0	15.8	0.0	225.0	0.0	10.6	0.9	0.6	1.2
Max	8.1	1811.0	820.0	180.8	105.0	0.4	516.0	9.6	420.0	157.0	2.0	52.0
Average	7.8	828.6	423.5	92.9	46.5	0.2	333.3	1.1	149.7	59.3	1.3	14.8
Stdev	0.3	498.8	230.9	54.7	28.8	0.1	87.0	3.2	135.4	47.9	0.4	17.8
% < Des	0.0	27.3	36.4	36.4	36.4	81.8	0.0	0.0	72.7	100.0	27.3	81.8
% P	100.0	72.7	45.5	63.6	54.5	18.2	100.0	0.0	27.3	0.0	45.5	0.0
% > Ex P	0.0	0.0	18.2	0.0	9.1	0.0	0.0	0.0	0.0	0.0	27.3	18.2

Taluka: Hi	ingna (A	degaon, A	Amgaon,	Kanholil	ora, Ma	ngli, Pip	aldhara, S	Saongi dec	oli, Shivm	adka, Tak	alghat,			
Wandongri)														
Min	7.0	271.2	145.0	16.0	24.5	0.0	195.0	0.0	17.7	4.1	0.1	2.1		
Max	8.1	1952.0	840.0	216.0	138.0	0.5	512.0	1.6	436.0	170.0	1.4	150.0		
Average	7.6	805.5	529.6	105.1	64.8	0.2	330.1	0.1	165.8	66.2	0.9	42.1		
Stdev	0.3	483.5	221.3	51.8	38.0	0.1	96.0	0.4	118.7	46.5	0.3	40.4		
% < Des	0.0	26.3	21.1	26.3	21.1	68.4	5.3	0.0	84.2	100.0	57.9	52.6		
% P	100.0	73.7	36.8	68.4	57.9	31.6	94.7	0.0	15.8	0.0	42.1	0.0		
% > Ex P	0.0	0.0	42.1	5.3	21.1	0.0	0.0	0.0	0.0	0.0	0.0	47.4		

Taluka: Ka	almeshw	v ar (Dhap	ewada, G	hogli, G	horad, K	almeshv	var, Khun	nari, Mohl	i, Mohpa	, Telkamtl	ni, Tishti	i bk.)
Min	7.0	389.4	336.0	50.0	31.1	0.0	45.0	0.0	54.0	7.7	0.1	1.0
Max	8.1	4393.4	3470.0	772.0	597.8	1.3	540.0	9.6	2485.0	269.8	1.8	199.6
Average	7.6	1218.3	919.6	170.8	119.7	0.3	312.7	0.9	501.6	50.4	1.0	52.1
Stdev	0.3	1193.4	990.2	187.4	149.4	0.4	98.2	2.3	793.7	59.8	0.5	54.5
% < Des	0.0	23.5	0.0	41.2	0.0	76.5	11.8	0.0	76.5	94.1	52.9	58.8
% P	100.0	58.8	76.5	35.3	70.6	17.6	88.2	0.0	5.9	5.9	29.4	0.0
% > Ex P	0.0	17.6	23.5	23.5	29.4	5.9	0.0	0.0	17.6	0.0	17.6	41.2

Taluka: Ka	amptee ((Adka, Gu	ımthala, F	Kadholi,	Kamptee	e, Kamth	i, Khapar	kheda, Ko	oradi, Saw	ali, Wado	oda)	
Min	7.0	382.0	268.0	32.0	20.4	0.0	95.0	0.0	60.0	3.8	0.5	1.0
Max	8.1	974.0	520.0	128.0	90.0	0.7	408.0	3.4	230.0	192.0	2.2	155.0
Average	7.6	641.8	395.2	71.5	52.6	0.2	310.8	0.3	148.3	54.6	0.9	36.1
Stdev	0.3	153.9	78.7	27.1	18.6	0.2	78.3	0.8	48.1	46.6	0.4	49.0
% < Des	0.0	11.8	11.8	70.6	5.9	64.7	11.8	0.0	100.0	100.0	64.7	76.5
% P	100.0	88.2	88.2	29.4	94.1	35.3	88.2	0.0	0.0	0.0	29.4	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9	23.5

Taluka: Kı	uhi (Got	hangaon,	Kanheri (dongar],	Kuhi, M	Iandhal,	Weltur)					
Min	7.3	145.5	115.0	24.0	13.4	0.0	110.0	0.0	10.6	1.2	0.7	2.0
Max	8.1	1247.0	780.0	203.2	103.0	0.4	324.0	2.9	410.0	74.0	3.5	36.0
Average	7.6	730.8	454.1	91.0	55.1	0.2	244.0	0.4	204.0	37.9	1.5	11.4
Stdev	0.3	444.4	238.4	61.6	29.1	0.1	65.1	0.9	170.8	25.6	0.9	11.3
% < Des	0.0	44.4	33.3	44.4	22.2	66.7	22.2	0.0	55.6	100.0	33.3	100.0
% P	100.0	55.6	22.2	44.4	66.7	33.3	77.8	0.0	44.4	0.0	33.3	0.0
% > Ex P	0.0	0.0	44.4	11.1	11.1	0.0	0.0	0.0	0.0	0.0	33.3	0.0

Taluka: M	ouda (C	Chacher, C	Charbha, I	Dharmap	uri, Kha	t, Mathn	i, Mauda))				
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F	NO ₃
Min	7.5	193.0	150.0	8.0	20.4	0.0	140.0	0.0	37.2	0.4	0.5	1.0
Max	8.3	1606.0	1125.0	83.2	231.6	0.4	704.0	48.0	754.0	276.0	3.7	19.0
Average	7.9	592.3	350.1	46.4	56.9	0.1	340.3	4.3	195.5	45.8	1.4	6.7
Stdev	0.2	375.9	241.5	20.7	54.4	0.1	146.6	12.7	199.8	70.5	1.0	5.5
% < Des	0.0	64.3	57.1	92.9	28.6	92.9	7.1	0.0	71.4	92.9	42.9	100.0
% P	100.0	35.7	35.7	7.1	64.3	7.1	85.7	0.0	28.6	7.1	35.7	0.0
% > Ex P	0.0	0.0	7.1	0.0	7.1	0.0	7.1	0.0	0.0	0.0	21.4	0.0

Taluka : Nagpur (Bahadura, Bhandewadi, Bokhara, Borkhedi, Chorbaoli, Deolapar, Gonhi, Gumgaon, Kalamna, Kanholi bara, Makardhokda, Mangli, Nagpur City, Nara, Panchgaon, Pardi, Sathnaori, Sirpur Toli, Sivani, Sonegaon Lodhi, Tamaswadi, Wagholi, Wanjra)

		0	<i>J</i> /									
Min	7.1	234.0	115.0	16.0	14.6	0.0	70.0	0.0	14.2	0.3	0.0	0.5
Max	8.4	1779.0	820.0	180.0	102.1	0.3	524.0	24.0	447.3	172.8	3.2	303.8
Average	7.8	564.8	317.4	62.4	39.3	0.1	267.8	0.9	102.2	38.9	0.9	42.1
Stdev	0.2	318.5	157.7	43.9	18.0	0.1	84.7	4.2	99.1	38.9	0.7	62.9
% < Des	0.0	51.9	59.6	71.2	32.7	94.2	17.3	0.0	92.3	100.0	65.4	76.9
% P	100.0	48.1	32.7	28.8	65.4	5.8	82.7	0.0	7.7	0.0	23.1	0.0
% > Ex P	0.0	0.0	7.7	0.0	1.9	0.0	0.0	0.0	0.0	0.0	11.5	23.1

Taluka : Na	gpur (R	ural) (Bo	rkhedi, B	othli, Mo	ohgaon)							
Min	7.5	344.0	236.0	25.6	34.0	0.1	172.0	0.8	90.0	16.0	0.7	1.0
Max	8.8	470.0	388.0	76.8	47.6	0.3	280.0	10.1	120.0	21.0	1.3	5.0
Average	8.2	427.3	308.0	55.5	41.1	0.2	210.7	4.7	103.3	18.7	1.1	3.3
Stdev	0.7	72.2	76.3	26.6	6.8	0.1	60.2	4.8	15.3	2.5	0.3	2.1
% < Des	0.0	100.0	33.3	66.7	0.0	100.0	66.7	0.0	100.0	100.0	33.3	100.0
% P	66.7	0.0	66.7	33.3	100.0	0.0	33.3	0.0	0.0	0.0	66.7	0.0
% > Ex P	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : N	larkhed	(Belona,	Jamgao	n (bk),	Kharala	, Lohar	a, Narkh	ed, Roha	na, Saong	ga (lohar	i), Sawa	argaon,	
Wadvihara, Wardhamna, Yeni Koni)													
Min	7.3	292.1	175.0	24.0	15.8	0.0	105.0	0.0	30.0	4.1	0.0	2.0	
Max	8.3	1984.0	1112.0	276.8	153.6	0.4	568.0	5.2	480.0	150.0	1.5	226.3	
Average	7.7	765.1	501.5	99.0	61.7	0.1	295.9	0.3	162.9	49.0	0.6	52.5	
Stdev	0.2	401.0	243.6	56.4	34.6	0.1	95.7	1.0	123.4	35.3	0.3	54.1	
% < Des	0.0	32.3	22.6	41.9	22.6	93.5	9.7	0.0	77.4	100.0	93.5	48.4	
% P	100.0	67.7	48.4	54.8	61.3	6.5	90.3	0.0	22.6	0.0	6.5	0.0	
% > Ex P	0.0	0.0	29.0	3.2	16.1	0.0	0.0	0.0	0.0	0.0	0.0	51.6	

Taluka : Pa	arseoni	(Amdi, C	hargaon,	Chargao	n (Puna	rwasi), l	Dhawalap	ur, Gahul	niwra, Gh	iukshi, Ka	andri (ka	anhan),	
Karambhad, Khandala (ghatate), Nayakund, Nimba, Parseoni)													
Min 7.2 204.0 112.0 24.0 8.7 0.0 105.0 0.0 21.3 0.2 0.0 1.0													
Max	8.2	779.0	500.0	131.2	91.4	0.5	452.0	28.8	156.0	74.0	3.9	71.0	
Average	7.7	467.9	302.2	65.6	33.6	0.2	261.6	1.9	72.5	30.7	1.1	23.3	
Stdev	0.3	154.6	99.0	30.5	17.8	0.1	89.0	6.2	39.6	21.4	1.1	20.3	
% < Des	0.0	61.5	53.8	69.2	46.2	80.8	23.1	0.0	100.0	100.0	61.5	84.6	
% P	100.0	38.5	46.2	30.8	53.8	19.2	76.9	0.0	0.0	0.0	26.9	0.0	
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.5	15.4	

Taluka: Ra	mtek (A	rmtek, Bl	nandarboo	li, Chorb	oaoli, De	olapar, I	Karwahi, I	Mansar, R	amtek, Sa	alai, Sillar	i, Tangla	a)
	'pH	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F ⁻	NO ₃
Min	7.3	276.0	160.0	22.4	22.4	0.0	80.0	0.0	54.0	1.1	0.1	3.0
Max	8.2	1664.0	800.0	192.0	77.8	0.3	492.0	1.9	410.0	133.0	3.2	239.9
Average	7.6	804.9	442.2	99.2	47.2	0.2	248.2	0.5	179.1	62.5	1.8	60.3
Stdev	0.3	412.5	190.8	53.4	19.0	0.1	124.8	0.8	108.1	43.5	1.9	85.8
% < Des	0.0	27.3	27.3	36.4	27.3	72.7	36.4	0.0	72.7	100.0	36.4	63.6
% P	100.0	72.7	54.5	63.6	72.7	27.3	63.6	0.0	27.3	0.0	36.4	0.0
% > Ex P	0.0	0.0	18.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27.3	36.4

Taluka : Sa	oner (C	handkapu	r, Chhatra	apur, Ke	lod, Kel	wad, Kh	airi (p), ŀ	Khubala, I	Kothulna,	Manegao	n Tek, I	Mohpa,		
Nagalwadi, S	Nagalwadi, Salai, Saoner, Sironji)													
Min	7.2	256.0	120.0	12.8	15.8	0.0	130.0	0.0	19.5	3.8	0.2	0.3		
Max	8.8	1568.0	1000.0	216.0	194.6	0.3	604.0	72.0	482.0	272.2	1.5	182.9		
Average	7.8	640.2	390.1	62.6	56.8	0.1	314.4	9.7	121.9	39.0	0.8	42.5		
Stdev	0.3	350.7	188.7	45.6	34.8	0.1	106.0	20.3	115.2	50.5	0.3	48.5		
% < Des	0.0	40.0	31.4	77.1	17.1	100.0	8.6	0.0	85.7	97.1	71.4	65.7		
% P	97.1	60.0	54.3	20.0	74.3	0.0	88.6	0.0	14.3	2.9	25.7	0.0		
% > Ex P	2.9	0.0	14.3	2.9	8.6	0.0	2.9	0.0	0.0	0.0	2.9	34.3		

Taluka: Un	nred (Ar	ngaon De	oli, Bela,	Pachgao	n, Sawa	ngi Kh.,	Sirsi, Tha	ana, Umre	d)			
Min	7.3	261.7	125.0	30.0	12.2	0.0	72.0	0.0	42.6	20.0	0.1	3.0
Max	8.2	877.0	552.0	136.0	64.2	0.4	372.0	2.7	204.0	85.0	1.3	35.0
Average	7.7	586.8	357.6	76.6	40.4	0.2	216.3	0.3	117.6	49.7	0.8	19.0
Stdev	0.3	199.4	148.1	39.6	17.8	0.1	98.1	1.0	60.1	19.7	0.4	11.9
% < Des	0.0	25.0	37.5	50.0	25.0	75.0	50.0	0.0	100.0	100.0	62.5	100.0
% P	100.0	75.0	62.5	50.0	75.0	25.0	50.0	0.0	0.0	0.0	37.5	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Ka	tol (Dho	tiwada, K	atol, Kha	ngaon, N	Vandora,	Ringnal	odi)					
Min	7.0	347.0	168.0	56.0	1.9	0.1	200.0	0.0	28.0	23.0	0.5	1.0
Max	7.9	1061.0	696.0	153.6	115.7	0.9	408.0	1.2	300.0	151.0	1.9	35.0
Average	7.4	640.6	434.5	93.8	48.6	0.3	322.9	0.3	123.3	68.9	0.9	14.5
Stdev	0.3	223.5	134.0	30.4	27.5	0.2	54.0	0.4	95.7	47.1	0.4	12.0
% < Des	0.0	27.3	9.1	27.3	9.1	72.7	0.0	0.0	81.8	100.0	81.8	100.0
% P	100.0	72.7	81.8	72.7	81.8	27.3	100.0	0.0	18.2	0.0	9.1	0.0
% > Ex P	0.0	0.0	9.1	0.0	9.1	0.0	0.0	0.0	0.0	0.0	9.1	0.0

19. NANDED

Taluka : Ar	dhapur	(Dour, La	han, Pard	i)								
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F ⁻	NO ₃
Min	8.1	468.0	200.0	49.6	5.8	0.1	108.0	63.4	86.0	7.0	0.6	9.0
Max	9.2	713.0	252.0	91.2	25.3	0.2	176.0	167.7	156.0	69.5	1.0	9.0
Average	8.7	558.7	226.7	63.5	16.5	0.1	148.0	129.7	111.3	46.8	0.7	9.0
Stdev	0.6	134.3	26.0	24.0	9.9	0.1	35.6	57.6	38.8	34.6	0.2	0.0
% < Des	0.0	66.7	100.0	66.7	100.0	100.0	100.0	0.0	100.0	100.0	66.7	100.0
% P	33.3	33.3	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0
% > Ex P	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Bh	okar (B	hokar, Di	vshi Kh, I	Kinipalaj	, Nanda	Bk., Sor	nthana (pa	atti Bhoka	ır), Wakad	d)		
Min	7.1	387.0	186.0	28.8	7.8	0.0	66.0	0.0	66.0	22.7	0.1	2.0
Max	9.6	1026.0	675.0	170.0	61.0	0.2	304.9	372.0	269.0	103.0	1.4	186.0
Average	8.1	666.2	342.8	93.0	26.8	0.1	171.3	156.5	151.0	62.0	0.8	41.6
Stdev	0.8	260.3	165.1	42.4	17.9	0.1	79.4	140.6	82.5	31.2	0.4	63.9
% < Des	0.0	33.3	44.4	33.3	55.6	100.0	66.7	0.0	77.8	100.0	66.7	77.8
% P	66.7	66.7	44.4	66.7	44.4	0.0	33.3	0.0	22.2	0.0	33.3	0.0
% > Ex P	33.3	0.0	11.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.2

Taluka: H	adgaon	(Dhanora	(hastara),	Donga	rgaon, I	Oorli, G	hogari, 🛚	Hadgaon,	Shivpuri,	Sibdara,	Talni,	Tamsa,
Taroda kh., U	J <mark>mri p.k</mark>	.,Walki K	h.)									
Min	7.5	250.0	120.0	12.8	7.8	0.0	33.0	0.0	40.0	10.0	0.5	5.0
Max	9.6	1098.9	496.0	116.8	61.0	0.7	490.2	598.0	224.0	81.2	1.9	112.0
Average	8.4	577.4	265.3	61.2	27.3	0.2	161.0	171.8	130.8	40.7	1.1	19.8
Stdev	0.7	233.7	121.2	37.0	13.8	0.2	113.4	152.4	61.4	22.5	0.4	24.9
% < Des	0.0	35.3	58.8	58.8	70.6	88.2	70.6	0.0	100.0	100.0	23.5	94.1
% P	70.6	64.7	41.2	41.2	29.4	11.8	29.4	0.0	0.0	0.0	52.9	0.0
% > Ex P	29.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.5	5.9

Taluka : Hi	mayat N	lagar (Da	abdhari ta	nda, Hin	nayatnag	ar, Khai	rgaon, Pa	laspur)				
Min	7.1	325.0	176.0	40.0	4.9	0.0	20.0	0.0	64.0	45.0	0.2	0.0
Max	9.4	1147.0	775.0	184.0	77.0	0.2	245.1	299.0	322.0	144.0	1.9	174.0
Average	8.4	862.3	374.2	105.6	26.9	0.1	114.0	107.7	231.0	84.4	1.0	46.4
Stdev	0.9	335.9	246.2	64.7	28.8	0.1	82.3	123.3	120.9	39.0	0.6	72.2
% < Des	0.0	20.0	40.0	40.0	80.0	100.0	80.0	0.0	40.0	100.0	40.0	80.0
% P	60.0	80.0	40.0	60.0	20.0	0.0	20.0	0.0	60.0	0.0	40.0	0.0
% > Ex P	40.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	20.0

Taluka: M	ahur (A	njankhed	, Datta m	anjri, Sin	dkhed)							
	'Ph	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	CI.	SO_4^{-2}	F ⁻	NO ₃
Min	7.8	289.0	98.0	25.6	8.3	0.0	72.0	62.0	40.0	13.1	0.5	5.0
Max	9.2	443.2	300.0	48.0	52.0	0.2	250.0	305.0	67.0	28.0	1.0	55.0
Average	8.4	345.4	191.3	35.9	24.6	0.1	158.0	172.4	53.0	20.2	0.7	21.7
Stdev	0.7	85.0	101.9	11.3	23.9	0.1	89.2	123.0	13.5	7.5	0.3	28.9
% < Des	0.0	100.0	66.7	100.0	66.7	100.0	66.7	0.0	100.0	100.0	66.7	66.7
% P	66.7	0.0	33.3	0.0	33.3	0.0	33.3	0.0	0.0	0.0	33.3	0.0
% > Ex P	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3

Taluka : Ki	inwat (Apprao pe	eth, Bodh	adi Bk.,	Bothro	ad (Bodl	nadi), Chi	ikhali, Isl	apur, Kar	nthala, K	inwat, K	Cosmet,		
Kuncholi, Malbrogaon, Pardi, Pradhnsangvi, Sarkhani, Talaiguda, Unkeshwar)														
Min	7.3	204.6	92.0	9.6	1.9	0.0	39.0	38.8	18.0	8.0	0.1	4.0		
Max	9.2	1202.0	400.0	156.8	39.9	0.2	200.0	244.0	366.0	99.0	2.3	29.0		
Average	8.2	477.5	197.2	49.9	17.6	0.1	105.3	115.4	116.4	39.7	1.4	13.3		
Stdev	0.5	292.6	89.1	36.2	9.7	0.1	58.7	70.7	104.1	25.7	0.6	8.5		
% < Des	0.0	75.0	81.3	87.5	87.5	100.0	87.5	0.0	87.5	100.0	31.3	100.0		
% P	81.3	25.0	18.8	12.5	12.5	0.0	12.5	0.0	12.5	0.0	18.8	0.0		
% > Ex P	18.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0		

Taluka: M	ukhed (Barad, Ba	rhali, Goj	egaon, H	alni, Kh	atgaon, I	Lahan, Ma	alegaon, N	Mandlapu	r, Mudkh	ed, Muk	rambad		
(Kharka), Sikarghat (Amdura))														
Min	7.1	228.1	120.0	26.0	8.5	0.0	72.2	87.3	11.0	6.2	0.1	2.0		
Max	9.0	1339.0	535.0	150.0	57.0	0.2	400.0	488.0	288.0	135.0	3.5	125.0		
Average	7.8	592.9	297.6	69.2	30.3	0.0	195.1	227.4	113.7	51.6	0.8	44.0		
Stdev	0.5	259.1	102.9	28.9	14.0	0.1	92.8	121.8	75.2	34.5	1.2	37.9		
% < Des	0.0	38.1	42.9	71.4	42.9	100.0	61.9	0.0	95.2	100.0	71.4	66.7		
% P	90.5	61.9	57.1	28.6	57.1	0.0	38.1	0.0	4.8	0.0	19.0	0.0		
% > Ex P	9.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.5	33.3		

Taluka: M	udkhed	(Mudkhe	d, Mugat))								
Min	8.0	469.0	172.0	32.0	16.5	0.0	75.4	32.6	100.0	33.0	1.0	3.0
Max	9.0	827.0	296.0	62.4	52.5	0.1	105.0	128.1	292.0	71.5	1.5	32.0
Average	8.4	638.5	247.0	40.0	35.7	0.1	87.3	85.3	187.5	45.1	1.2	15.0
Stdev	0.4	172.8	60.4	15.0	19.0	0.1	13.4	39.4	82.5	17.7	0.3	14.0
% < Des	0.0	25.0	100.0	100.0	50.0	100.0	100.0	0.0	75.0	100.0	25.0	100.0
% P	75.0	75.0	0.0	0.0	50.0	0.0	0.0	0.0	25.0	0.0	50.0	0.0
% > Ex P	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	0.0

Taluka: N	Vaigaon	(Badbada	, Billoli, I	Degaon, I	Kondalw	adi, Naig	gaon Baza	ır, Yesgi)				
Min	7.8	345.0	212.0	60.8	11.7	0.1	125.0	123.9	40.0	24.8	0.8	1.0
Max	9.0	1521.0	736.0	172.8	73.9	0.1	344.0	419.7	466.0	102.2	1.5	23.0
Average	8.2	714.9	374.1	96.7	32.2	0.1	231.4	248.4	150.0	54.9	1.1	11.9
Stdev	0.4	481.5	205.4	46.0	22.9	0.0	73.2	102.1	171.5	29.6	0.3	9.2
% < Des	0.0	57.1	57.1	42.9	57.1	100.0	28.6	0.0	71.4	100.0	42.9	100.0
% P	85.7	42.9	28.6	57.1	42.9	0.0	71.4	0.0	28.6	0.0	28.6	0.0
% > Ex P	14.3	0.0	14.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28.6	0.0

Taluka: N	Vanded	(Adampur	, Dhawai	i Buzurg	g, Jamb	Buzurg,	Jhalakwa	di, Kamta	la, Karad	lkher, Ma	rkand, 1	Nanded,			
Narwat, Tur	Narwat, Tuppa, Wadi Bk., Waranga)														
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃			
Min	7.3	273.0	122.0	19.2	17.5	0.0	76.0	70.4	11.0	6.0	0.1	10.0			
Max	9.5	1086.0	580.0	179.2	70.5	0.2	280.3	342.0	332.0	190.0	1.3	166.2			
Average	7.9	548.8	357.8	78.4	39.2	0.0	200.1	233.8	114.3	50.9	0.5	58.9			
Stdev	0.6	253.5	119.3	39.7	14.2	0.1	68.9	90.8	97.2	50.8	0.4	43.6			
% < Des	0.0	61.1	33.3	61.1	27.8	100.0	44.4	0.0	88.9	100.0	77.8	50.0			
% P	83.3	38.9	66.7	38.9	72.2	0.0	55.6	0.0	11.1	0.0	22.2	0.0			
% > Ex P	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0			

Taluka: I	Biloli (Na	ırsi)										
Min	7.7	287.7	215.0	34.0	32.0	0.0	185.2	226.0	39.0	20.0	0.1	18.0
Max	7.8	473.6	315.8	72.0	33.0	0.0	325.4	397.0	53.0	37.0	0.3	21.0
Average	7.8	380.7	265.4	53.0	32.5	0.0	255.3	311.5	46.0	28.5	0.2	19.5
Stdev	0.1	131.5	71.3	26.9	0.7	0.0	99.1	120.9	9.9	12.0	0.1	2.1
% < Des	0.0	100.0	50.0	100.0	0.0	100.0	50.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	50.0	0.0	100.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: D	eglur (A	Amdapur, l	Dawangir	, Deglur,	Halli, H	lanegaon	, Naranga	l Bk., Tac	lkhel, Wa	zarga)		
Min	7.6	249.0	142.0	4.8	6.3	0.1	33.0	1.2	24.0	4.0	8.0	2.0
Max	9.5	1619.0	456.0	113.6	68.0	0.2	256.0	312.3	490.0	137.0	1.7	33.8
Average	8.4	685.4	269.3	58.6	29.8	0.1	145.2	149.4	148.0	42.5	1.2	16.5
Stdev	0.6	371.2	91.8	24.9	17.8	0.0	54.5	79.7	139.1	36.2	0.3	10.2
% < Des	0.0	35.7	71.4	78.6	57.1	100.0	92.9	0.0	85.7	100.0	21.4	100.0
% P	64.3	64.3	28.6	21.4	42.9	0.0	7.1	0.0	14.3	0.0	50.0	0.0
% > Ex P	35.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28.6	0.0

Taluka : Dh	armaba	d (Dharn	nabad, Ka	regaon,	Pataoda	b.k., Ye	oti)					
Min	8.0	387.0	130.0	11.2	8.3	0.1	60.0	54.4	56.0	7.0	0.7	8.0
Max	9.0	683.0	320.0	86.4	59.3	0.3	184.0	224.5	134.0	72.6	1.6	37.0
Average	8.5	513.2	249.2	52.5	28.7	0.1	152.6	163.6	87.2	38.4	1.1	15.8
Stdev	0.4	119.0	72.0	30.2	18.8	0.1	53.7	64.2	28.6	24.8	0.3	12.4
% < Des	0.0	60.0	80.0	60.0	80.0	100.0	100.0	0.0	100.0	100.0	20.0	100.0
% P	40.0	40.0	20.0	40.0	20.0	0.0	0.0	0.0	0.0	0.0	60.0	0.0
% > Ex P	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0

Taluka : Ka	andhar	(Bachoti, I	Bamni p.k	., Bhadu	rpura, K	andhar,	Nagalgao	n, Osman	agar, Peth	wadaj,			
Shekapur, Warwant)													
Min 7.9 72.0 60.0 6.4 1.9 0.1 42.0 23.2 30.0 9.0 0.6 3.													
Max	9.2	1200.0	364.0	113.6	41.8	0.9	160.0	168.4	300.0	107.0	1.6	34.6	
Average	8.5	569.3	218.8	51.7	21.7	0.3	102.7	105.8	139.5	42.8	1.1	11.2	
Stdev	0.5	344.3	78.9	31.8	11.7	0.3	43.8	50.2	89.0	30.5	0.4	9.6	
% < Des	0.0	50.0	91.7	83.3	75.0	66.7	100.0	0.0	83.3	100.0	58.3	100.0	
% P	58.3	50.0	8.3	16.7	25.0	33.3	0.0	0.0	16.7	0.0	25.0	0.0	
% > Ex P	41.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.7	0.0	

Taluka: Lo	ha (Jana	apuri, Loha	a, Malako	li (khedk	arwadi),	Savarg	aon(nipan	i), Shamb	ergaon)			
	'Ph	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	CI.	SO_4^{-2}	F	NO ₃
Min	7.6	402.0	128.0	32.0	8.8	0.1	46.0	56.1	70.0	30.0	0.8	0.0
Max	9.1	1346.0	460.0	152.0	48.6	0.7	243.0	296.5	376.0	89.4	1.9	51.7
Average	8.2	872.1	325.1	90.3	24.2	0.3	142.4	163.1	206.9	59.7	1.3	13.5
Stdev	0.5	318.5	125.3	51.0	15.7	0.3	66.6	77.6	105.2	25.3	0.4	18.3
% < Des	0.0	14.3	42.9	42.9	71.4	57.1	85.7	0.0	71.4	100.0	14.3	85.7
% P	71.4	85.7	57.1	57.1	28.6	42.9	14.3	0.0	28.6	0.0	42.9	0.0
% > Ex P	28.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.9	14.3

Taluka: Ui	mri (Goi	tha, Karla	a, Kawalg	uda Kh.,	Somtha	na J., W	aghalwac	la)				
Min	8.0	259.0	120.0	8.0	7.8	0.1	39.0	0.0	36.0	14.0	0.8	3.8
Max	9.5	1963.0	580.0	97.6	81.6	0.2	246.0	300.1	324.0	208.0	1.6	30.4
Average	8.9	734.2	236.2	45.0	30.1	0.1	112.0	109.0	164.8	54.0	1.0	10.8
Stdev	0.6	537.7	146.2	33.4	20.0	0.0	67.6	96.0	113.6	58.7	0.3	9.2
% < Des	0.0	50.0	80.0	70.0	70.0	100.0	90.0	0.0	70.0	90.0	60.0	100.0
% P	40.0	50.0	20.0	30.0	30.0	0.0	10.0	0.0	30.0	10.0	30.0	0.0
% > Ex P	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0

20. NADURBAR

Taluka : Ak	kalkuva	(Akkalkı	uva, Digia	amba, Ka	aranpada	, Kathi,	Khapar, N	Moramba,	Raisingp	ur)		
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F	NO ₃
Min	7.5	75.0	52.0	8.0	5.8	0.0	48.0	35.8	8.0	4.0	0.1	0.4
Max	9.5	1824.0	820.0	99.2	175.0	0.2	331.0	403.8	590.0	143.0	0.9	41.8
Average	8.3	429.1	274.9	45.2	39.4	0.1	180.8	197.4	93.0	37.7	0.4	8.7
Stdev	0.5	366.7	173.4	26.8	36.4	0.1	79.4	105.8	118.4	31.5	0.2	10.0
% < Des	0.0	79.2	62.5	83.3	50.0	100.0	54.2	0.0	95.8	100.0	100.0	100.0
% P	75.0	20.8	33.3	16.7	45.8	0.0	45.8	0.0	4.2	0.0	0.0	0.0
% > Ex P	25.0	0.0	4.2	0.0	4.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Na	ndurba	r (Akaral	e, Bhaday	ad, Dha	ndane, D	hanora,	Dhekwad	l, Khuntar	nwadi, Lo	y, Nandu	ırbar, Ni	mboni,			
Patharai, Raj	Patharai, Rajhava, Ranala, Samsherpur, Shanimandal, Vadkolambi, Wadali Shivar)														
Min 7.2 196.0 148.0 19.2 8.7 0.0 62.0 75.6 10.7 5.0 0.0 0.3															
Max	9.1	3040.0	1780.0	326.4	234.3	0.5	459.8	561.0	990.0	560.0	0.9	104.2			
Average	8.1	619.5	351.6	65.2	45.8	0.1	225.7	263.7	145.1	68.1	0.4	18.8			
Stdev	0.4	439.4	238.2	51.7	35.7	0.1	69.9	87.9	160.3	83.6	0.3	22.4			
% < Des	0.0	49.0	54.9	76.5	33.3	98.0	27.5	0.0	90.2	96.1	100.0	90.2			
% P	86.3	49.0	37.3	21.6	62.7	2.0	72.5	0.0	9.8	2.0	0.0	0.0			
% > Ex P	13.7	2.0	7.8	2.0	3.9	0.0	0.0	0.0	0.0	2.0	0.0	9.8			

Taluka : N	Vavapur	(Anjane,	Dokare,	Jamtala	av, Kad	wan, K	amod, K	hokarwad	le, Kolvi	hir, Mog	rani, Na	avapur,
Nijampur, Sł	nravani,	Sonkhaml	b, Vadkal	ambi, Va	adkhut, V	√iasarwa	adi)					
Min	7.7	154.0	40.0	4.8	6.8	0.0	68.0	66.9	16.0	12.0	0.1	0.2
Max	8.9	1025.0	512.0	92.8	85.5	0.6	320.0	388.4	230.0	205.0	0.8	68.8
Average	8.2	393.3	248.8	39.5	36.5	0.1	199.6	215.0	72.2	39.2	0.4	10.3
Stdev	0.3	170.7	105.7	22.4	16.9	0.1	66.1	83.9	48.0	30.2	0.2	15.9
% < Des	0.0	77.8	64.4	93.3	35.6	95.6	42.2	0.0	100.0	97.8	100.0	93.3
% P	86.7	22.2	35.6	6.7	64.4	4.4	57.8	0.0	0.0	2.2	0.0	0.0
% > Ex P	13.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7

Taluka : Dh	adgaon	(Bijari, C	hinalkuva	, Dhadg	aon, Ma	ndavi bk	., Umarar	ni kh.)				
Min	7.9	169.0	80.0	6.4	7.8	0.0	60.0	59.0	12.0	7.0	0.1	0.2
Max	8.7	508.0	388.0	80.0	50.5	0.2	220.0	217.8	138.0	59.0	0.6	15.0
Average	8.3	289.8	205.9	40.4	25.5	0.1	157.6	156.1	52.8	22.5	0.3	5.6
Stdev	0.3	100.7	83.7	21.7	12.7	0.1	46.2	45.5	36.6	14.9	0.2	4.2
% < Des	0.0	94.1	88.2	94.1	58.8	100.0	82.4	0.0	100.0	100.0	100.0	100.0
% P	64.7	5.9	11.8	5.9	41.2	0.0	17.6	0.0	0.0	0.0	0.0	0.0
% > Ex P	35.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Shahada (Dongargaon, Fattepur, Gogapur, Hol, Jayanagar, Kakarde kh., Khaparkheda, Kukwal, Mandane, Manmodya, Prakashe, Sarangkheda, Shahada, Sonwad, Ubhadagad) TDS Ca²⁺ Mg²⁺ SO₄-2 **'Ph** TH Fe HCO3 Cl \mathbf{F} NO_3 Min 7.4 181.0 72.0 0.0 8.0 2.9 36.0 35.6 32.0 4.0 0.1 0.1 9.2 0.9 Max 1231.0 492.0 83.2 84.6 500.0 609.3 372.0 196.0 1.3 26.0 519.8 217.6 38.5 29.5 0.1 180.4 200.0 107.9 0.4 Average 8.4 51.3 5.0 Stdev 0.4 311.0 98.8 20.0 18.7 0.2 101.0 128.7 78.5 43.4 0.4 5.4 % < Des 0.0 56.3 87.5 96.9 87.5 68.8 0.0 93.8 100.0 93.8 100.0 65.6 % P 75.0 31.3 0.0 43.8 12.5 3.1 34.4 12.5 0.0 6.3 0.0 6.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

25.0

% > Ex P

Taluka: Ta	loda (Go	palpur, K	othar, Mo	od, Rozv	ve, Taloo	da, Umar	ri)					
Min	7.8	183.0	80.0	11.2	8.7	0.0	80.0	79.0	17.8	4.0	0.1	1.0
Max	8.8	676.0	355.0	94.4	67.0	0.2	380.0	463.6	142.0	59.0	0.6	23.0
Average	8.1	394.4	230.1	38.6	32.5	0.0	229.5	254.3	67.9	24.9	0.3	9.4
Stdev	0.3	116.5	79.1	24.7	16.7	0.0	89.0	117.8	30.1	13.5	0.2	5.9
% < Des	0.0	88.2	76.5	88.2	52.9	100.0	35.3	0.0	100.0	100.0	100.0	100.0
% P	88.2	11.8	23.5	11.8	47.1	0.0	64.7	0.0	0.0	0.0	0.0	0.0
% > Ex P	11.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

21. NASHIK

Taluka : B	aglan (\	Varche T	embhe. A	Avhati. I	Deonurna	ada. Dh	andrinada	. Jad. K	araniad.	Mahad. N	Jampur.	Satana.
Surane, Utra					o copump.	, 21	urur p u uu	, , , , , , , , , , , , , , , , , , , ,	aranjaa,		, unipur,	z acara,
	'Ph	TDS	TH	Ca ²⁺	\mathbf{Mg}^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F-	NO ₃
Min	77	204.0	108.0	6.4	39	0.0	60.0	73.2	12.0	2.0	0.1	0.3

	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F	NO ₃
Min	7.7	204.0	108.0	6.4	3.9	0.0	60.0	73.2	12.0	2.0	0.1	0.3
Max	9.5	1987.0	940.0	176.0	121.5	0.9	480.0	585.6	370.0	365.0	1.5	46.2
Average	8.4	675.7	316.1	57.7	41.7	0.1	231.1	261.4	117.6	59.9	0.6	10.3
Stdev	0.4	410.0	165.1	40.6	26.1	0.1	92.0	117.1	95.9	60.7	0.3	9.9
% < Des	0.0	39.6	50.0	72.9	41.7	95.8	33.3	0.0	87.5	95.8	83.3	97.9
% P	72.9	60.4	43.8	27.1	54.2	4.2	66.7	0.0	12.5	4.2	14.6	0.0
% > Ex P	27.1	0.0	6.3	0.0	4.2	0.0	0.0	0.0	0.0	0.0	2.1	2.1

Taluka : De	ola (Dec	ola, Gunja	lnagar)									
Min	7.6	490.0	208.0	12.8	3.9	0.0	56.0	68.3	108.0	46.0	0.2	2.7
Max	9.6	1489.0	492.0	188.8	75.8	0.1	325.0	396.5	530.0	421.0	1.5	119.0
Average	8.3	1036.0	418.3	107.1	36.6	0.0	176.5	203.8	286.3	193.5	0.7	27.8
Stdev	0.8	407.5	116.9	69.4	30.3	0.0	113.0	145.4	192.8	177.1	0.5	45.1
% < Des	0.0	16.7	16.7	33.3	50.0	100.0	66.7	0.0	66.7	66.7	83.3	83.3
% P	66.7	83.3	83.3	66.7	50.0	0.0	33.3	0.0	33.3	0.0	0.0	0.0
% > Ex P	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	16.7	16.7

Taluka : Di	indori (Awankhe	d, Chausa	ile, Dha	kambe,	Dindori,	Jambuta	ke, Karan	jali, Kok	anwadi, I	Kona, M	hasrul,
Mokhnal, Na	legaon,	Nanashi,	Talegaon	Dindori,	Umrale	Bk.)						
Min	7.7	156.0	60.0	12.8	3.9	0.0	68.0	10.1	14.0	7.0	0.1	0.3
Max	10.6	1203.0	540.0	134.4	78.7	0.4	355.0	433.1	208.0	136.0	7.0	45.3
Average	8.3	406.9	247.0	45.8	32.2	0.1	170.1	189.8	73.6	43.2	0.7	10.9
Stdev	0.6	228.9	127.9	29.9	18.5	0.1	71.8	94.9	50.3	27.5	1.2	11.2
% < Des	0.0	75.0	71.9	87.5	50.0	90.6	75.0	0.0	100.0	100.0	93.8	96.9
% P	84.4	25.0	28.1	12.5	50.0	9.4	25.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	15.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3	3.1

Taluka : Iga Wadi Varhe)	•	Gonde, Ig	atpuri, Ka	ınchanga	on, Khe	d, Mund	egaon, Ta	ke Deoga	aon, Taleg	gaon, Vas	ali,		
Min 7.8 108.0 48.0 8.0 6.8 0.0 44.0 20.1 16.0 0.0 0.1 0.1													
Max	10.0	744.0	330.0	86.0	54.7	0.9	315.0	384.3	164.0	84.0	0.9	17.0	
Average	8.4	292.4	177.4	32.2	23.5	0.2	142.7	145.2	47.2	23.3	0.4	2.2	
Stdev	0.5	148.1	73.2	20.6	10.9	0.3	60.8	73.5	31.8	15.8	0.3	3.9	
% < Des	0.0	89.7	94.9	94.9	76.9	79.5	87.2	0.0	100.0	100.0	100.0	100.0	
% P	74.4	10.3	5.1	5.1	23.1	20.5	12.8	0.0	0.0	0.0	0.0	0.0	
% > Ex P	25.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Taluka : Ka Sakore, Visa	,	bhona, B	hagurdi, I	Dalwat, I	Desgaon,	Inshi, Ja	amle Pale	, Kalwan,	Matane,	Pilakos,		
Sakore, visa	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	НСО3	Cl	SO ₄ -2	F ⁻	NO ₃
Min	7.6	193.0	100.0	12.8	3.9	0.0	40.0	16.1	7.2	10.0	0.1	2.4
Max	10.3	1536.0	1180.0	214.4	156.5	0.3	328.0	398.5	526.0	410.0	1.1	41.0
Average	8.5	532.4	303.8	50.0	43.9	0.1	175.9	188.3	92.4	62.0	0.6	12.1
Stdev	0.6	372.6	209.7	48.1	36.1	0.1	72.8	95.7	104.7	89.7	0.4	9.1
% < Des	0.0	64.3	67.9	82.1	35.7	89.3	64.3	0.0	92.9	89.3	89.3	100.0
% P	53.6	35.7	28.6	14.3	53.6	10.7	35.7	0.0	7.1	7.1	10.7	0.0
% > Ex P	46.4	0.0	3.6	3.6	10.7	0.0	0.0	0.0	0.0	3.6	0.0	0.0

Taluka : Ma	legaon	(Agar bk.	, Ajande,	Ajang, C	Chikhalo	hal, Dap	ur, Dareg	aon, Dhar	e, Gilane	, Jalgaon,	Jhodga,	
Karanjagava	n, Maleg	gaon, Nag	zari, Rava	algaon, S	Saudane,	Umaran	e, Vajirkh	nede, Vira	ne, Zodge	e)		
Min	7.6	185.0	96.0	4.8	11.7	0.0	84.0	32.5	36.0	12.0	0.1	0.1
Max	10.4	2291.0	864.0	134.4	166.2	1.6	690.0	841.8	878.0	465.0	1.9	73.8
Average	8.2	840.2	354.9	40.6	61.6	0.3	281.0	326.7	177.8	121.8	0.5	10.9
Stdev	0.6	492.5	188.8	31.0	40.0	0.4	126.4	169.6	174.0	117.3	0.4	15.4
% < Des	0.0	28.9	36.8	84.2	28.9	78.9	26.3	0.0	78.9	78.9	92.1	94.7
% P	84.2	68.4	52.6	15.8	57.9	10.5	71.1	0.0	21.1	18.4	5.3	0.0
% > Ex P	15.8	2.6	10.5	0.0	13.2	10.5	2.6	0.0	0.0	2.6	2.6	5.3

Taluka: N	andgao	n (Boltha	n, Chanc	lore, Dh	otane B	k, Hisw	al Kh., J	algaon B	k., Jamd	ari, Jawa	lki, Kha	dgaon,
Manmad, Mı	uldongar	ri, Nandga	on, Nand	ur, Nayd	longari, l	Panewad	li, Pardha	di, Sakore	, Talwade	e)		
Min	6.8	225.0	120.0	6.4	9.7	0.0	135.2	132.5	30.0	4.0	0.1	0.2
Max	9.2	2074.0	765.0	128.0	143.0	0.3	607.0	734.4	464.0	270.0	2.4	270.0
Average	8.3	787.0	325.3	49.9	48.7	0.1	281.8	325.2	160.6	84.1	0.7	33.1
Stdev	0.5	465.6	172.2	32.0	31.4	0.1	117.2	154.9	139.7	81.1	0.4	58.7
% < Des	0.0	34.5	44.8	79.3	31.0	100.0	27.6	0.0	69.0	82.8	93.1	89.7
% P	62.1	62.1	51.7	20.7	58.6	0.0	69.0	0.0	31.0	17.2	3.4	0.0
% > Ex P	37.9	3.4	3.4	0.0	10.3	0.0	3.4	0.0	0.0	0.0	3.4	10.3

Taluka: Na	shik (A	mbebahul	la, Bhagu	r, Borga	on Pimp	ri, Chikl	halohol, I	Deolali, D	evargaon,	Dhundeg	gaon, Du	dgaon,	
Eklahara, Ga	angapur/	someshva	ır, Ghagb	ari, Jakl	hori, Ko	tamgaor	ı, Lahvit,	Lohashir	ngwe, Mł	nasrul, Na	andur Sl	nirgate,	
Nashik, Pimpalgaon Khamb, Pimpri Sayad, Raslapur, Satpur, Shevge Darna, Shinde, Vadala, Villoli)													
Min 7.5 95.0 64.0 7.6 0.0 0.0 33.0 40.3 18.0 4.0 0.0 0.1													
Max	9.4	1809.0	885.0	212.0	157.0	0.9	430.0	524.6	730.0	329.0	1.0	101.1	
Average	8.2	549.6	309.7	50.8	44.3	0.1	223.0	254.7	122.9	57.6	0.3	14.6	
Stdev	0.4	358.2	159.9	38.5	30.0	0.1	98.1	125.1	150.8	59.4	0.2	23.2	
% < Des	0.0	55.1	55.1	81.2	39.1	97.1	42.0	0.0	85.5	94.2	100.0	91.3	
% P	85.5	44.9	39.1	17.4	56.5	2.9	58.0	0.0	14.5	5.8	0.0	0.0	
% > Ex P	14.5	0.0	5.8	1.4	4.3	0.0	0.0	0.0	0.0	0.0	0.0	8.7	

Taluka : Niphad (Ahergaon, Antarweli, Gajarwadi, Kasbesukene, Katargaon, Kotamgaon, Lonwadi, Mhalsakore, Niphad, Ozar mig, Pachorewani, Pimpalgaon Basvant, Rui, Sakore, Sarole Thadi, Savargaon, Thergaon, Umbarkhed, Wakad)

	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.5	188.0	160.0	10.4	4.9	0.0	69.0	84.2	14.0	21.0	0.2	0.1
Max	9.5	2778.0	920.0	286.4	163.3	0.5	780.0	950.4	886.0	487.0	1.9	220.7
Average	8.3	889.1	413.0	55.8	66.5	0.1	246.2	287.4	217.4	104.2	0.7	31.7
Stdev	0.4	625.2	202.4	52.6	42.8	0.1	136.4	170.2	203.0	98.5	0.4	48.5
% < Des	0.0	24.4	31.7	85.4	17.1	97.6	41.5	0.0	78.0	87.8	82.9	80.5
% P	78.0	68.3	51.2	9.8	61.0	2.4	56.1	0.0	22.0	9.8	9.8	0.0
% > Ex P	22.0	7.3	17.1	4.9	22.0	0.0	2.4	0.0	0.0	2.4	7.3	19.5

Taluka : Sa	tana (La	khmapur,	Nampur,	Satana)								
Min	7.5	313.1	250.0	22.0	29.2	0.0	260.0	317.2	21.3	10.1	0.2	0.1
Max	8.1	1910.7	1015.0	198.0	204.0	0.0	400.0	488.0	564.5	376.0	1.0	280.9
Average	7.9	1064.5	550.0	82.7	83.5	0.0	340.9	415.9	278.5	143.9	0.6	93.9
Stdev	0.2	679.6	303.9	61.0	61.8	0.0	53.1	64.8	212.9	131.9	0.3	129.9
% < Des	0.0	16.7	16.7	66.7	16.7	100.0	0.0	0.0	66.7	66.7	100.0	66.7
% P	100.0	83.3	50.0	33.3	66.7	0.0	100.0	0.0	33.3	33.3	0.0	0.0
% > Ex P	0.0	0.0	33.3	0.0	16.7	0.0	0.0	0.0	0.0	0.0	0.0	33.3

Taluka : Pei	inth (Ad	gaon Hars	sul, Ambe	, Goldar	i, Harsu	l, Nirguo	le, Peinth,	, Peth)				
Min	7.5	96.0	44.0	8.0	5.8	0.0	40.0	10.4	14.0	1.0	0.2	0.1
Max	10.3	548.2	375.0	84.0	43.7	0.3	220.0	268.4	205.9	71.0	1.0	22.9
Average	8.4	257.8	180.4	33.3	23.6	0.1	149.6	150.1	54.0	19.3	0.4	3.9
Stdev	0.8	150.8	96.8	25.2	11.8	0.1	55.9	72.7	55.2	18.0	0.2	7.4
% < Des	0.0	92.9	85.7	85.7	57.1	92.9	85.7	0.0	100.0	100.0	92.9	100.0
% P	71.4	7.1	14.3	14.3	42.9	7.1	14.3	0.0	0.0	0.0	7.1	0.0
% > Ex P	28.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Tr	Taluka: Trimbakeshwar (Dahalewadi, Harsul, Trimbakeswar)														
Min	7.8	168.1	145.0	36.0	9.7	0.0	114.8	140.0	11.0	8.2	0.0	0.1			
Max	8.2	556.4	355.0	104.0	23.1	0.0	345.0	420.9	95.9	46.1	0.3	14.9			
Average	8.0	257.7	192.5	52.0	15.2	0.0	174.1	212.5	30.2	26.4	0.2	3.5			
Stdev	0.1	148.1	80.4	26.1	4.9	0.0	85.6	104.4	32.6	14.3	0.1	5.8			
% < Des	0.0	83.3	83.3	83.3	100.0	100.0	83.3	0.0	100.0	100.0	100.0	100.0			
% P	100.0	16.7	16.7	16.7	0.0	0.0	16.7	0.0	0.0	0.0	0.0	0.0			
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

Taluka : Ye	ola (And	darsul, An	kai, Bhara	am, Bok	ate, Mah	alkheda,	, Mukhed,	, Nagarsal	, Satali, Y	'eola)		
Min	7.7	145.0	72.0	16.0	7.8	0.0	64.0	59.6	22.0	22.0	0.2	0.3
Max	9.8	1616.0	712.0	104.0	115.7	0.2	580.0	707.1	600.0	222.0	1.9	50.0
Average	8.5	624.3	306.0	47.8	45.3	0.1	240.9	270.7	122.1	74.4	0.6	16.6
Stdev	0.5	452.7	185.4	28.3	32.7	0.1	130.8	169.1	149.3	54.9	0.4	18.3
% < Des	0.0	58.8	64.7	82.4	41.2	100.0	35.3	0.0	88.2	94.1	94.1	88.2
% P	47.1	41.2	23.5	17.6	47.1	0.0	64.7	0.0	11.8	5.9	0.0	0.0
% > Ex P	52.9	0.0	11.8	0.0	11.8	0.0	0.0	0.0	0.0	0.0	5.9	11.8

Taluka : Si	innar (A	Agaskhind	l, Atkawa	ade, Bar	agaon	Pimpri,	Borkhine	l, Chondl	ni, Dodi	kh., Dube	ere, Kir	tangali,			
Mohdari, Mu	Mohdari, Musalgaon, Nirhale, Sinnar, Sonewadi, Ujjani)														
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃			
Min	7.6	131.0	48.0	8.0	5.8	0.0	32.0	30.1	24.0	8.0	0.1	0.1			
Max	10.3	2314.0	925.0	170.0	206.6	0.4	608.0	739.8	442.0	275.0	1.6	236.2			
Average	8.5	934.0	403.7	69.0	56.2	0.1	272.4	316.8	180.6	82.7	0.6	24.9			
Stdev	0.5	594.1	203.8	39.8	42.3	0.1	115.7	149.1	115.4	70.6	0.3	49.2			
% < Des	0.0	27.5	35.0	60.0	35.0	95.0	15.0	0.0	82.5	87.5	90.0	90.0			
% P	70.0	67.5	47.5	40.0	55.0	5.0	82.5	0.0	17.5	12.5	7.5	0.0			
% > Ex P	30.0	5.0	17.5	0.0	10.0	0.0	2.5	0.0	0.0	0.0	2.5	10.0			

Taluka: Cl	nandvad	(Chandv	ad, Chikh	alambe,	Kanman	dale, Ni	mgavhan,	Sogras, V	/adbare, \	Varadi)		
Min	7.8	194.2	155.0	18.4	12.2	0.0	86.0	84.2	28.0	6.0	0.2	0.8
Max	9.3	1018.0	480.0	86.4	80.7	0.5	224.0	273.3	202.0	137.0	1.1	20.4
Average	8.4	439.1	289.8	42.2	44.8	0.1	155.4	169.4	65.2	44.5	0.7	10.1
Stdev	0.4	209.1	113.5	20.9	19.4	0.1	44.2	54.8	47.7	31.9	0.2	7.4
% < Des	0.0	60.0	66.7	86.7	20.0	92.9	73.3	0.0	100.0	100.0	73.3	100.0
% P	73.3	40.0	33.3	13.3	80.0	14.3	26.7	0.0	0.0	0.0	26.7	0.0
% > Ex P	26.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Su	rgana ((Chikadi,	Kothule,	Surgana))							
Min	8.0	152.0	112.0	10.4	11.7	0.0	76.0	67.4	22.0	8.0	0.5	0.3
Max	9.2	416.0	340.0	62.4	54.4	0.9	200.0	196.8	206.0	43.0	0.9	9.8
Average	8.6	282.5	195.3	31.1	28.6	0.2	135.3	128.7	65.0	19.5	0.7	3.8
Stdev	0.6	122.9	108.7	22.4	16.1	0.4	57.1	61.5	71.7	12.6	0.1	4.5
% < Des	0.0	100.0	66.7	100.0	66.7	83.3	83.3	0.0	100.0	100.0	100.0	100.0
% P	50.0	0.0	33.3	0.0	33.3	16.7	16.7	0.0	0.0	0.0	0.0	0.0
% > Ex P	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

22. OSMANABAD

Taluka: Bh	um (Bho	oom, Dah	iphal, Hat	ola, Rui	, Wakwa	.d)						
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F ⁻	NO ₃
Min	7.8	98.0	48.0	12.8	2.9	0.0	36.0	28.1	36.0	4.8	0.0	0.7
Max	11.0	982.0	415.7	91.2	84.0	0.8	364.8	445.0	148.0	78.0	1.4	70.0
Average	8.5	480.5	239.6	44.1	31.4	0.2	160.3	185.5	77.0	34.6	0.6	13.7
Stdev	1.0	245.1	125.5	24.2	24.5	0.2	114.6	149.0	38.8	24.7	0.4	18.6
% < Des	0.0	41.7	75.0	91.7	58.3	91.7	75.0	0.0	100.0	100.0	83.3	91.7
% P	75.0	58.3	25.0	8.3	41.7	8.3	25.0	0.0	0.0	0.0	16.7	0.0
% > Ex P	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.3

Taluka : F	Kalambl	n (Deo o	lhanaora,	Diksal,	Gharga	aon, Go	ur, Hawa	argaon, L	akhangac	n, Malka	aranja,	Mohar,	
Pimpalwandi, Ratnapur, Shiradhone, Stra, Watwada, Yermala)													
Min	7.2	182.0	72.0	14.4	3.9	0.0	56.0	32.0	30.0	11.0	0.1	0.4	
Max	11.0	1905.0	1205.0	301.0	148.7	0.4	443.0	540.5	580.0	246.0	1.4	326.0	
Average	8.4	614.1	332.6	74.1	35.8	0.2	160.8	172.4	131.3	70.0	0.6	29.8	
Stdev	0.9	431.6	265.1	71.5	31.5	0.1	90.3	120.2	131.8	68.5	0.4	75.1	
% < Des	0.0	41.4	65.5	72.4	58.6	93.1	79.3	0.0	89.7	86.2	79.3	93.1	
% P	72.4	58.6	20.7	20.7	34.5	6.9	20.7	0.0	10.3	13.8	20.7	0.0	
% > Ex P	27.6	0.0	13.8	6.9	6.9	0.0	0.0	0.0	0.0	0.0	0.0	6.9	

Taluka: Lo	hara (Lo	ohara Buz	urg)									
Min	7.5	493.1	285.0	12.0	23.1	0.0	169.7	207.0	103.0	52.8	0.1	24.0
Max	7.6	555.3	400.0	76.0	85.0	0.0	225.4	275.0	131.0	90.0	0.3	76.0
Average	7.5	519.5	354.9	52.7	54.4	0.0	203.4	248.1	114.7	65.6	0.2	45.7
Stdev	0.1	32.1	61.4	35.3	31.0	0.0	29.6	36.2	14.6	21.1	0.1	27.0
% < Des	0.0	33.3	33.3	66.7	33.3	100.0	33.3	0.0	100.0	100.0	100.0	66.7
% P	100.0	66.7	66.7	33.3	66.7	0.0	66.7	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3

Taluka: Osmanabad (Anandwadi, Arni, Borewadi, Chilwadi, Dhoki, Dhola, Goverdhanwadi, Irla, Jagji, Kanagara, Kawalewadi, Kolhegaon, Mouje Barul, Osmanabad, Rajuri, Ruibhar, Takwala, Vadgaon, Siddheswar, Wakwad, Wanewadi, Yedshi) 7.3 4.9 0.0 2.4 22.0 0.0 Min 148.0 84.0 8.0 26.0 4.8 0.6 Max 9.5 1248.0 732.0 190.4 86.0 0.6 413.0 503.9 430.0 228.0 1.6 198.0 Average 628.0 363.4 74.6 42.9 0.1 211.5 249.1 127.3 76.8 0.7 29.5 8.0 Stdev 0.4 314.2 158.4 43.9 20.5 0.2 87.9 113.6 90.4 63.6 0.4 42.0

% < Des 0.0 47.4 31.6 60.5 26.3 89.5 42.1 0.0 94.7 94.7 78.9 81.6 % P 0.0 86.8 52.6 55.3 39.5 73.7 10.5 57.9 0.0 5.3 5.3 15.8 % > Ex P13.2 0.0 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.3 18.4

Taluka: Or	nerga (Aloor, Ba	balsoor, l	Diggi, G	unjoti, I	loli, Jak	ekur, Kad	ler, Kaneg	gaon, Kaw	vatha, Nai	chakur,	Sastur,		
Sawalsoor, Turori)														
Min	7.4	199.0	116.0	6.4	1.9	0.0	88.0	82.8	32.0	9.6	0.0	0.3		
Max	9.9	741.2	521.8	94.4	111.0	0.4	380.0	463.6	227.0	82.0	3.0	76.0		
Average	8.1	414.2	253.1	43.7	35.0	0.2	179.6	188.9	93.2	30.0	2.1	9.9		
Stdev	0.6	146.1	118.8	25.2	26.0	0.1	76.4	99.5	52.6	16.8	15.0	16.3		
% < Des	0.0	73.7	84.2	94.7	57.9	94.7	63.2	0.0	100.0	100.0	73.7	94.7		
% P	73.7	26.3	15.8	5.3	36.8	5.3	36.8	0.0	0.0	0.0	21.1	0.0		
% > Ex P	26.3	0.0	0.0	0.0	5.3	0.0	0.0	0.0	0.0	0.0	5.3	5.3		

Taluka : Pa	randa	(Asu, Bavo	chi, Kapil	apuri, M	ankeshw	ar, Shelg	gaon, Son	ari, Wakd	i, Wangi ((kd))		
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl ⁻	SO_4^{-2}	F ⁻	NO ₃
Min	7.6	312.0	148.0	32.0	1.9	0.0	78.7	0.0	49.7	3.4	0.5	1.3
Max	11.0	1261.0	616.0	196.8	40.0	0.2	225.0	274.5	314.0	182.3	1.5	68.3
Average	8.7	539.6	275.8	72.4	23.0	0.1	150.2	154.6	121.2	45.4	1.0	21.8
Stdev	1.2	282.0	136.4	49.0	12.3	0.1	50.2	85.2	84.1	52.7	0.3	25.3
% < Des	0.0	50.0	80.0	80.0	70.0	100.0	70.0	0.0	90.0	100.0	50.0	80.0
% P	60.0	50.0	10.0	20.0	30.0	0.0	30.0	0.0	10.0	0.0	40.0	0.0
% > Ex P	40.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0	20.0

Taluka : Tu	ıljapur	(Andoor,	Bolegaon	, Gandor	a, Hatol	a, Kati, K	Kemwadi,	Keshegad	on, Kunsa	wali, Ma	ngrul, N	aldurg,	
Sangvi, Tailor nagar, Tamalwadi, Tambatwadi)													
Min	7.3	159.0	84.0	11.2	3.9	0.0	40.0	34.1	26.0	10.9	0.3	0.7	
Max	9.6	1060.0	544.0	155.2	66.0	0.3	264.0	322.1	256.0	162.0	3.0	22.8	
Average	8.3	485.0	248.6	53.5	27.9	0.1	125.4	137.0	105.9	61.9	1.0	8.5	
Stdev	0.5	214.1	118.2	39.9	14.5	0.1	58.2	72.2	62.8	50.0	0.6	6.5	
% < Des	0.0	45.2	64.5	71.0	51.6	96.8	87.1	0.0	96.8	100.0	54.8	100.0	
% P	67.7	54.8	35.5	29.0	48.4	3.2	12.9	0.0	3.2	0.0	38.7	0.0	
% > Ex P	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.5	0.0	

23. PARBHANI

Taluka : Ji	ntur (A	mbarwadi	, Asegao	n, Bhog	aon, Bo	rkini, Dl	hanora bk	., Dudhg	aon, Jintu	ır, Kawad	la, Manl	ceswar,
Nagapur, Pol	kharni)											
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI ⁻	SO_4^{-2}	F ⁻	NO ₃
Min	7.5	223.0	86.0	17.3	6.3	0.0	64.0	62.0	21.0	3.0	0.1	0.1
Max	8.5	1879.0	780.0	102.4	108.9	0.3	344.0	419.7	620.0	201.0	2.0	147.0
Average	7.8	843.3	383.8	49.9	45.7	0.2	216.3	252.5	206.9	70.9	1.1	15.6
Stdev	0.3	520.8	208.3	24.0	32.9	0.1	78.3	99.6	172.7	65.8	0.6	30.0
% < Des	0.0	39.1	39.1	91.3	43.5	91.3	34.8	0.0	65.2	95.7	30.4	95.7
% P	100.0	60.9	47.8	8.7	47.8	8.7	65.2	0.0	34.8	4.3	47.8	0.0
% > Ex P	0.0	0.0	13.0	0.0	8.7	0.0	0.0	0.0	0.0	0.0	21.7	4.3

Taluka : Ma	anwat (K	Kekarjawl	a, Kolha,	Manwat)							
Min	7.3	568.0	204.0	12.8	9.7	0.0	82.0	100.0	54.0	28.0	0.2	7.1
Max	8.3	807.5	531.4	150.0	59.3	0.2	243.0	296.5	184.6	100.8	2.0	171.7
Average	7.8	663.8	349.1	73.2	34.6	0.1	157.9	192.6	106.8	64.6	0.9	63.4
Stdev	0.4	96.2	140.0	53.7	16.3	0.1	71.4	87.1	57.2	26.1	0.7	78.8
% < Des	0.0	0.0	50.0	66.7	33.3	100.0	66.7	0.0	100.0	100.0	50.0	66.7
% P	100.0	100.0	50.0	33.3	66.7	0.0	33.3	0.0	0.0	0.0	16.7	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	33.3

Taluka : Pa	rbhani	(Asola, B	alas Kh, l	Barwand	i, Borwa	and bk, l	Daithana,	Gojegaon	, Kotamv	vadi, Parb	hani, Pe	edgaon,		
Pingali, Ping	Pingali, Pingali kothala, Singanapur, Tadlimla, Takli kumbharna, Todkalas, Zari)													
Min	6.9	273.0	165.0	8.3	3.9	0.0	75.0	91.5	21.0	17.0	0.1	0.1		
Max	8.5	2613.0	1032.0	139.2	116.6	0.2	531.0	647.8	526.0	153.0	3.0	147.0		
Average	7.8	719.3	317.6	48.8	39.0	0.1	201.9	234.6	113.9	63.5	1.2	21.2		
Stdev	0.4	467.4	159.1	30.8	23.5	0.1	92.9	112.3	108.4	42.1	1.5	31.3		
% < Des	0.0	40.0	65.7	80.0	34.3	100.0	54.3	0.0	88.6	100.0	45.7	85.7		
% P	100.0	57.1	31.4	20.0	60.0	0.0	45.7	0.0	11.4	0.0	34.3	0.0		
% > Ex P	0.0	2.9	2.9	0.0	5.7	0.0	0.0	0.0	0.0	0.0	20.0	14.3		

Taluka : Pal	lam (Ba	rbhani, Ke	erwadi, Pa	ılam, Pa	rwa, Pen	du bk., F	harkanda)				
Min	7.1	368.3	208.0	11.5	15.6	0.0	41.0	0.0	28.0	15.0	0.4	4.6
Max	9.5	1853.0	616.0	89.6	106.9	0.5	433.0	528.3	328.0	207.0	2.0	83.3
Average	7.9	870.8	361.7	49.5	45.8	0.2	179.4	209.0	126.2	83.3	1.0	23.3
Stdev	0.6	476.0	113.7	21.9	22.5	0.1	101.5	134.6	88.3	62.3	0.5	19.6
% < Des	0.0	21.4	21.4	92.9	14.3	71.4	78.6	0.0	85.7	85.7	35.7	92.9
% P	85.7	78.6	71.4	7.1	78.6	28.6	21.4	0.0	14.3	14.3	50.0	0.0
% > Ex P	14.3	0.0	7.1	0.0	7.1	0.0	0.0	0.0	0.0	0.0	14.3	7.1

Taluka : Pa	thari (B	abulgaon,	Banegao	n, Depar	dara, Ka	ansur, Ni	wali, Patl	nargavhan	bk., Path	ari, Zari)		
Min	7.1	208.0	168.0	9.0	21.4	0.0	72.2	39.2	35.5	14.0	0.2	0.1
Max	9.0	2275.0	608.0	100.0	74.8	0.2	325.4	397.0	416.0	219.0	1.9	259.0
Average	7.8	862.4	309.2	40.4	40.9	0.1	194.7	218.9	152.9	75.0	1.0	25.7
Stdev	0.4	637.8	111.3	27.2	15.0	0.0	66.4	83.9	126.6	56.8	0.5	59.3
% < Des	0.0	38.9	61.1	83.3	16.7	100.0	50.0	0.0	66.7	94.4	38.9	94.4
% P	94.4	50.0	33.3	16.7	83.3	0.0	50.0	0.0	33.3	5.6	44.4	0.0
% > Ex P	5.6	11.1	5.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.7	5.6

Taluka : Sel	u (Chikl	halthana, l	Dasala, D	hengali j	pimpalga	on, Gul	khand, Ra	ipur, Selu	, Sindhe)			
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.4	231.3	124.0	10.2	13.6	0.0	80.0	79.2	7.0	1.4	0.3	0.2
Max	8.2	2132.0	792.0	69.1	111.8	1.0	425.4	519.0	340.0	308.0	2.0	39.0
Average	7.9	732.8	313.2	41.4	39.8	0.1	222.3	269.0	127.4	86.4	1.2	14.0
Stdev	0.2	538.8	186.5	17.4	26.0	0.2	100.9	126.3	111.4	88.2	0.5	15.2
% < Des	0.0	27.8	61.1	100.0	44.4	88.9	50.0	0.0	77.8	88.9	27.8	100.0
% P	100.0	61.1	27.8	0.0	50.0	11.1	50.0	0.0	22.2	11.1	44.4	0.0
% > Ex P	0.0	11.1	11.1	0.0	5.6	0.0	0.0	0.0	0.0	0.0	27.8	0.0

Taluka : G	angakh	ed (Akol	i, Ban p	impla, C	Chinch t	akli, Cl	ukar, Dh	angar mo	oha, Dhai	rkheda, E	Ongar 1	pimpla,		
Gangakhed,	Gangakhed, Golegaon, Mahatpuri, Muli, Sonpeth)													
Min 6.7 371.0 124.0 5.8 11.7 0.1 48.0 45.6 34.0 2.0 0.4 0.1														
Max	8.7	1027.0	484.0	80.0	98.2	0.6	316.0	385.5	306.0	142.0	2.0	32.0		
Average	7.8	592.2	275.7	32.2	39.9	0.2	182.5	205.0	104.1	47.2	1.0	9.0		
Stdev	0.5	230.9	85.6	19.6	19.8	0.1	62.2	77.2	65.0	34.1	0.5	8.2		
% < Des	0.0	45.8	70.8	95.8	33.3	95.8	54.2	0.0	95.8	100.0	41.7	100.0		
% P	95.8	54.2	29.2	4.2	66.7	4.2	45.8	0.0	4.2	0.0	41.7	0.0		
% > Ex P	4.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.7	0.0		

Taluka : Pu	rna (Ch	udawa, Ek	crukha gai	ngakhed	, Nila, T	adkalas)						
Min	7.2	315.0	132.0	24.3	8.8	0.1	80.0	97.6	44.0	16.0	0.4	0.2
Max	8.3	988.0	456.0	81.6	61.2	0.2	289.0	352.6	230.0	118.0	1.0	9.4
Average	7.7	601.3	256.5	38.6	26.2	0.1	167.1	189.2	101.3	59.9	0.7	3.8
Stdev	0.5	238.8	110.2	18.4	16.9	0.0	66.8	79.9	56.2	32.4	0.3	3.5
% < Des	0.0	37.5	75.0	87.5	62.5	100.0	75.0	0.0	100.0	100.0	50.0	100.0
% P	100.0	62.5	25.0	12.5	37.5	0.0	25.0	0.0	0.0	0.0	50.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Soi	npeth (D	Digol islan	npur, Kha	dka)								
Min	7.6	403.0	172.0	12.8	22.4	0.1	140.0	139.4	30.0	30.0	0.7	2.9
Max	7.8	949.0	424.0	60.8	66.1	0.2	275.0	335.5	160.0	124.0	2.0	27.6
Average	7.7	673.8	289.0	34.9	42.0	0.1	189.8	214.6	87.5	58.8	1.2	11.4
Stdev	0.1	301.4	118.9	23.2	22.5	0.1	59.6	88.4	57.8	44.3	0.6	11.3
% < Des	0.0	50.0	50.0	100.0	50.0	100.0	75.0	0.0	100.0	100.0	50.0	100.0
% P	100.0	50.0	50.0	0.0	50.0	0.0	25.0	0.0	0.0	0.0	25.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0	0.0

24. PUNE

Taluka : An	nbegaon	(Chinchl	e (Bk) Ka	ranjv, K	alamb, I	Khadaki,	Loni (An	nbegaon),	Manchar	, Ranjani)		
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F	NO ₃
Min	7.3	124.8	104.0	14.0	1.2	0.0	80.0	80.0	11.0	0.1	0.2	0.9
Max	8.7	1033.2	425.0	115.2	77.0	0.4	569.7	695.0	178.0	160.0	1.1	114.0
Average	8.1	532.4	258.2	43.9	38.9	0.1	275.5	301.8	88.8	41.4	0.6	41.8
Stdev	0.4	292.9	95.9	27.6	24.3	0.1	161.1	181.3	55.4	44.2	0.3	36.1
% < Des	0.0	42.1	63.2	89.5	42.1	89.5	36.8	0.0	100.0	100.0	89.5	52.6
% P	84.2	57.9	36.8	10.5	57.9	10.5	63.2	0.0	0.0	0.0	10.5	0.0
% > Ex P	15.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	47.4

Taluka: Baramati (Ambi Bk., Baramati, Dhumalwadi, Dorlewadi, Jogawadi, Karanje, Karhati, Katewadi, Korale Kh., Loni Bhapkar, Mawadi kp., Medad, Morgaon, Nira, Pandare, Sangavi, Vadgaon Nimbalkar) 249.6 0.9 Min 7.0 96.0 19.2 4.8 0.0 64.0 64.0 60.0 25.0 0.1Max 10.3 5218.6 2660.0 416.0 486.0 1.5 500.0 610.0 2270.0 1800.0 1.0 553.8 8.1 1211.8 490.3 83.9 79.5 0.4 210.6 223.1 354.0 262.7 0.5 77.1 Average Stdev 0.6 1293.1 508.2 91.3 97.9 0.4 111.3 129.7 481.4 425.9 0.3 101.6 % < Des 43.2 0.0 29.7 48.6 70.3 32.4 59.5 0.0 67.6 73.0 94.6 45.9 % P 81.1 54.1 29.7 18.9 43.2 48.6 40.5 0.0 24.3 13.5 5.4 0.0 % > Ex P18.9 16.2 21.6 10.8 24.3 8.1 0.0 0.0 8.1 13.5 0.0 54.1

Taluka: Daund (Daund, Gar, Girim, Kalewadi, Kasurdi Bk., Pargaon Satumala, Patas, Rahu, Ravangaon, Sonawade, Warwand, Yavat) Min 7.2 207.4 52.0 8.0 1.2 0.0 44.0 38.0 43.0 17.6 0.1 0.4 372.8 0.9 567.0 1.0 Max 2528.0 1348.0 280.8 464.8 1160.0 1200.0 288.0 9.7 0.2 397.2 197.5 Average 8.0 833.5 80.9 57.2 206.4 281.4 188.9 0.5 53.5 Stdev 0.4 593.9 388.5 95.4 63.2 0.2 107.2 125.5 279.1 304.0 0.3 70.0 % < Des 0.0 27.0 56.8 59.5 48.6 0.0 73.0 78.4 97.3 67.6 67.6 35.1 % P 2.7 91.9 67.6 24.3 18.9 51.4 40.5 51.4 0.0 21.6 5.4 0.0 % > Ex P8.1 5.4 18.9 13.5 13.5 0.0 0.0 0.0 5.4 16.2 0.0 32.4

Taluka: Pune (Haveli) (Alandi Mhatobachi, Bhosari, Bukum, Charholi Bk., Chinchwad, Dhanori, Donje, Kasarwadi, Kasarwadi, Koregoan Mul, Lonikalbhor, Moshi, Parne, Pimpari Sandas, Pimpri (Kh) Malvasti, Pune, Shivpur Khed, Undavri Kade Pathar, Uralikanchan, Uruli Kanchan, Wadebolai, Wagholi) 7.0 209.1 0.0 6.0 9.6 0.0 60.0 60.0 28.0 0.6 0.1 0.4 1.7 Max 8.8 1523.2 770.9 160.0 112.0 0.5 530.3 647.0 485.0 330.0 506.0 7.9 303.4 244.8 0.4 Average 592.1 48.4 48.3 0.1 217.3 148.8 77.7 52.6 Stdev 0.4 346.4 147.7 33.0 25.4 0.2 110.5 132.2 115.2 98.4 0.3 57.0 % < Des 59.6 82.7 0.0 50.0 25.0 69.2 53.8 0.0 82.7 88.5 98.1 61.5 % P 94.2 50.0 36.5 17.3 69.2 30.8 46.2 0.0 17.3 7.7 0.0 0.0 % > Ex P0.0 5.8 0.0 0.0 0.0 0.0 3.8 1.9 5.8 3.8 0.0 38.5

Taluka: Indapur (Balpudi, Bhadalwadi, Bhigvan, Hingangaon, Indapur, Kalamb, Kauthali, Lasurne, Loni, Deokar, Nimbgaon-Ketke, Nirgude, Reda, Rui, Shetphal gade, Tavashi, Warkute bk.) Min 6.6 150.4 80.0 3.6 0.0 32.0 32.0 24.0 3.0 0.1 0.2 <u>1</u>71.2 9.3 256.8 1128.0 1.4 364.0 362.0 880.0 768.0 531.6 Max 2828.8 1.1 Average 8.3 723.4 292.0 45.9 51.2 0.5 153.0 153.3 201.9 177.4 0.5 57.4 202.0 0.4 79.3 203.3 0.3 Stdev 0.6 527.1 31.8 45.0 83.8 168.4 96.2 % < Des 0.0 40.5 64.3 88.1 35.7 26.2 73.8 0.0 76.2 78.6 90.5 69.0 % P 64.3 54.8 28.6 11.9 57.1 64.3 26.2 0.0 23.8 7.1 9.5 0.0 35.7 4.8 7.1 7.1 9.5 0.0 0.0 0.0 14.3 0.0 31.0 % > Ex P0.0

	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI ⁻	SO_4^{-2}	F ⁻	NO ₃		
Min	7.1	168.0	145.0	8.0	2.4	0.0	88.0	88.0	11.0	0.4	0.1	1.5		
Max	8.9	886.2	513.3	128.0	140.4	1.1	328.0	378.0	284.0	115.0	1.0	256.0		
Average	8.0	410.2	261.8	46.9	38.2	0.1	192.5	210.2	81.5	36.5	0.4	38.0		
Stdev	0.4	182.4	93.6	28.9	31.0	0.2	63.8	79.0	63.0	31.0	0.2	49.1		
% < Des	0.0	77.5	75.0	80.0	42.5	95.0	52.5	0.0	97.5	100.0	95.0	80.0		
% P	95.0	22.5	25.0	20.0	50.0	2.5	47.5	0.0	2.5	0.0	5.0	0.0		
% > Ex P	5.0	0.0	0.0	0.0	7.5	2.5	0.0	0.0	0.0	0.0	0.0	20.0		
Taluka : Ma	wal (Ka	ınhe, Kara	ıla, Malav	ali, Som	atane Fa	ıta, Tale	gaon Dabl	nade)						
Min	7.4	85.8	80.0	20.8	3.6	0.0	52.0	52.0	36.0	1.0	0.2	0.4		
Max	8.4	481.3	465.0	66.0	73.0	0.3	309.8	378.0	135.0	53.5	0.7	31.0		
Average	7.9	246.7	186.5	39.2	23.2	0.1	137.7	150.8	68.5	19.9	0.4	9.5		
Stdev	0.3	137.6	118.0	14.7	22.1	0.1	77.1	101.3	26.6	17.5	0.2	11.5		
% < Des	0.0	100.0	76.9	100.0	76.9	76.9	84.6	0.0	100.0	100.0	100.0	100.0		
% P	100.0	0.0	23.1	0.0	23.1	23.1	15.4	0.0	0.0	0.0	0.0	0.0		
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Taluka: Mulshi (Bhugaon, Kharawade, Kolwan, Mulshi, Nere, Paud, Sus)														
Min	7.3	66.6	50.6	12.0	4.8	0.0	40.2	49.0	7.0	0.1	0.0	0.0		
Max	8.2	291.2	236.0	65.6	30.0	0.4	232.0	256.0	64.0	42.4	0.8	33.2		
Average	8.0	178.8	135.1	34.1	13.6	0.1	126.2	135.8	30.9	15.3	0.3	5.8		
Stdev	0.3	66.0	51.5	16.9	7.9	0.1	53.1	58.8	19.1	14.6	0.2	10.1		
% < Des	0.0	100.0	100.0	100.0	93.8	93.8	87.5	0.0	100.0	100.0	100.0	100.0		
% P	100.0	0.0	0.0	0.0	6.3	6.3	12.5	0.0	0.0	0.0	0.0	0.0		
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Taluka : Pu	randar	(Belsar ([~] hamhali	Dive 1	einri K	halad K	hanawadi	Mawad	i Kn. Nii	ra Panore	Sailar	Rasti		
Pargaon, Sak				, 21,0, 0	cjuri, ri	nuiuu, ii	india waa	, 11141144	. 11p., 1 vii	u, rungre	, Bullul,	Dustr		
Min	7.0	129.3	60.0	4.8	8.4	0.0	60.0	60.0	11.0	1.2	0.1	0.4		
Max	8.4	1580.8	980.0	244.8	134.4	0.8	484.0	484.0	590.0	391.0	0.9	155.1		
Average	7.9	509.2	281.0	56.6	39.2	0.2	180.4	195.1	159.9	71.0	0.4	48.4		
Stdev	0.3	343.9	171.0	51.3	28.2	0.2	103.4	114.4	150.4	90.2	0.2	46.8		
% < Des	0.0	61.0	68.3	73.2	36.6	63.4	63.4	0.0	73.2	87.8	100.0	61.0		
% P	100.0	39.0	29.3	24.4	56.1	36.6	36.6	0.0	26.8	12.2	0.0	0.0		
% > Ex P	0.0	0.0	2.4	2.4	7.3	0.0	0.0	0.0	0.0	0.0	0.0	39.0		
Toluko . Do	iaurnes	tor(Khod) (Aland:	Dobul	Phorair:	Chalca	n Chas L	Zoduc VI	orobwod:	Whed W	OVO NI	mason		
Taluka: Ra Rajgurnagar) (Alandi,	Danui,	Diforgiri	, Chaka	ıı, Cıias, F	xauus, Kr	iaraowadi 	, Kiieu, K	.oye, M1	mgaon		

Kajguinagai	(Kileu),	Solu)										
Min	7.5	111.4	89.7	8.0	4.8	0.0	64.0	64.0	7.0	5.0	0.2	1.8
Max	8.4	857.6	492.0	152.0	49.0	0.6	272.0	287.0	242.0	108.0	0.9	150.6
Average	8.0	360.0	214.8	54.6	22.2	0.2	153.3	159.9	91.2	46.3	0.5	51.7
Stdev	0.3	169.9	111.4	36.8	11.5	0.2	65.6	70.6	54.8	27.1	0.2	46.3
% < Des	0.0	87.5	83.3	79.2	70.8	54.2	75.0	0.0	100.0	100.0	100.0	50.0
% P	100.0	12.5	16.7	20.8	29.2	45.8	25.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0

Taluka : Shirur (Andalgaon, Dhamari, Gunat, Inamgaon, Kanhur Mesai, Kavathe, Knhur Mesai, Kondhanpuri, Navara, Nimgaon, Nimgaondude, Pabal, Pilmple Jagtap, Ranjangaon, Ravangaon, Shikrapur, Shirasgaon kata, Shirur, Tandali)

	'Ph	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	Cl	SO ₄ -2	F ⁻	NO ₃
Min	7.0	236.0	108.0	16.0	3.6	0.0	40.0	40.0	18.0	0.6	0.1	2.0
Max	8.8	2528.0	780.0	224.0	110.4	0.6	264.8	323.0	820.0	1740.0	1.1	310.1
Average	7.9	671.5	321.4	62.7	45.9	0.2	157.7	168.0	210.8	200.2	0.5	62.7
Stdev	0.4	431.8	155.3	48.2	25.7	0.2	56.8	70.8	162.8	283.5	0.2	67.1
% < Des	0.0	43.9	53.7	75.6	26.8	63.4	78.0	0.0	73.2	61.0	97.6	48.8
% P	90.2	53.7	39.0	19.5	70.7	36.6	22.0	0.0	26.8	31.7	2.4	0.0
% > Ex P	9.8	2.4	7.3	4.9	2.4	0.0	0.0	0.0	0.0	7.3	0.0	51.2

Taluka : Wa	adgaon ((Maval) (Lonawala	1)								
Min	7.8	142.0	120.0	30.0	10.0	0.0	104.9	128.0	11.0	5.9	0.0	1.7
Max	8.1	201.0	156.2	46.0	11.0	0.0	119.7	146.0	28.0	28.0	0.1	12.0
Average	8.0	171.5	138.1	38.0	10.5	0.0	112.3	137.0	19.5	17.0	0.0	6.9
Stdev	0.2	41.7	25.6	11.3	0.7	0.0	10.4	12.7	12.0	15.6	0.0	7.3
% < Des	0.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Wo	ehle (We	ehle)										
Min	7.8	110.0	72.0	16.0	5.0	0.0	75.4	76.0	14.0	0.4	0.0	1.0
Max	8.4	136.5	95.0	30.0	9.7	0.3	90.2	110.0	42.0	8.0	0.3	35.4
Average	8.1	120.7	84.3	21.5	7.9	0.1	81.7	95.5	23.0	4.0	0.1	13.2
Stdev	0.3	11.3	9.4	6.2	2.2	0.2	7.2	15.0	12.8	3.6	0.1	15.2
% < Des	0.0	100.0	100.0	100.0	100.0	75.0	100.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Bh	or (Nasa	rapur, Bh	olawade,	Bhor)								
Min	7.0	218.2	152.0	24.0	24.0	0.2	76.0	76.0	62.0	33.3	0.2	22.6
Max	7.6	348.8	212.0	36.8	36.0	0.3	112.0	112.0	92.0	66.7	0.4	66.5
Average	7.4	272.0	174.7	30.9	29.2	0.2	96.0	96.0	73.3	47.2	0.3	38.1
Stdev	0.3	68.3	32.6	6.5	6.2	0.1	18.3	18.3	16.3	17.4	0.1	24.6
% < Des	0.0	100.0	100.0	100.0	66.7	66.7	100.0	0.0	100.0	100.0	100.0	66.7
% P	100.0	0.0	0.0	0.0	33.3	33.3	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3

25. RAIGAD

Taluka : Al	0 \	<i>U</i> ,	,	wade, B	ıljı (Um	ta), Chir	ichwad, L	O okawade	Gunjes,	Nagaon, I	Pezarı, F	oynad,			
Revadande,	Revadande, Umate, Veshwi, Zirad)														
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	$\mathbf{F}^{\text{-}}$	NO_3			
Min	7.1	74.1	60.0	16.0	4.8	0.0	72.0	72.0	7.8	1.0	0.0	0.8			
Max	8.7	746.0	408.0	82.0	55.0	0.1	360.0	400.2	135.0	96.0	0.7	19.0			
Average	8.0	353.8	219.5	42.0	27.7	0.0	203.4	211.4	47.1	30.8	0.3	4.6			
Stdev	0.4	177.2	96.0	19.1	15.0	0.0	85.1	98.8	29.7	23.8	0.2	4.5			
% < Des	0.0	82.1	82.1	92.9	60.7	100.0	53.6	0.0	100.0	100.0	100.0	100.0			
% P	92.9	17.9	17.9	7.1	39.3	0.0	46.4	0.0	0.0	0.0	0.0	0.0			
% > Ex P	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

Taluka : K						alamb, K	arjat, Kas	shele, Kha	andas, Ma	angaon W	aredi,				
Neral, Uan	Neral, Uambarkhand, Vadavali, Varai V, Wadavali)														
Min 6.9 156.0 120.0 17.6 11.6 0.0 80.0 36.0 11.0 1.0 0.0 0.0															
Max	8.3	1599.0	640.0	76.9	108.0	0.1	280.3	342.0	705.6	194.0	0.8	38.9			
Average	7.6	339.3	203.3												
Stdev	0.5	271.5	102.2	15.5	18.1	0.0	50.3	67.8	132.3	57.0	0.2	12.5			
% < Des	0.0	96.2	96.2	96.2	88.5	100.0	76.9	0.0	96.2	100.0	100.0	100.0			
% P	100.0	3.8	0.0	3.8	7.7	0.0	23.1	0.0	3.8	0.0	0.0	0.0			
% > Ex P	0.0	0.0	3.8	0.0	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

Taluka : K	halapur	(Chowk,	Hal-Khuı	dh, Karg	aon, Kh	alapur, K	(hopoli)					
Min	7.1	111.3	32.0	9.6	1.9	0.0	40.0	40.0	12.4	0.8	0.0	0.0
Max	8.3	464.8	316.0	56.1	42.4	0.8	308.0	280.0	77.0	101.1	0.8	22.1
Average	7.6	242.4	150.8	31.8	17.2	0.1	146.3	152.5	37.3	24.6	0.3	6.0
Stdev	0.4	109.9	70.0	10.9	12.0	0.2	79.2	74.0	21.7	29.0	0.3	6.2
% < Des	0.0	100.0	92.9	100.0	85.7	92.9	78.6	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	7.1	0.0	14.3	7.1	21.4	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : N	Iahad ((Birvadi,	Chimbha	ve, Dapo	oli, Jite,	Kharava	li, Konza	ır, Mahad	d, Mangh	arun, Nat	e, Talkie	es near,	
Varandha, Vinhere)													
Min	7.3	44.9	48.0	12.8	1.9	0.0	36.0	36.0	5.5	1.0	0.1	0.5	
Max	8.3	5122.3	2973.0	246.0	573.0	0.3	216.0	250.0	3028.0	1475.0	1.0	25.0	
Average	7.8	521.2	278.9	42.4	42.0	0.0	127.2	131.2	174.9	85.3	0.3	8.5	
Stdev	0.3	1149.9	604.1	50.8	117.5	0.1	59.9	63.6	625.0	308.5	0.3	7.7	
% < Des	0.0	91.3	91.3	91.3	78.3	100.0	87.0	0.0	91.3	91.3	100.0	100.0	
% P	100.0	0.0	0.0	4.3	17.4	0.0	13.0	0.0	4.3	4.3	0.0	0.0	
% > Ex P	0.0	8.7	8.7	4.3	4.3	0.0	0.0	0.0	4.3	4.3	0.0	0.0	

Taluka: M	langaon	(Mangao	on, Chand	lore, Gor	egaon, In	dapur, M	(angaon)					
Min	7.4	59.7	35.0	10.0	2.0	0.0	19.7	24.0	11.0	4.0	0.0	0.4
Max	8.6	371.8	248.0	72.1	28.0	0.2	264.0	264.0	60.8	33.0	0.7	12.1
Average	7.8	258.8	168.3	39.7	16.7	0.0	156.4	157.9	37.4	17.4	0.3	4.8
Stdev	0.4	95.6	55.6	15.5	7.8	0.1	56.6	53.5	17.7	8.4	0.2	4.0
% < Des	0.0	100.0	100.0	100.0	100.0	100.0	78.6	0.0	100.0	100.0	100.0	100.0
% P	92.9	0.0	0.0	0.0	0.0	0.0	21.4	0.0	0.0	0.0	0.0	0.0
% > Ex P	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka:		,					nave, Ke	elte, Khai	rivali, Ko	onzar, K	umbale,	Lipani,
Magothane								1	ı		1	1
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl ⁻	SO ₄ -2	F ⁻	NO ₃
Min	6.4	23.0	15.0	4.0	0.0	0.0	9.8	12.0	7.0	1.0	0.0	0.1
Max	8.7	427.1	228.0	70.5	28.0	1.0	224.0	224.0	117.6	23.7	0.9	29.1
Average	7.9	185.8	119.2	28.7	11.5	0.1	125.4	126.3	36.3	5.7	0.4	5.7
Stdev	0.5	99.6	55.4	17.8	7.3	0.2	62.0	60.4	26.3	7.0	0.3	8.0
% < Des	5.0	100.0	100.0	100.0	100.0	95.0	85.0	0.0	100.0	100.0	100.0	100.0
% P	90.0	0.0	0.0	0.0	0.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Taluka : P	anvel (A	Aiivali Ra	mhavi B	aranada	Navade	Nere P	alasne P	anvel Tal	oia Vaie	Wanie)		
Min	6.9	90.0	74.4	10.0	4.8	0.0	50.0	61.0	18.0	1.0	0.1	0.2
Max	8.4	1560.0	600.0	136.3	62.7	0.0	460.0	460.0	352.8	162.9	1.1	19.0
Average	7.6	427.5	243.5	55.1	25.6	0.0	221.4	214.9	79.9	39.8	0.4	6.3
Stdev	0.5	307.0	119.0	28.1	13.8	0.0	99.5	99.1	83.2	39.0	0.4	5.5
% < Des	0.0	72.7	72.7	77.3	68.2	100.0	45.5	0.0	90.9	100.0	95.5	100.0
% \ P	100.0	27.3	27.3	22.7	31.8	0.0	54.5	0.0	9.1	0.0	4.5	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
/0 / LA I	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Taluka :	Pen (G	agote Bk	., Kamar	li, Kuml	bharcha	Kosta E	3k., Pen,	Rameshy	war, Saig	aon Gov	alwadi,	Salinde
Umbarde, V	Vadkhal)											
Min	7.0	102.7	84.0	12.8	3.9	0.0	54.9	67.0	5.9	1.0	0.0	1.0
Max	8.5	2353.5	1643.4	281.0	242.0	0.5	308.0	317.0	1418.0	267.0	0.8	31.8
Average	7.9	500.4	290.4	61.5	33.1	0.0	170.0	173.3	143.2	47.5	0.3	7.2
Stdev	0.5	557.3	343.9	62.4	48.5	0.1	62.6	62.7	332.6	59.2	0.2	7.8
% < Des	0.0	74.1	77.8	88.9	77.8	96.3	55.6	0.0	92.6	96.3	100.0	100.0
% P	100.0	18.5	14.8	3.7	14.8	3.7	44.4	0.0	0.0	3.7	0.0	0.0
% > Ex P	0.0	7.4	7.4	7.4	7.4	0.0	0.0	0.0	7.4	0.0	0.0	0.0
		(D. 11 D.	1 1 \									
Taluka : P			<u> </u>	15.6	7 0	0.0	040	0.4.0		1 10	0.0	
Min	7.4	133.3	72.0	17.6	5.8	0.0	84.0	84.0	9.2	1.0	0.0	0.0
Max	8.2	276.1	206.4	50.0	21.0	0.0	185.2	226.0	44.3	38.0	0.4	23.0
Average	7.8	206.0	140.7	34.8	13.0	0.0	122.4	140.6	27.4	13.3	0.2	12.9
Stdev	0.4	60.6	60.1	13.8	6.8	0.0	38.8	54.2	13.4	14.9	0.1	9.7
% < Des	0.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Taluka : R	aigad (P	hugaon. S	Sochinde	Temple))							
Min	7.4	170.7	140.0	30.0	10.9	0.0	117.2	143.0	17.0	4.0	0.0	2.0
Max	8.1	482.7	328.1	72.0	36.0	0.0	254.9	311.0	99.0	115.0	0.0	30.0
Average	7.9	326.5	228.4	52.3	23.8	0.0	171.7	209.5	49.7	42.6	0.2	12.8
Stdev	0.3	134.7	67.3	15.8	8.9	0.0	49.4	60.3	29.1	45.8	0.2	12.1
% < Des	0.0	100.0	85.7	100.0	71.4	100.0	71.4	0.0	100.0	100.0	100.0	100.0
% Des	1.00.0	100.0	05.7	100.0	71.4	100.0	71.4	0.0	100.0	100.0	100.0	100.0

% P

% > Ex P

100.0

0.0

14.3

0.0

0.0

0.0

0.0

0.0

28.6

0.0

0.0

0.0

28.6

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Taluka : R	loha (Du	rtodi Suta	ırwadi, K			Kolad, N	agotane, l	Roha, Sav	anewadi))		
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO ₄ -2	F ⁻	NO ₃
Min	7.3	135.9	68.0	9.6	3.9	0.0	68.0	68.0	18.0	0.3	0.0	0.0
Max	8.4	335.4	264.0	57.7	28.9	0.1	260.0	262.0	49.0	51.0	0.7	10.3
Average	8.0	241.8	168.9	38.4	17.7	0.0	157.1	166.3	34.0	16.9	0.2	3.4
Stdev	0.4	53.8	49.0	11.6	7.5	0.0	50.8	60.6	10.2	15.7	0.2	2.8
% < Des	0.0	100.0	100.0	100.0	100.0	100.0	72.7	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	0.0	27.3	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: S	udhagad	l (Jambhu	ılpada, Pa	ali, Varad	jambhul	pada)						
Min	7.5	129.0	100.0	22.4	9.7	0.0	100.0	122.0	18.0	1.0	0.0	1.0
Max	8.0	356.9	297.0	60.0	43.0	0.0	250.0	305.0	71.0	24.0	0.6	14.0
Average	7.8	303.3	187.7	41.9	20.1	0.0	173.4	204.8	48.2	11.4	0.3	5.5
Stdev	0.2	98.1	75.3	17.6	13.7	0.0	55.9	72.9	23.1	9.6	0.2	5.3
% < Des	0.0	100.0	100.0	100.0	80.0	100.0	60.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	20.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : S	hrivardl	nan (Aad	agaon, Bl	nanrdako	l, Borli, S	Shrivardh	an)					
Min	7.5	119.6	60.0	16.0	4.8	0.0	80.0	80.0	39.0	1.0	0.1	0.0
Max	8.2	457.0	336.0	76.9	41.5	0.1	316.0	316.0	105.6	30.0	0.8	35.8
Average	7.8	313.5	202.7	46.5	20.9	0.0	197.8	197.7	59.7	9.8	0.3	7.0
Stdev	0.3	98.9	85.3	21.0	9.9	0.0	65.5	65.5	24.2	9.5	0.3	11.2
% < Des	0.0	100.0	88.9	88.9	88.9	100.0	66.7	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	11.1	11.1	11.1	0.0	33.3	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: T	Cala (Ma	ndad, Pac	dhavan)									
Min	7.1	174.2	148.0	35.3	14.5	0.0	200.0	200.0	41.8	1.0	0.1	1.6
Max	8.2	588.9	360.0	64.1	51.1	0.2	352.0	352.0	149.6	38.8	0.6	8.8
Average	7.8	336.7	269.0	52.5	33.3	0.1	278.0	278.0	95.4	13.7	0.2	4.5
Stdev	0.5	179.9	88.3	12.6	15.2	0.1	67.4	67.4	49.8	17.2	0.2	3.1
% < Des	0.0	75.0	75.0	100.0	25.0	100.0	0.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	25.0	25.0	0.0	75.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : U	J ran (Jas	ai, Karanj	ja, Uran)									
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO ₄ -2	F ⁻	NO ₃
Min	7.2	135.2	160.0	28.9	14.5	0.0	156.0	92.0	37.4	1.0	0.1	0.6
Max	8.3	611.0	236.0	52.9	25.1	0.0	240.0	200.0	98.0	60.0	0.1	13.6
Average	8.0	361.5	182.4	40.1	19.9	0.0	188.8	161.6	68.4	31.8	0.1	6.0
Stdev	0.5	171.1	30.8	9.7	4.3	0.0	34.6	41.6	21.9	28.7	0.0	5.2
% < Des	0.0	80.0	100.0	100.0	100.0	100.0	60.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	20.0	0.0	0.0	0.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : M	Iurud (B	arshiv, C	hikani, C	horde, D	ongari, N	Iurud, Na	andagaon)				
Min	6.4	117.0	24.0	3.2	3.9	0.0	20.0	20.0	19.6	1.0	0.1	0.0
Max	8.3	546.0	288.0	54.5	40.8	0.5	256.0	256.0	155.0	34.0	0.4	14.8
Average	7.9	329.6	180.0	36.0	21.8	0.1	167.7	161.5	60.6	9.8	0.2	2.5
Stdev	0.5	140.0	77.0	15.6	11.5	0.1	67.7	73.9	45.3	12.8	0.2	4.0
% < Des	7.7	84.6	100.0	100.0	84.6	92.3	53.8	0.0	100.0	100.0	100.0	100.0
% P	92.3	15.4	0.0	0.0	15.4	7.7	46.2	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

26. RATNAGIRI

Taluka : Cl	nipalun	(Agave, I	Bamnoli,	Bhom, (Chiplun,	Kalkava	ane, Kam	athe, Kha	ndala Sat	wade, Ko	lambe, l	Kutare,			
Lanja, Margtamhane, Mervi, Murtavada, Niwali, Owali, Pophali, Sawarde, Valope, Veer, Yegaon)															
	'Ph														
Min	7.1	63.7	24.0	3.2	1.9	0.0	28.8	0.0	3.5	0.2	0.0	0.0			
Max	8.3	330.0	188.0	62.5	33.7	0.5	208.0	208.0	64.0	16.4	0.5	18.0			
Average	7.5	150.6	94.3	21.9	9.6	0.1	93.4	97.3	20.8	3.8	0.1	3.4			

					0							ū
Min	7.1	63.7	24.0	3.2	1.9	0.0	28.8	0.0	3.5	0.2	0.0	0.0
Max	8.3	330.0	188.0	62.5	33.7	0.5	208.0	208.0	64.0	16.4	0.5	18.0
Average	7.5	150.6	94.3	21.9	9.6	0.1	93.4	97.3	20.8	3.8	0.1	3.4
Stdev	0.3	69.6	40.1	12.9	6.4	0.1	45.6	50.5	13.8	3.7	0.1	4.3
% < Des	0.0	100.0	100.0	100.0	97.9	97.9	93.8	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	2.1	2.1	6.3	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Da	poli (Da	bhol, Dap	oli, Harna	ai, Karar	ijali, Kav	vadoli, K	Lumbhave	, Kumble,	Nante, C	ni, Palgad	d, Unhav	rare)
Min	6.8	33.1	8.0	1.6	1.0	0.0	7.2	7.2	3.9	0.1	0.0	0.0
Max	8.0	395.2	330.0	62.0	49.0	0.4	300.0	366.0	46.0	17.7	0.9	68.0
Average	7.4	134.0	88.1	16.9	11.1	0.0	80.8	85.9	18.9	3.6	0.2	4.1
Stdev	0.3	81.6	69.2	11.8	10.4	0.1	61.8	71.1	10.3	3.4	0.2	11.0
% < Des	0.0	100.0	95.2	100.0	92.9	95.2	95.2	0.0	100.0	100.0	100.0	97.6
% P	100.0	0.0	4.8	0.0	7.1	4.8	4.8	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4

Taluka : Gu	ıhagar (Abloli, D	hopave, C	Guhagar,	Jambha	ri, Kalka	vane, Ka	mathe, Ka	undher, k	Kotluk, Ko	oundar, l	Kutare,	
Taluka : Guhagar (Abloli, Dhopave, Guhagar, Jambhari, Kalkavane, Kamathe, Kaundher, Kotluk, Koundar, Kutare, Palshet, Pimpar, Pomendi (Kh), Shingartale, Valop, Vankhed, Velamb)													
Min 6.3 28.0 20.0 4.0 1.9 0.0 14.8 18.0 2.0 0.2 0.0 0.0													
Max	7.9	242.5	160.0	36.0	22.1	0.4	125.4	153.0	235.0	240.8	0.5	35.0	
Average	7.4	109.4	76.0	14.7	9.5	0.0	61.9	66.4	23.5	10.0	0.1	4.0	
Stdev	0.4	54.7	35.1	8.5	5.6	0.1	30.2	32.5	35.7	36.7	0.1	5.9	
% < Des	4.8	100.0	100.0	100.0	100.0	97.6	100.0	0.0	100.0	97.6	100.0	100.0	
% P	95.2	0.0	0.0	0.0	0.0	2.4	0.0	0.0	0.0	2.4	0.0	0.0	
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Taluka : Ko	ehd (Ast	than, Ava	shi, Bhel	sai, Chio	chghar, I	Dabhil, I	Dasturi, D	Devghar, C	Gunade, J	akadevi,	Kalvane,	, Karji,	
Khavati, Khed, Khopi, Lavel, Lote, Shivthar, Tisangi, Veral, Wave)													
Min	6.8	23.0	15.0	2.0	1.9	0.0	9.8	4.0	3.9	0.1	0.0	0.0	
Max	9.9	254.0	195.0	49.6	28.7	5.0	184.0	184.0	55.0	25.0	0.9	60.0	
Average	7.7	117.5	80.8	17.1	9.2	0.1	70.8	72.3	16.8	3.5	0.1	3.2	
Stdev	0.7	50.1	36.5	11.6	6.7	0.8	37.3	35.4	9.2	4.4	0.2	2.7	
% < Des	0.0	100.0	100.0	100.0	100.0	98.5	100.0	0.0	100.0	100.0	100.0	98.5	
% P	92.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
% > Ex P	7.6	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	1.5	

Taluka: Ma	andanga	rh (Devh	are, Kuml	bale, Ma	ndangar	h, Shipol	le, Velas)					
Min	7.1	85.0	20.0	6.4	1.0	0.0	10.8	10.8	3.9	1.0	0.0	0.0
Max	7.9	222.7	140.0	36.9	19.3	0.1	160.0	160.0	37.4	10.3	0.8	9.5
Average	7.5	136.3	81.0	20.2	7.4	0.0	86.6	90.3	17.5	3.1	0.3	2.9
Stdev	0.2	37.4	31.0	8.1	5.5	0.0	33.8	34.1	8.4	2.3	0.2	2.6
% < Des	0.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Rajapur (Aravali, Bhom, Date, Dervan, Guhaghar, Jaitapur, Kalkavane, Kandye T.S., Karel, Konde, Koundar, Kutare, Mandrul, Moroshi, Murtvade, Nate, Pachal, Rajapur, Shede/Sade, Solgaon, Tamhane, Volape, Yegaon, Yerdav)

	'Ph	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	Cl	SO ₄ -2	F ⁻	NO ₃
Min	6.1	47.8	24.0	3.2	2.0	0.0	16.0	16.0	3.9	0.0	0.0	0.0
Max	8.2	3438.5	680.0	104.2	101.2	0.6	464.0	464.0	2376.0	138.0	0.8	28.5
Average	7.5	192.7	89.5	20.9	9.1	0.1	81.7	83.8	80.0	6.8	0.2	3.9
Stdev	0.4	480.8	91.9	16.0	14.0	0.1	66.4	65.5	342.5	20.5	0.2	6.0
% < Des	4.2	97.9	97.9	97.9	97.9	93.8	97.9	0.0	95.8	100.0	100.0	100.0
% P	95.8	0.0	0.0	2.1	0.0	6.3	2.1	0.0	2.1	0.0	0.0	0.0
% > Ex P	0.0	2.1	2.1	0.0	2.1	0.0	0.0	0.0	2.1	0.0	0.0	0.0

Taluka: Ratnagiri (Ambed Budruk, Dugvay, Golap, Jaigad, Jakadevi, Jalgaon, Kasarveli, Kasheli, Khedashi, Kolmbe, Kotavade, Malgund, Mervi, Nevare, Ratnagiri, Sadye, Vakarli, Valops Pudhwadi, Vandri) 2.0 Min 7.0 21.0 14.9 1.9 0.0 9.8 12.0 3.9 0.1 0.0 Max 8.6 525.9 196.0 50.0 18.3 0.2 180.0 180.0 147.0 40.0 0.7 434.0 7.6 142.3 75.5 18.8 6.9 0.0 64.9 67.2 23.9 8.4 0.1 12.9 Average Stdev 0.4 100.1 41.0 11.3 4.6 0.0 29.7 29.5 24.0 11.8 0.2 55.0 % < Des 0.0 98.4 100.0 100.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 96.8 % P 96.8 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 % > Ex P3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2

Taluka: Sa	angames	shwar (A	murshi, A	Ambed,	Ambed	Bk., Ar	avali, Da	bhole, De	evrukh, D	Dhamni, N	Maral, M	Iuchari			
(Bhatadewad	(Bhatadewadi), Murshi, Nayari, Sakarpa, Vandri)														
Min	6.6	41.8	24.0	4.8	1.9	0.0	18.0	17.9	2.0	0.6	0.0	0.4			
Max	8.3	185.0	145.0	44.0	14.5	0.6	150.0	183.0	95.0	9.3	0.5	33.5			
Average	7.6	115.5	67.7	15.7	6.9	0.1	64.8	67.6	20.2	2.3	0.1	5.3			
Stdev	0.4	38.3	31.2	10.6	3.7	0.1	33.9	38.9	16.5	2.1	0.1	7.9			
% < Des	0.0	100.0	100.0	100.0	100.0	97.1	100.0	0.0	100.0	100.0	100.0	100.0			
% P	100.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0			
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

Taluka : La	nja (Bha	ımbed, La	ınja, Math	1)								
Min	6.7	57.2	56.0	6.4	1.9	0.0	36.0	36.0	4.0	0.9	0.1	0.1
Max	7.9	156.0	88.0	28.9	10.6	0.5	84.0	84.0	33.0	5.0	0.1	15.4
Average	7.2	96.3	66.9	17.2	5.8	0.1	54.9	54.9	18.3	1.6	0.1	4.9
Stdev	0.4	35.2	13.8	8.8	2.8	0.2	17.4	17.4	8.9	1.5	0.0	5.1
% < Des	0.0	100.0	100.0	100.0	100.0	85.7	100.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	14.3	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

27. SANGLI

Taluka: At	padi (A	tapadi, Ba	alewade, I	Dhavadv	vadi, Dig	ghanchi,	Ghanand	, Gomewa	di, Hivat	had, Karg	ani, Kha	arsundi,
Parekarwadi	, Pimpri	Kh., Puja	rwadi, Ra	ımnagara	a, Shetph	nale, Um	bargaon,	Vibhutwa	di, Vithal	pur, Zare)		
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃

	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl ⁻	SO_4^{-2}	F ⁻	NO ₃
Min	7.1	199.7	114.1	16.0	6.0	0.0	40.0	40.0	32.0	3.1	0.2	0.4
Max	9.2	1260.6	679.5	144.0	91.0	0.6	390.0	475.8	414.0	536.0	1.3	70.9
Average	8.0	579.3	285.9	61.5	38.0	0.2	231.7	241.2	159.7	61.9	0.7	16.3
Stdev	0.5	271.2	132.5	33.5	23.7	0.2	79.3	87.3	98.9	98.1	0.2	19.7
% < Des	0.0	56.3	71.9	75.0	53.1	62.5	31.3	0.0	87.5	93.8	90.6	87.5
% P	81.3	43.8	25.0	25.0	46.9	37.5	68.8	0.0	12.5	3.1	9.4	0.0
% > Ex P	18.8	0.0	3.1	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	12.5

Taluka : Isla	ampur (Takari)										
Min	7.8	618.2	413.9	24.0	55.9	0.0	335.2	409.0	92.3	5.0	0.4	42.2
Max	8.1	702.2	435.0	82.0	86.0	0.0	455.0	555.1	124.0	56.2	0.4	98.0
Average	8.0	660.2	424.5	53.0	70.9	0.0	395.1	482.1	108.2	30.6	0.4	70.1
Stdev	0.2	59.4	14.9	41.0	21.3	0.0	84.7	103.3	22.4	36.2	0.0	39.5
% < Des	0.0	0.0	0.0	50.0	0.0	100.0	0.0	0.0	100.0	100.0	100.0	50.0
% P	100.0	100.0	100.0	50.0	100.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0

Taluka : Jath (Bagewadi, Bavnoor, Bilur, Borgi bk., Daphlapur, Deonal, Dhavadwadi, Jadarbablad, Jath, Karanjani, Khojanwadi, Kumbhari, Lavangi, Morbagi, Muchandi, Nigdi kh., Sankh, Shegaon, Sinhgnapur, Tippehalli, Utagi, Vaspet, Waifal)

	/											
Min	7.2	245.1	76.0	16.0	-6.1	0.0	56.0	56.0	50.0	16.1	0.1	0.9
Max	8.8	3283.2	1812.0	512.0	264.0	0.7	435.0	530.7	1090.0	1184.0	1.3	290.0
Average	7.9	863.7	432.0	110.8	42.7	0.3	186.9	199.0	225.8	219.3	0.6	58.1
Stdev	0.3	638.2	344.7	90.6	48.6	0.2	79.7	96.1	204.5	249.8	0.3	77.7
% < Des	0.0	26.4	39.6	41.5	64.2	52.8	54.7	0.0	75.5	66.0	84.9	69.8
% P	98.1	67.9	37.7	45.3	26.4	47.2	45.3	0.0	20.8	18.9	15.1	0.0
% > Ex P	1.9	5.7	22.6	13.2	9.4	0.0	0.0	0.0	3.8	15.1	0.0	30.2

Taluka : Ka	degaon	(Kadepur	, Khamba	le, Kum	bhargaoi	ı, Soholi	, Sonasal,	, Wangi)				
Min	7.4	96.6	68.0	16.0	7.3	0.0	40.0	40.0	52.0	8.1	0.2	0.9
Max	8.4	850.1	315.5	94.0	39.0	0.6	450.0	549.0	110.0	49.0	0.7	70.7
Average	7.8	296.6	179.2	41.0	21.8	0.3	150.2	164.9	75.7	26.4	0.5	17.6
Stdev	0.3	227.3	75.6	23.6	10.6	0.2	122.6	153.5	20.2	15.9	0.2	25.6
% < Des	0.0	88.9	88.9	88.9	77.8	55.6	88.9	0.0	100.0	100.0	100.0	77.8
% P	100.0	11.1	11.1	11.1	22.2	44.4	11.1	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.2

Taluka : K	avather	nahankal	l (Alkud,	Choroc	hi, Desł	ninge, D	hudhebha	ıvi, Dhula	agaon, D	udhebhavi	i, Hinga	ngaon,
Karewadi, K	avathem	ahankal, i	Kerewadi	, Kokale	, Kuchi,	Kundalp	our, Nagaj	, Nimaj, F	Ranjani, S	arati, Shir	dhon)	
Min	7.1	174.1	132.0	22.4	3.6	0.0	56.0	46.0	50.0	1.8	0.1	1.8
Max	8.3	3104.0	1612.0	536.0	223.2	0.9	832.0	832.0	800.0	1650.0	1.2	256.0
Average	7.7	781.6	428.3	102.4	49.6	0.3	244.1	251.1	205.5	145.8	0.6	46.6
Stdev	0.4	650.3	348.4	97.0	44.4	0.2	150.0	153.1	186.9	317.5	0.3	56.4
% < Des	0.0	37.5	40.6	40.6	37.5	50.0	37.5	0.0	75.0	87.5	78.1	78.1
% P	100.0	56.3	46.9	53.1	56.3	50.0	59.4	0.0	25.0	6.3	21.9	0.0
% > Ex P	0.0	6.3	12.5	6.3	6.3	0.0	3.1	0.0	0.0	6.3	0.0	21.9

Taluka : Khanapur (Belavade, Bhaurachi Wadi, Bhood, Bombewadi, Ghoti Kh., Hanumantwadi, Karanje, Karve, Khanapur, Mahuli, Mitaki, Nagewadi, Palashi, Pandharewadi, Salshinge, Sulewadi, Vejegaon, Vita, Walkhed, Wangi, Zare)

	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl.	SO_4^{-2}	F ⁻	NO ₃
Min	7.5	84.5	56.0	12.8	2.4	0.0	40.0	40.0	18.0	1.8	0.1	0.4
Max	9.3	1278.2	860.0	248.0	123.6	0.7	425.0	518.5	510.0	316.0	0.8	64.0
Average	8.3	443.7	232.6	52.9	28.0	0.3	148.5	160.4	143.5	62.1	0.4	14.4
Stdev	0.4	330.7	174.9	48.9	22.8	0.2	77.2	98.6	130.7	76.6	0.2	16.5
% < Des	0.0	79.3	82.8	82.8	55.2	37.9	79.3	0.0	82.8	93.1	100.0	93.1
% P	75.9	20.7	10.3	13.8	41.4	62.1	20.7	0.0	17.2	6.9	0.0	0.0
% > Ex P	24.1	0.0	6.9	3.4	3.4	0.0	0.0	0.0	0.0	0.0	0.0	6.9

Taluka : Miraj (Arag, Belanki, Dhavali, Dudhagaon, Kalambi, Kasbe Digraj, Kavalapur, Kavathepiran, Kupwad, Madhavanagar, Mahaishal, Mahdavanagara, Maisal, Nandre, Samdoli, Sangli, Savalwadi, Soholi, Tisangi, Tung, Walkhed)

F												
Min	7.2	105.0	100.0	16.0	-15.6	0.0	40.0	40.0	36.0	4.7	0.1	2.2
Max	8.4	4012.8	1400.0	316.8	228.0	0.9	312.0	353.8	854.0	410.0	0.9	230.4
Average	7.7	989.3	409.8	99.1	48.2	0.3	163.9	165.1	229.1	120.6	0.4	53.7
Stdev	0.3	877.5	265.7	70.7	49.8	0.2	77.6	82.7	187.4	104.3	0.2	52.1
% < Des	0.0	22.2	33.3	48.1	44.4	55.6	66.7	0.0	66.7	88.9	100.0	51.9
% P	100.0	66.7	51.9	44.4	48.1	44.4	33.3	0.0	33.3	7.4	0.0	0.0
% > Ex P	0.0	11.1	14.8	7.4	7.4	0.0	0.0	0.0	0.0	3.7	0.0	48.1

Taluka : Pa	lus (Ban	nbwade, B	hilwadi/I	Palus, Ku	ındal, W	asagade))					
Min	7.2	359.9	120.0	40.0	6.0	0.0	56.0	56.0	60.0	12.0	0.1	0.4
Max	8.2	1337.6	536.0	150.4	48.0	1.9	300.0	366.0	350.0	372.0	0.6	110.8
Average	7.9	793.6	363.0	105.5	27.7	0.5	173.7	193.2	149.1	137.2	0.4	44.6
Stdev	0.4	356.3	158.4	49.1	16.7	0.7	85.1	112.5	110.7	125.9	0.2	37.8
% < Des	0.0	16.7	33.3	33.3	50.0	50.0	66.7	0.0	83.3	83.3	100.0	50.0
% P	100.0	83.3	66.7	66.7	50.0	33.3	33.3	0.0	16.7	16.7	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	16.7	0.0	0.0	0.0	0.0	0.0	50.0

Taluka: Shirala (Bilashi, Biur/Wakurde Bk., Chikhali, Chikhalwadi, Mandur, Mangle, Rile, Sawantwadi, Shirala, Sirshi) Min 7.3 83.2 52.0 12.8 1.2 0.0 60.0 60.0 30.0 2.2 0.1 0.4 8.7 37.2 1.9 91.3 1.1 Max 517.1 340.0 128.0 156.0 156.0 340.0 53.2 163.7 18.4 122.9 25.0 Average 8.1 275.3 40.6 0.4 122.6 99.9 0.6 21.2 Stdev 0.4 175.3 96.0 34.9 11.5 0.5 33.9 33.9 28.3 0.4 19.1 86.0 % < Des 0.0 81.8 81.8 81.8 90.9 54.5 100.0 0.0 90.9 100.0 72.7 90.9 % P 90.9 18.2 18.2 18.2 9.1 0.0 27.3 36.4 0.0 9.1 0.0 0.0 % > Ex P0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.1 9.1 9.1 0.0

Taluka : So	uth Sola	pur (Vals	sang)									
Min	7.7	466.2	220.0	68.0	12.2	0.0	109.8	134.0	35.5	109.0	0.4	19.8
Max	8.0	1314.2	900.0	252.0	78.0	0.0	220.0	268.4	220.0	571.0	0.6	44.0
Average	7.9	1018.5	645.3	172.7	52.1	0.0	159.9	195.1	151.5	413.3	0.5	32.6
Stdev	0.2	478.7	370.7	94.6	35.1	0.0	55.8	68.0	101.0	263.6	0.1	12.1
% < Des	0.0	33.3	33.3	33.3	33.3	100.0	66.7	0.0	100.0	33.3	100.0	100.0
% P	100.0	66.7	0.0	33.3	66.7	0.0	33.3	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	66.7	33.3	0.0	0.0	0.0	0.0	0.0	66.7	0.0	0.0

Taluka: Ta	sgaon (I	Buruli, Ga	van, Kam	athe, Pa	nmalewa	di, Tasg	gaon, Turc	hi, Waifa	le, Yevali	, Yogewa	di)	
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl ⁻	SO_4^{-2}	F-	NO ₃
Min	7.6	88.3	120.0	24.0	4.8	0.0	40.0	40.0	35.5	10.0	0.1	5.0
Max	8.5	2400.8	1625.0	414.0	143.4	0.8	290.0	353.8	1171.5	289.0	0.8	186.1
Average	8.0	855.1	448.6	121.9	37.5	0.3	167.0	175.8	314.3	100.6	0.3	52.3
Stdev	0.3	726.3	475.5	114.9	47.0	0.3	78.4	94.3	364.2	87.5	0.2	58.2
% < Des	0.0	41.7	50.0	41.7	83.3	58.3	66.7	0.0	66.7	83.3	100.0	58.3
% P	100.0	50.0	33.3	41.7	0.0	41.7	33.3	0.0	25.0	16.7	0.0	0.0
% > Ex P	0.0	8.3	16.7	16.7	16.7	0.0	0.0	0.0	8.3	0.0	0.0	41.7

Taluka: Walwa (Ashta, Bahe, Bavachi, Borgaon, Hubalwadi, Itkare, Nave khed, Nerle, Peth, Rethre, Sakharale,												
Shivapuri, Tandulwadi, Tujarpur, Walwa, Wategaon, Yednipani, Yellur)												
Min	7.0	143.4	40.0	16.0	-3.6	0.0	72.0	72.0	25.0	1.0	0.1	1.8
Max	8.4	697.4	503.1	124.0	70.0	0.8	360.0	439.2	212.0	128.6	0.8	81.0
Average	7.9	361.7	239.7	53.4	28.6	0.1	178.0	198.6	87.1	33.5	0.4	19.5
Stdev	0.4	171.6	116.6	33.3	17.4	0.2	81.3	108.5	49.8	37.3	0.2	17.0
% < Des	0.0	76.0	72.0	72.0	64.0	88.0	64.0	0.0	100.0	100.0	100.0	96.0
% P	100.0	24.0	28.0	28.0	36.0	12.0	36.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0

28. SATARA

Taluka : Javali (Javali, Medha)												
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F	NO ₃
Min	7.6	139.5	88.0	17.6	12.0	0.0	68.0	68.0	21.0	2.0	0.2	0.5
Max	8.6	779.4	420.0	58.0	66.8	0.4	540.0	658.8	206.0	64.0	0.7	60.7
Average	8.2	480.5	215.6	29.2	37.2	0.2	343.0	376.2	96.3	29.5	0.4	17.8
Stdev	0.4	327.9	142.7	19.3	23.2	0.2	229.4	264.9	82.1	31.7	0.2	28.9
% < Des	0.0	50.0	75.0	100.0	50.0	75.0	25.0	0.0	100.0	100.0	100.0	75.0
% P	75.0	50.0	25.0	0.0	50.0	25.0	75.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0

Taluka : Ka	Taluka: Karad (Beldare, Gote, Kale, Kambirwadi, Karad, Khadakwadi, Korti, Malkapur, Mhapre, Padali,												
Rethare bk., Saudapur/Sadashivgad, Savade, Talbeed, Umbraj, Undale, Varade, Wanvasmachi)													
Min	7.5	70.2	54.8	9.6	3.6	0.0	40.3	37.0	7.0	4.0	0.0	0.0	
Max	9.0	742.4	425.0	120.0	82.8	0.6	348.0	384.0	306.0	108.0	1.3	70.9	
Average	8.3	285.0	198.9	34.7	31.7	0.2	193.6	206.3	61.1	26.6	0.7	21.3	
Stdev	0.4	160.4	101.5	27.2	16.4	0.2	85.5	100.6	62.9	21.9	0.4	19.6	
% < Des	0.0	87.5	83.3	91.7	37.5	66.7	62.5	0.0	95.8	100.0	79.2	87.5	
% P	70.8	12.5	16.7	8.3	62.5	33.3	37.5	0.0	4.2	0.0	20.8	0.0	
% > Ex P	29.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.5	

Taluka: Khandala (Bhade, Ghadagewadi, Khandala, Khed Bk., Koparde, Lonand, Naigaon, Shirval, Surur)												
Min	7.4	70.4	96.0	18.0	-6.0	0.0	60.0	60.0	40.0	3.8	0.3	0.9
Max	8.3	764.0	499.0	89.6	77.0	0.4	480.0	585.6	220.0	61.9	0.9	94.0
Average	7.9	411.8	229.6	52.1	25.7	0.2	201.9	226.3	95.9	32.1	0.6	20.2
Stdev	0.3	197.4	119.5	20.7	24.8	0.1	133.0	171.0	56.5	16.8	0.2	26.9
% < Des	0.0	61.5	69.2	84.6	61.5	69.2	69.2	0.0	100.0	100.0	100.0	80.8
% P	100.0	38.5	30.8	15.4	38.5	30.8	30.8	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.2

Taluka: Khatav (Aundh, Bhushangad, Budh, Chitali, Datewadi, Katar Khatav, Kokrale, Kuroli S., Lalgun, Manjarvadi (Mol), Mayani, Mol, Musandwadi, Pusegaon, Pusesavali, Waduj Satewadi, Wakeshwar, Wardhangad, Yeliv) Min 72.3 52.0 16.0 2.4 0.0 88.0 20.0 0.2 7.4 88.0 1.6 0.0 836.0 Max 8.8 1888.0 545.0 105.6 79.2 1.4 435.0 530.7 550.0 1.2 111.0 Average 8.1 368.9 209.8 46.7 24.7 0.1 193.7 206.0 105.8 42.9 0.7 22.4 Stdev 133.5 0.3 108.7 0.3 0.3 386.5 26.9 21.9 87.0 110.8 167.6 29.2 72.0 92.0 % < Des 0.0 76.0 80.0 84.0 84.0 68.0 0.0 96.0 88.0 84.0 % P 92.0 24.0 20.0 16.0 28.0 12.0 32.0 0.0 8.0 12.0 0.0 0.0 % > Ex P8.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 4.0 0.0 16.0

tation	Taluka: Koregaon (Chanchali, Eksal, Jamb Kh., Koregaon, Pimpode Bk, Rahimatpur, Rehmatpur, Satara Rd,														
Surli, Wathar Station)															
7.6	115.8	112.0	11.2	11.0	0.0	64.8	79.0	14.0	1.8	0.1	0.1				
9.2	887.8	489.0	126.0	82.8	1.9	490.0	597.8	266.0	82.0	1.0	68.0				
8.4	355.5	232.6	37.4	39.0	0.4	210.2	227.8	93.9	27.8	0.7	25.3				
0.5	205.9	110.0	29.9	19.6	0.5	90.9	120.5	75.0	26.6	0.3	25.2				
0.0	76.9	73.1	84.6	46.2	53.8	42.3	0.0	96.2	100.0	92.3	73.1				
69.2	23.1	26.9	15.4	53.8	30.8	57.7	0.0	3.8	0.0	7.7	0.0				
30.8	0.0	0.0	0.0	0.0	15.4	0.0	0.0	0.0	0.0	0.0	26.9				
ϵ	'Ph 7.6 9.2 8.4 0.5 0.0 69.2	'Ph TDS 7.6 115.8 9.2 887.8 8.4 355.5 0.5 205.9 0.0 76.9 59.2 23.1	'Ph TDS TH 7.6 115.8 112.0 9.2 887.8 489.0 8.4 355.5 232.6 0.5 205.9 110.0 0.0 76.9 73.1 59.2 23.1 26.9	'Ph TDS TH Ca ²⁺ 7.6 115.8 112.0 11.2 9.2 887.8 489.0 126.0 8.4 355.5 232.6 37.4 0.5 205.9 110.0 29.9 0.0 76.9 73.1 84.6 59.2 23.1 26.9 15.4	'Ph TDS TH Ca ²⁺ Mg ²⁺ 7.6 115.8 112.0 11.2 11.0 9.2 887.8 489.0 126.0 82.8 8.4 355.5 232.6 37.4 39.0 0.5 205.9 110.0 29.9 19.6 0.0 76.9 73.1 84.6 46.2 59.2 23.1 26.9 15.4 53.8	'Ph TDS TH Ca²+ Mg²+ Fe 7.6 115.8 112.0 11.2 11.0 0.0 9.2 887.8 489.0 126.0 82.8 1.9 8.4 355.5 232.6 37.4 39.0 0.4 0.5 205.9 110.0 29.9 19.6 0.5 0.0 76.9 73.1 84.6 46.2 53.8 59.2 23.1 26.9 15.4 53.8 30.8	'Ph TDS TH Ca ²⁺ Mg ²⁺ Fe TA 7.6 115.8 112.0 11.2 11.0 0.0 64.8 9.2 887.8 489.0 126.0 82.8 1.9 490.0 8.4 355.5 232.6 37.4 39.0 0.4 210.2 0.5 205.9 110.0 29.9 19.6 0.5 90.9 0.0 76.9 73.1 84.6 46.2 53.8 42.3 59.2 23.1 26.9 15.4 53.8 30.8 57.7	'Ph TDS TH Ca ²⁺ Mg ²⁺ Fe TA HCO3 7.6 115.8 112.0 11.2 11.0 0.0 64.8 79.0 9.2 887.8 489.0 126.0 82.8 1.9 490.0 597.8 8.4 355.5 232.6 37.4 39.0 0.4 210.2 227.8 0.5 205.9 110.0 29.9 19.6 0.5 90.9 120.5 0.0 76.9 73.1 84.6 46.2 53.8 42.3 0.0 59.2 23.1 26.9 15.4 53.8 30.8 57.7 0.0	'Ph TDS TH Ca ²⁺ Mg ²⁺ Fe TA HCO3 Cl' 7.6 115.8 112.0 11.2 11.0 0.0 64.8 79.0 14.0 9.2 887.8 489.0 126.0 82.8 1.9 490.0 597.8 266.0 8.4 355.5 232.6 37.4 39.0 0.4 210.2 227.8 93.9 0.5 205.9 110.0 29.9 19.6 0.5 90.9 120.5 75.0 0.0 76.9 73.1 84.6 46.2 53.8 42.3 0.0 96.2 59.2 23.1 26.9 15.4 53.8 30.8 57.7 0.0 3.8	'Ph TDS TH Ca ²⁺ Mg ²⁺ Fe TA HCO3 Cl ⁻ SO ₄ - ² 7.6 115.8 112.0 11.2 11.0 0.0 64.8 79.0 14.0 1.8 9.2 887.8 489.0 126.0 82.8 1.9 490.0 597.8 266.0 82.0 8.4 355.5 232.6 37.4 39.0 0.4 210.2 227.8 93.9 27.8 0.5 205.9 110.0 29.9 19.6 0.5 90.9 120.5 75.0 26.6 0.0 76.9 73.1 84.6 46.2 53.8 42.3 0.0 96.2 100.0 59.2 23.1 26.9 15.4 53.8 30.8 57.7 0.0 3.8 0.0	'Ph TDS TH Ca²+ Mg²+ Fe TA HCO3 Cl' SO₄-² F° 7.6 115.8 112.0 11.2 11.0 0.0 64.8 79.0 14.0 1.8 0.1 9.2 887.8 489.0 126.0 82.8 1.9 490.0 597.8 266.0 82.0 1.0 8.4 355.5 232.6 37.4 39.0 0.4 210.2 227.8 93.9 27.8 0.7 0.5 205.9 110.0 29.9 19.6 0.5 90.9 120.5 75.0 26.6 0.3 0.0 76.9 73.1 84.6 46.2 53.8 42.3 0.0 96.2 100.0 92.3 59.2 23.1 26.9 15.4 53.8 30.8 57.7 0.0 3.8 0.0 7.7				

Taluka: Ma	ahabales	war (Bho	se, Maha	abaleshy	var, Pan	chagani	i)					
Min	7.3	26.2	20.0	6.4	1.2	0.0	24.0	24.0	3.5	0.4	0.0	0.0
Max	8.5	131.8	124.0	28.8	15.6	1.2	95.1	116.0	52.0	12.3	0.5	27.9
Average	8.0	84.0	63.5	16.4	5.9	0.2	47.0	54.5	21.7	5.1	0.2	10.3
Stdev	0.3	35.1	31.4	7.8	4.2	0.4	23.2	29.1	14.9	4.3	0.2	10.3
% < Des	0.0	100.0	100.0	100.0	100.0	77.8	100.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	11.1	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	11.1	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Ma	n (Dahi	vadi) (Bid	lal, Dahiv	vadi, Dh	uldeo, D	iwad, Ka	asarwadi,	Malwadi,	Mhasvad	, Mograle	, Pandha	arwadi,		
Pingli, Ranai	Pingli, Ranand, Shenawadi, Shinde kh., Shinganapur, Shirtav, Takewadi, Walai, Warkute Malwadi, Wavarhire)													
Min	7.2	149.8	39.8	9.6	2.4	0.0	56.0	56.0	26.0	1.2	0.3	0.0		
Max	9.1	1548.8	715.0	176.0	99.6	1.1	552.0	552.0	748.0	480.0	1.4	203.8		
Average	8.1	524.5	233.7	51.9	29.2	0.5	246.6	258.6	136.6	74.7	0.9	36.8		
Stdev	0.4	406.4	168.2	43.7	24.1	0.4	111.6	117.1	170.8	113.3	0.3	44.0		
% < Des	0.0	69.2	76.9	76.9	53.8	46.2	34.6	0.0	80.8	88.0	57.7	61.5		
% P	84.6	30.8	19.2	23.1	46.2	46.2	65.4	0.0	19.2	12.0	42.3	0.0		
% > Ex P	15.4	0.0	3.8	0.0	0.0	7.7	0.0	0.0	0.0	4.0	0.0	38.5		

Taluka : Me	edha (Me	edha, Var	oshi)									
Min	7.8	109.1	90.0	28.0	5.0	0.0	90.2	110.0	7.0	1.6	0.1	3.0
Max	8.2	323.8	275.0	82.0	24.3	0.0	254.9	311.0	49.7	12.0	0.2	6.8
Average	8.1	226.4	188.1	49.6	15.6	0.0	169.9	207.3	30.5	6.4	0.1	4.9
Stdev	0.2	97.1	81.2	22.7	8.2	0.0	70.2	85.6	17.7	4.8	0.1	1.4
% < Des	0.0	100.0	100.0	80.0	100.0	100.0	60.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	20.0	0.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Sat	t <mark>ara</mark> (At	it, Aundh,	Karanje,	Kondve	, Kuran,	Manaina	agar, Man	ure, Mard	he, Moga	rle, Mutla	ıvadi,			
Nagewadi, N	Nagewadi, Nandgaon, Nune, Phadatarwadi, Pimpalwadi, Shendre, Shendri, Tathvade, Udtara, Vaduth, Warne,													
Warye)														
Min 7.5 53.7 14.9 4.0 1.2 0.0 35.2 36.0 3.5 1.0 0.0 0.0														
Max	9.0	1780.3	638.8	124.8	120.0	0.6	600.0	732.0	447.0	382.0	3.4	182.0		
Average	8.0	353.5	225.7	43.2	30.5	0.1	200.8	231.6	71.8	36.8	0.4	16.7		
Stdev	0.3	353.2	153.5	24.9	26.9	0.2	133.2	164.2	97.0	71.0	0.5	30.2		
% < Des	0.0	81.6	81.6	92.1	55.3	81.6	52.6	0.0	92.1	94.7	97.4	94.7		
% P	97.4	18.4	10.5	7.9	39.5	18.4	47.4	0.0	7.9	5.3	0.0	0.0		
% > Ex P	2.6	0.0	7.9	0.0	5.3	0.0	0.0	0.0	0.0	0.0	2.6	5.3		

Taluka: Pat	`	,	,	/		,	/	1 /	, ,	, ,				
Morgir (Shiv	Morgir (Shivpurpeth), Morgiri, Nimbore, Patan, Sakhari, Tarale, Velkhandwadi (Tarli), Yerphale)													
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI ⁻	SO_4^{-2}	F ⁻	NO ₃		
Min	7.5	28.8	32.0	9.6	2.4	0.0	40.0	40.0	11.0	0.0	0.0	0.0		
Max	9.8	2478.8	1138.1	190.0	183.0	1.2	375.0	457.5	1074.0	437.0	1.1	186.6		
Average	8.2	529.8	310.2	60.1	40.1	0.3	178.6	201.7	172.7	51.3	0.5	32.9		
Stdev	0.5	730.3	311.5	46.4	48.8	0.4	91.2	110.1	320.6	114.2	0.3	52.9		
% < Des	0.0	82.1	82.1	71.4	75.0	60.7	57.1	0.0	82.1	89.3	89.3	82.1		
% P	82.1	7.1	7.1	28.6	14.3	32.1	42.9	0.0	7.1	7.1	10.7	0.0		
% > Ex P	17.9	10.7	10.7	0.0	10.7	7.1	0.0	0.0	10.7	3.6	0.0	17.9		

Taluka : Ph Rajuri, Savar	,								degaon, P	haltan, R	ajale,	
Min 7.7 143.4 92.0 9.6 8.5 0.0 100.0 100.0 14.0 3.0 0.1 0.5												
Max	9.8	1657.6	840.0	166.0	103.3	1.3	760.0	760.0	635.5	334.0	1.1	132.9
Average	8.2	585.2	275.7	52.3	38.8	0.4	263.1	285.8	141.6	84.4	0.6	36.4
Stdev	0.5	435.4	199.6	39.7	26.6	0.4	134.6	140.9	158.2	97.4	0.4	31.2
% < Des	0.0	65.2	78.3	78.3	43.5	52.2	34.8	0.0	73.9	87.0	73.9	65.2
% P	82.6	34.8	13.0	21.7	47.8	39.1	60.9	0.0	26.1	13.0	26.1	0.0
% > Ex P	17.4	0.0	8.7	0.0	8.7	8.7	4.3	0.0	0.0	0.0	0.0	34.8

Taluka: Wa	ai (Anaw	adi, Asar	e, Chindh	avali, Dl	nom, Ka	degaon,	Udtare, V	ele, Wai(R))			
Min	7.9	83.2	68.0	16.0	2.4	0.0	76.0	72.0	24.0	1.4	0.1	0.4
Max	8.8	480.2	390.0	88.0	70.0	2.8	375.0	457.5	96.0	21.0	1.1	26.1
Average	8.2	254.4	198.1	26.5	36.1	0.6	221.8	232.4	45.2	9.3	0.6	10.7
Stdev	0.3	127.4	99.5	19.7	17.7	0.9	86.7	111.8	25.6	6.8	0.3	9.4
% < Des	0.0	100.0	75.0	91.7	33.3	58.3	41.7	0.0	100.0	100.0	91.7	100.0
% P	83.3	0.0	25.0	8.3	66.7	25.0	58.3	0.0	0.0	0.0	8.3	0.0
% > Ex P	16.7	0.0	0.0	0.0	0.0	16.7	0.0	0.0	0.0	0.0	0.0	0.0

29. SINDHUDURG

Taluka : De			_	_		,	Gaonkarwa	adi), Jams	ande, Kot	kamte, K	unkaule,			
Kunkeshawar, Padel, Phanasgaon, Wada, Wareri, Welgive)														
Min	7.0	51.6	12.0	1.6	1.9	0.0	24.0	24.0	14.0	1.0	0.0	0.0		
Max	8.4	228.8	160.0	40.0	29.9	0.7	140.0	140.0	49.0	65.7	0.2	19.0		

					0							ū
Min	7.0	51.6	12.0	1.6	1.9	0.0	24.0	24.0	14.0	1.0	0.0	0.0
Max	8.4	228.8	160.0	40.0	29.9	0.7	140.0	140.0	49.0	65.7	0.2	19.0
Average	7.6	127.3	78.5	15.7	9.5	0.2	69.1	72.6	30.1	8.5	0.1	4.4
Stdev	0.4	53.0	42.9	10.5	6.7	0.2	31.6	31.8	10.7	16.9	0.1	4.1
% < Des	0.0	100.0	100.0	100.0	100.0	80.8	100.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	0.0	0.0	0.0	0.0	19.2	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka: Dodamarg (Adali (Dewalwadi), Dodamarga, Kasaidoda, Kherkand, Kolzar, Konal, Kotkamte, Sasoli, Shirgaon (Shirgar), Talkat, Vazare) 0.0 0.0 Min 6.8 16.3 16.0 3.2 1.9 4.0 -24.0 3.9 0.0 0.0 Max 9.1 161.0 90.0 20.0 11.7 0.7 85.2 104.0 48.4 22.0 0.6 11.0 7.7 78.9 47.8 7.9 6.8 0.1 39.9 40.5 19.3 3.6 0.1 3.7 Average Stdev 0.5 41.3 21.0 5.1 3.0 0.2 20.2 28.8 11.8 4.9 0.2 3.5 100.0 % < Des 0.0 100.0 100.0 100.0 90.0 100.0 0.0 100.0 100.0 100.0 100.0 % P 95.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 % > Ex P5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Taluka : Ka	nkavli (Harkul, H	arkul Kh.	., Janava	li, Kalsu	li, Kane	di Bazar, l	Kankavali	, Kankava	alli, Karar	nje,			
Khare Patan,	Khare Patan, Nadgive, Nandgaon, Narange, Nardave, Phonda, Savdav, Wargaon)													
Min 6.4 34.5 16.0 3.2 1.9 0.0 12.0 8.0 6.0 0.0 0.0 0														
Max	9.1	211.0	140.0	40.0	20.2	1.2	140.0	153.0	57.0	56.3	2.0	12.0		
Average	7.6 120.0 71.1 13.9 8.8 0.2 59.3 60.8 28.1 8.3 0.2 3.6													
Stdev	0.6	55.5	28.9	7.7	4.5	0.3	29.9	33.8	12.9	12.2	0.4	3.5		
% < Des	2.6	100.0	100.0	100.0	100.0	89.5	100.0	0.0	100.0	100.0	94.7	100.0		
% P	89.5	0.0	0.0	0.0	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0		
% > Ex P	7.9	0.0	0.0	0.0	0.0	5.3	0.0	0.0	0.0	0.0	5.3	0.0		

Taluka : K	udal (A	mbadpal,	Awalega	on, Che	ndavan,	Goveri,	Kasal, K	eravade,	Kudal, M	langaon E	Bazar, N	irukhe,		
Pagrad, Pand	Pagrad, Pandur, Pavashi, Pundur, Ramgarh, Sawarwad, Sonavade, Vados, Zarap)													
Min	6.6	61.8	28.0	6.4	1.9	0.0	24.0	12.0	11.0	0.0	0.0	0.0		
Max	9.5	1391.0	728.0	200.4	80.0	0.5	404.0	404.0	413.6	380.0	1.9	16.3		
Average	7.7	223.1	130.3	25.3	16.3	0.1	88.3	97.3	49.5	26.5	0.3	3.5		
Stdev	0.5	274.7	147.5	36.9	19.2	0.1	77.3	89.5	68.6	69.4	0.4	4.5		
% < Des	0.0	90.7	88.4	95.3	88.4	83.7	90.7	0.0	97.7	95.3	93.0	100.0		
% P	95.3	9.3	9.3	2.3	11.6	16.3	9.3	0.0	2.3	4.7	2.3	0.0		
% > Ex P	4.7	0.0	2.3	2.3	0.0	0.0	0.0	0.0	0.0	0.0	4.7	0.0		

Taluka : Ma	alvan (A	chara, Ba	ndivade E	K., Gotl	nane, Ka	ndelgao	n, Khewa	nd, Kolan	ıb, Kumb	harmath, l	Malwan,	,
Math, Mogai	rne, Nan	drukh, Pa	lsamb, Te	rela, Va	gothan, `	Vijayadu	ırga)					
Min	5.4	36.0	16.0	3.2	1.9	0.0	9.8	0.0	9.8	0.1	0.0	0.0
Max	9.1	817.1	275.0	75.3	41.0	0.6	240.0	244.0	239.1	50.0	0.5	33.0
Average	7.5	164.7	83.5	17.5	9.6	0.1	64.6	69.4	42.5	10.4	0.1	6.6
Stdev	0.6	162.0	69.9	18.3	8.1	0.1	55.5	59.0	52.2	14.2	0.1	8.7
% < Des	2.5	95.0	100.0	97.5	95.0	92.5	92.5	0.0	100.0	100.0	100.0	100.0
% P	95.0	5.0	0.0	2.5	5.0	7.5	7.5	0.0	0.0	0.0	0.0	0.0
% > Ex P	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Sar Talkat, Talva		di (Ajgao	n, Amboli	, Banda,	, Chouka	l, Danol	i, Insuli, I	Kalmbist,	Malgaon,	Sawanth	wadi,	
-	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F-	NO ₃
Min	7.1	53.0	25.0	3.2	1.9	0.0	24.0	24.0	3.9	0.0	0.0	0.0
Max	8.6	179.8	147.0	20.0	26.0	0.8	95.1	116.0	60.0	24.2	0.4	13.2
Average	7.8	101.6	58.4	10.2	8.0	0.1	50.5	54.2	23.6	3.6	0.1	3.5
Stdev	0.5	37.3	30.0	5.1	5.4	0.2	20.6	26.4	15.7	5.5	0.1	2.6
% < Des	0.0	100.0	100.0	100.0	100.0	89.7	100.0	0.0	100.0	100.0	100.0	100.0
% P	93.1	0.0	0.0	0.0	0.0	10.3	0.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	6.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Va	ibhavwa	adi (Achii	ne, Bhuib	avda, K	okisare,	Mangava	ali, Naval	e, Nim Ar	ule, Sona	li, Vaibha	wwadi)	
Min	6.8	29.9	20.0	1.6	2.9	0.0	20.0	20.0	5.9	1.0	0.0	0.0
Max	8.5	1088.8	880.0	304.6	30.8	1.8	400.0	400.0	35.3	380.0	1.0	7.0
Average	7.6	209.7	145.6	37.3	12.7	0.4	114.1	111.7	24.2	39.4	0.3	2.6
Stdev	0.5	240.3	193.7	68.7	9.0	0.5	90.2	90.0	8.4	91.8	0.3	2.1
% < Des	0.0	94.4	94.4	94.4	94.4	77.8	83.3	0.0	100.0	94.4	100.0	100.0
% P	100.0	5.6	0.0	0.0	5.6	11.1	16.7	0.0	0.0	5.6	0.0	0.0
% > Ex P	0.0	0.0	5.6	5.6	0.0	11.1	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : Ve	ngurla (Adeli (Bo	mderwad	i), Dabh	ole, Dha	oli, Dod	amarga, H	łodavade,	Khanole,	Khanoli,	Math,	
Mhapan, Red	di, Shiro	de, Vajrat	, Vengurl	a, Vetore	e, Warga	on)						
Min	5.8	45.5	12.0	1.6	1.9	0.0	4.0	4.0	9.8	1.0	0.0	0.0
Max	8.3	1527.5	648.0	161.9	58.8	1.1	424.0	424.0	421.4	74.5	0.9	7.9
Average	7.2	154.8	73.5	14.9	8.8	0.3	67.3	70.9	42.3	9.4	0.2	3.2
Stdev	0.5	274.1	115.5	29.2	10.7	0.4	76.6	77.5	76.1	16.5	0.2	2.1
% < Des	3.6	96.4	96.4	96.4	96.4	78.6	96.4	0.0	96.4	100.0	100.0	100.0
% P	96.4	3.6	0.0	3.6	3.6	7.1	3.6	0.0	3.6	0.0	0.0	0.0
% > Ex P	0.0	0.0	3.6	0.0	0.0	14.3	0.0	0.0	0.0	0.0	0.0	0.0

30. SOLAPUR

Taluka : Ak	kalkot (Akkalkot	, Kegaon,	Nagansı	ur, Wago	dhari)						
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F	NO ₃
Min	7.4	583.8	204.9	40.0	25.5	0.0	214.8	262.0	99.0	33.0	0.3	10.0
Max	8.2	1839.9	1206.2	308.0	106.0	0.0	364.8	445.0	515.0	189.1	0.8	416.0
Average	7.7	939.7	591.1	145.4	55.2	0.0	275.6	336.3	226.1	125.2	0.5	102.7
Stdev	0.3	442.3	334.1	87.8	28.8	0.0	52.5	64.0	144.7	58.3	0.2	147.2
% < Des	0.0	0.0	28.6	28.6	28.6	100.0	0.0	0.0	71.4	100.0	100.0	57.1
% P	100.0	100.0	42.9	57.1	57.1	0.0	100.0	0.0	28.6	0.0	0.0	0.0
% > Ex P	0.0	0.0	28.6	14.3	14.3	0.0	0.0	0.0	0.0	0.0	0.0	42.9

Taluka : Ba	rshi (Dh	anore, Ma	anegaon, l	Nari, Paı	ngri, Rop	ole, Shel	gaon)					
Min	7.6	270.5	153.2	30.0	15.8	0.0	165.0	201.3	21.3	3.8	0.0	7.4
Max	8.0	1258.0	775.0	174.0	104.0	0.0	309.8	378.0	312.0	227.0	0.7	174.8
Average	7.8	692.1	422.8	92.8	46.3	0.0	238.3	290.7	146.3	88.7	0.3	83.7
Stdev	0.1	349.6	200.7	40.3	28.7	0.0	51.6	63.0	104.2	83.4	0.2	63.8
% < Des	0.0	33.3	33.3	41.7	33.3	100.0	33.3	0.0	75.0	75.0	100.0	33.3
% P	100.0	66.7	41.7	58.3	58.3	0.0	66.7	0.0	25.0	25.0	0.0	0.0
% > Ex P	0.0	0.0	25.0	0.0	8.3	0.0	0.0	0.0	0.0	0.0	0.0	66.7

Taluka : Ka	rmala (Kandar, K	armala, V	/arkute)								
Min	7.6	394.5	194.7	40.0	23.0	0.0	159.8	195.0	82.0	65.0	0.5	14.0
Max	8.1	1014.3	439.6	110.0	40.0	0.0	354.9	433.0	209.0	136.0	0.8	147.0
Average	7.8	715.8	334.6	82.4	31.2	0.0	269.0	328.2	142.0	101.2	0.7	61.0
Stdev	0.2	279.1	88.4	26.6	8.0	0.0	80.5	98.3	51.7	26.2	0.1	63.8
% < Des	0.0	20.0	20.0	20.0	40.0	100.0	20.0	0.0	100.0	100.0	100.0	60.0
% P	100.0	80.0	80.0	80.0	60.0	0.0	80.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0

Taluka: Ma	dha (B	Itergaon I	Haveli, Pa	rite, Ten	nbhurni))						
Min	7.4	501.8	301.1	76.0	27.0	0.0	180.3	220.0	96.0	67.0	0.2	3.7
Max	7.8	937.8	615.0	166.0	69.3	0.0	275.4	336.0	252.1	156.0	0.7	106.6
Average	7.7	754.9	477.5	116.7	45.1	0.0	223.5	272.7	188.6	111.7	0.5	67.5
Stdev	0.2	208.2	128.9	38.0	15.8	0.0	32.6	39.7	67.0	40.7	0.1	34.7
% < Des	0.0	0.0	0.0	0.0	16.7	100.0	16.7	0.0	83.3	100.0	100.0	16.7
% P	100.0	100.0	83.3	100.0	83.3	0.0	83.3	0.0	16.7	0.0	0.0	0.0
% > Ex P	0.0	0.0	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	83.3

Taluka : Ma	alshiras	(Dharmap	ouri, Mals	iras, Nat	epute, P	iliv, Salr	nukh, Vel	apur)				
Min	7.6	313.6	150.0	52.0	1.2	0.0	150.0	183.0	36.0	19.0	0.3	16.0
Max	8.2	1105.5	835.0	174.0	97.0	0.0	520.5	635.0	376.0	196.0	0.6	104.8
Average	7.9	833.4	417.5	88.8	47.5	0.0	348.2	424.8	188.1	81.6	0.5	46.6
Stdev	0.2	326.9	219.9	39.2	31.8	0.0	136.0	165.9	121.9	59.8	0.1	32.0
% < Des	0.0	25.0	37.5	50.0	37.5	100.0	12.5	0.0	62.5	100.0	100.0	62.5
% P	100.0	75.0	50.0	50.0	62.5	0.0	87.5	0.0	37.5	0.0	0.0	0.0
% > Ex P	0.0	0.0	12.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	37.5

Taluka : Ma	ngalwe	dha (Juno	ni, Mang	alvedha,	Marwad	le, Pout)						
	'Ph	TDS	TH	Ca ²⁺	Mg ²⁺	Fe	TA	HCO3	Cl	SO ₄ -2	F-	NO ₃
Min	7.5	405.0	200.0	48.0	19.4	0.0	260.0	317.2	49.7	30.2	0.3	4.3
Max	8.2	1092.6	665.2	192.0	57.0	0.0	290.0	353.8	252.0	245.0	0.6	70.0
Average	7.9	769.5	408.0	99.2	38.9	0.0	277.1	338.1	156.8	133.0	0.5	36.7
Stdev	0.3	283.4	209.4	65.9	13.9	0.0	11.0	13.4	81.5	104.3	0.1	29.6
% < Des	0.0	20.0	60.0	60.0	20.0	100.0	0.0	0.0	80.0	60.0	100.0	60.0
% P	100.0	80.0	20.0	40.0	80.0	0.0	100.0	0.0	20.0	40.0	0.0	0.0
% > Ex P	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0

Taluka: Mo	ohol (Ich	gaon, Ku	rul, Naray	an Chin	choli, Sc	hole)						
Min	7.5	548.1	350.0	68.0	34.0	0.0	190.0	231.8	107.0	17.8	0.3	20.0
Max	8.2	1240.8	658.4	186.0	64.0	0.0	330.3	403.0	284.0	209.3	0.7	247.0
Average	7.7	857.3	490.7	115.8	48.9	0.0	250.6	305.8	188.6	127.0	0.5	100.8
Stdev	0.2	284.1	113.8	38.2	10.1	0.0	52.8	64.4	67.1	55.4	0.1	100.0
% < Des	0.0	0.0	0.0	11.1	0.0	100.0	22.2	0.0	77.8	88.9	100.0	55.6
% P	100.0	100.0	66.7	88.9	100.0	0.0	77.8	0.0	22.2	11.1	0.0	0.0
% > Ex P	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44.4

Taluka: N.S	Solapur	(Nannaj,	Shivni, So	oregaon,	Vadval)	١						
Min	7.6	362.0	180.0	54.0	10.9	0.0	235.0	286.7	50.0	11.0	0.3	8.0
Max	8.2	1260.4	870.1	218.0	97.2	0.0	369.7	451.0	284.0	316.0	0.7	160.0
Average	7.8	783.6	461.1	102.0	50.1	0.0	293.0	357.5	152.6	138.7	0.5	43.4
Stdev	0.2	314.0	246.6	57.4	30.1	0.0	56.1	68.5	96.5	125.8	0.1	56.0
% < Des	0.0	25.0	37.5	37.5	37.5	100.0	0.0	0.0	75.0	62.5	100.0	75.0
% P	100.0	75.0	25.0	50.0	62.5	0.0	100.0	0.0	25.0	37.5	0.0	0.0
% > Ex P	0.0	0.0	37.5	12.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0

Taluka: Par	ndharpı	ır (Ajoti,	Bhandi-S	hegaon,	Chale, E	klaspur,	Karkamb	, Pandhar	pur, Ranz	ani)		
Min	7.4	311.2	215.0	52.0	13.0	0.0	224.6	274.0	35.5	11.5	0.3	13.6
Max	8.1	2903.3	1181.0	451.0	106.9	0.0	330.0	402.6	887.5	738.2	0.9	254.0
Average	7.8	1228.1	609.3	166.1	47.2	0.0	263.1	321.0	279.0	277.1	0.5	69.1
Stdev	0.2	792.5	305.2	107.2	27.4	0.0	29.9	36.4	250.6	220.7	0.2	73.9
% < Des	0.0	20.0	20.0	26.7	40.0	100.0	0.0	0.0	66.7	53.3	100.0	53.3
% P	100.0	60.0	33.3	46.7	53.3	0.0	100.0	0.0	33.3	13.3	0.0	0.0
% > Ex P	0.0	20.0	46.7	26.7	6.7	0.0	0.0	0.0	0.0	33.3	0.0	46.7

Taluka : Sa	ngola (C	hincholi,	Manjri, S	angola)								
Min	7.5	405.8	189.4	56.0	12.0	0.0	174.6	213.0	43.0	41.0	0.2	32.0
Max	8.1	658.7	420.0	86.0	49.8	0.0	219.7	268.0	134.9	73.0	0.4	137.6
Average	7.7	502.0	302.7	72.8	29.3	0.0	199.8	243.8	91.6	57.3	0.3	61.7
Stdev	0.2	97.5	84.0	11.8	13.9	0.0	19.1	23.3	35.7	11.7	0.1	43.0
% < Des	0.0	60.0	40.0	60.0	60.0	100.0	40.0	0.0	100.0	100.0	100.0	40.0
% P	100.0	40.0	60.0	40.0	40.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60.0

Taluka : Sol	lapur (H	livre, Nag	aj, Nandn	i)								
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F	NO ₃
Min	7.7	297.3	183.8	44.0	7.0	0.0	175.0	213.5	14.2	11.0	0.2	2.5
Max	8.0	1181.8	530.0	94.0	74.1	0.0	380.0	463.6	319.5	147.4	0.5	151.3
Average	7.9	600.0	355.7	76.4	40.0	0.0	243.1	296.6	123.6	79.7	0.4	45.2
Stdev	0.1	360.7	145.5	22.3	25.5	0.0	83.8	102.2	124.2	55.4	0.1	61.5
% < Des	0.0	40.0	40.0	40.0	20.0	100.0	40.0	0.0	80.0	100.0	100.0	80.0
% P	100.0	60.0	60.0	60.0	80.0	0.0	60.0	0.0	20.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0

Taluka : So	outh Sol	apur (Ule	e)									
Min	7.4	1840.0	1050.7	0.0	612.0	0.0	174.0	43.0	134.0	14.0	0.0	214.8
Max	7.4	1840.0	1050.7	0.0	612.0	0.0	174.0	43.0	134.0	14.0	0.0	214.8
Average	7.4	1840.0	1050.7	0.0	612.0	0.0	174.0	43.0	134.0	14.0	0.0	214.8
% < Des	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
% P	100.0	0.0	100.0	0.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	100.0
% > Ex P	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

31. THANE

Taluka : B	hivandi	(Angaon	, Bhinar,	Bhivan	di, Chav	indra, I	Dapode, C	Gothanpac	la, Junadı	urkhi, Ka	rahe, Ka	aravali,		
Katai, Khoni, Padghe, Sange, Saravali)														
'Ph TDS TH Ca^{2+} Mg^{2+} Fe TA HCO3 CI SO_4^{-2} F NC														
Min	6.1	117.1	80.0	8.8	2.9	0.0	0.7	37.9	7.0	0.3	0.0	0.4		
Max	8.7	1134.9	532.0	107.4	76.2	0.3	584.0	584.0	227.4	120.0	2.5	94.0		
Average	7.9	402.8	240.8	49.0	27.8	0.0	176.0	168.6	68.4	26.8	0.4	13.2		
Stdev	0.6	221.4	107.7	23.7	17.0	0.1	95.5	92.7	60.4	25.0	0.4	17.0		
% < Des	2.4	75.6	73.2	85.4	63.4	100.0	65.9	0.0	100.0	100.0	97.6	97.6		
% P	87.8	24.4	26.8	14.6	36.6	0.0	34.1	0.0	0.0	0.0	0.0	0.0		
% > Ex P	9.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4	2.4		

Taluka : I	Dahanu	(Bramhar	wadi, Da	ahanu, E	Dapchari	Takarpa	ıda, Dhai	nivari, Dl	nanoshi,	Gunjad,	Kasa, S	Saiwan,		
Saravali Sawata, Udhwa)														
Min	7.1	96.0	64.0	10.0	5.8	0.0	0.6	20.0	7.0	0.2	0.1	0.1		
Max	8.5	1233.4	625.0	96.0	123.0	0.2	500.0	610.0	433.0	109.0	1.1	28.0		
Average	7.8	349.0	223.4	43.7	26.4	0.0	197.5	222.9	62.6	17.1	0.2	8.6		
Stdev	0.4	295.8	125.0	20.1	28.6	0.1	120.2	150.8	106.9	27.0	0.2	8.9		
% < Des	0.0	85.3	85.3	94.1	82.4	100.0	67.6	0.0	91.2	100.0	97.1	100.0		
% P	100.0	14.7	11.8	5.9	8.8	0.0	32.4	0.0	8.8	0.0	2.9	0.0		
% > Ex P	0.0	0.0	2.9	0.0	8.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

Taluka : Ja	whar (C	halatwad,	Dhanosh	i, Javaha	r, Sarsur	, Sukhas	ale, Talav	vada, Vik	ramgadh)			
Min	7.3	95.0	52.0	11.0	4.8	0.0	60.0	60.0	5.5	1.0	0.1	0.4
Max	8.4	495.0	375.0	84.0	47.2	0.8	291.1	311.0	124.0	48.0	0.8	62.0
Average	7.8	228.5	175.6	39.0	18.9	0.1	144.2	151.9	38.2	13.0	0.2	11.0
Stdev	0.3	117.7	96.9	20.4	13.0	0.2	70.8	85.2	36.2	15.6	0.2	15.7
% < Des	0.0	100.0	82.4	88.2	82.4	88.2	76.5	0.0	100.0	100.0	100.0	94.1
% P	100.0	0.0	17.6	11.8	17.6	11.8	23.5	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9

Taluka: M	okhada	(Devali, I	Oolhara, K	Khodala, l	Mokhad	a, Talasaı	ri, Talasaı	rimala)				
Min	7.2	115.7	24.0	6.4	1.9	0.0	80.0	32.0	7.8	1.0	0.0	0.4
Max	8.5	564.4	340.0	94.0	45.3	0.1	292.0	292.0	131.0	55.0	0.7	112.0
Average	7.9	287.3	190.5	47.8	17.3	0.0	153.0	151.8	39.8	15.3	0.2	19.1
Stdev	0.4	137.0	94.0	22.6	12.4	0.0	63.5	80.2	40.1	14.0	0.2	29.3
% < Des	0.0	85.0	80.0	85.0	90.0	100.0	70.0	0.0	100.0	100.0	100.0	90.0
% P	100.0	15.0	20.0	15.0	10.0	0.0	30.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0

Taluka : M	Iurbad	(Burshinge	e, Kolimb	o, Murba	ad, Shiv	ale, Tale	gaon, Th	une phata	, Tokava	de, Tokav	ade (To	okoda),	
Tokawade)													
Min	7.2	111.8	80.0	16.0	1.0	0.0	1.6	37.0	9.2	0.1	0.0	0.3	
Max	8.6	743.0	515.0	122.0	56.9	1.0	314.1	360.0	273.0	75.0	3.1	40.8	
Average	7.9	320.6	222.0	49.1	23.9	0.1	165.4	171.6	44.3	18.8	0.5	9.4	
Stdev	0.4	169.3	106.7	26.3	14.3	0.3	70.0	74.8	50.9	18.5	1.3	11.6	
% < Des	0.0	87.9	75.8	87.9	75.8	90.9	66.7	0.0	97.0	100.0	93.9	100.0	
% P	97.0	12.1	24.2	12.1	24.2	9.1	33.3	0.0	3.0	0.0	0.0	0.0	
% > Ex P	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.1	0.0	

Taluka: Pa	alghar (l	Dahisar, D	evkop, D	hekale, k	Kajali, K	aravale, l	Karwali, I	Kolgaon, l	Mahim, N	Iakunsar,	Manor,				
Mukunsar, l	Nishanpa	ada, Safale	e, Shirgao	n, Somat	a, Vedhi	, Yeur)		_							
Min	7.2	154.1	96.0	10.0	1.9	0.0	9.6	78.0	9.0	0.1	0.0	0.0			
Max	8.5	8080.0	464.0	111.0	65.6	0.2	492.0	492.0	777.0	85.0	1.8	76.0			
Average	7.8	534.3	227.9	49.9	25.4	0.0	205.5	206.1	87.9	20.0	0.2	8.4			
Stdev	0.4	1074.4	74.4	20.7	13.8	0.0	81.5	77.2	120.5	19.2	0.3	12.6			
% < Des	0.0	71.7	79.2	88.7	75.5	100.0	50.9	0.0	94.3	100.0	98.1	98.1			
% P	100.0	26.4	20.8	11.3	24.5	0.0	49.1	0.0	5.7	0.0	0.0	0.0			
% > Ex P	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	1.9			

Taluka: S Vehlole, Vi	_			sai, Bhin	ar, Sath	gaon, Sl	nendrun,	Talempad	la (Bihig	aon), Tit	wala, Va	araskol,
Min 7.2 78.0 60.0 9.6 4.8 0.0 40.0 24.0 5.5 0.5 0.0 0.4												
Max	9.0	572.0	472.0	79.0	67.0	0.1	400.0	320.0	154.8	84.6	0.6	44.0
Average	8.0	271.0	201.4	40.5	24.3	0.0	174.1	161.4	43.2	18.9	0.2	8.0
Stdev	0.5	123.1	95.9	19.4	16.6	0.0	72.9	62.0	35.0	19.5	0.2	10.7
% < Des	0.0	96.9	87.5	90.6	81.3	100.0	68.8	0.0	100.0	100.0	100.0	100.0
% P	84.4	3.1	12.5	9.4	18.8	0.0	31.3	0.0	0.0	0.0	0.0	0.0
% > Ex P	15.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka:	Thane (F	Pavane, Ba	alkhapara,	Bindarı	oada, Cl	erfully,	Dahisar,	Gansali,	Giraj, K.	khairne,	Kajli, K	hairne,		
Koparkhair	Koparkhairne, Koperkhairne, Rabale, Shiravane, Turbha, Wafana)													
Min	7.0	106.0	75.0	18.0	3.9	0.0	9.6	78.0	7.0	0.1	0.0	0.3		
Max	8.8	2619.5	1600.0	400.8	144.6	0.6	480.0	480.0	882.0	161.0	1.9	34.0		
Average	7.9	464.4	272.2	62.2	28.7	0.1	193.0	206.8	90.6	28.6	0.3	7.1		
Stdev	0.4	402.5	221.4	56.2	23.1	0.1	90.7	90.9	149.7	29.5	0.3	7.5		
% < Des	0.0	74.0	74.0	80.0	66.0	92.0	48.0	0.0	96.0	100.0	98.0	100.0		
% P	94.0	24.0	22.0	18.0	32.0	8.0	52.0	0.0	4.0	0.0	0.0	0.0		
% > Ex P	6.0	2.0	4.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0		

Taluka : V	asai (Aa	gashi, Am	badi, Bol	ing, Char	ndansar,	Gokhiva	re, Katoly	vadi (Mul	gaon), Kl	nanivade,				
Nalasopara	Nalasopara, Sandor, Sansoonghar, Sativli, Tuling, Vasai, Virar, Waliv)													
Min	7.0	137.8	96.0	6.4	4.8	0.0	60.0	16.0	7.3	0.5	0.0	0.6		
Max	8.7	1644.5	895.0	128.2	160.0	1.2	595.1	726.0	514.0	122.0	0.9	40.0		
Average	7.9	531.4	301.2	50.8	42.2	0.1	223.8	228.6	124.6	35.3	0.2	11.2		
Stdev	0.5	392.7	170.0	26.2	39.9	0.2	118.3	156.4	134.1	32.4	0.2	11.6		
% < Des	0.0	63.8	61.7	85.1	55.3	95.7	53.2	0.0	83.0	100.0	100.0	100.0		
% P	89.4	36.2	29.8	14.9	31.9	2.1	46.8	0.0	17.0	0.0	0.0	0.0		
% > Ex P	10.6	0.0	8.5	0.0	12.8	2.1	0.0	0.0	0.0	0.0	0.0	0.0		

Taluka:	Wada (Aambiste,	Devali,	Jogamarg	gepada,	Kanchad	, Kudus,	Nehroli,	Nimbaw	ali, Para	li, Rinz	adpada
(Kanchad)	Wada)											
Min	7.2	77.0	60.0	5.6	2.9	0.0	40.0	24.0	7.0	2.0	0.0	0.1
Max	8.5	870.4	528.0	115.4	72.9	1.3	360.0	390.4	166.6	80.9	1.0	37.6
Average	8.0	316.2	214.9	45.3	24.6	0.1	187.4	188.4	43.2	18.3	0.3	6.6
Stdev	0.4	156.7	97.2	24.5	17.3	0.2	76.5	81.8	37.8	18.5	0.2	8.9
% < Des	0.0	90.9	84.1	90.9	70.5	93.2	68.2	0.0	100.0	100.0	95.5	100.0
% P	100.0	9.1	15.9	9.1	29.5	4.5	31.8	0.0	0.0	0.0	4.5	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : A	Taluka: Ambernath (Badlapur Katrap, Karav, Nevale)													
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO ₄ -2	F ⁻	NO ₃		
Min	7.1	194.0	116.0	20.8	-20.2	0.0	57.5	56.0	11.0	5.1	0.1	1.0		
Max	9.3	2646.8	344.0	96.2	61.7	1.4	264.3	264.3	1076.0	214.2	0.4	18.9		
Average	8.1	513.0	213.7	47.6	22.8	0.2	159.8	137.8	120.9	36.2	0.3	4.5		
Stdev	0.7	675.4	68.3	23.7	21.7	0.4	58.0	67.4	301.3	57.2	0.1	4.9		
% < Des	0.0	91.7	91.7	83.3	75.0	66.7	66.7	0.0	91.7	91.7	100.0	100.0		
% P	83.3	0.0	8.3	16.7	25.0	25.0	33.3	0.0	0.0	8.3	0.0	0.0		
% > Ex P	16.7	8.3	0.0	0.0	0.0	8.3	0.0	0.0	8.3	0.0	0.0	0.0		

Taluka : K	Kalyan (C	Goveli, Ka	mbe, Nev	vali, Titw	vala)							
Min	7.3	146.0	124.0	17.6	14.0	0.0	0.8	39.0	16.3	0.1	0.1	0.1
Max	8.4	417.3	292.0	85.0	31.8	0.5	291.1	291.1	111.7	22.2	3.2	24.7
Average	7.9	305.9	200.3	43.7	22.0	0.1	176.4	173.0	40.4	12.3	0.5	5.3
Stdev	0.4	82.1	47.1	19.2	4.5	0.1	69.6	67.5	30.1	7.2	1.0	7.3
% < Des	0.0	100.0	100.0	93.3	93.3	93.3	66.7	0.0	100.0	100.0	93.3	100.0
% P	100.0	0.0	0.0	6.7	6.7	6.7	33.3	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0

Taluka : M	Taluka: Murud (Talegaon, Tokawade, Bursange, Tunepada, Karav, Shivale)														
Min	8.4	124.0	84.0	11.0	9.0	0.0	48.0	12.0	22.0	2.0	0.1	0.0			
Max	9.4	145.0	116.0	26.0	21.0	0.0	96.0	56.0	88.0	9.0	0.7	1.1			
Average	9.0	130.8	101.3	17.2	14.2	0.0	69.3	33.3	41.3	4.8	0.3	0.7			
Stdev	0.4	8.5	12.0	5.5	4.5	0.0	22.3	20.7	25.8	3.0	0.2	0.4			
% < Des	0.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0			
% P	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
% > Ex P	83.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

Taluka: Ta	alasari (l	Bursange,	Karav, S	hivale, T	alegaon,	Tokawa	de, Tune	pada)				
Min	7.1	161.9	72.0	17.6	4.0	0.0	116.0	0.0	20.1	1.0	0.1	0.2
Max	8.5	889.2	460.0	91.4	55.9	0.2	320.0	291.0	200.0	72.8	0.8	17.0
Average	7.8	309.0	204.0	48.0	20.3	0.0	185.3	159.2	58.3	18.8	0.2	4.5
Stdev	0.5	140.0	74.0	18.5	12.3	0.0	51.5	60.1	49.0	15.8	0.2	4.2
% < Des	0.0	96.0	92.0	88.0	84.0	100.0	60.0	0.0	100.0	100.0	100.0	100.0
% P	100.0	4.0	8.0	12.0	16.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Taluka : U	Taluka : Ulhasnagar (Kajali, Talasari, Uadhwa, Vadoli, Zai, Zari)														
Min	7.2	191.0	152.0	11.6	9.6	0.0	2.2	33.0	6.0	0.1	0.0	0.5			
Max	8.5	701.0	440.0	96.0	75.0	0.4	287.3	280.6	98.0	75.0	3.2	36.1			
Average	8.0	376.0	239.6	48.9	31.1	0.1	156.9	159.5	47.5	23.8	1.3	10.1			
Stdev	0.5	155.6	88.6	27.3	18.7	0.1	88.2	71.3	30.6	25.3	2.9	11.1			
% < Des	0.0	72.7	81.8	81.8	54.5	90.9	72.7	0.0	100.0	100.0	81.8	100.0			
% P	100.0	27.3	18.2	18.2	45.5	9.1	27.3	0.0	0.0	0.0	0.0	0.0			
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.2	0.0			

32. WARDHA

Taluka: Arvi (Alipur,	Arvi, Borgaon(gondi), Danapur	r, Kachnoor, Kharangna,	, Mandla, Ma	arga, Nandpur, l	Pachod
(virul), Panjra Gondi, Roh	nana, Sukli, Talegaon, Wadhona)	l			

	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO ₄ -2	F ⁻	NO ₃
Min	7.2	241.0	100.0	4.0	13.6	0.0	70.0	85.4	14.2	2.9	0.1	6.3
Max	8.5	1894.0	980.0	212.8	181.0	0.4	670.0	817.4	532.5	219.8	0.9	600.2
Average	7.9	669.8	390.0	72.2	50.9	0.2	314.5	352.4	114.8	51.3	0.5	104.7
Stdev	0.3	435.3	197.1	48.0	40.7	0.1	130.0	165.5	140.1	56.2	0.2	147.2
% < Des	0.0	43.5	30.4	65.2	30.4	73.9	13.0	0.0	87.0	91.3	100.0	43.5
% P	100.0	56.5	56.5	30.4	60.9	26.1	78.3	0.0	13.0	8.7	0.0	0.0
% > Ex P	0.0	0.0	13.0	4.3	8.7	0.0	8.7	0.0	0.0	0.0	0.0	56.5

Taluka : A	Ashti (Al	sti, Antor	a, Ashti,	Borgaon	tumni, C	Choti Aı	vi, Dhad	i, Drugwa	da, Kaka	ddara, Sa	hur, Sin	dvihira,	
Sirsoli, Talegaon(shamji)													
Min	7.0	328.0	185.0	18.0	29.2	0.0	115.0	140.3	32.0	5.4	0.0	4.2	
Max	8.3	1232.0	964.0	256.0	112.8	0.5	528.0	644.2	252.0	137.0	1.9	264.6	
Average	7.7	648.1	467.1	89.3	59.3	0.2	337.2	391.7	106.3	52.9	0.5	84.4	
Stdev	0.4	257.4	210.8	61.7	24.3	0.2	106.8	129.4	68.2	40.8	0.4	72.6	
% < Des	0.0	35.0	20.0	45.0	5.0	75.0	10.0	0.0	95.0	100.0	90.0	50.0	
% P	100.0	65.0	55.0	50.0	90.0	25.0	90.0	0.0	5.0	0.0	5.0	0.0	
% > Ex P	0.0	0.0	25.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	5.0	50.0	

Taluka:	Deoli (A	degaon,	Agargaon	Andhor	i, Bhidi,	Daheg	aon, Dec	oli, Giroli	, Kolhap	ur, Kolo	na, Mura	adgaon,		
Nachangao	Nachangaon, Pulgaon, Rohini, Sarul)													
Min	6.9	265.1	210.0	11.2	19.4	0.0	75.0	87.7	17.8	0.2	0.1	1.7		
Max	8.5	1722.0	1628.0	252.8	291.6	0.5	560.0	671.2	500.0	156.0	1.3	495.6		
Average	7.6	651.7	425.7	80.1	54.8	0.1	267.2	313.3	123.7	59.9	0.6	101.5		
Stdev	0.4	306.5	246.3	60.6	45.3	0.1	117.6	138.4	92.5	44.7	0.2	99.9		
% < Des	0.0	41.0	28.2	51.3	20.5	89.7	28.2	0.0	92.3	100.0	92.3	35.9		
% P	100.0	59.0	59.0	43.6	74.4	10.3	71.8	0.0	7.7	0.0	7.7	0.0		
% > Ex P	0.0	0.0	12.8	5.1	5.1	0.0	0.0	0.0	0.0	0.0	0.0	64.1		

Taluka: H											gaon,			
Hingangha	Hinganghat, Inzala, Kanchangaon, Kangaon, Mankapur, Manora, Parsoda, Selu, Wadner, Wela)													
Min	6.4	294.1	147.5	16.0	6.8	0.0	100.0	99.6	24.0	0.3	0.1	3.1		
Max	8.6	1753.0	1040.0	256.0	115.7	0.9	560.0	683.2	466.0	384.0	3.9	369.6		
Average	7.7	733.0	428.4	79.7	55.7	0.2	245.2	283.4	144.1	77.4	1.0	127.4		
Stdev	0.4	395.7	211.9	59.7	29.5	0.2	107.7	132.8	95.7	67.1	0.9	103.6		
% < Des	2.3	36.4	38.6	68.2	15.9	79.5	34.1	0.0	84.1	97.7	68.2	22.7		
% P	95.5	63.6	40.9	27.3	75.0	20.5	65.9	0.0	15.9	2.3	18.2	0.0		
% > Ex P	2.3	0.0	20.5	4.5	9.1	0.0	0.0	0.0	0.0	0.0	13.6	77.3		

Taluka : K	Taluka: Karanja (Junapani, Karanja, Ladgad, Methirji, Nagalwadi, Sawli Kh., Sindhvihira, Thanegaon)													
Min	7.1	197.1	60.0	12.8	3.9	0.0	84.0	81.9	17.8	2.3	0.0	1.3		
Max	8.5	1007.2	704.0	248.0	65.1	0.5	600.2	732.2	226.9	85.0	1.2	159.6		
Average	7.9	486.7	325.3	74.8	33.6	0.2	272.0	312.5	96.9	34.7	0.4	43.3		
Stdev	0.4	256.7	190.5	66.2	17.3	0.2	141.2	182.8	68.7	29.2	0.3	46.9		
% < Des	0.0	57.1	57.1	57.1	42.9	71.4	21.4	0.0	100.0	100.0	92.9	64.3		
% P	100.0	42.9	28.6	35.7	57.1	28.6	71.4	0.0	0.0	0.0	7.1	0.0		
% > Ex P	0.0	0.0	14.3	7.1	0.0	0.0	7.1	0.0	0.0	0.0	0.0	35.7		

Taluka : Samudrapur (Ajda, Barfa, Chikhli, Dhumankheda, Girad, Kankati, Khek, Khursapar, Kori, Mohogaon, Nandori, Nandori, Renkapur, Sakhra, Samudrapur, Sawangi Zade, Shedgaon, Sirpur, Waigaon Gond, Wasi)

1 (61165011, 1 (66	Tulidori, Tulidori, Fullidori, Sullidori Buringi Zado, Sirodgon, Sipor, Tuligori Goric, Tulidori, Sullidori Goric, Tulidori, Sullidori Goric, Tulidori Goric,														
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI ⁻	SO_4^{-2}	F ⁻	NO ₃			
Min	6.9	208.8	70.0	18.0	3.6	0.0	50.0	61.0	24.0	0.2	0.1	3.1			
Max	8.4	2297.0	644.0	219.2	94.3	0.8	535.2	652.9	574.0	412.0	2.2	273.0			
Average	7.8	589.5	399.2	75.6	51.1	0.2	239.3	276.0	122.6	65.3	0.7	79.0			
Stdev	0.4	301.5	130.1	38.7	21.6	0.2	98.8	125.4	82.6	59.1	0.4	72.4			
% < Des	0.0	40.0	21.8	56.4	14.5	81.8	36.4	0.0	98.2	98.2	78.2	45.5			
% P	100.0	58.2	72.7	41.8	85.5	18.2	63.6	0.0	1.8	0.0	18.2	0.0			
% > Ex P	0.0	1.8	5.5	1.8	0.0	0.0	0.0	0.0	0.0	1.8	3.6	54.5			

Taluka : Seloo (Akoli, Anjangaon, Antargaon, Babapur, Bondsula, Chanki, Dindoda, Garamsur, Giroli, Gondapur, Hingni, Jamni, Janglapur, Keljhar, Kelzar, Kopra, Madni (New), Mahabala, Palasgaon, Ramna (enkapur), Salaipewat, Seldoh, Seloo, Sindi Kh.(rly), Surgaon, Wanarvihira, Yelakeli, Zadsi)

Min	6.7	193.0	188.0	8.0	6.8	0.0	70.0	85.4	26.0	0.2	0.3	4.2
Max	9.1	2259.0	1564.0	256.0	279.9	0.7	980.0	1049.2	660.0	268.0	1.6	525.0
Average	7.9	776.9	482.9	72.2	73.5	0.2	325.0	347.8	146.4	79.3	0.7	137.2
Stdev	0.5	464.8	288.8	46.1	58.3	0.1	162.5	178.0	129.0	57.6	0.3	129.4
% < Des	0.0	32.2	22.0	62.7	18.6	88.1	16.9	0.0	86.4	94.9	83.1	27.1
% P	94.9	62.7	61.0	35.6	64.4	11.9	78.0	0.0	13.6	5.1	13.6	0.0
% > Ex P	5.1	5.1	16.9	1.7	16.9	0.0	5.1	0.0	0.0	0.0	3.4	72.9

Taluka: W	ardha ((Anji, Ar	vi, Barba	di, Bhu	igaon, C	hichala,	Khandal	i, Kharan	gana, Ku	rzadi, Par	agothan	, Pipri,	
Pipri(meghe), Pulgaon, Saongi Meghe, Selsura, Talegaon (talatule), Vadad, Waigaon(nipani), Wardha)													
Min	7.1	276.3	150.0	19.2	3.6	0.0	80.0	14.6	10.7	0.3	0.2	4.2	
Max	8.3	2247.4	1440.0	264.0	262.4	1.3	1008.0	1112.6	932.0	339.8	1.1	474.6	
Average	7.7	813.4	486.4	80.6	69.2	0.2	285.3	332.5	201.7	76.5	0.5	114.1	
Stdev	0.3	551.5	322.1	65.1	59.1	0.2	183.4	220.1	211.2	68.1	0.2	132.0	
% < Des	0.0	35.9	23.1	61.5	23.1	79.5	33.3	0.0	69.2	97.4	97.4	35.9	
% P	100.0	56.4	48.7	28.2	56.4	17.9	61.5	0.0	30.8	2.6	2.6	0.0	
% > Ex P	0.0	7.7	28.2	10.3	20.5	2.6	5.1	0.0	0.0	0.0	0.0	64.1	

33. WASHIM

Taluka : Ka	ranja (I	Dhanaj Bk	., Dhotra	Deshmu	kh, Jano	ri, Karaı	nja, Kheda	ara Karan	ja, Khedra	a Bk., Ma	nba,			
Panvihir, Sha	Panvihir, Shaha, Sohal, Tulajapur)													
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃		
Min	6.7	158.0	100.0	8.0	4.8	0.1	20.0	20.0	24.0	12.0	0.1	7.0		
Max	9.8	1620.0	692.0	164.8	145.4	0.4	380.0	405.0	498.0	177.0	3.0	106.0		
Average	7.7	578.1	284.5	48.9	39.3	0.1	95.1	93.4	123.2	52.6	0.4	43.6		
Stdev	0.8	329.0	134.2	37.1	26.9	0.1	77.3	78.4	94.5	36.8	0.9	29.2		
% < Des	0.0	55.3	63.2	81.6	52.6	89.5	94.7	0.0	92.1	100.0	97.4	57.9		
% P	81.6	44.7	31.6	18.4	44.7	10.5	5.3	0.0	7.9	0.0	0.0	0.0		
% > Ex P	18.4	0.0	5.3	0.0	2.6	0.0	0.0	0.0	0.0	0.0	2.6	42.1		

Taluka : Ma	angarulı	oir (Dabh	adi, Jogal	dari, Kal	lamba, N	Iangarul	pir, Shelu	Kh., War	noja)			
Min	6.7	369.9	156.0	16.0	6.7	0.0	44.0	44.0	78.0	6.0	0.1	10.0
Max	8.6	998.0	534.0	70.4	109.0	0.6	284.0	346.5	219.0	130.5	1.4	102.5
Average	7.6	588.8	325.8	40.7	55.5	0.2	105.2	112.0	125.5	50.5	0.4	42.7
Stdev	0.4	177.3	118.5	16.9	32.2	0.1	69.1	77.4	42.1	30.1	0.4	21.4
% < Des	0.0	38.1	47.6	100.0	33.3	85.7	90.5	0.0	100.0	100.0	90.5	57.1
% P	90.5	61.9	52.4	0.0	61.9	14.3	9.5	0.0	0.0	0.0	9.5	0.0
% > Ex P	9.5	0.0	0.0	0.0	4.8	0.0	0.0	0.0	0.0	0.0	0.0	42.9

Taluka : Ma	alegaon	(Davha, D	Ongarkin	hi, Ekan	ıba, Jaul	ka, Kara	nji, Maleg	gaon, Zod	aga B.K.)			
Max	8.9	3630.0	820.0	142.4	134.4	0.3	356.0	434.3	556.0	235.0	1.0	111.0
Average	7.7	776.3	360.6	51.9	55.9	0.1	107.4	111.0	158.7	57.7	0.4	52.2
Stdev	0.6	653.6	176.9	34.4	35.8	0.1	75.5	93.6	115.2	43.2	0.2	32.7
% < Des	0.0	45.7	48.6	80.0	25.7	88.6	88.6	0.0	85.7	97.1	97.1	51.4
% P	85.7	51.4	42.9	20.0	54.3	11.4	11.4	0.0	14.3	2.9	2.9	0.0
% > Ex P	14.3	2.9	8.6	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	48.6

Taluka: Ma	nora (B	huli, Dha	vanda, Kı	ıpta, Par	wa, Sakl	naradoh,	Umari Bl	k.)				
Min	6.9	280.0	92.0	10.8	14.4	0.0	44.0	34.2	26.0	6.0	0.1	10.0
Max	9.2	1600.0	848.0	249.6	96.2	0.4	200.0	190.3	570.0	111.0	1.2	114.0
Average	7.7	641.5	317.3	53.4	44.4	0.1	85.3	83.6	145.6	50.9	0.4	52.3
Stdev	0.7	347.8	174.9	59.4	18.9	0.1	39.7	42.8	139.0	27.7	0.3	31.1
% < Des	0.0	40.7	59.3	81.5	33.3	96.3	96.3	0.0	88.9	100.0	92.6	51.9
% P	85.2	59.3	29.6	14.8	66.7	3.7	3.7	0.0	11.1	0.0	7.4	0.0
% > Ex P	14.8	0.0	11.1	3.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	48.1

Taluka : Risod (Agaewadi, Degaon, Gohagaon, Lehani Kh., Mahagaon, Masalapen, Mohaja Bandi, Mop, Netansa, Risoad, Shegaon, Shelgaon, Sukali, Wanoja, Yevata)

	$e^{-\gamma}$											
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl ⁻	SO_4^{-2}	F ⁻	NO ₃
Min	6.9	165.0	120.0	4.4	8.6	0.0	24.0	24.0	26.0	6.0	0.1	2.0
Max	9.2	1986.0	648.0	99.2	137.1	0.3	460.0	561.2	321.0	262.0	2.0	200.0
Average	7.7	737.5	310.8	42.4	49.6	0.1	100.1	101.7	134.2	57.6	0.4	60.3
Stdev	0.5	430.3	125.7	24.1	31.4	0.1	82.3	86.9	76.3	40.5	0.3	39.5
% < Des	0.0	42.1	51.3	85.5	34.2	89.5	92.1	0.0	90.8	98.7	94.7	36.8
% P	92.1	57.9	46.1	14.5	56.6	10.5	7.9	0.0	9.2	1.3	3.9	0.0
% > Ex P	7.9	0.0	2.6	0.0	9.2	0.0	0.0	0.0	0.0	0.0	1.3	63.2

Taluka : Wa	ashim (E	Bithoda Te	eli, Ekaml	oa, Faleg	gaon, Ke	katumra,	, Pimpalga	aon, Rajga	on, Sawa	rgaon, Ba	rade,			
Sukali, Tond	Sukali, Tondagaon, Umara Kapase, Warla, Washim)													
Min	7.1	210.0	48.0	6.4	2.9	0.1	16.0	4.9	20.0	4.0	0.1	5.0		
Max	9.1	1171.0	540.0	124.8	104.7	0.5	224.0	234.2	278.0	105.0	1.8	125.0		
Average	7.8	561.0	282.3	46.7	40.2	0.1	90.0	91.0	121.1	45.4	0.4	44.5		
Stdev	0.6	243.9	114.7	28.9	23.4	0.1	52.8	57.1	68.0	24.0	0.3	29.6		
% < Des	0.0	46.0	60.3	81.0	38.1	95.2	95.2	0.0	93.7	100.0	96.8	55.6		
% P	85.7	54.0	39.7	19.0	58.7	4.8	4.8	0.0	6.3	0.0	1.6	0.0		
% > Ex P	14.3	0.0	0.0	0.0	3.2	0.0	0.0	0.0	0.0	0.0	1.6	44.4		

34. YAVATMAL

Taluka: Arni (Arni, Belora va	n, Belora(Forest), Belura	, Borgaon Punji,	Dabhadi,	Deurwadi,	Jawala,	Loanbehal,
Mahagaon, Malhiwara, Mangarul	Sawali, Talani, Taroda, U	Jmari)				

0														
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl.	SO_4^{-2}	F ⁻	NO ₃		
Min	6.9	187.0	156.0	8.9	10.6	0.1	40.0	40.0	40.0	2.0	0.1	5.0		
Max	8.4	1050.0	800.0	136.0	154.6	0.2	273.3	288.9	502.0	114.0	1.2	102.0		
Average	7.5	615.2	377.9	44.7	64.3	0.1	115.3	124.2	172.8	32.2	0.6	43.5		
Stdev	0.4	183.1	149.1	27.1	33.5	0.0	56.2	65.1	107.3	23.0	0.3	24.5		
% < Des	0.0	25.9	25.9	88.9	14.8	100.0	92.6	0.0	85.2	100.0	85.2	48.1		
% P	100.0	74.1	66.7	11.1	70.4	0.0	7.4	0.0	14.8	0.0	14.8	0.0		
% > Ex P	0.0	0.0	7.4	0.0	14.8	0.0	0.0	0.0	0.0	0.0	0.0	51.9		

Taluka: Babhulgaon (Antargaon, Babhulgaon, Dehani, Dhaba, Gharephal, Hatola, Karalgaon, Kharda, Mandi Borgaon, Maralpur, Nandura Bk., Pahur, Shindi, Virkhed, Wai Hatola) Min 434.0 1.9 28.0 7.1 176.0 4.4 0.1 36.0 36.0 7.0 0.4 7.3 Max 8.3 1592.5 692.0 190.4 78.7 0.2 356.0 353.3 448.0 255.0 1.2 74.0 7.5 708.2 330.2 71.1 36.7 0.1 84.9 78.7 188.0 50.9 0.8 48.5 Average Stdev 0.3 318.6 119.3 38.6 18.7 0.0 74.1 69.0 85.5 55.1 0.2 17.7 93.3 96.7 % < Des 0.0 26.7 53.3 66.7 50.0 100.0 0.0 83.3 86.7 46.7 % P 100.0 73.3 43.3 33.3 0.0 13.3 50.0 0.0 6.7 16.7 3.3 0.0 0.0 % > Ex P0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53.3

Taluka : Da	rwha (B	Bariarab, E	Bhandegad	on, Bori(Arab), D	arvha, I	Camatwad	a, Lakhkł	ind, Mah	atoli, Mar	ngkinhi,				
Mohatali, Mo	Mohatali, Mozar, Sangvi, Shelodi, Uchegaon)														
Min															
Max	8.7	1400.0	1000.0	132.0	162.8	0.3	340.0	414.8	458.0	120.0	1.2	106.0			
Average	7.6	597.8	402.7	43.2	71.4	0.1	160.8	174.9	152.5	43.7	0.6	36.3			
Stdev	0.4	275.5	176.9	29.9	35.4	0.1	89.1	105.1	123.6	28.0	0.3	28.4			
% < Des	0.0	47.2	27.8	86.1	2.8	97.2	66.7	0.0	80.6	100.0	86.1	61.1			
% P	97.2	52.8	61.1	13.9	77.8	2.8	33.3	0.0	19.4	0.0	13.9	0.0			
% > Ex P	2.8	0.0	11.1	0.0	19.4	0.0	0.0	0.0	0.0	0.0	0.0	38.9			

Taluka : Dig	gras (Ar	ambhi, Di	igraas(Sha	ankartak	i), Digra	s, Harsul	, Lakhray	achi, Lon	behal, Ma	hagao Ka	ısba,		
Mandwa, Singad, Tiwari, Vitholi)													
Min 7.0 271.8 140.0 10.8 2.0 0.1 24.0 24.0 34.0 1.0 0.1 5.0													
Max	9.3	1760.0	1040.0	182.4	185.2	0.4	820.0	1000.4	540.0	125.0	1.2	125.0	
Average	7.7	773.2	473.3	49.0	85.1	0.1	179.2	202.1	203.0	47.4	0.5	43.7	
Stdev	0.5	407.7	179.8	45.9	43.5	0.1	157.5	194.6	119.4	28.4	0.3	36.2	
% < Des	0.0	33.3	21.2	81.8	9.1	90.9	66.7	0.0	63.6	100.0	87.9	57.6	
% P	90.9	66.7	63.6	18.2	54.5	9.1	30.3	0.0	36.4	0.0	12.1	0.0	
% > Ex P	9.1	0.0	15.2	0.0	36.4	0.0	3.0	0.0	0.0	0.0	0.0	42.4	

Taluka : Gh	atanji (Belura, G	hatanji, Ja	rud, Ku	rli, Mano	loli, Maı	ndwa, Ma	ngi, Manj	ari, Mano	li,				
Vilayata, Ye	Vilayata, Yerandgaon)													
Min 6.7 270.0 140.0 8.0 16.3 0.1 44.0 32.0 30.0 8.0 0.4														
Max	8.5	1626.0	988.0	249.6	160.4	0.2	370.0	451.4	628.0	185.0	3.5	108.0		
Average	7.5	542.3	337.8	60.4	45.1	0.1	113.9	115.1	159.6	36.4	0.9	43.6		
Stdev	0.4	257.5	185.7	45.2	31.2	0.0	89.3	106.8	118.2	34.3	0.6	28.5		
% < Des	0.0	55.9	64.7	85.3	44.1	100.0	85.3	0.0	82.4	100.0	73.5	55.9		
% P	100.0	44.1	23.5	11.8	50.0	0.0	14.7	0.0	17.6	0.0	20.6	0.0		
% > Ex P	0.0	0.0	11.8	2.9	5.9	0.0	0.0	0.0	0.0	0.0	5.9	44.1		

Taluka : K	alamb (Chaparda	, Chinch	oli, Don	garkhard	da, Jodn	noha, Kal	amb, Kai	nthwada,	Kinwat,	Kotha,	Mangi,
Mthikhedaa,	Pahur, F	Pilkhana, l	Rajur, Sat	ephal, S	onegaon	, Umari)						
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	CI.	SO_4^{-2}	F ⁻	NO ₃
Min	7.1	280.0	180.0	5.6	14.4	0.1	40.0	40.0	32.0	15.0	0.1	4.0
Max	8.2	900.3	540.0	104.0	84.7	0.2	440.0	536.8	326.0	95.0	1.5	87.0
Average	7.5	586.8	319.6	62.6	39.3	0.1	111.4	118.7	163.8	40.1	0.8	46.8
Stdev	0.3	172.2	85.8	24.0	19.6	0.0	109.6	127.6	68.4	22.2	0.3	23.9
% < Des	0.0	26.7	50.0	73.3	46.7	100.0	80.0	0.0	93.3	100.0	60.0	46.7
% P	100.0	73.3	50.0	26.7	53.3	0.0	20.0	0.0	6.7	0.0	40.0	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	53.3
		<u> </u>	·					<u> </u>		·		

Taluka : K	elapur	(Borgaon	Kh., Ch	akhna,	Dharana	, Ghuba	di, Kelap	ur, Khai	rgaon, M	arathkawa	adi, Ma	regaon,			
Mohada, Pal	Mohada, Pahapal, Pandharkawada, Sunna, Warha)														
Min	6.7	243.0	128.0	5.6	11.5	0.1	32.0	32.0	50.0	8.0	0.3	9.0			
Max	8.1	1180.0	704.0	132.8	123.2	0.2	280.0	341.6	572.0	77.0	2.2	255.0			
Average	7.4	495.0	268.4	49.1	35.2	0.1	79.2	85.9	141.5	31.3	0.6	47.4			
Stdev	0.3	231.3	127.7	25.5	22.5	0.0	65.0	76.5	96.4	17.4	0.3	45.9			
% < Des	0.0	54.8	74.2	87.1	48.4	100.0	90.3	0.0	93.5	100.0	93.5	64.5			
% P	100.0	45.2	22.6	12.9	48.4	0.0	9.7	0.0	6.5	0.0	3.2	0.0			
% > Ex P	0.0	0.0	3.2	0.0	3.2	0.0	0.0	0.0	0.0	0.0	3.2	35.5			

Taluka: Ma	ahagaon	(Dhanoda	a, Kahurv	vadi, Ma	hagaon,	Pisgaon,	Tembhi,	Wadad)				
Min	7.1	186.0	120.0	12.8	13.4	0.1	48.0	48.0	38.0	5.0	0.2	12.0
Max	8.4	1014.0	528.0	118.4	102.5	0.4	280.0	341.6	294.0	102.0	1.3	46.0
Average	7.7	509.3	304.6	43.2	47.6	0.2	116.1	123.3	124.3	39.2	0.6	30.8
Stdev	0.4	189.2	131.2	31.0	27.4	0.1	67.5	81.7	70.8	22.1	0.3	12.4
% < Des	0.0	56.3	43.8	81.3	37.5	87.5	93.8	0.0	93.8	100.0	87.5	81.3
% P	100.0	43.8	56.3	18.8	56.3	12.5	6.3	0.0	6.3	0.0	12.5	0.0
% > Ex P	0.0	0.0	0.0	0.0	6.3	0.0	0.0	0.0	0.0	0.0	0.0	18.8

Taluka : Ma	aregaon	(Jalaka, N	Aaregaon,	Pathari,	Pisgaon	1)						
Min	7.0	200.0	160.0	12.0	22.1	0.1	48.0	48.0	56.0	6.0	0.1	9.0
Max	8.4	910.0	408.0	126.4	49.1	0.2	248.0	244.3	218.0	85.0	1.2	85.0
Average	7.7	448.9	250.0	44.0	33.9	0.1	104.6	103.5	109.2	35.6	0.7	40.5
Stdev	0.5	235.0	79.7	38.7	10.9	0.0	69.4	68.1	53.7	24.8	0.4	27.0
% < Des	0.0	75.0	75.0	87.5	37.5	100.0	87.5	0.0	100.0	100.0	62.5	75.0
% P	100.0	25.0	25.0	12.5	62.5	0.0	12.5	0.0	0.0	0.0	37.5	0.0
% > Ex P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0

Taluka : Ne	r (Banga	aon, Bram	hanwada	, Dhanaj	, Gharefa	al, Ghare	phal, Kha	andala, M	ozar, Ner,	Pimpari,	Uttarwa	dhona,	
Watfali, Yelgonda)													
Min	7.0	177.0	120.0	5.6	7.7	0.0	32.0	32.0	60.0	5.0	0.1	5.0	
Max	8.8	1500.0	810.0	104.0	162.8	0.3	300.0	366.0	550.0	101.0	1.0	120.0	
Average	7.7	703.8	368.0	52.3	57.4	0.1	110.2	117.2	195.9	42.5	0.5	45.3	
Stdev	0.5	354.2	152.6	27.2	35.4	0.1	69.5	81.5	124.4	28.1	0.2	30.4	
% < Des	0.0	33.3	36.7	76.7	20.0	93.3	86.7	0.0	66.7	100.0	96.7	40.0	
% P	93.3	66.7	56.7	23.3	66.7	6.7	13.3	0.0	33.3	0.0	3.3	0.0	
% > Ex P	6.7	0.0	6.7	0.0	13.3	0.0	0.0	0.0	0.0	0.0	0.0	60.0	

Taluka: Pu	sad (Chi	khali, Ch	ondhi, Jar	nnaik, P	usad (Na	ik Bng.)	, Kakadd	ati, Adars	h Ng., Sir	igad, War	ud)	
	'Ph	TDS	TH	Ca ²⁺	Mg^{2+}	Fe	TA	HCO3	Cl	SO_4^{-2}	F ⁻	NO ₃
Min	7.1	222.0	128.0	14.3	6.7	0.1	8.0	8.0	46.0	17.0	0.1	11.8
Max	8.9	660.7	484.0	129.6	97.9	0.2	251.8	292.7	224.0	85.0	0.8	89.0
Average	7.6	450.5	317.4	44.5	49.7	0.1	76.1	79.3	138.0	40.7	0.3	37.8
Stdev	0.5	170.3	109.4	30.9	31.7	0.0	64.4	75.6	58.4	20.5	0.2	21.7
% < Des	0.0	50.0	41.7	91.7	41.7	100.0	91.7	0.0	100.0	100.0	100.0	75.0
% P	91.7	50.0	58.3	8.3	58.3	0.0	8.3	0.0	0.0	0.0	0.0	0.0
% > Ex P	8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0

Taluka: Ra	legaon (Ashtona,	Dapori, I	Kahiree,	Khadaki	, Khaire	y, Kinhi J	awade, F	alegaon,	Ramthirth	, Wadho	na Bz.,
Wanoja, Zad	gaon)											
Min	7.1	316.8	124.0	4.4	1.9	0.1	40.0	40.0	28.0	12.0	0.3	3.0
Max	8.2	1182.0	740.0	166.4	131.2	0.2	440.0	536.8	382.0	60.0	1.4	116.0
Average	7.6	671.2	353.2	71.4	42.1	0.1	140.1	152.5	169.2	30.6	0.8	50.7
Stdev	0.3	239.7	140.3	35.4	29.5	0.0	118.6	142.1	102.1	12.5	0.3	30.0
% < Des	0.0	19.4	41.9	64.5	41.9	100.0	74.2	0.0	77.4	100.0	64.5	48.4
% P	100.0	80.6	51.6	35.5	51.6	0.0	25.8	0.0	22.6	0.0	35.5	0.0
% > Ex P	0.0	0.0	6.5	0.0	6.5	0.0	0.0	0.0	0.0	0.0	0.0	51.6

Taluka : U	markhe	d (Akoli,	Bitragao	n, Bran	hangaor	n, Dhanl	ki, Ekamb	a, Kharbi	, Marsal,	Pophali,	Sawale	eshwar,
Thakani, Um	arkhed,	Vidul)										
Min	6.9	177.6	186.0	0.8	9.6	0.1	12.0	12.0	77.0	3.0	0.1	7.0
Max	8.6	1261.0	624.0	193.6	139.0	0.3	193.3	211.9	348.0	102.0	1.2	105.0
Average	7.7	618.0	347.9	53.2	51.9	0.1	74.6	80.1	169.2	48.1	0.6	46.8
Stdev	0.4	288.2	123.4	43.7	30.5	0.1	52.7	61.5	66.2	26.9	0.3	33.9
% < Des	0.0	39.1	39.1	82.6	21.7	91.3	100.0	0.0	91.3	100.0	91.3	60.9
% P	95.7	60.9	56.5	17.4	73.9	8.7	0.0	0.0	8.7	0.0	8.7	0.0
% > Ex P	4.3	0.0	4.3	0.0	4.3	0.0	0.0	0.0	0.0	0.0	0.0	39.1

Taluka : W Shirpur, Son	•	_			vn, Chila	ai, Gane	shpur, Na	aigaon, Pi	mpri k.,	Punwat, I	Rasa, Sh	indola,	
Min 6.9 290.0 168.0 14.0 17.3 0.1 40.0 40.0 36.0 18.0 0.1 0.7													
Max	9.3	1664.0	728.0	140.8	131.5	0.3	476.0	580.7	352.7	400.0	3.1	150.0	
Average	7.7	888.8	376.7	49.3	61.5	0.1	172.0	197.3	175.7	103.2	1.2	41.7	
Stdev	0.5	318.5	135.3	31.0	27.0	0.0	113.2	137.2	79.8	76.9	0.7	34.4	
% < Des	0.0	3.4	27.6	86.2	10.3	96.6	65.5	0.0	86.2	93.1	51.7	62.1	
% P	93.1	96.6	69.0	13.8	82.8	3.4	34.5	0.0	13.8	6.9	17.2	0.0	
% > Ex P	6.9	0.0	3.4	0.0	6.9	0.0	0.0	0.0	0.0	0.0	31.0	37.9	

Taluka : Ya	vatmal	(Akola Ba	zar, Bech	kheda, I	Borisingl	n, Chincl	hghat, Da	heli, Khor	ad, Lohar	a, Sawarg	gad,				
Talegaon, W	Talegaon, Wadgaon, Yavatmal)														
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
Min	6.8	250.0	168.0	12.8	13.4	0.1	36.0	12.0	23.0	11.0	0.1	5.0			
Max	8.1	1250.0	900.0	186.8	111.1	0.2	248.0	302.6	374.0	75.0	1.2	77.0			
Average	7.5	559.1	353.1	58.4	50.0	0.1	105.7	110.8	159.9	32.0	0.6	39.3			
Stdev	0.3	202.3	142.6	34.9	26.6	0.0	66.1	78.5	79.9	16.7	0.3	20.5			
% < Des	0.0	48.5	36.4	75.8	21.2	100.0	87.9	0.0	84.8	100.0	87.9	54.5			
% P	100.0	51.5	60.6	24.2	72.7	0.0	12.1	0.0	15.2	0.0	12.1	0.0			
% > Ex P	0.0	0.0	3.0	0.0	6.1	0.0	0.0	0.0	0.0	0.0	0.0	45.5			

Taluka : Z			havan, I	Dabha, 1	[sapur,]	Katali E	Borgaon,	Matharjur	n, Mudha	ati, Muku	ıtban, S	Shibala,	
Sindhiwadhana, Zari)													
Min 6.4 237.0 100.0 6.0 6.7 0.1 36.0 36.0 24.0 3.5 0.1 5.0													
Max	8.4	918.0	836.0	248.0	75.8	0.2	234.0	226.9	514.0	61.0	2.8	170.0	
Average	7.4	456.8	277.9	47.7	38.4	0.1	111.9	113.9	115.6	24.3	1.0	38.3	
Stdev	0.5	197.4	176.8	59.5	16.7	0.0	59.9	58.9	124.6	16.4	0.9	41.1	
% < Des	7.1	71.4	71.4	92.9	28.6	100.0	85.7	0.0	92.9	100.0	71.4	78.6	
% P	92.9	28.6	21.4	0.0	71.4	0.0	14.3	0.0	7.1	0.0	7.1	0.0	
% > Ex P	0.0	0.0	7.1	7.1	0.0	0.0	0.0	0.0	0.0	0.0	21.4	21.4	

AIX -88

Annexure X District wise Water Quality Indices of Maharashtra State (2007-2011)

Table x.1: Water Quality Index of Groundwater of Ahmednagar District

,	Гaluka : Ahn	ıednaga	r		Taluka : Ahm	ednaga	r	Taluka : Ahmednagar			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe))			2010 (With Fe)				2011 (With Fe)			
Chinchandi Patil	G/AH-059	86	GW	Jakhangaon	ANOBW001	85	GW	Hatwalan	ANWQN001	72	GW
Dehre	G/AH-033	96	GW	Nepti	ANOBW002	179	PW	Jakhangaon	ANOBW001	109	PW
Jakhangaon	G/AH-037	124	PW	Bolhegaon	ANOBW003	90	GW	Nepti	ANOBW002	146	PW
Manjur	G/AH-026	411	UNSUT	Kamargaon	ANOBW009	105	PW	Bolhegaon	ANOBW003	33	EXLT
Bhitkewadi	G/AH-057	102	PW	Wakodi	ANOBW005	59	GW	Wakodi	ANOBW005	95	GW
				Jeur	ANOBW004	111	PW	Arangaon	ANOBW006	99	GW
2008 (Without Fe))			Mehekari	ANOBW018	121	PW	Burudgaon	ANOBW007	390	UNSUT
Chinchandi Patil	G/AH-059	85	GW	Hatwalan	ANWQN001	82	GW	Pargaonmaulla	ANOBW008	136	PW
Dehre	G/AH-033	88	GW	Pargaonmaulla	ANOBW008	96	GW	Walaki	ANOBW010	300	UNSUT
Jakhangaon	G/AH-037	121	PW	Ruichhattishi.	ANOBW013	109	PW	Shiradhon	ANOBW011	97	GW
Manjur	G/AH-026	360	UNSUT	Takalikazi.	ANOBW015	95	GW	Ruichhattishi.	ANOBW013	81	GW
Bhitkewadi	G/AH-057	55	GW	Burudgaon	ANOBW007	44	EXLT	Takalikazi.	ANOBW015	62	GW
				*Wakodi	ANOBW005	240	VPW	Hatwalan.	ANOBW023	84	GW
2009 (Without Fe)				*Pargaonmaulla	ANOBW008	127	PW	Ambilwadi	ANPZ002	109	PW
Chinchandi Patil	G/AH-059	80	GW	*Shiradhon	ANOBW011	156	PW	Jakhangaon	ANPZ016	112	PW
Dehre	G/AH-033	84	GW	*Ruichhattishi.	ANOBW013	105	PW	Mandve	ANPZ025	94	GW
Jakhangaon	G/AH-037	407	UNSUT	*Hatwalan	ANWQN001	102	PW	Jeur	ANOBW004	135	PW
Manjur	G/AH-026	428	UNSUT	*Arangaon	ANOBW006	97	GW	Nandgaon	ANPZ028	88	GW
Bhitkewadi	G/AH-057	61	GW	*Burudgaon	ANOBW007	297	VPW				
				*Walaki	ANOBW010	128	PW				
				*Takalikazi.	ANOBW015	91	GW				
				*Jeur	ANOBW004	161	PW				
				*Jakhangaon	ANOBW001	30	EXLT				
				*Nepti	ANOBW002	133	PW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	nta) Anmean: Taluka : A				Taluka:	Jamkhed	ì		Taluka:	Karjat	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2007(Witho	out Fe)			2007(Without]	Fe)		
Rajur	G/AH-006	156	PW	Jamkhed	G/AH-053	64	GW	Kolwadi	G/AH-062	89	GW
Tambhol	G/AH-063	113	PW	2008 (With	out Fe)			Pategaon	G/AH-060	293	VPW
2008 (Without	Fe)			Jamkhed	G/AH-053	104	PW	Rassin	K/AH-009	120	PW
Rajur	G/AH-006	271	VPW	2009 (With	out Fe)			2008(Without I	Fe)		
Tambhol	G/AH-063	64	GW	Jamkhed	G/AH-053	100	PW	Kolwadi	G/AH-062	213	VPW
Vadegaon Madhe	G/AH-064	104	PW	2010(With	Fe)			Pategaon	G/AH-060	90	GW
2009 (Without	Fe)			Arangaon	ANOBW028	70	GW	Rassin	K/AH-009	106	PW
Rajur	G/AH-006	257	VPW	Nanaj.	ANOBW039	175	PW	2009(Without]	Fe)		•
Tambhol	G/AH-063	60	GW	Arangaon	ANOBW028	74	GW	Kolwadi	G/AH-062	371	UNSUT
Vadegaon Madhe	G/AH-064	113	PW	2011(With	Fe)			Pategaon	G/AH-060	98	GW
Data Not Avail	able for 2010 (W	ith Fe)		Arangaon	ANOBW028	103	PW	Rassin	K/AH-009	119	PW
2011 (With Fe)				Nanaj.	ANOBW039	70	GW	2010(With Fe)	1		
Tahakali	ANOBW102	38	EXLT	Jamkhed	ANPZ017	84	GW	Babulgaon khalasa	ANOBW025	132	PW
Waki	ANOBW105	45	EXLT	Arangaon	ANOBW028	62	GW	Nimgaondaku.	ANOBW032	172	PW
Takali	ANOBW107	80	GW	Nanaj.	ANOBW039	62	GW	Jalalpur.	ANOBW065	76	GW
Kalas kh.	ANOBW108	73	GW	v		1		Chichondi kaldat.	ANOBW030	108	PW
Maveshi.	ANOBW109	29	EXLT					*Mahi jalgaon	ANPZ024	110	PW
Unch khadak.	ANOBW111	50	EXLT					2011(With Fe)	11112021	110	
Kotul	ANPZ022	73	GW					Babulgaon khalasa	ANOBW025	90	GW
Parakadpur	ANWQN010	128	PW					Chichondi kaldat.	ANOBW030	62	GW
	•	l						Nimgaondaku.	ANOBW032	71	GW
								Jalalpur.	ANOBW065	113	PW
								Rashin.	ANOBW071	71	GW
								Baradgaon sudrik	ANPZ004	78	GW
								Dombalwadi	ANPZ010	51	GW
								Mahi jalgaon	ANPZ024	101	PW
								Rashin	ANPZ037	75	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Koj	pargaor	1		Taluka: Koparga	aon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007(Without Fo	e)			2011(With Fe)			
Chas	K/AH-017	142	PW	Dhamori.	ANOBW078	119	PW
Kolpewadi	G/AH-055	91	GW	Shahajapur.	ANOBW079	175	PW
2008 (Without F	'e)			Ranjangaon deshmukh	ANOBW081	154	PW
Chas	K/AH-017	65	GW	Derde korhale.	ANOBW083	106	PW
Kolpewadi	G/AH-055	56	GW	Takali	ANOBW085	180	PW
2009 (Without F	'e)			Kopargaon	ANOBW086	144	PW
Chas	K/AH-017	70	GW	Apegaon	ANOBW087	357	UNSUT
Kolpewadi	G/AH-055	57	GW	Talegaon male.	ANOBW091	85	GW
2010 (With Fe)				Dahigaon bolka	ANPZ008	53	GW
Dhamori.	ANOBW078	109	PW	Mahegaon deshmukh	ANPZ023	89	GW
Derde korhale.	ANOBW083	118	PW	Pohegaon	ANPZ032	81	GW
Takali	ANOBW085	265	VPW	Kolpewadi	ANWQN007	84	GW
Apegaon.	ANOBW087	49	EXLT	Shinganapur	ANWQN009	277	VPW
Talegaon male.	ANOBW091	102	PW	Puntamba	ANOBW158	188	PW
Shinganapur	ANWQN009	105	PW	Rahata	ANPZ033	61	GW
*Puntamba	ANOBW158	104	PW	Derde korhale.	ANOBW083	64	GW
*Apegaon.	ANOBW087	148	PW	Takali	ANOBW085	43	EXLT
*Talegaon mle.	ANOBW091	85	GW	Shinganapur	ANWQN009	38	EXLT

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Pat	hardi			Taluka : Pathar	di	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe)				2011(With Fe)			
Kasar Pimpalgaon ANWQN004 113 PW				Kasar Pimpalgaon	ANWQN004	74	GW

Data is Not Available for 2007 to 2009 (Without Fe)

·	Taluka: 1	Nevasa			Talul	ka : Neva	asa		Taluka : 1	Nevasa	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007(Without F	(e)			2010(With Fe)			2011(With Fe)			
Khadka	G/AH-050	67	GW	Belpandhari	ANOBW160	178	PW	Belpandhari	ANOBW160	122	PW
				Wadala				Wadala			
Bambori	G/AH-047	216	VPW	bahiroba	ANOBW172	191	PW	bahiroba	ANOBW172	130	PW
Shirasgaon	G/AH-051	111	PW	Watapur	ANOBW174	330	UNSUT	Watapur	ANOBW174	334	UNSUT
Sonai	G/AH-048	80	GW	Babulwedhe	ANOBW176	129	PW	Babulwedhe	ANOBW176	53	GW
Vadala											
Bhairoba	G/AH-002	235	VPW	Newasa kh	ANOBW177	83	GW	Newasa kh	ANOBW177	89	GW
2008(Without F	(e)			Kukana	ANOBW178	337	UNSUT	Kukana	ANOBW178	222	VPW
Khadka	G/AH-050	68	GW	Galnimb	ANOBW201	282	VPW	Galnimb	ANOBW201	122	PW
				Suregaon				Suregaon			
Bambori	G/AH-047	81	GW	dahigaon	ANOBW202	211	VPW	dahigaon	ANOBW202	115	PW
Shirasgaon	G/AH-051	60	GW	*Belpandhari	ANOBW160	88	GW	Belpimpalgaon	ANPZ005	120	PW
				*Wadala							
Sonai	G/AH-048	67	GW	bahiroba	ANOBW172	118	PW	Gidegaon	ANPZ014	74	GW
Vadala											
Bhairoba	G/AH-002	209	VPW	*Watapur	ANOBW174	99	GW	Karegaon	ANPZ018	87	GW
2009(Without F				*Newasa kh	ANOBW177	76	GW	Telkudgaon	ANPZ043	65	GW
Khadka	G/AH-050	75	GW	*Kukana	ANOBW178	230	VPW	Bhende	ANWQN005	95	GW
Bambori	G/AH-047	73	GW	*Galnimb	ANOBW201	54	GW	Belpandhari	ANOBW160	111	PW
				*Suregaon							
Shirasgaon	G/AH-051	60	GW	dahigaon	ANOBW202	80	GW	Newasa kh	ANOBW177	86	GW
Sonai	G/AH-048	110	PW		·			Galnimb	ANOBW201	72	GW
Vadala								Suregaon			
Bhairoba	G/AH-002	265	VPW	2042 41-2 2012				dahigaon	ANOBW202	78	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : P	arner			Taluka : 1				Taluka : 1	Rahuri	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007(Without Fe	e)			2007(Withou	ıt Fe)			2010 (Contd)((With Fe)		
Supe	G/AH-040	328	UNSUT	Rahata	G/AH-025	210	VPW	*Digras	ANOBW168	105	PW
2008(Without Fe	e)			2008(Withou	ıt Fe)			*Wambori	ANOBW169	107	PW
Supe	G/AH-040	84	GW	Rahata	G/AH-025	253	VPW	*Umbare	ANOBW170	224	VPW
2009(Without Fe	e)			2009(Withou	ıt Fe)			*Deolali	ANOBW151	48	EXLT
Supe	G/AH-040	116	PW	Rahata	G/AH-025	194	PW	2011(With Fe)			
2010(With Fe)				Data for 201	0 and 2011 (With	Fe) No	t Available	Warshinde	ANOBW136	51	GW
Deswade	ANOBW141	79	GW					Rahuri bk	ANOBW148	324	UNSUT
Alkuti	ANOBW046	72	GW		Taluka : 1	Rahuri		Kanghar bk	ANOBW150	64	GW
Chambut.	ANOBW047	115	PW	2007(Withou	ıt Fe)			Deolali	ANOBW151	99	GW
Vadzire.	ANOBW048	81	GW	Devlali	G/AH-045	46	EXLT	Kolhar kh	ANOBW152	288	VPW
Devibhoire	ANWQN002	117	PW	Malharwadi	G/AH-046	38	EXLT	Tambhere	ANOBW164	82	GW
*Alkuti	ANOBW046	65	GW	Rahuri	G/AH-010	62	GW	Warvandi	ANOBW166	109	PW
*Chambut.	ANOBW047	110	PW	2008(Withou	ıt Fe)			Digras	ANOBW168	59	GW
*Vadzire.	ANOBW048	69	GW	Devlali	G/AH-045	212	VPW	Wambori	ANOBW169	243	VPW
*Deswade	ANOBW141	32	EXLT	Malharwadi	G/AH-046	147	PW	Umbare	ANOBW170	102	PW
*Tas	ANOBW144	48	EXLT	Rahuri	G/AH-010	182	PW	Kendal kh	ANOBW171	36	EXLT
2011 (With Fe)				2009(Withou	ıt Fe)			Guha	ANPZ015	63	GW
								Songaon/			
Deswade	ANOBW141	92	GW	Devlali	G/AH-045	200	VPW	anapwadi	ANPZ041	164	PW
Tas	ANOBW144	66	GW	Malharwadi	G/AH-046	171	PW	Rahuri Kh.	ANWQN006	36	EXLT
Dhavalpuri	ANPZ009	104	PW	Rahuri	G/AH-010	137	PW	Wambori	ANOBW169	251	VPW
Mandve kh	ANPZ026	68	GW	2010(With F				Warshinde	ANOBW136	39	EXLT
Alkuti	ANOBW046	120	PW	Warshinde	ANOBW136	285	VPW	Rahuri bk	ANOBW148	149	PW
Chambut.	ANOBW047	112	PW	Kanghar bk	ANOBW150	62	GW	Kanghar bk	ANOBW150	48	EXLT
Vadzire.	ANOBW048	114	PW	Deolali	ANOBW151	114	PW	Deolali	ANOBW151	136	PW
Nijhoj	ANPZ029	113	PW	Tambhere	ANOBW164	63	GW	Tambhere	ANOBW164	46	EXLT
Wadegavan	ANPZ045	71	GW	Warvandi	ANOBW166	119	PW	Warvandi	ANOBW166	43	EXLT
Devibhoire	ANWQN002	84	GW	Wambori	ANOBW169	289	VPW	Kendal kh	ANOBW171	52	GW
				Umbare	ANOBW170	284	VPW	Rahuri Kh.	ANWQN006	221	VPW
				Rahuri bk	ANOBW148	182	PW				
				Digras	ANOBW168	95	GW				
				*Warshinde	ANOBW136	96	GW				
				*Kanghar	ANOBW150	77	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

T	aluka : Sangam	ner		Ta	luka : Sangam	ner		T	'aluka : Sangam	ner	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007(Without F	(e)			2010Contd(Wit	th Fe)			2011(With Fe)			
Ambikhalsa	G/AH-016	78	GW	Ghulewadi.	ANOBW076	215	VPW	Maldad.	ANOBW074	50	EXLT
Chandanapuri	G/AH-056	63	GW	Chikhali.	ANOBW104	217	VPW	Gunjalwadi.	ANOBW075	325	UNSUT
Sangamner	G/AH-013	38	EXLT	Sarola pathar.	ANOBW120	86	GW	Ghulewadi.	ANOBW076	97	GW
2008(Without F	e)			Chandanapuri.	ANOBW123	165	PW	Chikhali.	ANOBW104	196	PW
Ambikhalsa	G/AH-016	74	GW	Nimgaonjali.	ANOBW129	88	GW	Nimgaon paga	ANOBW118	86	GW
Chandanapuri	G/AH-056	86	GW	Hangewadi	ANOBW134	215	VPW	Sarola pathar.	ANOBW120	76	GW
Sangamner	G/AH-013	101	PW	Kasare	ANOBW156	68	GW	Chandanapuri.	ANOBW123	148	PW
2009(Without F	e)			*Maldad	ANOBW074	73	GW	Nimgaonjali.	ANOBW129	155	PW
Ambikhalsa	G/AH-016	66	GW	*Gunjalwadi.	ANOBW075	227	VPW	Hangewadi	ANOBW134	389	UNSUT
Chandanapuri	G/AH-056	70	GW	*Ghulewadi.	ANOBW076	92	GW	Kasare	ANOBW156	104	PW
Sangamner	G/AH-013	75	GW	*Nimgaonjali.	ANOBW129	161	PW	Bota	ANPZ006	55	GW
2010 (With Fe)				*Kasare	ANOBW156	72	GW	Ghulewadi	ANPZ013	53	GW
Nimgaon paga	ANOBW118	85	GW	*Chikhali.	ANOBW104	205	VPW	Karhe	ANPZ019	72	GW
Maldad.	ANOBW074	70	GW	*Nimgaon paga	ANOBW118	89	GW	Karjule pathar	ANPZ020	45	EXLT
Gunjalwadi.	ANOBW075	220	VPW	*Hangewadi	ANOBW134	268	VPW	Raitewadi	ANPZ034	56	GW
Nimgaon paga	ANOBW118	85	GW					Sangamner	ANPZ038	64	GW

	Taluka: Shevg	aon		Γ	Taluka: Shevgao	n		T	Taluka : Shevgaor	1	
2007(Without	Fe)			2009(Without Fe))			2011(With Fe)			
Dahigaon	G/AH-041	67	GW	Dahigaon	G/AH-041	304	UNSUT	*Antre	ANOBW180	105	PW
Ghotan	G/AH-003	453	UNSUT	Jeur	G/AH-036	141	PW	*Hingangaon ne	ANOBW183	238	VPW
Jeur	G/AH-036	124	PW	Rakshi	G/AH-042	54	GW	*Khanapur	ANOBW193	117	PW
Kokona	G/AH-018	206	VPW	2010(With Fe)				*Antrawali bk	ANOBW195	65	GW
Rakshi	G/AH-042	185	PW	Antre	ANOBW180	115	PW	Bodhegaon.	ANOBW098	132	PW
2008(Without	Fe)			Hingangaon ne	ANOBW183	124	PW	Antre	ANOBW180	74	GW
Dahigaon	G/AH-041	200	VPW	Bodhegaon.	ANOBW098	55	GW	Hingangaon ne	ANOBW183	113	PW
Ghotan	G/AH-003	182	PW	Karjat kh	ANOBW191	77	GW	Karjat kh	ANOBW191	199	PW
Jeur	G/AH-036	177	PW	Khanapur	ANOBW193	82	GW	Khanapur	ANOBW193	38	EXLT
Kokona	G/AH-018	80	GW	Antrawali bk	ANOBW195	63	GW	Antrawali bk	ANOBW195	39	EXLT
Rakshi	G/AH-042	55	GW								

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Shrigo				Taluka : Shrige	onda			Гаluka : Shrig	onda	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007(Without	Fe)			2008(Without	Fe)	•		2009(Without F	re)	1	
Babhuleshwar	G/AH-039	94	GW	Babhuleshwar	G/AH-039	251	VPW	Babhuleshwar	G/AH-039	209	VPW
Ban pimpri	K/AH-005	178	PW	Ban pimpri	K/AH-005	190	PW	Ban pimpri	K/AH-005	149	PW
Chikhale	K/AH-023	367	UNSUT	Chikhale	K/AH-023	260	VPW	Chikhale	K/AH-023	270	VPW
Kokangaon	G/AH-001	81	GW	Kokangaon	G/AH-001	80	GW	Kokangaon	G/AH-001	85	GW
Shrigonda	K/AH-008	108	PW	Shrigonda	K/AH-008	104	PW	Shrigonda	K/AH-008	110	PW
Takle-Kazi	K/AH-024	100	GW	Takle-Kazi	K/AH-024	152	PW	Takle-Kazi	K/AH-024	69	GW
Walvad	K/AH-022	100	GW	2011(With Fe)				Walvad	K/AH-022	109	PW
2010(With Fe)				Koregavhan.	ANOBW051	160	PW				
Banpimpri.	ANOBW022	104	PW	Deodaithan.	ANOBW054	54	GW				
Koregavhan.	ANOBW051	198	PW	Ghargaon	ANPZ011	59	GW				
Deodaithan.	ANOBW054	137	PW	Rajapur	ANPZ035	86	GW				
Bori.	ANOBW057	70	GW	Banpimpri.	ANOBW022	134	PW				
Chimbale.	ANOBW059	78	GW								
Shedgaon.	ANOBW064	145	PW								
*Banpimpri.	ANOBW022	105	PW								
*Koregavhan.	ANOBW051	150	PW								
*Deodaithan.	ANOBW054	90	GW								
*Bori.	ANOBW057	127	PW								
*Chimbale.	ANOBW059	141	PW								
*Shedgaon.	ANOBW064	64	GW								

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Srira				Taluka : Sriram	pur			Taluka : Sriram	pur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007(Withou	ıt Fe)			2010 Contd(With Fe)	•		2011(With Fe)	•		1
Bote	G/AH-004	83	GW	Khokar.	ANOBW096	84	GW	Rampur.	ANOBW094	46	EXLT
Srirampur	G/AH-015	25	EXLT	Takalibhan.	ANOBW097	96	GW	Wadala mahadeo.	ANOBW095	64	GW
2008(Withou	ıt Fe)			Khirdi	ANOBW163	135	PW	Khokar.	ANOBW096	116	PW
Bote	G/AH-004	68	GW	*Chitali.	ANOBW092	37	EXLT	Takalibhan.	ANOBW097	84	GW
Srirampur	G/AH-015	53	GW	*Undirgaon.	ANOBW093	78	GW	Eklahare	ANOBW155	98	GW
2009(Withou	ıt Fe)			*Rampur.	ANOBW094	201	VPW	Shrirampur	ANOBW161	64	GW
Bote	G/AH-004	75	GW	*Wadala mahadeo.	ANOBW095	31	EXLT	Belapur bk	ANOBW162	165	PW
Srirampur	G/AH-015	48	EXLT	*Khokar.	ANOBW096	126	PW	Khirdi	ANOBW163	109	PW
2010(With F	`e)			*Takalibhan.	ANOBW097	75	GW	Belapur kh	ANOBW165	84	GW
Loni kh	ANOBW131	68	GW	*Rajankhol	ANOBW154	37	EXLT	Chitali.	ANOBW092	174	PW
Rajankhol	ANOBW154	73	GW	*Eklahare	ANOBW155	40	EXLT	Loni kh	ANOBW131	137	PW
Eklahare	ANOBW155	76	GW	*Shrirampur	ANOBW161	87	GW	Kolhar bk	ANOBW132	134	PW
Shrirampur	ANOBW161	61	GW	*Belapur bk	ANOBW162	82	GW	Babhaleshwar bk	ANOBW153	95	GW
Belapur bk	ANOBW162	67	GW	*Khirdi	ANOBW163	34	EXLT	Rajankhol	ANOBW154	75	GW
Belapur kh	ANOBW165	52	GW	*Belapur kh	ANOBW165	82	GW	Bableshwar	ANPZ003	224	VPW
Undirgaon.	ANOBW093	99	GW	*Loni kh	ANOBW131	80	GW	Undirgaon.	ANOBW093	37	EXLT
Rampur.	ANOBW094	336	UNSUT	*Babhaleshwar	ANOBW153	85	GW	Eklahare	ANOBW155	46	EXLT
							11 /-14	Belapur kh	ANOBW165	112	PW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.2 : Water Quality Index of Groundwater of Akola District

	Taluka : A	kola			Taluka : Ak	ola			Taluka : Al	kola	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Te)			2008 (Without Fe)			2009 (Without Fe)		
Akola	T/AK-023	216	VPW	Akola	T/AK-023	246	VPW	Andural1	T/AK-042	126	PW
Andura	T/AK-042	174	PW	Borgaon Manju	T/AK-013	85	GW	Borgaon Manju	T/AK-013	116	PW
Borgaon Manju	T/AK-013	55	GW	Kurankhed	T/AK-012	197	PW	Kurankhed	T/AK-012	124	PW
Kapsi	T/AK-011	88	GW	Malkapur	T/AK-022	143	PW				
Kurankhed	T/AK-012	193	PW	Kudwa	T/AK-042	197	PW				
Malkapur	T/AK-022	126	PW								
2007 (With Fe)				2008 (With Fe)				2009 (With Fe)			
Agar	AKOBW001	483	UNSUT	Agar	AKOBW001	381	UNSUT	*Agar	AKOBW001	133	PW
Babulgaon	AKOBW004	101	PW	*Akola	AKWQN004	192	PW	*Akola	AKWQN004	189	PW
Badlapur	AKOBW005	119	PW	*Apatapa	AKOBW003	113	PW	*Apatapa	AKOBW003	216	VPW
Chikhalgaon	4AKOBW006	145	PW	*Babulgaon	AKOBW004	79	GW	*Babulgaon	AKOBW004	85	GW
Tamaswadi	AWQN003	172	PW	*Badlapur	AKOBW005	216	VPW	*Badlapur	AKOBW005	119	PW
Kanshivani	AKOBW009	52	GW	*Chikhalgaon	4AKOBW006	99	GW	*Dhamna	AKWQN012	117	PW
Kapileshwar	AKWQN006	146	PW	*Dhamna	AKWQN012	138	PW	*Tamaswadi	AWQN003	171	PW
Katyar	AKWQN001	218	VPW	*Jawala Bk	AKOBW008	59	GW	*Kanshivani	AKOBW009	76	GW
Mhispur	AKOBW012	76	GW	Kati	AKWQN09	275	VPW	*Kapileshwar	AKWQN006	76	GW
Palso Bk	AKWQN013	108	PW	*Katyar	AKWQN001	162	PW	*Kati	AKWQN09	81	GW
Shivar	AKWQN016	96	GW	*Mhaisang	AKOBW011	116	PW	*Katyar	AKWQN001	243	VPW
Shivni	AKWQN015	92	GW	*Palso Bk	AKWQN013	333	UNSUT	*Mhaisang	AKOBW011	144	PW
Ugwa	AKOBW014	79	GW	Shivni	AKWQN015	78	GW	*Palso Bk	AKWQN013	83	GW
Wadad	AKWQN007	168	PW	*Shivar	AKWQN016	116	PW	*Rohana	AKWQN011	82	GW
				Ugwa	AKOBW014	126	PW	*Shivar	AKWQN016	114	PW
				*Wadad	AKWQN007	60	GW	*Shivni	AKWQN015	103	PW
				*Wanirambhapur	AKPZ003	47	EXLT	*Ugwa	AKOBW014	241	VPW
					11.00		/1 /	*Wanirambhapur	AKPZ003	45	EXLT

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.2 (Contd..) Akola District

	Taluka : Al	kola			Taluka : A	kola			Taluka : A	kola	
20010 (With Fe)				2011 (With Fe)				2011 Contd (W	ith Fe)		
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
*Akola	AKWQN004	128	PW	Agar	AKOBW001	123	PW	Shivar	AKWQN016	85	GW
*Ugwa	AKOBW014	92	GW	Akola Camp	AKWQN004	167	PW	Shivani	AKWQN015	66	GW
*Agar	AKOBW001	109	PW	Apatapa	AKOBW003	113	PW	Ugwa	AKOBW014	90	GW
*Hingana											
tamaswadi	AWQN003	109	PW	Babhulgaon	AKOBW004	107	PW	Wanirambhapur	AKPZ003	57	GW
*Atapata	AKOBW003	174	PW	Badalpur	AKOBW005	235	VPW	Wadad	AKWQN007	69	GW
					BS-						
*Jawala Bk.	AKOBW008	55	GW	Chikhalgaon	4AKOBW006	70	GW	*Shivani	AKWQN015	60	GW
*Wanirambhapur	AKPZ003	43	EXLT	Dhamana	AKWQN012	124	PW	*Palso bK	AKWQN013	80	GW
				Hingana							
*Kanshivani	AKOBW009	67	GW	Tawadi	AWQN003	125	PW	*Sangavi	AKWQN009	60	GW
*Palsodbade	AKWQN013	70	GW	Javala Bk.	AKOBW008	65	GW	*Wadad	AKWQN007	57	GW
*Babhulgaon	AKOBW004	83	GW	Kanshivani	AKOBW009	81	GW	*Ktyar	AKWQN001	90	GW
*Shivar	AKWQN016	87	GW	Kapileshwar	AKWQN006	99	GW	*Shivar	AKWQN016	69	GW
*Mhaisang	AKOBW011	82	GW	Katyar	AKWQN001	115	PW	Rohana	AKWQN011	94	GW
*Shivani	AKWQN015	64	GW	Mhaisang	AKOBW011	90	GW	Akola Camp	AKWQN004	139	PW
Mhispur	AKOBW012	71	GW	Mhaispur	AKOBW012	100	PW	Kapileshwar	AKWQN006	76	GW
				Palsao Bade	AKWQN013	81	GW	Hingana Tamas	AWQN003	107	PW
				Rohana	AKWQN011	89	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.2 (Contd..) Akola District

,	Taluka : Akot				Taluka : Akot				Taluka : Ako	t	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	e)			2008 (Without	Fe)			2009 (Without	Fe)		
Patsul	T/AK-008	308	UNSUT	Patsul	T/AK-008	272	VPW	Patsul	T/AK-008	273	VPW
Popetkheda	T/AK-040	64	GW	Popet Kheda	T/AK-021	70	GW	Popatkheda	T/AK-040	78	GW
2007 (With Fe)				2008 (With Fe)				2009 (With Fe)			
Akolkhed	AKOBW013	47	EXLT	Girijapur	TS-18	103	PW	*Akolkhed	AKOBW013	94	GW
Akot	AKOBW021	98	GW	Kinkhed	AKWQN018	445	UNSUT	*Akot	BS18	104	PW
Deori	AKWQN014	241	VPW	Kutasa	AKOBW025	61	GW	*Deori	AKWQN014	77	GW
Devarda	AKWQN019	393	UNSUT	Palsad	TS11	299	VPW	*Devarda	AKWQN019	99	GW
Girijapur	TS-18	230	VPW	Patsul	AKWQN022	224	VPW	*Girijapur	TS-18	237	VPW
*Hilaladad	AKWQN017	530	UNSUT	Popatkhed	AKOBW028	61	GW	*Hilaladad	AKWQN017	135	PW
Kutasa	AKOBW025	135	PW	Sawara	AKOBW031	77	GW	*Kinkhed	AKWQN018	67	GW
Mundgaon	AKOBW026	95	GW	Akolkhed	AKOBW013	92	GW	*Mundgaon	AKOBW026	126	PW
Palsad	TS11	232	VPW	Akolkhed	AKOBW013	92	GW	*Palsad	TS11	183	PW
*Parala	AKWQN021	345	UNSUT	Akot	AKOBW021	98	GW	*Parala	AKWQN021	188	PW
*Patsul	AKWQN022	187	PW	Deori	AKWQN014	250	VPW	*Patsul	AKWQN022	98	GW
Popatkhed	AKOBW028	45	EXLT	Devarda	AKWQN019	382	UNSUT	*Popatkhed	AKOBW028	39	EXLT
Ruikhed	AKOBW029	40	EXLT	Hilaladad	AKWQN017	258	VPW	*Ruikhed	AKOBW029	67	GW
Sawara	AKOBW031	80	GW	Mundgaon	AKOBW026	166	PW	*Sawara	AKOBW031	149	PW
Shahanur	AKOBW019	37	EXLT	Ruikhed	AKOBW029	70	GW	*Shahanur	AKOBW019	48	EXLT
				Shahanur	AKOBW019	69	GW	*Takli Bk	AKWQN023	176	PW
								*Wadalisatwai	AKPZ004	64	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.2 (Contd..) Akola District

	Taluka : Akot				Taluka : Akot				Taluka : Ako	t	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe)				2011 (With Fe))			2011 Contd (V	With Fe)		
Ruikhed	AKOBW029	51	GW	Akolkhed	AKOBW013	119	PW	Sawara	AKOBW031	73	GW
Sawara M.	AKOBW031	68	GW	Akot	AKOBW021	107	PW	Shahanur	AKOBW019	74	GW
Deori	AKWQN014	70	GW	Devari	AKWQN014	173	PW	Wadalisatvai	AKPZ004	63	GW
Pastul	AKWQN022	73	GW	Devarda	AKWQN019	59	GW	*Devarda	AKWQN019	76	GW
Mundgaon	AKOBW026	116	PW	Girijapur	TS-18	186	PW	*Devari	AKWQN014	53	GW
Parla	AKWQN021	146	PW	Hilalabad	AKWQN017	150	PW	*Palsod	TS11	123	PW
Devarda	AKWQN019	82	GW	Keliveli	AKOBW024	170	PW	*Girijapur	TS-18	134	PW
*Kinkhed	AKWQN018	285	VPW	Kinkhed'	AKWQN018	213	VPW	*Patsul	AKWQN022	72	GW
*Girijapur	TS-18	196	PW	Mundgaon	AKOBW026	102	PW	*Hilalabad	AKWQN017	125	PW
*Palsod	TS11	134	PW	Palsod	TS11	132	PW	*Kinkhed	AKWQN018	170	PW
Akot	AKOBW021	61	GW	Parala	AKWQN021	139	PW	*Parla	AKWQN021	126	PW
Akolkhed	AKOBW013	66	GW	Poptkhed	AKOBW028	73	GW	Nakhegaon	TS-19	177	PW
Popatkhed	AKOBW028	28	EXLT	Ruikhed	AKOBW029	58	GW	*Chhota Bz	TS-17	114	PW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.2 (Contd..) Akola District

	Taluka : Ba	lapur			Taluka : Bal	apur			Taluka : Ba	alapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without Fe))			2009 (Without	Fe)		
Babulkhed	T/AK-007	87	GW	Babulkhed	T/AK-007	93	GW	Babulkhed	T/AK-007	92	GW
Ural	T/AK-024	159	PW	Ural	T/AK-024	124	PW	Ural	T/AK-024	135	PW
Wadegaon	T/AK-010	269	VPW	Wadegaon	T/AK-010	253	VPW	Wadegaon	T/AK-010	317	UNSUT
Wyala	G/AK-017	193	PW	Wyala	G/AK-017	133	PW	Wyala	G/AK-017	122	PW
2007 (With Fe))			2008 (With Fe)				2009 (With Fe))		
*Balapur	AKWQN062	66	GW	Batwadi	AKOBW063	86	GW	*Balapur	AKWQN062	98	GW
Batwadi	AKOBW063	91	GW	Balapur	AKWQN062	66	GW	*Batwadi	AKOBW063	82	GW
Kolasa	AKWQN005	73	GW	Gaigaon	AKOBW064	162	PW	*Gaigaon	AKOBW064	106	PW
Nakashi	AKOBW069	92	GW	Kazikhed	TS-21	206	VPW	*Kazikhed	TS-21	121	PW
Wadegaon	AKOBW073	79	GW	Lohara	AKOBW067	403	UNSUT	*Kolasa	AKWQN005	89	GW
-				Nakashi	AKOBW069	90	GW	*Lohara	AKOBW067	114	PW
				Wadegaon	AKOBW073	95	GW	*Paras	AKOBW071	72	GW
								*Wadegaon	AKOBW073	89	GW
2010 (With Fe))			2011 (With Fe)							
Nakashi	AKOBW069	62	GW	Balapur	AKWQN062	89	GW				
Wadegaon	AKOBW073	66	GW	Batwadi BK	AKOBW063	91	GW				
Batwadi	AKOBW063	61	GW	Gaigaon	AKOBW064	74	GW				
Balapur	AKWQN062	86	GW	Kajikhed(wazeG)	TS-21	100	GW				
Paras	AKOBW071	89	GW	Kolsar	AKWQN005	73	GW				
Kolsa	AKWQN005	62	GW	Lohara	AKOBW067	84	GW				
Lohara	AKOBW067	84	GW	Nakashi	AKOBW069	62	GW				
Kajikhed	TS-21	91	GW	Paras	AKOBW071	109	PW				
Balapur	AKWQN062	88	GW	Wadegaon	AKOBW073	78	GW				
Gaigaon	AKOBW064	74	GW	*Kazikhed	TS-21	83	GW				
-	<u> </u>			*Kolsa	AKWQN005	58	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.2 (Contd..) Akola District

	Taluka : Bars	shitakli			Taluka : Barsl	nitakli			Taluka : Bar	shitakli	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Without F	e)			2009 (Without	Fe)		
Barshi Takli	T/AK-014	66	GW	Barshi Takli	T/AK-014	59	GW	Barshi Takli	T/AK-014	58	GW
Pinjar	G/AK-016	95	GW	Pinjar	G/AK-016	108	PW	Pinjar	G/AK-016	89	GW
2007 (With Fe)				2008 (With Fe)				2009 (With Fe)			
Dhaba	AKOBW052	87	GW	*Dhaba	AKOBW052	66	GW	*Dhaba	AKOBW052	90	GW
Hatola	AKOBW054	54	GW	*Hatola	AKOBW054	90	GW	*Gorwa	AKOBW053	98	GW
Kajaleshwar	AKOBW055	77	GW	*Kajaleshwar	AKOBW055	98	GW	*Hatola	BS33	91	GW
Kasarkhed	AKOBW058	62	GW	*Kasarkhed	AKOBW058	63	GW	*Kajaleshwar	AKOBW055	77	GW
Pinjar	AKPZ006	139	PW	*Pinjar	AKPZ006	222	VPW	*Kasarkhed	AKOBW058	74	GW
Rahit	AKOBW060	87	GW	*Rahit	AKOBW060	374	UNSUT	*Pinjar	AKPZ006	92	GW
								*Rahit	AKOBW060	262	VPW
2010 (With Fe)				2011 (With Fe)							
Gorvha	AKOBW053	63	GW	Gorvha	AKOBW053	65	GW				
Yeranda	AKOBW062	52	GW	Hatola	AKOBW054	78	GW				
Rahit	AKOBW060	161	PW	Kajleshwar	AKOBW055	84	GW				
Kasarkhed	AKOBW058	59	GW	Kasarkhed	AKOBW058	67	GW				
Pinjar	AKPZ006	81	GW	Pinjar	AKPZ006	79	GW				
Hatola	AKOBW054	68	GW	Rahit	AKOBW060	155	PW				
Kajaleshwar	AKOBW055	68	GW	Yeranda	AKOBW062	46	EXLT				
Dhaba	AKOBW052	46	EXLT	Dhaba	AKOBW052	59	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.2 (Contd..) Akola District

T	aluka : Murtizaj	our		Ta	aluka : Murtizap	ur		T	aluka : Murtiza	pur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without H	Fe)			2008 (Without F	e)			Data for 2009 (Wihout Fe) Not	Availab	le
Murtizapur	T/AK-002	111	PW	Murtizapur	T/AK-002	149	PW				
Rasulpur	T/AK-019	484	UNSUT								
2007 (With Fe)				2008 (With Fe)				2009 (With Fe)			
Dapura	TS-22	237	VPW	Kinkhed	AKOBW030	659	UNSUT	Dapura	TS-22	81	GW
Kawatha	TS-24	149	PW	Dapura	TS-22	312	UNSUT	Kawatha	TS-24	125	PW
Kinkhed	AKOBW030	382	UNSUT	Kawatha	TS-24	133	PW	Kinkhed	AKOBW030	245	VPW
Kolsara	AKWQN003	140	PW	Kinkhed	AKOBW030	76	GW	Kolsara	AKWQN003	248	VPW
Mana	AKOBW033	118	PW	Kolsara	AKWQN003	71	GW	Madhapuri	AKOBW032	45	EXLT
Murtijapur	AKOBW034	112	PW	Madhapuri	AKOBW032	62	GW	Mana	AKOBW033	90	GW
Sirso	AKOBW036	113	PW	Mana	AKOBW033	106	PW	Shelu Bazar	AKOBW035	93	GW
				Murtijapur	AKOBW034	103	PW	Sonari Bopari	AKOBW037	153	PW
				Shelu Bazar	AKOBW035	76	GW	Yendli	BS-38	117	PW
				Sirso	AKOBW036	155	PW				
				Sonari Bopari	AKOBW037	134	PW				
				Yendli	BS-38	58	GW				
2010 (With Fe)				2011 (With Fe)							
*Kinkhed	AKOBW030	89	GW	Dapura	TS-22	80	GW				
*Dapura	TS-22	86	GW	Jamthi Bk.	AKPZ005	74	GW				
*Madhapuri	AKOBW032	42	EXLT	Kawatha shelu	TS-24	99	GW				
*Jamthi	AKPZ005	64	GW	Kinkhed'	AKOBW030	92	GW				
*Mana	AKOBW033	89	GW	Kolsara	AKWQN003	121	PW				
*Sonorobapori	AKOBW037	127	PW	Madhapuri	AKOBW032	49	EXLT				
*Kawada	TS-24	109	PW	Mana	AKOBW033	90	GW				
*Shelu Bz.	AKOBW035	84	GW	Murtizapur	AKOBW034	91	GW				
*Yelandi	BS-38	64	GW	Shelu Bk.	AKOBW035	81	GW				
*Kolasara	AKWQN003	115	PW	Shirso	AKOBW036	103	PW				
*Sirso	AKOBW036	101	PW	Sonoribopori	AKOBW037	131	PW				
*Murtizapur	AKOBW034	83	GW	Yendli	BS-38	73	GW				
				Kolsara	AKWQN003	92	GW				
				Kawatha	TS-24	106	PW				
				Dapura	TS-22	78	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.2 (Contd..) Akola District

	Taluka : Patur				Taluka : Patur				Taluka : Patui	r	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Fe)			2008 (Without F	Fe)			2009 (Without	Fe)		
Chani	G/AK-018	71	GW	Chani	G/AK-018	68	GW	Chani	G/AK-018	70	GW
Patur	T/AK-005	72	GW	Patur	T/AK-005	56	GW	Patur	T/AK-005	77	GW
2007 (With Fe)				2008 (With Fe)				2009 (With Fe)			
Chatari	BS-48	75	GW	*Chatari	BS-48	50	EXLT	*Chatari	BS-48	89	GW
Chikhalwal	BS-50	67	GW	*Chikhalwal	BS-50	104	PW	*Chikhalwal	BS-50	65	GW
Digras Kh	BS-51	107	PW	*Digras Kh	BS-51	112	PW	*Digras Kh	BS-51	84	GW
Khetri	BS-49	64	GW	*Khetri	BS-49	55	GW	*Khetri	BS-49	52	GW
Lavkhed	AKOBW056	95	GW	*Lavkhed	AKOBW056	93	GW	*Lavkhed	BS-53	102	PW
Patur	BS-52	76	GW	*Patur	BS-52	75	GW	*Patur	BS-52	88	GW
Pimpalkhuta	TS-25	61	GW	*Sawarkhed	BS-55	91	GW	*Pimpalkhuta	TS-25	90	GW
Sawargaon	AKOBW059	56	GW					*Sawargaon	AKOBW059	70	GW
								*Sawarkhed	BS-55	49	EXLT
2010 (With Fe)				2011 (With Fe)							
Chikhalgaon	BS-50	46	EXLT	Chatari	BS-48	63	GW				
Patur	BS-52	63	GW	Chikhalwal	BS-50	63	GW				
Sawarkheda	BS-55	41	EXLT	Digras	BS-51	62	GW				
Chikhalwal	BS-50	55	GW	Khetri	BS-49	39	EXLT				
Umra	BS-54	44	EXLT	Lavkhed	BS-53	77	GW				
Sawargaon	AKOBW059	50	EXLT	Patur	BS-52	52	GW				
Pimpalkhuta	TS-25	65	GW	Pimpalkhuta	TS-25	58	GW				
Khetri	BS-49	37	EXLT	Sawarkhed	BS-55	53	GW				
Chatari	BS-48	71	GW	Sawargaon	AKOBW059	55	GW				
Lavkhed	BS-53	79	GW	Umra	BS-54	56	GW				
Digras Kh.	BS-51	65	GW	Pimpalkhuta	TS-25	67	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.2 (Contd..) Akola District

	Taluka : Telhar	a		,	Taluka : Telhara				Taluka : Telhai	ra	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	re)			2008 (With Fe)				2009 (With Fe)			
Telhara	T/AK-006	187	PW	Danapur	BS-58	99	GW	*Adsul	AKOBW074	155	PW
Data for 2008 a	nd 2009 (Withou	ut Fe) N	ot Avail.	Adsul	AKOBW074	223	VPW	*Danapur	BS-58	102	PW
2007 (With Fe)				Hingani Bk	TS-27	65	GW	*Hingani Bk	TS-27	70	GW
*Adsul	AKOBW074	190	PW	Panchagavan	BS-57	484	UNSUT	*Panchagavan	BS-57	57	GW
*Hingani Bk	TS-27	61	GW	Thar	BS-56	58	GW	*Thar	BS-56	48	EXLT
				Wadi Adampur	BS-59	100	GW	*WadiAdampur	BS-59	108	PW
				Wangargaon	AKOBW079	220	VPW	*Wangargaon	AKOBW079	143	PW
								*Wari Warkhed	AKOBW080	57	GW
2010 (With Fe)				2011 (With Fe)							
Wangargaon	AKOBW079	107	PW	Adsul	AKOBW074	148	PW				
Wadi Adampur	BS-59	44	EXLT	Danapur	BS-58	83	GW				
Adsul	AKOBW074	113	PW	Hingani Bk.	TS-27	61	GW				
Panchagavhan	BS-57	37	EXLT	Panchgavhan	BS-57	47	EXLT				
Tahr	BS-56	37	EXLT	Thar	BS-56	69	GW				
Hingani Bk.	TS-27	51	GW	Wadiadampur	BS-59	57	GW				
Danapur	BS-58	84	GW	Wangargaon	AKOBW079	186	PW				
Wari Warkhed	AKOBW080	39	EXLT	Wariwarkhed	AKOBW080	43	EXLT				
Shahanur	AKOBW019	36	EXLT	Adsul	AKOBW074	134	PW				
				Hingani Bk.	TS-27	65	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x3: Water Quality Index of Groundwater of Amravati District

	Taluka : Acl	halpur			Taluka : Ach	alpur			Taluka : Acl	halpur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			Data for 2009	(Without Fe) and	2008 and	d 2009
Devgaon	G/AV-031	64	GW	Devgaon	G/AV-031	64	GW	(With Fe) Not	Available		
				Nimbhari	T/AV-100	159	PW				
				Pathrot	T/AV-103	158	PW				
2007 (With Fe)				2010 (With Fe)			2011 (With Fe	e)		
Chaushala	AMTOBW060	151	PW	Chavasala	AMTOBW060	101	PW	Pathrot	AMTPZ019	72	GW
Data for 2008 a	nd 2009 Not Av	ailable		Pathrot	AMTPZ019	69	GW	Chausala	AMTOBW060	150	PW

	Taluka : Amrav	ati				Taluka : Amrav	ati			Taluka : Amrava	ati	
Villages	Well No.	WQI	Category	Villa	ges	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	ıt Fe)			2008	(Without	t Fe)			2009 (Witho	ut Fe)		
Badnera	T/AV-072	119	PW	Badn	era	T/AV-072	128	PW	Badnera	T/AV-072	108	PW
Loni	G/AV-061	178	PW	Loni		G/AV-061	149	PW	Loni	G/AV-061	150	PW
Nandgaon	G/AV-029	114	PW	Nand	gaon	G/AV-029	92	GW	Nandgaon	G/AV-029	105	PW
Pimpri	G/AV-044	50	EXLT	Pimp	ri	G/AV-044	55	GW	Pimpri	G/AV-044	74	GW
Pohra	G/AV-016	94	GW	Pohra	ì	G/AV-016	74	GW	Pohra	G/AV-016	74	GW
Walgaon	T/AV-005	218	VPW	Walg	aon	T/AV-005	218	VPW	Walgaon	T/AV-005	150	PW
Arao	T/AV-025	45	EXLT	Arao		T/AV-025	47	EXLT	Arao	T/AV-025	44	EXLT
Behali	T/AV-035	56	GW	Beha	li	T/AV-035	65	GW	Chinkhedi	T/AV-034	44	EXLT
Chinkhedi	T/AV-034	44	EXLT	Darga	arh	T/AV-037	73	GW	Kher	G/AV-049	1017	UNSUT
Dargarh	T/AV-037	73	GW	Kher		G/AV-049	1247	UNSUT	Sindola	G/AV-014	307	UNSUT
Kher	G/AV-049	698	UNSUT	Saiw	ada	G/AV-043	153	PW				
Saiwada	G/AV-043	123	PW	Sindo	ola	G/AV-014	333	UNSUT				
Sindola	G/AV-014	279	VPW									
2007 (With F	'e)			2008	(With Fe	<u>e)</u>			2009 (With 1	Fe)		
Mogra	AMTOBW167	77	GW	Pimp	alvihir	AMTOBW136	103	PW	*Amla	AMTOBW077	76	GW
Pohra	AMTOBW164	83	GW	Pohra	ì	AMTOBW164	51	GW				
	•			*Nan	dgaon	AMTOBW092	92	GW				
				*Rev	sa	AMTOBW091	53	GW				
				*Waş	gholi	AMTOBW093	56	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x3(Contd..) :Amravati District

1	Гaluka : Amrava	ti (Cont	(d)		Taluka : Am	ravati			Taluka : Am	ravati	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe)				2010 Contd (V	Vith Fe)			2011 (With Fe)			
Vdali		55	GW	Mardi		107	PW	Badnera	AMTOBW063	88	GW
Pohara	AMTOBW164	65	GW	Vagholi	AMTOBW093	79	GW	Pohara	AMTOBW164	82	GW
Navsari		101	PW	Wagholi	AMTOBW093	59	GW	Nandgaonpeth	AMTOBW092	125	PW
Pohara	AMTOBW164	81	GW	Nandgaonpeth	AMTOBW092	143	PW	Pimpalvihir	AMTOBW136	81	GW
Nandgaonpeth	AMTOBW092	125	PW	Revasa	AMTOBW091	67	GW	Amla	AMTOBW077	131	PW
Pimpalvihir	AMTOBW136	87	GW	Amla	AMTOBW077	156	PW	Revasa	AMTOBW091	69	GW
				Badnera	AMTOBW063	86	GW	Wagholi	AMTOBW093	62	GW
								Badnera	AMTOBW063	73	GW

	Taluka : Anj	angaon			Taluka : Anja	ngaon		Taluka : Anjangaon				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Without	Fe)			2008 (Without 1	Fe)			2009 (Withou	ıt Fe)			
Kolkaz	T/AV-069	39	EXLT	Kolkaz	T/AV-069	43	EXLT	Kolkaz	T/AV-069	39	EXLT	
2007 (With Fe)			2008 (With Fe)								
Anjangaon				Anjangaon				Data for 2009	Not Available (W	ith Fe)		
Surji	AMTOBW095	56	GW	Surji	AMTOBW095	96	GW					
Samsherpur												
Kh.	AMTOBW072	126	PW	Bhandaraj	AMTOBW098	57	GW					
				Karla	AMTPZ018	47	EXLT					
				Samsherpur								
				Kh.	AMTOBW072	135	PW					
2010 (With Fe)			2011 (With Fe)								
Samshrpur AMTOBW072 118 PW Anjanga					AMTOBW095	75	GW			•		
		•		Samsherpur	AMTOBW072	127	PW					

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x3(Contd..) :Amravati District

	Taluka : Bh				Taluka : Bha	atkuli			(Without Fe) xulijain G/AV-065 215 V (With Fe)		
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)	_		2008 (Without	Fe)			2009 (Withou	ıt Fe)		
Bhatkulijain	G/AV-065	172	PW	Bhatkulijain	G/AV-065	172	PW	Bhatkulijain	G/AV-065	215	VPW
2007 (With Fe)			2008 (With Fe)				2009 (With F	(e)		
Bhatkuli	AMTOBW083	135	PW	*Bhatkuli	AMTOBW083	108	PW	Ganori	AMTOBW085	167	PW
Ganori	AMTOBW085	161	PW	*Ganori	AMTOBW085	218	VPW	Nimbha	AMTOBW080	145	PW
Gaurkheda	AMTTS8	104	PW	*KharTalegaon	AMTOBW079	56	GW	Nimbhora	AMTOBW088	127	PW
Khar				*Nimbhora							
Talegaon	AMTOBW079	188	PW	Bk.	AMTOBW088	131	PW	Sayat	AMTOBW084	293	VPW
								Khar			
Nimbhora Bk.	AMTOBW088	171	PW	*Nimbha	AMTOBW080	102	PW	Talegaon	AMTOBW079	123	PW
Sayat	AMTOBW084	103	PW	*Sayat	AMTOBW084	323	UNSUT	Daryabad	AMTTS4	94	GW
Nimbha	AMTOBW080	121	PW	*Takarkheda	AMTOBW078	167	PW	Ganori	AMTOBW085	124	PW
Wasewadi	AMTTS7	126	PW					Gaurkheda	AMTTS8	65	GW
								Nimbhora			
Daryabad	AMTTS4	141	PW					Bk.	AMTOBW088	68	GW
Deori	AMTTS1	92	GW					Takarkheda	AMTOBW078	84	GW
Jalka Hirapur	AMTTS9	132	PW					Wasewadi	AMTTS7	92	GW
Kholapur	AMTTS2	295	VPW					Bhatkuli	AMTOBW083	191	PW
								Jalka			
Takarkheda	AMTOBW078	61	GW					Hirapur	AMTTS9	187	PW
								Khar			
								Talegaon	AMTOBW079	303	UNSUT
								Sayat	AMTOBW084	96	GW
2010 (With Fe)			2010 Contd (V	Vith Fe)			2011 Contd	(With Fe)		
				Takerkheda							
Nimbhora	AMTOBW088	99	GW	Sambhu	AMTOBW078	190	PW	Ganori	AMTOBW085	152	PW
Gannori	AMTOBW085	137	PW	Afjalpur Rama		165	PW	Gaurkheda	AMTTS8	81	GW
Nimbha	AMTOBW080	78	GW	Nimbha	AMTOBW080	136	PW	Nimbha	AMTOBW080	126	PW
Shinganapur		63	GW	2011 (With Fe)				Vasevadi	AMTTS7	98	GW
Takarkheda]	Takerkheda			1				
Sambhu	AMTOBW078	82	GW	Sambhu	AMTOBW078	145	PW	Bhatkuli	AMTOBW083	82	GW
Ganori	AMTOBW085	170	PW	Kholapur	AMTTS2	94	GW	Sayat	AMTOBW084	90	GW
Asegaon		63	GW	Nimbhora BK.	AMTOBW088	98	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x3(Contd..) :Amravati District

	Taluka : Chand	lur Baza	ar		Taluka: Chandi	ır Baza	ar		Taluka : Chanc	lur Bazaa	ar
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Without	Fe)			2009 (Witho	out Fe)		
Belora	T/AV-027	86	GW	Belora	T/AV-027	120	PW	Belora	T/AV-027	87	GW
Chandur								Chandur			
Bazar	T/AV-008	87	GW	Chandur Bazar	T/AV-008	89	GW	Bazar	T/AV-008	81	GW
Kurha	G/AV-018	81	GW	Kurha	G/AV-018	86	GW	Kurha	G/AV-018	81	GW
				Wishroli	T/AV-096	97	GW	Wishroli	T/AV-096	81	GW
2007 (With Fe	e)			2008 (With Fe)				2009 (With	Fe)		
				Borgaon							
Surali	AMTOBW024	58	GW	Mohna	AMTOBW044	58	GW	Ghatladki	AMTOBW171	52	GW
Vishroli	AMTOBW054	188	PW	Ghatladki	AMTOBW171	54	GW	Vishroli	AMTOBW054	39	EXLT
Surali	AMTOBW024	72	GW	Surali	AMTOBW024	52	GW				
				Vishroli	AMTOBW054	62	GW				
2010 (With Fe	e)			2011 (With Fe)							
Chn. Rly.	AMTOBW165	73	GW	Ghatladki	AMTOBW171	80	GW				
Amla Vishweshwar	AMTOBW128	94	GW	Vishroli	AMTOBW054	106	PW				
Baggi	AMTOBW166	99	GW	Borgaon	AMTOBW044	75	GW				
Rajura		86	GW								
Vishroli	AMTOBW054	75	GW								
Shirsgaonkasba		156	PW								
Vishroli	AMTOBW054	97	GW								
Surali	AMTOBW024	68	GW								
Borgaon Moh.	AMTOBW044	74	GW								
Ghatladki	AMTOBW171	93	GW								

Table x3(Contd..): Amravati District

	Taluka: Chando	ur Railw	ay		Taluka : Chandu	r Railw	ay		Taluka : Chand	ur Railw	ay
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (Withou	it Fe)		
Anjansingi	G/AV-063	160	PW	Anjansingi	G/AV-063	163	PW	Anjansingi	G/AV-063	152	PW
Chandur				Chandur				Chandur			
Railway	G/AV-020	123	PW	Railway	G/AV-020	117	PW	Railway	G/AV-020	112	PW
Shendurjana				Shendurjana				Shendurjana			
Khurd	G/AV-006	77	GW	Khurd	G/AV-006	75	GW	Khurd	G/AV-006	72	GW
2007 (With Fe)				2008 (With Fe)				2009 (With F			
Amla (V)	AMTOBW128	129	PW	Amla (V)	AMTOBW128	68	GW	*Baggi	AMTOBW166	42	EXLT
								*Chandur			
Kavatha Kadu	AMTOBW168	108	PW	Baggi	AMTOBW166	43	EXLT	Railway	AMTOBW165	88	GW
								*Kavatha			
Baggi	AMTOBW166	193	PW	Kavatha Kadu	AMTOBW168	77	GW	Kadu	AMTOBW168	89	GW
Kharabi	AMTOBW069	149	PW	Kirjawla	AMTOBW170	95	GW	*Kirjawla	AMTOBW170	83	GW
Chandur				Shendurjana				*Shendurjan			
Railway	AMTOBW165	51	GW	Kh.	AMTOBW158	62	GW	a Kh.	AMTOBW158	65	GW
2010 (With Fe)				2011 (With Fe)		1					
Ch. Railway	AMTOBW165	48	EXLT	Chandur Rly	AMTOBW165	57	GW				
Borgaon	BS18	104	PW	Asegaon		70	GW				
Kavathakadu	AMTOBW168	89	GW	Borgaon		89	GW				
Kharabi	AMTOBW069	91	GW	Baggi	AMTOBW166	105	PW				
				Kirjwal	AMTOBW170	72	GW				
				Kavthakadu	AMTOBW168	78	GW				
				Amla							
				Vishveshwar	AMTOBW128	84	GW				
				Shendurjana							
				KH.	AMTOBW158	72	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x3(Contd..) :Amravati District

	Taluka : Chik	khaldara			Taluka : Chik	haldara			Taluka : Chik	haldara	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (Withou	ıt Fe)		
Barukheda	T/AV-038	53	GW	Barukheda	T/AV-038	70	GW	Barukheda	T/AV-038	65	GW
Mahuli	G/AV-002	98	GW	Hatru	T/AV-024	65	GW	Hatru	T/AV-024	57	GW
Silona	T/AV-012	58	GW	Mahuli	G/AV-002	107	PW	Mahuli	G/AV-002	70	GW
				Silona	T/AV-012	46	EXLT	Silona	T/AV-012	48	EXLT
2007 (With Fe	2)			2008 (With Fe))			2009 Contd	(With Fe)		
Adhav	AMTOBW021	45	EXLT	*Bartanda	AMTPZ01	149	PW	*Barukheda	AMTOB057	62	GW
Barukheda	AMTOB057	86	GW	2009 (With Fe)	<u> </u>			*Borala	AMTOBW061	54	GW
Biba	AMTOBW03	64	GW	*Adhav	AMTOBW021	49	EXLT	Barukheda	AMTOB057	47	EXLT
Chunkhadi	AMTOBW030	41	EXLT	*Biba	AMTOBW03	54	GW	Biba	AMTOBW03	69	GW
Dhargad	AMTPZ008	66	GW	*Charni	AMTPZ006	53	GW	Chunkhadi	AMTOBW030	56	GW
Kelpani	AMTBS101	111	PW	*Chunkhadi	AMTOBW030	48	EXLT	Dhargad	AMTPZ008	51	GW
Semadoh	AMTOBW038	44	EXLT	*Dhargad	AMTPZ008	37	EXLT	Semadoh	AMTOBW038	38	EXLT
Borala	AMTOBW061	62	GW	*Semadoh	AMTOBW038	46	EXLT	Charni	AMTPZ006	51	GW
2010 (With Fo	e)			2011 Contd (With Fe)			2011 Contd	(With Fe)		
Ghular Gh.		37	EXLT	Semadoh	AMTOBW038	70	GW	Bartanda	AMTPZ01	44	EXLT
Ghular Gh.		70	GW	Churni	AMTPZ006	78	GW	Adhav	AMTOBW021	57	GW
Makhla		42	EXLT	Adhao	AMTOBW021	63	GW	Semadoh	AMTOBW038	59	GW
Biba	AMTOBW03	73	GW	Chunkhadi	AMTOBW030	76	GW	Chunkhadi	AMTOBW030	65	GW
Doma		51	GW	Barukheda	AMTOB057	54	GW	Biba	AMTOBW03	63	GW
Semadoh	AMTOBW038	56	GW	Kelapani	AMTBS101	57	GW	Charni	AMTPZ006	57	GW
Adhav	AMTOBW021	60	GW	Biba	AMTOBW03	69	GW	Borala	AMTOBW061	61	GW
Chunkhadi	AMTOBW030	66	GW	Dhargad	AMTPZ008	54	GW				
Borala	AMTOBW061	56	GW	Borala	AMTOBW061	76	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x3(Contd..): Amravati District

	Taluka : Da	ryapur			Taluka : Dar	yapur			Taluka : Dar	yapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without]	Fe)			2009 (Without	Fe)		
Daryapur	T/AV-009	140	PW	Daryapur	T/AV-009	94	GW				
Wadner				Wadner				Wadner			
Gangai	T/AV-102	410	UNSUT	Gangai	T/AV-102	505	UNSUT	Gangai	T/AV-102	332	UNSUT
2007 (With Fe)				2008 (With Fe)				2009 (With Fe)			
Itki	AMTPZ017	146	PW	*Nalwada	AMTOBW071	89	GW	Daryapur	AMTOBW065	80	GW
Chndicapur	AMTTS10	83	GW	*Shinganapur	AMTOBW045	88	GW	Itki	AMTPZ017	71	GW
Wadnerganga	AMTOBW099	241	VPW	*Tongalabad	AMTTS11	131	PW	Thillori	AMTPZ020	126	PW
Daryapur	AMTOBW065	40	EXLT	*Chndicapur	AMTTS10	142	PW	Nalwada	AMTOBW071	153	PW
				*Daryapur	AMTOBW065	168	PW	Shinganapur	AMTOBW045	64	GW
				*Wadnergangai	AMTOBW099	164	PW	Wadnerganga	AMTOBW099	117	PW
				*Mahimpur	AMTOBW046	78	GW	Shiwar Kh	AMTTS19	220	VPW
				Takali	AMTTS13	135	PW	Mahimpur	AMTOBW046	103	PW
								Amla	AMTTS24	57	GW
								Chndicapur	AMTTS10	100	GW
								Ahmadapur	AMTOBW047	93	GW
2010 (With Fe)				2011 (With Fe)							
				Alampur							
Wadnerganga	AMTOBW099	264	VPW	Borala	AMTOBW064	71	GW				
Yewada		358	UNSUT	Wadnergangai	AMTOBW099	193	PW				
Shinganapur	AMTOBW045	75	GW	Shinganapur	AMTOBW045	70	GW				
				Daryapur	AMTOBW065	78	GW				
				Shivar BK.	AMTTS20	72	GW				
				Nachona	AMTTS15	85	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x3(Contd..) :Amravati District

·	Taluka : Dharni Villages Well No. WQI Categor				Taluka : Dh	arni			Taluka : Dl	harni	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without				2008 (Without]	Fe)			2009 (Without			
Bhokarbardi	T/AV-039	163	PW	Dharni	T/AV-010	73	GW	Dharni	T/AV-010	80	GW
Harisal	T/AV-011	65	GW	Harisal	T/AV-011	67	GW	Harisal	T/AV-011	62	GW
Lawada	T/AV-070	44	EXLT	Lawada	T/AV-070	39	EXLT	Lawada	T/AV-070	52	GW
2007 (With Fe))			2009 (With Fe)				2010 (With Fe	e)		
Bhokarbardi	AMTOBW019	125	PW	*Bhandum	AMTOBW023	38	EXLT	Chandpur	AMTBS95	42	EXLT
Dhulghat											
Road	AMTOBW018	58	GW	*Bori	AMTOBW094	61	GW	Gangarkhed	AMTOBW059	59	GW
Diya	AMTOBW031	49	EXLT	*Khongda	AMTOBW040	59	GW	Khongda	AMTOBW040	83	GW
Ranpisa	AMTOBW011	51	GW	*Baru	AMTOBW017	53	GW	Harisal	AMTOBW037	73	GW
Baru	AMTOBW017	86	GW	*Malkapur	AMTOBW058	46	EXLT	Rangubeli		47	EXLT
Bhandum	AMTOBW023	93	GW	*Ranpisa	AMTOBW011	40	EXLT	Dhulghat Rd.	AMTOBW018	74	GW
Chandpur	AMTBS95	59	GW	*Bhokarbardi	AMTOBW019	106	PW	Diya	AMTOBW031	91	GW
Patiya	AMTOBW034	68	GW	*Chinchghat	AMTPZ010	72	GW	Patiya	AMTOBW034	90	GW
Sonarbardi	AMTOBW075	58	GW	*Dharni	AMTOBW016	76	GW	Wairgad		91	GW
Gangarkhed	AMTOBW059	46	EXLT	*Dhulghat Rly.	AMTOBW014	37	EXLT	Bhondhilava		59	GW
Harisal	AMTOBW037	70	GW	*Dhulghat Road	AMTOBW018	73	GW	Bhokarbardi	AMTOBW019	117	PW
Khongda	AMTOBW040	46	EXLT	*Sonarbardi	AMTOBW075	61	GW	2011 (With Fe	(1)		
Kutanga	AMTOBW07	59	GW	*Diya	AMTOBW031	68	GW	Chandpur	AMTBS95	48	EXLT
2008 (With Fe) Data Not Availa	ble		*Gobarkhau	AMTOBW035	45	EXLT	Khongda	AMTOBW040	67	GW
				*Harisal	AMTOBW037	67	GW	Malkapur	AMTOBW058	50	GW
2011 Contd (With Fe) (2)			*Patiya	AMTOBW034	67	GW	Bori	AMTOBW094	54	GW
Patia	AMTOBW034	93	GW	Kutanga	AMTOBW07	69	GW	Harisal	AMTOBW037	70	GW
Dharni	AMTOBW016	77	GW	2011 Contd (V	Vith Fe) (3)			2011 Contd (With Fe) (4)		
Diya	AMTOBW031	89	GW	Susrda		45	EXLT	Gobarkhau	AMTOBW035	48	EXLT
Bhokarbardi	AMTOBW019	95	GW	Sawalikheda		44	EXLT	Patiya	AMTOBW034	83	GW
Dhulghat											
Road	AMTOBW018	72	GW	Diya	AMTOBW031	76	GW	Bod		48	EXLT
Sonabardi	AMTOBW075	54	GW	Bhondilawa		52	GW	Harisal	AMTOBW037	72	GW
Dhulghat Rly	AMTOBW014	64	GW	Kutanga	AMTOBW07	53	GW	Cahuryakund		41	EXLT
Kutanga	AMTOBW07	58	GW	Rangubeli		45	EXLT	Tarubanda		34	EXLT
				Rangubeli							
Dhulghatraod	AMTOBW018	64	GW	(HP)		47	EXLT	Gangarkhed	AMTOBW059	37	EXLT
Ranpisa	AMTOBW011	48	EXLT	Chakarda		31	EXLT	Khongda	AMTOBW040	67	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x3(Contd..): Amravati District

	Taluka : Dhaman			Ta	aluka : Dhamang	aon Rai	lway	Taluka : Dhamangaon Railway			lway
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (With Fe	e)			2008 (With Fe)				2009 (With Fe	e)		
Asegaon	AMTOBW144	77	GW	Borgaon Dhan.	AMTOBW142	145	PW	*Asegaon	AMTOBW144	50	EXLT
Borgaon				Data for 2007 t	Pata for 2007 to 2009 (Without Fe)						
Dhan.	AMTOBW142	106	PW		Data for 2007 to 2009 (Without Fe) and 2011 (With Fe) With Fe Not Available			Dhan.	AMTOBW142	93	GW
				and 2011 (With	re) will re Not	Avanai	ole	*Titamba	AMTOBW020	45	EXLT
2010 (With Fe	e)										
				Shendurjana				Shendurjana			
Gvhanipani		99	GW	Kh.	BS14	108	PW	Gh.		116	PW
Devgaon		62	GW	Mangruli Dasti						117	PW
Bhatkuli		73	GW	Degaon				Asegaon	AMTOBW144	81	GW
Asegaon	segaon AMTOBW144 71 GW										

	Taluka : Mo	orshi			Taluka : M	orshi			Taluka:	Morshi	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (Witho	ut Fe)		
Ambada	G/AV-046	153	PW	Ambada	G/AV-046	162	PW	Ashtagaon	G/AV-042	119	PW
Ashtagaon	G/AV-042	111	PW	Ashtagaon	G/AV-042	190	PW	Chicholi	G/AV-040	110	PW
Chicholi	G/AV-040	176	PW	Chicholi	G/AV-040	169	PW	Dapori	T/AV-097	125	PW
Hiwarkheda	G/AV-057	122	PW	Dapori	T/AV-097	138	PW	Hiwarkheda	G/AV-057	109	PW
Khanapur	G/AV-041	191	PW	Hiwarkheda	G/AV-057	149	PW	Khanapur	G/AV-041	142	PW
Pala	G/AV-053	260	VPW	Khanapur	G/AV-041	343	UNSUT	Morshi New	T/AV-105	58	GW
Rithpur	T/AV-036	297	VPW	Morshi new	T/AV-105	58	GW	Pala	G/AV-053	162	PW
				Pala	G/AV-053	153	PW	Rithpur	T/AV-036	274	VPW
				Rithpur	T/AV-036	286	VPW				
2007 (With Fe)				2007 Contd (With Fe)				2008 (With I	Fe)		
Yerla	AMTOBW121	183	PW	*Hiwarkhed	AMTT1	65	GW	Riddhapur	AMTBS71	156	PW
Dhanora	AMTOBW126	137	PW	Riddhapur	AMTBS71	175	PW	*Dapori	AMTOBW125	48	EXLT
Hiwarkhed	AMTT1	80	GW	Yerla	AMTOBW121	304	UNSUT	*Dhanora	AMTOBW126	143	PW
Kamalpur	AMTOBW131	178	PW	Chikhalsawngi	AMT125	95	GW	*Yerla	AMTOBW121	151	PW
				Chincholi							
Morshi	AMTOBW123	168	PW	Gavali	AMTBS60	134	PW	*Khanapur	AMTOBW124	41	EXLT
Khanapur	AMTOBW124	166	PW	Pardi	AMTOBW122	81	GW				
Nershipur	AMTT2	59	GW	Umarkhed	AMTOBW130	61	GW				
Pala	AMT127	105	PW								
Pimpalkhuta	AMTPZ032	83	GW								

Table x3(Contd..): Amravati District

, ,	Taluka : M	lorshi			Taluka : Mo	orshi		ry Villages Well No. WQI Cate 2009 (With Fe) (Contd)			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2009 (With Fe)			2009 (With Fe)	(Contd)	_		2009 (With F	e) (Contd)		
Dapori	AMTOBW125	46	EXLT	Nershipur	AMTT2	35	EXLT	Riddhapur	AMTBS71	110	PW
Dhanora	AMTOBW126	60	GW	Chikhalsawgi	AMT125	44	EXLT	Vishnora	AMTOBW172	38	EXLT
				Chincholi							
Pimpalkhuta	AMTPZ032	52	GW	Gavali	AMTBS60	64	GW	Yerla	AMTOBW121	84	GW
Khanapur	AMTOBW124	76	GW	Pala	AMT127	85	GW	Kamalpur	AMTOBW131	154	PW
Umarkhed	AMTOBW130	42	EXLT								
2010 (With Fe)			2011 (With Fe)							
Pimpalkhuta	AMTPZ032	80	GW	Umarkhed	AMTOBW130	55	GW				
				Chincholi							
Yerla	AMTOBW121	115	PW	Gavali	AMTBS60	110	PW				
Morshi	AMTOBW123	102	PW	Pimpalkhuta	AMTPZ032	75	GW				
Hiwarkhed	AMTT1	88	GW	Dapori	AMTOBW125	116	PW				
Umarkhed	AMTOBW130	101	PW	Dhanora	AMTOBW126	121	PW				
				Chikhal							
Pimpalkhuta	AMTPZ032	96	GW	sawangi	AMT125	67	GW				
Yerla	AMTOBW121	101	PW	Morshi	AMTOBW123	131	PW				
Vadali Sat		63	GW	Pala	AMT127	91	GW				
Pardi	AMTOBW122	62	GW	Pardi	AMTOBW122	66	GW				
Khanapur	AMTOBW124	63	GW	Khanapur`	AMTOBW124	82	GW				
Dapori	AMTOBW125	124	PW	Riddhapur	AMTBS71	117	PW				
Umarkhed	AMTOBW130	55	GW	Vishnora	AMTOBW172	63	GW				
Chincholi											
Kawali	AMTBS60	138	PW	Yerla	AMTOBW121	94	GW				
Churni	BS90	66	GW	Hivarkhed	AMTT1	106	PW				
Ridhapur	AMTBS71	145	PW	Nasirpur	AMTT2	62	GW				
Chikhalsavgi	AMT125	53	GW								
Nashirpur	AMTT2	53	GW								
Vishnora	AMTOBW172	52	GW								
Pada	AMT127	102	PW								
Hiwarkhed	AMTT1	93	GW								
Morshi	AMTOBW123	154	PW								

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x3(Contd..) :Amravati District

	iluka : Nandgaon			Tal	uka : Nandgaon I	Khande	shwar	Ta	luka : Nandgaon	Khandes	shwar
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without I	Fe)			2009 (Without	Fe)		
Shivni	T/AV-104	190	PW	Shivni	T/AV-104	185	PW	Shivni	T/AV-104	116	PW
2007 (With Fe)				2008 (With Fe)				2009 (With Fe))		
Hivara Bk.	AMTOBW087	61	GW	*PimpriNipani	AMTOBW150	84	GW	*Pimpri N.	AMTOBW150	164	PW
Mahuli Chor	AMTPZ004	151	PW	*Hivara Bk.	AMTOBW087	98	GW	*Hivara Bk.	AMTOBW087	79	GW
Shivani Ra.	AMTPZ005	88	GW	*Jalu	AMTOBW147	76	GW	*Jalu	AMTOBW147	93	GW
Nandgaon Khandeshwar	AMTOBW159	132	PW	*Onkarkheda	AMTOBW160	50	EXLT	*Hivara Murade	AMTOBW151	68	GW
Pimpalgaon Ipani	AMTOBW156	87	GW	*Hivara Murade	AMTOBW151	90	GW	*Mahuli Chor	AMTPZ004	101	PW
Pimpri Nipani	AMTOBW150	117	PW	*Nandgaon Khandeshwar	AMTOBW159	257	VPW	*Nandgaon Khandeshwar	AMTOBW159	97	GW
Hivara Murade	AMTOBW151	58	GW					*Onkarkheda	AMTOBW160	110	PW
								*Pimpalgaon Ipani	AMTOBW156	94	GW
2010 (With Fe	'			2011 (With Fe)				2011 Contd (With Fe)		
Nandgaon	AMTOBW159	109	PW	Jalu	AMTOBW147	76	GW	Yewati		81	GW
Mahulichor	AMTPZ004	106	PW	Mahulichor	AMTPZ004	109	PW	Dhamak		86	GW
Jalu	AMTOBW147	66	GW	Hiwaramurade	AMTOBW151	119	PW	Sangrampur		46	EXLT
Pimpalgaon Nipani	AMTOBW150	123	PW	Pimpri Nipani	AMTOBW150	111	PW	Onkarkheda	AMTOBW160	93	GW
Hiwara	AMTOBW087	79	GW	Pimpalgaon Ipani	AMTOBW156	104	PW	Khandala Kh.		50	GW
Hiwarmurade	AMTOBW151	126	PW	Shivani(Rasul)	AMTPZ005	71	GW	Shirpur		39	EXLT
PimpalNipani	AMTOBW150	111	PW	Nandgaon KH.	AMTOBW159	100	GW				
Jalu	AMTOBW147	97	GW	Onkarkheda	AMTOBW160	118	PW				
Shelunatwa		98	GW	Hiwara	AMTOBW151	80	GW				
Dhamak		101	PW	Jalu	AMTOBW147	65	GW				
Yewati		91	GW	Mahuli Chor	AMTPZ004	90	GW				
Shivani Ra.	AMTPZ005	87	GW	Pimpri Nipani	AMTOBW150	93	GW				
Pimpalgaon Ipani	AMTOBW156	61	GW	Wadhona	_	59	GW				
Onkarkheda	AMTOBW160	121	PW	Pimpalgaon Ipani	AMTOBW156	86	GW				

Table x3(Contd..) :Amravati District

	Taluka : T	iwasa			Taluka : Ti	wasa			Taluka : Ti	wasa	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Without	Fe)			2009 (Withou	t Fe)		
Sawarkheda	G/AV-028	59	GW	Sawarkheda	G/AV-028	82	GW	Sawarkheda	G/AV-028	67	GW
Teosa	G/AV-030	145	PW	Teosa	G/AV-030	120	PW	Teosa	G/AV-030	134	PW
2007 (With Fe	e)			2008 (With Fe))			2009 (With Fe	e)		
Anjangaon				Anjangaon							
Singhi	AMTOBW139	79	GW	Singhi	AMTOBW139	57	GW	Tiwasa	AMTPZ033	90	GW
Mangarul								Anjangaon			
Dastgir	AMPZ001	167	PW	Bharwadi	AMTPZ034	56	GW	Singhi	AMTOBW139	105	PW
				Mangarul							
Tiwasa	AMTPZ033	94	GW	Dastgir	AMPZ001	144	PW	*Bharwadi	AMTPZ034	76	GW
Bharwadi	AMTPZ034	94	GW	Tiwasa	AMTPZ033	128	PW				
2010 (With Fe	2)			2011 (With Fe))						
Anjangaon				Mangarul							
Singhi	AMTOBW139	102	PW	Dastgir	AMPZ001	81	GW				
Mangarul											
Dastgir	AMPZ001	78	GW	Bharwadi	AMTPZ034	71	GW				
Tiwasa	AMTPZ033	94	GW	Tiwsa	AMTPZ033	92	GW				
Anjansigi	AMTOBW139	113	PW	Anjansingi	AMTOBW139	93	GW				

	Taluka : V	Varud			Taluka : V	Varud		Taluka : Warud			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Gadegaon	T/AV-099	92	GW	Gadegaon	T/AV-099	113	PW	Gadegaon	T/AV-099	101	PW
Jamgaon				Jamgaon				Jamgaon			
(via Khadka)	G/AV-059	49	EXLT	(via Khadka)	G/AV-059	61	GW	(via Khadka)	G/AV-059	46	EXLT
Tembhurkheda	T/AV-098	125	PW	Temburkheda	T/AV-098	180	PW	Tembhurkheda	T/AV-098	108	PW
Wadgaon				Wadgaon							
(Fattepur)	T/AV-073	110	PW	(Fattepur)	T/AV-073	166	PW	Warud	G/AV-004	135	PW
Warud	G/AV-004	123	PW	Warud	G/AV-004	129	PW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x3(Contd..) :Amravati District

,	Taluka : W	arud			Taluka : Wa	arud			Taluka : W	arud	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (With Fe))			2009 (With Fe)				2010 (With Fe))		
*Ekdara	AMTT8	82	GW	Benoda	AMTOBW117	90	GW	Benoda	AMTOBW117	91	GW
*Jamgaon	AMTOBW119	63	GW	Dhaga	AMTOBW106	64	GW	Jarud	AMTPZ027	68	GW
*Mangruli	AMTT7	68	GW	Jamgaon	AMTOBW119	62	GW	Tembhurkheda	AMTOBW110	95	GW
*Pusla	AMTT5	69	GW	Mangruli	AMTT7	87	GW	Satnur		76	GW
Karajgaon	AMTPZ014	85	GW	Pandhari	AMTOBW101	69	GW	Pusala	AMTT5	95	GW
Mahendri	AMTOBW100	41	EXLT	Tembhurkheda	AMTOBW110	109	PW	Pandhari	AMTOBW101	76	GW
Pandhari	AMTOBW101	48	EXLT	Wadgaon	AMTOBW113	68	GW	Jamgaon	AMTOBW119	76	GW
Shendurjnaghat	AMTT6	134	PW	Ekdara	AMTT8	52	GW	Musalkheda		95	GW
Wathoda	AMTOBW105	78	GW	Jarud	AMTPZ027	93	GW	Tembhurkheda	AMTOBW110	96	GW
Benoda	AMTOBW117	60	GW	Wathoda	AMTOBW105	79	GW	Mahendri	AMTOBW100	52	GW
Jarud	AMTPZ027	68	GW	*Mahendri	AMTOBW100	75	GW	Jarud	AMTPZ027	103	PW
Karwar	AMTOBW102	48	EXLT	*Karajgaon	AMTPZ014	84	GW	Rajegaon		61	GW
Manakapur	AMTOBW118	53	GW	*Shendurjnaghat	AMTT6	68	GW	Ekaladara	AMTT8	65	GW
Warud	AMTOBW12	50	EXLT					Amner	AMTOBW107	62	GW
Dhaga	AMTOBW106	54	GW					Amdapur	AMTOBW120	97	GW
Wadgaon	AMTOBW113	68	GW	Data for 2008 (With Fe) Not Ava	ilable		Surali	AMTT4	93	GW
2011 (With Fe))			2011 Contd (V	Vith Fe)			Tiwasa Gh.		72	GW
Jarud	AMTPZ027	96	GW	Benoda	AMTOBW117	100	PW	Amdapur	AMTOBW120	85	GW
Wathoda	AMTOBW105	93	GW	Jamgaon	AMTOBW119	84	GW	Wathola	AMTOBW105	125	PW
Wadegaon`	AMTOBW113	72	GW	Surali	AMTT4	100	PW	Pusala	AMTT5	95	GW
Karajgaon	AMTPZ014	78	GW	Pusala	AMTT5	97	GW	Warud	AMTOBW12	64	GW
Tembhurkheda	AMTOBW110	100	PW	Shendurjnaghat	AMTT6	74	GW	Shendurjnaghat	AMTT6	68	GW
Aamner	AMTOBW107	77	GW	Mangruli	AMTT7	89	GW	Warud	AMTOBW12	80	GW
Amdapur	AMTOBW120	94	GW	Ekdara	AMTT8	67	GW	Karvat	AMTOBW102	62	GW
Dhaga	AMTOBW106	79	GW					Jamgaon	AMTOBW119	71	GW
Mankapur	AMTOBW118	66	GW					Mangaruli	AMTT7	107	PW
Warud	AMTOBW12	56	GW					Pandhari	AMTOBW101	69	GW
Pandhari	AMTOBW101	81	GW					Dhanora	BS64	92	GW
								Mankapur	AMTOBW118	69	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.4: Water Quality Index of Groundwater of Aurrangabad District

	Taluka : Aura	ngabad			Taluka : Aura	angaba	d		Taluka : Au	rangabad	l
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fo	e)			2008 (Without]	Fe)			2009 (Without	Fe)		
Kinnal	G/AU-030	120	PW	Kinnal	G/AU-030	84	GW	Kinnal	G/AU-030	106	PW
Walur Tanda	G/AU-018	184	PW	Walur Tanda	G/AU-018	210	VPW	Walur Tanda	G/AU-018	152	PW
Apatgaon	G/AU-026	125	PW	Apatgaon	G/AU-026	170	PW				
2010 (With Fe)											
Dhawalapuri	AUPZ005	89	GW	Shendra K	AUOBW027	67	GW	Dhawalapuri	AUPZ005	102	PW
Golthgaon	AUOBW042			Pendgaon	AUPZ003			Golthgaon	AUOBW042		
		84	GW	aland		96	GW			127	PW
Hatmali	AUOBW025	81	GW	Singi	AUPZ004	89	GW	Kadrabad	AUPZ002	107	PW
Kachner [ts-3]	AUWQN02	83	GW	Kadrabad	AUPZ002	98	GW	Kolghar	AUPZ013	71	GW
Kadrabad	AUPZ002	132	PW	Kolghar	AUPZ013	76	GW	Shekta	AUOBW043	109	PW
Patoda[ts-5]	AUWQN03	74	GW	Patoda[ts-5]	AUWQN03	119	PW				
Shekta	AUOBW043	131	PW	Pendgaon aland	AUPZ003	72	GW				
2011 (With Fe)	•										
*Dhawalapuri	AUPZ005	73	GW	*Shendra K	AUOBW027	77	GW	Golthgaon	AUOBW042	181	PW
*Golthgaon	AUOBW042			*Pendgaon	AUPZ003			Hatmali	AUOBW025		
		72	GW	aland		108	PW			116	PW
*Hatmali	AUOBW025	65	GW	*Singi	AUPZ004	133	PW	Kachner	AUWQN02	82	GW
*Kachner	AUWQN02	49	EXLT	Patoda	AUWQN03	169	PW	Kadrabad	AUPZ002	122	PW
*Kadrabad	AUPZ002	91	GW	Singi	AUPZ004	58	GW	Kolghar	AUPZ012	104	PW
*Kolghar	AUPZ013			Pendgaon	AUPZ003			Shekta	AUOBW043		
		96	GW	aland		55	GW			108	PW
*Patoda	AUWQN03	135	PW	Dhawalapuri	AUPZ005	60	GW	Shendra K	AUOBW027	116	PW
*Shekta	AUOBW043	65	GW	_				Kolghar	AUPZ013	69	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Ka	nnad			Taluka : K	annad			Taluka : K	Kannad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without 1	Fe)			2009 (Without	Fe)		
Digar Pishore	G/AU-032	121	PW	Digar Pishore	G/AU-032	92	GW	Digar Pishore	G/AU-032	94	GW
Hatnur	G/AU-022	125	PW	Hatnur	G/AU-022	160	PW	Hatnur	G/AU-022	121	PW
2010 (With Fe)											
Andhaner	AUOBW063	75	GW	Rithi	AUPZ011	58	GW	Andhaner	AUOBW063	51	GW
Kannad[t-3]	AUWQN19	81	GW	Andhaner	AUOBW063	66	GW	Hingni[ts-20]	AUWQN20	103	PW
Nagad	AUOBW139	57	GW	Karanjkheda	AUOBW001	70	GW	Kannad[t-3]	AUWQN19	79	GW
Saigavan	AUOBW138	79	GW	Nadarpur	AUOBW005	96	GW	Nagad	AUOBW139	83	GW
Karanjkheda	AUOBW001	62	GW	Rithi	AUPZ011	101	PW	Pishor[ts-19]	AUWQN18	83	GW
Nadarpur	AUOBW005	85	GW	Wadali	AUPZ010	96	GW	Saigavan	AUOBW138	136	PW
2011 (With Fe)											
*Andhaner	AUOBW063	78	GW	*Hingni[ts-20]	AUWQN20	268	VPW	Rithi	AUPZ011	57	GW
*Kannad[t-3]	AUWQN19	50	GW	*Rithi	AUPZ011	74	GW	Saigavan	AUOBW138	96	GW
*Karanjkheda	AUOBW001	61	GW	*Wadali	AUPZ010	121	PW	Wadali	AUPZ010	99	GW
*Nadarpur	AUOBW005	93	GW	Andhaner	AUOBW063	92	GW	Pishor[ts-19]	AUWQN18	52	GW
*Nagad	AUOBW139	64	GW	Karanjkheda	AUOBW001	68	GW	Kannad[t-3]	AUWQN19	79	GW
*Pishor[ts-19]	AUWQN18	55	GW	Nadarpur	AUOBW005	105	PW	Hingni[ts-20]	AUWQN20	131	PW
*Saigavan	AUOBW138	72	GW	Nagad	AUOBW139	73	GW				

	Taluka : Khu	ltabad			Taluka : Kh	ultabad			Taluka : Kl	nultabad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Khultabad	G/AU-045	87	GW	Khultabad	G/AU-045	85	GW	Khultabad	G/AU-045	82	GW
2010 (With Fe)				2011 (With Fe)	2011 (With Fe)						
Ellora	AUOBW068	81	GW	*Wanegaon	AUOBW009	112	PW	*Wadod bk.	AUPZ012	53	GW
Bodkha	AUOBW083	89	GW	*Ellora	AUOBW068	84	GW	Wanegaon	AUOBW009	83	GW
Golegaon	AUWQN21	98	GW	*Bodkha	AUOBW083	86	GW	Bodkha	AUOBW083	61	GW
Mhaismal	AUOBW007	54	GW	*Deolena BK	AUOBW008	73	GW	Deolena BK	AUOBW008	114	PW
Wadod bk.	AUPZ012	55	GW	*Golegaon	AUWQN21	64	GW	Ellora	AUOBW068	98	GW
Wanegaon	AUOBW009	70	GW	*Mhaismal	AUOBW007	54	GW	Mhaismal	AUOBW007	76	GW
								Golegaon	AUWQN21	91	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Pa	ithan			Taluka : Pa	aithan			Taluka : F	aithan	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2009 (Without)	Fe)			Data for 2000 N	Ist Assallable (V	7:4b4 T	
Adul	G/AU-011	704	UNSUT	Adul	G/AU-011	330	UNSUT	Data for 2008 N	ot Avallable (v	vitnout r	e)
2010 (With Fe)		•						•			
Takali Ambad	AUOBW116	85	GW	Thergaon	AUOBW110	484	UNSUT	Paithan	AUOBW106	81	GW
Adul	AUOBW046	248	VPW	Wahegaon	AUOBW104	118	PW	Takali Ambad	AUOBW116	89	GW
Apegaon	AUWQN06	114	PW	Wahegaon	AUWQN07	161	PW	Telwadi	AUOBW108	79	GW
Bidkin	AUOBW099	294	VPW	Warwandi kh	AUOBW101	116	PW	Thergaon	AUOBW110	351	UNSUT
Dera	AUPZ006	177	PW	Adul	AUOBW046	189	PW	Thergaon	AUWQN04	129	PW
Ektuni	AUOBW047	120	PW	Dera	AUPZ006	168	PW	Thergaon	AUWQN04	79	GW
Katpur	AUWQN05	92	GW	Thergaon	AUOBW110	63	GW	Bidkin	AUOBW099	128	PW
Katpur	AUWQN05	106	PW	Wahegaon	AUWQN07	119	PW	Dera	AUPZ006	124	PW
Murma	AUOBW114	130	PW	Takali Ambad	AUOBW116	75	GW	Murma	AUOBW114	144	PW
Paithan	AUOBW106	68	GW	Adul	AUOBW046	209	VPW	Wahegaon	AUOBW104	78	GW
Takali Ambad	AUOBW116	195	PW	Apegaon	AUWQN06	106	PW	Wahegaon	AUWQN07	107	PW
Telwadi	AUOBW108	112	PW	Ektuni	AUOBW047	64	GW	Warwandi kh	AUOBW101	73	GW
2011 (With Fe)											
*Wahegaon	AUWQN07	73	GW	*Warwandi kh	AUOBW101	59	GW	Ektuni	AUOBW047	227	VPW
*Adul	AUOBW046	248	VPW	*Bidkin	AUOBW099	199	PW	Katpur	AUWQN05	100	GW
*Apegaon	AUWQN06	95	GW	*Paithan	AUOBW106	70	GW	Murma	AUOBW114	127	PW
*Dera	AUPZ006	180	PW	*Telwadi	AUOBW108	50	EXLT	Paithan	AUOBW106	86	GW
*Ektuni	AUOBW047	75	GW	*Wahegaon	AUOBW104	107	PW	Takali Ambad	AUOBW116	177	PW
*Katpur	AUWQN05	97	GW	*Wahegaon	AUWQN08	69	GW	Telwadi	AUOBW108	90	GW
*Murma	AUOBW114	73	GW	Adul	AUOBW046	186	PW	Thergaon	AUOBW110	343	UNSUT
*Takali Ambad	AUOBW116	46	EXLT	Apegaon	AUWQN06	110	PW	Thergaon	AUWQN04	92	GW
*Thergaon	AUOBW110	456	UNSUT	Bidkin	AUOBW099	177	PW	Wahegaon	AUOBW104	120	PW
*Thergaon	AUWQN04	102	PW	Dera	AUPZ006	110	PW	Wahegaon	AUWQN07	97	GW
-								Warwandi kh	AUOBW101	74	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

·	Taluka : Phu	lambri		Taluka : Phulambri		i		Taluka : Ph	ulambri		
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without I	Fe)			2009 (Without	Fe)		
Chauka	G/AU-024	146	PW	Chauka	G/AU-024	79	GW	Chauka	G/AU-024	131	PW
Pathri	G/AU-002	128	PW	Pathri	G/AU-002	105	PW				
2010 (With Fe)				2010 Contd (V	Vith Fe)			2011 Contd (V	Vith Fe)		
Ranjangaon	AUOBW039	53	GW	Pirbawada	AUPZ001	162	PW	*Waghalgaon	AUPZ007	113	PW
Gevrai Gungi	AUOBW040	58	GW	Waghalgaon	AUPZ007	88	GW	Pandharpur	AUWQN01	136	PW
Girsawali	AUOBW038	50	GW	2011 (With Fe)				Gevrai Gungi	AUOBW040	69	GW
Phulambri	AUOBW021	82	GW	*Pandharpur	AUWQN01	92	GW	Girsawali	AUOBW038	70	GW
Pirbawada	AUPZ001	95	GW	*Gevrai Gungi	AUOBW040	48	EXLT	Phulambri	AUOBW021	77	GW
Ranjangaon	AUOBW039	139	PW	*Girsawali	AUOBW038	52	GW	Pirbawada	AUPZ001	93	GW
Waghalgaon	AUPZ007	100	GW	*Phulambri	AUOBW021	80	GW	Ranjangaon	AUOBW039	113	PW
Gevrai Gungi	AUOBW040	64	GW	*Pirbawada	AUPZ001	87	GW	Waghalgaon	AUPZ007	103	PW
Pandharpur	AUWQN01	82	GW	*Ranjangaon	AUOBW039	100	GW				

	Taluka : Si	illod			Taluka : S	Sillod			Taluka:	Sillod	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Ajanta	T/AU-004	106	PW	Ajanta	T/AU-004	92	GW	Kannad	G/AU-013	91	GW
Kaigaon	G/AU-020	81	GW								
2010 (With Fe)											
Bhavan[ts-10]	AUWQN08	96	GW	Anad	AUOBW122	66	GW	Mangrul	AUOBW032	52	GW
Dongargaon	AUOBW033	63	GW	Jamthi	AUOBW123	74	GW	Sillod[ts-11]	AUWQN09	87	GW
Hatti	AUPZ009	84	GW	Upla	AUOBW006	134	PW	Upla	AUOBW006	93	GW
Madani	AUOBW048	112	PW	Bhavan[ts-10]	AUWQN08	344	UNSUT	Wadala	AUOBW010	115	PW
Mangrul	AUOBW032	74	GW	Bhavan[ts-10]	AUWQN08	92	GW	Anad	AUOBW122	95	GW
Sillod[ts-11]	AUWQN09	129	PW	Dongargaon	AUOBW033	91	GW	Jamthi	AUOBW123	85	GW
Wadala	AUOBW010	46	EXLT	Hatti	AUPZ009	67	GW	Madani	AUOBW048	65	GW
2011 (With Fe)											
*Bhavan[ts-10]	AUWQN09	125	PW	*Jamthi	AUOBW123	49	EXLT	Madani	AUOBW048	105	PW
*Dongargaon	AUOBW033	53	GW	Madani	AUOBW048	92	GW	Mangrul	AUOBW032	112	PW
*Hatti	AUPZ009	56	GW	Anad	AUOBW122	62	GW	Sillod[ts-11]	AUWQN09	98	GW
*Mangrul	AUOBW032	61	GW	Bhavan[ts-10]	AUWQN08	90	GW	Upla	AUOBW006	64	GW
*Upla	AUOBW006	91	GW	Dongargaon	AUOBW033	62	GW	Wadala	AUOBW010	50	GW
*Wadala	AUOBW010	39	EXLT	Hatti	AUPZ009	72	GW	Jamthi	AUOBW123	83	GW
*Anad	AUOBW122	46	EXLT								

	Taluka : S	oyegaon			Taluka: So	yegaon			Taluka : S	oyegaon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Without	Fe)			2009 (Withou	ıt Fe)		
Fardapur	G/AU-029	77	GW	Fardapur	G/AU-029	103	PW	Fardapur	G/AU-029	115	PW
2010 (With Fe	e)										
Jamthi[AUWQN22	55	GW	Galwada	AUOBW133	61	GW	Fardapur	AUOBW127	96	GW
Galwada	AUOBW133	55	GW	Palaskheda	AUOBW121	51	GW	Jarandi	AUOBW129	100	PW
Jarandi	AUOBW129	78	GW	Galwada	AUPZ008	88	GW	Palaskheda	AUOBW121	61	GW
Fardapur	AUOBW127	132	PW	Galwada	AUPZ008	90	GW	Jamthi	AUWQN22	145	PW
2011 (With Fe	e)										
*Galwada	AUPZ008	60	GW	*Ghanegaon	AUOBW117	113	PW	Ghanegaon	AUOBW117	109	PW
*Fardapur	AUOBW127	93	GW	*Palaskheda	AUOBW121	72	GW	Jarandi	AUOBW129	92	GW
*Galwada	AUOBW133	42	EXLT	Galwada	AUPZ008	75	GW	Palaskheda	AUOBW121	60	GW
*Jarandi	AUOBW129	78	GW	Fardapur	AUOBW127	94	GW	Jamthi	AUWQN22	96	GW
*Jamthi	AUWQN22	56	GW	Galwada	AUOBW133	79	GW			•	

	Taluka : V	aijapur			Taluka : Va	ijapur			Taluka : V	/aijapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2009 (Without	Fe)			Data for 2008	8 Not Available (Without 1	
Rotegaon	G/AU-006	79	GW	Rotegaon	G/AU-006	74	GW				
Tunki	G/AU-016	401	UNSUT	Tunki	G/AU-016	408	UNSUT				
2010 (With Fe)										
Borsar	AUOBW057	69	GW	Shivur	AUOBW054	105	PW	Malisagaj	AUOBW074	60	GW
Jambargaon	AUOBW059	117	PW	Talwada	AUOBW140	114	PW	Nagamthan	AUOBW061	79	GW
Jambargaon	AUWQN10	99	GW	Vajapur	AUOBW050	221	VPW	Parsoda	AUWQN12	106	PW
Malisagaj	AUOBW074	87	GW	Borsar	AUOBW057	105	PW	Shivur	AUOBW054	78	GW
Nagamthan	AUWQN11	173	PW	Jambargaon	AUOBW059	162	PW	Talwada	AUOBW140	92	GW
Parsoda	AUWQN12	64	GW	Jambargaon	AUWQN10	180	PW	Vajapur	AUOBW050	145	PW
2011 (With Fe)										
*Borsar	AUOBW057	42	EXLT	*Parsoda	AUWQN12	64	GW	Jambargaon	AUWQN10	207	VPW
*Jambargaon	AUOBW059	95	GW	*Shivur	AUOBW054	73	GW	Malisagaj	AUOBW074	103	PW
*Jambargaon	AUWQN10	58	GW	*Talwada	AUOBW140	53	GW	Nagamthan	AUOBW061	127	PW
*Malisagaj	AUOBW074	93	GW	*Vajapur	AUOBW050	92	GW	Shivur	AUOBW054	133	PW
*Nagamthan	AUOBW061	53	GW	Borsar	AUOBW057	172	PW	Talwada	AUOBW140	81	GW
*Nagamthan	AUWQN11	93	GW	Jambargaon	AUOBW059	180	PW	Vajapur	AUOBW050	214	VPW
								Nagamthan	AUWQN11	98	GW
								Parsoda	AUWQN12	163	PW

· ·	Taluka : Ga	angapur			Taluka : Gai	ngapur			Taluka : Ga	angapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe)											
Agathan	AUPZ015	87	GW	Kinhala	AUOBW071	101	PW	Jakmatha	AUOBW093	54	GW
Derda	AUWQN15	80	GW	Limbejalgaon	AUOBW088	98	GW	Jamgaon	AUWQN16	168	PW
Jakmatha	AUOBW092	72	GW	Derda	AUWQN15	67	GW	Kaigaon	AUWQN13	238	VPW
Nevergaon	AUOBW079	85	GW	Agathan	AUPZ015	63	GW	Kaigaon	AUWQN13	204	VPW
Ranjangaon(n)	AUOBW075	69	GW	Babargaon	AUWQN17	93	GW	Limbejalgaon	AUOBW088	85	GW
Babargaon	AUWQN17	74	GW	Dahegaon	AUOBW090	64	GW	Nevergaon	AUOBW079	66	GW
Dahegaon	AUOBW090	72	GW	Dahegaon	AUWQN14	60	GW	Ranjangaon(n)	AUOBW075	73	GW
Dahegaon	AUWQN14	97	GW	Derda	AUWQN15	57	GW	Kinhala	AUOBW071	92	GW
2011 (With Fe)											
*Agathan	AUPZ015	54	GW	*Kinhala	AUOBW071	79	GW	Limbejalgaon	AUOBW088	118	PW
*Babargaon	AUWQN17	155	PW	*Limbejalgaon	AUOBW088	79	GW	Nevergaon	AUOBW079	196	PW
*Dahegaon	AUOBW090	50	GW	*Nevergaon	AUOBW079	83	GW	Ranjangaon(n)	AUOBW075	66	GW
*Dahegaon	AUWQN14	47	EXLT	*Ranjangaon(n)	AUOBW075	60	GW	Kaigaon	AUWQN13	309	UNSUT
*Derda	AUWQN15	79	GW	Agathan	AUPZ015	107	PW	Dahegaon	AUWQN14	91	GW
*Jakmatha	AUOBW092	66	GW	Dahegaon	AUOBW090	87	GW	Derda	AUWQN15	193	PW
*Jamgaon	AUWQN16	79	GW	Jakmatha	AUOBW092	64	GW	Jamgaon	AUWQN16	189	PW
*Kaigaon	AUWQN13	204	VPW	Kinhala	AUOBW071	86	GW	Babargaon	AUWQN17	66	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.5: Water Quality Index of Groundwater of Beed District

	Taluka : Aml	bejogai			Taluka: Am	bejogai			Taluka : An	nbejogai	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without	Fe)			2009 (Without	Fe)		
Kumbhephal	G/BD-010	74	GW	Ambejogai	G/BD-003	45	EXLT	Kumbhephal	G/BD-010	106	PW
Talni	G/BD-001	58	GW	Kumbhephal	G/BD-010	176	PW	Talni	G/BD-001	52	GW
2010 (With Fe)				Talni	G/BD-001	66	GW				
Ambajogai	BDOBW080	72	GW	2011 (With Fe)							
Chanai	BDOBW068	85	GW	Ambajogai	BDOBW080	35	EXLT	Ambajogai	BDOBW097	96	GW
Patoda	BDOBW096	54	GW	Chanai	BDOBW068	127	PW	Ambajogai	BDOBW100	37	EXLT
Sonawala	BDOBW069	53	GW	Patoda	BDOBW096	29	EXLT	Ambejogai	BDPZ023	42	EXLT
Bhauthana.	BDPZ020	61	GW	Bhauthana.	BDPZ020	82	GW	*Sonawala	BDOBW069	51	GW

	Taluka : Ashti				Taluka : A	Ashti			Taluka:	Ashti	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)			2008 (Without I	Fe)			2011 (With Fe)			
Ashti	K/BD-008	136	PW	Ashti	K/BD-008	121	PW	Ashta [h.n.]	BDPZ017	64	GW
Doithana									BDOBW122	94	GW
2010 (With Fe)								Dhanora.	BDPZ012	85	GW
Ashta [h.n.]	BDPZ017	74	GW	Pimpri Ghumri	BDPZ011	63	GW	Dongargaon	BDOBW114	83	GW
Chinchpur	BDOBW126	76	GW	Ashti	BDOBW122	105	PW	Hatola	BDOBW013	65	GW
Dhanora.	BDPZ012	70	GW	Dongargaon	BDOBW114	57	GW	Kinni	BDOBW118	61	GW
Kuntephal	BDOBW107	49	EXLT	Hatola	BDOBW013	57	GW	Kuntephal	BDOBW107	128	PW
Loni	BDOBW103	51	GW	Kinni	BDOBW118	60	GW	Loni	BDOBW103	181	PW
		•		Nimgaon choba	BDOBW117	62	GW	Nimgaon choba	BDOBW117	127	PW
					·	·-		Pimpri Ghumri	BDPZ011	79	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.5(Contd..): Beed District

· ·	Taluka : B	eed			Taluka : 1	Beed			Taluka:	Beed	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Pali	G/BD-036	58	GW	Pali	G/BD-036	73	GW	Pali	G/BD-036	68	GW
				Bhend Takli	G/BD-042	58	GW	Bhend Takli	G/BD-042	56	GW
								Pithi	G/BD-017	135	PW
2010 (With Fe)				2011 (With Fe)							
Neknoor	BDOBW089	53	GW	Beed	BDOBW027	58	GW	Beed	BDOBW052	56	GW
				Beed	BDOBW034	57	GW	Beed	BDPZ008	77	GW
				Dharur	BDOBW054	116	PW	*Neknoor	BDOBW089	56	GW
				Ambajogai	BDOBW075	117	PW	*Beed	BDOBW086	60	GW
								*Beed	BDPZ018	61	GW

	Taluka : D	harur			Taluka : I	harur			Taluka:	Dharur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	(e)			2008 (Without	Fe)			2009 (Without	Fe)		
Dharur	G/BD-020	144	PW	Dharur	G/BD-020	201	VPW	Pimpalwandi	G/BD-018	63	GW
Pimpalwandi	G/BD-018	65	GW	Pimpalwandi	G/BD-018	69	GW				
2011 (With Fe)											
Kari.	BDPZ014	61	GW	Data for 20	10 Not Availab	le for W	ith Fe				
*Kari.	BDPZ014	99	GW								

	Taluka : I	Kaij			Taluka :	Kaij			Taluka	: Kaij	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2009 (Without Fe				2010 (With Fe)	1			2011 (With Fe)			
Kej	G/BD-047	130	PW	Bansarola	BDPZ022	66	GW	*Malegaon	BS-41	67	GW
Data for 2007, 20	08 Not Availab	le (With	nout Fe)	Malegaon	BDPZ022	73	GW				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.5(Contd..): Beed District

	Taluka : G	eorai			Taluka : G	eorai			Taluka : (Georai	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2009 (Without F	e)			2010 (With Fe)				2011 (With Fe)			
Patrud	G/BD-059	155	PW	Bhend Takli	BDOBW127	60	GW	Georai	BDOBW024	127	PW
				Georai	BDOBW024	124	PW	Hirapur	BDOBW033	177	PW
				Hirapur	BDOBW033	116	PW	Hiwarwadi	BDOBW014	88	GW
				Hiwarwadi	BDOBW014	61	GW	Mahar takli	BDOBW002	58	GW
				Mahar takli	BDOBW002	112	PW	Padalsinghi	BDOBW032	62	GW
Data for 2007	2008 Not Availa	bla (Wi	thout Fo	Padalsinghi	BDOBW032	60	GW	Padalsinghi	BDPZ005	51	GW
Data 101 2007,	2000 NUI AVAIIA	ible (vv i	mout re)	Padalsinghi	BDPZ005	57	GW	Tagadgaon	BDPZ001	125	PW
				Tagadgaon	BDPZ001	132	PW	Tagadgaon	BDWQN001	52	GW
					BDWQN001	71	GW	Umapur	BDOBW015	57	GW
				Talwada	BDOBW030	55	GW	*Bhend Takli	BDOBW127	51	GW
				Umapur	BDOBW015	101	PW	*Talwada	BDOBW030	45	EXLT

	Taluka : P	arali			Taluka:	Parali			Taluka :	Parali	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	(e)			2008 (Without	Fe)			2011 (With Fe)			
Sirsala	G/BD-027	194	PW	Dharmapuri	G/BD-045	60	GW	Sangam	BDPZ010	86	GW
2009 (Without F	(e)			Parli	G/BD-034	143	PW	Wadgaon	BDPZ021	39	EXLT
Sirsala	G/BD-027	162	PW	Sirsala	G/BD-027	199	PW	*Wadgaon	BDPZ021	81	GW
	Data for 2010 Not Available (With Fe)							Pimpri bk	BDOBW077	41	EXLT

	Taluka : Pa	toda			Taluka : P	atoda			Taluka:	Patoda	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without	Fe)			2009 (Withou	ut Fe)		
Patoda	G/BD-032	105	PW	Daskhed	G/BD-022	78	GW	Daskhed	G/BD-022	65	GW
				Patoda	G/BD-032	118	PW	Patoda	G/BD-032	112	PW
2010 (With Fe)				2011 (With Fe)							
Naigaon	BDOBW026	75	GW	Amalner	BDPZ013	52	GW				
Patoda	BDPZ019	58	GW	Naigaon	BDOBW026	67	GW				
Vidyakinhi	BDOBW085	57	GW	Patoda	BDPZ019	47	EXLT				
				Suppa	BDOBW124	51	GW				
				Shirapur ghat	BDOBW022	141	PW				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.5(Contd..): Beed District

	Taluka : Shiru	ır Kasaı	•		Taluka : Shi	rur Kasa	ır		Taluka : Shi	irur Kasa	ır
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fo	e)			2008 (Witho	out Fe)			2009 (Witho	out Fe)		
Manur	G/BD-016	242	VPW	Dhanora	K/BD-009	106	PW	Manur	G/BD-016	99	GW
2011 (With Fe)				Manur	G/BD-016	248	VPW				
Shirur kasar	BDPZ007	122	PW					Data for 201	0 Not Available (V	With Fe)	

	Taluka : Wa	dwani			Taluka : W	adwani			Taluka : V	Vadwani		
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Without Fo	e)			2008 (Without	t Fe)			2009 (Withou	t Fe)			
Telgaon	G/BD-021	92	GW	Telgaon	G/BD-021	102	PW	Wadwani	G/BD-025	242	VPW	
Wadwani	G/BD-025	223	VPW	Wadwani	G/BD-025	138	PW	Data Not Available for 2010 and 2011 (With Fe)				

	Taluka : Maj	algaon				Taluka : Ma	jalgaon				Taluka : Ma	ajalgaon	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2011 (With Fe) Data for 2007 to 2009 (Without Fe) and 2010 (With Fe) Not Available													
*Majalgaon	BDPZ006	57	GW		Waghora	BDPZ002	51	GW		Khamgaon	BDPZ015	40	EXLT
*Roshanpuri	BDOBW062	37	EXLT		Bavi	BDOBW057	54	GW		*Longaon C	BDPZ009	41	EXLT
Telgaon bk.	BDOBW059	60	GW		*Hivra bk.	BDOBW042	81	GW		Longaon Camp	BDPZ010	41	EXLT

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.6: Water Quality Index of Groundwater of Bhandara District

	Taluka : Bha	ndara				Taluka : Bh	andara			Taluka : B	handara	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	e)				2008 (Without I	Fe)			2009 (Without	Fe)		
Bhandara	G/BH-019	50	GW		Bhandara	G/BH-019	44	EXLT	Bhandara	G/BH-019	48	EXLT
Koka (Kokha)	G/BH-023	72	GW		Varti	G/BH-024	204	VPW	Palari	G/BH-008	85	GW
Palari	G/BH-008	74	GW		Koka (Kokha)	G/BH-023	64	GW	Sakra	G/BH-025	137	PW
					Palari	G/BH-008	83	GW				
2010 (With Fe)	Data for	2011 (V	With Fe) No	t A	vailable							
					*Shahapur/							
*Maudi	BHOBW008	56	GW		Fulmogra	BHOBW013	83	GW	*Mujbi	BHPZ002	73	GW
					Shahapur/							
Maudi	BHOBW008	85	GW		Fulmogra	BHOBW013	83	GW	Mujbi	BHPZ002	94	GW
*Pahela	BHOBW009	104	PW		*Dhargaon	BHPZ001G	64	GW	*Pahela	BHPZ003	157	PW
Pahela	BHOBW009	110	PW		Dhargaon	BHPZ001G	75	GW	Pahela	BHPZ003	165	PW
Saori/ Parsodi	BHOBW012	151	PW		Kondhi	BS-14	64	GW				
Bhandara	T-02	138	PW		Kondhi	BS-14	72	GW				
Bhandara	T-02	163	PW									

	Taluka : Lakl	handur				Taluka : Lak	handu	r		Taluka : La	khandur	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without I	Fe)			2009 (Without I	Fe)		
Lakhandur	G/BH-021	90	GW		Lakhandur	G/BH-021	81	GW	Lakhandur	G/BH-021	101	PW
2010 (With Fe)	Data for	2011 (V	Vith Fe) No	ot A	vailable							
*Palandur	BHOBW071	92	GW		*Dighori	BHOBW108	106	PW	Lakhandur	BHOBW109	102	PW
Palandur	BHOBW071	107	PW		Dighori	BHOBW108	104	PW	*Soni	BHOBW111	141	PW
*Bhagadi.	BHOBW105	73	GW		Lakhandur	BHOBW109	93	GW	Soni	BHOBW111	139	PW
Bhagadi.	BHOBW105	131	PW									

	Taluka : La	khani			Taluka : L	akhani			Taluka : 1	Lakhani			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (Without	Fe)			2008 (Withou	ıt Fe)			2009 (Witho	out Fe)				
Lakhani	G/BH-005	59	GW	Lakhani	G/BH-005	85	GW	Palandur	G/BH-022	79	GW		
Palandur	G/BH-022	92	GW	Palandur	G/BH-022	64	GW						
Data for 2010 a	Data for 2010 and 2011 (With Fe) Not Available												

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.6(Contd..): Bhandara District

Γ	aluka : Mohad	li			Taluka : M	ohadi			Taluka : N	Aohadi	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)			2008 (Without F	(e)			2009 (Withou	ıt Fe)		
Dahegaon	G/BH-026	72	GW	Chicholi	G/BH-015	175	PW	Chicholi	G/BH-015	196	PW
Jamb	G/BH-007	121	PW	Dahegaon	G/BH-026	51	GW	Dahegaon	G/BH-026	64	GW
Usarra	G/BH-018	86	GW	Jamb	G/BH-007	184	PW	Jamb	G/BH-007	148	PW
				Kharbi	G/BH-016	171	PW				
				Usarra	G/BH-018	132	PW				
2010 (With Fe)	Data for	2011 (V	Vith Fe) No	t Available							
				Dewhada							
Koka	BHOBW006	128	PW	Bk.(narsingtola)	BHOBW018	187	PW	Ussara	BHOBW027	84	GW
Koka	BHOBW006	92	GW	Mohadi	BHOBW025	94	GW	Warthi	BHOBW028	75	GW
Dahegaon	BHOBW017	84	GW	Mohadi	BHOBW025	96	GW	Warthi	BHOBW028	74	GW
Dahegaon	BHOBW017	89	GW	Satona	BHOBW026	47	EXLT	Wasera	BHPZ004	144	PW
Dewhada											
Bk.(narsingtola)	BHOBW018	97	GW	Satona	BHOBW026	63	GW				

	Taluka : Pauni				Taluka : P	auni			Taluka:	Pauni	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without	Fe)			2009 (Witho	ut Fe)		
Pauni	G/BH-020	67	GW	Pauni	G/BH-020	57	GW	Pauni	G/BH-020	59	GW
2010 (With Fe)	Data for	2011 (V	Vith Fe) No	t Available							
				Kanhalgaon							
Adyal	BHOBW047	71	GW	(somnala)	BHOBW053	143	PW	Sindpuri	BHOBW058	61	GW
				Kanhalgaon							
Adyal	BHOBW047	164	PW	(somnala)	BHOBW053	57	GW	Sindpuri	BHOBW058	67	GW
Chandi	BHOBW049	39	EXLT	Kondha	BHOBW054	70	GW	*Bhavad	BHPZ005	54	GW
Chandi	BHOBW049	52	GW	Kondha	BHOBW054	96	GW	Bhavad	BHPZ009	153	PW
				Nilaj							
Dhamni	BHOBW051	77	GW	(Amgaon).	BHOBW055	86	GW	Chichal	BHPZ010	90	GW
				Nilaj							
Gosi Bk.	BHOBW052	53	GW	(Amgaon).	BHOBW055	160	PW	Chichal	BHPZ010	244	VPW
Gosi Bk.	BHOBW052	59	GW	Pauni	BHOBW057	147	PW	*Wahi	BHPZ011	229	VPW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.6(Contd..): Bhandara District

	Taluka : Sakoli					Taluka : S	akoli			Taluka :	Sakoli	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)				2008 (Without	Fe)			2009 (Without	Fe)		
Ekodi	G/BH-012	26	EXLT		Ekodi	G/BH-012	27	EXLT	Ekodi	G/BH-012	34	EXLT
Sakoli	G/BH-002	53	GW		Sakoli	G/BH-002	47	EXLT	Pitezari	G/BH-010	127	PW
Pitezari	G/BH-010	68	GW		Pitezari	G/BH-010	79	GW				
2010 (With Fe)	Data for	2011 (V	Vith Fe) Not	t Av	vailable							
Kesalwada	BHOBW031	65	GW		*Kumbhli.	BHOBW068	60	GW	Salebhatta	BHOBW074	54	GW
Parsodi	BHOBW042	187	PW		Kumbhli.	BHOBW068	98	GW	Salebhatta	BHOBW074	67	GW
*Dongargaon												
(Niharwani)	BHOBW064	72	GW		*Mundipar	BHOBW070	49	EXLT	Kaneri (dagdi)	BHPZ005	67	GW
Dongargaon												
(Niharwani)	BHOBW064	88	GW		Mundipar	BHOBW070	91	GW	Bampewada	BHPZ012	79	GW
Kesalwada	BHOBW066	106	PW		Parsodi	BHOBW072	70	GW	Bampewada	BHPZ012	94	GW
*Khandala	BHOBW067	52	GW		*Sakoli	BHOBW073	107	PW				
Khandala	BHOBW067	67	GW		Sakoli	BHOBW073	94	GW				

7	Taluka : Tumsa	r			Taluka : Tu	ımsar			Taluka : '	Tumsar	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without F	'e)			2009 (Without)	Fe)		
Madgi	G/BH-017	75	GW	Madgi	G/BH-017	71	GW	Madgi	G/BH-017	77	GW
Nilaj	G/BH-004	77	GW	Nilaj	G/BH-004	76	GW	Nilaj	G/BH-004	87	GW
Tumsar Khapa	G/BH-003	105	PW	Tumsar Khapa	G/BH-003	114	PW	Tumsar Khapa	G/BH-003	129	PW
								Daodipar			
Ajgaon	G/BH-011	93	GW	Ajgaon	G/BH-011	88	GW	Khapa	G/BH-009	116	PW
				Daodipar							
Daodipar Khapa	G/BH-009	88	GW	Khapa	G/BH-009	82	GW	Sihora	G/BH-013	115	PW
Sihora	G/BH-013	89	GW	Sihora	G/BH-013	112	PW				
2010 (With Fe)	Data for	2011 (V	Vith Fe) Not	Available							
				*Khapa							
Bagheda	BHOBW030	57	GW	(Tumsar).	BHOBW036	79	GW	Lendezari	BHPZ007	91	GW
*Bagheda	BHOBW030	59	GW	*Mangli	BHOBW042	224	VPW	Lendezari	BHPZ007	88	GW
*Chargaon	BHOBW031	68	GW	Rajapur	BHOBW044	146	PW	Sihora	BHPZ008	90	GW
Chikhli											
(kamkasur)	BHOBW033	93	GW	*Rajapur	BHOBW044	187	PW	Sihora	BHPZ008	114	PW
*Chikhli				* •					•	•	•
(kamkasur)	BHOBW033	111	PW	Chargaon	BHOBW066	78	GW				
Khapa (Tumsar).	BHOBW036	79	GW	Mangli (Tudka)	BHOBW072	69	GW				

Table x.7: Water Quality Index of Groundwater of Buldhana District

T	Taluka : Buldhana				Taluka : Bu	ldhana			Taluka : Bu	ıldhana	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without	Fe)			2009 (Without I	Fe)		
Buldhana	T/BL-006	136	PW	Buldhana	T/BL-006	134	PW	Buldhana	T/BL-006	102	PW
Dongar				Dongar							
Khandala	T/BL-035	188	PW	Khandala	T/BL-035	177	PW	Deolgaon Mahi	G/BL-031	88	GW
Warwand	T/BL-038	149	PW	Warwand	T/BL-038	126	PW	Sailani	G/BL-025	95	GW
Kolori	T/BL-040	482	UNSUT	Kolori	T/BL-040	307	UNSUT	Sultanpur	G/BL-042	108	PW
Sultanpur	G/BL-042	130	PW	Sultanpur	G/BL-042	159	PW				
Wagnul	T/BL-060	115	PW								
Village 1	T/BL-056	418	UNSUT								
Village 2	T/BL-061	71	GW								
2007 (With Fe)				2007 (With Fe) (Contd)			2009 (With Fe)			
Birsingpur	BUWQN001	101	PW	Mhasla Bk.	BUOBW021	85	GW	Birsingpur	BUWQN001	95	GW
Buldhana	BUOBW001	76	GW	Mondhala	BUOBW019	104	PW	Nandra Koli	BUPZ001	155	PW
Dattapur	BUOBW027	116	PW	Sagwan	BUPZ002	83	GW	Mondhala	BUOBW019	71	GW
Dhad	BUOBW018	125	PW	Warud	BUPZ003	66	GW				
Jamathi	BUOBW016	74	GW								
2010 (With Fe)				2010 Contd (With Fe)			2011 (With Fe)			
Birsingpur	BUWQN001	94	GW	Mhasala BK	BUOBW021	149	PW	*Birsingpur	BUWQN001	97	GW
Buldana	BUOBW001	114	PW	Mondhala	BUOBW019	111	PW	*Dattapur	BUOBW027	129	PW
Dattapur	BUOBW027	119	PW	Nandrakoli	BUOBW026	136	PW	*Dhad	BUOBW018	167	PW
Dhad	BUOBW018	150	PW	Nandrakoli	BUPZ001	49	EXLT	*Jamthi	BUOBW016	82	GW
Jamthi	BUOBW016	70	GW	Sagwan	BUPZ002	108	PW	*Mhasala BK	BUOBW021	161	PW
Data for 2008 (W	ta for 2008 (With Fe) Not Available				BUPZ003	76	GW	*Nandrakoli	BUPZ001	151	PW
								*Wadrud	BUPZ003	82	GW
								*Mondhala	BUOBW019	118	PW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.7(Contd..): Buldhana District

	Taluka: Ch	ikhali			Taluka : Ch	ikhali			Taluka : C	hikhali	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fo	e)			2008 (Without 1	Fe)			2009 (Withou	t Fe)		
Amdapur	T/BL-013	56	GW	Amdapur	T/BL-013	54	GW	Karwand	T/BL-034	92	GW
Karwand	T/BL-034	115	PW	Karwand	T/BL-034	100	GW	Kelwad	G/BL-041	125	PW
Mera Khurd	G/BL-024	83	GW	Mera Khurd	G/BL-024	114	PW				
Naygaon	G/BL-020	74	GW								
2007 (With Fe)				2011 (With Fe)				2011 (With Fe	e) (Contd)		
				Borgaon							
*Shelodi	BUOBW038	56	GW	Kakde	BUOBW012	47	EXLT	Hatani	BUWQN004	57	GW
*Chikhali	BUWQN003	97	GW	Borgaon Wasu	BUWQN002	58	GW	Karwand	BUOBW062	63	GW
*Harani	BUOBW014	64	GW	Chikhali	BUWQN003	92	GW	Khor	BUOBW055	45	EXLT
*Hatani	BUWQN004	61	GW	Harni	BUOBW014	50	EXLT	Palaskhed	BUPZ004	51	GW
*Karwand	BUOBW062	64	GW	Sawana	BUOBW003	116	PW	Undri	BUOBW081	111	PW
*Undri	BUOBW081	148	PW	Selodi	BUOBW038	GW	Data for 2008	-2009 and 2010 N	ot Availa	ble	
*BorgaonKaka.	BUOBW012	55	GW			•		(With Fe)			
*Borgaon Vasu	BUWQN002	65	GW								

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.7(Contd..): Buldhana District

	Taluka : Kha	mgaon			Taluka: Kha	mgaon	1		Taluka : Kh	amgaon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without	Fe)			2009 (Without	Fe)		
Garadgaon	T/BL-011	82	GW	Garadgaon	T/BL-011	88	GW	Atali	T/BL-061	69	GW
Khamgaon	T/BL-015	141	PW	Khamgaon	T/BL-015	133	PW	Garadgaon	T/BL-011	76	GW
Lokhanda	T/BL-022	75	GW	Lokhanda	T/BL-022	50	EXLT	Khamgaon	T/BL-015	147	PW
D: 1 D:	F/D1 022		CVV	Pimpalgaon	T. D. 1022		CTT	Pimpalgaon	T.D. 022		CITI
Pimpalgaon Raja	T/BL-033	66	GW	Raja	T/BL-033	65	GW	Raja	T/BL-033	53	GW
2007 (With Fe)	1			2009 (With Fe)	ľ	1		2010 (With Fe)	T	ı	1
Awar	BUOBW123	140	PW	*Lakhanwada	BUOBW097	85	GW	Awar	BUOBW123	127	PW
Borjawala	BUOBW136	95	GW	*Tandulwadi	BUWQN022	61	GW	Borjawala	BUOBW136	82	GW
Hiwarkhed	BUOBW127	113	PW					Botha Kaji	BUOBW096	126	PW
Jalka Bhadag	BUWQN017	90	GW	Data for 2	008 Not Availab	le (Wit	h Fe)	Divthana	BS-29	95	GW
Nipana	TS-7	142	PW					Hiwarkhed	BUOBW127	91	GW
2011 (With Fe)								Jalka Bhadag	BUWQN017	82	GW
*Borjawala	BUOBW136	94	GW	Jaipur Land	BUOBW130	101	PW	Jyapur Lande	BUOBW130	134	PW
*Divthana	BS-29	105	PW	Khamgaon	BUOBW102	95	GW	Khamgaon	BUOBW102	94	GW
*Hiwarkhed	BUOBW127	102	PW	Kokta	BUOBW158	107	PW	Kokta	BUOBW158	116	PW
*Jyapur Lande	BUOBW130	117	PW	Lakhanwada	BUOBW097	126	PW	Lakhanwada	BUOBW097	125	PW
*Sutala	BUWQN021	132	PW	Nimkawada	BUWQN018	110	PW	Nimkawala	BUWQN018	137	PW
Awar	BUOBW123	106	PW	Nipana	TS-7	118	PW	Nipana	TS-7	118	PW
Borjawala	BUOBW136	75	GW	Palshi	BUWQN020	73	GW	Palashi kh	BUWQN020	81	GW
Bothkaji	BUOBW096	99	GW					Sutala	BUWQN021	124	PW
Divthana	BS-29	64	GW					Tandulwadi	BUWQN022	96	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.7(Contd..): Buldhana District

	Taluka : Lo	onar			Taluka : I	onar			Taluka : l	Lonar	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without	Fe)			2009 (Without)	Fe)		
Dhad	G/BL-026	153	PW	Dhad	G/BL-026	189	PW	Lonar1	T/BL-057	79	GW
Lonar	G/BL-057	99	GW					Dhad	G/BL-026	236	VPW
2008 (With Fe)	Data for 2007 a	nd 2009	Not Availa	ble (With Fe)							
Wadhav	BUOBW076	121	PW	Shara	BUOBW073	166	PW	Borkhedi	BUWQN010	52	GW
Lonar	BUWQN011	142	PW	Sultanpur	BUOBW009	124	PW	Dhaifal	BUOBW034	94	GW
Pimplner	BUPZ007	54	GW	Bibkhed	BUOBW035	105	PW				
2011 (With Fe)	Data for 2010 N	lot Avai	ilable (With	Fe)							
Bhumrala	BUWQN009	89	GW	Kingaon Urdu	BUOBW060	93	GW	Shara	BUOBW073	144	PW
Bibi	BUPZ013	72	GW	Lonar	BUWQN011	124	PW	Sultanpur	BUOBW009	91	GW
				Sawaegaon							
Bibkhed	BUOBW035	87	GW	Teli	BUOBW059	98	GW	Wadhav	BUOBW076	96	GW
Dhayaphal BUOBW034 102 PW											

	Taluka : Mal	kapur			Taluka : Ma	lkapur			Taluka : Ma	alkapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2009 (Without Fe	e)			2007 (With Fe)	Data for 2008 N	lot Ava	ilable	2009 (With Fe)			
Malkapur	T/BL-004	171	PW	Dasarkhed	BUOBW163	78	GW	Dasarkhed	BUOBW163	50	GW
Data for 2007-20	08 Not Avail. (V	Fe)	Hingana Kazi	BUWQN042	347	UNSUT					
				Umali	BUOBW088	152	PW				
				Waghul	BUWQN043	117	PW				
2010 (With Fe)								2011 (With Fe)			
Belad	BUOBW089	67	GW	Morkhed BK	BUOBW092	137	PW	*Belad	BUOBW089	82	GW
Dasarkhed				Umali	BUOBW088	142	PW	*Dasarkhed	BUOBW163	108	PW
Hingna Kaji	BUWQN042	268	VPW	Wagola	BUPZ0011	156	PW	*Hingna Kaji	BUWQN042	269	VPW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.7(Contd..): Buldhana District

	Taluka: Me	hakar			Taluka : M	1ehakar			Taluka : M	ehakar	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	e)			2008 (Withou	ut Fe)			2008 (With Fe)			
Mehkar	G/BL-008	204	VPW	Mehkar	G/BL-008	193	PW	Anjani Bk	BUOBW028	132	PW
2010 (With Fe)	•			Data for 200	9 Not Available (Without	Fe)	Chinchala	BS-57	65	GW
Deulgaon								Deulgaon			
Sakarsha	BUOBW069	88	GW					Sakarsha	BUOBW069	64	GW
2011 (With Fe)								Gajarkhed	BS-61	101	PW
Ajani Bk	BUOBW028	114	PW	Mehkar	TS-15	100	PW	Dongaon	BUWQN006	68	GW
				Naigaon							
Chinchala	BS-57	78	GW	Dattapur	BS-52	65	GW	Fardapur	BUOBW024	130	PW
Deulgaon											
Sakarsh	BUOBW069	67	GW	Virvi	BS-56	118	PW	Khamkhed	BS-53	54	$\mathbf{G}\mathbf{W}$
Dongaon	BUWQN006	60	GW	Data for 200	7 and 2009 Not A	vailable		Mehkar	TS-15	99	GW
				(With Fe)				Naigaon			
Fardapur	BUOBW024	106	PW					Dattapur	BS-52	75	GW
Gajarkhed	BS-61	91	GW					Tembhurkhed	BUWQN007	79	GW
Khandala	TS-13	110	PW					Wishvi	BS-56	130	PW

Table x.7(Contd..): Buldhana District

	Taluka : M	otala			Taluka : M	Iotala			Taluka : N	Motala	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	e)			2008 (Without	Fe)			2009 (Without I	Fe)		
Motala	T/BL-010	223	VPW	Motala	T/BL-010	156	PW	Motala	T/BL-010	125	PW
								Pimpalgaon			
Rohinkhed	T/BL-044	185	PW	Rohinkhed	T/BL-044	203	VPW	Devi	T/BL-030	256	VPW
								Rohinkhed	T/BL-044	160	PW
2009 (With Fe)	Data for 2007 a	nd 2008	Not Avaialal	ole (With Fe)							
Motala	BUOBW110	131	PW	Sarola Maroti	BUOBW101	79	GW	Liha	TS 17	90	GW
Dhamangaon	BS-64	62	GW	Hanvatkhed	BUOBW094	44	EXLT	Pimplgaon devi	BUPZ038	83	GW
Rajur	BUOBW109	98	GW								
2010 (With Fe)											
Dhamangaon											
Bade	BS-64	100	PW	Mtotala	BUOBW110	77	GW	Sarola Maroti	BUOBW101	99	GW
Dhamangaon											
Bade	BUPZ012	111	PW	Nimkhed	BUOBW085	105	PW	Shlelapur	BUWQN044	113	PW
Hanvatkhed	BUOBW094	64	GW	Rjur	BUOBW109	79	GW	Ubalkhed	BUOBW100	85	GW
Liha	BUOBW107	75	GW	Rohinkhed	TS-16	130	PW				
2011 (With Fe)											
*Dhamangaon											
Bade	BS-64	110	PW	*Nimkhed	BUOBW085	118	PW	*Shlelapur	BUWQN044	122	PW
*Hanvatkhed	BUOBW094	76	GW	*Rohinkhed	TS-16	147	PW	*Ubalkhed	BUOBW100	99	GW
*Liha	BUOBW107	88	GW	*Sarola Maroti	BUOBW101	107	PW				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.7(Contd..): Buldhana District

	Taluka : Na	ndura			Taluka : Na	ndura			Taluka : N	andura	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without	Fe)			2009 (Without	Fe)		
Digni	T/BL-059	122	PW	Digi	T/BL-059	158	PW	Dighi	T/BL-059	101	PW
Tarvadi	T/BL-028	87	GW	Tarvadi	T/BL-028	109	PW	Tarvadi	T/BL-028	81	GW
2007 (With Fe)				2007 Contd (With Fe)			2009 (With Fe)			
Alampur	BUOBW147	113	PW	Kokalwadi	BUPZ010	116	PW	*Chandur B.	BUOBW135	67	GW
Chandur Biswa	BUOBW135	89	GW	Naigaon	BUPZ009	112	PW	*Fulli	BUWQN045	93	GW
Fulli	BUWQN045	132	PW	Shemba	BUOBW087	92	GW	*Narkhed	BUWQN048	161	PW
Isabpur	BUOBW146	180	PW	Data for 2	2008 Not Availab	le (Wit	h Fe)				
2010 (With Fe)											
Alampur	BUOBW147	110	PW	Fuli	BUWQN045	82	GW	Mahalungi	BUOBW106	89	GW
Chandur Bisawa	BUOBW135	81	GW	Isapur	BUOBW146	75	GW	Naigaon	BUPZ009	135	PW
Nadura	BUWQN047	60	GW	Kharkundi	TS-18	42	EXLT	Shembha	BUOBW087	76	GW
Nimgaon	BUOBW129	91	GW	Kokalwadi	BUPZ010	91	GW				
2011 (With Fe)											
*Nadura	BUWQN047	67	GW	*Mahalungi	BUOBW106	105	PW	Isabpur	BUOBW146	78	GW
*Nimgaon	BUOBW129	91	GW	*Naigaon	BUPZ009	146	PW	Kokalwadi	BUPZ010	83	GW
*Chandur B	BUOBW135	94	GW	*Shembha	BUOBW087	89	GW	Mahalungi	BUOBW106	82	GW
*Fuli	BUWQN045	88	GW	Chandur B.	BUOBW135	74	GW	Naigaon	BUPZ009	109	PW
*Kokalwadi	BUPZ010	109	PW	Fuli	BUWQN045	67	GW	Nandura	BUWQN047	61	GW

	Taluka : Sang	rampur			Taluka : Sang	grampu	r		Taluka : San	grampui	•
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2009 (Without Fo	e)			2009 (With Fe))			2007 (With Fe)		
Dhamangaon	T/BL-027	131	PW	Patorda Bk	BUOBW168	107	PW	Awar	BUOBW149	72	GW
2010 (With Fe)				2011 (With Fe)			Durgadaitya	BUOBW154	80	GW
Alewadi	BUOBW119	67	GW	*Alewadi	BUOBW119	86	GW	Khiroda	BUWQN037	158	PW
Amba barwa	BS 92	64	GW	Paturda	BUOBW168	44	EXLT	Kodri	BUWQN038	76	GW
Awar	BUOBW149	51	GW	Durga Dait	BUOBW154	70	GW	Patorda Bk	BUOBW168	70	GW
Kordi	BUWQN038	55	GW	Khiroda	BUWQN037	125	PW	Patorda Kh	BUWQN036	74	GW
Paturda	BUOBW168	48	EXLT	Alewadi	BUOBW119	74	GW	Takli	TS-25	78	GW
Takli				Data for 2007-	2008 Not Availal	ole		Data for 2008	(With Fe) Not Av	ailable	
Panchagavan	TS-25	88	GW								
Tunki BK	BUWQN041	59	GW								
Tunki BK	BUPZ014	54	GW								

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.7(Contd..): Buldhana District

	Taluka : Sho	egaon			Taluka : Sh	egaon			Taluka : S	hegaon			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (Without Fo	e)			2008 (Without 1	Fe)			2009 (Without	Fe)				
Shegaon	T/BL-005	409	UNSUT	Shegaon	T/BL-005	430	UNSUT	Jalamb	T/BL-058	117	PW		
								Shegaon	T/BL-005	632	UNSUT		
2007 (With Fe)								2008 (With Fe))				
Bhongaon	BUWQN025	169	PW	Manasgaon	BUWQN029	166	PW	Nagzari Bk	BS-85	95	GW		
Jalamb	BUWQN026	94	GW	Matargaon Bk	BUWQN030	101	PW						
Lanjud	BUOBW113	78	GW	Pahurpurna	BUWQN031	150	PW	Data for	Data for 2009 Not Available (With Fe)				
2010 (With Fe)													
Alsana	BS 80	63	GW	Jawala BK	BUWQN027	87	GW	Nagzari	BS-85	112	PW		
Amsari	TS 16	137	PW	Lanjud	BUOBW113	93	GW	Nimbhi	BUOBW105	128	PW		
Jalamb	BUWQN026	68	GW	Matargaon BK	BUWQN030	150	PW	Pahoorjira	BUOBW104	77	GW		
2011 (With Fe)													
Lanjud	BUOBW113	108	PW	Kalkhed	BUQN028	231	VPW	Nimbhi	BUOBW105	103	PW		
*Nagzari	BS-85	127	PW	Lanjud	BUOBW113	81	GW	Poorjira	BUOBW104	70	GW		
*Amsari		113	PW	Matergaon	BUWQN030	140	PW	Shegaon	BUOBW121	87	GW		
Jalamb	BUWQN026	73	GW		·				·				

	Taluka : Sindkl	hed Raj	a			Taluka: Sindk	hed Ra	ja		Taluka : Sind	khed Raj	a
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe					2008 (Without I	Fe)			2009 (Without I	Fe)		
Kingaon Raja	T/BL-036	324	UNSUT		Kingaon Raja	T/BL-036	304	UNSUT	Kingaon Raja	T/BL-036	243	VPW
Sindkhed raja	T/BL-014	36	EXLT		Sindkhed Raja	G/BL-014	41	EXLT	Sindkhed Raja	G/BL-014	38	EXLT
2007 (With Fe)					2008 (With Fe)				2009 (With Fe)			
Kingaon Raja	T/BL-036	289	VPW		Kingaon Raja	T/BL-036	271	VPW	Kingaon Raja	T/BL-036	217	VPW
Sindkhed R.	T/BL-014	32	EXLT		Sindkhed R.	G/BL-014	36	EXLT	Sindkhed R.	G/BL-014	34	EXLT
2011 (With Fe)	Data for 2010	Not Av	ailable (Wit	h F	Fe)							
					Malkapur							
Adgaon Raja	BUOBW053	58	GW		Pangara	BUOBW046	55	GW	Shendurjana	BUWQN015	75	GW
Changephal	BUWQN012	76	GW		Nashirabad	BUOBW051	78	GW	Sindkhed Raja	BUOBW070	70	GW
					Palaskhed							
Dusrabid	BUOBW058	85	GW		Chakka	BUWQN014	64	GW	Waghora	BUWQN016	62	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.7(Contd..): Buldhana District

7	Гаluka : Deolga	aon Ra	ja	Taluka : Deolgaon Raja					Taluka : Deolg	gaon Ra	ja	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without]	Fe)				2008 (Without Fe)				2009 (Without	t Fe)		
					Deolgaon				Deolgaon			
Deolgaon Raja	G/BL-009	147	PW		Raja	G/BL-009	135	PW	Raja	G/BL-009	130	PW
2011 (With Fe)	Data for 2007	7 to 201	0 Not Ava	ila	ble (With Fe)							
Bharosa	BUOBW039	64	GW		De.Raja	BUPZ006	105	PW	Mendgaon	BUOBW043	63	GW
De. Mahi	BUOBW041	109	PW		Gunjala	BUOBW042	89	GW	Pimpalner	BUOBW050	55	GW
De. Raja	BUWQN005	114	PW		Mehuna	BUOBW049	124	PW	Yeota	BUOBW056	43	EXLT

	Taluka : Jalgao	n Jamo	d		Taluka : Jalga	on Jame	od			Taluka : Jalga	on Jamo	d
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Vi	llages	Well No.	WQI	Category
2007 (Without Fe	e)			2010 (With Fe)				20	10 Contd (V	Vith Fe)		
*Raipur	BUOBW152	53	GW	Chalthana	BS-26	76	GW	Κι	ıwardeo	BUOBW116	73	GW
*Umapur	BUOBW151	48	EXLT	Jalgaon Jamod	BUOBW117	102	PW	Ra	ipur	BUOBW152	64	GW
Data for 2008 -20	ata for 2008 -2009 (Without Fe) Not Avail.				BUWQN033	127	PW	Ur	napur	BUOBW151	75	GW
2011 (With Fe)												
*Jalgaon Jamod	BUOBW117	111	PW	*Umapur	BUOBW151	82	GW	Ur	napur	BUOBW151	67	GW
*Kuwardeo	BUOBW116	88	GW	Jalgaon Jamod	BUOBW117	104	PW	Ch	althana	BS-26	67	GW
*Raipur	Raipur BUOBW152 73 GW				BUOBW152	74	GW	Da	ta for 2007 -2	2009 (With Fe) I	Not Avai	l.

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.8: Water Quality Index of Groundwater of Chandrapur District

T	aluka : Ballarp	ur			Taluka : Ba	llarpur			Taluka : Ballarpur			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Without Fe	e)			2008 (Without Fe)				2009 (Witho	ut Fe)			
Chora	G/CH-041	280	VPW	Kalmana	G/CH-036	98	GW	Kalmana	G/CH-036	81	GW	
Kalmana	G/CH-036	85	GW	Kothari	G/CH-008	89	GW	Data for 201	0 and 2011(With I	Fe) Not A	vailable	
Kothari	G/CH-008	87	GW									

Ta	luka : Bhadraw	ati			Taluka : Bha	drawati			Taluka : Bha	adrawati	
2007 (Without Fe	e)			2009 (Without I	Fe)			Data for 2008	Not Available (W	ithout Fe)
Ralegaon	G/CH-047	103	PW	Ralegaon	G/CH-047	80	GW				
2010 (With Fe)	Data for 2011 N	ot Avai	lable (With	Fe)							
*Chora.	CNOBW072	88	GW	*Masal visapur	CNOBW074	70	GW	*Bhadrawati	CNOBW163	109	PW
*Khatoda.	Khatoda. CNOBW073 113 PV				CNOBW075	49	EXLT	*Sindewahi	CNPZ012	93	GW

Tal	luka : Brahmap	uri			Taluka : Bral	nmapur	i		Taluka : Br	ahmapuri	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe				2008 (Withou	t Fe)			2009 (Without	Fe)		
Brahmapuri	G/CH-009	79	GW	Brahmapuri	G/CH-009	97	GW	Brahmapuri	G/CH-009	86	GW
Aksapur	G/CH-017	91	GW	Aksapur	G/CH-017	123	PW	Aksapur	G/CH-017	97	GW
Mangli	G/CH-039	207	VPW	Mangli	G/CH-039	210	VPW	Mangli	G/CH-039	187	PW
Mendki	G/CH-030	115	PW	Mendki	G/CH-030	133	PW				
2010 (With Fe) D	ata for 2011 No	t Availa	ble (With F	e)							
*Delanwadi	CNOBW098	71	GW	*Surbodi.	CNOBW102	128	PW	*Gangalwadi	CNPZ011	53	GW
*Mendaki	CNOBW101	74	GW	*Brahmapuri	CNOBW154	55	GW				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.8(Contd..): Chandrapur District

Tal	luka : Chandraj	pur				Taluka: Chai	ndrapu	r		Taluka: Cha	ındrapuı	•
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)				2008 (Without F	Te)			2009 (Without	Fe)		
Chandrapur	G/CH-063	76	GW		Chichpalli	G/CH-021	84	GW	Chichpalli	G/CH-021	71	GW
Chichpalli	G/CH-021	65	GW		Ghugus	G/CH-033	167	PW	Ghugus	G/CH-033	139	PW
Mul	G/CH-010	97	GW		Mul	G/CH-010	128	PW	Mul	G/CH-010	99	GW
Nandegur	G/CH-025	46	EXLT		Chandrapur 1	G/CH-063	68	GW	Nandegur	G/CH-025	56	GW
Shergaon Khurd	G/CH-038	110	PW		Padmapur	G/CH-037	28	EXLT	Wihar Khurd	G/CH-004	144	PW
Wihar Khurd	G/CH-004	169	PW		Nandegur	G/CH-025	65	GW	Dabha	G/CH-027	127	PW
Dabha	G/CH-027	124	PW		Shergaon Kh.	G/CH-038	119	PW				
					Wihar Khurd	G/CH-004	204	VPW				
					Dabha	G/CH-027	118	PW				
2010 (With Fe)	Data for 2011 N	ot Avai	lable (With	Fe)							
*Agadzari	CNOBW001	70	GW		*Pandharkawda	CNOBW011	89	GW	*Padmapur	CNOBW137	52	GW
*Chinchapalli.	CNOBW005	91	GW		*Tadali.	CNOBW012	125	PW	*Chak Borda	CNOBW157	81	GW
*Kothari.	CNOBW006	47	EXLT		*Wadgaon.	CNOBW014	97	GW	*Durgapur	CNOBW158	78	GW
*Lohara	CNOBW007	90	GW		*Ghuggus	CNOBW062	113	PW	*Ballarpur	CNOBW160	70	GW
*Padoli.	CNOBW010	101	PW						*Ghuggus	CNOBW162	100	PW
7	Гаluka : Chimu	r				Taluka : Cl	nimur			Taluka : C	himur	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)				2008 (Without F	Fe)			2009 (Without	Fe)		
Chimur	G/CH-007	64	GW		Chimur	G/CH-007	81	GW	Chimur	G/CH-007	58	GW
Jambhulghat	G/CH-048	95	GW		Jambhulghat	G/CH-048	110	PW	Jambhulghat	G/CH-048	101	PW
Kawadsi	G/CH-013	81	GW		Kawadsi	G/CH-013	86	GW	Kawadsi	G/CH-013	62	GW
Sawargaon	G/CH-012	62	GW		Sawargaon	G/CH-012	76	GW	Shankarpur	G/CH-049	96	GW
Shankarpur	G/CH-049	94	GW		Shankarpur	G/CH-049	100	PW				
Tadoba	G/CH-035	32	EXLT		Wahangaon	G/CH-040	113	PW	Data for 2011	Not Available (W	ith Fe)	
Wahangaon	G/CH-040	142	PW			-				`	ĺ	
2010 (With Fe)	•				-			•				
*Khadsangi.	CNOBW085	59	GW		*Jambhulghat.	CNOBW084	115	PW	*Wadala	CNOBW096	253	VPW
*Chimur	CNOBW155	86	GW		*Neri.	CNOBW089	102	PW	*Bothali	CNPZ009	119	PW
*Brahmangaon	CNOBW082	84	GW		*Shedgaon	CNOBW094	111	PW	*Motegaon	CNPZ010	95	GW

^{*}Brahmangaon CNOBW082 **84** GW *Shedgaon CNOBW094 **111** PW *Motega * Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.8(Contd..): Chandrapur District

·	Taluka : Jiwati	ì			Taluka:	Jiwati			Taluka:	Jiwati	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2008 (Without Fe	e) Data for 2007	Not Av	ailable	2009 (Without	t Fe)			Data for 2010 -2	2011 Not Availa	ble (Wit	h Fe)
Ballarsha	G/CH-026	65	GW	Ballarsha	G/CH-026	67	GW				

	Taluka : Mul				Taluka:	Mul			Taluka	: Mul	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fo	e)			2008 (Without I	Fe) Data for 200	9 Not <i>A</i>	Available	Data for 2011 N	ot Available		
Rajoli Tukkum	G/CH-031	153	PW	Rajoli Tukkum	G/CH-031	147	PW	(With Fe)			
2010 (With Fe)											
*Chandapur.	CNOBW016	125	PW	*Pardi kh.	CNOBW027	119	PW	*Borchandali	CNPZ001	108	PW
*Mahadwadi.	CNOBW022	88	GW	*Susi dabgaon	CNOBW030	117	PW	*Chiroli	CNPZ002	71	GW
*Mul.	CNOBW024	118	PW	*Vyahad kh.	CNOBW032	109	PW	*Mul	CNPZ003	112	PW
*Navegaon											
bhujala.	CNOBW026	92	GW	*Wagholi butti	CNOBW033	121	PW	*Navegaon buj	CNPZ004	64	$\mathbf{G}\mathbf{W}$

T	aluka : Nagbhi	d				Taluka : Na	gbhid			Taluka : N	agbhid	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without H	Fe)			2009 (Without I	Fe)		
					Mohadi				Mohadi			
Mohadi Mokasa	G/CH-050	161	PW		Mokasa	G/CH-050	193	PW	Mokasa	G/CH-050	154	PW
Nagbhir	G/CH-002	111	PW		Nagbhir	G/CH-002	127	PW	Nagbhir	G/CH-002	114	PW
2010 (With Fe)	Data for 2011 N	lot Avai	lable (With	Fe	e)							
*Balapur bk.	CNOBW125	52	GW		*Nagbhid.	CNOBW129	107	PW	*Kordha	CNPZ014	65	GW
*Chikalgaon.	CNOBW126	101	PW		*Talodhi.	CNOBW130	115	PW	*Talodhi	CNPZ015	106	PW
*Kirmiti mendha.	CNOBW127	114	PW		*Vaijapur	CNOBW131	189	PW				

Ta	out Fe)					Taluka: Pom	bhurn	a		Taluka: Po	mbhurna	1
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	2007 (Without Fe)					Fe) Data for 20	09 Not	Available	Data for 2010-2	011 Not Availa	ble (With	Fe)
Bhimni	G/CH-032	81	GW	,	Bhimni	G/CH-032	96	GW				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.8(Contd..): Chandrapur District

Talı	ıka : Rajura					Taluka : Ra	ajura			Taluka :	Rajura	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)					2008 (Without F	Te)			2009 (Withou	ıt Fe)		
Mahurli	G/CH-023	107	PW		Mahurli	G/CH-023	110	PW	Mahurli	G/CH-023	87	GW
Rajura	G/CH-019	80	GW		Wirur	G/CH-014	127	PW	Wirur	G/CH-014	111	PW
Sondo	G/CH-018	126	PW									
Wirur	G/CH-014	104	PW									
Rampur	G/CH-028	80	GW									
2010 (With Fe) Data f	or 2010-2011 N	ot Avai	lable (Witl	h F	'e)							
					*Sasti							
*Arvi	CNOBW132	68	GW		(census town)	CNOBW144	133	PW	*Patan	CNPZ016	102	PW
*Chandur(gadchandur).	CNOBW133	93	GW		*Tembhurwahi.	CNOBW146	80	GW	*Dabgaon	CNPZ018	67	GW
*Gadegaon	CNOBW134	125	PW		*Virur Stn.	CNOBW150	126	PW	*Saoli	CNPZ020	124	PW
*Palezari.	CNOBW139	87	GW		*Rajura	CNOBW152	91	GW				

Ta	luka : Sawali					Taluka : S	Sawali			Taluka:	Sawali	
Villages	<u> </u>					Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)	(Without Fe)				2008 (Without	Fe)			2009 (Without	Fe)		
Sawali					Sawali	G/CH-034	124	PW	Sawali	G/CH-034	116	PW
Data for 2010-2011No	t Available (Wi	th Fe)										

Talu	ka : Sindewahi				Taluka : Sin	dewahi		7	Taluka : Sindew	ahi	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			2009 (Without]	Fe)		
Sindewahi	G/CH-006	195	PW	Sindewahi	G/CH-006	223	VPW	Niphandra	G/CH-042	44	EXLT
Niphandra	G/CH-042	44	EXLT	Alesur	G/CH-061	129	PW				
				Niphandra	G/CH-042	48	EXLT				
2010 (With Fe) Data	a for 2011 Not A	vailabl	e (With Fe)								
*Bhanapur	CNOBW103	114	PW	*Nifandra.	CNOBW114	107	PW	*SawargataCh.	CNOBW120	86	GW
*Gadbori	CNOBW105	109	PW	*Palasgaon jat	CNOBW115	71	GW	*Sindewahi.	CNOBW121	148	PW
*Gadmaushi chak	CNOBW106	122	PW	*Purkepar	CNOBW117	105	PW	*Wasera	CNOBW124	76	GW
*Kukadheti	CNOBW109	78	GW	*Ratnapur.	CNOBW118	122	PW	*Wasera	CNPZ013	95	GW
*Meha bk.	CNOBW112	71	GW								

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.8(Contd..): Chandrapur District

T	aluka : Warora				Taluka : W	Varora			Taluka:	Warora	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			2009 (Without	Fe)		
Bhandak	G/CH-015	134	PW	Chargaon	G/CH-016	106	PW	Salori	G/CH-029	78	GW
Chargaon	G/CH-016	107	PW	Salori	G/CH-029	99	GW				
Salori	G/CH-029	97	GW								
2010 (With Fe) Data	for 2011 Not Ava	ailable (With Fe)								
*Bhatala	CNOBW051	100	PW	*Dongargaon	CNOBW161	175	PW	*Shegaon bk	CNPZ008	73	GW
*Chargaon bk.	CNOBW053	158	PW	*Chikni	CNPZ006	162	PW				

Talul	ka : Gondipipri					Taluka: Gor	dipipr	i		Taluka : Go	ndipipri	İ
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe) Data for	or 2007 -2009 N	ot Avai	lable (With	ou	t Fe) and also201	11 Not Availabl	le (Witl	h Fe)				
*Bamhni Chak(katoli)	CNOBW035	92	GW		*Dudharpeth	CNOBW040	94	GW	*Pombhurna.	CNOBW047	94	GW
*Bhangaram talodhi.	CNOBW036	87	GW		*Ganpur	CNOBW041	161	PW	*Wadholi	CNPZ005	101	PW
*Bhimni	CNOBW037	72	GW									

Talı	Taluka : Korapna llages Well No. WQI Cates 10 (With Fe) Data for 2007 -2009 Not Available (Taluka : Ko	rapna			Taluka : F	Korapna	
Villages Well No. WQI Catego					Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe) Data fe	or 2007 -2009 N	ot Avai	lable (Witl	ıou	t Fe) and also 20	11 Not Availab	le (Wi	th Fe)				
*Gadchandur	CNOBW017	62	GW		*Jioti	CNOBW019	92	GW				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

 Table x.9 : Water Quality Index of Groundwater of Dhule District

T	aluka : Dhule				Taluka : I	Dhule			Taluka:	Dhule	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without				2009 (Without	Fe)		
Avdhan	T/DH-009	229	VPW	Avdhan	T/DH-009	191	PW	Avdhan	T/DH-009	199	PW
Burdi Pada	T/DH-025	37	EXLT	Burdi Pada	T/DH-025	41	EXLT	Burdi Pada	T/DH-025	38	EXLT
Dhule	T/DH-030	209	VPW	Dhule	T/DH-030	234	VPW	Dhule	T/DH-030	227	VPW
Hisala	T/DH-011	99	GW	Hisala	T/DH-011	103	PW	Hisala	T/DH-011	79	GW
Laling	T/DH-033	63	GW	Laling	T/DH-033	74	GW	Laling	T/DH-033	79	GW
Mukti	T/DH-013	139	PW	Narwhal	T/DH-022	60	GW	Narwhal	T/DH-022	70	GW
Narwhal	T/DH-022	65	GW	Ner	T/DH-027	135	PW	Deobhane	T/DH-032	113	PW
Ner	T/DH-027	155	PW	Deobhane	T/DH-032	121	PW				
Deobhane	T/DH-032	122	PW								
2010 (With Fe)											
Talwada	DHOBW016	54	GW	Japi	DHWQN3	73	GW	*Khordad	DHWQN4	70	GW
Velahane	DHOBW004	73	GW	Khordad	DHWQN4	40	EXLT	*Mehergaon	DHWQN6	89	GW
Vishwanath	DHOBW015	70	GW	Kusumba	DHWQN5	67	GW	*Nandre	DHOBW072	86	GW
Talwada	DHOBW016	77	GW	Mehergaon	DHWQN6	73	GW	*Dhule	DHWQN2	43	EXLT
Borhivir	DHOBW040	53	GW	Ner	DHWQN7	71	GW	*Dhamanar	DHWQN38	41	EXLT
Ajanale	DHOBW056	89	GW	Nimdale	DHWQN8	79	GW	Purmepada	DHWQN9	55	GW
Nandre	DHOBW072	81	GW	Purmepada	DHWQN9	55	GW	Velahane	DHOBW004	93	GW
Bendrapada	DHWQN1	59	GW	Sarwad	DHWQN11	45	EXLT	Borhivir	DHOBW040	84	GW
Sadgaon	DHWQN10	46	EXLT	Dhamanar	DHWQN38	50	EXLT	Ajanale	DHOBW056	67	GW
Sarwad	DHWQN12	64	GW	*Sadgaon	DHWQN10	51	GW	Bendrapada	DHWQN1	52	GW
Songir	DHWQN13	67	GW	*Sarwad	DHWQN12	98	GW	Khordad	DHWQN4	85	GW
Walwadi	DHWQN14	101	PW	*Japi	DHWQN3	68	GW	Purmepada	DHWQN9	46	EXLT
Dhule	DHWQN2	45	EXLT								
2011 (With Fe)											
Vishwanath	DHOBW015	54	GW	Songir	DHWQN13	55	GW	Mehergaon	DHWQN6	94	GW
Nandre	DHOBW072	47	EXLT	Walwadi	DHWQN14	50	GW	Ner	DHWQN7	64	GW
Sadgaon	DHWQN10	75	GW	Dhule	DHWQN2	60	GW	Nimdale	DHWQN8	49	EXLT
Sarwad	DHWQN11	81	GW	Japi	DHWQN3	51	GW	Dhamanar	DHWQN38	42	EXLT
Sarwad	DHWQN12	83	GW	Kusumba	DHWQN5	71	GW		·		

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.9 (Contd..)Dhule District

	Гaluka : Sakri				Taluka : S	Sakri			Taluka:	Sakri	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			2009 (Withou	t Fe)		
Dahival	T/DH-024	78	GW	Dahival	T/DH-024	69	GW	Pimpalner	T/DH-006	67	GW
Pimpalner	T/DH-006	66	GW	Pimpalner	T/DH-006	58	GW				
Sakri	T/DH-035	161	PW	Sakri	T/DH-035	198	PW				
2010 (With Fe)											
Akkalpada	DHOBW071	41	EXLT	Bhamer	DHOBW069	50	GW	Lonkhede	DHWQN45	47	EXLT
Chinchkheda	DHOBW095	64	GW	Rojegaon	DHOBW084	65	GW	Sakri	DHWQN46	32	EXLT
Umarpata	DHOBW116	28	EXLT	Lonkhede	DHOBW086	48	EXLT	*Rojegaon	DHOBW084	64	GW
Dahival	DHWQN37	49	EXLT	Aichale	DHWQN35	46	EXLT	*Dahival	DHWQN37	66	GW
Gondas	DHWQN39	47	EXLT	Bramnhavel	DHWQN36	43	EXLT	*Isarde	DHWQN41	76	GW
Jebapur	DHWQN43	35	EXLT	Mahir	DHWQN40	34	EXLT	*Gondas	DHWQN39	43	EXLT
Khampada	DHWQN44	45	EXLT	Isarde	DHWQN41	51	GW	Sakri	DHWQN46	48	EXLT
Shelbari	DHWQN47	52	GW	Jaithane	DHWQN42	45	EXLT				
2011 (With Fe)											
Akkalpada	DHOBW071	53	GW	Rojegaon	DHOBW084	57	GW	Dahival	DHWQN37	66	GW
Chinchkheda	DHOBW095	97	GW	Lonkhede	DHOBW086	92	GW	Mahir	DHWQN40	67	GW
Gondas	DHWQN39	45	EXLT	Lonkhede	DHOBW086	71	GW	Isarde	DHWQN41	54	GW
Khampada	DHWQN44	56	GW	Umarpata	DHOBW116	55	GW	Jaithane	DHWQN42	55	GW
Shelbari	DHWQN47	56	GW	Aichale	DHWQN35	55	GW	Jebapur	DHWQN43	74	GW
Bhamer	DHOBW069	57	GW	Bramnhavel	DHWQN36	68	GW	Sakri	DHWQN46	62	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.9 (Contd..) Dhule District

	Taluka : Shirpur				Taluka : Sł	nirpur			Taluka : S	hirpur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (With Fe)				2008 (With Fe)	Data for 2009	Not Av	vailable (Wi	htout Fe)			
Sangivi	T/DH-012	62	GW	Kherde	T/DH-015	122	PW	Sangivi	T/DH-012	61	GW
				Palasner	T/DH-023	170	PW	Songir	T/DH-007	58	GW
2010 (With Fe)											
Ambe	DHOBW008	84	GW	Khambale	DHWQN54	79	GW	Dahivad	DHWQN51	53	GW
Savangi	DHOBW021	87	GW	Khmkheda	DHWQN55	100	GW	Nimzari	DHWQN58	81	GW
Umarde	DHOBW022	95	GW	Khmkheda	DHWQN55	106	PW	Shirpur	DHWQN60	73	GW
Gadhadeo	DHOBW043	59	GW	Kolid	DHWQN56	49	EXLT	Sule	DHWQN61	55	GW
Fattepur	DHOBW044	61	GW	Mohide	DHWQN57	56	GW	Wagjadi	DHWQN65	48	EXLT
Ajanad	DHWQN48	62	GW	Palasner	DHWQN59	101	PW	*Thalner	DHWQN64	46	EXLT
Bhatane	DHWQN49	62	GW	Tardi	DHWQN62	62	GW	Dahivad	DHWQN51	48	EXLT
Boradi	DHWQN50	60	GW	Tembhe Bk.	DHWQN63	54	GW	Mohide	DHWQN57	89	GW
Ghosdogaon	DHWQN52	59	GW	Thalner	DHWQN64	59	GW	Shirpur	DHWQN60	52	GW
Higaon	DHWQN53	69	GW	Hadakhed	DHOBW025	75	GW				
2011 (With Fe)											
Ambe	DHOBW008	53	GW	Palasner	DHWQN59	89	GW	Boradi	DHWQN50	49	EXLT
Savangi	DHOBW021	62	GW	Sule	DHWQN61	82	GW	Khmkheda	DHWQN55	71	GW
Hadakhed	DHOBW025	71	GW	Tardi	DHWQN62	62	GW	Kolid	DHWQN56	53	GW
Ajanad	DHWQN48	53	GW	Thalner	DHWQN64	50	GW	Mohide	DHWQN57	81	GW
Dahivad	DHWQN51	54	GW	Umarde	DHOBW022	56	GW	Nimzari	DHWQN58	48	EXLT
Ghosdogaon	DHWQN52	81	GW	Gadhadeo	DHOBW043	61	GW	Shirpur	DHWQN60	49	EXLT
Higaon	DHWQN53	54	GW	Fattepur	DHOBW044	78	GW	Tembhe Bk.	DHWQN63	75	GW
Khambale	DHWQN54	64	GW	Bhatane	DHWQN49	84	GW	Wagjadi	DHWQN65	69	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.9 (Contd..) Dhule District

Ta	luka : Sindkhed	a			Taluka : Sino	dkheda	1		Taluka : Sin	dkheda	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			Data for 2009	Not Available (V	Vithout	Fe)
Nardana	T/DH-010	273	VPW	Chimthane	T/DH-014	195	PW				
Chimthane	T/DH-014	169	PW	Methi	T/DH-019	170	PW				
Methi	T/DH-019	122	PW	Ichhapur	T/DH-017	79	GW				
2010 (With Fe)											
Varud	DHOBW051	62	GW	Vaghadi	DHWQN33	72	GW	Malpur	DHWQN22	58	GW
Varshi	DHOBW065	59	GW	Varpada	DHWQN34	181	PW	Methi	DHWQN23	67	GW
Dabhashi	DHOBW080	83	GW	Chimthane	DHOBW052	74	GW	Methi	DHWQN24	72	GW
Betavad	DHWQN15	70	GW	Sandle	DHOBW063	66	GW	Salve	DHWQN27	66	GW
Dalwade	DHWQN16	106	PW	Varzadi	DHOBW075	73	GW	*Mahalsar	DHWQN25	134	PW
Mahalsar	DHWQN25	69	GW	Karle	DHOBW096	59	GW	*Nardana	DHWQN26	144	PW
Nardana	DHWQN26	71	GW	Satare	DHOBW099	66	GW	*Dalwade	DHWQN16	126	PW
Shinkheda	DHWQN28	61	GW	Shevade	DHOBW101	56	GW	*Dondaicha	DHWQN19	87	GW
Sindkheda	DHWQN29	57	GW	Dangurne	DHWQN17	73	GW	*Sindkheda	DHWQN29	111	PW
Sukvad	DHWQN30	85	GW	Dhavde	DHWQN18	98	GW	*Varpada	DHWQN34	103	PW
Takarkhede	DHWQN31	179	PW	Dondaicha	DHWQN19	78	GW	Kalmadi	DHOBW050	82	GW
Virdel	DHWQN32	108	PW	Khalane	DHWQN21	57	GW	Degaon	DHOBW100	51	GW
2011 (With Fe)											
Varud	DHOBW051	56	GW	Varzadi	DHOBW075	116	PW	Methi	DHWQN24	73	GW
Varshi	DHOBW065	84	GW	Karle	DHOBW096	52	GW	Salve	DHWQN27	131	PW
Dabhashi	DHOBW080	86	GW	Satare	DHOBW099	74	GW	Shinkheda	DHWQN28	98	GW
Betavad	DHWQN15	45	EXLT	Shevade	DHOBW101	48	EXLT	Sindkheda	DHWQN29	100	GW
Dondaicha	DHWQN19	98	GW	Dalwade	DHWQN16	51	GW	Sukvad	DHWQN30	85	GW
Mahalsar	DHWQN25	51	GW	Dalwade	DHWQN16	127	PW	Takarkhede	DHWQN31	102	PW
Nardana	DHWQN26	79	GW	Dangurne	DHWQN17	81	GW	Virdel	DHWQN32	114	PW
Vaghadi	DHWQN33	61	GW	Khalane	DHWQN21	77	GW	Varpada	DHWQN34	101	PW
Chimthane	DHOBW052	81	GW	Malpur	DHWQN22	67	GW	Kalmadi	DHOBW050	62	GW
Sandle	DHOBW063	83	GW	Methi	DHWQN23	75	GW	Degaon	DHOBW100	44	EXLT

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.10: Water Quality Index of Groundwater of Gadchiroli District

	Taluka : Aheri				Taluka : A	heri			Taluka:	Aheri	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			2009 (Withou	ıt Fe)		
Govindpur	G/GD-036	136	PW	Govindgaon	G/GD-047	191	PW	Allapalli	G/GD-002	109	PW
Medpalli	G/GD-055	100	PW	Govindpur	G/GD-036	167	PW	Govindpur	G/GD-036	129	PW
Talodhi Rampur	G/GD-018	46	EXLT	Medpalli	G/GD-055	112	PW	Medpalli	G/GD-055	86	GW
Timiram	G/GD-025	71	GW	Talodhi	G/GD-018	51	GW	Talodhi	G/GD-018	44	EXLT
				Rampur				Rampur			
Repanpalli	G/GD-004	96	GW	Pirimili	G/GD-024	113	PW	Pirimili	G/GD-024	88	GW
Umanur	G/GD-015	100	PW	Timiram	G/GD-025	113	PW	Timiram	G/GD-025	141	PW
				Repanpalli	G/GD-004	106	PW	Repanpalli	G/GD-004	89	GW
				Umanur	G/GD-015	130	PW				
2010 (With Fe)Data	for 20011 Not A	Available	(With Fe)								
				*Permili							
*Govindgaon	GDOBW089	96	GW	surveyed	GDOBW094	77	GW	*Umanoor	GDPZ009	92	GW
*Mirkal masahat	GDOBW091	72	GW	*Repanpalli.	GDOBW095	71	GW	*Kottur	GDWQN003	94	GW
*Modumadgu	GDOBW092	128	PW	*Khamancheru	GDPZ007	87	GW	*Rajeram	GDWQN004	148	PW
*Nandigaon masah.	GDOBW093	76	GW	*Mosam	GDPZ008	108	PW				

Tal	luka : Armori				Taluka : A	rmori			Taluka : A	rmori	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	t Fe)			2009 (Withou	t Fe)		
Delanwadi	G/GD-060	65	GW	Armori	G/GD-010	148	PW	Delanwadi	G/GD-060	47	EXLT
Wairagarh	G/GD-027	66	GW	Delanwadi	G/GD-060	75	GW	Wairagarh	G/GD-027	45	EXLT
				Wairagarh	G/GD-027	75	GW				
2010 (With Fe) Data fo	r 20011 Not Ava	ailable (V	With Fe)								
*Armori	GDOBW011	61	GW	*Jambhali	GDOBW017	76	GW	*Shankarnaga	r GDOBW116	53	GW
*Delanwadi	GDOBW014	60	GW	*Waddha	GDOBW023	72	GW	*Bolddhachak	GDPZ001	82	GW
*Dongargaon(bhusari).	GDOBW015	66	GW								

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.10(Contd..) Gadchiroli District

Tal	uka : Bhamraga	ırh				Taluka : Bhar	nragar	h		Taluka : Bha	mragarl	h
Villages	Well No.	WQI	Category	Vill	llages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)						Data for 2011	Not Av	ailable (With	Fe)			
Bhamragarh	G/GD-012	59	GW	*Ki	iyar	GDOBW109	58	GW	*Dodepalli	GDPZ013	86	GW
	Mamagan Grob 012 57 GW					GDOBW111	78	GW	*Bhamragad	GDWQN012	61	GW
Data for 2008 &	Data for 2008 & 2009 Not Available (Without Fe)				adgaon	GDOBW114	80	GW	*Dodepalli	GDWQN013	83	GW
	·					GDPZ012	62	GW				

Ta	luka : Chamorsl	hi			Taluka : Cha	amorsh	i		Taluka : Ch	amorshi	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			2009 (Without	(Fe)		
Chamorshi	G/GD-007	70	GW	Chamorshi	G/GD-007	76	GW	Chamorshi	G/GD-007	63	GW
Konsari	G/GD-064	151	PW	Ashti	G/GD-028	148	PW	Konsari	G/GD-064	143	PW
2010 (With Fe) Data	a for 2011 Not A	(With Fe)									
				*Talodhi							
*Bhendala	GDOBW027	64	GW	mokasa	GDOBW040	78	GW	*Ghot	GDPZ014	61	GW
								*Shankarpur			
*Kurud	GDOBW036	101	PW	*Wagholi	GDOBW041	66	GW	Heti	GDWQN009	127	PW
*Regadi	GDOBW039	78	GW	*Nawargaon	GDPZ002	68	GW			•	

Taluka	: Desaiganj (W	adsa)		7	Гаluka : Desaiga	nj (Wa	dsa)		Taluka : Desaig	anj (Wa	dsa)
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			2009 (Withou	t Fe)		
Shankarpur	G/GD-052	121	PW	Shankarpur	G/GD-052	139	PW	Shankarpur	G/GD-052	94	GW
Wadsa	G/GD-016	55	GW	Wadsa	G/GD-016	76	GW	Wadsa	G/GD-016	52	GW
2010 (With Fe) Data	a for 2011 Not A	vailable	(With Fe)								
*Boddha-gaoganna	GDOBW013	62	GW	*Shankarpur	GDOBW021	77	GW	*Wadsa.	GDOBW024	70	GW
*Kasari t.k.	GDOBW018	68	GW	*Vihirgaon	GDOBW022	42	EXLT				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.10(Contd..) Gadchiroli District

1	aluka : Dhanora	ì			Taluka : Dh	anora			Taluka : D	hanora	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			2009 (Without	t Fe)		
Chatgaon	G/GD-008	121	PW	Chatgaon	G/GD-008	44	EXLT	Chatgaon	G/GD-008	50	EXLT
Dhanora	G/GD-030	49	EXLT	Rangi	G/GD-037	73	GW	Rangi	G/GD-037	55	GW
Murumgaon	G/GD-026	73	GW								
Rangi	G/GD-037	67	GW								
2010 (With Fe) Da	ta for 2011 Not A	vailable	(With Fe)								
*Chavela	GDOBW042	53	GW	*Salebhatti	GDOBW052	79	GW	*Pendhri	GDPZ004	68	GW
*Murumgaon	GDOBW049	50	EXLT	*Yerkadmowad	. GDOBW054	54	GW	*Sawargaon	GDPZ005	42	EXLT
*Sakhera	GDOBW051	86	GW	*Murmadi	GDPZ003	63	GW	*Kosami	GDWQN010	46	EXLT

Т	Taluka : Etapalli				Taluka : Et	apalli			Taluka : E	tapalli	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			2009 (Without	Fe)		
Halewara	G/GD-044	52	GW	Etapalli	G/GD-013	100	GW	Etapalli	G/GD-013	75	GW
Etapalli	G/GD-013	91	GW	Elchil	G/GD-048	96	GW	Elchil	G/GD-048	80	GW
Tadgaon	G/GD-031	75	GW								
Todsa Tola	G/GD-023	57	GW								
Elchil	G/GD-048	104	PW								
2010 (With Fe) Data	a for 2011 Not A	vailable	(With Fe)								
				*Kandoli							
*Aldandi	GDOBW097	108	PW	surveyed.	GDOBW107	70	GW	*Yetapalli	GDOBW115	55	GW
				*Parsalgondi							
*Alenga(tola)	GDOBW098	61	GW	masahat	GDOBW112	69	GW	*Nender	GDOBW118	76	GW
*Dindwi	GDOBW101	96	GW								

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.10(Contd..) Gadchiroli District

T	aluka : Gadchiro	oli			Taluka : Gad	lchiroli			Taluka : Ga	dchiroli	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			2009 (Withou	t Fe)		
Bamni	G/GD-003	68	GW	Bamni	G/GD-003	83	GW	Mulchera	G/GD-063	53	GW
Gadchiroli	G/GD-009	85	GW	Gadchiroli	G/GD-009	93	GW	Porla	G/GD-017	33	EXLT
Mulchera	G/GD-063	62	GW	Mulchera	G/GD-063	81	GW	Gowardha	G/GD-053	24	EXLT
Porla	G/GD-017	49	EXLT	Porla	G/GD-017	48	EXLT	Yelgur Tola	G/GD-019	70	GW
Potegaon	G/GD-035	121	PW	Gowardha	G/GD-053	34	EXLT	Data for 2011 Not Available (With Fe)			
Chandona Tola	G/GD-020	74	GW	Khondala	G/GD-042	45	EXLT				
Erkar	G/GD-021	47	EXLT	Yelgur Tola	G/GD-019	92	GW				
Fulbori	G/GD-062	191	PW	2010 (With Fe)							
Gowardha	G/GD-053	27	EXLT	*Bamni	GDOBW002	68	GW	*Potegaon	GDOBW008	83	GW
Jarawadi	G/GD-059	57	GW	*Govindpur							
(Indiranagar				alias pipalkhut	GDOBW005	117	PW	*Sakhara	GDOBW009	73	GW
Khondala	G/GD-042	36	EXLT	*Porla	GDOBW007	50	EXLT			•	·
Yelgur Tola	G/GD-019	68	GW								

	Taluka : Korchi				Taluka : K	orchi			Taluka : I	Korchi		
Villages	Well No.	WQI	Category	y Villages Well No. WQI Category Villages Well No. WQI Cate							Category	
2007 (Without Fe))			2008 (Withou	ut Fe)			Data for 2009	Not Available (V	Without	Fe)	
Bori	G/GD-006	226	VPW	Malewara	G/GD-034	29	EXLT					
				Kurkhera	G/GD-011	92	GW					
2010 (With Fe) Da	ata for 2011 Not A	vailable	(With Fe)									
*Kotgul	GDOBW046	54	GW	*Korchi	GDOBW064	35	EXLT	*Zankargondi	GDOBW075	36	EXLT	
*Betkathi	GDOBW055	52	GW	*Maseli	GDOBW068	57	GW	*Bedgaon	GDPZ010	45	EXLT	
*Bodaldand	GDOBW057	66	GW									

	Taluka : Mul	chera			Taluka : Mu	ılchera			Taluka : M	Iulchera	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without	Fe)			2009 (Without	Fe)		
Chaudampalli	G/GD-001	236	VPW	Chaudampalli	G/GD-001	212	VPW	Chaudampalli	G/GD-001	246	VPW
Ghot	G/GD-029	162	PW	Ghot	G/GD-029	150	PW	Ghot	G/GD-029	148	PW
Lagam	G/GD-057	62	GW								
2010 (With Fe) Dat	a for 2011 Not A	vailable	(With Fe)								
*Koparalli	GDOBW035	97	GW	*Mulchera	GDOBW038	77	GW	*Gomni	GDPZ011	44	EXLT

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.10(Contd..) Gadchiroli District

7	Taluka : Sironcha	ì			Taluka : Sir	oncha			Taluka : S	ironcha	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without)	Fe)			2009 (Withou	ıt Fe)		
Nandigaon	G/GD-032	157	PW	Nandigaon	G/GD-032	140	PW	Nandigaon	G/GD-032	117	PW
Sironcha	G/GD-005	52	GW	Sironcha	G/GD-005	57	GW				
2010 (With Fe) Da	ta for 2011 Not A	vailable	(With Fe)								
*Rangayyapalli	GDOBW081	88	GW	*Sirkonda mal	GDOBW083	62	GW				

T	aluka : Kurkhed	a				Taluka : Ku	rkheda			Taluka : Kı	ırkheda	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe) Da	ta for 2007 -2009	(Withou	t Fe) and 2	011	(With Fe) Not A	Available						
*Bijarpurtola	GDOBW056	41	EXLT		*Kasari	GDOBW062	47	EXLT	*Shivani	GDOBW071	53	GW
*Gargada	GDOBW058	42	EXLT		*Khedegaon	GDOBW063	53	GW	*Talegaon	GDOBW072	73	GW
*Gewardha	GDOBW059	68	GW		*Kurkheda	GDOBW066	56	GW	*Wadhona	GDOBW073	41	EXLT
*Gothangaon	GDOBW060	43	EXLT		*Malewada	GDOBW067	58	GW	*Yengelkheda	GDOBW074	47	EXLT
*Jambhulkheda	GDOBW061	84	GW		*Mendha	GDOBW069	42	EXLT	*Ghati	GDPZ006	52	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.11: Water Quality Index of Groundwater of Gondia District

	Taluka : Amgao	on				Taluka : A	mgaon			Taluka : A	mgaon	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without 1	Fe)				2008 (Withou	ıt Fe)			2009 (Without	t Fe)		
Amgaon	G/GN-002	67	GW		Amgaon	G/GN-002	68	GW	Amgaon	G/GN-002	75	GW
Dongargaon	G/GN-014	27	EXLT		Dongargaon	G/GN-007	51	GW	Dongargaon	G/GN-007	56	GW
Kalimati	G/GN-032	50	EXLT		Dongargaon	G/GN-014	31	EXLT	Dongargaon	G/GN-014	32	EXLT
					Kalimati	G/GN-032	56	GW	Kalimati	G/GN-032	61	GW
2010 (With Fe)	Data for 2011 N	ot Availa	able (With I	(e)								
*Amgaon	BHOBW151	135	PW		*Malhi	BHOBW155	57	GW	*Waghdongri	BHOBW158	99	GW
*Dahegaon	BHOBW153	98	GW		*Thana	BHOBW157	111	PW	*Padmapur	BHPZ021	105	PW

Tal	uka : Arjuni Mo	regaon				Taluka : Arjui	ni More	gaon		Taluka : Arjur	ni More	gaon
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)				2008 (Withou	ıt Fe)			2009 (Withou	t Fe)		
Bondgaon	G/GN-030	40	EXLT		Bondgaon	G/GN-030	38	EXLT	Bondgaon	G/GN-030	49	EXLT
									Navegaon			
Navegaon	G/GN-011	52	GW		Navegaon	G/GN-011	44	EXLT	Kh.	G/GN-025	122	\mathbf{PW}
					Navegaon							
Navegaon Kh.	G/GN-025	91	GW		Kh.	G/GN-025	115	PW	Karandli	G/GN-013	105	PW
Karandli	G/GN-013	39	EXLT		Karandli	G/GN-013	37	EXLT				
2010 (With Fe)	Data for 2011 N	ot Availa	able (With I	Fe)								
*Arjuni									*Tukum			
Morgaon	BHOBW120	44	EXLT		*Tadgaon	BHOBW127	162	PW	Narayan	BHPZ015	60	GW
*Pandharwani	BHOBW123	71	GW		*Umarpayali	BHOBW129	64	GW	*Zanshinagar	BHPZ016	126	PW
					*Bondgaon							
*Salai Bk	BHOBW125	132	PW		Devi	BHPZ014	80	GW	*Gothangaon	BHOBW116	53	GW

^{*} Post-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.11(Contd..) Gondia District

	Taluka : Deor	i				Taluka :	Deori			Taluka :	Deori	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Withou	ut Fe)			2009 (Withou	ıt Fe)		
Chichgarh	G/GN-029	37	EXLT		Chichgarh	G/GN-029	35	EXLT	Murdoli	G/GN-005	76	GW
Deori	G/GN-004	68	GW		Deori	G/GN-004	73	GW				
Murdoli	G/GN-005	73	GW		Murdoli	G/GN-005	69	GW				
2010 (With Fe)	Data for 2011 N	lot Availa	able (With F	re)								
									*Palandur			
*Ambhora	BHOBW078	36	EXLT		*Deori	BHOBW084	92	GW	(zamindari]	BHOBW122	63	GW
*Bonde	BHOBW079	73	GW		*Kadikasa	BHOBW088	51	GW	*Hardoli	BHOBW171	54	GW
									*Borgaon			
*Chichgad	BHOBW082	52	GW		*Mhaisuli	BHOBW093	64	GW	Bazar	BHPZ013	47	EXLT

	Taluka : Gondi	a				Taluka : (Gondia	ı			Taluka :	Gondia	
Villages	Well No.	WQI	Category		Villages	Well No.	WQ	Į (Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Without	Fe)				2009 (Withou	ıt Fe)		
Asoli	G/GN-018	23	EXLT		Asoli	G/GN-018	3	1	EXLT	Bonde	G/GN-021	43	EXLT
Bonde	G/GN-021	43	EXLT		Bonde	G/GN-021	4	1	EXLT	Datora	G/GN-027	129	PW
Rajegaon	G/GN-015	57	GW		Rajegaon	G/GN-015	7	1	GW	Rajegaon	G/GN-015	73	GW
Sangadi	G/GN-022	46	EXLT		Arjuni	G/GN-024	5:	5	GW	Arjuni	G/GN-024	69	GW
Ghonari	G/GN-001	33	EXLT		Sangadi	G/GN-022	4:	5	EXLT	Sangadi	G/GN-022	47	EXLT
Sindbiri	G/GN-012	26	EXLT		Ghonari	G/GN-001	3:	5	EXLT	Sindbiri	G/GN-012	30	EXLT
Sondad	G/GN-023	57	GW		Sindbiri	G/GN-012	3	0	EXLT	Sondad	G/GN-023	59	GW
					Sondad	G/GN-023	4	8	EXLT				
2010 (With Fe)	Data for 2011 N	ot Avail	able (With	Fe))								
*Ghattemni	BHOBW132	69	GW		*Ekodi	BHPZ017	62	2	GW	*Rajegaon	BHPZ019	71	GW
*Katangi Bk	BHOBW135	82	GW		*Pandharabodi	BHPZ018	12'	7	PW	*Navegaon	GNWQN002	81	GW
*Rajegaon	BHOBW138	132	PW				•						

	Taluka : Gorega	on				Taluka : G	oregaon			Taluka : (Goregaor	ì
Villages Well No. WQI Category					Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)		2008 (Without	t Fe)			2009 (Withou	ıt Fe)				
Goregaon	G/GN-008	73	GW		Goregaon	G/GN-008	60	GW	Goregaon	G/GN-008	57	GW
Data for 2010	and 2011 Not Ava	ilable (W	/ith Fe)									

^{*} Post-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.11(Contd..) Gondia District

7	Гaluka : Sadal Ar	juni				Taluka : Sad	lal Arju	ni		Taluka : Sa	ıdal Arju	ıni
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)				2008 (Withou	ıt Fe)			2009 (Withou	ıt Fe)		
Kohemara	G/GN-009	58	GW		Kohemara	G/GN-009	52	GW	Kohemara	G/GN-009	52	GW
2010 (With Fe)	Data for 2011 N	ot Availa	able (With I	re)								
*Malijunga	BHOBW092	82	GW		*Saundad	BHOBW099	55	GW	*Khodshioni	BHPZ006	81	GW
*Mhaswani	BHOBW094	52	GW		*Sawangi	BHOBW100	66	GW			•	

	Taluka : Tiroda	a				Taluka:	Tiroda			Taluka:	Tiroda	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)				2008 (Without	Fe)			2009 (Withou	ut Fe)		
Sarra	G/GN-016	75	GW		Sarra	G/GN-016	60	GW	Sarra	G/GN-016	72	GW
Sejgaon	G/GN-020	63	GW		Sejgaon	G/GN-020	57	GW	Sejgaon	G/GN-020	70	GW
Tiroda	G/GN-010	111	PW		Tiroda	G/GN-010	91	GW	Salebardi	G/GN-006	125	PW
Salebardi	G/GN-006	111	PW		Salebardi	G/GN-006	112	PW				
2010 (With Fe)	Data for 2011 N	ot Availa	able (With]	Fe)								
*Chorkhamara	BHOBW143	113	PW		*Kawalewada	BHOBW146	142	PW	*Tiroda	BHOBW149	79	GW
*Ghogra	BHOBW144	75	GW		*Lonhara	BHOBW147	64	GW	*Vihirgaon	BHOBW150	65	GW
*Kachewani	BHOBW145	89	GW		*Rustampur	BHOBW148	192	PW	*Boda	GNWQN001	259	VPW

Taluka: Salekas	sa				Taluka : S	alekasa				Taluka : S	Salekasa	
Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
e)				2008 (Withou	ıt Fe)				Data for 2009	(Without Fe)	Not Ava	ilable
G/GN-031	41	EXLT		Salekasa	G/GN-031	37	EXLT					
Data for 2011 N	ot Availa	able (With F	'e)									
BHOBW077	57	GW		*Latori	BHOBW174	43	EXLT		*Tirkhedi	BHOBW177	133	PW
BHOBW173	75	GW		*Salekasa	BHOBW176	69	GW		*Kahali	BHPZ023	54	GW
	Well No. e) G/GN-031 Data for 2011 N BHOBW077	e) G/GN-031 41 Data for 2011 Not Availa BHOBW077 57	Well No. WQI Category e) Category G/GN-031 41 EXLT Data for 2011 Not Available (With FBHOBW077 57 GW	Well No. WQI Category e) Category G/GN-031 41 EXLT Data for 2011 Not Available (With Fe) BHOBW077 57 GW	Well No. WQI Category Villages e) 2008 (Without Salekasa) G/GN-031 41 EXLT Salekasa Data for 2011 Not Available (With Fe) *Latori BHOBW077 57 GW *Latori	Well No. WQI Category Villages Well No. e) 2008 (Without Fe) Salekasa G/GN-031 Data for 2011 Not Available (With Fe) Salekasa G/GN-031 BHOBW077 57 GW *Latori BHOBW174	Well No. WQI Category Villages Well No. WQI e) 2008 (Without Fe) G/GN-031 41 EXLT Salekasa G/GN-031 37 Data for 2011 Not Available (With Fe) BHOBW077 57 GW *Latori BHOBW174 43	Well No. WQI Category Villages Well No. WQI Category e) 2008 (Without Fe) 2008 (Without Fe) G/GN-031 41 EXLT Data for 2011 Not Available (With Fe) Salekasa G/GN-031 37 EXLT BHOBW077 57 GW *Latori BHOBW174 43 EXLT	Well No. WQI Category Villages Well No. WQI Category e) 2008 (Without Fe) Salekasa G/GN-031 37 EXLT Data for 2011 Not Available (With Fe) BHOBW077 57 GW *Latori BHOBW174 43 EXLT	Well No. WQI Category Category Villages Well No. WQI Category Category Villages E) 2008 (Without Fe) Salekasa G/GN-031 37 EXLT Data for 2009 Data for 2011 Not Available (With Fe) *Latori BHOBW174 43 EXLT *Tirkhedi	Well No. WQI Category Villages Well No. WQI Category Villages Well No. Data for 2009 (Without Fe) Data for 2009 (Without Fe) Data for 2009 (Without Fe) Data for 2011 Not Available (With Fe) Salekasa G/GN-031 37 EXLT EXLT *Tirkhedi BHOBW177	Well No. WQI Category Category Villages Well No. WQI Category Category Villages Well No. WQI Category Category Villages Well No. WQI 2008 (Without Fe) Salekasa G/GN-031 37 EXLT Data for 2009 (Without Fe) Not Available (With Fe) BHOBW077 57 GW *Latori BHOBW174 43 EXLT *Tirkhedi BHOBW177 133

^{*} Post-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.12: Water Quality Index of Groundwater of Hingoli District

	Taluka : Aundh	ıa			Taluka : A	undha			Taluka : A	undha	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Fe)			2008 (Without I	Fe)			Data for 2009 No	t Available (V	Without	Fe)
Aundha (Nag)	G/HN-025	66	GW	Aunda	G/HN-025	69	GW				
2010 (With Fe)								2011 (With Fe)			
Ajalsoda	HIPZ005	109	PW	Shiradshahapur	HIPZ003	83	GW	*Undegaon	HIPZ008	92	GW
Shiradshahapur	HIPZ003	105	PW	Undegaon	HIPZ008	59	GW	*Ajalsoda	HIPZ005	81	GW
Undegaon	HIPZ008	94	GW					*Shiradshahapur	HIPZ003	100	PW

	Taluka : Basmatn	agar			Taluka: Bas	matnag	ar		Taluka: Bas	smatnag	gar
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Withou	ıt Fe)			2011 (With F	e)		
Aral	G/HN-006	114	PW	Babulgaon	G/HN-010	60	GW	Adgaon - I	HIOBW033	81	GW
Babulgaon	G/HN-010	64	GW	Data for 2009	9 Not Available (Withou	ıt Fe)	Hingoli	HIOBW038	92	GW
Basmath	G/HN-005	51	GW					Basmath	HIOBW020	72	GW
Hatta	G/HN-015	75	GW					Lon Bk	HIOBW023	108	PW
2010 (With Fe)								*Pardi Kh.	HIOBW056	57	GW
Basmath	HIOBW020	56	GW	Adgaon - I	HIOBW033	68	GW	*Basmath	HIPZ002	78	GW
Hingoli	HIOBW038	74	GW	Lon Bk	HIOBW023	75	GW	*Sawangi bk	HIOBW015	55	GW
Telgaon	HIPZ001	47	EXLT	Telgaon	HIPZ001	71	GW	*Telgaon	HIPZ001	70	GW

	Taluka : Kalmn	uri			Taluka : K	almnur	i			Taluka : K	Kalmnur	i
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2010 (With Fe)				Data for 2007	7 to 2009 Not Av	ailable	(Without Fe	(:)				
Tuppa	HIOBW047	99	GW	2011 (With F	(e)							
Bibgavhan	HIOBW044	74	GW	Bibgavhan	HIOBW044	61	GW		*Dongarkada	HIPZ006	71	GW
Tuppa	HIOBW047	108	PW	*Bolda	HIPZ009	88	GW		*Redgaon	HIOBW025	79	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.12(Contd..) Hingoli District

	Taluka : Hingo	li			Taluka : 1	Hingoli			Taluka : I	Hingoli	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without)	Fe)			2008 (Withou	ıt Fe)			2009 (Without	Fe)		
				Alegaon							
Alegaon (Old)	G/HN-023	152	PW	(Old)	G/HN-023	153	PW	Alegaon (Old)	G/HN-023	139	PW
Churawa	G/HN-024	81	GW								
2010 (With Fe)											
Brahmapur	HIWQN003	62	GW	Brahmapur	HIWQN003	70	GW	Karanjala	HIOBW009	116	PW
Narsinamdeo	HIPZ004	38	EXLT	Hingoli	HIWQN004	55	GW	Limbala	HIWQN001	65	GW
Basamba[HIWQN002	74	GW								
2011 (With Fe)											
Brahmapur	HIWQN003	60	GW	*Basamba	HIWQN002	87	GW	*Karanjala	HIOBW009	73	GW
Chincholi	HIOBW039			*Hingoli	HIWQN004			*Brahmapur	HIWQN003		
Rumna		71	GW			54	GW			93	GW
Narsinamdeo	HIPZ004	117	PW	*Brahmapur	HIWQN003	119	PW	*Narsinamdeo	HIPZ004	90	GW
Basamba	HIWQN002	74	GW	*Limbala	HIWQN001	83	GW				
Narsinamdeo	HIPZ004	89	GW	*Chincholi	HIOBW039	77	GW				

	Taluka : Sengao	on			Taluka : S	engaon				Taluka : S	Sengaon	
Villages	Well No.	WQI	Category	Villages Well No. WQI Category					Villages	Well No.	WQI	Category
2007 (Without I	Fe) Data 09 (With	out Fe)	Not Avail	2008 (Withou	ıt Fe)				2011 (With F	e)		
Kanhergaon	G/HN-007	55	GW	Kanhergaon	G/HN-007	61	GW		*Sakhara	HIOBW007	73	GW
2010 (With Fe)												
Khadki	HIOBW002	54	GW	Sakhara	HIOBW007	58	GW		Sakhara	HIOBW007	51	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

 Table x.13: Water Quality Index of Groundwater of Jalgaon District

	Taluka : Amaln	er			Taluka : Ar	nalner			Taluka : Aı	nalner	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without)	Fe)			2008 (Without	Fe)			2009 (Without I	Fe)		
Sadavan Bk.	T/JG-052	449	UNSUT	Sadavan Bk.	T/JG-052	726	UNSUT	Sadavan Bk.	T/JG-052	615	UNSUT
2010 (With Fe)				2011 (With Fe)							
Bodwad	JGWQN002	152	PW	Savkheda	JGOWB118	103	PW	Lone	JGPZ014	250	VPW
				Pimpri. p.							
Dhar	JGOWB145	101	PW	jalod.	JGOWB122	51	GW	Lon Bk.	JGPZ045	67	GW
Lon Bk.	JGPZ045	62	GW	Mehergaon	JGOWB128	162	PW	Amalner	JGWQN021	101	PW
				Dhar	JGOWB145	94	GW	Mudi pr. dangr	JGOWB160	82	GW
				Mudi pr.				*Mundane. Pr.			
				dangr	JGOWB160	120	PW	Amalner.	JGOWB131	69	GW

	Гаluka : Bhadga	on			Taluka: Bha	adgaon			Taluka : Bh	adgaon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	re)			2008 (Without I	Fe)			2011 (With Fe)			
Bhadgaon	T/JG-016	72	GW	Bhadgaon	T/JG-016	74	GW	Nimbhore	JGOWB103	84	GW
Pasardi	T/JG-033	86	GW	Pasardi	T/JG-033	71	GW	Kajgaon	JGOWB106	84	GW
Varkhedi				Varkhedi	T/JG-035	289	VPW	Balad kh.	JGOWB107	52	GW
Data for 200	09 Not Available	(Withou	ut Fe)	Data for 20	10 Not Availab	le (Wit	h Fe)	Bhadhgaon	JGWQN023	88	GW

,	Taluka : Bhusaw	al			Taluka : Bh	usawal			Taluka : Bh	usawal	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Without I	Fe)			2009 (Without)	Fe)		
Bhusawal				Bhusawal				Bhusawal			
(New)	T/JG-040	86	GW	(New)	T/JG-040	68	GW	(New)	T/JG-040	65	$\mathbf{G}\mathbf{W}$
Mondhale	T/JG-021	81	GW	Mondhale	T/JG-021	77	GW	Mondhale	T/JG-021	72	GW
2011 (With Fe)				Data for 2010 N	ot Avoilable (V	/ith Ea)					
Thakali	JGWQN004	81	GW	Data for 2010 N	ot Available (v	ин ге)					

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka: Bodwa	ıd				Taluka : B	odwad			Taluka : B	odwad	
Villages	Well No.	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Without F	Villages Well No. WQI Categor 2007 (Without Fe)					Fe)			Data for 2008 N	ot Available (V	Without	Fe)
Bodwad						T/JG-014	101	PW	and 2010 and 20	11 Not Availa	ble (Wit	th Fe)

7	Гаluka : Chalisga	aon			Taluka : Cha	alisgaon	1		Taluka: Cha	alisgaon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Without	t Fe)			2009 (Without	Fe)		
Chalisgaon	T/JG-009	182	PW	Chalisgaon	T/JG-009	104	PW	Chalisgaon	T/JG-009	110	PW
Mahunbare	T/JG-018	95	GW	Mahunbare	T/JG-018	62	GW	Mahunbare	T/JG-018	89	GW
2011 (With Fe)	Data for 2010	Not Avai	lable (With I	Fe)							
*Kharjai	JGOWB105	69	GW	*Adgaon	JGOWB154	70	GW	*Sevanagar	JGOWB163	72	GW
*Mehunbare	JGOWB137	61	GW	*Patne	JGOWB156	77	GW	*Pimpalgaon	JGOWB167	96	GW
*Bhoras bk.	JGOWB139	67	GW	*Hirapur	JGOWB157	59	GW	*Bhoraj	JGWQN025	51	GW
*Wakdi	JGOWB142	62	GW					-			

	Taluka: Chopd	a			Taluka : Cl	nopda			Taluka : C	hopda	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Te)			2008 (Without I	Fe)			2009 (Without 1	Fe)		
Chopda	T/JG-006	46	EXLT	Dhanora	T/JG-020	134	PW	Chopda	T/JG-006	54	GW
2010 (With Fe)											
Deoziri	JGOBW054	117	PW	Maratha	JGOWB089	114	PW	Chopda	JGPZ013	82	GW
Karjane	JGOBW075	68	GW	Adgaon	JGOWB092	150	PW	Chahardi	JGWQN005	145	PW
Adawad	JGOBW077	110	PW	Lahasur	JGOWB114	98	GW	Chopda	JGWQN006	185	PW
Mitawali	JGOBW079	107	PW	Hated .bk.	JGOWB115	130	PW				
2011 (With Fe)											
Maratha	JGOWB089	66	GW	*Deoziri	JGOBW054	74	GW	*Lahasur	JGOWB114	75	GW
Lahasur	JGOWB114	54	GW	*Karjane	JGOBW075	67	GW	*Hated .bk.	JGOWB115	82	GW
Hated .bk.	JGOWB115	104	PW	*Adawad	JGOBW077	54	GW	*Chopda	JGPZ013	87	GW
Chopda	JGPZ013	78	GW	*Mitawali	JGOBW079	63	GW	*Chahardi	JGWQN005	84	GW
Chahardi	JGWQN005	86	GW	*Maratha	JGOWB089	78	GW	*Chopda	JGWQN006	122	PW
Chopda	JGWQN006	132	PW	*Adgaon	JGOWB092	64	GW				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

T	aluka : Dharang	aon				Taluka : Dha	rangaoi	n		Taluka: Dha	rangao	n
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	2007 (Without Fe)					Fe)			2009 (Without F	'e)		
Dharangaon	T/JG-019	239	VPW		Pimpalkotha	T/JG-049	117	PW	Dharangaon	T/JG-019	111	PW
Pimpalkotha	T/JG-049	147	PW						Pimpalkotha	T/JG-049	104	PW
Data for 2010 at	nd 2011 Not Ava	ilable (V	Vith Fe)									

	Taluka : Erando	ol				Taluka : Er	andol			Taluka : Eı	randol	
Villages	Well No.	WQI	Category	1	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Fe)			2	2008 (Without F	re)			2009 (Without	Fe)		
Erandol	T/JG-010	66	GW	E	Erandol	T/JG-010	50	GW	Erandol	T/JG-010	49	EXLT
Nagduli	T/JG-038	83	GW	N	Nagduli	T/JG-038	66	GW	Kasoda	T/JG-028	175	PW
Kasoda	T/JG-028	248	VPW	k	Kasoda	T/JG-028	172	PW				
2010 (With Fe)				2	2011 (With Fe)							
Chandsar	JGOBW081	152	PW	*	*Paldhi kh.	JGOBW080	97	GW	*Pastane .kh	JGPZ031	80	GW
Pimpri seem.	JGOWB084	70	GW	*	*Chandsar	JGOBW081	69	GW	*Erandol	JGWQN018	73	GW
Adgaon	JGPZ006	95	GW	*	*Pimpri seem.	JGOWB084	90	GW	*Kavhal	JGWQN019	70	GW
Eklagna	JGPZ007	167	PW	*	*Zurkheda	JGOWB096	78	GW	*Vankothe	JGWQN020	56	GW
Pastane .kh	JGPZ031	64	GW	*	*Kharchi bk.	JGPZ005	85	GW				
Kavhal	JGWQN019	65	GW	*	*Adgaon	JGPZ006	65	GW				
Vankothe	JGWQN020	94	GW	*	*Eklagna	JGPZ007	70	GW				

	Taluka : Jam	ner			Taluka:	Jamner			Taluka : J	Jamner	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	ıt Fe)			2008 (Withou	ıt Fe)			2009 (Withou	t Fe)		
Jamner	T/JG-004	184	PW	Jamner	T/JG-004	124	PW	Jamner	T/JG-004	114	PW
				Kekat				Kekat			
Shendurni	T/JG-027	84	GW	Nimbhora	T/JG-050	74	GW	Nimbhora	T/JG-050	75	GW
Shengola	T/JG-048	88	GW	Neri	T/JG-017	128	PW	Neri	T/JG-017	94	GW
				Shendurni	T/JG-027	57	GW	Shendurni	T/JG-027	54	GW
Data for 2010	and 2011 Not A	vailable (V	Vith Fe)							-	

T	aluka : Mukaina	ıgar			Taluka : Mul	kainagar		Taluka : M	ıkainagar	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			Data for 2008	8 to 2009 Not Ava	ilable (Without Fe	and also 2010 &	2011 Not Availa	able (With	Fe)
Narvel	T/JG-045	156	PW							

·	Taluka : Parol	a			Taluka : P	arola			Taluka : P	arola	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2008 (Without I	Fe)			2009 (Without	Fe)			Data for 2007 N	ot Available (V	Vithout	Fe)
Adgaon	T/JG-032	126	PW	Adgaon	T/JG-032	130	PW				
2010 (With Fe)											
Titvishiv	JGOWB097	75	GW	Adgaon	JGOWB133	79	GW	Undirkheda	JGPZ044	101	PW
Rajwad	JGOWB120	116	PW	Karadi	JGPZ025	52	GW	Parola	JGWQN022	85	$\mathbf{G}\mathbf{W}$
Mhasve	JGOWB126	104	PW								
2011 (With Fe)											
*Sarve. bk.	JGOWB123	56	GW	*Adgaon	JGOWB133	59	GW	*Karadi	JGPZ025	68	$\mathbf{G}\mathbf{W}$
*Titvishiv	JGOWB097	63	GW	*Jamde	JGOWB147	84	GW	*Undirkheda	JGPZ044	55	$\mathbf{G}\mathbf{W}$
*Rajwad	JGOWB120	65	GW	*Dholi	JGOWB150	69	GW	*Parola	JGWQN022	73	GW
*Mhasve	JGOWB126	79	GW		•				•		

	Taluka: Raver	•			Taluka : F	Raver			Taluka : F	Raver	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Without I	Fe)			2009 (Without]	Fe)		
Balvadi	T/JG-043	52	GW	Balvadi	T/JG-043	58	GW	Balvadi	T/JG-043	71	GW
Raver	T/JG-066	125	PW	Raver	T/JG-066	110	PW	Talwade Kd	T/JG-036	102	PW
Talwade Kd	T/JG-036	64	GW	Talwade Kd	T/JG-036	82	GW				
2010 (With Fe)				2011 (With Fe)							
Lalmati	JGOBW004	97	GW	*Savkheda kh.	JGOBW023	54	GW	*Padle bk.	JGOBW007	57	GW
Bhokri	JGOBW009	81	GW	*Lalmati	JGOBW004	52	GW	*Savkheda kh.	JGOBW023	54	GW
Lohara	JGOBW017	76	GW	*Bhokri	JGOBW009	47	EXLT	*Rasalpur	JGPZ018	75	GW
Savkheda kh.	JGOBW023	69	GW	*Lohara	JGOBW017	58	GW	*Managalwadi	JGWQN016	63	GW
Raver	JGWQN017	76	GW	*Ahirwadi	JGPZ024	55	GW	*Raver	JGWQN017	51	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Yava	l			Taluka : Y	aval			Taluka : Y	Yaval	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Withou	t Fe)			2009 (Without	Fe)		
Faizpur	T/JG-030	62	GW	Faizpur	T/JG-030	46	EXLT	Faizpur	T/JG-030	52	GW
2010 (With Fe)				2011 (With Fe	e)						
Viroda	JGOBW024	74	GW	*Viroda	JGOBW024	76	GW	*Dujkheda	JGWQN011	70	GW
Viroda	JGOBW038	56	GW	*Nimgaon	JGOBW038	83	GW	*Gahukheda	JGWQN012	71	GW
Mohrale	JGOBW055	42	EXLT	*Mohrale	JGOBW055	62	GW	*Navi	JGWQN013	62	GW
Bamnod	JGWQN010	104	PW	*Chincholi	JGPZ019	61	GW	*Ridhiri	JGWQN014	60	GW
Dujkheda	JGWQN011	99	GW	*Waghoda	JGPZ035	70	GW	*Yawal	JGWQN015	90	GW
Navi	JGWQN013	44	EXLT	*Bamnod	JGWQN010	48	EXLT				
Ridhiri	JGWQN014	92	GW							•	
Yawal	JGWQN015	85	GW								

	Taluka : Jalgao	n			Taluka : Ja	lgaon			Taluka : Ja	algaon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Te)			2008 (Without I	Fe)			2009 (Without I	Fe)		
Naseerabad	T/JG-023	261	VPW	Naseerabad	T/JG-023	274	VPW	Abhora Bk	T/JG-044	61	GW
Bodar	T/JG-037	80	GW	Bodar	T/JG-037	57	GW	Naseerabad	T/JG-023	170	PW
Dangarda	T/JG-041	67	GW	Dangarda	T/JG-041	60	GW	Bodar	T/JG-037	67	GW
Hated Budruk	T/JG-026	81	GW	Hated Budruk	T/JG-026	90	GW	Dangarda	T/JG-041	61	GW
Higone	T/JG-047	141	PW	Mendhoda	T/JG-046	114	PW	Mendhoda	T/JG-046	94	GW
Mendhoda	T/JG-046	140	PW	Pimpri Akarant	T/JG-015	79	GW	Pimpri Akarant	T/JG-015	74	GW
Vakdi	T/JG-034	104	PW	Vakdi	T/JG-034	75	GW	Vakdi	T/JG-034	79	GW
2010 (With Fe)	Data for 2011	Not Avai	ilable (With 1	Fe)							
Chincholi	JGOBW039	54	GW	Dapore	JGOBW065	100	GW	Jalgaon	JGPZ012	70	GW
Kusumbe kh.	JGOBW061	89	GW	Jalke	JGOBW067	86	GW	Khedi	JGWQN030	92	GW

	Taluka : Pachor	ra			Taluka : Pa	chora			Taluka : Pa	chora	
Villages	Well No. WQI Category		Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2011 (With Fe)	Data for 2007 t	to 2009 (Without Fe) I	Not Available and	also 2010 (Wit	th Fe)					
Vadgaon ambe.	JGOBW070	123	PW	Nagardeola bk	JGOWB112	58	GW	Neri	JGPZ026	81	GW
Satgaon	JGOBW073	67	GW	Khurad bk.	JGPZ003	153	PW	Pachora	JGWQN024	64	GW
Bambrud	JGOWB110	60	GW								

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.14: Water Quality Index of Groundwater of Jalna District

	Taluka : Amba	d			Taluka : A	mbad			Taluka : A	mbad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Without	Fe)			2009 (Without I	Fe)		
Ambad	G/JL-001	118	PW	Ambad	G/JL-001	95	GW	Ambad	G/JL-001	138	PW
Dungaon	G/JL-040	92	GW	Dungaon	G/JL-040	77	GW	Dungaon	G/JL-040	112	PW
Shahagad	G/JL-033	223	VPW	Shahagad	G/JL-033	184	PW	Shahagad	G/JL-033	204	VPW
2010 (With Fe)											
Rohilagad	JLOBW066	116	PW	Ambad	JLWQN013	101	PW	*Nalewadi	JLWQN006	128	PW
Shevga	JLOBW069	55	GW	*Rohilagad	JLOBW066	160	PW	*Renapuri	JLWQN007	105	PW
Dungaon	JLOBW074	65	GW	*Shevga	JLOBW069	143	PW	*Shahagad	JLWQN008	132	PW
Pangarkheda	JLOBW076	65	GW	*Zirpi	JLOBW072	135	PW	*Churmapuri	JLWQN010	164	PW
Tahadgaon	JLOBW077	93	GW	*Dungaon	JLOBW074	120	PW	*Mahakalwasti	JLWQN011	157	PW
Shahapur	JLWQN005	70	GW	*Pangarkheda	JLOBW076	134	PW	*Ambad	JLWQN013	150	PW
Shahagad	JLWQN008	124	PW	*Tahadgaon	JLOBW077	161	PW				
Mahakalwasti	JLWQN011	112	PW	*Shahapur	JLWQN005	190	PW				
2011 (With Fe)				-							
Shahapur	JLWQN005	66	GW	Renapuri	JLWQN007	118	PW	Mahakalwasti	JLWQN011	78	GW
Nalewadi	JLWQN006	88	GW	Shahagad	JLWQN008	101	PW	Ambad	JLWQN013	68	GW

	Taluka : Badnap	our			Taluka : Ba	dnapur			Taluka : Ba	dnapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2009 (Without	Fe) Data for 20	08 Not A	Avail.	2011 (With Fe)			
Badnapur	G/JL-055	94	GW	Badnapur	G/JL-055	92	GW	Pangarkheda	JLOBW076	73	GW
Silegaon	G/JL-008	169	PW					Tahadgaon	JLOBW077	62	GW
2010 (With Fe)											
Dhabadi	JLOBW043	56	GW	Dhopteshwar	JLOBW049	114	PW	*Kandari kh.	JLOBW044	62	GW
Kandari kh.	JLOBW044	48	EXLT	Georai bazar	JLPZ002	56	GW	*Matrewadi	JLOBW045	59	GW
				*Deogaon							
Matrewadi	JLOBW045	74	GW	kusali	JLOBW040	140	PW	*Chanegaon	JLOBW046	145	PW
Chanegaon	JLOBW046	100	GW	*Roshangaon	JLOBW041	127	PW	*Badnapur	JLOBW048	53	GW
Badnapur	JLOBW048	96	GW	*Dhabadi	JLOBW043	108	PW	*Dhopteshwar	JLOBW049	154	PW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.14(Contd..): Jalna District

Ta	luka : Bhokard	an				Taluka : Bhok	ardan			Taluka : Bho	kardar	1
Villages	Well No.	WQI	Category	•	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without Fe)				2009 (Without	Fe)		
Hasnabad	G/JL-006	325	UNSUT		Hasnabad	G/JL-006	132	PW	Longaon	G/JL-022	318	UNSUT
Talegaon	G/JL-038	106	PW		Longaon	G/JL-022	221	VPW				
Talni	G/JL-043	174	PW		Talegaon	G/JL-038	128	PW				
2010 (With Fe)												
Khandala	JLOBW004	105	PW		Borgaon jahagir	JLOBW009	82	GW	*Wakadi	JLOBW007	163	PW
									*Borgaon			
Gosegaon	JLOBW014	58	GW		*Walsadawargaon	JLOBW003	140	PW	jahagir	JLOBW009	93	GW
Latifpur	JLOBW022	85	GW		*Khandala	JLOBW004	68	GW	*Malkapur	JLOBW010	230	VPW
Walsadawargaon	JLOBW003	73	GW		*Walsa khalsa	JLOBW006	72	GW	*Malkheda	JLOBW012	124	PW
									*Pimpalgaon			
Walsa khalsa	JLOBW006	91	GW		*Gosegaon	JLOBW014	137	PW	Renukai	JLOBW018	98	GW
Malkapur	JLOBW010	56	GW		*Takli kolte	JLOBW016	98	GW	*Kedar kheda	JLOBW025	92	GW
Baranjala					*Baranjala							
lokhande	JLOBW020	83	GW		lokhande	JLOBW020	76	GW	*Bhokardan	JLPZ003	86	GW
Kedar kheda	JLOBW025	55	GW		*Latifpur	JLOBW022	128	PW				
Pimpalgaon	=	66	GW		*Muthad	JLOBW001	81	GW				
2011 (With Fe)												
Walsadawargaon	JLOBW003	95	GW		Borgaon jahagir	JLOBW009	54	GW	Bharadkheda	JLOBW034	63	GW
Walsa khalsa	JLOBW006	92	GW		Gosegaon	JLOBW014	61	GW	Kandari kh.	JLOBW044	85	GW
Malkapur	JLOBW010	87	GW		Takli kolte	JLOBW016	66	GW	Matrewadi	JLOBW045	63	GW
Malkheda	JLOBW012	78	GW		Latifpur	JLOBW022	70	GW	Chanegaon	JLOBW046	55	GW
Pimpalgaon												
Renukai	JLOBW018	78	GW		Mahora	JLOBW026	76	GW	Badnapur	JLOBW048	65	GW
Kedar kheda	JLOBW025	76	GW		Jafrabad	JLOBW027	53	GW	Dhopteshwar	JLOBW049	110	PW
Muthad	JLOBW001	59	GW		Kumbhari	JLOBW029	124	PW				
Khandala	JLOBW004	62	GW		Bhutkheda	JLOBW030	76	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Taluka	a : Ghansawan	ıgi		Tal	uka : Ghansa	wangi		Т	aluka : Gha	nsawa	ngi
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Categor
2007 (Without Fe)				2008 (Without Fe)				Data for 2009	Not Availabl	e (With	nout Fe)
Ranjani	G/JL-037	76	GW	Raniunchagaon	G/JL-027	179	PW				
2010 (With Fe)											
Tirthpuri	TS-16	86	GW	*Kumbharpimpalgaon	TS-18	89	GW	*Ghansawangi	T-06	72	GW
Ghonshi bk.	BS-27	107	PW	*Ravna	BS-23	93	GW	*Paradgaon	BS-25	77	GW
Murma Kh.	TS-17	54	GW	*Rani unchegaon	BS-24	87	GW	*Rajani	TS-15	124	PW
Kumbharpimpalgaon	TS-18	69	GW	*Tirthpuri	TS-16	165	PW	*Masegaon	BS-26	114	PW
Masegaon	BS-26	91	GW	*Jambsamarth	BS-28	70	GW	*Ghonshi bk.	BS-27	169	PW
Rani unchegaon	BS-24	83	GW	*Murma Kh.	TS-17	89	GW				
2011 (With Fe)											
Rani unchegaon	BS-24	94	GW	Jambsamarth	BS-28	50	GW	Masegaon	BS-26	76	GW
Ghansawangi	T-06	57	GW	Kumbharpimpalgaon	TS-18	92	GW	Tirthpuri	TS-16	99	GW
Ravna	BS-23	55	GW	Paradgaon	BS-25	47	EXLT	Ghonshi bk.	BS-27	44	EXLT
Rajani	TS-15	60	GW								

Tal	uka : Jafrabad	l			Taluka : Jafr	abad			Taluka : Ja	frabad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without Fe)				2009 (Without	Fe)		
Jafrabad	G/JL-004	704	UNSUT	Jafrabad	G/JL-004	1311	UNSUT	Jafrabad	G/JL-004	1229	UNSUT
Kalegaon	G/JL-010	65	GW					Kalegaon	G/JL-010	66	GW
2010 (With Fe)											
Mahora	JLOBW026	45	EXLT	*Mahora	JLOBW026	61	GW	*Bhutkheda	JLOBW030	198	PW
Jafrabad	JLOBW027	58	GW	*Jafrabad	JLOBW027	90	GW	*Bharadkheda	JLOBW034	167	PW
Bhutkheda	JLOBW030	94	GW	*Kumbhari	JLOBW029	132	PW	*Deoulzari	JLOBW035	174	PW
2011 (With Fe)											
Gola pangri	JLOBW051	122	PW	Pokhari (singade)	JLOBW063	79	GW	Rohilagad	JLOBW066	93	GW
Pimpalgaon	JLOBW052	77	GW	Dhagi	JLOBW064	51	GW	Zirpi	JLOBW072	74	GW
Revgaon	JLOBW053	41	EXLT	Shevga	JLOBW069	66	GW	Dungaon	JLOBW074	88	GW
Viregaon	JLOBW058	217	VPW			•				•	

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.14(Contd..): Jalna District

T	'aluka : Jalna				Taluka : Jal	na			Taluka :	Jalna	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without Fe)				2009 (Withou	ıt Fe)		
Jalna	G/JL-002	267	VPW	Tirthpuri	G/JL-028	138	PW	Ner	G/JL-048	83	GW
Tirthpuri	G/JL-028	110	PW	Samangaon	G/JL-032	93	GW	Tirthpuri	G/JL-028	117	PW
Samangaon	G/JL-032	73	GW					Samangaon	G/JL-032	79	GW
2010 (With Fe)											
Pokhari (singade)	JLOBW063	66	GW	*Pimpalgaon	JLOBW052	72	GW	*Ramnagar	JLWQN003	117	PW
Gola pangri	JLOBW051	95	GW	*Sarwadi	JLWQN001	72	GW	*Viregaon	JLOBW058	376	UNSUT
								*Pokhari			
Revgaon	JLOBW053	60	GW	*Rohanwadi	JLWQN002	84	GW	(singade)	JLOBW063	125	PW
Viregaon	JLOBW058	108	PW	*Badnapur	JLWQN004	111	PW	*Dhagi	JLOBW064	170	PW
Dhagi	JLOBW064	100	PW	*Maujpuri	JLOBW057	68	GW	*Revgaon	JLOBW053	133	PW
Rohanwadi	JLWQN002	114	PW	*Ner	JLOBW060	98	GW				
*Gola pangri	JLOBW051	89	GW	*Seoli	JLOBW065	128	PW				
2011 (With Fe)											
Sarwadi	JLWQN001	53	GW	Ramnagar	JLWQN003	124	PW				
Rohanwadi	JLWQN002	86	GW	Badnapur	JLWQN004	76	GW				

Ta	luka : Mantha				Taluka : Man	tha			Taluka : N	I antha	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without Fe)				2009 (Withou	ıt Fe)		
Watur	G/JL-034	135	PW	Mantha	G/JL-011	192	PW	Watur	G/JL-034	73	GW
				Wakdi	G/JL-017	388	UNSUT				
2010 (With Fe)											
*Wadgaon saradh	JLOBW101	103	PW	*Patoda kh	JLOBW109	73	GW	*Talni	JLOBW102	179	PW
*Pangri wayal	JLOBW107	138	PW	*Mantha	JLWQN019	138	PW	*Dhoksal	JLOBW105	142	PW
*Helas	JLOBW108	98	GW								
2011 (With Fe)											
Wadgaon saradh	JLOBW101	59	GW	Pangri wayal	JLOBW107	120	PW	Patoda kh	JLOBW109	45	EXLT
Talni	JLOBW102	55	GW	Helas	JLOBW108	41	EXLT	Mantha	JLWQN019	59	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.14(Contd..): Jalna District

Ta	luka : Partur				Taluka : Par	tur				Taluka : I	Partur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Vi	llages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without Fe)				20	09 (Without	t Fe)		
Shreshti	G/JL-015	152	PW	Parthur	G/JL-014	146	PW	Sh	reshti	G/JL-015	166	PW
				Shreshti	G/JL-015	167	PW					
2010 (With Fe)												
Singona	JLOBW093	51	GW	Shristi	JLOBW096	69	GW	*S	Shristi	JLOBW096	146	PW
Shristi	JLOBW096	93	GW	*Watur	JLOBW097	142	PW	*A	Asangaon	JLOBW098	82	GW
Asangaon	JLOBW098	67	GW	*Partur	JLWQN018	138	PW	*L	oni kh.	JLOBW099	161	PW
Loni kh.	JLOBW099	59	GW	*Singona	JLOBW093	74	GW					
Partur	JLWQN018	96	GW	*Satona kh	JLOBW094	103	PW					
2011 (With Fe)		•				•		•				•
Singona	JLOBW093	103	PW	Shristi	JLOBW096	94	GW	Lo	oni kh.	JLOBW099	64	GW
Satona kh	JLOBW094	37	EXLT	Asangaon	JLOBW098	69	GW	Par	rtur	JLWQN018	60	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

 Table x.15: Water Quality Index of Groundwater of Kolhapur District

	Taluka : Ajra					Taluka : A	Ajra			Taluka : A	Ajra	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)				2008 (Without	Fe)			2009 (Without I	Fe)		
Ajra	K/KL-001	78	GW		Ajra	K/KL-001	55	GW	Ajra	K/KL-001	64	GW
2010 (With Fe)	Data for 2011	Not Avai	ilable (With	ı F	e)							
*Ajara	KPWQN020	77	GW		*Uttur	KPWQN019	87	GW	Kowade	KPOBW107	36	EXLT
*Gavase	KPWQN018	71	GW		*Uttur	KPOBW070	90	GW	Maligre	KPOBW075	53	GW
*Harur	KPOBW088	41	EXLT		*Lakudwadi	KPOBW087	81	GW	Sulgaon	KPOBW073	34	EXLT
*Kowade	KPOBW107	55	GW		Ajara	KPWQN020	59	GW	Uttur	KPWQN019	47	EXLT
*Maligre	KPOBW075	54	GW		Gavase	KPWQN018	43	EXLT	Uttur	KPOBW070	47	EXLT
*Sulgaon	KPOBW073	84	GW		Harur	KPOBW088	34	EXLT	Lakudwadi	KPOBW087	47	EXLT

T	aluka : Bhudar	gad				Taluka: Bhu	dargad			Taluka : Bhu	dargad	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)				2008 (Without]	Fe)			2009 (Without	Fe)		
Nitawade	K/KL-018	38	EXLT		Pimpalgaon	K/KL-030	66	GW	Naganwadi	K/KL-007	19	EXLT
Naganwadi	K/KL-007	17	EXLT						Pimpalgaon	K/KL-030	60	GW
2010 (With Fe)	Data for 2011	Not Avai	ilable (With	ı F	e)							
*Gargoti	KPWQN017	47	EXLT		*Pimpalgaon	KPOBW057	85	GW	Nilpan	KPOBW062	56	GW
*Helewadi	KPOBW099	65	GW		*Tiravade	KPOBW059	46	EXLT	Patgaon	KPPZ016	37	EXLT
*Karadwadi	KPOBW056	41	EXLT		*Vengrul	KPPZ015	55	GW	Pimpalgaon	KPOBW057	35	EXLT
*Madilge Bk	KPOBW053	83	GW		Gargoti	KPWQN017	36	EXLT	Tiravade	KPOBW059	28	EXLT
*Madur	KPOBW55	71	GW		Helewadi	KPOBW099	50	GW	Vengrul	KPPZ015	63	GW
*Minche kh.	KPPZ014	77	GW		Karadwadi	KPOBW056	45	EXLT	Madilge Bk	KPOBW053	56	GW
*Nilpan	KPOBW062	65	GW		Madur	KPOBW55	52	GW				
*Patgaon	KPPZ016	59	GW		Minche kh.	KPPZ014	57	GW				

Ta	luka : Gaganba	wada				Taluka : Gaga	nbawa	da		Taluka : Gaga	nbawad	la
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)				2008 (Without)	Fe)			2009 (Without)	Fe)		
Aslaj	K/KL-039	17	EXLT		Gagan bauda	K/KL-016	25	EXLT	Gagan bauda	K/KL-016	18	EXLT
					Aslaj	K/KL-039	21	EXLT	Aslaj	K/KL-039	16	EXLT
2010 (With Fe)	Data for 2011	Not Avai	lable (With	Fe	e)							
*Asandoli	KPPZ008	39	EXLT		Asandoli	KPPZ008	22	EXLT	Gaganbawada	KPWQN004	24	EXLT
*Gaganbawada	KPWQN004	44	EXLT		Gaganbawada	KPOBW041	23	EXLT	Tisagiwadi	KPOBW040	36	EXLT
*Tisagiwadi	KPOBW040	43	EXLT									

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

r	Taluka : Chandg	gad				Taluka: Cha	andga	i		Taluka: Cha	andgad	
Villages	Well No.	WQI	Category		Villages	Well No.	WQ	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)				2009 (Without 1	Fe)			Data for 2008 N	ot Available (V	Vithout	Fe)
Karve	K/KL-023	27	EXLT		Karve	K/KL-023	30	EXLT	2010 Contd (V	Vith Fe)		
Patne	K/KL-033	18	EXLT		Patne	K/KL-033	18	EXLT	*Kodali	KPOBW084	44	EXLT
					Surute	K/KL-035	20	EXLT	Kodali	KPOBW084	34	EXLT
2010 (With Fe)	Data for 2011 N	Not Avail	lable (With	Fe	e)				*Porewadi	KPOBW086	58	$\mathbf{G}\mathbf{W}$
*Adkur	KPOBW080	50	GW		Gulumb K.	KPPZ021	31	EXLT	Porewadi	KPOBW086	43	EXLT
Adkur	KPOBW080	35	EXLT		*Hajgoli	KPOBW083	56	GW	*Saroli	KPPZ020	33	EXLT
*Chandgad	KPWQN023	41	EXLT		Hajgoli	KPOBW083	39	EXLT	Saroli	KPPZ020	34	EXLT
Chandgad	KPWQN023	32	EXLT		*Halkarni	KPWQN022	52	GW	*Shinoli Bk.	KPWQN021	43	EXLT
*Date	KPOBW078	62	GW		Halkarni	KPWQN022	28	EXLT	Shinoli Bk.	KPWQN021	52	$\mathbf{G}\mathbf{W}$
Date	KPOBW078	39	EXLT		*Kanhur Kh	KPOBW076	50	EXLT	*Surute	KPOBW109	28	EXLT
*Gudavale Kh.	KPPZ019	75	GW		Kanhur Kh	KPOBW076	45	EXLT	Surute	KPOBW109	40	EXLT
Gudavale Kh.	KPPZ019	32	EXLT		*Karve	KPOBW081	39	EXLT	*Tambulwadi	KPOBW079	60	GW
*Gulumb K.	KPPZ021	63	GW		Karve	KPOBW081	36	EXLT	Tambulwadi	KPOBW079	45	EXLT

	Faluka : Gading	laj				Taluka : Ga	dinglaj			Taluka : Ga	dinglaj	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Fe)				2008 (Without I	Fe)			2009 (Without I	Fe)		
Gadinglaj	K/KL-010	60	GW		Gadinglaj	K/KL-010	66	GW	Gadinglaj	K/KL-010	60	GW
Nesari	K/KL-022	34	EXLT		Nesari	K/KL-022	28	EXLT	Nesari	K/KL-022	30	EXLT
2010 (With Fe)	Data for 2011 N	Not Avai	lable (With	F	e)							
*Gadhinglaj	KPWQN024	92	GW		*Nilaji	KPOBW063	92	GW	Harali Bk.	KPWQN026	34	EXLT
*Halkarni	KPWQN027	98	GW		*Donewadi	KPWQN025	71	GW	Hebbal Jaldyal	KPPZ018	52	GW
*Halkarni	KPOBW066	132	PW		*HebbalJaldyal	KPPZ018	77	GW	Hidaduggi	KPPZ017	55	GW
*Harali Bk.	KPWQN026	76	GW		Donewadi	KPWQN025	41	EXLT	Kasba Nool	KPOBW064	92	GW
*Hidaduggi	KPPZ017	60	GW		Gadhinglaj	KPWQN024	34	EXLT	Mahagaon	KPOBW067	50	EXLT
*Kasba Nool	KPOBW064	103	PW		Halkarni	KPWQN027	63	GW	Nangnur	KPOBW065	73	GW
*Mahagaon	KPOBW067	125	PW		Halkarni	KPOBW066	82	GW	Nilaji	KPOBW063	62	GW
*Nangnur	KPOBW065	99	GW									

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Ta	aluka : Hatkana	ngale				Taluka : Hatka	ananga	le		Taluka : Hat	kanangal	е
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)				2008 (Without	Fe)			2009 (Without)	Fe)		
Kini wathar	K/KL-012	94	GW		Kini wathar	K/KL-012	92	GW	Kini wathar	K/KL-012	79	GW
2010 (With Fe)	Data for 2011	Not Avai	lable (With]	Fe)	1							
*Chokak	KPOBW0101	91	GW		*Rukadi	KPWQN007	78	GW	Pargaon	KPPZ023	50	GW
*Halondi	KPOBW017	159	PW		*Shiroli	KPOBW016	85	GW	Rendal	KPOBW020	118	PW
*Hatkanangale	KPOBW0103	78	GW		*Vadgoan	KPWQN009	77	GW	Yalgud	KPOBW021	64	GW
*Ichalkarnji (Chugulemala)	KPWQN010	158	PW		*Wathar T. Wadgaon	KPWQN008	86	GW	Halondi	KPOBW017	143	PW
*Ichalkarnji (Surve mala)	KPWQN005	137	PW		*Yalgud	KPOBW021	101	PW	Ichalkarnji (Chugulemala)	KPWQN010	61	GW
*Kabnoor	KPWQN006	127	PW		*Chokak	KPOBW0101	84	GW	Ichalkarnji (Surve mala)	KPWQN005	90	GW
*Korochi	KPOBW019	146	PW		*Hatkanangale	KPOBW0103	91	GW	Kabnoor	KPWQN006	81	GW
*Majale	KPOBW014	85	GW		*Nej	KPOBW012	57	GW	Korochi	KPOBW019	96	GW
*Nej	KPOBW012	78	GW		*Shiroli	KPOBW016	84	GW	Majale	KPOBW014	55	GW
*Pargaon	KPPZ023	112	PW		*Vadgoan	KPWQN009	102	PW	Rukadi	KPWQN007	94	GW
*Rendal	KPOBW020	121	PW		*Wathar T. Wadgaon	KPWQN008	66	GW				

	Taluka : Kaga	al				Taluka : K	agal			Taluka:	Kagal	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)				2008 (Without	Fe)			2009 (Without	Fe)		
Surupali	K/KL-029	64	GW		Surupali	K/KL-029	80	GW	Murgud	K/KL-004	57	GW
2010 (With Fe)	Data for 2011	Not Avai	lable (With	Fe))							
*Kagal	KPWQN030	63	GW		*Murud	KPWQN028	51	GW	Kurukali	KPOBW050	89	GW
*Kurukali	KPOBW050	77	GW		*Murud	KPOBW052	66	GW	Murud	KPWQN028	40	EXLT
*Undarwadi	KPOBW002	63	GW		*Yamage	KPPZ029	53	GW	Murud	KPOBW052	50	GW
*Walve Kh.	KPPZ013	45	EXLT		Galgale	KPOBW051	86	GW	Undarwadi	KPOBW002	46	EXLT
*Galgale	KPOBW051	82	GW		Ka. Sangaon	KPWQN031	58	GW	Walve Kh.	KPPZ013	46	EXLT
*Ka. Sangaon	KPWQN031	90	GW		Kagal	KPWQN030	73	GW	Yamage	KPPZ029	82	GW
*Kapashi	KPWQN032	110	PW		Kapashi	KPWQN032	79	GW			•	
*Khadakewada	KPWQN029	121	PW		Khadakewada	KPWQN029	50	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Kolha	pur			Taluka : Ko	lhapur			Taluka : K	olhapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Withou	t Fe)			2009 (Withou	t Fe)		
				Gokul							
Gokul shirgaon	K/KL-017	65	GW	Shirgaon	K/KL-017	65	GW	Khupire	K/KL-025	53	GW
Khupire	K/KL-025	59	GW	Khupire	K/KL-025	65	GW	Shiradwad	K/KL-005	98	GW
Shiradwad	K/KL-005	100	GW	Shiradwad	K/KL-005	94	GW	Washi	K/KL-034	51	GW
Washi	K/KL-034	52	GW	Washi	K/KL-034	55	GW	Shiroli	K/KL-002	71	GW
Shiroli	K/KL-002	125	PW	Shiroli	K/KL-002	107	PW	Authur	K/KL-019	78	GW
								Khindi			
Authur	K/KL-019	101	PW	Partangale	K/KL-008	46	EXLT	Varvade	K/KL-038	30	EXLT
Halkarne	K/KL-036	134	PW					Partangale	K/KL-008	41	EXLT
Khindi					2010 (ontd (With Fe)	Data for 2011 No	t Avoilable (Wit	h Ea)	
Varvade	K/KL-038	29	EXLT		2010 C	onta (with re)	Data for 2011 No	Avanable (vviu	п ге)	
Madlgi				*Khupire	KPOBW035			*Parite	KPWQN013		
Budrukh	K/KL-021	19	EXLT		KI OD W 033	61	GW	Taric	,	59	GW
Partangale	K/KL-008	46	EXLT	*Kogli Bk.	KPOBW090	43	EXLT	*Jaital	KPOBW001	83	GW
Solankuv	K/KL-043	36	EXLT	*Kolhapur	KPWQN014	38	EXLT	*Kogli Bk.	KPOBW090	44	EXLT
2010 (With Fe)				*Kuditre	KPWQN015	53	GW	*Kolhapur	KPWQN014	58	GW
Kerli	KPOBW036	39	EXLT	*Kuditre	KPWQN015	80	GW	Kurukali	KPOBW039	48	EXLT
Nigave Du.	KPPZ022	80	GW	*Sangwade	KPPZ027	65	GW	Parite	KPWQN013	45	EXLT
*Sangwade	KPPZ027	86	GW	*Kerli	KPOBW036	54	GW	Nigave Du.	KPPZ022	70	GW
*Girgaon	KPOBW092	58	GW	*Girgaon	KPOBW092	62	GW	Jaital	KPOBW001	37	EXLT
*Khupire	KPOBW035	57	GW	*Kurukali	KPOBW039	79	GW		·		

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Panha	ala			Taluka : Pa	nhala			Taluka : I	Panhala	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Withou	t Fe)			2009 (Without	Fe)		
Panhala	K/KL-006	26	EXLT	Panhala	K/KL-006	32	EXLT	Panhala	K/KL-006	24	EXLT
Pimpli Tarf											
Thane	K/KL-027	50	EXLT					Undri	K/KL-024	25	EXLT
Undri	K/KL-024	22	EXLT								
2010 (With Fe)	Data for 2011	Not Ava	ilable (With l	Fe)							
Panhala	KPWQN001	51	GW	*Kisrool	KPPZ004	46	EXLT	*Punal	KPOBW032	97	GW
Pimplethane	KPOBW030	50	EXLT	*Marali	KPOBW096	35	EXLT	*Asurle	KPWQN002	65	GW
*Asurle	KPWQN002	52	GW	*Marali	KPOBW096	63	GW	*Panhala	KPWQN001	67	GW
*Kisrool	KPPZ004	37	EXLT	*Pimplethane	KPOBW030	44	EXLT	Punal	KPOBW032	57	GW

T	aluka : Radhana	agari				Taluka : Radl	nanaga	ri		Taluka : Rad	dhanagari	İ
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)				2008 (Without	t Fe)			2009 (Without	Fe)		
Radhanagari	K/KL-032	41	EXLT		Radhanagari	K/KL-032	42	EXLT	Radhanagari	K/KL-032	42	EXLT
Shelewadi	K/KL-037	65	GW		Shelewadi	K/KL-037	24	EXLT				
2010 (With Fe)	Data for 2011	Not Avai	ilable (With	Fe	e)							
*Mhasurli	KPOBW097	38	EXLT		*Dhmod	KPOBW042	48	EXLT	Pungaon	KPOBW043	47	EXLT
*Hasane	KPOBW110	47	EXLT		*Pungaon	KPOBW043	47	EXLT	Solankur	KPOBW104	35	EXLT
*Kasarwada	KPOBW047	50	EXLT		Chande	KPWQN016	33	EXLT	Kasarwada	KPOBW047	51	GW
*Shelewadi	KPOBW044	49	EXLT		Dhmod	KPOBW042	40	EXLT	Shelewadi	KPOBW044	48	EXLT
*Solankur	KPOBW104	43	EXLT		Hasane	KPOBW110	41	EXLT				·
*Chande	KPWQN016	43	EXLT		Mhasurli	KPOBW097	34	EXLT				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Shahuwadi					Taluka : Shahuwadi					Taluka : Sh	ahuwadi	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Without	Fe)				2009 (Without	Fe)		
Amba	K/KL-013	22	EXLT		Amba	K/KL-013	24	EXLT		Amba	K/KL-013	19	EXLT
Paijarwadi	K/KL-015	45	EXLT		Wadicharan	K/KL-028	94	GW		Paijarwadi	K/KL-015	24	EXLT
										*Wadicharan	K/KL-028	95	GW
2010 (With Fe)	Data for 2011	Not Avai	ilable (With	Fe	e)								
Amba	KPOBW004	32	EXLT		*Jambur	KPPZ002	50	GW		*Ukhalu	KPPZ001	59	GW
*Amba	KPOBW004	41	EXLT		Jambur	KPPZ002	45	EXLT		Ukhalu	KPPZ001	60	GW
Chandoli	KPPZ003	47	EXLT		*Malkapur	KPWQN003	64	GW		*Wadgaon	KPOBW005	52	GW
*Chandoli	KPPZ003	45	EXLT		Malkapur	KPWQN003	52	GW		Wadgaon	KPOBW005	61	GW

	Taluka : Shire	ol		Taluka : Shirol						Taluka : Shirol		
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe)	Data for 2007	to 2009	(Without Fe	e) N	lot Available an	d also 2011 (Wit	th Fe)					
Chipri	KPOBW022	90	GW		Shiroli Shahunagar	KPOBW025	45	EXLT	*Jaysingpur	KPWQN012	120	PW
Danwad Nave	KPOBW100	143	PW		Takali	KPOBW028	152	PW	*Kondigre	KPOBW023	92	GW
Ganeshwadi	KPOBW091	100	GW		Udgaon	KPWQN011	126	PW	*Kurundwad	KPOBW026	150	PW
Ghosarwad	KPOBW105	102	PW		*Chipri	KPOBW022	143	PW	*Shirol	KPPZ025	81	GW
Jambhali	KPPZ026	152	PW		*Danwad Nave	KPOBW100	145	PW	*Shiroli Shahunagar	KPOBW025	136	PW
Jaysingpur	KPWQN012	84	GW		*Ganeshwadi	KPOBW091	137	PW	*Takali	KPOBW028	139	PW
Kondigre	KPOBW023	91	GW		*Ghosarwad	KPOBW105	113	PW	*Udgaon	KPWQN011	159	PW
Kurundwad	KPOBW026	112	PW		*Jambhali	KPPZ026	112	PW			•	
Shirol	KPPZ025	154	PW									

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

 Table x.16: Water Quality Index of Groundwater of Latur District

	Taluka : Ahr	nadpur		Taluka : Ahmadpur				Taluka : Ahmadpur				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Without Fe				2008 (Without Fe)				2009 (Without Fe)				
Ahmadpur	G/LT-015	122	PW	Ahmadpur	G/LT-015	104	PW	Ahmadpur	G/LT-015	88	GW	
								Kingaon	G/LT-019	128	PW	
2010 (With Fe)												
Ahmadpur	LTOBW033	145	PW	*Dhalegaon	LTPZ007	80	GW	*Sangvi [s]	LTOBW037	82	GW	
Hipparga kopdev	LTOBW040	98	GW	*Khandali	LTOBW030	44	EXLT	*Sindgi bk.	LTOBW109	50	GW	
Waigaon	LTOBW049	72	GW	*Khandali	LTPZ006	70	GW	*Tambatsangvi	LTOBW034	43	EXLT	
*Walsangi	LTOBW041	50	EXLT	*Kolwadi	LTOBW031	73	GW					
*Andhori	LTOBW035	49	EXLT	*Mankhed	LTOBW039	45	EXLT					
2011 (With Fe)												
Ahmadpur	LTOBW033	35	EXLT	Khandali	LTPZ006	50	EXLT	Sindgi bk.	LTOBW109	67	GW	
Andhori	LTOBW035	71	GW	Kolwadi	LTOBW031	36	EXLT	Tambatsangvi	LTOBW034	78	GW	
Dhalegaon	LTPZ007	72	GW	Mankhed	LTOBW039	39	EXLT	Waigaon	LTOBW049	57	GW	
Hipparga kopdev	LTOBW040	50	GW	Sangvi [s]	LTOBW037	49	EXLT	Walsangi	LTOBW041	51	GW	
Khandali	LTOBW030	49	EXLT									

7	Гаluka : Nilang	a		Taluka : Nilanga				Taluka : Nilanga					
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (Without Fe	e)			2008 (Without I	2008 (Without Fe)				2009 (Without Fe)				
Kasar Sirs	G/LT-025	80	GW	Kasar Sirsi	G/LT-025	95	GW	Kasar Sirsi	G/LT-025	116	PW		
Panchincholi	G/LT-018	79	GW	Kelgaon	G/LT-031	71	GW	Kelgaon	G/LT-031	92	GW		
	•			Panchincholi	G/LT-018	77	GW	Panchincholi	G/LT-018	74	GW		
2010 (With Fe)													
Shelgi	LTOBW076	68	GW	*Kelgaon	LTPZ011	74	GW	*Halsi [t]	LTOBW074	41	EXLT		
Nilanga	LTOBW072	42	EXLT	*Ambulga (bk)	LTOBW088	54	GW	*Sarwadi	LTPZ013	43	EXLT		
*Gaur	LTOBW091	56	GW	*Ambulga (v)	LTOBW078	59	GW	*Shelgi	LTOBW076	53	GW		
				*Aurad									
*Kelgaon	LTOBW084	87	GW	(shahjani)	LTOBW077	63	GW	*Shivni kothal	LTOBW090	43	EXLT		
				*Barmachiwadi	LTOBW079	44	EXLT	*Sindkhed	LTPZ012	70	GW		
2011 (With Fe)													
Ambulga (bk)	LTOBW088	61	GW	Barmachiwadi	LTOBW079	65	GW	Nilanga	LTOBW072	57	GW		
Ambulga (v)	LTOBW078	48	EXLT	Gaur	LTOBW091	48	EXLT	Sarwadi	LTPZ013	64	GW		
Aurad (shahjani)	LTOBW077	53	GW	Halsi [t]	LTOBW074	83	GW	Shivni kothal	LTOBW090	47	EXLT		
Kelgaon	LTOBW084	58	GW	Kelgaon	LTPZ011	39	EXLT	Sindkhed	LTPZ012	117	PW		
* Pre- Monsoon	Season							Mal Hipparga	LTPZ014	70	GW		

Table x.16(Contd..) Latur District

	Taluka : A	lusa		Taluka : Ausa				Taluka : Ausa					
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (Without Fe	e)			2008 (Without	2008 (Without Fe)				20098 (Without Fe)				
Belkund	G/LT-036	179	PW	Ausa	G/LT-014	90	GW	Belkund	G/LT-036	56	GW		
				Lamjana Phata	G/LT-022	61	GW	Bhada	G/LT-032	61	GW		
								Budhoda	G/LT-003	87	GW		
2010 (With Fe)	Data for 2011 I	Not Ava	ilable (With	Fe)									
Ausa	LTOBW094	96	GW	*Killari	LTOBW102	48	EXLT	Khuntegaon	LTPZ004	62	GW		
Borgaon (n)	LTOBW106	72	GW	*Talni	LTOBW098	75	GW	Killari	LTOBW102	64	GW		
Khuntegaon	LTPZ004	102	PW	*Dapegaon	LTPZ005	58	GW	Nandurga	LTOBW099	62	GW		
Selu	LTOBW095	92	GW	Aashiv	LTOBW105	69	GW	Selu	LTOBW095	55	GW		
Shivali	LTOBW103	104	PW	Ausa	LTOBW094	45	EXLT	Shivali	LTOBW103	126	PW		
Taka	LTOBW104	85	GW	Borgaon (n)	LTOBW106	47	EXLT	Taka	LTOBW104	61	GW		
Aashiv	LTOBW105	50	GW	Dapegaon	LTPZ005	59	GW	Talni	LTOBW098	48	EXLT		
*Karla	LTOBW101	70	GW	Karla	LTOBW101	58	GW						
*Kharosa	LTOBW108	42	EXLT	Kharosa	LTOBW108	43	EXLT						

	Taluka : Cl	hakur			Taluka : Chakur				Taluka : Chakur			
Villages	Well No.	WQI	Category	Village	es	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)			2008 (Without I	Fe)			2009 (Without]	Fe)		
Mahalangra	G/LT-027	65	GW	Ashta		G/LT-034	87	GW	Ashta	G/LT-034	74	GW
Ashta	G/LT-034	128	PW	Chapol	li	G/LT-008	108	PW	Chapoli	G/LT-008	106	PW
Chapoli	G/LT-008	118	PW									
Nalegaon	G/LT-013	65	GW									
2010 (With Fe)	Data for 2011 I	Not Ava	ilable (With	Fe)								
Ashta	LTOBW047	60	GW	*Deok	ara	LTWQN003	79	GW	Kabansangvi	LTOBW071	39	EXLT
Gharni	LTOBW046	56	GW	*Nand	gaon	LTOBW043	77	GW	Latur road.	LTPZ009	50	EXLT
Kabansangvi	LTOBW071	92	GW	Ashta		LTOBW047	35	EXLT	Nandgaon	LTOBW043	40	EXLT
Nandgaon	LTOBW043	72	GW	DEOK	ARA	LTWQN003	53	GW	Shivankhed	LTPZ008	113	PW
Shivankhed	LTPZ008	73	GW	Gharni		LTOBW046	60	GW	Sugaon	LTPZ010	97	GW
Sugaon	LTPZ010	48	EXLT				•				•	

^{*} Pre- Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.16(Contd..) Latur District

	Taluka : Jalko	t			Taluka : Jalkot				Taluka : Jalkot			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2008 (Without Fe) Data for 20	Avail.	2009 (Withou	2009 (Without Fe)				2010 (With Fe) Data for 2011 Not Available				
Patoda	G/LT-030	54	GW	Patoda	G/LT-030	58	GW	Kolnoor	LTOBW054	79	GW	
								Kolnoor	LTOBW054	50	GW	

	Taluka : Latu	r			Taluka : Latur						Taluka :	Latur		
Villages	Well No.	WQI	Category		Villages	Well No.	WC	I	Category	Villages	Well No.	WQI	Category	
2007 (Without Fo	e)				2008 (Without Fe)				2009 (Without Fe)					
Borgaon Kale	G/LT-029	143	PW		Borgaon Kale	G/LT-029	11	4	PW	Borgaon Kale	G/LT-029	99	GW	
Murud-Akola	G/LT-007	93	GW		Murud	G/LT-017	10	4	PW	Murud	G/LT-017	100	PW	
Panderwadi	G/LT-035	66	GW		Murud-Akola	G/LT-007	17	3	PW	Murud-Akola	G/LT-007	123	PW	
					Panderwadi	G/LT-035	5	9	GW	Panderwadi	G/LT-035	101	PW	
										Patroli	G/LT-054	69	GW	
2010 (With Fe)	Data for 2011	Not Ava	ilable (With	ΙFε	e)									
Bhadi	BS-08	75	GW		*Chikurda	BS-01	6	7	GW	Chikurda	BS-01	54	GW	
Bhatkheda	BS-06	48	EXLT		*Chincholirao	T-01	4	7	EXLT	Chincholi Rao	T-01	56	GW	
Latur road.	BS-18	65	GW		*Karsa	BS-10	4	2	EXLT	Karsa	BS-10	36	EXLT	
*Babalgoan	BS-05	54	GW		*Latur	T-02	4	7	EXLT	Latur	T-02	50	EXLT	
*Murud bk	BS-03	51	GW		Babalgoan	BS-05	4	4	EXLT	Mamdapur	BS-09	45	EXLT	
*Nandgaon	TS-01	64	GW		Bhadi	BS-08	6	7	GW	Murud bk	BS-03	78	GW	
*Neoli	BS-07	48	EXLT		Bhatkheda	BS-06	6	9	GW	Nandgaon	TS-01	39	EXLT	
*Bhisewagholi	BS-02	37	EXLT		Bhisewagholi	BS-02	7	9	GW	Neoli	BS-07	79	GW	
*Borgaon bk	BS-04	42	EXLT		Borgaon bk	BS-04	8	1	GW					

T	aluka : Renap	ur			Taluka : Re	enapur		Taluka : Renapur					
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (Without Fe	2)			2008 (Withou	t Fe)			Data for 2009 Not Available (Without Fe)					
Pangaon	G/LT-020	67	GW	Renapur	G/LT-026	45	EXLT	Data for 20	109 Not Avallable (v	viillout F	e)		
2010 (With Fe)	Data for 2011	Not Ava											
Mamdapur	LTOBW018	57	GW	*Pangaon	LTOBW027	62	GW	Garsuli	LTOBW019	45	EXLT		
*Dawangaon	LTOBW024	54	GW	*Renapur	LTOBW026	55	GW	Palshi	LTOBW021	55	GW		
*Garsuli	LTOBW019	50	GW	*Sindgoan	LTOBW022	39	EXLT	Pangaon	LTOBW027	52	GW		
*Palshi	LTOBW021	62	GW	Dawangaon	LTOBW024	37	EXLT	Renapur	LTOBW026	51	GW		
								Sindgoan	LTOBW022	104	PW		

^{*} Pre- Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.16(Contd..) Latur District

	Taluka : Udgir	•				Taluka : U	Jdgir			Taluka:	Udgir	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	e)				2009 (Without F	re)						
Mogha	G/LT-028	61	GW		Mogha	G/LT-028	51	GW	Data for 2008 N	ot Available (V	Vithout F	(e)
Udgir	G/LT-052	83	GW		Udgir	G/LT-052	73	GW				
2010 (With Fe)	Data for 2011 I	Not Ava	ilable (With	Fe	e)							
Arasnal	LTPZ017	55	GW		Togari	LTOBW070	64	GW	Kodli	LTOBW052	64	GW
Haibatpur	LTPZ015	71	GW		Kiniyalladevi	LTOBW068	90	GW	Somnathpur	LTOBW050	105	PW
Kodli	LTOBW052	118	PW		Arasnal	LTPZ017	31	EXLT	Tiruka	LTOBW066	56	GW
Somnathpur	LTOBW050	58	GW		Haibatpur	LTPZ015	72	GW	Togari	LTOBW070	66	GW
Tiruka	LTOBW066	45	EXLT		Kiniyalladevi	LTOBW068	47	EXLT	Udgir	LTPZ016	50	GW

	Taluka : Deoni	i			Taluka : I	Deoni				Taluka:	Deoni	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2010 (With Fe) Data for 2007 to 2009 (Without Fe) Not Available and also 2011 (With Fe)												
Achola	LTOBW056	60	GW	Hanchnal	LTOBW061	117	PW		Deoni bk	LTOBW060	75	GW
Deoni bk	LTOBW060	43	EXLT	Achola	LTOBW056	69	GW		Hanchnal	LTOBW061	42	EXLT

Talul	ka : Shirur Ana	antpal			ŗ	Taluka : Shiru	· Anant	pal			Taluka : Shiru	r Anantp	oal
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2010 (With Fe)	Data for 2007 t	o 2009	(Without Fe) N	ot Available and	also 2011 (Witl	h Fe)						
Sakol	LTOBW093	74	GW		*Shivpur	LTOBW081	67	GW		*Yerol	LTOBW092	69	GW
Sakol	LTOBW093	34	EXLT		Shivpur	LTOBW081	71	GW	Ì	Yerol	LTOBW092	44	EXLT

^{*} Pre- Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

 Table x.17 : Water Quality Index of Groundwater of Mumbai District

	Taluka: Chu	rch Gate	2		Taluka: Chu	ırch G	ate			Taluka : Ch	urch Gat	e
Villages	Well No.	WQI	Category	Villages	Well No.	[Category	Villages	Well No.	WQI	Category		
2007 (Without Fe)			2008 (Without I	Fe)				2009 (Without F	'e)		
Church Gate	C/BB-002	75	GW	Church Gate	C/BB-002	90	GW		Church Gate	C/BB-002	70	GW

	Taluka : C	olaba			Taluka : (Colaba			Taluka :	Colaba	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)			2008 (Without	t Fe)			2009 (Without	Fe)		
Colaba	C/BB-005	58	GW	Colaba	C/BB-005	76	GW	Colaba	C/BB-005	58	GW

	Taluka : M	Iahim			Taluka : N	Mahim			Taluka:	Mahim	
Villages	Well No.	WQI	Category	Villages Well No. WQI Category				Villages	Well No.	WQI	Category
2007 (Without Fe)			2008 (Without	t Fe)			2009 (Witho	ut Fe)		
Mahim	C/BB-006	49	EXLT	Mahim	C/BB-006	54	GW	Mahim	C/BB-006	37	EXLT

Taluka	a : Goregaon -A	Andheri			Ta	luka : Gorega	on –And	lheri	Г	aluka : Gorega	aon -And	heri
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe						re)			2009 (Without F	'e)		
A.M.C.Colony	C/BB-001	38	EXLT		A.M.C.Colony	C/BB-001	60	GW	A.M.C.Colony	C/BB-001	38	EXLT

Ta	aluka : Deulwa	di			Taluka : C	hembur			Taluka :	Kurla	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe	2008 & 2009	Not Ava	ilable	2009 (Without	Fe) 2007 & 200	8 Not A	vailable	2008 (Without	Fe) 2007 & 2009	9 Not Ava	ailable
Deulwadi	C/BB-007	63	GW	Mahroli	C/BB-004	73	GW	Chembur	C/BB-004	25	EXLT

	Taluka: Bo	rivali				Taluka : Bo	orivali				
Villages	Well No.	WQI	Category	ory Villages Well No. WQI Categ							
2007 (Without Fe) Data for 2008	Not Av	ailable		2009 (Without I	Fe)					
Dahisar	C/BB-003	109	PW		Dahisar	C/BB-003	46	EXLT			

Data for 2010 and 2011 Not Available

Table x.18: Water Quality Index of Groundwater of Nagpur District

	Taluka : B	hivapur				Taluka : F	Bhivapu	r			Taluka:	Bhivapur	
Villages	Well No.	WQI	Category		Villages Well No. WQI Category					Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Witho	out Fe)				2009 (Withou	ıt Fe)		
Nawegaon	G/NG-038	65	GW		Nawegaon	G/NG-038	53	GW		Nawegaon	G/NG-038	61	GW
2010 (With Fe) Data for 2011	Not Av	ailable (Wi	th 1	Fe)								
*Besur	NGOBW119	144	PW		Zamkoli	NGOBW126	102	PW		Zamkoli	NGPZ021	89	GW
*Kargaon	NGOBW121	120	PW		Kargaon	NGPZ016	108	PW		*Panjrepar	NGWQN003	80	GW
Naxhi	NGOBW122	140	PW		Bordikala	NGPZ020	143	PW					

	Taluka : H	Iingna				Taluka : I	Hingna			Taluka :	Hingna	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Without	t Fe)			2009 (Withou	ut Fe)		
Amgaon	G/NG-061	53	GW		Amgaon	G/NG-061	64	GW	Amgaon	G/NG-061	51	GW
2010 (With Fe)	Data for 2011	Not Av	ailable (Wi	ith	Fe)							
Kanholibora	NGOBW027	108	PW		Adegaon	NGPZ024	84	GW	Shivmadka	NGOBW032	184	PW
Pipaldhara	NGOBW029	58	GW		Mangli	NGPZ041	140	PW	Takalghat	NGPZ005	181	PW
Saongi Deoli	NGOBW030	121	PW		*SaongiDeoli	NGOBW030	118	PW	Adegaon	NGPZ024	123	PW
Shivmadka	NGOBW032	158	PW		*Wandongri	NGOBW033	78	GW	Mangli	NGPZ041	179	PW
Wandongri	NGOBW033	75	GW		Kanholibora	NGOBW027	150	PW				
Takalghat	NGPZ005	113	PW		Pipaldhara	NGOBW029	80	GW				

	Taluka : Kal	meshwa	r			Taluka : Kal	meshwa	ır		Taluka : Ka	almeshwa	r
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Without	Fe)			2009 (Withou	ut Fe)		
Kalmeshwar	G/NG-013	442	UNSUT		Kalmeshwar	G/NG-013	516	UNSUT	Dhapewada	G/NG-064	129	PW
Dhaewada	G/NG-064	124	PW		Dhapewada	G/NG-064	109	PW				
2010 (With Fe) Data for 2011	Not Av	ailable (Wi	ith	Fe)							
Ghorad	NGPZ003	75	GW		Telkamthi	NGOBW066	73	GW	*Telkamthi	NGOBW066	133	PW
Tishti bk.	NGPZ032	110	PW		Kalmeshwar	NGWQN008	235	VPW	Ghogli	NGOBW063	136	PW
Khumari	NGPZ036	102	PW		*Kalmeshwar	NGWQN008	213	VPW	Mohli	NGOBW064	106	PW
Mohpa	NGOBW065	78	GW		*Mohpa	NGOBW065	82	GW	Tishti Bk.	NGPZ032	130	PW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	· / c											
	Taluka : K	amptee				Taluka : K	amptee			Taluka : K	amptee	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)				2008 (Withou	t Fe)			2009 (Without	Fe)		
Kamptee	G/NG-059	136	PW		Kamptee	G/NG-059	123	PW	Koradi	G/NG-065	110	PW
Koradi	F				Koradi	G/NG-065	97	GW				
2010 (With Fe	e) Data for 201	1 Not Av	ailable (W	ith	Fe)							
Adka	NGOBW015	115	PW		Khaparkheda	NGWQN006	69	GW	*Kadholi	NGWQN005	89	GW
Gumthala	NGOBW017	99	GW		*Adka	NGOBW015	107	PW	*Khaparkheda	NGWQN006	78	GW
Sawali	NGOBW022	77	GW		*Sawali	NGOBW022	82	GW	Wadoda	NGOBW023	92	GW
Wadoda	NGOBW023	83	GW		*Kamthi	NGOBW018	97	GW	Gumthala	NGPZ025	122	PW

	Taluka:	Kuhi				Taluka :	Kuhi				Taluka	: Kuhi	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Withou	ıt Fe)				Data for 2000	Not Avoilable	(With out	Eo)
Kuhi	G/NG-044	49	EXLT		Kuhi	G/NG-044	40	EXLT	,	Data for 2009	Not Available	(without	re)
2010 (With Fe) Data for 2011	l Not Av	ailable (Wi	ith	Fe)								
*Gothangaon	NGOBW129	140	PW		Mandhal	NGOBW133	131	PW		Gothangaon	NGPZ014	153	PW
Kanheri													
(Dongar]	NGOBW131	72	GW		Kuhi	NGPZ013	107	PW		Weltur	NGPZ015	132	PW
*Kuhi	NGOBW132	69	GW										

	Taluka : N	Aouda				Taluka : I	Mouda			Taluka:	Mouda	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Withou	t Fe)			2009 (Withou	ıt Fe)		
Khat	G/NG-030 64				Khat	G/NG-030	63	GW	Chacher	G/NG-021	66	GW
Chacher	G/NG-021	92	GW		Chacher	G/NG-021	67	GW				
2010 (With Fe) Data for 2011	Not Av	ailable (Wi	ith	Fe)							
Chacher	NGOBW094	179	PW		Mauda	NGOBW100	66	GW	Charbha	NGOBW095	158	PW
Charbha	NGOBW095	90	GW		*Mauda	NGOBW100	74	GW	Dharmapuri	NGOBW096	59	GW
Dharmapuri	NGOBW096	63	GW		Chacher	NGOBW094	98	GW	Mathni	NGOBW143	143	PW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : N					Taluka : N	lagpur			Taluka:	Nagpur	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Without	Fe)			2009 (Without	Fe)		
Deolapar	G/NG-009	80	GW		Deolapar	G/NG-009	61	GW	Deolapar	G/NG-009	64	GW
Makardhokda	G/NG-043	65	GW		Makardhokda	G/NG-043	51	GW	Makardhokda	G/NG-043	52	GW
Panchgaon	G/NG-011	69	GW		Panchgaon	G/NG-011	83	GW	Borkhedi	G/NG-031	83	GW
Nagpur City	G/NG-035	85	GW		NagpurCity	G/NG-035	81	GW	Mangli1	G/NG-060	57	GW
Nagpur City	G/NG-066	93	GW		NagpurCity	G/NG-066	86	GW	Chorbaoli	G/NG-014	70	GW
Borkhedi	G/NG-031	90	GW		Borkhedi	G/NG-031	74	GW	Kanholi bara	G/NG-041	110	PW
Mangli	G/NG-060	191	PW		Gumgaon	G/NG-008	62	GW	Nara	G/NG-058	133	PW
Chorbaoli	G/NG-014	75	GW		Mangli	G/NG-060	199	PW	Sathnaori	G/NG-025	96	GW
Kanholi bara	G/NG-041	116	PW		Chorbaoli	G/NG-014	67	GW	Sirpur Toli	G/NG-029	43	EXLT
Sathnaori	G/NG-025	110	PW		Sathnaori	G/NG-025	96	GW	Sivani	G/NG-018	77	GW
Sirpur Toli	G/NG-029	43	EXLT		Sirpur Toli	G/NG-029	51	GW	Wagholi	G/NG-028	232	VPW
Sivani	G/NG-018	73	GW		Sivani	G/NG-018	61	GW				
Wagholi	G/NG-028	72	GW		Wagholi	G/NG-028	57	GW				
2010 (With Fe) Data for 2011	Not Av	ailable (W	ith	Fe)							
Bokhara	NGOBW145	119	PW		*Bokhara	NGOBW145	110	PW	Gonhi	NGPZ003	171	PW
Makardhokra	NGOBW146	74	GW		*Wanjra	NGWQN004	62	GW	Makardhokra	NGOBW146	70	GW
Gonhi	NGPZ002	105	PW		*Bahadura	NGOBW135	120	PW	Tamaswadi	NGPZ004	97	GW
Bahadura	NGOBW135	89	GW		*Bhandewadi	NGWQN001	114	PW	Kalamna	NGPZ022	97	GW
Wanjra	NGWQN004	63	GW		*Pardi	NGWQN002	74	GW	Sonegaon L	NGPZ042	79	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : N	arkhed				Taluka : N	arkhed			Taluka : N	Narkhed	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Without	t Fe)			2009 (Without	Fe)		
Narkhed	G/NG-007	179	PW		Narkhed	G/NG-007	128	PW	Narkhed	G/NG-007	173	PW
Sawargaon	G/NG-062	89	GW		Sawargaon	G/NG-062	70	GW	Sawargaon	G/NG-062	81	GW
Wardhamna	G/NG-012	106	PW		Wardhamna	G/NG-012	61	GW	Wardhamna	G/NG-012	56	GW
2010 (With Fe) Data for 2011	Not Av	ailable (Wi	ith	Fe)							
Rohana	NGOBW049	172	PW		Belona	NGOBW042	147	PW	Sawargaon	NGOBW051	116	PW
Sawargaon	NGOBW051	144	PW		Saonga Loh	NGOBW050	76	GW	Jamgaon (bk)	NGPZ034	95	GW
Jamgaon (bk)	NGPZ034	58	GW		Lohara	NGOBW048	79	GW	Wadvihara	NGPZ035	114	PW
Wadvihara	NGPZ035	69	GW		*Belona	NGOBW042	65	GW	Kharala	NGPZ037	73	GW
Kharala	NGPZ037	56	GW		*Lohara	NGOBW048	89	GW	Sawargaon	NGPZ038	130	PW
Sawargaon	NGPZ038	97	GW		*SaongaLoh.	NGOBW050	69	GW	Belona	NGPZ040	153	PW
Belona	NGPZ040	160	PW		*Yeni Koni	NGWQN009	98	GW				_
Yeni Koni	NGWQN009	107	PW		Rohana	NGOBW049	192	PW				

	Taluka : Pa	arseoni				Taluka : P	arseoni			Taluka : 1	Parseoni	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Without	t Fe)			2009 (Withou	t Fe)		
Parseoni	G/NG-016	76	GW		Parseoni	G/NG-016	55	GW	Parseoni	G/NG-016	80	GW
Chargaon					Chargaon							
(Punarwasi)	G/NG-032	99	GW		(Punarwasi)	G/NG-032	78	GW	Nayakund	G/NG-026	59	$\mathbf{G}\mathbf{W}$
Nayakund	G/NG-026	73	GW		Nayakund	G/NG-026	57	GW				
2010 (With Fe) Data for 2011	Not Av	ailable (W	ith	Fe)							
Chargaon	NGOBW080	114	PW		Gahuhiwra	NGPZ012	79	GW	Parseoni	NGPZ011	56	GW
Ghukshi	NGOBW082	86	GW		Dhawalapur	NGPZ028	94	GW	Gahuhiwra	NGPZ012	80	GW
Nimba	NGOBW083	87	GW		*Karambhad	NGOBW083	90	GW	Chargaon	NGOBW080	135	PW
Khandala	NCODW005				*Kandri							
(ghatate)	NGOBW085	62	GW		(kanhan)	NGWQN011	81	GW	Ghukshi	NGOBW082	95	GW
Marialiumd	NGPZ010								Khandala			
Nayakund	NGPZ010	65	GW		Amdi	NGPZ001	84	GW	(ghatate)	NGOBW085	75	GW
Parseoni	NGPZ011	49	EXLT		Nayakund	NGPZ010	84	GW	Dhawalapur	NGPZ028	91	GW

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	(
	Taluka : R	Ramtek				Taluka : R	amtek			Taluka:	Ramtek	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)				2008 (Withou	t Fe)			Data for 2000	Not Amelloble	13724b o4 1	7-)
Ramtek	G/NG-004	175	PW		Ramtek	G/NG-004	169	PW	Data for 2009	Not Available (without i	re)
2010 (With F	e) Data for 2011	Not Av	ailable (W	ith	Fe)							
*Mansar	NGWQN010	61	GW		Deolapar	NGPZ007	93	GW	Salai	NGOBW075	157	PW
*Armtek	NGOBW074	56	GW		Karwahi	NGPZ008	158	PW	Sillari	NGOBW076	82	GW
Chorbaoli	NGPZ006	160	PW		Bhandarbodi	NGOBW068	127	PW	Tangla	NGPZ009	77	GW

	Taluka: Saon	er				Taluka : S	Saoner			Taluka:	Saoner	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Without	t Fe)			2009 (Withou	ıt Fe)		
Kelod	G/NG-023	112	PW		Kelod	G/NG-023	93	GW	Kelod	G/NG-023	97	GW
Khubala	G/NG-027	64	GW		Khubala	G/NG-027	48	EXLT	Khubala	G/NG-027	56	GW
Manegaon					Manegaon							
Tek	G/NG-022	144	PW		Tek	G/NG-022	136	PW	Mohpa	G/NG-063	78	GW
Mohpa	G/NG-063	79	GW		Mohpa	G/NG-063	62	GW	Nagalwadi	G/NG-017	63	GW
Nagalwadi	G/NG-017	68	GW		Nagalwadi	G/NG-017	53	GW	Kothulna	G/NG-039	133	PW
Kothulna	G/NG-039	229	VPW		Kothulna	G/NG-039	190	PW				
2010 (With Fe) Data for 2011	Not Av	ailable (Wi	ith	Fe)							
Chhatrapur	NGOBW055	62	GW		Kelwad	NGPZ030	102	PW	Chhatrapur	NGOBW055	74	GW
Kelod	NGOBW056	93	GW		Salai	NGPZ031	142	PW	Khairi (p)	NGOBW057	106	PW
Khairi (p)	NGOBW057	71	GW		Chandkapur	NGWQN007	70	GW	Kothulna	NGOBW060	137	PW
Kothulna	NGOBW060	123	PW		*Kelod	NGOBW056	101	PW	Sironji	NGPZ029	70	GW
Saoner	NGOBW061	89	GW		*Saoner	NGOBW061	115	PW	Kelwad	NGPZ030	87	GW
Sironji	NGPZ029	60	GW		*Chandkapur	NGWQN007	83	GW	Salai	NGPZ031	91	GW

	Taluka : Umr	ed				Taluka : U	Jmred				Taluka:	Umred	
Villages	Well No.	WQI	Category	,	Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2008 (Withou	ıt Fe)				2010 (With Fe) Data for 2011	Not Av	ailable (Wit	th	Fe)			
Umred	G/NG-002	48	EXLT	- [*Umred	NGOBW114	79	GW		Thana	NGOBW112	85	GW
Data for	. 2007 P. 2000 N		a k.l.a		Pachgaon	NGOBW106	68	GW		Bela	NGOBW153	93	GW
Data 101	Data for 2007 & 2009 Not Available				Sawangi Kh.	NGOBW108	79	GW		AmgaonDeol	NGPZ018	104	PW
	(Without Fe	,		3	Sirsi	NGOBW111	97	GW					

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka:					Taluka:	Katol			Taluka :	Katol	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe) Data for 2007	7 to 2009	(Without	Fe)	and also 2011 ((With Fe) Not A	vailable)				
Katol	NGPZ033	89	GW		Ringnabodi	NGOBW041	75	GW	Ringnabodi	NGOBW041	86	GW
Dhotiwada	NGPZ039	67	GW		*Katol	NGOBW037	145	PW	Katol	NGPZ033	75	GW
Katol	NGOBW037	108	PW		*Khangaon	NGOBW038	90	GW	Dhotiwada	NGPZ039	123	PW
Nandora	NGOBW040	80	GW		Nandora	NGOBW040	98	GW		•		

	Taluka: Nagp	ur (Rur	al)		Taluka : Nagp	ur (Rur	al)		Taluka : Nag	pur (Rura	al)			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category			
2010 (With Fe	010 (With Fe) Data for 2007 to 2009 (Without Fe) and also 2011 (With Fe) Not Available													
Borkhedi	NGOBW004	59	GW	Bothli	NGOBW005	81	GW	Mohgaon	NGOBW012	69	GW			

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.19: Water Quality Index of Groundwater of Nanded District

	Taluka : H	Bhokar				Taluka:	Bhokar			Taluka:	Bhokar	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Witho	out Fe)			2010 (With F	e)		
Bhokar	G/ND-008	168	PW		Bhokar	G/ND-008	136	PW	Wakad	NDOBW020	60	GW
2011 (With Fe)	Data for 20	009 Not .	Available (Wi	thout Fe)							
									*Somthana			
*Bhokar	NDWQN002	75	GW		*Kinipalaj	NDPZ006	55	GW	(Bhokar)	NDOBW026	57	GW
*Divshi Kh	NDOBW028	100	PW		*Nanda Bk	NDOBW029	73	GW	*Wakad	NDOBW020	68	GW

	Taluka : Had	gaon		Taluka : Hadgaon					Taluka : H	Iadgaon		
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)					2008 (Without	t Fe)			2010 (With F	'e)		
Dorli	G/ND-033	68	GW		Dorli	G/ND-033	148	PW	Dongargaon	NDPZ018	94	GW
2011 (With Fe) D									Ghogari	NDOBW107	50	GW
Taroda kh	NDPZ001	82	GW		*Dongargaon	NDPZ018	93	GW	Shivpuri	NDOBW103	74	GW
Ghogari	NDOBW107	51	GW		*Hadgaon	NDOBW101	85	GW	Umri p.k	NDOBW091	96	GW
Shivpuri	NDOBW103	68	GW		*Sibdara (j)	NDOBW098	75	GW				
Tamsa	NDOBW104	71	GW		*Umri p.k	NDOBW091	79	GW				
*Talni	NDOBW042	57	GW		*Walki Kh.	NDOBW106	70	GW				
*Dhanora(hastara)	NDOBW096	61	GW									

7	Гаluka : Himay	at Naga	r			Taluka : Hima	yat Naş	gar			Taluka : Him	ayat Nag	gar
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2007 (Without Fe	2007 (Without Fe) Data for 2008 & 09 Not Avail.					2011 (With Fe) Data for 2010 Not Available (Wi				h Fe)			
					Dabdhari								
Himayat Nagar	Himayat Nagar G/ND-014 173 PW			tanda	NDOBW110	52	GW		Khairgaon(j)	NDOBW114	94	GW	
					Himayatnagar	NDOBW111	96	GW		Palaspur	NDOBW112	73	GW

	Taluka : M	ahur			Taluka : N	Aahur			Taluka : Mahur				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	1	Villages	Well No.	WQI	Category	
2007 (Without F	e) Data 2008 &	09 Not A	Available	2011 (With Fe) Data 2010 Not Available									
Anjankhed	G/ND-063	84	GW	Datta manjri	NDOBW127	47	EXLT	:	Sindkhed	NDPZ021	51	GW	

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.19 (Contd..) Nanded District

·	Taluka : Ki	nwat			Taluka : K	inwat		Taluka : Kinwat					
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (With Fe)				2008 (With Fe)								
Bothroad									Data for 2009 N	Jot Avoil	ahla		
(Bodhadi)	G/ND-030	42	EXLT						Data for 2009 F	iot Avan	able		
Unkeshwar	G/ND-051	79	GW	Unkeshwar	G/ND-051	83	GW						
2011 (With Fe)	Data for 2010 N	lot Avai	lable (With	Fe)									
Apprao peth	NDOBW048	65	GW	Kinwat	NDOBW122	58	GW	Pradhnsangvi	NDOBW121	93	GW		
Bodhadi Bk	NDPZ019	51	GW	Kosmet	NDOBW113	65	GW	Sarkhani	NDOBW129	60	GW		
Chikhali	NDOBW120	86	GW	Kuncholi	NDOBW047	51	GW	Talaiguda	NDOBW133	85	GW		
Islapur	NDOBW115	43	EXLT	Malbrogaon	NDPZ020	81	GW						
Kamthala	NDOBW125	66	GW	Pardi	NDWQN004	59	GW						

	Taluka : Mu	khed			Taluka : M	lukhed		Taluka : Mukhed				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Without Fo	e)			2008 (Without	t Fe)			2009 (Withou	t Fe)			
Sikarghat				Sikarghat								
(Amdura)	G/ND-003	103	PW	(Amdura)	G/ND-003	121	PW	Lahan	G/ND-037	110	PW	
Gojegaon	G/ND-004	51	GW	Gojegaon	G/ND-004	61	GW	Malegaon (I)	G/ND-017	45	EXLT	
Barad	G/ND-029	90	GW	Lahan	G/ND-037	97	GW	Mudkhed	G/ND-056	100	GW	
Lahan	G/ND-037	121	PW	Mudkhed	G/ND-056	102	PW					
Mudkhed	G/ND-056	101	PW	2010 (With Fe	e)							
Mukrambad												
(Kharka)	G/ND-021	64	GW	*Mandlapur	NDPZ013	90	GW	*Barhali	NDOBW060	98	GW	
2011 (With Fe)												
*Barhali	NDOBW060	62	GW	Khatgaon	NDOBW076	78	GW	Barhali	NDOBW060	101	PW	
Halni	NDPZ012	61	GW	Mandlapur	NDPZ013	68	GW	Mukhed	NDOBW072	54	GW	

	Taluka : Dhai	mabad		Taluka : Dharmabad				Taluka : Dharmabad				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2010 (With Fe)				2011 (With Fe	e)							
*Yeoti	NDOBW074	66	GW	Dharmabad	NDPZ009	64	GW	Yeoti	NDOBW074	69	GW	
Data for 2007 to	Pata for 2007 to 2009 (Without Fe) Not Avail.				NDOBW045	74	GW	*Karegaon	NDOBW038	80	GW	

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.19 (Contd..) Nanded District

	Taluka : Na	nded		Taluka : Nanded				Taluka : Nanded				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Without F	Te)			2008 (Withou	t Fe)			2009 (Withou	t Fe)			
				Dhawari				Dhawari				
Jamb Buzurg	G/ND-012	101	PW	Buzurg	G/ND-027	75	GW	Buzurg	G/ND-027	65	GW	
Jhalakwadi	G/ND-047	58	GW	Jhalakwadi	G/ND-047	86	GW	Kamtala	G/ND-041	78	GW	
Kamtala	G/ND-041	74	GW	Kamtala	G/ND-041	81	GW	Narwat	G/ND-015	138	PW	
Karadkher	G/ND-024	105	PW	Narwat	G/ND-015	123	PW	2010 (With Fe	e)			
Narwat	G/ND-015	99	GW					*Nanded	NDOBW019	120	PW	
Waranga	G/ND-049	74	GW	2011 (With Fo	e)							
		•		Wadi Bk	NDPZ002	62	GW	Tuppa	NDOBW015	51	GW	
				Markand	NDOBW019	113	PW	*Adampur	NDOBW068	101	PW	

	Taluka : B	iloli			Taluka:	Biloli			Taluka : Biloli				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Villages Well No. WQI				
2007 (Without Fe	e)		2008 (Withou	ıt Fe)			Data for	2009 (Without Fe) 1	Not Avail	able			
Narsi	G/ND-038	53	GW	Narsi	G/ND-038	73	GW	and also	2010 -11 (With Fe)				

	Taluka : Ard	hapur			Taluka : A	rdhapur			Taluka : Ardhapur			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2011 (With Fe) Data for 2007 to 2009 (Without Fe) and 2010 (With Fe) Not Available												
Dour	NDPZ003	66	GW	Lahan	NDPZ004	66	GW	*Pardim	NDOBW005	58	GW	

	Taluka : De	eglur			Taluka : I	Deglur		Taluka : Deglur			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe)	Data for 2007 to	o 2009 (Without Fe) Not Available							
*Amdapur	NDOBW077	75	GW	*Deglur	NDOBW086	117	PW	*Tadkhel	NDOBW082	54	GW
*Dawangir	NDOBW085	63	GW	*Hanegaon	NDOBW088	88	GW	*Wazarga	NDPZ014	74	GW
2011 (With Fe)											
Amdapur	NDOBW077	79	GW	Halli	NDPZ017	84	GW	Tadkhel	NDOBW082	52	GW
Dawangir	NDOBW085	65	GW	Hanegaon	NDOBW088	76	GW	Wazarga	NDPZ014	84	GW
Deglur	NDOBW086	113	PW	Narangal Bk	NDPZ016	55	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.19 (Contd..) Nanded District

Taluka : Kandhar Villages Well No. WQI Category Villages Well No. WQI Category Villages Well No. WQI Category Villages Well No.	54 79	GW GW GW
2010 (With Fe) *Kandhar NDOBW066 102 PW *Osmanagar NDOBW017 58 GW *Pethwadaj NDOBW057 Data for 2007 to 2009 Not Available (Without Fe) *Warwant NDPZ011 2011 (With Fe) Bamni p.k NDOBW023 54 GW *Nagalgaon NDOBW053 49 EXLT *Shekapur NDOBW055 Bhadurpura NDPZ010 86 GW *Osmanagar NDOBW017 96 GW *Warwant NDPZ011 *Bachoti NDOBW066 84 GW *Pethwadaj NDOBW057 89 GW Taluka : Loha Taluka : Loha Taluka	62 80 54 79	GW GW
Data for 2007 to 2009 Not Available (Without Fe) *Warwant NDPZ011	54 79	GW
2011 (With Fe) Bamni p.k NDOBW023 54 GW *Nagalgaon NDOBW053 49 EXLT *Shekapur NDOBW055 Bhadurpura NDPZ010 86 GW *Osmanagar NDOBW017 96 GW *Warwant NDPZ011 *Bachoti NDOBW066 84 GW *Pethwadaj NDOBW057 89 GW Taluka Taluka: Loha	54 79	GW
Bamni p.k NDOBW023 54 GW *Nagalgaon NDOBW053 49 EXLT *Shekapur NDOBW055 Bhadurpura NDPZ010 86 GW *Osmanagar NDOBW017 96 GW *Warwant NDPZ011 *Bachoti NDOBW066 84 GW *Pethwadaj NDOBW057 89 GW Taluka: Taluka:	79	
Bhadurpura NDPZ010 86 GW *Osmanagar NDOBW017 96 GW *Warwant NDPZ011 *Bachoti NDOBW066 84 GW *Pethwadaj NDOBW057 89 GW *Warwant NDPZ011 Taluka : Loha Taluka : Loha Taluka Taluka	79	
*Bachoti NDOBW066 84 GW *Pethwadaj NDOBW057 89 GW Taluka: Loha Taluka: Loha Taluka	1	GW
Taluka : Loha Taluka : Loha Taluka	. T . L .	
	. T .1	
	: Lona	
T V MARCS TO THE TWO. TO VIOLET CALCEROLY TO VIMARES TO VIOLENCE TO VIOLET CALCEROLY TO VIMARES TO VIOLENCE.	WQI	Category
2010 (With Fe) 2011 (With Fe)		
*Malakoli		
Janapuri NDOBW018 127 PW *Janapuri NDOBW018 86 GW (khedkarwadi) NDOBW050	91	GW
*Shambergaon NDOBW014 100 PW Loha NDPZ005 66 GW Savargaon NDOBW010	86	GW
Data for 2007 to 2009 Not Avail. (Without Fe)ShambergaonNDOBW01498GW		
Taluka : Mudkhed Taluka : Mudkhed Taluka :	Mudkhed	
Villages Well No. WQI Category Villages Well No. WQI Category Villages Well No.	WQI	Category
2010 (Without Fe) 2011 (Without Fe) Data for 2007 to 2009 Not A	vailable	
*Mudkhed NDOBW021 62 GW Mudkhed NDOBW021 81 GW (Without Fe)		
*Mugat NDOBW012 89 GW Mugat NDOBW012 57 GW		
Taluka : Umri Taluka : Umri Taluka	: Umri	
Villages Well No. WQI Category Villages Well No. WQI Category Villages Well No.	WQI	Category
2010 (With Fe) 2011 (With Fe)		
Waghalwada NDWQN003 53 GW *Kawalguda NDOBW040 58 GW Gortha NDOBW034	58	GW
*Gortha NDOBW034 74 GW Somthana J. NDOBW039 83 GW Karla NDOBW032		EXLT
*Karla NDOBW032 48 EXLT Somthana J. NDOBW039		GW
Data for 2007 to 2009 Not Available (Without Fe); * Monsoon Season		PW
*Waghalwada NDWQN00	88	GW
Taluka : Naigaon Taluka : Naigaon Taluka :	Naigaon	
Villages Well No. WQI Category Villages Well No. WQI Category Villages Well No.	WQI	Category
2011 (With Fe)		
Badbada NDOBW025 134 PW *Yesgi NDOBW081 110 PW Billoli NDPZ00	8 54	GW
Degaon NDPZ007 62 GW *Biloli NDPZ015 90 GW *Kondalwadi NDWQN00	6 68	GW
*Naigaon Bazar NDOBW036 64 GW Data for 2007 to 2009 (Without Fe) and 2010 (With Fe) Not Available		

Table x.20: Water Quality Index of Groundwater of Nandurbar District

	Taluka : Ak	kalkuva			Taluka : A	kkalkuv	'a	Taluka : Akkalkuva				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Without	Fe)			2008 (Witho	ut Fe)			2009 (Withou	ıt Fe)			
Akkalkuva	T/NR-011	58	GW	Akkalkuva	T/NR-011	53	GW	Akkalkuva	T/NR-011	60	GW	
2010 (With Fe))											
*Kathi	NBOBW001	64	GW	*Digiamba	NBOBW049	59	GW	*Raisingpur	NBOBW057	63	GW	
*Khapar	NBOBW003	147	PW	*Karanpada	NBOBW050	51	GW	*Moramba	NBPZ010	92	GW	
*Akkalkuva	NBOBW009	88	GW									
2011 (With Fe)											
Akkalkuva	NBOBW009	32	EXLT	Raisingpur	NBOBW057	36	EXLT	Digiamba	NBOBW049	59	GW	
Digiamba	NBOBW049	52	GW	Moramba	NBPZ010	32	EXLT	Karanpada	NBOBW050	37	EXLT	
Kathi	NBOBW001	35	EXLT	Kathi	NBOBW001	38	EXLT	Raisingpur	NBOBW057	42	EXLT	
Khapar	NBOBW003	53	GW	Khapar	NBOBW003	75	GW	Moramba	NBPZ010	94	GW	
Karanpada	NBOBW050	27	EXLT	Akkalkuva	NBOBW009	50	EXLT					

	Taluka : '	Taloda			Taluka :	Taloda			Taluka :	Taloda	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (With	out Fe)			2009 (With	out Fe)		
Taloda	T/NR-026	72	GW	Rozwe	T/NR-025	45	EXLT	Rozwe	T/NR-025	53	GW
				Taloda	T/NR-026	74	GW	Taloda	T/NR-026	75	GW
2010 (With Fe	e)			2011 (With	Fe)						
*Gopalpur	NBOBW047	50	GW	Talode	NBOBW026	56	GW	Talode	NBOBW026	43	EXLT
				Mod	NBOBW043	67	GW	Mod	NBOBW043	71	GW
				Umari	NBOBW044	54	GW	Umari	NBOBW044	45	EXLT
				Kothar	NBOBW046	44	EXLT	Gopalpur	NBOBW047	44	EXLT
				Gopalpur	NBOBW047	30	EXLT	Taloda	NBPZ001	61	GW
				Taloda	NBPZ001	54	GW		_		

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.20(Contd..) Nandurbar District

	Taluka : Na	ndurbar			Taluka : Na	ndurba	r		Taluka : Na	andurbar	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Nandurbar	T/NR-001	99	GW	Nandurbar	T/NR-001	79	GW	Ranala	T/NR-007	76	GW
Ranala	T/NR-007	68	GW	Ranala	T/NR-007	70	GW	Bhadavad	T/NR-016	139	PW
Bhadavad	T/NR-016	133	PW	Bhadavad	T/NR-016	91	GW	Khuntamwadi	T/NR-024	49	EXLT
Kuntumwadi	T/NR-024	47	EXLT	Khuntamwadi	T/NR-024	46	EXLT	Loy	T/NR-020	82	GW
Loy	T/NR-020	66	GW	Loy	T/NR-020	56	GW	Vadkolambi	T/NR-015	41	EXLT
Rajhava	T/NR-025	48	EXLT	`							
Vadkolambi	T/NR-015	49	EXLT								
Wadali S.	T/NR-022	106	PW								
2010 (With Fe)											
*Shanimandal	NBOBW027	46	EXLT	Nimboni	NBOBW006	59	GW	Shanimandal	NBOBW027	108	PW
*Patharai	NBOBW030	45	EXLT	Nandurbar	NBOBW010	109	PW	Dhandane	NBOBW048	69	GW
*Dhandane	NBOBW048	61	GW	Samsherpur	NBOBW029	79	GW	Akrale	NBOBW051	70	GW
*Akrale	NBOBW051	69	GW	Patharai	NBOBW030	61	GW	Akarale	NBOBW064	55	GW
*Dhekwad	NBOBW052	90	GW	Dhekwad	NBOBW052	73	GW	Shanimandal	NBPZ004	97	GW
*Dhanora	NBOBW053	79	GW	Nimboni	NBPZ005	45	EXLT	Nandurbar	NBPZ007	54	GW
*Samsherpur	NBPZ006	66	GW	Samsherpur	NBPZ006	70	GW				
2011 (With Fe))										
Dhanora	NBOBW053	69	GW	Patharai	NBOBW030	94	GW	Shanimandal	NBPZ004	273	VPW
Nimboni	NBOBW006	62	GW	Dhandane	NBOBW048	62	GW	Samsherpur	NBPZ006	86	GW
Nandurbar	NBOBW010	82	GW	Akrale	NBOBW051	55	GW	Nandurbar	NBPZ007	89	GW
Shanimandal	NBOBW027	116	PW	Dhekwad	NBOBW060	65	GW				
Samsherpur	NBOBW029	78	GW	Akarale	NBOBW064	43	EXLT				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.20(Contd..) Nandurbar District

	Taluka : N	avapur			Taluka : N	Vavapur			Taluka:	Navapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	ut Fe)			2009 (Witho	ut Fe)		
Viasarwadi	T/NR-004	68	GW	Viasarwadi	T/NR-004	69	GW	Nawapur	T/NR-023	83	GW
Nawapur	T/NR-023	89	GW	Nawapur	T/NR-023	88	GW				
2010 (With Fe	e)										
*Shravani	NBOBW011	86	GW	Vadkhut	NBOBW025	47	EXLT	Navapur	NBPZ009	43	EXLT
*Visarwadi	NBOBW012	62	GW	Dokare	NBOBW032	72	GW	Shravani	NBOBW011	51	GW
*Sonkhamb	NBOBW031	63	GW	Kamod	NBOBW045	53	GW	Sonkhamb	NBOBW031	40	EXLT
*Mograni	NBOBW055	59	GW	Vadkalambi	NBOBW056	41	EXLT	Anjane	NBOBW033	68	GW
*Navapur	NBPZ009	66	GW	Nijampur	NBOBW035	44	EXLT	Nijampur	NBOBW035	52	GW
Navapur	NBOBW002	70	GW	Jamtalav	NBOBW036	37	EXLT	Kamod	NBOBW045	48	EXLT
Visarwadi	NBOBW012	55	GW	Navapur	NBOBW002	35	EXLT	Kolvihir	NBOBW054	46	EXLT
Anjane	NBOBW033	52	GW	Visarwadi	NBOBW012	49	EXLT	Sonkhamb	NBPZ008	59	GW
Kolvihir	NBOBW054	50	GW	Jamtalav	NBOBW036	39	EXLT				
Kadwan	NBOBW013	95	GW	Vadkalambi	NBOBW056	36	EXLT				
2011 (With Fe	e)										
Nijampur	NBOBW035	50	GW	Sonkhamb	NBPZ008	85	GW	Shravani	NBOBW011	52	GW
Jamtalav	NBOBW036	59	GW	Navapur	NBPZ009	81	GW	Sonkhamb	NBOBW031	48	EXLT
Kamod	NBOBW045	49	EXLT	Visarwadi	NBOBW012	48	EXLT	Anjane	NBOBW033	56	GW
Vadkalambi	NBOBW056	57	GW	Navapur	NBOBW002	62	GW				
Khokarwade	NBOBW058	53	GW								

	Taluka : Dl	hadgaon				Taluka : D	hadgao	n			Taluka : I	Dhadgaon	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2010 (With Fe)												
*Chinalkuva	NBOBW014	51	GW		*Umarani	NBOBW038	45	EXLT		*Dhadgaon	NBOBW039	62	GW
*Mandvi Bk	andvi Bk NBOBW015 61				Data for 200	7 to 2009 (With	out Fe)	Not Availab	le				
2011 (With Fe)												
Chinalkuva	NBOBW014	39	EXLT		Bijari	NBOBW061	33	EXLT		Dhadgaon	NBOBW059	41	EXLT
Mandvi Bk	NBOBW015	39	EXLT		Mandavi bk	NBPZ011	46	EXLT		Bijari	NBOBW061	48	EXLT
Umarani kh	NBOBW038	34	EXLT		Chinalkuva	NBOBW014	43	EXLT		Mandavi bk	NBPZ011	54	GW
Dhadgaon	NBOBW039	44	EXLT		Mandvi Bk	NBOBW015	46	EXLT					
Dhadgaon	NBOBW059	45	EXLT		Umarani kh	NBOBW038	47	EXLT					

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.20(Contd..) Nandurbar District

	Taluka : Sł	nahada			Taluka : Sł	nahada			Taluka : S	hahada	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe)											
*Mandane	NBOBW005	36	EXLT	Sarangkheda	NBOBW019	46	EXLT	Khaparkheda	NBPZ002	84	GW
*Khaparkheda	NBPZ002	38	EXLT	Kukwal	NBOBW020	96	GW	Sonwad	NBPZ003	45	EXLT
*Sonwad	NBPZ003	47	EXLT	Kakarde kh	NBOBW021	49	EXLT	Data for	2007 to 2009 (Without	Fe)
Sonwad	NBOBW018	42	EXLT	Shahada	NBOBW040	102	PW		Not Availabl	le	
2011 (With Fe)											
Mandane	NBOBW005	91	GW	Mandane	NBOBW005	61	GW	Prakashe	NBOBW022	41	EXLT
Dongargaon	NBOBW007	75	GW	Dongargaon	NBOBW007	62	GW	Hol	NBOBW023	54	GW
Gogapur	NBOBW017	32	EXLT	Ubhadagad	NBOBW016	37	EXLT	Fattepur	NBOBW024	34	EXLT
Prakashe	NBOBW022	44	EXLT	Gogapur	NBOBW017	56	GW	Shahada	NBOBW040	83	GW
Hol	NBOBW023	106	PW	Sonwad	NBOBW018	100	PW	Manmodya	NBOBW041	48	EXLT
Fattepur	NBOBW024	42	EXLT	Sarangkheda	NBOBW019	47	EXLT	Khaparkheda	NBPZ002	52	GW
Manmodya	NBOBW041	56	GW	Kukwal	NBOBW020	98	GW			•	
Jayanagar	NBOBW065	54	GW	Kakarde kh	NBOBW021	54	GW				

^{*} Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.21: Water Quality Index of Groundwater of Nashik District

	Taluka : Ch	andwad			Taluka : C	handwa	d		Taluka : C	handwad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2008 (Without	Fe)			2010 (With F	'e)						
Sogras	G/NS-047	38	EXLT	Kanmandale	NKOBW067	58	GW	Nimgavhan	NKPZ043	96	GW
				Chandvad	NKOBW076	70	GW	Chikhalambe	NKOBW041	56	GW
Data for 2	007 and 2009 N	lot Avai	lable	Vadbare	NKOBW199	70	GW	Chandvad	NKOBW076	58	GW
	(Without Fe)		Varadi	NKPZ002	75	GW	Vadbare	NKOBW199	58	GW
2011 (With Fe))										
Chikhalambe	NKOBW041	80	GW	Chandvad	NKOBW076	64	GW	Varadi	NKPZ002	76	GW
Kanmandale	NKOBW067	85	GW	Vadbare	NKOBW199	41	EXLT	Nimgavhan	NKPZ043	43	EXLT

	Taluka:	Deola			Taluka :	Deola			Taluka	: Deola	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2009 (Withou	ıt Fe)			2010 (With F	Fe)			2011 (With Fo	e)		
Deola	T/NS-037	124	PW	Deola	NKOBW194	116	PW	Deola	NKOBW194	86	GW
Data for	2007 and 2008 I	Not Avai	lable	Gunjalnagar	NKPZ038	62	GW	*Deola	NKOBW194	115	PW
	(Without Fe	e)						*Gunjalnagar	NKPZ038	117	PW

	Taluka : I	Dindori			Taluka : 1	Dindori			Taluka:	Dindori	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	ıt Fe)			2009 (Withou	t Fe)		
Dindori	G/NS-019	62	GW	Dindori	G/NS-019	65	GW	Dindori	G/NS-019	83	GW
Kokanwadi	T/NS-006	73	GW	Karanjali	G/NS-042	50	GW	Mhasrul	G/NS-044	76	GW
Mhasrul	G/NS-044	60	GW	Kona	T/NS-035	39	EXLT				
Nalegaon	G/NS-041	44	EXLT	Mhasrul	G/NS-044	71	GW				
2010 (With Fe	e)										
Mokhnal	NKOBW219	111	PW	Dindori	NKOBW005	98	GW	Awankhed	NKPZ017	42	EXLT
				Talegaon							
Chausale	NKPZ020	47	EXLT	Dindori	NKOBW019	54	GW	Dhakambe	NKOBW020	60	GW
Nanashi	NKOBW001	38	EXLT	Jambutake	NKPZ012	68	GW	Dhakambe	NKOBW020	84	GW
Umrale Bk	NKOBW004	48	EXLT								
2011 (With Fe	e)										
Mokhnal	NKOBW219	51	GW	Dindori	NKOBW005	47	EXLT	*Dindori	NKOBW005	109	PW
Awankhed	NKPZ017	66	GW	Dhakambe	NKOBW020	63	GW	*TalegaonD.	NKOBW019	59	GW
Nanashi	NKOBW001	37	EXLT	Jambutake	NKPZ012	80	GW	*Dhakambe	NKOBW020	67	GW
Umrale Bk	NKOBW004	47	EXLT	*Umrale Bk	NKOBW004	45	EXLT	*Chausale	NKPZ020	47	EXLT

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Iş	gatpuri			Taluka : I	gatpuri			Taluka:	Igatpuri	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	t Fe)			2009 (Withou	ıt Fe)		
Vasali	G/NS-022	63	GW	Vasali	G/NS-022	71	GW	Igatpuri	G/NS-077	61	GW
2010 (With Fe)										
Mundegaon	NKOBW036	53	GW	Khed	NKOBW053	54	GW	Igatpuri	NKOBW202	28	EXLT
Kanchangaon	NKOBW039	64	GW	Take harsha	NKOBW204	50	GW	Take harsha	NKOBW204	34	EXLT
								Take			
Igatpuri	NKOBW202	69	GW	Wadi Varhe	NKOBW032	41	EXLT	Deogaon	NKOBW206	30	EXLT
Take											
Deogaon	NKOBW206	52	GW	Mundegaon	NKOBW036	26	EXLT	Gonde	NKWQN002	52	GW
Gonde	NKWQN002	87	GW	Kanchangaon	NKOBW039	33	EXLT	Talegaon	NKWQN003	29	EXLT
Talegaon	NKWQN003	90	GW	Khed	NKOBW053	31	EXLT				
2011 (With Fe))										
Talegaon	NKWQN003	65	GW	Gonde	NKWQN002	36	EXLT	Igatpuri	NKOBW202	42	EXLT
Wadi Varhe	NKOBW032	26	EXLT	Talegaon	NKWQN003	39	EXLT	Take harsha	NKOBW204	53	GW
								Take			
Mundegaon	NKOBW036	58	GW	Khed	NKOBW053	51	GW	Deogaon	NKOBW206	45	EXLT
Kanchangaon	NKOBW039	57	GW	Wadi Varhe	NKOBW032	44	EXLT	Gonde	NKWQN002	53	GW
Igatpuri	NKOBW202	48	EXLT	Mundegaon	NKOBW036	39	EXLT	Talegaon	NKWQN003	49	EXLT
Take harsha	NKOBW204	42	EXLT	Kanchangaon	NKOBW039	43	EXLT		·		·
Take											
Deogaon	NKOBW206	44	EXLT	Khed	NKOBW053	50	EXLT				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Nipha	ad			Taluka : Nip	had			Taluka : N	iphad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor
2007 (Without Fe))			2008 (Without	Fe)			2009 (Withou	t Fe)		
Pimpalgaon				Pimpalgaon				Pimpalgaon			
Baswant	G/NS-013	111	PW	Baswant	G/NS-013	106	PW	Baswant	G/NS-013	154	PW
Savargaon	G/NS-053	45	EXLT	Savargaon	G/NS-053	183	PW	Savargaon	G/NS-053	90	GW
2010 (With Fe)											
				Pimpalgaon							
Kotamgaon	NKOBW079	235	VPW	Basvant	NKOBW042	84	GW	Thergaon	NKPZ004	95	GW
Wakad	NKOBW081	81	GW	Pachorewani	NKOBW055	60	GW	Antarweli	NKPZ039	127	PW
Gajarwadi	NKOBW083	126	PW	Ahergaon	NKOBW057	49	EXLT	Kasbesukene	NKWQN019	47	EXLT
Mhalsakore	NKOBW059	227	VPW	Ozar mig	NKOBW021	89	GW	Niphad	NKOBW068	41	EXLT
Katargaon	NKWQN020	73	GW	Umbarkhed	NKOBW043	68	GW	Sarole Thadi	NKPZ025	151	PW
Rui	NKWQN021	140	PW	Sakore	NKOBW044	76	GW				
20101 (With Fe)											
Ozar mig	NKOBW021	61	GW	Kotamgaon	NKOBW079	148	PW	Rui	NKWQN021	71	GW
Pimpalgaon											
Basvant	NKOBW042	73	GW	Wakad	NKOBW081	72	GW	*Antarweli	NKPZ039	65	GW
Umbarkhed	NKOBW043	147	PW	Gajarwadi	NKOBW083	150	PW	*Thergaon	NKPZ004	69	GW
Sakore	NKOBW044	63	GW	Thergaon	NKPZ004	104	PW	*Lonwadi	NKPZ006	111	PW
Pachorewani	NKOBW055	77	GW	Sarole Thadi	NKPZ025	74	GW				
Ahergaon	NKOBW057	69	GW	Kasbesukene	NKWQN019	86	GW				
Niphad	NKOBW068	65	GW	Katargaon	NKWQN020	117	PW				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.21 (Contd..) Nashik District

	Taluka : K	Kalwan				Taluka : K	Kalwan			Taluka:	Kalwan	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)				2008 (Withou	ıt Fe)			2009 (Withou	ıt Fe)		
Dalwat	T/NS-038	60	GW		Dalwat	T/NS-038	65	GW	Dalwat	T/NS-038	68	GW
2010 (With Fe	e)											
Pilakos	NKOBW173	57	GW		Bhagurdi	NKOBW188	55	GW	Visapur	NKWQN006	67	GW
Inshi	NKOBW178	48	EXLT		Jamle Pale	NKPZ033	59	GW	Sakore	NKOBW191	70	GW
Desgaon	NKOBW186	56	GW		Abhona	NKWQN004	58	GW	Matane	NKOBW193	83	GW
2011 (With Fe	e)											
Pilakos	NKOBW173	88	GW		Visapur	NKWQN006	51	GW	*Desgaon	NKOBW186	34	EXLT
Inshi	NKOBW178	150	PW		*Sakore	NKOBW191	116	PW	*Bhagurdi	NKOBW188	37	EXLT
Desgaon	NKOBW186	64	GW		*Visapur	NKWQN006	66	GW	*Jamle Pale	NKPZ033	57	GW
Abhona					*Pilakos	NKOBW173	124	PW	*Abhona	NKWQN004	56	GW
Kalwan	NKWQN005	87	GW		*Inshi	NKOBW178	54	GW	*Kalwan	NKWQN005	85	GW
	·								*Matane	NKOBW193	43	EXLT

	Taluka : Ma	alegaon			Taluka : M	alegaon			Taluka : N	Malegaon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (Witho	ut Fe)		
Jalgaon	T/NS-028	163	PW	Jalgaon	T/NS-028	125	PW	Ravalgaon	T/NS-009	90	GW
Karanjagavan	T/NS-023	99	GW	Jhodga	T/NS-051	65	GW				
Ravalgaon	T/NS-009	85	GW	Karanjagavan	T/NS-023	105	PW				
				Ravalgaon	T/NS-009	82	GW				
2010 (With Fe)										
Zodge	NKOBW110	47	EXLT	Ajang	NKOBW139	88	GW	Agar.bk	NKWQN007	48	EXLT
Dapur	NKOBW113	63	GW	Gilane	NKOBW176	136	PW	Dhane	NKWQN008	54	GW
Daregaon	NKOBW121	119	PW	Ajande	NKOBW177	198	PW	Malegaon	NKWQN009	51	GW
				Jalgaon							
Nagzari	NKOBW133	105	PW	(Nimbait)	NKOBW182	85	GW	Ravalgaon	NKWQN010	133	PW
Virane	NKOBW136	87	GW	Chikhalohal	NKPZ035	96	GW	Vajirkhede	NKPZ027	50	EXLT
2011 (With Fe)										
Virane	NKOBW136	86	GW	*Daregaon	NKOBW121	118	PW	*Umarane	NKOBW200	135	PW
Agar.bk	NKWQN007	150	PW	*Nagzari	NKOBW133	88	GW	*Saudane	NKPZ008	109	PW
Ravalgaon	NKWQN010	107	PW	*Ajang	NKOBW139	87	GW	*Agar.bk	NKWQN007	151	PW
*Zodge	NKOBW110	99	GW	*Gilane	NKOBW176	52	GW	*Dhane	NKWQN008	62	GW
*Dapur	NKOBW113	50	GW	*Ajande	NKOBW177	41	EXLT	*Malegaon	NKWQN009	112	PW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Na	ndgaon			Taluka : Na	andgaon	1		Taluka : N	landgaon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Withou	t Fe)			Data for 2009	(Without Fe) N	lot Availa	ıble
Nandgaon	T/NS-054	226	VPW	Nandgaon	T/NS-054	174	PW				
2010 (With Fe)			2011 (With Fo	e)						
Jawalki	NKOBW104	84	GW	Jawalki	NKOBW104	128	PW	Hiswal Kh	NKOBW161	88	GW
Naydongari	NKOBW117	50	GW	Bolthan	NKOBW107	131	PW	Dhotane Bk	NKOBW165	42	EXLT
Talwade	NKOBW124	50	EXLT	Pardhadi	NKOBW115	78	GW	Muldongari	NKPZ028	43	EXLT
Jamdari	NKOBW143	50	GW	Naydongari	NKOBW117	62	GW	Jalgaon Bk	NKPZ029	134	PW
Jalgaon Bk	NKPZ029	72	GW	Talwade	NKOBW124	69	GW	Khadgaon	NKWQN011	141	PW
Bolthan	NKOBW107	101	PW	Chandore	NKOBW127	78	GW	Manmad	NKWQN012	97	GW
Nandgaon	NKOBW147	117	PW	Jamdari	NKOBW143	54	GW	Panewadi	NKWQN013	152	PW
Bolthan	NKOBW107	98	GW	Nandgaon	NKOBW147	67	GW				
Talwade	NKOBW124	75	GW	Sakore	NKOBW148	79	GW				
Jamdari	NKOBW143	57	GW	Nandur	NKOBW159	36	EXLT				

Ta	luka : Peinth				Taluka : Pei	inth			Taluka : l	Peinth	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Categor
2007 (Without Fe)				2008 (Without Fe))			Data for 2000	(Without Eo)	Niat A va	labla
Peinth	G/NS-050	77	GW	Peinth	G/NS-050	71	GW	Data for 2005	(Without Fe)	NOL A VA	паые
2010 (With Fe)											
Nirgude (Harsul)	NKOBW214	35	EXLT	Peth	NKWQN023	33	EXLT	Harsul	NKOBW212	41	EXLT
								Adgaon			
Ambe	NKOBW218	43	EXLT	Goldari	NKOBW210	43	EXLT	Harsul	NKWQN022	44	EXLT
2011 (With Fe)											
								Adgaon			
Goldari	NKOBW210	36	EXLT	Nirgude (Harsul)	NKOBW214	34	EXLT	Harsul	NKWQN022	56	GW
Harsul	NKOBW212	36	EXLT	Ambe	NKOBW218	54	GW	Peth	NKWQN023	44	EXLT

	Taluka : Satana				Taluka : Sa	tana				Taluka :	Satana	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Categor
2007 (Without Fe)				2008 (Without I	Fe)				2009 (Withou	ıt Fe)		
Nampur	T/NS-024	94	GW	Nampur	T/NS-024	100	GW		Lakhampur	T/NS-076	55	GW
Satana	T/NS-010	270	VPW	Satana	T/NS-010	256	VPW		Nampur	T/NS-024	105	PW
Data for 2010 and	Data for 2010 and 2011 Not Available											

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.21 (Contd..) Nashik District

Table X.21 (Conte	Taluka : Nash				Taluka : Nash	ik			Taluka : N	lashik	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (Without Fe)				2009 (Withou	ıt Fe)		
Deolali	G/NS-002	82	GW	Deolali	G/NS-002	85	GW	Deolali	G/NS-002	98	GW
Shinde	G/NS-052	46	EXLT	Shinde	G/NS-052	48	EXLT	Shinde	G/NS-052	63	GW
								Borgaon			
Botgaon Pimpri	G/NS-079	112	PW	Borgaon Pimpri	G/NS-079	118	PW	Pimpri	G/NS-079	97	GW
Chikhalohol	T/NS-005	75	GW	Chikhalohol	T/NS-005	77	GW	Dhundegaon	G/NS-056	53	GW
Dhundegaon	G/NS-056	43	EXLT	Dhundegaon	G/NS-056	48	EXLT	Raslapur	G/NS-017	163	PW
Ghagbari	T/NS-040	45	EXLT	Ghagbari	T/NS-040	47	EXLT				
Nandur Shirgate	G/NS-021	75	GW	Nandur Shirgate	G/NS-021	67	GW				
Raslapur	G/NS-017	197	PW	Raslapur	G/NS-017	196	PW				
2010 (With Fe)											
Devargaon	NKOBW011	47	EXLT	Lohashingwe	NKOBW034	67	GW	Vadala	NKPZ021	80	GW
Villoli	NKWQN018	76	GW	Jakhori	NKOBW048	66	GW	Eklahara	NKWQN014	73	GW
Gangapur/someshvar	NKOBW015	49	EXLT	Shevge Darna	NKOBW051	43	EXLT	Nashik	NKWQN015	51	GW
								Pimpri			
Mhasrul	NKOBW022	46	EXLT	Kotamgaon	NKPZ011	61	GW	Sayad	NKWQN016	85	GW
Bhagur	NKOBW033	80	GW	Lahvit	NKPZ023	71	GW	Satpur	NKWQN017	78	GW
Lohashingwe	NKOBW034	39	EXLT	Gangapur/someshvar	NKOBW015	62	GW	Villoli	NKWQN018	29	EXLT
Jakhori	NKOBW048	116	PW	Ambebahula	NKOBW030	71	GW				
Shevge Darna	NKOBW051	57	GW	Bhagur	NKOBW033	62	GW				
Kotamgaon	NKPZ011	98	GW	Dudgaon	NKOBW014	70	GW	Dudgaon	NKOBW014	65	GW
Eklahara	NKWQN014	86	GW	Pimpalgaon Khamb	NKPZ022	53	GW	Mhasrul	NKOBW022	57	GW
Pimpri Sayad	NKWQN016	56	GW	Satpur	NKWQN017	81	GW				
2011 (With Fe)											
Mhasrul	NKOBW022	65	GW	Gangapur/someshvar	NKOBW015	46	EXLT	*Eklahara	NKWQN014	92	GW
Ambebahula	NKOBW030	44	EXLT	Bhagur	NKOBW033	48	EXLT	*Nashik	NKWQN015	66	GW
								*Pimpri			
Devargaon	NKOBW011	37	EXLT	Satpur	NKWQN017	44	EXLT	Sayad	NKWQN016	72	GW
Dudgaon	NKOBW014	46	EXLT	*Lohashingwe	NKOBW034	57	GW	*Satpur	NKWQN017	60	GW
Gangapur/someshvar	NKOBW015	36	EXLT	*Jakhori	NKOBW048	87	GW				
Bhagur	NKOBW033	133	PW	*Shevge Darna	NKOBW051	50	GW				
Dudgaon	NKOBW014	41	EXLT	*Lahvit	NKPZ023	71	GW				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Ta	luka : Trimbak	keshwar		Tal	uka : Trimbak	eshwar		Т	aluka : Trimba	akeshwa	ar
Villages				Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor
2007 (Without Fe)				2008 (Without Fe),	Data for 2010 &	k 11 (W	F) NA	+2008 Contd.	#2009 (Withou	ıt Fe)	
Dahalewadi	G/NS-045	36	EXLT	Dahalewadi	G/NS-045	39	EXLT	+Trimbakeswar	G/NS-018	75	GW
Harsul	G/NS-043	39	EXLT	Harsul	G/NS-043	38	EXLT	# Harsul	G/NS-043	41	EXLT

	Taluka : Yeo	la			Taluka : Yeol	a			Taluka : Y	Zeola			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor		
2007 (Without Fe	e)			2011 (With Fe)									
Yeola	G/NS-020	61	GW	Nagarsal	NKWQN028	38	EXLT	Ankai	NKOBW094	40	EXLT		
2010 (With Fe)				Ankai	NKOBW094	115	PW	Andarsul	NKOBW097	60	GW		
Mukhed	NKWQN027	44	EXLT	Mahalkheda	NKWQN026	146	PW	Bokate	NKOBW099	86	GW		
Nagarsal	NKWQN028	93	GW	Mukhed	NKWQN027	107	PW	Bharam	NKPZ010	150	PW		
Ankai	NKOBW094	47	EXLT	Nagarsal	NKWQN028	73	GW	Satali	NKPZ026	35	EXLT		
Andarsul	NKOBW097	83	GW										
Satali	NKPZ026	50	EXLT	Data for 2007 to 2009 Not Available (Without Fe)									
Andarsul	NKOBW097	59	GW										

	Taluka : Sinn	ar			Taluka : Sinna	ar			Taluka : Si	nnar	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor
2008 (Without Fe)				2009 (Without Fe)				Data for 2007	(Without Fe) No	ot Avail	able
Sinnar	G/NS-015	207	VPW	Sinnar	G/NS-015	229	VPW				
2010 (With Fe)											
Mohdari	NKOBW046	53	GW	Kirtangali	NKWQN024	111	PW	Chondhi	NKOBW071	138	PW
Baragaon Pimpri	NKOBW058	52	GW	Musalgaon	NKWQN025	82	GW	Dodi kh	NKOBW073	77	GW
Dubere	NKOBW061	80	GW	Dodi kh	NKOBW073	71	GW	Ujjani	NKOBW086	129	PW
Sinnar	NKOBW062	48	EXLT	Sonewadi	NKOBW066	62	GW	Nirhale	NKOBW088	123	PW
Chondhi	NKOBW071	79	GW	Mohdari	NKOBW046	25	EXLT	Atkawade	NKPZ001	57	GW
Ujjani	NKOBW086	127	PW	Baragaon Pimpri	NKOBW058	78	GW	Kirtangali	NKWQN024	122	PW
Nirhale	NKOBW088	87	GW	Dubere	NKOBW061	60	GW				
Atkawade	NKPZ001	81	GW	Sinnar	NKOBW062	51	GW				
Borkhind	NKPZ016	85	GW	Sonewadi	NKOBW066	71	GW				
2011 (With Fe)											
*Baragaon Pimpri	NKOBW058	91	GW	*Mohdari	NKOBW046	65	GW	*Ujjani	NKOBW086	148	PW
*Dubere	NKOBW061	76	GW	*Sinnar	NKOBW062	61	GW	*Nirhale	NKOBW088	153	PW
*Atkawade	NKPZ001	75	GW	*Sonewadi	NKOBW066	71	GW	*Musalgaon	NKWQN025	159	PW
*Kirtangali	NKWQN024	39	EXLT	*Chondhi	NKOBW071	162	PW			•	
*Agaskhind	NKPZ015	81	GW	*Dodi kh	NKOBW073	94	GW				

	Taluka : Bagl	an			Taluka : Bagla	an			Taluka : Ba	aglan	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor
2010 (With Fe)											
Varche Tembhe	NKOBW118	92	GW	Deopurpada	NKOBW198	138	PW	Deopurpada	NKOBW198	43	EXLT
Mahad	NKOBW134	51	GW	Jad	NKPZ031	60	GW	Utrane	NKPZ013	60	GW
Karanjad	NKOBW152	121	PW	Avhati	NKPZ032	60	GW	Surane	NKPZ030	62	GW
Nampur	NKOBW154	64	GW	Varche Tembhe	NKOBW118	47	EXLT	Jad	NKPZ031	87	GW
Utrane	NKPZ013	52	GW	Mahad	NKOBW134	54	GW	Avhati	NKPZ032	91	GW
Avhati	NKPZ032	80	GW	Vaygaon	NKOBW138	86	GW	Dhandripada	NKPZ042	83	GW
Satana	NKWQN001	119	PW	Karanjad	NKOBW152	87	GW	Satana	NKWQN001	44	EXLT
Vaygaon	NKOBW138	78	GW	Nampur	NKOBW154	66	GW	Data for 2007	to 2009 Not Ava	ailable	
Vasol	NKOBW195	102	PW	Vasol	NKOBW195	54	GW	(Without Fe)			
2011 (With Fe)											
Vasol	NKOBW195	75	GW	Jad	NKPZ031	81	GW	*Jad	NKPZ031	40	EXLT
Varche Tembhe	NKOBW118	87	GW	Avhati	NKPZ032	70	GW	*Avhati	NKPZ032	53	GW
Mahad	NKOBW134	52	GW	Dhandripada	NKPZ042	95	GW	*Satana	NKWQN001	72	GW
Vaygaon	NKOBW138	63	GW	Satana	NKWQN001	44	EXLT	*Mahad	NKOBW134	38	EXLT
Karanjad	NKOBW152	168	PW	*Varche Tembhe	NKOBW118	77	GW	*Vaygaon	NKOBW138	45	EXLT
Nampur	NKOBW154	41	EXLT	*Karanjad	NKOBW152	75	GW	*Vasol	NKOBW195	48	EXLT
Utrane	NKPZ013	102	PW	*Nampur	NKOBW154	91	GW	*Deopurpada	NKOBW198	45	EXLT
Surane	NKPZ030	140	PW	*Utrane	NKPZ013	82	GW				

	Taluka : Surga	ana				Taluka : Surga	na			Taluka : Su	rgana	
Villages	Well No.	WQI	Category	9	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor
2010 (With Fe)					2011 (With Fe)							
Chikadi	NKOBW185	40	EXLT		Chikadi	NKOBW185	45	EXLT	Data for 2007	to 2009 Not Av	ailable	
Surgana	NKOBW220	38	EXLT		Surgana	NKOBW220	67	GW	(Without Fe)			
Kothule	Kothule NKOBW225 67 GW					NKOBW225	59	GW				

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.22: Water Quality Index of Groundwater of Osmanabad District

	Taluka :	Bhum				Taluka :	Bhum				Taluka	: Bhum				
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category			
2007 (Withou	ut Fe)				2008 (Withou	ut Fe)				2009 (Withou	t Fe)					
Bhum	G/OS-042	104	PW		Bhum	G/OS-042	74	GW		Bhum	G/OS-042	68	GW			
2010 (With F	re)									2011 (With F	e)					
Bhoom	OSOBW060	79	GW		Hatola	OSOBW006	65	GW		Dahiphal	OSOBW004	53	GW			
Wakwad	OSOBW059	35	EXLT		Rui	OSOBW003	69	GW		Rui	OSOBW003	65	GW			
Dahiphal	ahiphal OSOBW004 39 EXLT										OSOBW004	71	GW			
							OSOBW004 39 EXL1									

	Taluka : K	alambh			Taluka : K	alambh	1		Taluka : 1	Kalambh		
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Without	Fe)			2008 (Withou	t Fe)			2011 (With Fo	e)			
Pimpalwandi	K/OS-030	274	VPW	Pimpalwandi	K/OS-030	238	VPW	Deodhanaora	OSOBW016	136	PW	
2010 (With Fe)							Diksal	OSOBW012	57	GW	
Deodhanaora	OSOBW016	80	GW	Ratnapur	OSWQN020	74	GW	Ghargaon	OSOBW027	56	GW	
Ghargaon	OSOBW027	64	GW	Shiradhone	OSOBW017	59	GW	Gour	OSOBW015	60	GW	
Gour	OSOBW015	79	GW	Stra	OSWQN021	81	GW	Hawargaon	OSWQN018	82	GW	
Hawargaon	OSWQN018	68	GW					Malkaranja	OSOBW019	43	EXLT	
2011 Contd (With Fe)							Mohar	OSWQN019	58	GW	
Shiradhone	OSOBW017	48	EXLT	Ratnapur	OSWQN020	63	GW	*Stra	OSWQN021	70	GW	
Stra	OSWQN021	37	EXLT	*Ghargaon	OSOBW027	90	GW	*Stra	OSWQN021	49	EXLT	
Watwada	OSOBW025	57	GW	*Diksal	OSOBW012	170	PW	*Yermala	OSOBW066	46	EXLT	
Yermala	OSOBW066	36	EXLT	*Hawargaon	OSWQN018	53	GW	Data for 2009 (Without Fe) Not Available				
Lakhangaon	OSOBW005	50	EXLT	*Shiradhone	OSOBW017	70	GW	Data for 2009 (Without Fe) Not Available				

	Taluka : 1	Lohara			Taluka:	Lohara			Taluka :	Lohara	
Villages	Well No. WQI Cate			Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	ut Fe)			2008 (With	out Fe)			2009 (Withou	t Fe)		
Lohara	G/OS-036	97	GW	Lohara	G/OS-036	80	GW	Lohara	G/OS-036	72	GW
Buzurg				Buzurg				Buzurg			
Data for 201	0 and 2011 Not A	Available	(With Fe)					-			

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.22 (Contd..) Osmanabad District

	Taluka: Osm	anabad			Taluka: Os	manaba	d		Taluka: Osm	anabad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	'e)			2008 (Withou	ıt Fe)			2009 (Without Fe)		
Mouje Barul	K/OS-034	68	GW	Mouje Barul	K/OS-034	85	GW	Mouje Barul	K/OS-034	66	GW
Dhoki	G/OS-046	120	PW	Dhoki	G/OS-046	172	PW	Dhoki	G/OS-046	99	GW
Vadgaon	G/OS-037	66	GW	Vadgaon	G/OS-037	79	GW	Vadgaon	G/OS-037	65	GW
Siddheswar				Siddheswar				Siddheswar			
Wakwad	K/OS-040	64	GW	Wakwad	K/OS-040	91	GW	Wakwad	K/OS-040	88	GW
				Yedshi	G/OS-059	137	PW	Yedshi	G/OS-059	134	PW
				Yedshi	G/OS-060	65	GW				
2010 (With Fe)				2011 Contd	(With Fe)						
Anandwadi	OSOBW053	72	GW	Kawalewadi	OSWQN011	124	PW	*Wanewadi	OSOBW033	54	GW
Takwala	OSWQN007	79	GW	Kanagara	OSOBW040	35	EXLT	*Arni	OSOBW029	61	GW
Kanagara	OSOBW040	80	GW	*Kanagara	OSOBW040	64	GW	*Borewadi	OSWQN012	122	PW
2011 (With Fe)				*Chilwadi	OSWQN006	74	GW	*Goverdhanwadi	OSOBW021	125	PW
Irla	OSWQN009	58	GW	*Dhola	OSWQN010	119	PW	*Irla	OSWQN009	89	GW
Jagji	OSOBW028	46	EXLT	*Jagji	OSOBW028	82	GW	*Kolhegaon	OSWQN008	120	PW
Rajuri	OSOBW032	78	GW	*Rajuri	OSOBW032	97	GW	*Osmanabad	OSWQN013	75	GW
Dhoki	OSOBW020	96	GW	*Ruibhar	OSOBW039	54	GW				
Goverdhanwadi	OSOBW021	87	GW								

	Taluka : Oı	megra			Taluka : ()megra			Taluka : O	megra	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Withou	ut Fe)			2009 (Without	Fe)		
Turori	K/OS-010	97	GW	Turori	K/OS-010	115	PW	Turori	K/OS-010	92	GW
2010 (With Fe)				2010 Contd	(With Fe)			2011 (With Fe))		
Aloor	OSOBW104	63	GW	Kawatha	OSOBW049	65	GW	Diggi	OSOBW109	47	EXLT
Babalsoor	OSWQN015	55	GW	Kawatha	OSWQN014	67	GW	Kawatha	OSWQN014	59	GW
Diggi	OSOBW109	60	GW	Naichakur	OSWQN016	59	GW	Sawalsoor	OSWQN017	54	GW
Gunjoti	OSOBW108	762	UNSUT	Sastur	OSOBW046	57	GW				
Holi	OSOBW045	52	GW	Sawalsoor	OSWQN017	48	EXLT				
Jakekur	OSOBW107	61	GW	Kanegaon	OSOBW043	60	GW				
Kader	OSOBW103	53	GW			•					

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.22 (Contd..) Osmanabad District

	Taluka : Pa	randa				Taluka : P	aranda			Taluka : Pa	aranda	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	'e)				2009 (Withou	t Fe)			2011 (With Fe)			
Sonari	K/OS-039	85	GW		Sonari	K/OS-039	67	GW	Wangi (kd)	OSOBW061	133	PW
2010 (With Fe)	Data for 2008	(Withou	ut Fe) Not	Ava	ilable							
Asu	OSOBW068	58	GW		Mankeshwar	OSOBW067	59	GW	Wakdi	OSOBW063	72	GW
Bavchi	OSOBW064	63	GW		Shelgaon	OSWQN005	57	GW	Wangi (kd)	OSOBW061	85	GW
Kapilapuri	OSOBW070	55	GW									

	Taluka : Tu	ljapur			Taluka : T	uljapur	•		Taluka : Tı	ıljapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2008 (Without I	Fe)			2009 (Withou	ut Fe)			Data fo	or 2007 (Withou	t Eo) Not	Avoilabla
Gandora	K/OS-003	68	GW	Gandora	K/OS-003	57	GW	Data 10	or 2007 (Withou	i re) Noi	Available
2010 (With Fe)											
Andoor	OSWQN002	112	PW	Mangrul	OSOBW087	90	GW	Tamalwadi	OSOBW083	70	GW
Bolegaon	OSOBW105	81	GW	Naldurg	OSOBW093	71	GW	Tambatwadi	OSWQN003	72	GW
Kati	OSOBW079	74	GW	Naldurg	OSWQN004	61	GW	Keshegaon	OSOBW092	61	GW
Kemwadi	OSOBW080	83	GW	Sangvi(m)	OSOBW077	101	PW				
Kunsawali	OSOBW100	78	GW	Tailor nagar	OSOBW089	81	GW				
2011 (With Fe)											
Kati	OSOBW079	59	GW	*Kunsawali	OSOBW100	47	EXLT	*Mangrul	OSOBW087	46	EXLT
Kemwadi	OSOBW080	47	EXLT	*Naldurg	OSWQN004	44	EXLT	*Naldurg	OSOBW093	41	EXLT
Kunsawali	OSOBW100	57	GW	*Tamalwadi	OSOBW083	67	GW	*Tailor nagar	OSOBW089	47	EXLT
*Andoor	OSWQN002	46	EXLT	*Kati	OSOBW079	74	GW	*Tambatwadi	OSWQN003	63	GW
*Hatola	OSWQN001	41	EXLT	*Kemwadi	OSOBW080	103	PW	*Sangvi(m)	OSOBW077	68	GW
*Keshegaon	OSOBW092	51	GW								

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.23: Water Quality Index of Groundwater of Parbhani District

	Taluka : Jintı	ur				Taluka:	Jintur			Taluka	: Jintur	
Villages	Well No.	WQI	Category	Vil	illages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			200	008 (Withou	ıt Fe)			2011 (With Fo	e)		
Jintur	G/PB-004	116	PW	Ma	Iankeswar	G/PB-022	52	GW	Borkini	PBWQN014	96	GW
Mankeswar	G/PB-022	51	GW	Da	ata for 2009	(Without Fe) N	lot Ava	ilable	Ambarwadi	PBOBW016	109	PW
2010 (With Fe	e)			-					Asegaon	PBOBW036	133	PW
*Ambarwadi	PBOBW016	65	GW	*N	Nagapur	PBOBW032	62	GW	Bhogaon	PBOBW029	127	PW
*Bhogaon	PBOBW029	95	GW	*P	Pokharni	PBOBW034	58	GW	Dhanora bk	PBOBW007	83	GW
*Dhanora bk	PBOBW007	62	GW	*A	Asegaon	PBOBW036	64	GW	Dudhgaon	PBOBW037	127	PW
*Jintur	PBOBW030	77	GW	*D	Dudhgaon	PBOBW037	78	GW	Jintur	PBOBW030	107	PW
*Kawada	PBOBW012	64	GW	*B	Borkini	PBWQN014	79	GW	Kawada	PBOBW012	146	PW
									Nagapur	PBOBW032	104	PW
									Pokharni	PBOBW034	150	PW

	Taluka : Many	vat				Taluka : N	Manwat				Taluka :	Manwat	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2008 (Without	t Fe)				2009 (Withou	ıt Fe)				2010 (With Fo	e)		
Manwat	G/PB-005	141	PW		Manwat	G/PB-005	139	PW		*Kekarjawla	PBPZ012	73	GW
2011 (With Fe	e) Data fo	or 2007 (Without Fe	e) N	Not Available					*Kolha	PBPZ003	74	GW
Kekarjawla	PBPZ012	69	GW		Kolha	PBPZ003	74	GW					

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.23 (Contd..) Parbhani District

	Taluka : Parbh	ani			Taluka : P	arbhan	i		Taluka:	Parbhani	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)			2008 (Witho	ut Fe)			2011 (With	Fe)		
Kotamwadi	G/PB-002	57	GW	Kotamwadi	G/PB-002	67	GW	Asola	PBOBW044	77	GW
Todkalas	G/PB-024	127	PW	Todkalas	G/PB-024	129	PW	Tadlimla	PBOBW052	52	GW
Gojegaon	G/PB-006	60	GW	Gojegaon	G/PB-006	64	GW	Daithana	PBPZ011	82	GW
Pedgaon	G/PB-027	92	GW	2009 (Witho	ut Fe)			Barwandi	PBWQN003	56	GW
Singanapur	G/PB-010	145	PW	Kotamwadi	G/PB-002	62	GW	Borwand bk	PBOBW066	66	GW
2010 (With Fo	e)							Pedgaon	PBOBW048	58	GW
								Pingali			
*Balas Kh	PBWQN002	62	GW	*Daithana	PBPZ011	76	GW	kothala	PBOBW039	60	GW
								Takli			
*Barwandi	PBWQN003	79	GW	*Asola	PBOBW044	105	PW	kumbharna	PBOBW042	61	GW
				*Borwand							
*Parbhani	PBPZ001	81	GW	*bk	PBOBW066	75	GW	Zari	PBPZ006	55	GW
*Parbhani	PBWQN001	70	GW	*Tadlimla	PBOBW052	118	PW	Balas Kh	PBWQN002	174	PW
*Pingali	PBOBW049	82	GW	*Zari	PBPZ006	156	PW	Parbhani	PBPZ001	107	PW
*Takli				*Pingali							
kumbharna	PBOBW042	90	GW	kothala	PBOBW039	69	GW	Parbhani	PBWQN001	60	GW
				*Pedgaon	PBOBW048	81	GW	Pingali	PBOBW049	82	GW

	Taluka : Pala	m				Taluka:	Palam				Taluka :	Palam	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2007 (Withou	t Fe)				2008 (Witho	ut Fe)				2011 (With F	e)		
Kerwadi	G/PB-021	75	GW		Kerwadi	G/PB-021	75	GW		Barbhani	PBWQN013	59	GW
2010 (With Fo											PBPZ008	83	GW
*Barbhani											PBWQN012	90	GW
*Pendu bk	PBOBW087	97	GW		*Palam	PBWQN012	149	PW		Parwa	PBOBW085	86	GW
*Pharkanda	PBOBW088	75	GW		*Parwa	PBOBW085	99	GW		Pendu bk	PBOBW087	80	GW
										Pharkanda	PBOBW088	76	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.23 (Contd..) Parbhani District

	Taluka : Patha	ari				Taluka : P	athari			Taluka :	Pathari	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)				2009 (Without	Fe)			2011 (With Fe	e)		
Babulgaon	G/PB-009	222	VPW		Pathari	G/PB-023	74	GW	Banegaon	PBOBW058	104	PW
2010 (With Fe	e)								Depandara	PBWQN004	78	GW
*Banegaon	PBOBW058	125	PW		*Pathargavhan	PBOBW057	62	GW	Kansur	PBWQN005	79	GW
*Depandara	PBWQN004	61	GW		*Pathri	PBOBW059	124	PW	Niwali	PBOBW061	74	GW
*Kansur	PBWQN005	48	EXLT		*Pathri	PBPZ005	61	GW	Pathargavhan	PBOBW057	92	GW
*Niwali	PBOBW061	66	GW		*Zari	PBOBW060	63	GW	Pathri	PBOBW059	68	GW
		Data for	. 2006 (77/:	ha	ut Fe) Not Availa	abla	•		Pathri	PBPZ005	103	PW
		Data 101	. 2009 (W II	по	ut re) Not Avana	able			Zari	PBOBW060	56	GW

	Taluka : Sail	u			Taluka :	Sailu			Taluka	: Sailu	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	ıt Fe)			2009 (Withou	ıt Fe)		
Chikhalthana	G/PB-001	53	GW	Chikhalthana	G/PB-001	65	GW	Chikhalthana	G/PB-001	58	GW
Selu	G/PB-025	91	GW	Selu	G/PB-025	98	GW	Selu	G/PB-025	94	GW
2010 (With Fe	e)							2011 (With F	'e)		
*Dasala	PBOBW008	78	GW	*Raipur	PBWQN007	70	GW	Dasala	PBOBW008	78	GW
*Dhengali								Dhengali			
pimpalgaon	PBOBW006	64	GW	*Selu	PBPZ004	63	GW	pimpalgaon	PBOBW006	127	PW
*Gulkhand	PBOBW023	72	GW	*Sindhe	PBWQN006	79	GW	Gulkhand	PBOBW023	87	GW
								Raipur	PBWQN007	145	PW
								Selu	PBPZ004	95	GW
								Sindhe	PBWQN006	147	PW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.23 (Contd..) Parbhani District

T	'aluka : Gangal	khed				Taluka : Ga	ngakhe	d		Taluka : G	angakhed	
Villages	Well No.	WQI	Category	7	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe) Data for	r 2007 to	2009 (Witl	hout	Fe) Not Avai	lable						
				*	*Dongar							
*Akoli	PBPZ002	85	GW	I	pimpla	PBOBW090	61	GW	*Ban pimpla	PBOBW076	66	GW
*Chinch takli	PBOBW067	96	GW	*	*Gangakhed	PBWQN011	67	GW	*Dharkheda	PBOBW074	57	GW
*Chukar	PBWQN010	76	GW	*	*Golegaon	PBWQN008	89	GW	*Mahatpuri	PBOBW077	62	GW
*Dhangar												
moha	PBOBW079	90	GW	*	*Sonpeth	PBWQN009	75	GW	*Muli	PBOBW073	63	GW
2011 (With Fe)											
Ban pimpla	PBOBW076	57	GW	I	Dharkheda	PBOBW074	79	GW	Mahatpuri	PBOBW077	55	GW
				I	Dongar							
Chinch takli	PBOBW067	93	GW	I	pimpla	PBOBW090	50	GW	Muli	PBOBW073	78	GW
Chukar	PBWQN010	49	EXLT	(Gangakhed	PBWQN011	101	PW	Sonpeth	PBWQN009	62	GW
Dhangar												
moha	PBOBW079	53	GW	(Golegaon	PBWQN008	74	GW	Akoli	PBPZ002	91	GW

	Taluka : Puri	na				Taluka:	Purna			Taluka :	Purna	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe	e)								2011 (With Fo	e)		
*Nila	PBPZ009	95	GW		gangakhed	PBOBW051	55	GW	Nila	PBPZ009	58	GW
									Ekrukha			
*Chudawa	PBOBW081	53	GW		*Tadkalas	PBPZ010	53	GW	gangakhed	PBOBW051	56	GW
		Doto for	2007 to 20	ഹ	(Without Fe) N	Not Avoilable			Tadkalas	PBPZ010	75	GW
		Data 101	2007 to 20	UĐ	(without re) r	Not Available			Chudawa	PBOBW081	62	GW

	Taluka : Sonp	eth			Taluka : S	onpeth		Taluka : Sonpeth					
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2010 (With F	e)			2011 (With Fe	e)								
				Digol									
*Khadka	PbOBW080	105	PW	islampur	PBOBW070	58	GW	Data for 2007	to 2009 (Witho	ut Fe) No	t Possible		
*Digol													
islampur	PBOBW070	92	GW	Khadka	PbOBW080	48	EXLT						

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.24: Water Quality Index of Groundwater of Pune District

7	Taluka : Ambeg	gaon			Taluka : Ambegaon				Taluka : Ambegaon					
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		
2007 (Without	Fe)				2008 (Without Fe)				2009 (Without Fe)					
Chinchle	K/PN-035	57	GW	Chinchle Bk	K/PN-035	41	EXLT		Chinchle	K/PN-035	46	EXLT		
(Bk) Karanjv				Karanjv					(Bk) Karanjv					
Kalamb	K/PN-011	131	PW	Kalamb	K/PN-011	146	PW		Kalamb	K/PN-011	118	PW		
Loni	K/PN-062	114	PW	Loni	K/PN-062	91	GW		Loni	K/PN-062	88	GW		
(Ambegaon)				(Ambegaon)					(Ambegaon)					
2010 (With Fe)													
*Kalamb	PNOBW123	106	PW	*Manchar	PNWQN001	39	EXLT		Ranjani	PNOBW211	57	GW		
*Ranjani	PNOBW211	63	GW	Loni	PNOBW129	103	PW		Kalamb	PNOBW123	90	$\mathbf{G}\mathbf{W}$		
*Khadaki	PNOBW121	57	GW	Manchar	PNWQN001	78	GW		Khadaki	PNOBW212	53	GW		
*Loni	PNOBW129	71	GW	Data for 201	1 (With Fe) Not	Availab	le							

1	Taluka : Baran	nati			Taluka : Baramati				Taluka : Baramati				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (Without	Fe)			2008 (Withou	ıt Fe)			2009 (With	2009 (Without Fe)				
Dhumalwadi	K/PN-044	142	PW	Dhumalwadi	K/PN-044	122	PW	Dhumalwad	K/PN-044	77	GW		
Dorlewadi	K/PN-043	83	GW	Dorlewadi	K/PN-043	81	GW	Dorlewadi	K/PN-043	108	PW		
Karanje	K/PN-063	196	PW	Karanje	K/PN-063	206	VPW	Karanje	K/PN-063	170	PW		
2010 (With Fe)												
*Karhati	PNPZ031	59	GW	*Vadgaon Nimbalkar	PNPZ019	53	GW	Medad	PNWQN002	469	UNSUT		
*Loni Bhapkar	PNPZ032	335	UNSUT	*Baramati	PNOBW075	80	GW	Katewadi	PNWQN003	71	GW		
*Morgaon	PNOBW076	448	UNSUT	*Medad	PNWQN002	70	GW	Sangavi	PNOBW254	178	PW		
*Mawadi kp.	PNOBW257	50	EXLT	*Katewadi	PNWQN003	99	GW	Morgaon	PNOBW253	408	UNSUT		
*Jogawadi	PNOBW182	85	GW	*Ambi bk.	PNWQN004	70	GW	Jogwadi	PNOBW182	126	PW		
*Nira	PNOBW063	125	PW	Karhati	PNPZ031	164	PW	Pandare	PNOBW078	102	PW		
*Pandare	PNOBW078	131	PW	Loni bhapkar	PNPZ032	181	PW	Baramati	PNOBW075	94	GW		
*Pandare	PNPZ038	99	GW	Pandare	PNPZ038	85	GW	Vadgaon Nimbalkar	PNPZ019	77	GW		
*Sangvi	PNOBW254	138	PW	Korale Kh	PNPZ041	94	GW	Ambi Bk	PNWQN004	328	UNSUT		
*Korhale kh.	PNPZ041	56	GW	Data for 2011	(With Fe) Not	Availab	le	·	·	<u>'</u>			

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.24 (Contd..) Pune District

	Taluka : Dau	nd			Taluka : Daund				Taluka : Daund					
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	_	Villages	Well No.	WQI	Category		
2007 (Without	t Fe)			2008 (Withou	2008 (Without Fe)				2009 (Without Fe)					
Patas	K/PN-001	119	PW	Patas	K/PN-001	97	GW		Patas	K/PN-001	87	GW		
Yavat	K/PN-014	58	GW	Yavat	K/PN-014	53	GW							
2010 (With Fe	e)													
*Patas	PNOBW163	84	GW	*Kalewadi	PNOBW226	51	GW		*Pargaon Satumala	PNOBW050	77	GW		
*Warwand	PNPZ047	85	GW	*Sonawade	PNOBW047	45	EXLT	:	*Rahu	PNOBW162	78	GW		
*Yavat	PNPZ023	52	GW	*Girim	PNOBW046	90	GW	:	*Kasurdi	PNWQN006	87	GW		
*Ravangaon	PNOBW053	151	PW	*Gar	PNOBW164	72	GW	7	Rahu	PNOBW162	124	PW		
*Daund	PNWQN005	95	GW											
2011 (With Fe	e)													
Gar	PNOBW164	102	PW	Daund	PNWQN005	267	VPW		Kalewadiu	PNOBW226	108	PW		
Sonawade	PNOBW047	230	VPW	Gar	PNOBW164	102	PW	,	Daund	PNWQN005	267	VPW		
Kasurdi Bk.	PNWQN006	79	GW	Sonawade	PNOBW047	230	VPW	7	Patas	PNOBW163	129	PW		
Pargoan Satumala	PNOBW050	263	VPW	Kasurdi Bk.	PNWQN006	79	GW		Warwand	PNPZ047	89	GW		
Yavat	PZ023	51	GW	Pargoan Satumala	PNOBW050	263	VPW		Ravangaon	PNOBW053	82	GW		
Girirm	PNOBW046	52	GW	Yavat	PZ023	51	GW			·		·		
Kalewadiu	PNOBW226	108	PW	Girirm	PNOBW046	52	GW							

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.24 (Contd..) Pune District

Ta	luka : Pune (H	aveli)			Taluka : Pur	ne (Have	eli)		Taluka : Pune (Haveli)				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (Without	Fe)			2008 (Withou	ıt Fe)			2009 (Withou					
Chinchwad	K/PN-051	73	GW	Chinchwad	K/PN-051	53	GW	Chinchwad	K/PN-051	60	GW		
Kasarwadi	K/PN-049	46	EXLT	Kasarwadi	K/PN-049	42	EXLT	Kasarwadi	K/PN-049	57	GW		
Pimpri (Kh)	K/PN-032	79	GW	Pimpri (Kh)	K/PN-032	93	GW	Pimpri (Kh)	K/PN-032	96	GW		
Malvasti				Malvasti				Malvasti					
Pune	K/PN-065	57	GW	Pune	K/PN-065	51	GW	Pune	K/PN-065	53	GW		
Shivpur Khed	K/PN-023	72	GW	Shivpur	K/PN-023	49	EXLT	Shivpur	K/PN-023	53	GW		
				Khed				Khed					
Uruli	K/PN-041	177	PW	Uruli	K/PN-041	108	PW	Uruli	K/PN-041	109	PW		
Kanchan				Kanchan				Kanchan					
Wagholi	K/PN-037	172	PW	Wagholi	K/PN-037	146	PW	Wagholi	K/PN-037	98	GW		
Bukum	K/PN-059	52	GW	Bukum	K/PN-059	50	GW	Bukum	K/PN-059	50	EXLT		
Parne	K/PN-055	149	PW	Parne	K/PN-055	120	PW	Parne	K/PN-055	120	PW		
Undavri Kade	K/PN-054	118	PW	Undavri	K/PN-054	248	VPW	Undavri	K/PN-054	164	PW		
Pathar				Kade Pathar				Kade Pathar					
2010 (With Fe)		1		_	т				_	1	,		
*Donje	PNWQN007	79	GW	*Alandi Mhatobachi	PNOBW224	83	GW	Uralikanchan	PNWQN 008	98	GW		
*Bhosari	PNOBW222	49	EXLT	*Lonikalbhor	PNOBW225	78	GW	Alandi Mhatobachi	PNOBW224	103	PW		
*Moshi	PNOBW152	81	GW	Wagholi	PNOBW040	126	PW	Pimpari Sandas	PNOBW150	90	GW		
*Chrholi Bk.	PNOBW153	77	GW	Donje	PNWQN007	54	GW	Bhosari	PNOBW222	56	GW		
*Wagholi	PNOBW040	116	PW	Koregoan Mul.	PNWQN009	186	PW	Charholi Bk.	PNOBW153	79	GW		
*Pimpari Sandas	PNOBW150	77	GW	Wadebolai	PNWQN011	87	GW	Dhanori	PNOBW223	66	GW		
*Uralikanchan	PNWQN008	89	GW	Moshi	PNOBW152	66	GW						
*Koregaon Mul	PNWQN009	71	GW	Lonikalbhor	PNOBW225	90	GW	Data for	2011 Not Avail	able (Wit	h Fe)		

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.24 (Contd..) Pune District

	Taluka : Indap	ur			Taluka : Indapur				Taluka : Indapur				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	
2007 (Without	Fe)			2008 (Witho	2008 (Without Fe)				2009 (Without Fe)				
Bhadalwadi	K/PN-036	129	PW	Bhadalwadi	K/PN-036	64	GW		Bhadalwadi	K/PN-036	77	GW	
Nimbgaon-	K/PN-019	129	PW	Nimbgaon-	K/PN-019	151	PW		Nimbgaon-	K/PN-019	89	GW	
Ketke				Ketke					Ketke				
2010 (With Fe) Data for	r 2011 N	ot Available	e (With Fe)									
*Shetphal	PNOBW087			*Rui	PNOBW0246				Lasurne	PNWQN020			
gade	FNOD WU67	62	GW	· Kui	FNOD W 0240	54	GW		Lasuriie	FINWQINU20	65	GW	
*Tawashi	PNOBW090	141	PW	*Rui	PNWQN018	68	GW		Nirgude	PNWQN021	96	GW	
*Lasurne	PNWQN020	50	GW	*Bhigvan	PNOBW183	89	GW		Bhigvan	PNWQN051	93	GW	
*Kalamb	PNWQN012	122	PW	*Bhigvan	PNWQN051	187	PW		Kauthali	PNOBW082	96	GW	
*Reda	PNWQN013	65	GW	*Balpudi	PNWQN017	181	PW		Warkute bk.	PNOBW084	131	PW	
*Reda	PNWQN016	403	UNSUT	*Nirgude	PNWQN021	90	GW		Loni Deokar	PNOBW083	125	PW	
*Hingangaon	PNWQN015	218	VPW	Bhigvan	PNOBW183	86	GW		Shetphalgade	PNOBW087	102	PW	
*Indapur	PNWQN019	80	GW	Rui	PNOBW246	92	GW		Tavashi	PNOBW090	73	GW	
*Indapur	PNWQN014	102	PW	Reda	PNWQN016	62	GW		Kalamb	PNWQN012	87	GW	
*Warkute bk.	PNOBW084	116	PW	Balpudi	PNWQN017	88	GW		Reda	PNWQN013	180	PW	
*Loni Deokar	PNOBW083	139	PW	Rui	PNWQN018	88	GW		Indapur	PNWQN014	82	GW	
*Kauthali	PNOBW082	123	PW	Indapur	PNWQN019	92	GW		Hingangaon	PNWQN015	70	GW	

	Taluka : Weł	ıle			Taluka	Wehle		Taluka : Wehle						
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	WQI	Category				
2007 (Witho	ut Fe)			2008 (With	2008 (Without Fe)				2010 (With Fe)					
Wehle	K/PN-034	31	EXLT	Wehle							EXLT			
2009 (Witho	ut Fe)							Data for 201	1 (With Ea) Not	Available				
Wehle	K/PN-034	27	EXLT					Data for 201	1 (With Fe) Not	Available	;			

	Taluka: Bho	r				Taluka:	Bhor		Taluka : Bhor				
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2010 (With Fe	Data for 200	7 to 2009	9 Not Avail	abl	le and also 2011	1 (With Fe)							
Nasarapur	PNOBW179	70	GW		Bholawade	PNOBW065	55	GW		Bhor	PNOBW071	51	GW

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.24 (Contd..) Pune District

	Taluka: Junna	ar			Taluka : J	Junnar		Taluka : Junnar				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Without	Fe)			2008 (Withou	t Fe)			2009 (Without Fe)				
Ale	K/PN-003	37	EXLT	Ale	K/PN-003	137	PW	Ale	K/PN-003	95	GW	
Ane	K/PN-027	62	GW	Ane	K/PN-027	52	GW	Ane	K/PN-027	59	GW	
Belhe	K/PN-015	75	GW	Belhe	K/PN-015	66	GW	Belhe	K/PN-015	68	GW	
Junnar	K/PN-056	59	GW	Junnar	K/PN-056	46	EXLT	Junnar	K/PN-056	57	GW	
Narayangaon	K/PN-016	61	GW	Narayangaon	K/PN-016	80	GW	Narayangaon	K/PN-016	86	GW	
Narayanpur	K/PN-039	83	GW	Narayanpur	K/PN-039	55	GW	Narayanpur	K/PN-039	38	EXLT	
				Otur	K/PN-010	171	PW	Otur	K/PN-010	87	GW	
2010 (With Fe) Data for 201	1 Not Av	vailable (Wi	ith Fe)								
*Narayangoan	PNOBW009	56	GW	*Ale	PNWQN023	107	PW	Sakori	PNWQN022	41	EXLT	
*Arvi	PNWQN024	52	GW	*Bori.Bk.	PNOBW005	70	GW	Ale	PNWQN023	92	GW	
*Khanapur	PNOBW202	63	GW	Sakori	PNWQN022	73	GW	Arvi	PNWQN024	55	GW	
*Tejwadi	PNOBW103	60	GW	Otur	PNOBW195	79	GW	Bori Bk	PNOBW005	109	PW	
								Narayan				
*Otur	PNOBW195			Dholwad	PNOBW196			gaon	PNOBW009			
		107	PW			59	GW	Vaiduwadi		60	GW	
*Dholwad	PNOBW196	66	GW	Tejewadi	PNOBW103	56	GW	Pimpalwandi	PNOBW105	98	GW	
*Pimpalwandi	PNOBW105	47	EXLT	Khanapur	PNOBW202	59	GW		_			

	Taluka : Maw	al			Taluka:	Mawal		Taluka : Mawal				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Withou	t Fe)				ithout Fe)			2009 (Without Fe)				
Talegaon	K/PN-002	85	GW	Talegaon	K/PN-002	73	GW	Talegaon	K/PN-002	77	GW	
Lonawala	K/PN-061	40	EXLT					Lonawala	K/PN-061	32	EXLT	
2010 (With F	e) Data for 201	1 Not A	vailable (W	ith Fe)						•		
*Somatane	DNIWONIO42			*Malaval	i PNOBW148			Kanhe	DNIWONO42			
Fata	PNWQN043	45	EXLT	"Ivialaval	II PNODW148	32	EXLT	Kanne	PNWQN042	44	EXLT	
*Talegoan	PNWQN044			Somatane	PNWQN043			Karla	PNOBW035			
Dabhade	FINW QINU44	45	EXLT	Fata	FIN W QIN043	42	EXLT	Kana	FNODWUSS	47	EXLT	
*Kanhe	DNIW/ONIO/2			Talegoan	PNWQN044			Malavali	PNOBW148			
· Kamle	PNWQN042	47	EXLT	Dabhade	rn w Qn044	37	EXLT	iviaiavaii	FNODW 148	36	EXLT	
*Karala	PNOBW035	50	EXLT		·		•	_	·			

^{*}Lonawala is coming under Wadgaon (Maval) taluka* Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.24 (Contd..) Pune District

	Taluka : Muls	hi				Taluka : 1	Mulshi			Taluka :	Mulshi	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)				2008 (Withou	t Fe)			2009 (Withou	t Fe)		
Kolwan	K/PN-058	45	EXLT		Kolwan	K/PN-058	46	EXLT	Kolwan	K/PN-058	38	EXLT
Mulshi	K/PN-060	28	EXLT		Mulshi	K/PN-060	23	EXLT	Mulshi	K/PN-060	28	EXLT
2010 (With Fo	e) Data for 201	l 1 Not A	vailable (V	Vitl	ı Fe)							
*Bhugoan	PNOBW173	38	EXLT		*Nere	PNOBW229	46	EXLT	Paud	PNOBW172	39	EXLT
*Paud	PNOBW172	46	EXLT		Bhugaon	PNOBW173	39	EXLT	Sus	PNWQN040	33	EXLT
*Kharawade	PNWQN041	44	EXLT		Kharawade	PNWQN041	41	EXLT	Nere	PNOBW229	63	GW
*Sus	PNWQN040	38	EXLT									

	Taluka : Puran	dar			Taluka : P	urandar	•		Taluka : I	Purandar	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	ıt Fe)			2009 (Withou	ıt Fe)		
Pangre Sailar	K/PN-052	62	GW	Pangre	K/PN-052	41	EXLT	Pangre	K/PN-052	61	GW
Basti				Sailar Basti				Sailar Basti			
Zendewadi	K/PN-048	79	GW	Zendewadi	K/PN-048	78	GW	Zendewadi	K/PN-048	70	GW
Jejuri	K/PN-046	67	GW	Jejuri	K/PN-046	56	GW	Jejuri	K/PN-046	67	GW
Sakurde	K/PN-008	99	GW	Sakurde	K/PN-008	59	GW	Sakurde	K/PN-008	72	GW
2010 (With Fe	e)										
*Dive	PNWQN033	72	GW	*Khalad	PNWQN039	190	PW	*Nira	PNOBW063	120	PW
*Jejuri	PNOBW059	49	EXLT	*Pargoan	PNWQN038	94	GW	*Chambli	PNWQN037	60	GW
*Belsar	PNWQN035	147	PW	*Valha	PNWQN036	80	GW	Mawadi Kp.	PNOBW257	155	PW
*Khanawadi	PNWQN034	90	GW	*Mawadi	PNOBW257	146	PW				
2011 (With Fe	e)							•			
Dive	PNWQN033	64	GW	Chambali	PNWQN037	36	EXLT	Belsar	PNWQN035	111	PW
Khanwadi	PNWQN034	92	GW	Pargaon	PNWQN038	126	PW	Nira	PNOBW063	54	GW
Jejuri	PNOBW059	43	EXLT	Khalad	PNWQN039	48	EXLT	Valha	PNWQN036	115	PW
Belsar	PNWQN035	111	PW	Dive	PNWQN033	64	GW	Chambali	PNWQN037	36	EXLT
Nira	PNOBW063	54	GW	Khanwadi	PNWQN034	92	GW	Pargaon	PNWQN038	126	PW
Valha	PNWQN036	115	PW	Jejuri	PNOBW059	43	EXLT	Khalad	PNWQN039	48	EXLT

^{*} Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.24 (Contd..) Pune District

Talul	ka : Rajgurnaga	ır (Khed)	T	aluka : Rajguri	nagar (I	Khed)		Taluka : Rajgu	rnagar (K	(hed)
Villages	Well No.	WQI	Category		Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Without	Fe)	~ .		2009 (Withou	t Fe)		<u> </u>
Rajgurnagar	K/PN-012	47	EXLT	Rajgurnagar	K/PN-012	44	EXLT	Rajgurnagar	K/PN-012	53	GW
X Z			•	Kharabwadi	K/PN-0	29	EXLT	Kharabwadi	K/PN-	108	PW
2010 (With Fe	e) Data for 201	1 Not A	vailable (W	ith Fe)			•	•			
*Chakan	PNWQN031	81	GW	*Alandi	PNWQN032	40	EXLT	Bahul	PNOBW027	92	GW
*Nimgaon	PNWQN029	66	GW	Bhorgiri	PNWQN025	67	GW	Solu	PNOBW032	104	PW
*Kadus	PNWQN026	103	PW	Chakan	PNWQN031	44	EXLT	Alandi	PNWQN032	95	GW
*Koye	PNWQN030	73	GW	Nimgoan	PNWQN029	103	PW	Chas	PNWQN027	64	GW
*Khed	PNWQN028	52	GW	Kadus	PNWQN026	125	PW	Bhorgiri	PNWQN025	49	EXLT
*Bahul	PNOBW027	76	GW	Koye	PNWQN030	69	GW				
*Solu	PNOBW032	103	PW	Khed	PNWQN028	70	GW				
	Taluka : Shiru	ır			Taluka : S	Shirur			Taluka	Shirur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without		,,, (1	Category	2008 (Without		11121	Category	2009 (Withou		111 Q1	cutegory
Ranjangaon	K/PN-066	58	GW	Pabal	K/PN-0	64	GW	Pabal	K/PN-	69	GW
Ravangaon	K/PN-020	55	GW	Ravangaon	K/PN-020	47	EXLT	Ravangaon	K/PN-020	44	EXLT
Shirur	K/PN-006	140	PW	Shikrapur	K/PN-0	111	PW	Shikrapur	K/PN-	127	PW
		1		Shirur	K/PN-006	103	PW	Shirur	K/PN-006	110	PW
2010 (With Fe	e) Data for 2011	Not Ava	ailable (Wi			L.					l
*Inamgaon	PNWQN047	90	GW	*Shirur	PNWQN049	75	GW	Inamgaon	PNWQN047	124	PW
*Shikrapur	PNOBW014	93	GW	*Nimgaondude	PNOBW113	92	GW	Shirur	PNWQN049	86	GW
*Pilmple	DNODW015			*V 41	DNODWOOS			Dhamari	DNODW012		
Jagtap	PNOBW015	64	GW	*Kavathe	PNOBW205	82	GW	Dhamari	PNOBW013	93	GW
*Kondhapuri	PNOBW016	62	GW	*Knhur Mesai	PNWQN045	101	PW	Nimgaon	PNOBW113	124	PW
*Nhavara	PNOBW208	42	EXLT	*Dhamari	PNOBW013	81	GW	Kavathe	PNOBW205	133	PW
*Nhavara	PNWQN046	105	PW	Kanhur Mesai	PNWQN045	94	GW	Kondhanpuri	PNOBW016	90	GW
*Andalgaon	PNOBW021	65	GW	Pimple Jagtap	PNOBW015	163	PW	Navara	PNOBW208	102	PW
*Tandali	PNWQN048	85	GW	Shikrapur	PNOBW014	166	PW	Shirsgoan kata	PNOBW122	110	PW
*Shirasgaon kata	PNOBW122	50	GW	Nahavara	PNWQN046	107	PW	Gunat	PNOBW121	192	PW

PNOBW021

225

Tandali

VPW

PNOBW121

kata

*Gunat

 $\mathbf{G}\mathbf{W}$

GW

VPW

281

PNWQN048

Andalgaon * Pre-Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.25: Water Quality Index of Groundwater of Raigad District

	Taluka : Aliba	ag			Taluka :	Alibag			Taluka :	Alibag	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	ut Fe)			2009 (Withou	t Fe)		
Chinchwad	C/RG-014	39	EXLT	Bilji (Umta)	C/RG-012	30	EXLT	Bilji (Umta)	C/RG-012	29	EXLT
Poynad	C/RG-032	42	EXLT	Chinchwad	C/RG-014	32	EXLT	Nagaon	C/RG-033	59	GW
Veshwi	C/RG-001	58	GW	Poynad	C/RG-032	82	GW	Poynad	C/RG-032	74	GW
				Veshwi	C/RG-001	66	GW				
2010 (With Fe	e)										
Alibag	RDOBW001	65	GW	Penzari	RDOBW036	28	EXLT	Belkade	RDOBW005	27	EXLT
Belkade	RDOBW005	52	GW	Zirad	RDOBW050	55	GW	Umate	RDOBW007	43	EXLT
Gunjes	RDWQN029	50	GW	Revadande	RDWQN002	40	EXLT	*Alibag	RDOBW001	66	GW
2011 (With Fe	e)					•					
Alibaug	RDPZOO8	30	EXLT	Belwade	RDOBW005	53	GW	Revadanda	RDWQN002	53	GW
Dokawade		73	GW	Gunjis	RDWQN029	51	GW	Umate	RDOBW007	38	EXLT
Alibaug	RDOBW001	62	GW	Pezari	RDOBW036	38	EXLT	Zirad	RDOBW050	47	EXLT

	Taluka : Karj	at			Taluka : 1	Karjat			Taluka :	Karjat	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)			2008 (Without	Fe)			2009 (Witho	ut Fe)		
Neral	C/RG-018	46	EXLT	Hudhre	C/RG-010	56	GW	Hudhre	C/RG-010	57	GW
				Budruk				Budruk			
				Neral	C/RG-018	39	EXLT	Neral	C/RG-018	41	EXLT
2010 (With Fe	e)										
Kalamb	RDOBW015			Neral				Mangaon-			
Kalalilo	KDOD W013	48	EXLT	INCIAI		37	EXLT	varedi		50	GW
Kashele	RDOBW018	47	EXLT	Uambarkhand	RDWQN026	34	EXLT	Vadavali	RDOBW055	35	EXLT
Khandas	RDOBW020	119	PW	Varai Tf V	RDOBW049	37	EXLT				
2011 (With Fe	e)										
Kalamb	RDOBW015	42	EXLT	+Karjat	RDOBW017	52	GW	+Kalamb	RDOBW015	65	GW
Kashele	RDOBW018			+MangaonTf				+Kashele	RDOBW018		
Kashele	KDOB WUIS	48	EXLT	Waredi		37	EXLT	+Kasnele	KDOD WU18	63	GW
Vadavali	RDOBW055	33	EXLT	+Wadavali	RDOBW055	34	EXLT	+Khandas	RDOBW020	34	EXLT
Varai Tf V	RDOBW049	32	EXLT	+Ambivali	RDOBW003	63	GW	+Neral	RDWQN017	30	EXLT
Khandas	RDOBW020	51	GW								_

^{*} Pre-Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Khala	pur			Taluka : K	halapui	•		Taluka : I	Khalapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	ıt Fe)			2009 (Withou	t Fe)		
Kargaon	C/RG-023	34	EXLT	Khalapur	C/RG-036	44	EXLT	Kargaon	C/RG-023	36	EXLT
Khalapur	C/RG-036	45	EXLT					Khalapur	C/RG-036	41	EXLT
Khopoli	C/RG-013	27	EXLT								
2010 (With Fe	e)										
Hal-Khurdh	RDWQN010	44	EXLT	Chowk		19	EXLT	Khalapur	RDOBW019	58	GW
2011 (With Fe	e)										
Chowk		33	EXLT	*Hall kh	RDWQN010	59	GW	*Khalapur	RDOBW019	43	EXLT
*Chowk	RDOBW011	31	EXLT	*Khopoli	RDWQN011	73	GW		·		

	Taluka : Maha	ad				Taluka : 1	Mahad			Taluka :	Mahad	
Villages	Well No.	WQI	Category	,	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			,	2008 (Withou	ıt Fe)			2009 (Withou	t Fe)		
Dapoli	C/RG-024	252	VPW		Dapoli	C/RG-024	480	UNSUT	Varandha	C/RG-003	27	EXLT
Jite	C/RG-020	33	EXLT		Varandha	C/RG-003	30	EXLT				
2010 (With Fe												
Birvadi	RDWQN018	43	EXLT		Konzar	RDOBW022	51	GW	Varandha	RDOBW048	20	EXLT
chimbave	RDOBW008	36	EXLT		Mangharun	RDOBW027	34	EXLT	Vinhere	RDOBW046	54	GW
Kharavali	RDWQN027	33	EXLT		Nate	RDOBW031	40	EXLT	Konzar	RDOBW022	39	EXLT
2011 (With Fe)											
Chimbhave	RDOBW008	42	EXLT		Vinhere	RDOBW046	26	EXLT	*Mahad	RDOBW025	28	EXLT
Mangrun	RDOBW027	26	EXLT		Konzar	RDOBW022	38	EXLT	Mahad	RDOBW025	46	EXLT
Varandha	RDOBW048	36	EXLT		Talkies near	RDWQN019	25	EXLT	Mangrun	RDOBW027	49	EXLT

	Taluka : Manga	aon			Taluka : M	Iangaor	1		Taluka : I	Mangaon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)			2008 (With	out Fe)			2009 (Withou	t Fe)		
Chandore	C/RG-011	22	EXLT	Indapur	C/RG-022	37	EXLT	Indapur	C/RG-022	39	EXLT
Indapur	C/RG-022	37	EXLT	2011 (With	Fe)						
2010 (With Fe	e)			Mangaon	RDOBW026	37	EXLT	Goregaon	RDOBW012	49	EXLT
Indapur	RDOBW013	40	EXLT	Indapur	RDOBW013	43	EXLT	Indapur	RDOBW013	54	GW
*Goregaon	RDOBW012	43	EXLT	Mangaon	RDOBW026	34	EXLT	Mangaon	RDOBW026	39	EXLT
*Indapur	RDOBW013	48	EXLT							•	
*Mangaon	RDOBW026	49	EXLT								

^{*} Pre-Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Mhas	ala			Taluka : N	Ihasala			Taluka:	Mhasala	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	ıt Fe)			2009 (Withou	t Fe)		
Kelte	C/RG-027	26	EXLT	Kelte	C/RG-027	24	EXLT	Kelte	C/RG-027	16	EXLT
2010 (With Fe	e)			2011 (With F	'e)						
Mharula		40	EXLT	+Ambet	RDOBW002	41	EXLT	Konzar	RDOBW022	44	EXLT
Lipani			EXLT	+Lipani	RDOBW024	27	EXLT	Kumbale	RDOBW023	42	EXLT
Bhandarane		46	EXLT	+Magothane	RDWQN022	31	EXLT	Nate	RDOBW031	52	GW
				+Mhasala	RDOBW053	35	EXLT	Pangari	RDWQN021	61	GW
				Birwadi	RDWQN018	35	EXLT	Varandha	RDOBW048	35	EXLT
				Chimbhave	RDOBW008	42	EXLT	Vinhere	RDOBW046	36	EXLT
				kharivali	RDWQN027	46	EXLT	Vinhere	RDPZ002	38	EXLT

	Taluka : Pany	⁄el			Taluka:	Panvel			Taluka	Panvel	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)			2008 (With	out Fe)			2009 (With	out Fe)		
Ajivali	C/RG-038	53	GW	Navade	C/RG-031	28	EXLT	Ajivali	C/RG-038	57	GW
2010 (With F	e)										
Barpada	RDOBW004	36	EXLT	Bambavi	RDWQN008	37	EXLT	Palaspe	RDWQN025	44	EXLT
*Barapade	RDOBW004	35	EXLT	Barapada	RDOBW004	67	GW	Taloje	RDOBW041	110	PW
*Palaspe	RDWQN025	61	GW	Nere		69	GW	Vaje	RDOBW047	37	EXLT
*Palaspe	RDWQN025	27	EXLT								
2011 (With F	e)										
Barapada	RDOBW004	40	EXLT	Panvel	RDOBW033	47	EXLT	Palspe	RDWQN025	68	GW
Nete		45	EXLT	Barapada	RDOBW004	59	GW	Taloja	RDOBW041	90	GW
Vaje	RDOBW047	42	EXLT	Nere	RDOBW032	60	GW	Wanje	RDOBW047	51	GW

	Taluka : Polad	pur			Taluka:	Poladpui			Taluka :	Poladpur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Witho	ut Fe)			2008 (With	out Fe)			2009 (Witho	out Fe)		
Poladpur	C/RG-006	54	GW	Poladpur	C/RG-006	48	EXLT	Poladpur	C/RG-006	41	EXLT
2010 (With I	Fe)			2011 (With	Fe)						
Parli	BS-54	23	EXLT	Parli	BS-54	29	EXLT				

^{*} Pre-Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Per	ì			Taluka	: Pen			Taluka	: Pen	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Withou	ıt Fe)			2009 (Withou	t Fe)		
Kumbharcha	C/RG-029	36	EXLT	Vadkhal	C/RG-037	241	VPW	Kumbharcha	C/RG-029	35	EXLT
Kosta Bk								Kosta Bk			
Saigaon	C/RG-028	39	EXLT					Vadkhal	C/RG-037	208	VPW
Govalwadi											
Vadkhal	C/RG-037	73	GW								
2010 (With Fe)										
Umbarde	RDOBW042	45	EXLT	+Gagote Bk	RDOBW014	42	EXLT	+Kamarli	RDOBW016	43	EXLT
Vadkhal	RDWQN003	80	GW	+GogendeBK	RDOBW014	43	EXLT	+Rameshwar		44	EXLT
Kamarli	RDOBW016	33	EXLT	+Kamarli	RDOBW016	43	EXLT	+Vadkhal	RDWQN003	50	GW
2011 (With Fe)										
Gogate	RDOBW014	43	EXLT	Umbarde	RDOBW042	41	EXLT	*Vadkhal	RDWQN003	79	GW
Karmili	RDOBW016	70	GW	Wadakhal	RDWQN003	58	GW	Pen		42	EXLT
Pen	RDOBW035	54	GW	*Pen	RDOBW035	37	EXLT	Gagote Bk	RDOBW014	41	EXLT
Salinde	RDOBW039	29	EXLT	*Umberde	RDOBW042	46	EXLT	Kamarli	RDOBW016	33	EXLT

	Taluka : Raig	ad			Taluka	Raigad			Taluka	: Raigad		
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Witho	out Fe)			2008 (With	out Fe)			2009 (Witho	ut Fe)			
Phugaon	C/RG-025	68	GW	Phugaon	C/RG-025	73	GW	Sochinde C/RG-016 65 G				
Sochinde	C/RG-016	49	EXLT	Sochinde	C/RG-016	38	EXLT					
Temple	C/RG-034	35	EXLT	Temple	C/RG-034	47	EXLT	Data for 2010 and 2011 (With Fe) Not Available				

	Taluka: Roha	1				Taluka:	Roha			Taluka	: Roha	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)				2008 (Without	t Fe)			2009 (Withou	ıt Fe)		
Kharapati	C/RG-005	44	EXLT		Kharapati	C/RG-005	50	EXLT	Kharapati	C/RG-005	50	EXLT
Khutal	C/RG-017	44	EXLT		Khutal	C/RG-017	38	EXLT	Nagothan	C/RG-007	44	EXLT
Nagothan	C/RG-007	41	EXLT		Nagothan	C/RG-007	42	EXLT				
2010 (With Fe	č i				2011 (With Fe	e)						
Nagothane	RDWQN007	49	EXLT		Nagotne	RDOBW030	28	EXLT	Kolad	RDOBW021	38	EXLT
*Kolad	RDOBW021	38	EXLT		+Nagothane	RDPZ004	32	EXLT	Nagothane	RDOBW030	42	EXLT
*Nagotane	RDWQN007	29	EXLT		+Roha	RDOBW038	42	EXLT	Roha	RDPZ003	36	EXLT
D .Sutarwadi	RDOBW010	30	EXLT		+Savanewadi	RDWQN016	36	EXLT	Savanewadi	RDWQN016	40	EXLT
Roha	RDOBW038	42	EXLT		D.Sutarwadi	RDOBW010	38	EXLT				

1 able x.25 (Conta) Kaiga		ici								
	Taluka: Sudhg				Taluka : S	udhgad			Taluka : S	Sudhgad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Withou	ıt Fe)			2009 (Withou	ıt Fe)		
Pali	C/RG-035	52	GW	Pali	C/RG-035	56	GW	Pali	C/RG-035	29	EXLT
2010 (With Fe)			Jambhulpada	C/RG-039	58	GW				
Varad	RDOBW045			Data for 2	2011 (With Fe)	Not Ava	ilable				
Jambhulpada	KDOB W 043	38	EXLT								
	Taluka : Muru	d			Taluka : 1	Murud			Taluka :	Murud	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe)			2011 (With F	<u>e)</u>				•		
Barshiv	RDWQN004	44	EXLT	Barshiv	RDWQN004	58	GW	Murud	RDOBW029	43	EXLT
Dongari	RDWQN006	52	GW	Chikani	RDPZO24	37	EXLT	Nandagaon	RDWQN007	47	EXLT
Nandgaon	RDWQN007	19	EXLT	Chordhe	RDWQN005	33	EXLT	Chorde	RDWQN005	36	EXLT
Chordhe	RDWQN005	35	EXLT	Dongari	RDWQN006	63	GW	Murud		30	EXLT
Dongari	RDWQN006	53	GW	Data for 2007	Data for 2007 to 2009 (Without Fe) Not Available						
r	Falulra & Chuirrand	lhon			Talulta + Chu	irrondha			Taluka : Sh	wiv and ha	-
Villages	Taluka : Shrivard Well No.		Cotogowy	Taluka : Shrivardhan Villages Well No. WQI Category			Villages	Well No.			
2010 (With Fe		WQI	Category	2011 (With Fe		WQI	Category	vinages	wen No.	WQI	Category
Aadagaon	RDWQN023	46	EXLT	+Adagoan	RDWQN023	51	GW	+Borli	RDOBW006	69	GW
Bharudkhol	RDWQN023	39	EXLT	+Adagoan +Bhanrdakol	RDWQN023	52	GW	+Shrivardhan	RDOBW000	61	GW
Borle	RDWQN024 RDOBW006	34	EXLT	+Dilaili dakoi	KDWQN024	34	GW	+Silitvatuliali	KDOD W 040	01	GW
Shrivardhan	RDOBW000	24	EXLT			Data fo	r 2007 to 200	9 (Without Fe)	Not Avoilable		
Borle	RDOBW040	33	EXLT			Data 10	1 2007 to 200	9 (Without Fe)	NUL AVAIIADIE		
Done	KDOD W 000	33	EALI								
	Taluka : Tala	l			Taluka :				Taluka	: Tala	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe				2011 (With F							
Mandad	RDWQN015	49	EXLT	Mandad	RDWQN015	75	GW	Padhavan	RDWQN028	44	EXLT
padawan		53	GW			Data fo	or 2007 to 200	9 (Without Fe)	Not Available		
	Taluka : Uran	1		Taluka : Uran					Taluka	: Uran	
Villages	Well No.	WQI	Categor	Villages Well No. WQI Category				Villages	Well No.	WQI	Category
2010 (With Fe				2011 (With Fe)						. •	
Jasai	RDOBW054	35	EXLT	*Jasai RDOBW054 45 EXLT				*Karanja	RDWQN009	42	EXLT
Liron	DDODW042			Data for	2007 to 2009 (V	Vithout	Fe)	·	DDODW042		
Uran	RDOBW043	46	EXLT		Not Available			*Uran	RDOBW043	43	EXLT
	3.7				11	1 0	11.00	. 11 /1 .			

^{*} Pre-Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.26: Water Quality Index of Groundwater of Ratnagiri District

	Taluka : Ch	iplun			Taluka : Cl	niplun			Taluka :	Chiplun	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without)	Fe)			2008 (Without	Fe)			2009 (Witho	out Fe)		
Agave	C/RN-012	25	EXLT	Agave	C/RN-012	29	EXLT	Agave	C/RN-012	24	EXLT
Chiplun	C/RN-033	39	EXLT	Chiplun	C/RN-033	38	EXLT	Chiplun	C/RN-033	37	EXLT
Khandala	C/RN-027	23	EXLT	Khandala	C/RN-027	22	EXLT				
Satwade				Satwade				Kamathe	C/RN-007	32	EXLT
								Khandala	C/RN-027	29	EXLT
Niwali	C/RN-026	39	EXLT	Niwali	C/RN-026	40	EXLT	Satwade			
				Pophali	C/RN-014	25	EXLT	Pophali	C/RN-014	25	EXLT
2010 (With Fe)											
Bamnoli	RTOBW004	31	EXLT	Kalkavane	RTOBW019	31	EXLT	*Mervi	RTOBW040	21	EXLT
Bhom	RTOBW007	39	EXLT	Sawarde		35	EXLT	*Lanja	RTOBW034	23	EXLT
*Murtavada		18	EXLT	Kutare	RTOBW034	28	EXLT	*Veer	RTOBW061	24	EXLT
*Veer	RTOBW061	24	EXLT	Bamnoli		32	EXLT	*Bhom	RTOBW007	26	EXLT
*Sawarde		19	EXLT	Bhom	RTOBW007	40	EXLT	Valope	RTOBW059	35	EXLT
*Bamnoli	RTOBW004	29	EXLT	Valope	RTOBW059	51	GW	Kamthe	RTOBW020	29	EXLT
*Bhom	RTOBW007	25	EXLT	Murtvada		37	EXLT	Kolambe	RTWQN020	26	EXLT
*Margtamhane		27	EXLT	Veer	RTOBW061	29	EXLT				
Kamthe	RTOBW020	40	EXLT	*Kalkavane	RTOBW019	26	EXLT				
2011 (With Fe)		•				•					
*Bamnoli	RTOBW004	21	EXLT	*Margtamhane	RTOBW038	23	EXLT	*Owali	RTWQN013	25	EXLT
*Sawarde	RTOBW014	20	EXLT	*Veer	RTOBW061	20	EXLT	Yegaon	RTWQN014	32	EXLT
*Kamathe	RTOBW020	29	EXLT	*Chiplun	RTWQN011	47	EXLT			-	

^{*} Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Dapoli				Taluka : 1	Dapoli			Taluka :	Dapoli	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	ıt Fe)			2009 (Witho	ut Fe)		
Dabhol	C/RN-029	71	GW	Dabhol	C/RN-029	80	GW	Dapoli	C/RN-022	18	EXLT
Dabhol	C/RN-035	26	EXLT	Dapoli	C/RN-022	19	EXLT	Karanjani	C/RN-039	18	EXLT
Karanjani	C/RN-039	19	EXLT	Karanjali	C/RN-049	19	EXLT	Kumble	C/RN-040	28	EXLT
Kumble	C/RN-040	29	EXLT	Karanjani	C/RN-039	17	EXLT	Oni	C/RN-025	18	EXLT
Oni	C/RN-025	18	EXLT	Kumble	C/RN-040	29	EXLT				
2010 (With Fe	e)										
Dapoli	RTOBW011	28	EXLT	Nante		18	EXLT	Kumbhave		28	EXLT
Kavdoli	RTOBW022	45	EXLT	Kavadoli	RTOBW022	27	EXLT	Dabhol		32	EXLT
Harni	RTOBW016	26	EXLT	Kumbhave		17	EXLT	Nante		21	EXLT
Dabhol	RTOBW009	30	EXLT	Dapoli	RTOBW011	27	EXLT	Harni	RTOBW016	22	EXLT
Harnai	RTOBW016	22	EXLT	Kavadoti	RTOBW022	40	EXLT	Dapoli	RTOBW011	20	EXLT
Dabhol	RTOBW009	25	EXLT	Palgad		28	EXLT	Kavdoli	RTOBW022	26	EXLT
Dapoli	RTOBW011	21	EXLT	Harnai	RTOBW016	41	EXLT				
2011 (With Fe	e)										
Dabhol	RTOBW009	32	EXLT	Kavadoli	RTOBW022	34	EXLT	Palgad	RTOBW049	29	EXLT
Dapoli	RTOBW011	29	EXLT	Kumbhave	RTOBW032	26	EXLT	Unhavare	RTWQN001	27	EXLT
Harnai	RTOBW016	35	EXLT	Nante	RTOBW046	26	EXLT				

^{*} Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : G	uhagar			Taluka : G	uhagar			Taluka:	Guhagar	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	ıt Fe)			2008 (Witho	ut Fe)			2009 (Witho	ut Fe)		
Abloli	C/RN-047	19	EXLT	Abloli	C/RN-047	18	EXLT	Abloli	C/RN-047	16	EXLT
Kotluk	C/RN-052	22	EXLT	Pimper	C/RN-031	35	EXLT	Pimper	C/RN-031	23	EXLT
				Pomendi	C/RN-034	27	EXLT	Pomendi	C/RN-034	26	EXLT
Pimper	C/RN-031	47	EXLT	(Kh)				(Kh)			
Pomendi	C/RN-034	28	EXLT	Vankhed	C/RN-048	27	EXLT	Shingartale	C/RN-037	18	EXLT
Shingartale	C/RN-037	20	EXLT					Vankhed	C/RN-048	26	EXLT
Vankhed	C/RN-048	30	EXLT						•		
2010 (With F	e)	•		•							
Valop	RTOBW059	35	EXLT	*Velamb	RTOBW064	23	EXLT	Pimpar	RTOBW052	24	EXLT
Kamathe	RTOBW020	28	EXLT	*Koundar	RTWQN016	26	EXLT	Palshet	RTOBW050	31	EXLT
Kalkavane	RTOBW019	29	EXLT	Guhagar	RTOBW015	30	EXLT	*Guhaghar	RTOBW015	30	EXLT
Kutare	RTOBW034	31	EXLT	Velamb		24	EXLT	*Jambhari	RTOBW018	27	EXLT
*Guhagar	RTOBW015	26	EXLT	Pimpar		26	EXLT	*Palshet	RTOBW050	26	EXLT
*Pimpar	RTOBW052	20	EXLT	Jambhari	RTOBW018	34	EXLT	*Kaundher	RTWQN016	44	EXLT
*Jambhari	RTOBW018	21	EXLT	Palshet	RTOBW050	37	EXLT			•	
*Palshet	RTOBW050	34	EXLT	Velamb	RTOBW064	17	EXLT				
2011 (With F	e)	•		•	•						
*Jambhari	RTOBW018	20	EXLT	*Pimpar	RTOBW052	20	EXLT	*Dhopave	RTWQN015	26	EXLT
*Palshet	RTOBW050	22	EXLT	*Velamb	RTOBW064	27	EXLT			•	

^{*} Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : I	0			Taluka:	Khed			Taluka	: Khed	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)			2008 (Withou	ut Fe)			2009 (Withou	ut Fe)		
Awashi	C/RN-001	20	EXLT	Dasturi	C/RN-038	34	EXLT	Awashi	C/RN-001	60	GW
Dasturi	C/RN-038	36	EXLT	Devghar	C/RN-010	18	EXLT	Devghar	C/RN-010	16	EXLT
Devghar	C/RN-010	18	EXLT	Kalvane	C/RN-018	19	EXLT	Kalvane	C/RN-018	18	EXLT
Kalvane	C/RN-018	19	EXLT	Khopi	C/RN-043	22	EXLT	Khopi	C/RN-043	21	EXLT
Khopi	C/RN-043	25	EXLT	Wave	C/RN-044	22	EXLT				
Wave	C/RN-044	25	EXLT								
2010 (With F	e)										
Khavati	RTOBW026	28	EXLT	Dabhil	RTWQN003	24	EXLT	Khari	RTOBW024	24	EXLT
Khari	RTOBW024	35	EXLT	Lavel	RTOBW035	21	EXLT	Karji	RTOBW025	31	EXLT
Karji	RTOBW025	20	EXLT	Veral	RTOBW063	26	EXLT	Shivthar	RTOBW057	26	EXLT
Shivthar	RTOBW057	26	EXLT	Bhelsai	RTOBW006	25	EXLT	Asthan	RTOBW003	25	EXLT
Asthan	RTOBW003	25	EXLT	Khari	RTOBW024	33	EXLT	Lavel	RTOBW035	36	EXLT
lavel	RTOBW035	37	EXLT	Karji	RTOBW025	31	EXLT	Verel	RTOBW063	30	EXLT
Veral	RTOBW063	27	EXLT	Shivthar	RTOBW057	28	EXLT	Tisangi	RTOBW058	26	EXLT
Tisangi	RTOBW058	22	EXLT	Asthan	RTOBW003	26	EXLT	Chinchghar	RTOBW008	29	EXLT
Chinchghar	RTOBW008	28	EXLT	Tisangi	RTOBW058	22	EXLT	Bhelsai	RTOBW006	28	EXLT
Khavati	RTOBW026	26	EXLT	Khavati		35	EXLT	Dabhil	RTWQN003	213	VPW
Bhelsai	RTOBW006	27	EXLT	*Jakadevi	RTWQN018	31	EXLT				
2011 (With F	e)										
*Asthan	RTOBW003	26	EXLT	*Shirthar	RTOBW057	26	EXLT	*Lavel	RTWQN006	21	EXLT
*Bhelsai	RTOBW006	22	EXLT	*Tisangi	RTOBW058	21	EXLT	*Lavel	RTWQN007	29	EXLT
Chichghar	RTOBW008	36	EXLT	*Veral	RTOBW063	23	EXLT	*Lote	RTWQN008	22	EXLT
Khari	RTOBW024	22	EXLT	*Avashi	RTWQN002	26	EXLT	*Wave T.	RTWQN010	22	EXLT
Kharji	RTOBW025	24	EXLT	*Dabhil	RTWQN003	26	EXLT	Gunade	RTWQN004	32	EXLT
*Khavati	RTOBW026	24	EXLT	*Gunade	RTWQN004	24	EXLT				
*Lavel	RTOBW035	22	EXLT	*Khed	RTWQN005	25	EXLT				

^{*} Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka: Ma	ndangad			Taluka : Ma	ndang	ad		Taluka : M	andanga	d
Villages	Well No.	WQI	Category	Villages	Well No.	WQ	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)			2008 (Without	t Fe)			2009 (Withou	ıt Fe)		
Mandangarh	C/RN-041	25	EXLT	Mandangarh	C/RN-041	25	EXLT	Mahapral	C/RN-021	26	EXLT
								Mandangarh	C/RN-041	29	EXLT
2010 (With Fe	e)							2011 (With F	(e)		
Shipole	RTOBW055	25	EXLT	Kumbale		29	EXLT	Devhare	RTOBW012	29	EXLT
Velas	RTOBW062	25	EXLT	Velas	RTOBW062	22	EXLT	Kumbale	RTOBW031	40	EXLT
Devhare		18	EXLT	Devhare		31	EXLT	Mhapral	RTOBW041	30	EXLT
Shipole	RTOBW055	25	EXLT	Shipole	RTOBW055	26	EXLT	Shipole	RTOBW055	34	EXLT
		Velas	RTOBW062	27	EXLT	Velas	RTOBW062	28	EXLT		

	Taluka: Rajapur				Taluka : R	ajapur			Taluka:	Rajapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (With Fe)			2008 (With F	e)			2009 (With 1	Fe)		
Raipatan	C/RN-006	25	EXLT	Raipatan	C/RN-006	21	EXLT	Raipatan	C/RN-006	20	EXLT
Rajapur	C/RN-019	20	EXLT	Rajapur	C/RN-019	21	EXLT	Rajapur	C/RN-019	21	EXLT
Solgaon	C/RN-036	22	EXLT	Solgaon	C/RN-036	18	EXLT	Solgaon	C/RN-036	23	EXLT
2010 (With Fe											
Date	RTWQN028	33	EXLT	Nate	RTWQN028	39	EXLT	*Pachd	RTWQN032	24	EXLT
Nate	RTWQN028	21	EXLT	Jaitapur		174	PW	*Mandrul	RTWQN030	25	EXLT
Shede	RTWQN031	32	EXLT	Moroshi	RTOBW043	40	EXLT	*Konde	RTOBW029	31	EXLT
Rajapur	RTWQN003	33	EXLT	Pachal	RTWQN032	36	EXLT	*Moroshi	RTOBW043	24	EXLT
Karel		43	EXLT	Tamhane		33	EXLT	Date	RTWQN028	108	PW
Kondye T.S	RTOBW029	32	EXLT	*Yerdav	RTOBW065	24	EXLT	Sade	RTWQN031	25	EXLT
2011 (With Fe											
*Aravali	RTOBW002	25	EXLT	*Moroshi	RTOBW043	32	EXLT	*Nate	RTWQN028	35	EXLT
*Bhom	RTOBW007	29	EXLT	*Murtvade	RTOBW045	24	EXLT	*Jaitapur	RTWQN029	37	EXLT
*Guhaghar	RTOBW015	36	EXLT	*Volape	RTOBW059	35	EXLT	*Mandrul	RTWQN030	29	EXLT
*Kalkavane	RTOBW019	33	EXLT	*Yerdav	RTOBW065	24	EXLT	*Shede/Sade	RTWQN031	30	EXLT
*Karel	RTOBW021	24	EXLT	*Dervan	RTWQN012	29	EXLT	*Pachal	RTWQN032	28	EXLT
*Kandye T.S.	RTOBW029	22	EXLT	*Yegaon	RTWQN014	32	EXLT	*Rajapur	RTWQN033	33	EXLT
*Kutare	RTOBW033	27	EXLT	*Koundar	RTWQN016	29	EXLT	*Tamhane	RTWQN035	30	EXLT

^{*} Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Ratana				Taluka : Ra	tanagir	i		Taluka : F	Ratanagir	i
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	ıt Fe)			2009 (Witho	out Fe)		
Ambed	C/RN-015	21	EXLT	Ambed	C/RN-015	20	EXLT	Dugvay	C/RN-032	16	EXLT
Budruk				Budruk							
Dugvay	C/RN-032	18	EXLT	Dugvay	C/RN-032	16	EXLT	Kasheli	C/RN-023	27	EXLT
Kasheli	C/RN-023	22	EXLT	Kasheli	C/RN-023	23	EXLT	Valops	C/RN-024	59	GW
								Pudhwadi			
Ratnagiri	C/RN-058	24	EXLT	Jaigarh	C/RN-003	22	EXLT	Jaigarh	C/RN-003	24	EXLT
Ratnagiri	C/RN-059	21	EXLT	Jakadevi	C/RN-017	20	EXLT	Jakadevi	C/RN-017	20	EXLT
Vakarli	C/RN-011	21	EXLT	Jalgaon	C/RN-028	22	EXLT	Jalgaon	C/RN-028	23	EXLT
Valops	C/RN-024	23	EXLT								
Pudhwadi											
Jaigarh	C/RN-003	23	EXLT								
Jakadevi	C/RN-017	21	EXLT								
Jalgaon	C/RN-028	23	EXLT								
2010 (With Fe	e)										
Kolmbe	RTWQN020	21	EXLT	*Kotavade	RTWQN021	26	EXLT	Malgund	RTWQN022	22	EXLT
Kasarveli	RTWQN019	45	EXLT	*Sadye	RTWQN26	30	EXLT	Nevare	RTWQN023	25	EXLT
Sadye	RTWQN26	30	EXLT	Kasarveli	RTWQN019	29	EXLT	Sadye	RTWQN26	31	EXLT
Mervi	RTOBW040	30	EXLT	Jakadevi	RTWQN018	23	EXLT	Kasarveli	RTWQN019	55	GW
*Kotavade	RTOBW030	28	EXLT	Jaigad		21	EXLT	Ratnagiri		44	EXLT
*Malgund	RTOBW036	32	EXLT	Kothawade	RTOBW030	25	EXLT	Ratnagiri		31	EXLT
*Varvade	RTWQN27	27	EXLT	Malgund	RTOBW036	30	EXLT	Khedshi		25	EXLT
*Malgund	RTWQN022	22	EXLT	Varvade	RTWQN27	22	EXLT				
*Nevare	RTWQN023	161	PW								
2011 (With Fe	e)										
*Jaigad	RTOBW017	25	EXLT	*Vandri	RTOBW060	25	EXLT	*Malgund	RTWQN022	24	EXLT
*Khedashi	RTOBW027	21	EXLT	*Golap	RTWQN017	26	EXLT	*Ratnagiri	RTWQN24	31	EXLT
*Kothawade	RTOBW030	30	EXLT	*Jakevadi	RTWQN018	23	EXLT	*Ratnagiri	RTWQN25	42	EXLT
*Malgund	RTOBW036	31	EXLT	*Kasarveli	RTWQN019	47	EXLT	*Sadye	RTWQN26	33	EXLT
*Mervi	RTOBW040	20	EXLT	*Kolmbe	RTWQN020	24	EXLT	*Varoade	RTWQN27	24	EXLT
*Ratnagiri	RTOBW053	42	EXLT	*Kotaewade	RTWQN021	23	EXLT				

^{*} Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Ta	aluka : Sangames	shwar			Taluka : Sang	ameshw	var		Taluka : San	gameshv	var
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (With	out Fe)		
Sakarpa	C/RN-020	34	EXLT	Sakarpa	C/RN-020	36	EXLT	Dhamni	C/RN-008	21	EXLT
				Devrukh	C/RN-058	19	EXLT				
				Muchari (Bhatadewadi)	C/RN-042	24	EXLT				
2010 (With Fe)										
Vandri		20	EXLT	Maral	RTOBW037	34	EXLT	*Maral	RTOBW037	23	EXLT
Dabhol	RTOBW010	22	EXLT	Nayari	RTOBW048	30	EXLT	*Nayari	RTOBW048	21	EXLT
Devrukh	RTOBW013	29	EXLT	Ambed Bk	RTOBW001	29	EXLT	*Ambed	RTOBW001	18	EXLT
Maral	RTOBW037	24	EXLT	Murshi	RTOBW044	32	EXLT	*Murshi	RTOBW044	23	EXLT
Ambed. B.k	RTOBW001	21	EXLT	Dabhole	RTOBW010	33	EXLT	*Aravali	RTOBW002	23	EXLT
Murshi	RTOBW044	21	EXLT	*Dabhole	RTOBW010	19	EXLT	Aravali		23	EXLT
Aravali		28	EXLT	*Devrukh	RTOBW013	22	EXLT	*Vandri		46	EXLT
Dabhole Bk.	RTOBW010	34	EXLT								
Devrukh	RTOBW013	41	EXLT								
2011 (With Fe)					•				•	
*Ambed Bk	RTOBW001	25	EXLT	*Devrukh	RTOBW013	35	EXLT	*Murshi	RTOBW044	20	EXLT
*Dabhole Bk.	RTOBW010	34	EXLT	*Maral	RTOBW037	26	EXLT	*Nayari	RTOBW048	22	EXLT

	Taluka : Lanja	a			Taluka : l	Lanja			Taluka	: Lanja	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2010 (With Fe	e)			2011 (With	Fe)						
Lanja	RTOBW034	30	EXLT	Bhambed	RTOBW005	41	EXLT	*Bhambed	RTOBW005	25	EXLT
Math	RTOBW039	26	EXLT	*Math	RTOBW039	21	EXLT	*Lanja	RTOBW034	21	EXLT
Data for 2007	to 2009 (Without	Fe) Not	Available		*Math	RTOBW039					

^{*} Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.27: Water Quality Index of Groundwater of Sangli District

	Taluka : Atpad	li			Taluka:	Atpadi			Taluka:	Atpadi	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Withou	t Fe)			2009 (Withou	t Fe)		
Atpadi	K/SN-021	62	GW	Atpadi	K/SN-021	144	PW	Gomewadi	K/SN-024	119	PW
Umbargaon	K/SN-015	88	GW	Vibhutwadi	K/SN-025	48	EXLT	Umbargaon	K/SN-015	69	GW
Vibhutwadi	K/SN-025	57	GW								
2010 (With Fe	e)							2011 (With F	(e)		
*Atpadi	SNOBW072	59	GW	*Pimpri Kh.	SNOBW 067	102	PW	Balewade	SNOBW0	62	GW
*Dhvadwadi	SNOBW073	97	GW	*Pujarwadi	SNOBW 063	68	GW	Atapadi	SNOBW072	70	GW
*Dighanchi	SNWQN017	78	GW	*Ramnagara	SNWQN018	58	GW	Dhavadwadi	SNOBW073	68	GW
*Ghanand	SNOBW 071	113	PW	*Shetphale	SNOBW 075	103	PW	Hivathad	SNPZ017	64	GW
*Hivthad	SNPZ 017	77	GW	*Umbargaon	SNOBW 061	76	GW	Kharsundi	SNOBW070	78	GW
*Kargani	SNWQN 016	85	GW	*Vithalpur	SNOBW 066	93	GW	Parekarwadi	SNOBW064	79	GW
*Kharsindi	SNOBW 070	63	GW	*Zare	SNPZ 018	89	GW	Pimpri Kh.	SNOBW067	71	GW
*Parekarwadi	SNOBW 064	85	GW					Shetphale	SNOBW075	114	PW
								Umbargaon	SNOBW061	65	GW
								Vithlapur	SNOBW066	58	GW

	Taluka: Islamp	ur			Taluka :	Islampur				Taluka :	Islampur	
Villages	Well No.	WQI	Category	Villages	Villages Well No. WQI Category Villages Well No. WQI						WQI	Category
2008 (Without	t Fe)			2009 (With	out Fe)				Data for 200'	7 (Without Fe)	and	
Takari	K/SN-034	114	PW	Takari K/SN-034 103 PW					2010 -2011 No	ot Available (W	ith Fe)	

	Taluka : Palus					Taluka	Palus			Taluka : l	Palus	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2008 (Without	Fe)				2009 (Withou	ut Fe)			2010 (Without F	e)		
Bambwade	K/SN-033	62	GW		Bambwade	K/SN-033	93	GW	Bhilwadi/Palus	132	PW	
									*Bhilwadi/Palus	SNWQN010	81	GW
	Data for	2007 (V	Vithout Fe) a :	nd 2011 (With	Fe) Not Availa	ıble		*Kundal	SNWQN013	87	GW
									*Wasagade		172	PW

^{*} Pre-Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Jath				Taluka:	Jath			Taluka	: Jath	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Without	Fe)			2009 (Withou	t Fe)		
Shegaon	K/SN-031	122	PW	Shegaon	K/SN-031	143	PW	Jath	K/SN-004	212	VPW
Jath	K/SN-004	206	VPW	Jath	K/SN-004	180	PW	Kumbhari	K/SN-026	98	GW
Kumbhari	K/SN-026	145	PW	Kumbhari	K/SN-026	127	PW	Bilur	K/SN-027	91	GW
Bilur	K/SN-027	151	PW	Bilur	K/SN-027	65	GW				
Daphlapur	K/SN-029	152	PW	Daphlapur	K/SN-029	99	GW				
2010 (With Fe	e)										
*Lavangui	SNOBW 093	77	GW	*Bilur	SNWQN035	56	GW	*Karanjani	SNWQN042	121	PW
*Morbagi	SNOBW 094	121	PW	*Borgi.Bk	SNWQN040	79	GW	*Khojanwadi	SNWQN036	165	PW
*Muchandi	SNOBW 097	126	PW	*Dafalapur	SNOBW 029	71	GW	*Singhpur	SNPZ 013	77	GW
*Nigdi kh	SNOBW 069	93	GW	*Deonal	SNWQN041	91	GW	*Tippehalli	SNWQN043	71	GW
*Sankh	SNOBW 098	136	PW	*Deonal	SNPZ 019	93	GW	*Utgi	SNWQN039	171	PW
*Bagewadi	SNOBW 084	117	PW	*Dhavadwadi	SNOBW 082	79	GW	*Vaspet	SNWQN038	97	GW
*Bavnoor	SNOBW 079	75	GW	*Jadarboblad	SNOBW 087	65	GW	*Waifal	SNWQN037	64	GW
2010 (With Fe	2)										
Bagewadi	SNOBW084	80	GW	Jadarbablad	SNOBW089	348	UNSUT	Sankh	SNOBW098	148	PW
Bevnoor	SNOBW079	71	GW	Karanjanji	SNWQN042	196	PW	Sinhgnapur	SNPZ013	88	GW
Bilur	SNWQN035	80	GW	Khojanwadi	SNWQN036	99	GW	Tippehalli	SNWQN043	65	GW
Borgi bk.	SNWQN040	384	UNSUT	Morbagi	SNOBW094	69	GW	Utagi	SNWQN039	190	PW
Daflapur	SNOBW029	51	GW	Muchandi	SNOBW097	104	PW	Vaspet	SNWQN038	67	GW
Deonal	SNWQN041	96	GW	Nigdi Kh.	SNOBW087	60	GW	Lavangi	SNOBW093	74	GW
Dhavadwadi	SNPZ	112	PW								

T	aluka : Kadegao	n				Taluka : K	adegao	n			Taluka : I	Kadegaon		
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	V	illages	Well No.	WQI	Category	
2008 (Without I	Fe)			2009 (Without Fe) 2011 (With Fe)										
Kadepur	K/SN-009	76	GW		Kadepur	K/SN-009	102	PW	Khambale SNOBW0 48 EXI					
2010 (With Fe)									Sc	onasal	SNOBW0	75	GW	
*KhambaleA.	SNOBW001	48	EXLT		*Soholi	SNPZ 014	52	GW		-4- for 2007	(XXIII out Ea) N	No4 A110	Ll.	
*Kumbhargaon	SNOBW010	60	GW		*Sonsali	SNOBW013	32	EXLT	Data for 2007 (Without Fe) Not Available					
		•			*Wangi		49	EXLT						

^{*} Pre-Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Talul	ka : Kavathemah	ankal			Taluka: Kavath	emahan	kal		Taluka : Kava	themaha	nkal
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Fe)			2008 (Without	Fe)			2009 (Witho	ut Fe)		
Alkud	K/SN-020	55	GW	Alkud	K/SN-020	82	GW	Alkud	K/SN-020	114	PW
Kavathe				Kavathe							
mahankal	K/SN-040	205	VPW	mahankal	K/SN-039	121	PW				
2010 (With Fe)								2011 (With I	Fe)		
*Kokle	SNOBW 030	305	UNSUT	*K'Mahankal	SNWQN033	82	GW	Chorochi	SNOBW081	76	GW
*Nagaj	SNOBW 077	142	PW	*Kerewadi	SNOBW 028	60	GW	Deshinge	SNOBW032	53	GW
*Nimaj	SNOBW 078	93	GW	*Kuchi	SNOBW 026	130	PW	Dhulgaon	SNWQN034	62	GW
*Alkud M	SNOBW 031	90	GW	*Kundalpur	SNOBW 025	90	GW	Dudhebhavi	SNOBW080	65	GW
*Chorochi	SNOBW 081	80	GW	*Ranjani	SNPZ 006	106	PW	Hingangaon	SNOBW033	103	PW
*Deshing	SNOBW 032	87	GW	*Sarati	SNPZ 019	68	GW	Karewadi	SNOBW028	66	GW
*Dhulagaon	SNWQN034	73	GW	*Shirdon	SNWQN032	192	PW	K'mahankal	SNWQN033	126	PW
*Dhudhebhavi	SNOBW 080	80	GW					Kokale	SNOBW030	41	EXLT
*Haingangaon	SNOBW 033	359	UNSUT					Nagaj	SNOBW077	72	GW
-								Nimaj	SNOBW078	97	GW
								Shirdhon	SNWON032	88	GW

Ta	ıluka : Khanapu	ır			Taluka : Kha	napur			Taluka : Kl	hanapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without Fo	e)			2008 (Without]	Fe)			2009 (Without	Fe)		
Belavade	K/SN-022	89	GW	Belavade	K/SN-022	57	GW	Belavade	K/SN-022	77	GW
Palashi	K/SN-013	70	GW	Palashi	K/SN-013	60	GW	Wangi	K/SN-008	148	PW
Vita	K/SN-001	63	GW								
Wangi	K/SN-008	31	EXLT								
2010 (With Fe)				2011 (With Fe)							
*BhaurachiWadi	SNOBW004	68	GW	Bhaurachiwadi	SNOBW04	60	GW	Vejegaon	SNOBW0	68	GW
*Bhood	SNOBW006	58	GW	Bhood	SNOBW06	52	GW	Welkhad	SNOBW015	49	EXLT
*Ghoti Kh	SNOBW019	66	GW	Ghoti (Kh.)	SNOBW19	66	GW	Bombewadi	SNOBW0	72	GW
*Hanumantwadi	SNPZ 011	96	GW	Karve	SNOBW0	65	GW	Mitaki	SNOBW0	57	GW
*Karanje	SNPZ 022	64	GW	Mahuli	SNOBW0	120	PW	Pandharewadi	SNOBW0	133	PW
*Khanapur	SNOBW022	50	GW	Sulewadi	SNOBW16	46	EXLT	Zare	SNOBW0	84	GW
*Nagewadi	SNWQN019	92	GW	* Pre-Monsoon	n, + Monsoon So	eason, T	The repeate	ed stations may in	dicate the sam	ples fro	m two
*Salshinge	SNWQN020	50	EXLT	different wells	/dates / seasons		•	•		-	
*Walkhed	SNPZ 015	29	EXLT								

	Taluka : Miraj				Taluka:	Miraj			Taluka : I	Miraj	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2008 (Without F	'e)			2009 (Witho	ut Fe)			Data for 2007 (V	Without Eo) Not	Awailahl	
Arag	K/SN-032	56	GW	Arag	K/SN-032	71	GW	Data for 2007 (V	vitilout re) Not	Availabi	e
2010 (With Fe)											
*Dhavali	SNWQN030	261	VPW	*Samdoli		115	PW	*Kavathepiran	SNWQN032	44	EXLT
*Dudhgaon	SNWQN021	173	PW	*Sangli	SNWQN025	91	GW	*Kupwad	SNWQN031	109	PW
*Kalambi	SNWQN022	50	EXLT	*Sawalwadi	SNWQN029	99	GW	*Madhavanagar	SNWQN026	170	PW
*Kasbe Digraj	SNWQN028	119	PW	*Belanki	SNPZ 008	107	PW	*Tung	SNPZ 007	93	GW
*Kavalapur	SNOBW036	172	PW	*Tisangi	SNOBW 076	105	PW	*Soholi	SNWQN027	75	GW
*Maisal	SNOBW054	191	PW	*Arag	SNOBW056	97	GW	*Walkhed		64	GW
*Nandre	SNWQN024	91	GW								
2011 (With Fe)		<u> </u>									
Kupwad	SNWQN030	103	PW	Dudhagaon	SNWQN021	106	PW	Savalwadi	SNWQN028	39	EXLT
Mahdavanagara	SNWQN026	136	PW	Mahaishal	SNOBW054	87	GW	Arag	SNOBW056	105	PW

	Taluka : Shirala	a			Taluka : S	hirala			Taluka : S	Shirala	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2008 (Without I	Fe)			2010 (With Fe	e)						
Chikhalwadi	K/SN-040	48	EXLT	*Bilashi	SNOBW048	77	GW	*Mangle	SNPZ 002	55	GW
				*Biur/	SNOBW043			*Rile	SNPZ 012		
Data for 2007		-4 Ea) a		Wakurde Bk.	3NOD W 043	59	GW	·Kile	SNFZ 012	85	GW
	and 2009 (Wiho th Fe) Not Avail	-	na 2011	*Chikhali	SNWQN001	49	EXLT	*Sawantwadi	SNOBW046	64	GW
(**1	in Fe) Not Avan	lable		*Chikhalwadi	SNWQN002	101	PW	*Shirala	SNOBW044	61	GW
				*Mandur	SNOBW009	42	EXLT	*Sirshi	SNWQN003	61	GW

Talı	uka : South Sola	pur			Taluka : Sou	th Solap	our		Taluka : Sou	th Solapu	ır
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (With Fe)				2008 (With F	re)			2009 (With Fe))		
Valsang	K/SN-028	166	PW	Valsang	K/SN-028	159	PW	Valsang	K/SN-028	67	GW
Data was not av	ailable for 2010	-2011 (V	With Fe)								

^{*} Pre-Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Tasgao	n			Taluka : T	asgaon			Taluka : T	Tasgaon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2008 (Without	t Fe)			2009 (Withou	t Fe)						
Yevali	K/SN-019	216	VPW	Panmalewadi	K/SN-018	61	GW	2011 (With Fe)			
				Yevali	K/SN-019	247	VPW	Waifale	SNWQN037	61	GW
2010 (With Fe	e)							Kamathe	SNOBW0	57	GW
*Tasgaon	SNPZ 003	110	PW	*Tasgoan	SNPZ 003	140	PW	Yogewadi	SNWQN011	119	PW
*Buruli	SNWQN014	40	EXLT	*Turchi	SNWQN012	43	EXLT	Data for 2007 (Without Eo) No	at Arrailal	al o
*Gavan	SNWQN015	75	GW	*Yogewadi	SNWQN011	138	PW	Data 10f 2007 (williout Fe) No	ot Avallai	ne

1	Taluka : Walwa	1				Taluka : V	Valwa			Taluka:	Walwa	
Villages	Well No.	WQI	Category	V	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Fe)			2	2008 (Without	t Fe)			2009 (Without	Fe)		
Ashta	K/SN-016	59	GW	A	Ashta	K/SN-016	62	GW	Ashta	K/SN-016	90	GW
Peth	K/SN-017	66	GW	P	Peth	K/SN-017	75	GW	Peth	K/SN-017	87	GW
Wategaon	K/SN-003	51	GW	V	Wategaon	K/SN-003	49	EXLT	Wategaon	K/SN-003	68	GW
				Y	Yednipani	K/SN-035	116	PW				
2010 (With Fe)	Data for 2011	(With F	e) Not Ava	ailabl	le							
*Ashta	SNOBW038	64	GW	*	*Itkare	SNOBW049	41	EXLT	*Shivapuri	SNOBW037	49	EXLT
*Bahe	SNWQN009	74	GW	*	*Nave khed	SNWQN006	69	GW	*Tandulwadi	SNOBW050	46	EXLT
*Bavachi	SNWQN007	41	EXLT	*	*Nerle	SNOBW041	56	GW	*Tujarpur	SNWQN008	44	EXLT
*Borgaon	SNPZ005	41	EXLT	*	*Rethre	SNOBW040	32	EXLT	*Walwa	SNWQN005	40	EXLT
*Hubalwadi	SNOBW042	75	GW	*	*Sakharale	SNWQN004	103	PW	*Yellur	SNPZ006	49	EXLT

^{*} Pre-Monsoon, + Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.28: Water Quality Index of Groundwater of Satara District

	Taluka : Ja	vali				Taluka :	Javali				Taluka :	Javali	
Villages	Well No.	WQI	Category		Villages Well No. WQI Category				Villages	Well No.	WQI	Category	
2008 (Without I	Fe)				2009 (Withou	t Fe)				2011 (With Fe)			
Javali	K/ST-045	47	EXLT		Javali	K/ST-045	99	GW		Medha	STOBW008	48	EXLT
Data for 2007 (V	Without Fe) and	2010 (V	With Fe) N	ot .	Available					Medha	STWQN022	97	GW

	Taluka : Ka	arad			Taluka : 1	Karad			Taluka :	Karad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	re)			2008 (Withou	t Fe)			2009 (Without	(Fe)		
Malkapur	K/ST-024	23	EXLT	Malkapur	K/ST-024	23	EXLT	Malkapur	K/ST-024	46	EXLT
Undale	K/ST-038	83	GW	Undale	K/ST-038	62	GW	Undale	K/ST-038	80	GW
Varade	K/ST-015	64	GW	Data for 2010	(With Fe) Not	Availab	le	Varade	K/ST-015	64	GW
2011 (With Fe)											
Saudapur /Sadashivgad	STOBW054	106	PW	Korti	STOBW051	78	GW	Kale	STOBW074	78	GW
Gote	STOBW066	56	GW	Mhapre	STOBW065	70	GW	Savade	STOBW072	55	GW
Umbraj	STOBW048	63	GW	Kambirwadi		111	PW	Khadakwadi	STOBW070	53	GW
Talbeed	STWQN017	52	GW	Beldare	STOBW064	54	GW	Padali	STOBW052	62	GW
Wanvasmachi	STOBW046	52	GW	Talgaon	STWQN017	73	GW	Rethare bk.	STWQN019	47	EXLT
Karad	STWQN018	60	GW								

	Taluka : Kha	ndala			Taluka : Kl	handala			Taluka : K	handala			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (Without I	Fe)			2008 (Without	t Fe)			2009 (Without	Fe)				
Bhade	K/ST-043	106	PW	Bhade	K/ST-043	102	PW	Bhade	K/ST-043	85	GW		
Shirwal	K/ST-019	90	GW	Shirwal	K/ST-019	96	GW	Shirwal	K/ST-019	103	PW		
Data for 2010 (V	With Fe) Not Av	ailable		Surur	K/ST-039	94	GW	Surur	K/ST-039 100				
2011 (Without I	Fe)												
Khed Bk.	STOBW079	75	GW	Ghadagewadi		42	EXLT	Khandala	STWQN007	49	EXLT		
Koparde		50	EXLT	Shirval	STWQN006	66	GW	Naigaon	STOBW076	46	EXLT		
Lonand	STWQN008	43	EXLT	Shirval		74	GW	Ghadagewadi		39	EXLT		
Khandala	STWQN007	49	EXLT	Khed Bk.	STOBW079	75	GW	Ghadagewadi		42	EXLT		
Naigaon	STOBW076	46	EXLT	Koparde		50	EXLT	Shirval	STWQN006	66	GW		
Ghadagewadi		39	EXLT	Lonand	STWQN008	43	EXLT	Shirval		74	GW		

^{*} All values are in Pre-Monsoon, Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Kh	atav			Taluka : I	Khatav			Taluka : 1	Khatav	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Withou	ıt Fe)			2009 (Withou	t Fe)		
Khatav	K/ST-021	48	EXLT	Khatav	K/ST-021	101	PW	Khatav	K/ST-021	138	PW
Pusegaon	K/ST-011	68	GW	Manjarvadi	K/ST-035	53	GW	Manjarvadi	K/ST-035	94	GW
				Pusegaon	K/ST-011	58	GW	Pusegaon	K/ST-011	102	PW
2011 (With FE)											
Budh		89	GW	Kokrale	STOBW030	60	GW	Waduj Satewadi	STWQN019	52	GW
Bhushangad	STOBW058	45	EXLT	Chitali	STOBW063	50	GW	Wardhangad	STOBW029	46	EXLT
Yeliv	STOBW056	47	EXLT	Katarkhatav	STOBW027	180	PW	Mayani	STOBW062	76	GW
Aundh	STOBW055	38	EXLT	Kuroli S	STOBW031	66	GW	Mol	STOBW023	52	GW
Musandwadi		46	EXLT	Datewadi	STOBW061	41	EXLT	Lalgun	STOBW025	63	GW
Pusesavali		31	EXLT	Wakeshwar	STOBW028	38	EXLT	Data for 2010	(With Fe) Not A	vailable	

	Taluka : Kor	egaon			Taluka : K	oregaon			Taluka : K	oregaon	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Fe)			2008 (Withou	t Fe)			2009 (Without	Fe)		
Koregaon	K/ST-010	60	GW	Koregaon	K/ST-010	100	PW	Koregaon	K/ST-010	102	PW
Wathar	K/ST-013	60	GW	Rehmatpur	K/ST-026	87	GW	Rehmatpur	K/ST-026	85	GW
				Wathar	K/ST-013	67	GW	Wathar	K/ST-013	94	GW
2011 (With Fe)											
Koregaon	STOBW022	122	PW	Satara Rd		61	GW	Jamb Kh.	STOBW020	52	GW
Rahimatpur	STOBW033	122	PW	Pimpode Bk.		46	EXLT	Surli	STOBW034	59	GW
Eksal	STOBW032	56	GW	Koregaon	STOBW022	122	PW	Wathar station	STOBW017	89	GW
Chanchali	STOBW021	102	PW	Rahimatpur	STOBW033	122	PW	Satara Rd		61	GW
Jamb Kh.	STOBW020	52	GW	Eksal	STOBW032	56	GW	Pimpode Bk.		46	EXLT
Surli	STOBW034	59	GW	Chanchali	STOBW021	102	PW				
Wathar station	STOBW017	89	GW	Data for 2010	(With Fe) Not	Availab	le				

^{*} All values are in Pre-Monsoon, Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Mahal	oaleswa	r			Taluka: Maha	baleswa	ar			Taluka: Mah	abaleswa	ır		
Villages	Well No.	WQI	Category		VillagesWell No.WQICategory					Villages	Well No.	WQI	Category		
2007 (Without I	Fe)				2008 (Without	Fe)				2009 (Without					
Mahabaleswar	K/ST-006	31	EXLT		Mahabaleswar	K/ST-006	29	EXLT		Mahabaleswar	K/ST-006	29	EXLT		
Panchagani	K/ST-018	20	EXLT		Panchagani	K/ST-018	22	EXLT		Panchagani	K/ST-018	26	EXLT		
2011 (With Fe)I	Data for 2010 (V	Vith Fe)	Not Avail	lab	le										
Mahabaleshwar	STOBW0007	74	GW		Bhose	STOBW0011	35	EXLT		Panchgani	STOBW004	45	EXLT		

ŗ	Taluka : Man (I	Dahivad	li)		Taluka : Man (Dahiva	di)		Taluka : Man	(Dahiva	di)
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Without	Fe)			2009 (Withou	t Fe)		
Pingli	K/ST-002	40	EXLT	Pingli	K/ST-002	39	EXLT	Mhaswad	K/ST-005	162	PW
Shenwadi	K/ST-016	59	GW	Shenwadi	K/ST-016	73	GW	Pingli	K/ST-002	67	GW
								Shenwadi	K/ST-016	82	GW
2011 (With Fe)											
Diwad	STOBW100	94	GW	Kasarwadi	STOBW102	73	GW	Wavarhire	STOBW094	84	GW
Dhuldeo	STOBW103	192	PW	Pandharwadi	STOBW026	112	PW	Malwadi		80	GW
Mhasvad	STOBW104	172	PW	Bidal	STOBW097	100	PW	Shinganapur	STOBW093	66	GW
Walai	STOBW99	76	GW	Dahiwadi	STWQN014	89	GW	Ranand		102	PW
Shenawadi	STOBW105	86	GW	Takewadi		80	GW	Shinde kh.	STOBW096	65	GW
Shirtav	STOBW101	90	GW	Mograle	STOBW090	79	GW	Dhuldeo	STOBW103	71	GW
Warkute Malwadi	STOBW106	176	PW	Data for 2010	(With Fe) Not A	vailabl	e	·		•	

	Taluka : Medha	1			Taluka : N	Aedha				Taluka :]	Medha	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Without	Fe)				2009 (Without	Fe)		
Medha	K/ST-020	55	GW	Medha	K/ST-020	43	EXLT		Medha	K/ST-020	55	GW
Varoshi	K/ST-054	29	EXLT	Varoshi	K/ST-054	34	EXLT	Data for 2010 and 2011 (With Fe) Not Availa				Available

^{*} All values are in Pre-Monsoon, Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

	Taluka : Satara	a			Taluka : S	Satara			Taluka:	Satara	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (Withou	t Fe)		
Atit	K/ST-023	64	GW	Atit	K/ST-023	59	GW	Atit	K/ST-023	76	GW
Kondve	K/ST-046	36	EXLT	Aundh	K/ST-027	100	PW	Aundh	K/ST-027	88	GW
Vaduth	K/ST-036	35	EXLT	Kondve	K/ST-046	47	EXLT	Pimpalwadi	K/ST-042	132	PW
Manainagar	K/ST-031	25	EXLT	Pimpalwadi	K/ST-042	220	VPW	Vaduth	K/ST-036	38	EXLT
Manure	K/ST-033	25	EXLT	Vaduth	K/ST-036	36	EXLT	Manure	K/ST-033	29	EXLT
Shendri	K/ST-014	58	GW	Manainagar	K/ST-031	21	EXLT	Mogarle	K/ST-034	59	GW
2008 Contd (Without Fe)			Manure	K/ST-033	28	EXLT	Shendri	K/ST-014	58	GW
Mogarle	K/ST-034	58	GW					Tathvade	K/ST-040	57	GW
Mutlavadi	K/ST-030	64	GW	2011 (With Fe							
Shendri	K/ST-014	52	GW	Phadatarwadi		47	EXLT	Warne	STOBW035	47	EXLT
Tathvade	K/ST-040	53	GW	Waduth	STOBW016	55	GW	Nandgaon	STOBW037	47	EXLT
Udtara	K/ST-001	126	PW	Warye		48	EXLT	Nune	STOBW009	48	EXLT
	_			Karanje	STWQN001	78	GW	Shendre	STOBW039	100	GW
Data for 2010	(With Fe) Not A	vailable		Atit	STOBW040	62	GW	Kuran	STOBW038	43	EXLT
				Nagewadi	STOBW012	59	GW	Mardhe	STWQN002	86	GW

	Taluka : Patan				Taluka:	Patan			Taluka:	Patan			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (Without I	Fe)			2008 (Without	Fe)			2009 (Without	Fe)				
Dhebevadi	K/ST-028	59	GW	Dhebevadi	K/ST-028	52	GW	Dhebevadi	K/ST-028	68	GW		
Morgir				Malharpeth	K/ST-025	47	EXLT						
(Shivpurpeth)	K/ST-032	48	EXLT					Malharpeth	K/ST-025	50	GW		
Nimbore	K/ST-017	227	VPW	Mirgaon	K/ST-012	161	PW	Mirgaon	K/ST-012	192	PW		
Velkhandwadi				Morgir	K/ST-032	65	GW	Morgir					
(Tarli)	K/ST-037	57	GW	(Shivpurpeth)				(Shivpurpeth)	K/ST-032	83	GW		
				Nimbore	K/ST-017	269	VPW	Nimbore	* ′				
				Patan	K/ST-009	44	EXLT	Patan	K/ST-009	46	EXLT		
				Velkhandwadi	K/ST-037	48	EXLT	Data for 2010	(With Ea) Not	\allabla			
				(Tarli)				Data for 2010	(With Fe) Not A	Avanabie			
2011 (With Fe)													
Helwak	STOBW042	53	GW	Marali	STOBW068	84	GW	Sakhari	STOBW044	47	EXLT		
Girewadi		89	GW	Dhebewadi	STPZ012	87	GW	Ghot	STOBW049	65	GW		
Morgiri	STOBW067	59	GW	Yerphale	STOBW043	66	GW	Tarale	STOBW050	103	PW		
Goshatwadi		60	GW	Patan	STWQN021	42	EXLT						

	Taluka :Phaltan	1			Taluka :Pl	haltan			Taluka :F	Phaltan			
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		
2007 (Without I	Fe)			2008 (Without	Fe)			2009 (Without	(Fe)				
Nimblak	K/ST-008	60	GW	Nimblak	K/ST-008	53	GW	Nimblak	K/ST-008	74	GW		
Rajale	K/ST-041	114	PW	Rajale	K/ST-041	113	PW	Rajale	K/ST-041	145	PW		
Savanthwadi								Savanthwadi					
(Jinti)	K/ST-029	60	GW	Data for 2010	(With Fe) Not A	vailabl	e	(Jinti)	K/ST-029	35	EXLT		
								Taradgaon	K/ST-003	T-008 74 T-041 145 T-029 35 T-003 173 VQN011 107 DBW080 79 DBW081 82			
2011 (With Fe)													
Phaltan	STWQN009	155	PW	Dudhebavi	STOBW087	88	GW	Rajuri	STWQN011	107	PW		
Murum	STOBW083	76	GW	Tathavade	STOBW084	93	GW	Padegaon	STOBW080	79	GW		
Gokhali	STOBW092	86	GW	Somanthali	STOBW089	117	PW	Adarki Kh.	STOBW081	82	GW		
Khunte	STOBW086	79	GW	Wadale	STWQN010	92	GW	Adarki bk.	STOBW082	104	PW		
Nimbalak	STWQN012	73	GW	Tambave	STWQN012	141	PW				·		

	Taluka : Wai				Taluka:	Wai			Taluka	: Wai	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (With Fe)				2008 (With Fo	e)			2009 (With Fe))		
Wai	K/ST-007	63	GW	Wai	K/ST-007	69	GW	Wai	K/ST-007	73	GW
2011 (With Fe)											
Asare	STOBW001	131	PW	Kadegaon		60	GW	Udtare	STOBW013	52	GW
Wai(U)	STOBW003	58	GW	Anawadi	STOBW015	59	GW	Vele	STOBW014	68	GW
Wai(R)		109	PW	Chindhavali	STWQN004	60	GW	Data for 2010 (With Fe) Not Available			
Dhom		48	EXLT								

^{*} All values are in Pre-Monsoon, Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.29: Water Quality Index of Groundwater of Sindhdurg District

	Taluka : De	vgad			Taluka : I	Devgad			Taluka : I	Devgad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Withou	ıt Fe)			2009 (Without	Fe)		
Deogarh	C/SD-008	21	EXLT	Deogarh	C/SD-008	36	EXLT	Wareri	C/SD-026	23	EXLT
Hadi	C/SD-027	42	EXLT	Hadi	C/SD-027	29	EXLT	2011 (With Fe)	1		
Kunkaule	C/SD-021	31	EXLT	Kunkaule	C/SD-021	24	EXLT	Dahibav	SDPZ005	38	EXLT
Phanasgaon	C/SD-014	29	EXLT	Phanasgaon	C/SD-014	19	EXLT	Jamsande	SDOBW010	33	EXLT
Wareri	C/SD-026	23	EXLT					Kotkamte	SDOBW019	32	EXLT
2009 Contd (W	Vith Fe)			Wada	SDPZ003	39	EXLT	Padel	SDPZ002	28	EXLT
Kunkeshwar	SDWQN007	38	EXLT	Welgive		34	EXLT	Devagad	SDWQN006	34	EXLT
Devgad	SDWQN006	40	EXLT	Jamsande	SDOBW010	32	EXLT	Kunkeshawar	SDWQN007	28	EXLT
Padel	SDPZ002	39	EXLT	Dhaibav		36	EXLT	Welgive	SDOBW038	27	EXLT
	T	lata far	2010 (33/64)	ı Fe) Not Availal	alo.			Dahibav	SDOBW009	35	EXLT
	1	Jata 10f	2010 (WILL	i re) not Avanat	ле			Wada	SDOBW014	42	EXLT

	Taluka : Dod	amarg			Taluka: Do	damarş	5		Taluka : Do	odamarg	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without H	Te)			2008 (Withou	t Fe)			2009 (Withou	t Fe)		
Adali	C/SD-019	19	EXLT	Adali	C/SD-019	23	EXLT	Adali	C/SD-019	27	EXLT
Dodamarga	C/SD-005	28	EXLT	2010 (With Fo	e)			Dodamarga	C/SD-005	27	EXLT
Shirgaon	C/SD-011	19	EXLT	*Kasai Doda	SDWQN036	26	EXLT	Shirgaon	C/SD-011	22	EXLT
2011 (With Fe)				2009 Contd	(With Fe)			2009 Contd (With Fe)		
Talkat	SDOBW036	27	EXLT	Sasoli	SDWQN020	18	EXLT	Konal	SDWQN035	25	EXLT
Vazare	SDPZ029	22	EXLT	Kasaidoda	SDPZ018	29	EXLT	Kherkand	SDWQN036	28	EXLT
Sasoli	SDWQN020	33	EXLT	Vazare	SDPZ029	23	EXLT				
Konal	SDWQN035	47	EXLT	Kotkamte		24	EXLT				
Kasai Doda	SDWQN036	32	EXLT	Kolzar	SDPZ017	24	EXLT				

^{*} Pre-Monsoon, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.29 (Contd..) Sindhdurg District

· ·	Taluka : Kan	kavali			Taluka : Ka	nkaval	i		Taluka : Ka	ankavali	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Withou	ıt Fe)			2009 (Without	Fe)		
Kanedi Bazar	C/SD-033	25	EXLT	Kankavalli	C/SD-012	28	EXLT	Kanedi Bazar	C/SD-033	24	EXLT
Kankavalli	C/SD-012	23	EXLT	Nandgaon	C/SD-022	33	EXLT	Kankavalli	C/SD-012	30	EXLT
Khare Patan	C/SD-002	39	EXLT	Narange	C/SD-020	18	EXLT	Khare Patan	C/SD-002	33	EXLT
Narange	C/SD-020	22	EXLT	Phonda	C/SD-001	25	EXLT	Nandgaon	C/SD-022	29	EXLT
Phonda	C/SD-001	24	EXLT	2011 Contd	(With Fe)			Narange	C/SD-020	22	EXLT
2010 (With Fe)				Wargaon	SDOBW042	22	EXLT	Phonda	C/SD-001	25	EXLT
*Nadgive	SDOBW027	31	EXLT	Harkul Kh	SDWQN030	55	GW	2009 Contd (With Fe)		
*Sivdav	SDWQN034	18	EXLT	Janavali	SDWQN031	30	EXLT	Harkul	SDWQN030	35	EXLT
2011 (With Fe)				Kankavali	SDWQN032	32	EXLT	Janavali	SDWQN031	27	EXLT
Kalsuli	SDOBW012	29	EXLT	Karanje	SDWQN033	55	GW	Savdav	SDWQN034	26	EXLT
Nadgive	SDOBW027	28	EXLT	Savdav	SDWQN034	35	EXLT	Karanje	SDWQN033	32	EXLT
Nandgaon	SDOBW028	35	EXLT	Phonda	SDPZ007	22	EXLT	Kankavli		67	GW
Nardave	SDOBW030	27	EXLT	Kankavali		32	EXLT	Nardave	SDOBW030	64	GW
		•						Kalsuli	SDOBW012	39	EXLT
								Nadgive	SDOBW026	38	EXLT
								Nandgaon	SDPZ006	27	EXLT

^{*} Pre-Monsoon, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.29 (Contd..) Sindhdurg District
Taluka : Kudal

Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Withou	t Fe)			2009 (Without	Fe)		
Chendwan	C/SD-035	21	EXLT	Chendwan	C/SD-035	22	EXLT	Mangaon B.	C/SD-028	82	GW
Kudal	C/SD-013	31	EXLT	Mangaon B.	C/SD-028	88	GW	Ramgarh	C/SD-023	25	EXLT
Mangaon B.	C/SD-028	78	GW	Ramgarh	C/SD-023	27	EXLT	Vados	C/SD-030	26	EXLT
Ramgarh	C/SD-023	26	EXLT	Sawarwad	C/SD-034	30	EXLT	Zarap	C/SD-025	48	EXLT
Sawarwad	C/SD-034	30	EXLT	Vados	C/SD-030	23	EXLT	Kasal	C/SD-004	24	EXLT
Vados	C/SD-030	23	EXLT	Zarap	C/SD-025	57	GW	2009 (With Fe)			
Zarap	C/SD-025	62	GW	Kasal	C/SD-004	25	EXLT	Awalegaon	SDWQN023	132	PW
Kasal	C/SD-004	26	EXLT	Kudal	C/SD-013	31	EXLT	Sonavde	SDWQN029	29	EXLT
2011 (With Fe)								Ambadpal	SDWQN022	25	EXLT
Kasal	SDOBW016	42	EXLT	Goveri	SDWQN025	42	EXLT	Goveri	SDWQN025	26	EXLT
Nirukhe	SDOBW031	28	EXLT	Kervade	SDWQN027	35	EXLT	Keravade	SDWQN027	29	EXLT
Pundur	SDOBW032	26	EXLT	Kudal	SDWQN028	56	GW	Kudal	SDWQN028	48	EXLT
Pagrad	SDPZ011	41	EXLT	Sonavade	SDWQN029	34	EXLT	Kasal	SDOBW017	39	EXLT
Pavashi	SDPZ012	31	EXLT	Kervade	SDOBW017	35	EXLT	Pandur	SDOBW032	34	EXLT
Awalegaon	SDWQN023	115	PW	Data for	2010 Not Availa	blo (Wi	th Fo)	Nirukhe	SDOBW031	27	EXLT
Chendavan	SDWQN024	33	EXLT	Data 101 A	2010 NUL AVAIIA	DIE (VVI	in re)	Keravade		36	EXLT
	Taluka : Ma	lvan			Taluka : M	alvan			Taluka : M	[alvan	
Villages	Taluka : Ma Well No.		Category	Villages	Taluka : M Well No.		Category	Villages	Taluka : M Well No.		Category
Villages 2007 (Without I	Well No.		Category	Villages 2008 (Without	Well No.		Category	Villages 2009 (Without F	Well No.	lalvan WQI	Category
Villages 2007 (Without I	Well No.		Category	Villages 2008 (Without	Well No.			Villages 2009 (Without F	Well No.		Category
2007 (Without I	Well No. Fe)	WQI		2008 (Without	Well No. Fe)	WQI	EXLT	2009 (Without I	Well No.	WQI	
2007 (Without I Achra	Well No. Fe) C/SD-024	WQI 40	EXLT EXLT	2008 (Without Achra	Well No. Fe) C/SD-024	WQI 30	EXLT EXLT	2009 (Without F Achra	Well No. Te) C/SD-024	WQI 18	EXLT
2007 (Without I Achra Math	Well No. Fe) C/SD-024 C/SD-036	40 21	EXLT	2008 (Without Achra Math	Well No. Fe) C/SD-024 C/SD-036 C/SD-029	30 20	EXLT	2009 (Without F Achra Math	Well No. Fe) C/SD-024 C/SD-036	18 21	EXLT EXLT
2007 (Without I Achra Math Palsamb	Well No. Fe) C/SD-024 C/SD-036 C/SD-029	WQI 40 21 20	EXLT EXLT EXLT	2008 (Without Achra Math Palsamb	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016	30 20 19	EXLT EXLT EXLT	2009 (Without F Achra Math Terela	Well No. Te) C/SD-024 C/SD-036 C/SD-016	18 21 40	EXLT EXLT EXLT
Achra Math Palsamb Terela	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016	40 21 20 35	EXLT EXLT EXLT EXLT	Achra Math Palsamb Terela	Well No. Fe) C/SD-024 C/SD-036 C/SD-029	30 20 19 26	EXLT EXLT EXLT	2009 (Without F Achra Math Terela Vagothan	Well No. Ce) C/SD-024 C/SD-036 C/SD-016 C/SD-017	18 21 40 22	EXLT EXLT EXLT
2007 (Without I Achra Math Palsamb Terela Vagothan	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017	40 21 20 35 18	EXLT EXLT EXLT EXLT EXLT	2008 (Without Achra Math Palsamb Terela Vagothan	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017	30 20 19 26 20	EXLT EXLT EXLT EXLT EXLT	2009 (Without F Achra Math Terela Vagothan Malwan	Well No. Ce) C/SD-024 C/SD-036 C/SD-016 C/SD-017	18 21 40 22	EXLT EXLT EXLT
2007 (Without I Achra Math Palsamb Terela Vagothan Vijayadurga	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017 C/SD-009	40 21 20 35 18 27	EXLT EXLT EXLT EXLT EXLT EXLT	2008 (Without Achra Math Palsamb Terela Vagothan Vijayadurga	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017 C/SD-009	30 20 19 26 20 48	EXLT EXLT EXLT EXLT EXLT EXLT	2009 (Without F Achra Math Terela Vagothan Malwan 2009 (With Fe)	Well No. Te) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-006	18 21 40 22 62	EXLT EXLT EXLT EXLT GW
2007 (Without I Achra Math Palsamb Terela Vagothan Vijayadurga Malwan	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017 C/SD-009	40 21 20 35 18 27	EXLT EXLT EXLT EXLT EXLT EXLT	2008 (Without Achra Math Palsamb Terela Vagothan Vijayadurga	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017 C/SD-009	30 20 19 26 20 48	EXLT EXLT EXLT EXLT EXLT EXLT	2009 (Without F Achra Math Terela Vagothan Malwan 2009 (With Fe) Mogarne	Well No. Te) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-006	18 21 40 22 62	EXLT EXLT EXLT EXLT GW
Achra Math Palsamb Terela Vagothan Vijayadurga Malwan 2011 (With Fe)	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017 C/SD-009 C/SD-006	40 21 20 35 18 27 60	EXLT EXLT EXLT EXLT EXLT EXLT GW	2008 (Without Achra Math Palsamb Terela Vagothan Vijayadurga Malwan	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017 C/SD-009 C/SD-006	30 20 19 26 20 48 49	EXLT EXLT EXLT EXLT EXLT EXLT EXLT	2009 (Without F Achra Math Terela Vagothan Malwan 2009 (With Fe) Mogarne Kolamb	Well No. Te) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-006 SDWQN012 SDWQN010	18 21 40 22 62 23 54	EXLT EXLT EXLT EXLT GW EXLT
2007 (Without I Achra Math Palsamb Terela Vagothan Vijayadurga Malwan 2011 (With Fe) Achara	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017 C/SD-009 C/SD-006	WQI 40 21 20 35 18 27 60	EXLT EXLT EXLT EXLT EXLT EXLT EXLT EXLT	2008 (Without Achra Math Palsamb Terela Vagothan Vijayadurga Malwan Kolamb	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017 C/SD-009 C/SD-006	30 20 19 26 20 48 49	EXLT EXLT EXLT EXLT EXLT EXLT EXLT EXLT	2009 (Without Fachra Achra Math Terela Vagothan Malwan 2009 (With Fe) Mogarne Kolamb Malwan	Well No. Te) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-006 SDWQN012 SDWQN010 SDWQN011	18 21 40 22 62 23 54 55	EXLT EXLT EXLT EXLT GW EXLT GW
2007 (Without I Achra Math Palsamb Terela Vagothan Vijayadurga Malwan 2011 (With Fe) Achara Kumbharmath	Well No. Fe) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-009 C/SD-006 SDOBW001 SDOBW020	40 21 20 35 18 27 60	EXLT EXLT EXLT EXLT EXLT EXLT EXLT EXLT	2008 (Without Achra Math Palsamb Terela Vagothan Vijayadurga Malwan Kolamb Malwan	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017 C/SD-009 C/SD-006 SDWQN010 SDWQN011	30 20 19 26 20 48 49	EXLT EXLT EXLT EXLT EXLT EXLT EXLT EXLT	2009 (Without F Achra Math Terela Vagothan Malwan 2009 (With Fe) Mogarne Kolamb Malwan Achara	Well No. Te) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-006 SDWQN012 SDWQN010 SDWQN011 SDOBW001	18 21 40 22 62 23 54 55 29	EXLT EXLT EXLT GW EXLT GW EXLT
Achra Math Palsamb Terela Vagothan Vijayadurga Malwan 2011 (With Fe) Achara Kumbharmath Math Bk.	Well No. Fe) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-009 C/SD-006 SDOBW001 SDOBW020 SDOBW023	40 21 20 35 18 27 60	EXLT EXLT EXLT EXLT EXLT EXLT EXLT EXLT	2008 (Without Achra Math Palsamb Terela Vagothan Vijayadurga Malwan Kolamb Malwan Mogarne	Well No. Fe) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-009 C/SD-006 SDWQN010 SDWQN011 SDWQN012	30 20 19 26 20 48 49 35 56 30	EXLT EXLT EXLT EXLT EXLT EXLT EXLT EXLT	2009 (Without F Achra Math Terela Vagothan Malwan 2009 (With Fe) Mogarne Kolamb Malwan Achara Math.bk	Well No. Te) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-006 SDWQN012 SDWQN010 SDWQN011 SDOBW001	WQI	EXLT EXLT EXLT GW EXLT GW EXLT GW EXLT EXLT
Achra Math Palsamb Terela Vagothan Vijayadurga Malwan 2011 (With Fe) Achara Kumbharmath Math Bk. Nandrukh	Well No. Fe) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-009 C/SD-006 SDOBW001 SDOBW020 SDOBW023 SDOBW029	WQI 40 21 20 35 18 27 60 27 34 29 28	EXLT EXLT EXLT EXLT EXLT EXLT EXLT EXLT	2008 (Without Achra Math Palsamb Terela Vagothan Vijayadurga Malwan Kolamb Malwan Mogarne Achara	Well No. Fe) C/SD-024 C/SD-036 C/SD-029 C/SD-016 C/SD-017 C/SD-009 C/SD-006 SDWQN010 SDWQN011 SDWQN012 SDPZ008	30 20 19 26 20 48 49 35 56 30 31	EXLT EXLT EXLT EXLT EXLT EXLT EXLT EXLT	2009 (Without F Achra Math Terela Vagothan Malwan 2009 (With Fe) Mogarne Kolamb Malwan Achara Math.bk Kandelgaon	Well No. Te) C/SD-024 C/SD-036 C/SD-016 C/SD-017 C/SD-006 SDWQN012 SDWQN010 SDWQN011 SDOBW001 SDOBW023	WQI	EXLT EXLT EXLT GW EXLT GW EXLT EXLT EXLT EXLT

Taluka : Kudal

Taluka : Kudal

Table x.29 (Contd..) Sindhdurg District

	Taluka : Sawa	ntwadi			Taluka : Sav	vantwad	li		Taluka : Sav	wantwadi	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Fe)			2008 (Withou	t Fe)			2009 (Without	(Fe)		
Amboli	C/SD-010	23	EXLT	Danoli	C/SD-015	34	EXLT	Sawanthwadi	C/SD-031	26	EXLT
Danoli	C/SD-015	24	EXLT	Insuli	C/SD-003	36	EXLT	Amboli	C/SD-010	19	EXLT
Insuli	C/SD-003	26	EXLT	2009 Contd	(With Fe)			Danoli	C/SD-015	30	EXLT
2010 (With Fe)				Banda	SDOBW006	28	EXLT	Insuli	C/SD-003	20	EXLT
*Malgaonn	SDOBW021	20	EXLT	*Kalmbist	SDOBW011	23	EXLT	2009 (With Fe)		
*Sawantwadi	SDOBW035	22	EXLT	*Amboli	SDPZ016	27	EXLT	Telvade	SDWQN021	27	EXLT
2011 (With Fe)				*Choukal	SDOBW007	26	EXLT	Insuli		26	EXLT
Ajgaon	SDOBW004	29	EXLT	Talkat	SDOBW036	49	EXLT	Sawantwadi	SDOBW035	24	EXLT
Amboli	SDOBW005	27	EXLT	2011 Contd	(With Fe)			Malgaon	SDOBW021	45	EXLT
Banda	SDOBW006	26	EXLT	Malgaon	SDOBW021	33	EXLT	Ajgaon	SDOBW004	25	EXLT
Choukul	SDOBW007	30	EXLT	Sawantwadi	SDOBW035	24	EXLT				
Kalmbist	SDOBW011	28	EXLT	Talvade	SDWQN021	36	EXLT				

	Taluka : Vaibh	avwadi			Taluka : Vail	ohavwa	di		Taluka : Vail	bhavwad	i
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2009 (With I	Fe)						
Kokisare	C/SD-032	31	EXLT	Mangavli	SDWQN001	86	GW	Vaibhavwadi	SDWQN0005	29	EXLT
2010 (With Fe)				Sonali	SDWQN004	51	GW	Bhuibavda	SDPZ001	25	EXLT
*Nim Arule	SDWQN003	45	EXLT	Navale	SDWQN002	78	GW	Achime	SDPZ004	27	EXLT
				Nim.arule	SDWQN003	46	EXLT	Data for 2008	& 2009 (Withou	t Fe) Not	Aavail.
2011 (With Fe)											
Achirne	SDOBW002	26	EXLT	Vaibhawadi	SDWQN0005	31	EXLT	Nim -arule	SDWQN003	47	EXLT
Bhuibavda	SDPZ001	59	GW	Mangavali	SDWQN001	26	EXLT	Sonali	SDWQN004	128	PW
Achirne	SDPZ004	35	EXLT	Navale	SDWQN002	50	EXLT	Bhuibavda	SDOBW007	38	EXLT

^{*} Pre-Monsoon, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.29 (Contd..) Sindhdurg District

	Taluka : Ven	gurla				Taluka : Vo	engurl	a		Taluka : V	engurla	
Villages	Well No.	WQI	Category		Villages	Well No.	WQ	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Withou	ıt Fe)			2009 (Witho	ut Fe)		-
Vengurla	C/SD-007	25	EXLT		Vengurla	C/SD-007	26	EXLT	Vengurla	C/SD-007	20	EXLT
Adeli	C/SD-018	28	EXLT		Adeli	C/SD-018	23	EXLT	Adeli	C/SD-018	27	EXLT
					Dodamarga	C/SD-005	28	EXLT				
2009 Contd (V	Vith Fe) Data f	or 2010	(With Fe)	No	ot Available							
Khanole	SDWQN015	19	EXLT		Redi	SDWQN016	114	PW	Math.	SDOBW024	55	GW
Vajrat	SDWQN019	52	GW		Vetore	SDPZ014	23	EXLT	Vengurla	SDOBW038	54	GW
Hodavde	SDWQN014	25	EXLT		Mhapan	SDOBW026	58	GW	Wargaon	SDOBW042	57	GW
Dabhole	SDWQN013	21	EXLT									
2011 (With Fe)												
Math	SDOBW024	32	EXLT		Vetore	SDOBW040	24	EXLT	Redi	SDWQN016	37	EXLT
Mhapan	SDOBW026	31	EXLT		Dhaoli	SDWQN013	27	EXLT	Shirode	SDWQN017	41	EXLT
Vengurla	SDOBW038	24	EXLT		Hodavade	SDWQN014	34	EXLT	Varat	SDWQN019	42	EXLT
Vengurla	SDOBW039	38	EXLT		Khanoli	SDWQN015	30	EXLT				

 $\label{thm:conditional} \textbf{Table x.30: Water Quality Index of Groundwater of Solapur District}$

	Taluka : Akkall	cot			Taluka : Akka	lkot			Taluka : Akka	alkot	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	ıt Fe)			2008 (Witho	out Fe)			2009 (Witho	out Fe)		
Akkalkot	K/SH-025	110	PW	Akkalkot	K/SH-025	109	PW	Nagansur	K/SH-026	184	PW
Kegaon	K/SH-069	74	GW	Kegaon	K/SH-069	83	GW				
				Nagansur	K/SH-026	315	UNSUT	Data for 202	10 and 2011 Not A	Available ((With Fe)
				Wagdhari	K/SH-002	101	PW				ļ

	Taluka : Barsh	i			Taluka : Baı	shi			Taluka : Ba	rshi	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villag	es Well No.	WQI	Category
2007 (Witho	out Fe)			2008 (Witho	ut Fe)			2009 (Without Fe)		
Rople	K/SH-022	195	PW	Dhanore	K/SH-066	46	EXLT	Dhano	re K/SH-066	47	EXLT
				Rople	K/SH-022	175	PW	Nari	K/SH-065	125	PW
	D-4- f 2010 I	2011		Manegaon	K/SH-070	142	PW	Rople	K/SH-022	149	PW
	Data for 2010 and			Pangri	K/SH-078	88	GW	Maneg	gaon K/SH-070	129	PW
	Not Available (Wit	п ге)		Shelgaon	K/SH-005	67	GW	Pangri	K/SH-078	87	GW
								Shelga	on K/SH-005	65	GW

	Taluka : Karma	ıla			Taluka : Karn	ıala				Taluka : Karı	nala		
Villages	Well No.	WQI	Category	Villages	Villages Well No. WQI Category					Well No.	WQI	Category	
2007 (Withou	ut Fe)			2008 (With	out Fe)			20	Villages Well No. WQI Category 2008 (Without Fe)				
Kandar	K/SH-074	84	GW	Kandar	K/SH-074	82	GW	Ka	rmala	K/SH-012	151	PW	
Karmala	K/SH-012	136	PW	Da	Data for 2009 (Wihout Fe) and				rkute	K/SH-071	60	GW	
				2010 a	2010 and 2011 Not Available (With Fe)								

	Taluka : Madha	ı				Taluka : Mad	ha				Taluka : Mad	ha	
Villages	Well No.	WQI	Category	Villa	Villages Well No. WQI Categor					Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008	(Withou	t Fe)				2009 (Without	Fe)		
Tembhurni	K/SH-034	130	PW	Biter	gaon	K/SH-080	90	GW		Bitergaon	K/SH-080	73	GW
Da	ta for 2010 and 2		Parite	e	K/SH-073	128	PW		Parite	K/SH-073	137	PW	
Not	t Available (With			•		•			Tembhurni	K/SH-034	112	PW	

Table x.30 (Contd..) Solapur District

	Taluka : Malshi	rs				Taluka: Malsl	hirs				Taluka : Mals	hirs		
Villages	Well No.	WQI	Category	,	Villages	Well No.	WQI	Category	Village	5	Well No.	WQI	Category	
2007 (Without	Fe)			1	2008 (Without	t Fe)			2009 (V	Vithout	t Fe)			
Malsiras	K/SH-013	143	PW]	Piliv	K/SH-068	127	PW	Dharma	puri	K/SH-079	94	GW	
Natepute	K/SH-031	63	GW		Salmukh	K/SH-082	59	GW	Velapui		K/SH-029	135	PW	
Salmukh	K/SH-082	115	PW		Velapur	K/SH-029	127	PW		Data for 2010 and 2011				
					-	Not Available (With Fe)								

Tal	luka : Mangalwe	edha			Ta	aluka : Manga	lwedha			T	aluka : Mangal	wedha	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2007 (Without	2007 (Without Fe)					t Fe)				2009 (Without	Fe)		
Mangalvedha											K/SH-036	88	GW
	Data for 2010 and 2011Not Available (With Fe)										K/SH-061	79	GW
	Data	10Г 201	o and 201.	11/(ы Avanabie (w	im re)				Marwade	K/SH-076	56	GW

	Taluka: Moho	ol			Taluka: Mo	hol			Taluka : Mo	hol	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	ıt Fe)			2008 (Witho	ut Fe)			2009 (With	out Fe)		
Sohole	K/SH-017	179	PW	Sohole	K/SH-017	198	PW	Sohole	K/SH-017	188	PW
Ichgaon	K/SH-018	100	GW	Ichgaon	K/SH-018	97	GW	Ichgaon	K/SH-018	83	GW
Kurul	K/SH-016	143	PW	Chincholi	K/SH-020	84	GW	Narayan	K/SH-020	94	GW
								Chincholi			
				Data for 201	0 and 2011 Not	Availab	e (With Fe)				

T	aluka : N.Solap	ur			Taluka : N.Sol	apur			Taluka : N.So	lapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Witho	ut Fe)			2009 (Witho	ut Fe)		
Vadval	K/SH-010	63	GW	Vadval	K/SH-010	151	PW	Nannaj	K/SH-077	138	PW
Do	ta for 2010 and	2011		Nannaj	K/SH-077	110	PW	Soregaon	K/SH-072	129	PW
	ta for 2010 and . t Available (Wit			Soregaon	K/SH-072	130	PW	Shivni	K/SH-062	63	GW
1101	Available (with	п ге)		Shivni	K/SH-062	84	GW				

Table x.30 (Contd..) Solapur District

Ta	luka : Pandhar	pur		,	Taluka : Pandh	arpur			Taluka : Pandh	arpur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	007 (Without Fe)				ıt Fe)			2009 (Withou	t Fe)		
Pandharpur	K/SH-033	64	GW	Ajoti	K/SH-063	148	PW	Ajoti	K/SH-063	197	PW
				Chale	K/SH-019	137	PW	Chale	K/SH-019	106	PW
Da	ta for 2010 and	2011		Pandharpur	K/SH-033	285	VPW	Pandharpur	K/SH-033	220	VPW
No	t Available (Wit	h Fe)		Shegaon	K/SH-028	110	PW	Shegaon	K/SH-028	106	PW
				Eklaspur	K/SH-023	97	GW	Eklaspur	K/SH-023	115	PW
				Karkamb	K/SH-035	65	GW	Karkamb	K/SH-035	59	GW
				Ranzani	K/SH-021	242	VPW	Ranzani	K/SH-021	260	VPW

1	Taluka : Sangool	a			Taluka : Sang	oola				Taluka : Sange	oola	
Villages					Well No.	WQI	Category	7	Villages	Well No.	WQI	Category
2007 (Without Fe)				2008 (With	out Fe)			2	2009 (Without	Fe)		
Sangola	K/SH-009	73	GW	Manjri	K/SH-081	66	GW		Chincholi	K/SH-024	120	PW
Da	Data for 2010 and 2011				K/SH-009	82	GW	S	Sangola	K/SH-009	79	GW
No	t Available (With	Fe)										

	Taluka : Solapu	ır			Taluka : Sola	pur			Taluka : Sola	pur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2008 (Withou	ut Fe)			2009 (With	out Fe)			2009 (Wi	thout Fe)Contd		
Nandni	K/SH-064	84	GW	Nagaj	K/SH-011	167	PW	Nandni	K/SH-064	95	GW
Hivre	K/SH-032	50	GW	Da	ta for 2007 (Wiho	ut Fe) a	nd	Hivre	K/SH-032	52	GW
				2010 a	nd 2011Not Avail	able (Wi	th Fe)				

Ta	aluka : S. Solapi	ur		,	Taluka : S. Sola	pur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
Data for 2007 a	nd 2009 (Withou	ıt Fe)		2008 (Without	t Fe)		
and 2010 and 2	011 (With Fe)N	ot Avai	lable	Ule	K/SH-008	129	PW

Table x.31: Water Quality Index of Groundwater of Thane District

	Taluka : An	nbernath	1		Taluka : Aı	nbernat	:h			Taluka : A	mbernath	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2010 (With Fo	e)			2011 (With 1	Fe)							
Nevale		39	EXLT	Badalapur	TNOBW090	47	EXLT		Nevale		34	EXLT
*Badlapur		40	EXLT	Katrap	TNOBW083	38	EXLT		Katrap	TNOBW083	45	EXLT
*Karav	TNOBW085	71	GW	Karav	TNOBW085	141	PW		Badalapur	TNOBW090	50	GW
*Badlapur	TNOBW083								Newali			
Katrap	110D W 083	54	GW						newall		83	GW
*Nevale		53	GW		Dat	a for 20	07 to 2009 (Wi	th and Withou	t Fe) Not Availa	ble	

	Taluka: Bhiwa	ndi			Taluka : B	hiwand	i		Taluka : I	Bhiwandi	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	ut Fe)			2009 (Withou	ıt Fe)		
Gothanpada	C/TN-011	49	EXLT	Gothanpada	C/TN-011	53	GW	Gothanpada	C/TN-011	49	EXLT
Karahe	C/TN-016	31	EXLT	Angaon	C/TN-013	110	PW	Padghe	C/TN-026	69	GW
Padghe	C/TN-026	46	EXLT	Karahe	C/TN-016	35	EXLT	Saravali	C/TN-007	35	EXLT
				Padghe	C/TN-026	61	GW	Gothanpada	C/TN-011	49	EXLT
				Saravali	C/TN-007	43	EXLT				
2010 (With Fe	e)										
*Chavindra		67	GW	Bhinar	TNOBW059	36	EXLT	*Karavali	TNOBW080	43	EXLT
*Junandurvi	TNWQN014	80	GW	Khoni	TNWQN017	34	EXLT	*Junadurkhi	TNWQN014	50	EXLT
*Khoni	TNWQN017	108	PW	Bhivandi	TNWQN013	44	EXLT	*Bhinar	TNOBW058	48	EXLT
Khoni	TNWQN017	66	GW	Karivali	TNWQN016	67	GW	Junardurkhi	TNWQN014	55	GW
*Bhinar	TNOBW058	36	EXLT	Karivali	TNWQN016	32	EXLT	Bhinar	TNOBW058	49	EXLT
*Bhivandi	TNWQN015	46	EXLT	*Chavindra		67	GW	Bhiwandi	TNWQN013	48	EXLT
*Junandukhi	TNWQN014	36	EXLT	*Katai	TNWQN015	46	EXLT	Katai	TNWQN015	54	GW
Khoni	TNWQN017	37	EXLT								
2011 (With Fe	e)										
Khoni	TNWQN017	51	GW	Dapode	TNOBW064	62	GW	Karivali	TNWQN016	63	GW
Bhinar	TNOBW058	42	EXLT	Bhivandi	TNWQN013	78	GW	Khoni	TNWQN017	77	GW
Sange	TNOBW062	40	EXLT	Katai	TNWQN015	69	GW				

^{*} Pre-Monsoon, +Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.31 (Contd..) Thane District

	Taluka : D	ahanu			Taluka : I	Dahanu			Taluka:	Dahanu	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	(Fe)			2009 (Without	(Fe)		
Bramhanwadi	C/TN-047	121	PW	Bramhanwadi	C/TN-047	108	PW	Bramhanwadi	C/TN-047	115	PW
Dahanu	C/TN-009	67	GW	Dahanu	C/TN-009	63	GW	Dahanu	C/TN-009	76	GW
Gunjad	C/TN-037	36	EXLT	Gunjad	C/TN-037	39	EXLT	Gunjad	C/TN-037	33	EXLT
Kasa	C/TN-002	43	EXLT	Kasa	C/TN-002	44	EXLT	Kasa	C/TN-002	41	EXLT
Saiwan	C/TN-038	34	EXLT	Saiwan	C/TN-038	31	EXLT	Dapchari	C/TN-008	35	EXLT
Udhwa	C/TN-020	47	EXLT	Udhwa	C/TN-020	47	EXLT				
Dapchari	C/TN-008	38	EXLT	Dapchari	C/TN-008	31	EXLT				
2010 (With Fe)										
Sariwali	TNOBW013	40	EXLT	Saravali Sawata	TNOBW013	47	EXLT	Dhaniwari		34	EXLT
*Sawata		39	EXLT	Dhaniwari		36	EXLT	sawata		45	EXLT
*Dhaniwari		53	GW	Sariwali	TNPZ005	48	EXLT	Dhanoshi	TNOBW019	31	EXLT
2011 (With Fe)										
Sariwali	TNPZ005	42	EXLT	*Dhanivari		23	EXLT	Sawata		35	EXLT
Sarawali	TNOBW013	42	EXLT	*Sawata		22	EXLT	Dhaniwari		34	EXLT

	Taluka : J	awahar				Taluka : Ja	awahar			Taluka:	Jawahar	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)				2008 (Withou	t Fe)			2009 (Withou	t Fe)		
Vikramgadh	C/TN-022	66	GW		Sarsun	C/TN-023	38	EXLT	Sarsun	C/TN-023	34	EXLT
					Vikramgadh	C/TN-022	71	GW	Vikramgadh	C/TN-022	70	GW
2010 (With Fe	e)											
Javahar		30	EXLT		Dhanoshi	TNOBW019	28	EXLT	*Javahar		27	EXLT
Javahar		51	GW						*Dhanoshi	TNOBW019	32	EXLT
2011 (With Fe	e)											
Javahar		29	EXLT		*Dhanoshi	TNOBW019	35	EXLT	Chalatwad	TNPZ001	50	EXLT
Dhanoshi	TNOBW019	47	EXLT		Talawada	TNPZ006	62	GW	Sukhasale	TNPZ007	47	EXLT
*Jawhar		22	EXLT									·

^{*} Pre-Monsoon, +Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.31 (Contd..) Thane District

	Taluka : M	okhada				Taluka : M	okhada			Taluka : N	Iokhada	
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2007 (Without	Fe)			2009 (Withou	t Fe)		
Khodala					Khodala	C/TN-014	95	GW	Khodala	C/TN-014	80	GW
2010 (With Fe)											
Talasari Mal	TNOBW003	31	EXLT		*Talasarimala	TNOBW003	30	EXLT	Talasari	TNOBW003	33	EXLT
Mokhada	TNOBW001	48	EXLT		*Dolhare	TNOBW020	44	EXLT	Dolhare	TNOBW020	25	EXLT
Dolhare	TNOBW020	44	EXLT		Mokhada	TNOBW001	25	EXLT	Devali	TNOBW041	56	GW
*Mokhada	TNOBW001	49	EXLT		Mokhada	TNOBW001	42	EXLT				
2011 (With Fe)											
Mokhada	TNOBW001	44	EXLT		Dolhare	TNOBW020	34	EXLT	Talasari	TNOBW003	26	EXLT
Talasari Mal	TNOBW003	49	EXLT		Mokhada	TNOBW001	31	EXLT	Dolhara	TNOBW020	32	EXLT

Taluka : Murbad				Taluka : Murbad					Taluka : Murbad					
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		
2007 (Without	t Fe)			2008 (Withou	2008 (Without Fe)					2009 (Without Fe)				
Murbad	C/TN-012	79	GW	Kolimb	C/TN-018	35	EXLT		Kolimb	C/TN-018	36	EXLT		
				Murbad	C/TN-012	56	GW		Murbad	C/TN-012	90	GW		
				Tokavade	C/TN-027	53	GW		Tokavade	C/TN-027	46	EXLT		
2010 (With Fe)														
Tokawade	TNOBW073	48	EXLT	*Burshunge	TNOBW074	40	EXLT		*Talegaon	TNOBW072	41	EXLT		
Bursunge	TNOBW074	54	GW	*Shivale	TNOBW087	40	EXLT		Thune phata	TNOBW075	48	EXLT		
Thunepada	TNOBW075	40	EXLT	*Talegaon	TNOBW072	33	EXLT		Tokawade	TNOBW073	30	EXLT		
Shivale	TNOBW087	72	GW	*Thune phata	TNOBW075	40	EXLT		Bursunge	TNOBW074	32	EXLT		
*Tokwade	TNPZ022	100	PW	*Tokavde	TNOBW073	50	EXLT		Talegaon	TNOBW072	68	GW		
*Tokavade	TNPZ022	67	GW	*Burshinge	TNOBW074	52	GW		Tokwade	TNPZ022	135	PW		
*Tokavade	TNOBW073	66	GW	*Shiwale	TNOBW087	82	GW							
2011 (With Fe)														
Tokwade	TNPZ022	72	GW	Burshinge	TNOBW074	28	EXLT		Talegaon	TNOBW072	34	EXLT		
Tokavade	TNOBW073	27	EXLT	Shivale	TNOBW087	38	EXLT		Thune phata	TNOBW075	33	EXLT		

^{*} Pre-Monsoon, +Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.31 (Contd..) Thane District

	Taluka : P	Palghar			Taluka : F	Palghar		Taluka : Palghar				
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	
2007 (Withou	t Fe)			2008 (Withou	ıt Fe)			2009 (Without Fe)				
Devkop	C/TN-006	38	EXLT	Devkop	C/TN-006	55	GW	Dhekale	C/TN-036	39	EXLT	
Manor	C/TN-017	86	GW	Dhekale	C/TN-036	34	EXLT	Manor	C/TN-017	62	GW	
Somata	C/TN-050	49	EXLT	Manor	C/TN-017	79	GW	Somata	C/TN-050	50	GW	
				Nishanpada	C/TN-024	43	EXLT					
				Somata	C/TN-050	44	EXLT					
2010 (With Fo	e)											
Karavale	TNWQN009	56	GW	+Shirgaon	TNOBW031	33	EXLT	Shirgaon	TNOBW031	58	GW	
Shirgaon	TNOBW031	35	EXLT	*Kajali	TNOBW007	58	GW	Mukunsar	TNOBW029	67	GW	
Makunsar	TNOBW029	42	EXLT	Yeur	TNOBW030	59	GW	Dahisar	TNWQN008	51	GW	
Vedhi	TNOBW034	34	EXLT	Shirgaon	TNOBW031	55	GW	Karavale	TNWQN009	41	EXLT	
Safale	TNOBW033	40	EXLT	Karvale	TNWQN009	39	EXLT	Vedhi	TNOBW034	37	EXLT	
+Makunsar	TNOBW029	42	EXLT	Vedhi	TNOBW034	44	EXLT	Safale	TNOBW033	51	GW	
+Dahisar	TNWQN008	37	EXLT	Yeur	TNOBW030	72	GW	Safale	TNOBW033	52	GW	
+Vedhi	TNOBW034	33	EXLT	Vedhi	TNOBW034	44	EXLT	Yeur	TNOBW030	55	GW	
+Safale	TNOBW033	45	EXLT	Yeur	TNOBW030	54	GW					
2011 (With Fo	e)											
Yeur	TNOBW030	70	GW	Mahim	TNPZ008	235	VPW	Vedhi	TNOBW034	33	EXLT	
Dahisar	TNWQN008	63	GW	Kolgaon	TNPZ009	67	GW	Safale	TNOBW033	46	EXLT	
Karavale	TNWQN009	60	GW	Vedi	TNOBW034	71	GW	Yeur	TNOBW030	34	EXLT	
Makunsar	TNOBW029	59	GW	Makunsar	TNOBW029	38	EXLT	Shirgaon	TNOBW031	39	EXLT	
Shirgaon	TNOBW031	69	GW	Dhahisar	TNWQN008	34	EXLT					
Safale	TNOBW033	83	GW	Karwali	TNWQN009	40	EXLT					

Taluka : Kalyan					Taluka : Kalyan					Taluka : Kalyan					
Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category		
2010 (With Fe)															
Kambe	TNOBW084	45	EXLT		*Kambe	TNOBW084	45	EXLT		Goveli	TNPZ004	77	GW		
Titwala	TNOBW076	43	EXLT		*Titwala	TNOBW076	43	EXLT		Titwala	TNOBW076	44	EXLT		
*Kambe	TNOBW084	38	EXLT		Kambe	TNOBW084	49	EXLT		Newali		45	EXLT		
*Titwala	TNOBW076	36	EXLT		Titwala	TNOBW076	53	GW							
2011 (With Fe) Data for 2007 to 2009 (Without Fe) Not Available															
Goveli	TNPZ004	47	EXLT		Kambe	TNOBW084	51	GW		Titwala	TNOBW076	52	GW		
Kambe	TNOBW084	36	EXLT												

^{*} Pre-Monsoon, +Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.31 (Contd..) Thane District

	Taluka : Sł	ahapur			Taluka : Sh	ahapu	·		Taluka : S	hahapur	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Withou	t Fe)			2009 (Withou	ıt Fe)		
Talempada	C/TN-019	38	EXLT	Sathgaon	C/TN-025	37	EXLT	Talempada	C/TN-019	41	EXLT
				Talempada	C/TN-019	44	EXLT				
2010 (With Fe	e)										
Bhatsai	TNPZ020	51	GW	*Shendrun	TNOBW070	55	GW	*Washind		33	EXLT
Washind		50	EXLT	*Vihigaon	TNOBW043	70	GW	*Vehlole	TNOBW069	25	EXLT
Washind		46	EXLT	*Varaskol	TNOBW054	41	EXLT	*Vihigaon	TNOBW043	29	EXLT
Shendrun	TNOBW070	31	EXLT	*Washind		62	GW	*Varaskol	TNOBW054	41	EXLT
*Shendrun	TNOBW070	51	GW	*Vehlole	TNOBW069	39	EXLT				
2011 (With Fe	e)										
Washind		38	EXLT	Titwala	TNOBW076	47	EXLT	Washind	TNOBW091	57	GW
Shendrup	TNOBW070	35	EXLT	Virskol	TNOBW054	35	EXLT	Vihigaon	TNOBW043	47	EXLT
Vehlole	TNOBW069	34	EXLT	Bhinar	TNOBW058	76	GW	Shendrun	TNOBW070	40	EXLT
Vihigaon	TNOBW043	43	EXLT	Bapgaon	TNOBW065	22	EXLT	Bhatasai	TNPZ020	51	GW
Varaskol	TNOBW054	38	EXLT	Velholi	TNOBW069	41	EXLT				

	Taluka : Ulh	asnagai	r		Taluka : Ulh	asnagai	•		Taluka : Ull	nasnagar	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)			2008 (Withou	ıt Fe)			2009 (Wit	hout Fe)		
Wasar	TNPZ021	55	GW	Wasar	TNPZ021	53	GW	Karav	TNOBW085	60	GW
Wasar	TNPZ021	125	PW	Badlapur	TNOBW090	54	GW	Wasar	TNPZ021	108	PW
*Katrap	TNOBW083	53	GW	Katrap	TNOBW083	36	EXLT	Katrap	TNOBW083	72	GW
Badalapur	TNOBW090	39	EXLT								
				2011 (With F	(e)			Data for 2	007 to 2009 (Withou	t Fe) Not	t Available
				Wasar	TNPZ021	35	EXLT				

^{*} Pre-Monsoon, +Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.31 (Contd..)Thane District

,	Taluka : T	Thane				Taluka : T	Thane			Taluka : '	Thane	
Villages	Well No.	WQI	Category	y [Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Without	Fe)			2009 (Without	Fe)		
Balkhapara	C/TN-010	30	EXLT		Balkhapara	C/TN-010	28	EXLT	Bindarpada	C/TN-001	43	EXLT
Bindarpada	C/TN-001	28	EXLT		Bindarpada	C/TN-001	51	GW	Cherfully	C/TN-004	42	EXLT
Cherfully	C/TN-004	46	EXLT		Cherfully	C/TN-004	45	EXLT	Dahisar N.	C/TN-055	65	GW
Dahisar	C/TN-028	73	GW		Dahisar	C/TN-028	70	GW	Kajli	C/TN-021	41	EXLT
Giraj	C/TN-048	47	EXLT		Giraj	C/TN-048	47	EXLT	Shiravane	C/TN-031	64	GW
Kajli	C/TN-021	43	EXLT		Kajli	C/TN-021	43	EXLT				
Shiravane	C/TN-031	68	GW		Shiravane	C/TN-031	61	GW				
Wafana	C/TN-035	142	PW		Wafana	C/TN-035	50	EXLT				
2010 (With Fe)												
K.khairne	TNOBW080	61	GW		Khairne	TNWQN010	44	EXLT	Turbha	TNWQN012	48	EXLT
Gansoli		62	GW		Koperkhairne	TNOBW080	40	EXLT	*Rabale	TNWQN011	63	GW
Koperkhairane	TNOBW080	45	EXLT		Rabale	TNWQN011	66	GW	*Rabale	TNWQN011	62	GW
Koparkhairne	TNOBW080	45	EXLT		Turbhe	TNWQN012	33	EXLT	Rabale	TNWQN011	68	GW
Koparkhairne	TNOBW080	48	EXLT		Gansali	TNPZ023	62	GW	Khirane	TNWQN010	45	EXLT
Rabale	TNWQN011	55	GW		Khairne	TNWQN010	198	PW	Koperkhairane	TNOBW080	33	EXLT
Turbhe	TNWQN012	87	GW		Koperkhairne	TNOBW080	60	GW	Turbhe	TNWQN012	35	EXLT
Gansali	TNPZ023	65	GW									
2011 (With Fe)												
+Ghansoli		55	GW		P avane	TNOBW078	73	GW	Khirane	TNWQN010	58	GW
Ghansali	TNPZ023	66	GW		Koperkhairane	TNOBW080	61	GW	Turbhe	TNWQN012	72	GW
Rabale	TNWQN011	58	GW								-	

^{*} Pre-Monsoon, +Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.31 (Contd..) Thane District

	Taluka : V	Vasai			Taluka : `	Vasai			Taluka:	Vasai	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Khanivade	C/TN-003	50	EXLT	Khanivade	C/TN-003	60	GW	Khanivade	C/TN-003	55	GW
Sandor	C/TN-045	137	PW	Sandor	C/TN-045	121	PW	Sandor	C/TN-045	142	PW
Sativli	C/TN-049	81	GW	Waliv	C/TN-041	53	GW	Waliv	C/TN-041	54	GW
Waliv	C/TN-041	68	GW	Agashi	C/TN-046	90	GW	Agashi	C/TN-046	98	GW
Agashi	C/TN-046	151	PW	Ambadi	C/TN-029	65	GW	Katolwadi	C/TN-039	38	EXLT
Ambadi	C/TN-029	51	GW	Katolwadi	C/TN-039	46	EXLT				
Katolwadi	C/TN-039	34	EXLT								
2010 (With Fe)											
Gokhivare	TNPZ019	42	EXLT	Virar	TNWQN007	71	GW	+Nalasopara	TNWQN008	37	EXLT
Vasai	TNWQN006	52	GW	Aghashi	TNOBW030	118	PW	+Gokhivare	TNPZ019	34	EXLT
Sansoonghar	TNWQN004	88	GW	Boling	TNOBW031	39	EXLT	+Aagashi	TNOBW030	48	EXLT
Agashi	TNOBW048	113	PW	Nalasopara	TNWQN003	30	EXLT	+Tuling	TNWQN005	31	EXLT
Nalasopara	TNWQN003	29	EXLT	Virar	TNWQN007	70	GW	Agashi	TNOBW048	46	EXLT
2011 (With Fe)											
Gokhivare	TNPZ019	50	EXLT	+Virar	TNWQN007	57	GW	Boling	TNWQN002	77	GW
Agashi	TNOBW030	50	GW	Vasai	TNWQN006	56	GW	Nalasopara	TNWQN003	95	GW
Nalasopara	TNWQN008	32	EXLT	Agashi	TNOBW048	72	GW	Sasunghar	TNWQN004	37	EXLT
Sasoonavghar	TNWQN004	47	EXLT	Chandansar	TNPZ014	68	GW	Tuling	TNWQN005	73	GW
+Gokhivare	TNOBW059	52	GW	Gokhiware	TNPZ019	47	EXLT				

	Taluka : N	Iurud				Taluka : M	lurud				Taluka : N	Aurud	
Villages					Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2011 (With Fe)	011 (With Fe) Data for 2007 to 2009 (Without Fe) Not Available and also 2010 (With Fe)												
Talegaon	TNOBW072	26	EXLT		Bursange	TNOBW074	30	EXLT		Karav	TNOBW085	32	EXLT
Tokawade	TNOBW073	30	EXLT		Tunepada	TNOBW075	33	EXLT		Shivale	TNOBW087	27	EXLT

^{*} Pre-Monsoon, +Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.31 (Contd..) Thane District

	Taluka : V	Wada			Taluka : V	Vada			Taluka : '	Wada	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Without I	Fe)			2009 (Without I	Fe)		
Rinzadpada	C/TN-042	41	EXLT	Jogamargepada	C/TN-043	39	EXLT	Jogamargepada	C/TN-043	45	EXLT
				Rinzadpada	C/TN-042	32	EXLT	Rinzadpada	C/TN-042	40	EXLT
2010 (With Fe	e)										
Kanchad	TNOBW21	70	GW	Wada	TNOBW072	43	EXLT	*Parali	TNOBW042	36	EXLT
Khachad	TNOBW21	70	GW	Khachad	TNOBW21	46	EXLT	*Devali	TNOBW041	54	GW
Kudus	TNOBW055	92	GW	Kudus	TNOBW055	70	GW	*Wada	TNOBW044	53	GW
Parali	TNOBW042	46	EXLT	*Parali	TNOBW042	41	EXLT	Kudus	TNOBW055	26	EXLT
Devali	TNOBW041	36	EXLT	*Devali	TNOBW041	31	EXLT	Parli	TNOBW042	37	EXLT
Wada	TNOBW044	63	GW	*Kudus	TNOBW055	74	GW	Devali	TNOBW041	52	GW
Devali		34	EXLT	*Kanchad	TNOBW21	43	EXLT	Wada	TNOBW044	46	EXLT
Parli	TNOBW042	41	EXLT	*Kudus	TNOBW055	29	EXLT				
2011 (With Fe	e)										
Kanchad	TNOBW21	38	EXLT	Nehroli	TNPZ013	57	GW	Nimbawali	TNPZ015	44	EXLT
Parali	TNOBW042	38	EXLT	Devali	TNOBW041	33	EXLT	Ambiste Kh		89	GW
Devali	TNOBW041	44	EXLT	Parli	TNOBW042	24	EXLT	Nehroli		78	GW
Wada	TNOBW044	38	EXLT	Wada	TNOBW044	57	GW	Kanchad	TNOBW21	44	EXLT
Kurdus	TNOBW055	41	EXLT	Kudus	TNOBW055	52	GW	Kanchad	TNPZ012	68	GW
Aambiste	TNPZ010	49	EXLT		•	•			•		

	Taluka: Ta	alasari			Taluka : Ta	lasari				Taluka : T	alasari	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category		Villages	Well No.	WQI	Category
2010 (With Fe)												
Zhari		72	GW	+Vadoli	TNOBW006	45	EXLT		Zari		30	EXLT
Zai	TNOBW012	49	EXLT	Zai	TNOBW012	43	EXLT		Zai	TNOBW012	39	EXLT
Talasari	TNOBW009	54	GW	Kajali	TNOBW007	58	GW		Talasari	TNOBW009	43	EXLT
Vadoli	TNOBW006	31	EXLT	Zai	TNOBW012	41	EXLT		Vadoli	TNOBW006	37	EXLT
Kajali	TNOBW007	42	EXLT	Talasary	TNOBW009	40	EXLT					
+Zai	TNOBW012	41	EXLT]	Data fo	r 2007 to 20	09	(Without Fe) No	ot Available		
2011 (With Fe)												
Zai	TNOBW012	31	EXLT	+Talasari	TNOBW009	46	EXLT		Kajali	TNOBW007	42	EXLT
Talasari	TNOBW009	33	EXLT	+Uadhwa	TNPZ002	43	EXLT		Zai	TNOBW012	39	EXLT
Vadoli	TNOBW006	38	EXLT	Vadoli	TNOBW006	43	EXLT		Zari	TNPZ0003	39	EXLT
Kajali	TNOBW007	38	EXLT									

^{*} Pre-Monsoon, +Monsoon Season, The repeated stations may indicate the samples from two different wells /dates / seasons.

 Table x.32 : Water Quality Index of Groundwater of Wardha District

	Taluka : A	Arvi			Taluka : A	rvi			Taluka:	Arvi	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2007 (Without F	e)Contd			2008 (Without F	'e)		
Alipur	G/WD-035	210	VPW	Talegaon	G/WD-003	88	GW	Alipur	G/WD-035	365	UNSUT
Sukli	G/WD-016	81	GW	Wadhona	G/WD-023	88	GW	Sukli	G/WD-016	87	GW
2010 (With Fe)							Wadhona	G/WD-023	62	GW
Marga	WDOBW091	134	PW	Pachod (virul)	WDOBW095	83	GW	2011 (With Fe)			
Arvi.	WDOBW084	91	GW	Rohana.	WDOBW098	96	GW	Mandla.	WDOBW090	68	GW
Danapur	WDOBW086	73	GW	Panjra Gondi	WDOBW107	84	GW	Borgaon(gondi)	WDOBW102	99	GW
Kachnoor	WDOBW087	67	GW	Wadhona bk	WDPZ012	81	GW	Arvi	WDWQN014	152	PW
Kharangna	WDOBW089	97	GW	Mandla.	WDOBW090	60	GW	Data for 2009 (V	Vithout Fe) Not	Availab	ole
Nandpur	WDOBW093	281	VPW	Borgaon(gondi)	WDOBW102	92	GW				
				Arvi	WDWQN014	103	PW				

	Taluka : A	shti				Taluka : As	hti			Taluka : A	Ashti	
Villages	Well No.	WQI	Categor		Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	t Fe)				2008 (Without	Fe)			2010 (With Fe)			
Ashti	G/WD-015	80	GW		Ashti	G/WD-015	59	GW	Drugwada	WDOBW116	153	PW
Sahur	G/WD-009	110	PW		Sahur	G/WD-009	99	GW	Sindvihira	WDOBW119	60	GW
Dhadi	G/WD-047	72	GW		Dhadi	G/WD-047	86	GW	Talegaon	WDOBW121	107	PW
2011 (With Fe	(With Fe)								Borgaon tumni	WDPZ015	171	PW
Antora	WDOBW114	215	VPW		Sirsoli	WDOBW120	124	PW	Antora	WDOBW114	69	GW
Choti Arvi.	WDOBW115	156	PW		Kakaddara	WDWQN015	120	PW	Choti Arvi.	WDOBW115	153	PW
Data for 2009	for 2009 (Without Fe) Not Available				Ahsti	WDWQN016	166	PW	Sirsoli	WDOBW120	90	GW
									Kakaddara	WDWQN015	74	GW
									Ahsti	WDWQN016	70	GW

^{*} Pre-MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.32(Contd..) Wardha District

	Taluka : Deoli				Taluka : D	eoli			Taluka : I	Deoli	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)			2008 (Witho	out Fe)			2009 (Without	t Fe)		
Adegaon	G/WD-031	77	GW	Bhidi	G/WD-044	100	PW	Bhidi	G/WD-044	102	PW
Bhidi	G/WD-044	107	PW	Dahegaon	G/WD-020	63	GW	Dahegaon	G/WD-020	67	GW
Dahegaon	G/WD-020	67	GW	Dahigaon	G/WD-033	96	GW	Dahigaon	G/WD-033	85	GW
Dahigaon	G/WD-033	85	GW	Deoli	G/WD-019	156	PW	Deoli	G/WD-019	164	PW
Deoli	G/WD-019	169	PW	Muradgaon	G/WD-054	187	PW	Murudgaon	G/WD-054	76	GW
Sarul	G/WD-030	103	PW								
2010 (With Fe	e)										
Bhidi.	WDOBW036	87	GW	Bhidi	WDPZ008	102	PW	*Kolhapur	WDOBW043	90	GW
Kolhapur	WDOBW043	106	PW	Agargaon	WDOBW033	111	PW	*Kolona	WDWQN005	93	GW
Kolona	WDWQN005	93	GW	Andhori	WDOBW034	118	PW	*Deoli	WDWQN006	215	VPW
Deoli	WDWQN006	99	GW	Giroli.	WDOBW041	350	UNSUT	*Pulgaon	WDWQN007	97	GW
Pulgaon	WDWQN007	76	GW	Nachangaon	WDOBW044	77	GW	*Giroli	WDOBW041	105	PW
Bhidi	WDPZ008	99	GW	Rohini	WDOBW045	65	GW				
				*Bhidi	WDOBW036	79	GW				
2011 (With Fe	e)										
Bhidi	WDOBW036	166	PW	Kolona	WDWQN005	79	GW	Deoli	WDWQN006	204	VPW
Kolhapur	WDOBW043	111	PW			•		Pulgaon	WDWQN007	86	GW

^{*} Pre-MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.32(Contd..) Wardha District

Т	aluka : Hingang	hat			Taluka : Hing	anghat			Taluka : Hing	ganghat	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Without	Fe)			2009 (Without]	Fe)		
Hinganghat	G/WD-004	77	GW	Hinganghat	G/WD-004	65	GW	Hinganghat	G/WD-004	72	GW
Selu	G/WD-018	67	GW	Selu	G/WD-018	59	GW	Daroda	G/WD-014	57	GW
Daroda	G/WD-014	49	EXLT	Daroda	G/WD-014	74	GW				
2010 (With Fe	e)										
Bhaiyapur	WDOBW047	86	GW	Chincholi	WDOBW049	135	PW	*Gadegaon	WDOBW002	266	VPW
Inzala	WDOBW042	73	GW	Daroda	WDOBW050	61	GW	*Burkoni	WDOBW048	167	PW
Dhanora	WDOBW051	92	GW	Kanchangaon	WDOBW055	99	GW	*Chincholi	WDOBW049	115	PW
Inzala	WDOBW053	127	PW	Kangaon	WDOBW056	181	PW	*Daroda	WDOBW050	157	PW
Hinganghat	WDWQN012	87	GW	Mankapur	WDOBW059	89	GW	*Kanchangaon	WDOBW055	246	VPW
Wela	WDWQN013	86	GW	Wadner	WDOBW067	206	VPW	*Kangaon	WDOBW056	236	VPW
Dhamangaon	WDOBW072	69	GW	*Inzala	WDOBW042	154	PW	*Mankapur	WDOBW059	106	PW
Manora	WDPZ009	131	PW	*Dhanora	WDOBW051	136	PW	*Parsoda	WDOBW061	115	PW
Gadegaon	WDOBW002	176	PW	*Inzala	WDOBW053	170	PW	*Wadner	WDOBW067	253	VPW
Allipur	WDOBW046	237	VPW	*Hinganghat	WDWQN012	98	GW	*Dhamangaon	WDOBW072	143	PW
Burkoni	WDOBW048	125	PW	*Wela	WDWQN013	80	GW	*Manora	WDPZ009	165	PW
2011 (With Fe	e)										
Inzala	WDOBW042	151	PW	Inzala	WDOBW053	177	PW	Wela	WDWQN013	122	PW

	Taluka : Karanj	ja			Taluka : Ka	ranja				Taluka : Ka	aranja	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category	7	Villages	Well No.	WQI	Category
2007 (Withou	ıt Fe)			2007 (Withou	ıt Fe) Contd			2	2008 (Without	Fe)		
Junapani	G/WD-034	116	PW	Thanegaon	G/WD-012	83	GW	1	Nagalwadi	G/WD-013	50	GW
Nagalwadi	G/WD-013	61	GW									
2010 (With F	e)											
Sawli Kh.	WDOBW110	54	GW	Ladgad	WDOBW105	59	GW	N	Methirji	WDOBW106	55	GW
Thanegaon	WDOBW112	64	GW	Sindhvihira	WDOBW111	77	GW	I	Karanja	WDWQN017	112	PW
Karanja	WDOBW104	116	PW	Junapani	WDPZ013	48	EXLT	I	Data for 2009 (Without Fe) Not	Availal	ole
2011 (With F	e)			•								
Methirji	WDOBW106	154	PW	Karanja	WDWQN017	110	PW					

^{*} Pre-MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.32(Contd..) Wardha District

Talı	Taluka : Samudrapur				Taluka : Samu	drapur			Taluka : Samı	ıdrapur	,
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without F	Fe)			2008 (Without F	'e)			2009 (Without I	Fe)		
Ajda	G/WD-042	57	GW	Ajda	G/WD-042	43	EXLT	Ajda	G/WD-042	57	GW
Girad	G/WD-007	92	GW	Girad	G/WD-007	82	GW	Girad	G/WD-007	93	GW
Sakhra	G/WD-040	97	GW	Nandori	G/WD-043	47	EXLT	Sakhra	G/WD-040	155	PW
Samudrapur	G/WD-025	100	PW	Sakhra	G/WD-040	132	PW	Samudrapur	G/WD-025	100	PW
Sirpur	G/WD-002	109	PW	Samudrapur	G/WD-025	81	GW	Sirpur	G/WD-002	98	GW
Wasi	G/WD-048	150	PW	Sirpur	G/WD-002	81	GW	Vaygaon	G/WD-026	61	GW
				Wasi	G/WD-048	118	PW	Wasi	G/WD-048	127	PW
2010 (With Fe)											
Khek	WDOBW076	59	GW	Kori	WDOBW078	119	PW	*Nandori	WDOBW060	106	PW
Sawangi Zade	WDOBW080	64	GW	Renkapur	WDOBW079	96	GW	*Burfa	WDOBW070	152	PW
Shedgaon	WDOBW081	133	PW	Barfa	WDPZ010	121	PW	*Chikhli	WDOBW071	244	VPW
Waigaon											
Gond	WDOBW082	76	GW	Khursapar	WDPZ011	109	PW	*Dhumankheda	WDOBW073	73	GW
Samudrapur	WDWQN010	78	GW	*Shedgaon	WDOBW081	103	PW	*Kankati	WDOBW075	96	GW
Mohogaon	WDWQN011	102	PW	*WaigaonGond	WDOBW082	101	PW	*Kori	WDOBW078	140	PW
Nandori	WDOBW060	61	GW	*Khek	WDOBW076	107	PW	*Renkapur	WDOBW079	91	GW
Chikhli	WDOBW071	100	PW	*Sawangi Zade	WDOBW080	65	GW	*Barfa	WDPZ010	168	PW
Dhumankheda	WDOBW073	81	GW	*Samudrapur	WDWQN010	115	PW	*Khursapar	WDPZ011	158	PW
Kankati	WDOBW075	88	GW	Mohogaon	WDWQN011	159	PW				
2011 (With Fe)											
Khek	WDOBW076	170	PW	Shedgaon	WDOBW081	111	PW	Samudrapur	WDWQN010	122	PW
Sawangi Zade	WDOBW080	59	GW	Waigaon Gond	WDOBW082	104	PW	Mohogaon	WDWQN011	140	PW

^{*} Pre-MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.32(Contd..) Wardha District

	Taluka : Seloo				Taluka : S	eloo			Taluka : S	eloo	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Giroli	G/WD-036	205	VPW	Giroli	G/WD-036	218	VPW	Madni	G/WD-022	83	GW
Hingni	G/WD-041	104	PW	Hingni	G/WD-041	135	PW				
Madni	G/WD-022	104	PW	Keljhar	G/WD-006	105	PW				
Yelakeli	G/WD-045	103	PW	Madni	G/WD-022	92	GW				
				Yelakeli	G/WD-045	149	PW				
2010 (With Fe))										
Mahabala	WDPZ005	94	GW	Seloo	WDOBW029	127	PW	*Kopra	WDOBW025	349	UNSUT
				Sindi							
Palasgaon	WDPZ006	54	GW	Kh.(Rly).	WDOBW030	108	PW	*Ramna	WDOBW026	213	VPW
Wanarvihira	WDPZ007	159	PW	Surgaon	WDOBW031	134	PW	*Salaipewat	WDOBW027	145	PW
Anjangaon	WDOBW015	58	GW	*Gondapur	WDOBW021	108	PW	*Seloo	WDOBW029	179	PW
Chanki	WDOBW017	144	PW	*Kelzar	WDOBW024	137	PW	*SindiKh(Rly)	WDOBW030	122	PW
Dindoda	WDOBW019	189	PW	*Seldoh	WDOBW028	136	PW	*Antargaon	WDPZ003	164	PW
Janglapur	WDOBW023	86	GW	*Seloo	WDWQN008	144	PW	*Bondsula	WDPZ004	164	PW
Kopra	WDOBW025	354	UNSUT	*Anjangaon	WDOBW015	73	GW	*Mahabala	WDPZ005	91	GW
Ramna	WDOBW026	218	VPW	*Chanki	WDOBW017	322	UNSUT	*Palasgaon	WDPZ006	93	GW
Salaipewat	WDOBW027	100	PW	*Dindoda	WDOBW019	188	PW	*Wanarvihira	WDPZ007	90	GW
2011 (With Fe))										
Akoli	WDOBW014	154	PW	Gondapur	WDOBW021	113	PW	Seldoh	WDOBW028	127	PW
Babapur	WDOBW016	88	GW	Kelzar	WDOBW024	82	GW	Jamni	WDWQN009	95	GW
Garamsur	WDOBW020	78	GW	Zadsi	WDOBW032	353	UNSUT				

^{*} Pre-MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.32(Contd..) Wardha District

,	Taluka : Wardh	a			Taluka : War	dha			Taluka : War	dha	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without Fe	e)			2009 (Without Fe)	l		
Anji	G/WD-017	149	PW	Khandali	G/WD-024	222	VPW	Pipri	G/WD-038	110	PW
Arvi	G/WD-021	74	GW	Kharangana	G/WD-010	75	GW	Pulgaon	G/WD-011	98	GW
Khandali	G/WD-024	361	UNSUT	Paragothan	G/WD-008	68	GW	Tigaon	G/WD-027	56	GW
Kharangana	G/WD-010	74	GW	Pipri	G/WD-038	123	PW	Vadad	G/WD-032	107	PW
Pipri	G/WD-038	118	PW	Pulgaon	G/WD-011	2011 (With Fe)					
Pulgaon	G/WD-011	88	GW	Tigaon	G/WD-027	52	GW	Saongi Meghe	WDWQN001	132	PW
Tigaon	G/WD-027	68	GW	Vadad	G/WD-032	92	GW	Bhugaon	WDWQN002	200	PW
Vadad	G/WD-032	75	GW	2010 Contd (Wi	th Fe)			Barbadi	WDWQN003	330	UNSUT
2010 (With Fe)				Waigaon(nipani)	WDOBW012	79	GW	Chichala	WDWQN004	95	GW
Saongi Meghe	WDWQN001	117	PW	Wardha	WDOBW013	87	GW	2010 Contd (With	h Fe)		
Bhugaon	WDWQN002	198	PW	Anji	WDOBW035	90	GW	*Bhugaon	WDWQN002	160	PW
Barbadi	WDWQN003	343	UNSUT	Kurzadi	WDPZ001	100	GW	*Barbadi	WDWQN003	311	UNSUT
Chichala	WDWQN004	80	GW	*Saongi Meghe	WDWQN001	78	GW	*Chichala	WDWQN004	86	GW
Pipri(meghe)	WDOBW007	122	PW					*Waigaon(nipani)	WDOBW012	99	GW
Selsura	WDOBW010	149	PW								
Talegaon	WDOBW011	93	GW								

^{*} Pre-MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.33: Water Quality Index of Groundwater of Washim District

	Taluka : Ka	aranja			Taluka : Kai	ranja			Taluka : Ka	aranja	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without F	Fe)			2009 (Without	Fe)		
Dhanaj Khurd	T/WM-009	129	PW	Dhanaj Khurd	T/WM-009	112	PW	Kamargaon	G/WM-015	103	PW
Karanja	G/WM-007	140	PW	Shaha	T/WM-020	75	GW	Karanja	G/WM-007	81	GW
Shaha	T/WM-020	69	GW	Loni	G/WM-028	91	GW	Loni	G/WM-028	87	GW
Loni	G/WM-028	108	PW								
2007 (With Fe))			2008 (With Fe)				2009 (With Fe))		
*Dhotra	WSOBW003	58	GW	Dhanaj Bk	WSOBW002	68	GW	Karanja	WSOBW006	58	GW
*Panvihir	WSOBW011	114	PW	Dhotra	WSOBW003	51	GW	Kherda	WSPZ001	72	GW
*Shaha	WSOBW015	67	GW	Kherda Bk.	WSOBW007	50	GW	Kherda Bk.	WSOBW007	62	GW
*Tuljapur	WSOBW082	57	GW	Sohol	WSOBW017	82	GW	Panvihir	WSOBW011	59	GW
				Manbha	WSOBW008	56	GW	Tuljapur	WSOBW082	141	PW
				Panvihir	WSOBW011	39	EXLT	Dhotra	WSOBW003	72	GW
				Shaha	WSOBW015	51	GW	Shaha	WSOBW015	90	GW
				Tuljapur	WSOBW082	39	EXLT				
2010 (With Fe))										
Panvihir	WSOBW011	106	PW	Panvihir	WSOBW011	76	GW	Shaha	WSOBW015	87	GW
								Dhotra			
Manba	WSOBW008	106	PW	Tuljapur	WSOBW018	137	PW	Deshmukh	WSOBW003	64	GW
Dhanaj Bk.	WSOBW002	79	GW	Tulajapur	WSOBW018	92	GW				
2011 (With Fe))										
				Khedara							
Janori	BS-101	62	GW	Karanja	WSPZ001	57	GW	Sohal	WSOBW017	85	GW
Dhanaj Bk.	WSOBW002	67	GW	Khedra Bk.	WSOBW007	52	GW	Panvihir	WSOBW011	62	GW
Dhotara											
Deshmukh	WSOBW003	64	GW	Shaha	WSOBW015	66	GW	Karanja	WSOBW006	61	GW
Manba	WSOBW008	74	GW	Tuljapur	WSOBW082	88	GW				

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.33 (Contd..) Washim District

	Taluka : Ma	legaon				Taluka : Male	gaon			Taluka : Ma	legaon	
Villages	Well No.	WQI	Categor		Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	Fe)				2008 (Without	Fe)			2009 (Without	Fe)		
Kinhi Raja	G/WM-018	111	PW		Kinhi Raja	G/WM-018	65	GW	Medshi	T/WM-011	49	EXLT
Medshi	T/WM-011	71	GW		Medshi	T/WM-011	78	GW				
2007 (With Fe))				2008 (With Fe)				2009 (With Fe)			
Davha	WSOBW074	65	GW		Malegaon	BS-77	105	PW	Ekamba	WSOBW076	53	GW
Dongarkinhi	WSOBW075	107	PW		Davha	WSOBW074	53	GW	Karanji	WSOBW077	109	PW
Ekamba	WSOBW076	58	GW		Dongarkinhi	WSOBW075	105	PW	Malegaon	BS-77	121	PW
Karanji	WSOBW077	121	PW		Ekamba	WSOBW076	55	GW	Dongarkinhi	WSOBW075	111	PW
Zodaga	WSWQM005	54	GW		Karanji	WSOBW077	109	PW	Davha	WSOBW074	56	GW
		Zodaga	WSWQM005	54	GW	Zodaga	WSWQM005	53	GW			
									Jaulka	WSPZ009	94	GW
2010 (With Fe)											
*Dongarkinhi	WSOBW075	93	GW		*Karanji	WSPZ005	77	GW	Karanji	WSOBW077	134	PW
*Ekamba	WSOBW076	53	GW		Malegaon	WSOBW077	198	PW	Malegaon	WSOBW077	126	PW
*Zodga Bk.	WSOBW074	59	GW		Davha	WSOBEW074	88	GW	Jaulka	WSPZ009	97	GW
*Dawha	WSOBW077	53	GW									
2011 (With Fe)											
Malegaon	BS-77	131	PW		Ekamba	WSOBW076	61	GW	Dawha	WSOBW074	64	GW
Jawulka	WSPZ009	73	GW		Zodaga Bk.	WSWQM005	64	GW	Karanji	WSOBW077	79	GW
Dongarkinhi	WSOBW075	88	GW		111	1 6 1166	•	11 /1 .				

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.33 (Contd..) Washim District

	Taluka : Mai	ngulpir			Taluka : Man	gulpir			Taluka : Ma	ngulpir	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Bitoda	G/WM-013	130	PW	Bitoda	G/WM-013	110	PW	Bitoda	G/WM-013	97	GW
Shelu Bazar	G/WM-017	112	PW	Shelu Bazar	G/WM-017	93	GW				
Sendurjan	G/WM-016	109	PW	Sendurjan	G/WM-016	106	PW				
2007 (With Fe	e)			2008 (With Fe)				2009 (With Fe)		
Dabhadi	WSOBW036	64	GW	*Wanoja	WSOBW072	98	GW	Dabhadi	WSOBW036	68	GW
Jogaldari	WSOBW038	92	GW	Dabhadi	WSOBW036	69	GW	Wanoja	WSOBW072	105	PW
Kalamba	WSOBW039	99	GW	Mangrulpir	WSWQN003	77	GW	Kalamba	WSOBW039	79	GW
Mangrulpir	WSWQN003	90	GW	Jogaldari	WSOBW038	71	GW	Jogaldari	WSOBW038	97	GW
								Mangrulpir	WSWQN003	61	GW
2011 (With Fe	e)							2010 (With Fe)		
Wanoja	WSOBW072	52	GW	Mangarulpir	WSWQN003	65	GW	Dabhadi	WSOBW036	91	GW
Shelu Kh.	WSPZ004	76	GW	Dabhadi	WSOBW036	73	GW	Jogaldari	WSOBW038	66	GW
Jogaldari	WSOBW038	62	GW	Kalamba	WSOBW039	64	GW				·

	Taluka : Ma	anora			Taluka : Ma	nora			Taluka : Ma	anora	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	t Fe)			2008 (Without	Fe)			2009 (With Fe);	Not Avail. for 2	009 (Wit	thout Fe)
Vilegaon	T/WM-008	79	GW	Dhamni	G/WM-002	119	PW	Bhuli	WSOBW021	98	GW
2007 (With Fe	e)			2008 (With Fe)				Kupta	WSOBW027	53	GW
Dhavanda	WSPZ002	74	GW	Sakhardoh	WSOBW029	56	GW	Dhavanda	WSPZ002	88	GW
Umari Bk.	WSOBW032	57	GW	Umari Bk.	WSOBW032	44	EXLT	Umari Bk.	WSOBW032	71	GW
*Bhuli	WSOBW021	73	GW	Bhuli	WSOBW021	95	GW	Sakhardoh	WSOBW029	61	GW
*Kupta	WSOBW027	77	GW	Kupta	WSOBW027	57	GW	Parwa	WSPZ003	67	GW
2010 (With Fe	e)										
Parwa	WSPZ003	65	GW	Sakhardoh	WSOBW029	54	GW	Umari Kh.	WSOBW032	146	PW
Dhavanda	WSPZ002	98	GW	Bhuli	WSOBW021	139	PW	Sakharadoh	WSOBW029	75	GW
Umri Kh.	WSOBW032	64	GW								
2011 (With Fe	e)										
Parwa	WSPZ003	65	GW	Sakharadoh	WSOBW029	66	GW	Dhawanda	WSPZ002	99	GW
Kupta	WSOBW027	67	GW	Bhuli	WSOBW021	134	PW	Umari Kh.	WSOBW032	65	GW

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.33 (Contd..) Washim District

	Taluka : R	isod			Taluka : Ri	sod			Taluka : I	Risod	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without I	Fe)			2009 (Without	Fe)		
Risod	G/WM-005	120	PW	Risod	G/WM-005	106	PW	Risod	G/WM-005	108	PW
Kenwad	G/WM-004	129	PW	Kenwad	G/WM-004	115	PW	Kenwad	G/WM-004	89	GW
Rithad	G/WM-014	76	GW	Rithad	G/WM-014	79	GW	Rithad	G/WM-014	60	GW
Sakhar Doha	G/WM-012	80	GW	Sakhar Doha	G/WM-012	69	GW	Sakhar Doha	G/WM-012	54	GW
Dapuri	G/WM-019	115	PW	Dapuri	G/WM-019	PW				,	
2007 (With Fe)			2008 (With Fe)				2009 (With Fe)			
Sukali	WSOBW052	52	GW	*Gohagaon	WSOBW060	113	PW	Netansa	WSOBW068	107	PW
Degaon	WSOBW059	91	GW	*Lehani	WSOBW063	101	PW	Degaon	WSOBW059	98	GW
Gohagaon	WSOBW060	57	GW	*Shelgaon	WSOBW070	55	GW	Mohaja Bandi	WSWQN001	57	GW
Lehani	WSOBW063	107	PW	*Loni Bk.	WSOBW064	79	GW	Loni Bk.	WSOBW064	70	GW
Loni Bk.	WSOBW064	75	GW	*Masalapen	WSWQN002	62	GW	Мор	WSOBW056	59	GW
Mahagaon	WSPZ006	124	PW	*Mohaja Bandi	WSWQN001	81	GW	Lehani	WSOBW063	118	PW
Masalapen	WSWQN002	74	GW	*Risod	WSOBW069	167	PW	Gohagaon	WSOBW060	55	GW
Mohaja	WSWQN001	49	EXLT	*Mop	WSOBW056	56	GW	Mahagaon	WSPZ006	133	PW
Bandi											
Мор	WSOBW056	79	GW	*Netansa	WSOBW068	118	PW	Risod	WSOBW069	118	PW
Netansa	WSOBW068	99	GW	Sukali	WSOBW052	74	GW	Wanoja	WSOBW043	73	GW
Risod	WSOBW069	107	PW					Masalapen	WSWQN002	74	GW
Wanoja	WSOBW043	101	PW		0 110		11 /1 :				

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.33 (Contd..) Washim District

	Taluka :Risod	(Contd.	.)		Taluka :Risod (Contd)		Taluka :Risod	(Contd)
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2010 (With Fe))										
*Degaon	WSOBW059	81	GW	*Risoad	WSOBW069	104	PW	Wanoja	WSOBW043	98	GW
*Wanoja	WSOBW042	86	GW	*Agarwadi	WSOBW056	67	GW	Netansa	WSOBW068	138	PW
*Shegaon	WSOBW070	50	EXLT	Loni Kh.	WSOBW064	80	GW	Agaewadi	WSOBW056	66	GW
*Netnsa	WSOBW068	107	PW	Risod	WSOBW069	115	PW	Wanoja	WSOBW072	95	GW
*Mop	WSOBW060	66	GW	Masalapen	WSWQM2	82	GW	Loni Kh.	WSOBW064	118	PW
*Mohajabandi	WSOBW066	50	GW	Lehani Kh.	WSOBW063	118	PW	Gohagaon	WSOBW060	70	GW
*Mahagaon	WSPZ006	82	GW	Gohagaon	WSOBW060	73	GW	Masalapen	WSWQM3	88	GW
*Loni Bk.	WSOBW064	68	GW	Shelgaon	WSOBW070	48	EXLT	Risod	WSOBW069	97	GW
*Lehani	WSOBW063	100	GW	Agarwadi	WSOBW056	54	GW	Mahagaon	WSPZ006	88	GW
*Gohagaon	WSOBW060	68	GW	Mop	WSOBW056	60	GW				
2011 (With Fe)											
Dehgaon	WSOBW059	81	GW	Mop	WSOBW056	74	GW	Gohagaon	WSOBW060	65	GW
Wanoja	WSOBW043	88	GW	Mohajabandi	WSWQN001	53	GW	Yevata	WSPZ008	54	GW
Shelgaon	WSOBW070	59	GW	Mahagaon	WSPZ006	82	GW	Risod	WSOBW069	100	PW
Netansa	WSOBW068	103	PW	Loni Kh.	WSOBW064	71	GW	Agarwadi	WSPZ013	68	GW
Maslapen	WSWQN002	70	GW	Lehani	WSOBW063	97	GW		-		

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.33 (Contd..) Washim District

	Taluka : Wa	ashim			Taluka : Wa	shim			Taluka : W	ashim	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	Fe)	I .		2008 (Without]	Fe)	1		2009 (Without	Fe)		
Chikli	T/WM-023	127	PW	Wada	G/WM-001	67	GW	Chikli	T/WM-023	99	GW
Wada	G/WM-001	78	GW	Washim	G/WM-003	62	GW	Washim	G/WM-003	52	GW
Washim	G/WM-003	76	GW								
2007 (With Fe)			2008 (With Fe)				2009 (With Fe)			
Bitoda Teli	WSOBW044	49	EXLT	Ekamba	WSOBW045	65	GW	Warla	WSOBW053	73	GW
Bitoda Teli	WSOBW044	52	GW	Kekatumra	WSOBW047	65	GW	Pimpalgaon	WSOBW048	97	GW
Ekamba	WSOBW045	74	GW	Warla	WSOBW053	54	GW	Rajgaon	WSOBW049	65	GW
Falegaon	WSOBW046	107	PW	Washim	WSOBW054	73	GW	Kapase	BS-68	90	GW
Kekatumra	WSOBW047	58	GW	Falegaon	WSOBW046	99	GW	Kekatumra	WSOBW047	89	GW
Pimpalgaon	WSOBW048	85	GW	Pimpalgaon	WSOBW048	73	GW	Tondgaon	WSOBW051	66	GW
Rajgaon	WSOBW049	75	GW	Rajgaon	WSOBW049	61	GW	Bitoda Teli	WSOBW044	63	GW
Tondgaon	WSOBW051	51	GW	Kapase	BS-68	48	EXLT	Ekamba	WSOBW045	65	GW
Kapase	BS-68	49	EXLT	Tondgaon	WSOBW051	54	GW	Falegaon	WSOBW046	116	PW
Warla	WSOBW053	64	GW	Sawargaon	WSWQN004	44	EXLT	Washim	WSOBW054	53	GW
Tondgaon	WSOBW051	68	GW								
Washim	WSOBW054	78	GW								
2010 (With Fe)										
Washim	WSOBW054	93	GW	Tondagaon	WSOBW051	55	GW	*Falegaon	WSOBW046	99	GW
Ekamba	WSOBW045	90	GW	Washim	WSOBW054	100	GW	*Tondgaon	WSOBW051	50	GW
Umra Kapse	WSOBW052	82	GW	Umra Kapse	WSOBW052	49	EXLT	*Rajgaon	WSOBW046	59	GW
Bithoda Teli	WSOBW044	109	PW	*Washim	WSOBW 54	87	GW	*Umrakapse	WSOBW052	50	GW
Bithoda Teli	WSOBW044	69	GW	*Kekatumra	WSOBW 47	80	GW	*Pimpalgaon	WSOBW048	92	GW
Kekatumra	WSOBW047	92	GW	*Warla	WSOBW053	73	GW	*Sawargaon	WSWQN004	45	EXLT
2011 (With Fe											
Sukali	WSPZ005	67	GW	Kekaturna	WSOBW047	68	GW	Umarakapase	BS-68	54	GW
Washim	WSOBW054	80	GW	Falegaon	WSOBW046	70	GW	Pimpalgaon	WSOBW048	77	GW
								Sawargaon			i
Washim		75	GW	Tondgaon	WSOBW051	54	GW	Barade	WSWQN004	88	GW
Bitodateli	WSOBW044	87	GW	Rajgaon	WSOBW049	56	GW	Warla	WSOBW053	58	GW
Ekamba	WSOBW045	75	GW								

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.34 : Water Quality Index of Groundwater of Yavatmal District

	Taluka : A	rni			Taluka : Arı	ni			Taluka : A	Arni	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Withou	ıt Fe)			2008 (Without I	Fe)			2009 (Without	Fe)		
Arni	G/YT-007	51	GW	Arni	G/YT-007	62	GW	Arni	G/YT-007	92	GW
2007 (With F	e)			2008 (With Fe)				2009 (With Fe)			
Arni	YTWQN018	81	GW	Arni	YTWQNTS18	76	GW	Arni	YTWQNTS18	91	GW
Mangrul	YTWQN017	80	GW	Mangrul	YTWQN017	84	GW	Belora van	YTOBW076	62	GW
Borgaon				2011 (With Fe)							
Punji	YTWQNBS103	104	PW					Dabhadi	YTOBW075	62	GW
Dabhadi	YTOBW075	42	EXLT	*Arni	YTWQN018	86	GW	Deurwadi	YTOBW073	66	GW
				*Borgaon							
2010 (With F	e)			(punji)	YTWQNBS103	90	GW	Mangrul	YTWQN017	90	GW
*Arni	YTWQN018	93	GW	*Dabhadi	YTOBW075	79	GW	Sawali	YTPZ009	68	GW
*Jawala	YTOBW051	114	PW	*Loanbehal	BS 89	77	GW	Mahagaon	YTWQNBS97	61	GW
*Taroda		58	GW	*Malhiwara	BS 88	116	PW	Borgaon Punji	YTOBW061	61	GW
									YTWQNBS		
*Talani		80	GW	*Belora(Forest)	YTOBW076	113	PW	Belura	101	59	GW
	<u>-</u>			*Mangarul	T 17	104	PW	Umari	YTOBW025	102	PW

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.34(Contd..) Yavatmal District

	Taluka : Babl	nulgaon			Taluka : Babh	ulgaon			Taluka : Bab	hulgaon	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Babhulgaon	G/YT-004	135	PW	Babhulgaon	G/YT-004	155	PW	Babhulgaon	G/YT-004	134	PW
Pahur	G/YT-031	258	VPW	Pahur	G/YT-031	213	VPW	Pahur	G/YT-031	201	VPW
Umarda	G/YT-051	129	PW	Umarda	G/YT-051	132	PW	Umarda	G/YT-051	146	PW
2007 (With Fe	e)			2008 (With Fe)				2009 (With Fe))		
Babhulgaon	YTWQN005	68	GW	Babhulgaon	YTWQN005	61	GW	Babhulgaon	YTWQN005	70	GW
2010 (With Fe	e)										
*Babhulgaon	YTWQN005	72	GW	*Sindhi	YTOBW140	82	GW	*Marlapur	YTOBW180	75	GW
*Babhulgaon	YTWQN005	77	GW	*Virkhed	YTOBW174	105	PW	*Hatola	YTOBW172	101	PW
*Antargaon	YTOBW177	72	GW								
2011 (With Fe	e)										
*Babhulgaon	YTWQN005	70	GW	Pahur		69	GW	Marlapur	YTOBW180	76	GW
*Shindi	YTOBW140	101	PW	Karalgaon		67	GW	Kharda		72	GW
*Wai Hatola	YTOBW172	82	GW	Hatola	YTOBW172	129	PW	Gharephal		75	GW
								Mandi			
*Virkhed	YTOBW174	94	GW	Antargaon	YTOBW177	85	GW	Borgaon		72	GW
*Antargaon	YTOBW177	94	GW	Dhaba		86	GW	Dehani		74	GW
Maralpur	YTOBW180	74	GW	Virkhed	YTOBW174	117	PW	Shindi	YTOBW140	150	PW
Bhabhulgaon	YTWQN005	69	GW	Nandura Bk		70	GW				·

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.34(Contd..) Yavatmal District

	Taluka : Dar	vha			Taluka : Dar	vha			Taluka : Da	arvha	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Ladkhed	G/YT-021	95	GW	Ladkhed	G/YT-021	135	PW	Selodi	G/YT-011	106	PW
Selodi	G/YT-011	96	GW	Selodi	G/YT-011	85	GW	Talegaon	G/YT-041	57	GW
Talegaon	G/YT-041	47	EXLT	Talegaon	G/YT-041	65	GW				
2007 (With Fe)	1			2008 (With Fe)			2009 (With Fe	e)		
Darwha	YTWQN015	80	GW	Bariarab	YETOBWBS97	51	GW	Kamatwada	YTOBW046	68	GW
Mozar	YTOBW045	65	GW	Bhandegaon	YTWQNBS80	63	GW	Mangkinhi	YETWQNBS 81	103	PW
Bariarab	YETOBWBS97	68	GW	Darwha	YTWQN015	97	GW	Mozar	YTOBW045	53	GW
Bhandegaon	YTOBW040	61	GW	Kamatwada	YTOBW046	55	GW	Lakhkhind	YTOBW041	87	GW
Kamatwada	YTOBW046	71	GW	Lakhkhind	YTOBW041	105	PW	Darwha	YTWQN015	99	GW
Lakhkhind	YTOBW041	92	GW	Mahatoli	YTOBW053	140	PW	2010 (With Fe	e)		
Mahatoli	YTOBW053	149	PW	Mangkinhi	YETWQN81	73	GW	Mangkinhi	YTOBWO44	86	GW
Mangkinhi	YETWQN81	71	GW	Mozar	YTOBW045	66	GW	Shelodi		98	GW
Uchegaon	YTOBW042	70	GW	Sangvi	YTOBW036	83	GW				
				Uchegaon	YTOBW042	73	GW				
2011 (With Fe)	1										
*Darvha	YTWQN015	71	GW	*Mangkinhi	YTOBWO44	113	PW	*Kamatwada	YTOBW046	82	GW
*Sangavi(Rly)	YTOBW036	127	PW	*Lalkhind	YTOBW041	99	GW	*Mozar	YTOBW045	89	GW
*Bori(Arab)	YTOBW037	70	GW	*Uchegaon	YTOBW042	62	GW	*Mohatali	YTOBW053	119	PW
*Bhandegaon	YTOBW040	57	GW			•					

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.34(Contd..) Yavatmal District

	Taluka : D	igras			Taluka : Dig	ras			Taluka : D	igras	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Withou	it Fe)			2008 (Without	Fe)						
Digras	G/YT-010	161	PW	Digras	G/YT-010	147	PW	Data for 2009	(Without Fe) Not	t Availab	ole
Lonbhel	G/YT-028	158	PW								
2007 (With F	e)			2008 (With Fe)				2009 (With Fe))		
Digras	YTWQN016	111	PW	Digras	YTWQNTS16	136	PW	Lonbehal	YTOBW078	71	GW
Arambhi	YTOBW068	105	PW	Harsul	YTOBW063	165	PW	Arambhi	YTOBW068	116	PW
Harsul	YTOBW063	189	PW	Lakhrayachi	YTOBW069	89	GW	Digras	YTOBW065	134	PW
Lakhrayachi	YTOBW069	81	GW	Mahagaon Kh. YTPZ005 52				Harsul	YTOBW063	118	PW
Lonbehal	YTOBW078	62	GW	Mandwa	YTOBW064	140	PW	Lakhrayachi	YTOBW069	87	GW
Mandwa	YTOBW064	148	PW	Vitholi	YTOBW071	57	GW	Vitholi	YTOBW071	71	GW
Tiwari	YTOBW067	114	PW					Mandwa	YTOBW064	54	GW
Vitholi	YTOBW071	67	GW	2011 (With Fe)							
				Digras (Anand				Mahagao			
2010 (With F	<u>e)</u>			Lodg)	YTOBW065	82	GW	Kasba	YTPZ005	82	GW
Tiwari	YTOBW067	119	PW	Mandwa	YTOBW064	103	PW	Vitholio	YTOBW071	76	GW
Digras				Singad	BS 112	69	GW	Lakhrayachi	YTOBW069	73	GW
				Armbhi	YTOBW068	97	GW	Tiwari	YTOBW067	62	GW
								Digraas			
				Harsul	YTOBW063	71	GW	(Shankartaki)	TS 16	38	EXLT

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.34(Contd..) Yavatmal District

	Taluka : Gh	atanji			Taluka : Gha	ıtanji			Taluka : Gl	hatanji	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Wihout	Fe)			2008 (Wihout	Fe)			2009 (Wihout	Fe)		
Ghatanji	G/YT-035	100	PW	Injhala	G/YT-040	112	PW	Ghatanji	G/YT-035	112	PW
Injhala	G/YT-040	97	GW	Jodmoha	G/YT-033	112	PW	Injhala	G/YT-040	97	GW
Jodmoha	G/YT-033	62	GW					Jodmoha	G/YT-033	113	PW
2007 (Wih Fe	e)			2008 (Wih Fe)				2009 (Wih Fe)			
Kurli	YTOBW026	58	GW	Mangi	YTOBW027	62	GW	Kurli	YTOBW026	58	GW
Belura	YTOBW133	69	GW	Manoli	YTOBW139	115	PW	Mangi	YTOBW027	54	GW
*Ghatanji	YTWQN007	102	PW	Vilayata	YTOBW057	63	GW	Manoli	YTOBW139	47	EXLT
Ghatanji	YTWQN007	71	GW					Vilayata	YTOBW057	55	GW
2011 (Wih Fe	e)							Yerandgaon	YTOBW136	83	GW
Ghatanji	YTWQN007	101	PW	*Yerandgaon	YTOBW136	97	GW	2010 (Wih Fe)	1		
Yerandgaon	YTOBW136	169	PW	*Kurli	YTOBW026	81	GW	*Jarur	YTOBW087	75	GW
Kurli	YTOBW026	79	GW	*Mangi	YTOBW027	69	GW	Vilayata	YTOBW057	60	GW
Mangi	YTOBW027	79	GW	*Jarud	YTOBW087	99	GW	Manjari		86	GW
Mandwa	YTOBW135	61	GW	*Mandwa	YTOBW135	61	GW	Jarur	YTOBW087	76	GW
Manoli	YTOBW139	86	GW	*Mandoli	YTOBW139	76	GW				
Villayata	YTOBW057	73	GW	*Vilayata	YTOBW057	87	GW				
Belura	YTOBW133	64	GW	*Belura	YTOBW133	89	GW				
*Ghatanji	YTWQN007	107	PW		·						

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.34(Contd..) Yavatmal District

	Taluka : Ka	lamb			Taluka : Kal	amb			Taluka : K	alamb	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Withou	t Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Chaparda	G/YT-057	48	EXLT	Chaparda	G/YT-057	56	GW	Chaparda	G/YT-057	51	GW
Kalamb	G/YT-001	160	PW	Kalamb	G/YT-001	180	PW	Kalamb	G/YT-001	143	PW
Kotha	G/YT-052	139	PW	Kotha	G/YT-052	144	PW	2009 (With Fe)		
				Sirpur	G/YT-029	83	GW	Kalamb	YTWQN004	87	GW
2007 (With F	e)			2008 (With Fe)				2010 (With Fe)		
Chaparda	YTOBW084	56	GW	Kalamb	YTWQN004	89	GW	Pilkhana	YTOBW085	78	GW
Chincholi	YTOBW147	81	GW	2011 Contd (V	Vith Fe)			2011 Contd (With Fe)		
Pilkhana	YTOBW085	104	PW	Pahur		92	GW	Chaparda	YTOBW084	58	GW
Sonegaon	YTPZ008	67	GW	Kinwat	YTOBW082	59	GW	Mthikhedaa		63	GW
*Kalamb	YTWQN004	73	GW	Dongarkharda		104	PW	Kalamb	YTWQN004	78	GW
2011 (With F	e)			Sonegaon	YTPZ008	77	GW	Chincholi	YTOBW147	86	GW
Kalamb	YTWQN004	111	PW	Chincholi	YTOBW147	85	GW	Kinwat	YTOBW082	62	GW
Mangi		77	GW	Rajur		87	GW	Pilkhana	YTOBW085	71	GW
Kamthwada		101	PW	Kotha		109	PW	Sonegaon	YTPZ008	86	GW
Umari		108	PW	Jodmoha		77	GW	Chaprda	YTOBW084	54	GW
Pilkhana	YTOBW085	80	GW	Satephal		71	GW			<u>-</u>	

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.34(Contd..) Yavatmal District

Taluk	a : Kelapur (Pan	dharka	wada)	Taluka	: Kelapur (Pan	dharka	wada)	Taluk	a : Kelapur (Pa	ndhark	awada)
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without F	re)			2008 (Without Fe	e)			2009 (Without I	Fe)		
Pahapal	G/YT-038	161	PW	Pahapal	G/YT-038	99	GW	Pahapal	G/YT-038	155	PW
Saykheda	G/YT-056	61	GW	Mohada	G/YT-012	142	PW	Mohada	G/YT-012	150	PW
Pandharkawada	G/YT-005	89	GW	Pandharkawada	G/YT-005	84	GW	Pandharkawada	G/YT-005	90	GW
2007 (With Fe)				2008 (With Fe)							
*Maregaon	YTOBW089	102	PW	Maregaon	YTOBW089	72	GW	*Kelapur	YTWQN008	63	GW
2009 (With Fe)											
Pahapal	YTOBW098	86	GW	Dharana	YTOBW091	113	PW	Pahapal	YTOBW098	73	GW
Chanakha	YTOBW028	56	GW	Khairgaon Bk.	YTOBW092	145	PW	Warha	YTOBW097	53	GW
Ghubadi	YTOBW029	54	GW	Maregaon	YTOBW089	64	GW	*Kelapur	YTWQN008	51	GW
2010 (With Fe)											
*Marathwakadi	YTOBW088	72	GW	*Pandharkawada	YTWQN008	57	GW	*Chakhna	YTOBW028	60	GW
*Borgaon Kh.	YTOBW093	55	GW	*Warha	YTOBW097	47	EXLT	*Khairgaon	YTOBW092	96	GW
*Ghubadi	YTOBW029	53	GW	*Maregaon	YTOBW089	58	GW	Warha	YTOBW097	55	GW
2011 (With Fe)											
Pandharkawada	YTWQN008	56	GW	Marathkawadi	YTOBW088	80	GW	Khargaon Bk	YTOBW092	93	GW
Maregaon	YTOBW089	74	GW	Sunna		67	GW	Ghubdi	YTOBW029	55	GW
Chankha	YTOBW028	63	GW	Mohada		69	GW	Pahaphal	YTOBW098	96	GW
Warha	YTOBW097	58	GW		·		<u>'</u>	<u>-</u>		·	·

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

 $Table \ x.34 (Contd..) \ Yavatmal \ District$

	Taluka : Mah	agaon			Taluka : Mah	agaon			Taluka : Mal	hagaon	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	t Fe)		'	2008 (Without	Fe)			2009 (Without	Fe)	1	
Dhanoda	G/YT-009	89	GW	Dhanoda	G/YT-009	88	GW	Dhanoda	G/YT-009	85	GW
Mahagaon	G/YT-027	59	GW	Mahagaon	G/YT-027	65	GW	Mahagaon	G/YT-027	50	GW
				Mohgaon				2009 (With Fe)		
				Kasba	G/YT-026	102	PW	2009 (With Fe	•)		
2007 (With Fe	2)			2008 (With Fe	e)			Mahagaon	YTWQN025	89	GW
Mahagaon	YTWQN025	78	GW	*Mahagaon	YTWQN025	83	GW	Dhanoda	YTOBW079	57	GW
Pisgaon	YTOBW158	74	GW					Kaurwadi	YTPZ003	43	EXLT
*Mahagaon	YTWQN025	95	GW					*Mahagaon	YTWQN025	84	GW
2010 (With Fe	e)										
Tembhi	YTOBW111	93	GW	Kaurwadi	YTPZ003	62	GW	Dhanoda	YTOBW079	60	GW
2011 (With Fe	e)										
Dhanoda	YTOBW079	56	GW	Mahagaon	YTWQN025	77	GW	Tembhi	YTOBW111	74	GW
Kahurwadi	YTPZ003	54	GW					Wadad	BS 125	73	GW

	Taluka: Mar	egaon			Taluka : Mare	egaon		Taluka : Maregaon			
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without)	Fe)	.		2008 (Without	Fe)	.		2007 (With Fe	e)	· I	
Mardi	G/YT-032	163	PW	Mardi G/YT-032 166 PW				Jalaka	YTOBW090	58	GW
Maregaon G/YT-015 129 PW								Maregaon	YTWQN009	64	GW
2008 (With Fe)				2009 (With Fe)						
Maregaon	YTWQN009	54	GW	Jalaka	YTOBW090	46	EXLT	Maregaon	YTWQN009	65	GW
2010 (With Fe)								2011 (With Fe)			
Pisgaon		68	GW	Pathari 87 GW				Maregaon	TS9	105	PW
		·		Data for 2009	Not Available (Wi	thout F	E)	·			

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.34(Contd..) Yavatmal District

	Taluka : N	ler			Taluka : N	er			Taluka : 1	Ner	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Without I	Fe)			2009 (Without I	Fe)		
Manekwada	G/YT-058	246	VPW	Manekwada	G/YT-058	241	VPW	Manekwada	G/YT-058	196	PW
Mojhar	G/YT-049	56	GW	Mojhar	G/YT-049	68	GW	Mojhar	G/YT-049	62	GW
2007 (With Fe)				2008 (With Fe)				2009 (With Fe)			
Bangaon	YTOBW038	94	GW	Watfali	YTOBW166	67	GW	Dhanaj	YTOBW183	125	PW
Bramhanwada	YTOBW163	111	PW	Ner	YTWQN014	82	GW	Gharefal	YTOBW164	119	PW
Dhanaj	YTOBW183	138	PW	2010 (With Fe)				Khandala	YTOBW168	51	GW
Gharefal	YTOBW164	84	GW	Mozar	YTOBW165	89	GW	Ner	YTWQN014	72	GW
Khandala	YTOBW168	80	GW	Bramhanwada	YTOBW163	106	PW	Uttarwadhona	YTOBW047	86	GW
Ner	YTWQN014	61	GW					Watfali	YTOBW166	49	EXLT
Watfali	YTOBW166	51	GW	2011 (With Fe)							
Uttarwadhona	YTOBW047	67	GW	*Ner	YTWQN014	75	GW	*Dhanaj	YTOBW183	80	GW
Yelgunda	YTPZ014	41	EXLT	*Bangaon	YTOBW038	96	GW	*Utttawadhona	YTOBW047	98	GW
				*Gharephal	YTOBW164	76	GW	*Watphali	YTOBW166	86	GW
				*Bramhanwada	YTOBW163	101	PW	*Pimpari	YTOBW167	99	GW
				*Mozar	YTOBW165	90	GW	*Yelgonda	YTPZ014	59	GW
				*Khandala	YTOBW168	99	GW				

	Taluka : Pu	sad			Taluka : Pu	sad			Taluka : P	usad	
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without Fe))			2008 (Witho	ut Fe)			2009 (Without	Fe)		
Harsi	G/YT-013	82	GW	Pusad	G/YT-030	109	PW	Phul Sawangi	G/YT-059	183	PW
Phul Sawangi	G/YT-059	64	GW	2009 (With 1	Fe)			Pusad	G/YT-030	103	PW
								Marwadi			
Pusad	G/YT-030	115	PW	Pusad	YTWQN019	87	GW	Khurd	G/YT-019	111	PW
Marwadi Khurd	G/YT-019	93	GW	Chondhi	YTOBW107	45	EXLT	Parwa	G/YT-023	96	GW
2007 (With Fe)				2008 (With Fe)				2010 (With Fe)			
Pusad	YTWQN019	82	GW	*Pusad	YTWQN019	79	GW	Singad	YTOBW070	52	GW
2011 (With Fe)											
								Pusada			
Pusad(Kakaddati)	YTWQN021	84	GW	Warud	YTOBW105	50	EXLT	(Adarsh Ng)	YTWQN019	55	GW
								Pusad			
Jamnaik	YTOBW002	58	GW	Chondhi	YTOBW107	69	GW	(Naik Bng.)	YTWQN020	67	GW
Chikhali	YTOBW103	93	GW		<u>-</u>					·	

Table x.34(Contd..) Yavatmal District

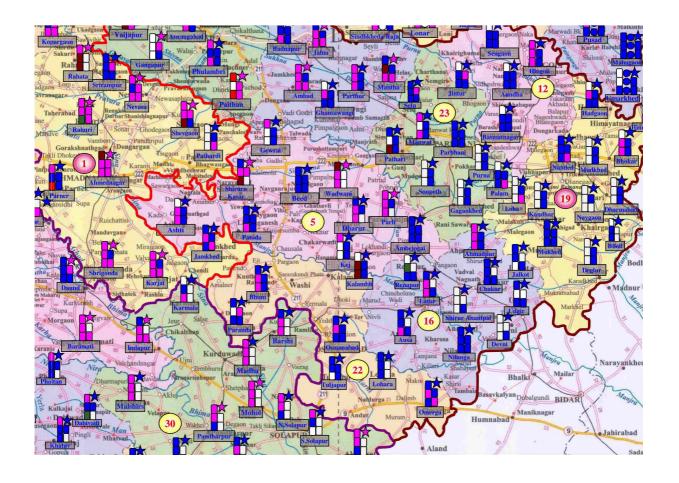
	Taluka : Rale	gaon			Taluka : Rale	gaon			Taluka : Ral	legaon	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2008 (Without	Fe)			2009 (Without	Fe)		
Wadhona	G/YT-050	82	GW	Wadhona	G/YT-050	66	GW	Wadhona	G/YT-050	73	GW
2007 (With Fe)				2008 (With Fe							
*Ralegaon	YTWQN006	86	GW	Ashtona	YTOBW155	120	PW	Kinhi Jawade	YTOBW154	80	GW
2009 (With Fe)				Khadaki	YTOBW153	75	GW	Ramtirth	YTPZ007	81	GW
Ralegaon	YTWQN006	101	PW	Khairey	YTOBW156	85	GW	Wadhona Bz.	YTOBW152	72	GW
								*Ralegaon	YTWQN006	116	PW
2010 (With Fe)				2011 Contd (With Fe)							
Ramthirth	YTPZ007	79	GW	Wanoja	YTPZ012	68	GW	Khadki	YTOBW153	56	GW
Zadgaon	YTOBW149	130	PW	Kinhi J	YTOBW154	104	PW	Wadhona Bz.	YTOBW152	63	GW
Wadhona Bk.	YTOBW152	81	GW	Ashtona	YTOBW155	71	GW	Kinhi	YTOBW154	108	PW
Khadki	YTOBW153	78	GW	Khadki	YTOBW153	74	GW	Ashtona	YTOBW155	111	PW
2011 (With Fe)				Ramthirth	YTPZ007	75	GW	Kahiree	YTOBW156	74	GW
Ralegaon	YTWQN006	119	PW	Dapori		78	GW	Ramthirth	YTPZ007	65	GW
Wadhonabazar	YTOBW152	79	GW	Ralegaon	YTWQN006	87	GW	Wanoja	YTPZ012	60	GW
Zadgaon	YTOBW149	118	PW	Zodgaon	YTOBW149	86	GW				

	Taluka : Umai	khed			Taluka : Umai	khed			Taluka : Uma	arkhed	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without I	Fe)			2007 (With Fe)				2008 (With Fe)			
							GW	*Umarkhed	YTWQN024	59	GW
2009 (With Fe)				Umarkhed YTWQN024 70 GW			Pophali	YTWQN023	123	PW	
Umarkhed	YTWQN024	68	GW	2010 (With Fe)				2011 Contd (W	Vith Fe)		
Pophali	YTWQN023	93	GW	Thakani					YTOBW011	109	PW
Bitargaon	YTOBW014	76	GW	Umerkhed	YTWQN024	80	GW	Bramhangaon	YTOBW010	97	GW
Dhanki	YTOBW011	88	GW	Kharbi		95	GW	Vidul	YTOBW009	97	GW
Marsal	YTOBW007	48	EXLT	2011 (With Fe)				Umarkhed	YTPZ011	64	GW
Vidul	YTOBW009	101	PW	Ekamba	YTWQN022	82	GW	Marsul	YTOBW007	70	GW
				Bitragaon	YTOBW014	55	GW	Pophali	YTOBW004	55	GW
Da	ta for 2008 and 20		Akoli	YTOBW016	66	GW				,	
Not A	vailable (Withou	t FE)		Sawaleshwar	YTOBW012	77	GW				

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.34(Contd..) Yavatmal District

	Taluka : W	ani			Taluka : W	ani			Taluka : V	Vani	
Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category
2007 (Without	Fe)			2008 (Without	Fe)						
Kayar	G/YT-022	118	PW	Kayar	G/YT-022	134	PW				
2007 (With Fe)				2008 (With Fe))			2009 (With Fe)			
Chilai	YTOBW122	53	GW	Pimpri k	YTOBW191	96	GW	Rasa	YTOBW120	137	PW
Rasa	YTOBW120	106	PW	Ukani	YTWQN010	106	PW	Shirpur	YTOBW185	89	GW
Shindola	YTOBW035	116	PW	Wani (3)	YTWQN013	89	GW	Ukani	YTWQN010	84	GW
Shirpur	YTOBW185	97	GW	Wani (1)	YTWQN011	109	PW	Wani (3)	YTWQN013	95	GW
Wani (3)	YTWQN013	132	PW	Wani (2)	YTWQN012	132	PW	Wani (1)	YTWQN011	84	GW
Wani (1)	YTWQN011	93	GW	2010 (With Fe))			Wani (2)	YTWQN012	92	GW
Wani (2)	YTWQN012	93	GW	Wani	YTWQN011	91	GW	Shindola	YTOBW035	85	GW
Pimpri k	YTOBW191	102	PW	Naigaon	YTOBW161	90	GW	2011 (With Fe)			
*Ukani	YTWQN010	117	PW	Punwat	YTOBW187	86	GW	Ukani	YTWQN010	105	PW
				Ganeshpur		83	GW	Asaha Lodge	YTWQN011	100	PW
	Data for 2000							Sonamata			
Not /	Data for 2009 Not Available (Without FE)							Mandir	YTWQN012	111	PW
Not F	Not Available (without FE)							Cement			
								Godown	YTWQN013	139	PW


	Taluka : Zari		Taluka : Zarij	amni		Taluka : Zarijamni							
Villages	Well No.	WQI	Category	Villages	Well No.	WQI	Categor	Villages	Well No.	WQI	Category		
2007 (With Fe)				2008 (With Fe))			2009 (With Fe)					
Zari	YTPZ0034	60	GW	*Zari	YTPZ0034	51	GW	Dabha	YTOBW099	59	GW		
2010 (With Fe)								Matharjun	YTOBW101	61	GW		
Sindhiwadhana		115	PW	Ardhavan	YTOBW030	64	GW	Mudhati	YTOBW100	62	GW		
Katali Borgaon	YTOBW094	76	GW	Mukutban	YTOBW032	61	GW	Shibala	YTOBW095	53	GW		
Data fan	2007 to 2009 Not	.l.	Isapur	YTOBW126	64	GW	Zari	YTPZ0034	48	EXLT			
							Katali Borgaon	YTOBW094	123	PW			
(Without	Fe) and also 2011	. (vv Iui .	re)					Mukutban	YTOBW032	110	PW		

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Table x.34(Contd..) Yavatmal District

Taluka : Wani						Taluka : Wa	ni		Taluka : Wani					
Villages	Well No.	WQI	Category	Vil	Villages Well N		WQI Categor		Villages	Well No.	WQI	Category		
2007 (Without Fe)					08 (Without F	e)			2009 (Without Fe)					
Akolabazar	G/YT-043	145	PW	Ak	colabazar	G/YT-043	144	PW	Kolambi	G/YT-016	55	GW		
Kolambi	G/YT-016	154	PW	Elb	bara	G/YT-034	200	VPW	Savar	G/YT-053	138	PW		
Madkona	G/YT-044	60	GW	Ko	olambi	G/YT-016	150	PW	Wadgaon	G/YT-014	100	PW		
Savar	G/YT-053	174	PW	Ma	adkona	G/YT-044	78	GW	Jamwadi	G/YT-045	132	PW		
Wadgaon	G/YT-014	96	GW	Sav	var	G/YT-053	140	PW	2008 (With Fe)					
Mandeo	G/YT-036	54	GW	Wa	adgaon	G/YT-014	117	PW	Akola Bazar	YTPZ001	97	GW		
Jamwadi	G/YT-045	81	GW	Ma	andeo	G/YT-036	74	GW	Bechkheda	YTOBW049	139	PW		
Karanji	G/YT-072	54	GW	Jan	mwadi	G/YT-045	108	PW	Borisinha	YTOBW048	57	GW		
Mangrule	G/YT-042	91	GW	Ka	ranji	G/YT-017	113	PW	Daheli	YTOBW130	66	GW		
Vai (Lingi)	G/YT-046	304	UNSUT		angrule	G/YT-042	96	GW	Sawargad	YTOBW150	48	EXLT		
2007 (WithFe)					ni (Lingi)	G/YT-046	285	VPW	Talegaon	YTOBW131	68	GW		
Akola Bazar	YTPZ001	99	GW	201	10 (With Fe)				2009 (With Fe)					
*Yavatmal	YTWQN001	80	GW		orosingh	YTOBW048	89 65	GW	Bechkheda	YTOBW049	73	GW		
				Wadgaon YTOBW128			GW	Wadgaon	YTOBW128	61	GW			
					legaon	YTOBW131	72	GW	Borisinha	YTOBW048	61	GW		
				Bo	orisingh	YTOBW048	95	GW	Daheli	YTOBW130	54	GW		
				Bee	chkheda	YTOBW049	73	GW	Sawargad	YTOBW150	46	EXLT		
									*Yavatmal	YTWQN003	104	PW		
2011 (WithFe)														
Yavatmal														
(Bhosa)	TS1	86	GW	*Le	ohara	T 3	99	GW	*Bechkheda	YTOBW049	71	GW		
Chinchghat		67	GW		Vadgaon	YTOBW128	83	GW	*Borusinga	YTOBW048	79	GW		
Talegaon	YTOBW131	70	GW		awargad	YTOBW150	80	GW	*Khorad	YTOBW054	70	GW		
*Yawatmal	T 1	62	GW		alegaon	YTOBW131	87	GW	*Akola Bz.	YTWQNB08	73	GW		
*Yawatmal	T2	79	GW		Daheli	YTOBW130	84	GW						

^{*} MonsoonSeason, The repeated stations may indicate the samples from two different wells /dates / seasons.

Measuring, Monitoring and Controlling of Wastewater Treatment Plants using Sensor Network System

Introduction to current problems with CETPs

Concept of common treatment of industrial waste water was started with an intention of controlling pollution as well keeping environment clean at large. Especially this concept is beneficial for small scale industries. For them treatment of their own effluent becomes difficult. Therefore, CETP who is treating their effluent at certain cost has to be adequate for such voluminous polluted water.

CETP so developed for an industrial cluster has to qualify for the treatment according to SPCB or CPCB whoever is stringent. Being voluminous it is difficult to measure multiple parameters in different treatment units. Measuring, monitoring and controlling such units have been always a challenge for regulatory authority. Often measurements are not reliable due interference as well as human errors.

Availability of measuring meters has helped up to certain extent. But regular maintenance and calibration is always a limitation. For measurement of a simple COD test it takes almost 2-3 hours manually (APHA, 2005). Even others take much more time when compared to COD viz. TDS & TSS. Test like pH & DO are measured by meters which are generally not calibrated every time.

Even in CETP range of pH is generally measured using paper strip method & further chemical additions are done. With technology available it's possible to monitor online. Countries like Germany and U.K. are already using sensor based networks for measuring, monitoring and controlling wastewater treatment plants.

What are sensors?

Sensors are the devices which run on various principle (based on particle characteristics as well as ionic nature of the sample etc.) & able to deliver the real time measurement of a sample. Sensors are completely submerged in the sample all the time so chance of interference is minimal when compared against manual measurement. These devices help the operator to understand status of the treatment. Likewise many success stories have been written so far with the help of sensor revolution.

The Sensor probe shown in picture is capable of measuring 8 parameters along with COD, BOD. Electrochemical sensors are rapidly replaced by optical based sensors which are factory calibrated.

Where it can be used?

- ✓ Municipal Water and wastewater treatment plants
- ✓ Effluent treatment plants specific to industries
- ✓ CETP industrial clusters
- ✓ Natural bodies like River "Ganga", "Yamuna" to monitor water quality.

Who needs it?

Regulatory Authority like SPCB, CPCB:

To check any violation of consented values of parameters like COD, TDS etc

Industry with own effluent plant /zero discharge

To reduce the operation and maintenance cost of ETP. Sensors with accurate readings will help in reducing costs towards chemical dosing.

Common Effluent Treatment Plant Facility

With huge volume of wastewater treated per day, real time accurate measurement helps reducing operational cost.

Do they have any success stories?

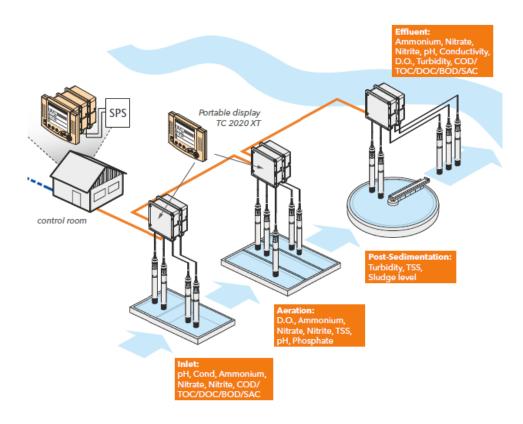
Sensor based networks are widely used in Germany, U.K. and U.S.A. All SBR technology shows success stories since in their SCADA they have automatic measurement done by sensors.

In DWTP (drinking water treatment plant) – quality assurance are made generally by sensor methodology. It is hard for them to measure quality each a second.

Similarly upcoming private industries who claim better treatment does have competitive edge of sensor technology, which helps them, understand where to improve.

Should we rely on sensors?

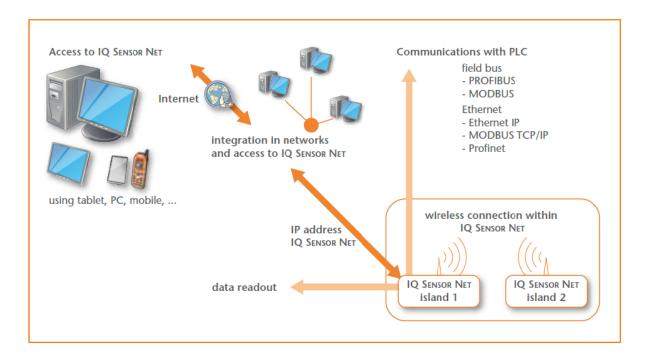
Comparative to conventional practices of measurement of parameters like COD etc., sensor based technology gives accurate readings. Sensors are always in contact with the water, reducing any interference or human error. This is always a heart of the technology; many worldwide companies have been in market since last Almost five decades. They have earned reliability of their sensor through their genuine R&D in many years. Their products are worldwide selected and being used in all the extreme environment. This technology is quite reliable in its own way.


What are the advantages of Sensor technology?

- Operation would be easier for the staff
- Accurate measurement
- Real time measurement, can measure 24 X 7, data logging possible
- Free of human errors
- Performance evaluation of the unit would be done after investing crores of crores in the treatment.
- Monitoring efficiency would improve if not in place
- Concerned authorities would be informed about the treatment in the UNITS
- Information would be even provided to the respective SPCB officials
- Environmental risk would be better understood
 - Daily average value of COD which is exceeded in any treatment plant would let us know how much organic loading we have done in the natural bodies just because of improper treatment, to our surprise this figure reaches in few thousand metric tons (current situation)
 - o Daily activity would definitely push the human mind set for further improvement

- If measured properly, monitoring of chemical used would be reduced which is very uncommon in all the ETP's
- Even would let us measure & control eutrophication
- Monitoring of various segments would be in place if results deviates from the expected
- Slowly we can achieve the standards if already not

Sensor based monitoring system


Complete assembly would look like as shown below

Complete sensor assembly would be given which includes:

- 1) Different Sensors
- 2) Different Sensors Adaptor
- 3) Common Controller
- 4) Enhanced Communication System (USP)
- 5) Software to interpret the raw values (USP)

Figure below shows how treatment unit will be connected to others who are not in the premises.

Flexibility & comfort

- Up to 20 digital sensors, any combination
- Easy, intuitive system expansion
- Centralized power supply along entire network
- Numerous relays and outputs maybe selected
- Communications via modem, Bluetooth, radio transmission, PROFIBUS, MODBUS, RS-232
- LED status update
- Integrates into existing systems
- Change or move parameters at any time with ease

Reliability:

- 3-year warranty
- Ultrasonic cleaning on some sensors
- System-wide lightning protection
- Modular expansion from 1 to 20 sensors
- Easily stack modules without extra wiring
- One cable for power and communications
- Factory-calibrated optical DO cap with a 2-year warranty
- USB interface (can be used for security)
- System redundancy for backup control

Range of sensors available

<u> </u>													
9	Sensors												
Parameters	1 TriOxmatic®	2 FDO®	3 SensoLyt®	4 TetraCon®	5 VisoTurb®	6 ViSolid®	7 NitraVis®	8 CarboVis®	9 NiCaVis®	10 VARiON®	11 AmmoLyt®	12 NitraLyt®	13 IFL
Temperature	•	•	•	•	•	•	•	•	•	•	•		
DO (electrochemical)	•												
DO (optical)		•											
рН			•										
ORP			•										
Conductivity				•									
Salinity				•									
Turbidity					•								
TSS						•	•	•	•				
Ammonium										•	•		
Nitrate							•		•	•		•	
Potassium										•	•		
Chloride*										•	•		
COD (chemical oxygen demand)								•	•				
TOC (total organic carbon)								•	•				
BOD (biochemical oxygen demand)								•	•				
DOC (dissolved organic carbon share of TOC)								•	•				
SAC (spectral absorption coefficient)								•	•				
Interface (Sludge) Level Measurement**													•

 $^{^{\}star}$ Chloride is used as compensation only and is not a visible parameter on the IQSN system. Please contact us for more information.

Sensors for waste water plant

A review

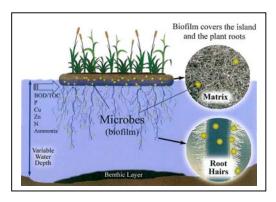
- 1. Accurate measurement
- 2. Free from cumbersome lab procedures
- 3. Free from calibration (as most of the sensors are factory calibrated)
- 4. Instant reading (saves time)
- 5. Immediate operational changes are possible thus saving energy and time
- 6. Robust technology with minimal maintenance.
- 7. Ultrasonic self-cleaning technology
- 8. Data logging possible
- 9. Transfer of real time data to control room and regulatory authority
- 10. Quick trouble shooting is possible based on accurate data at different stages of treatment
- 11. Up to 20 parameters can be measured.

Integrated by IIT Bombay at SINE Incubation system

^{**} For use with the 2020 XT and MC2 modules.

Floating Wetland Ecosystem (FWE)

Technology Details


Floating Wetland Ecosystems (FWE) are bio-mimetic, self-sustaining floating treatment concentrated wetlands that are designed to remove excess nutrients and contaminants from lakes, streams and wastewater lagoons. The islands typically use a combination of microbial (bacteria and algae) and plant growth to effectively take up, precipitate and/or filter nutrients and other pollutants from water. They are also extremely effective at reducing nitrate, phosphate, ammonia total suspended solids and dissolved organic carbon in waterways. The technology has know how and designed developed with support from NEERI, CSIR (Govt. of India) and patent holder for Phytorid Technology (Constructed Wetland Technology for waste water treatment).

Components of Floating wetland Ecosystem

The FWE is made up from support unit with plastic frames and polymer material, which support plant material that provides surface area for microbes, which converts and take up nutrients from the water. These plants improve aesthetic of the site as well as provide habitats for many fishes and birds to nurture their life.

The floating matrix, plus the plant roots hang beneath it, provides a large surface area for biofilm growth which forms an important part of the treatment "reactor. The microbes and macrophytes uptake nutrients and move them into and through the food chain. Suspended organic particles stick to the biofilm and become periphyton, food for scuds, nymphs and ultimately fish. Suspended inorganic solids, such as heavy metals in particulate form, slough off and settle in the benthic zone beneath the FWE. The FWE is a sink for carbon dioxide and it enables nitrates and ammonia to be removed from the water and safely converted back to Nitrogen gas. This process prevents or slows down eutrophication and keeps the aquatic system in balance. FEW can be installed in nearly any waterway and launched with a minimum of disturbance.

How it Work

Constructed of durable, non-toxic plastics, polymers and vegetated with native easily available plants. FWE float on top of the water, providing an aesthetic habitat for birds, fishes and animals. But underneath the surface, a dynamic process takes place. Microbes are responsible for breaking down nutrients and other water-borne pollutants, but to be effective, they need a surface to stick to. The FWE matrix, with its dense fibers and porous texture, is the perfect surface area for growing large amounts of microbes (as a biofilm) in a short time. Nutrients circulating in the water come into contact with these biofilms and are consumed by them, while a smaller fraction is taken up by plant roots. Suspended solids slough off into the benthic zone below the island. Organic solids stick to the biofilms and become the base of the freshwater food web. These pathways represent a concentrated wetland effect to clean the water.

Technology benefits

FWEs are able to withstand fluctuations in water levels, without becoming stranded or inundated; they are very suitable for the treatment of runoff and drainage, such as urban storm water, agricultural runoff and other non point-source applications.

It can be launched over deep or shallow water, including streams and detention basins, and they represent an inexpensive option to retro-fit to existing systems, such as wastewater lagoons.

The sticky biofilm which covers the roots and matrix acts as a mechanical filter for fine particulates, while the floating wetland itself provides shade to cool the water, and blocks the light that might otherwise encourage sub-aquatic weeds.

Overhanging banks act as wave-breakers and allow passage of fish underneath. In a lake or reservoir setting, the conversion of nutrients to periphyton initiates the food chain and contributes to insect and fish growth, which are the hallmark of a healthy and productive ecosystem.

Appendix III

Application of Natural Methods for Sewage Treatment and Polishing of Treated Wastewater

CONCEPT OF PHYTORID TECHNOLOGY

Urbanization can drastically alter the natural hydrologic cycle, destroying natural areas such as wetlands that are important for water quality and controlling urban storm water runoff. The urban

pollutant loads increase with imperviousness of the watershed. Urban and sub-urban runoff including storm water runoff, non-point source pollution, contributes significantly to the pollution load as shown in Figure 1 and Figure 2.

Additionally, the storm water flows and concentrations are episodic, changing rapidly in volume, duration and intensity.

These flows can carry sediment with nutrient loads into urban settings where the pollutant loads are further augmented by increased runoff from impervious surfaces such as parking lots, roadways, rooftops, etc. The resultant runoff can include suspended particulate matter and nutrients (especially N and P) from vehicle exhaust and atmospheric deposition, trace metals from metal corrosion, materials from worn brake lining and tires, salts (deicing salts), and a wide array of complex hydrocarbons (such

Figure 1: Strom Water Pollution Load

Figure 2: Status of Pollution Load in Nallas

as motor additives, pesticides, rubber, oil and grease.

Municipal wastewater treatment has been normally carried out by conventional systems. These systems along with advanced technologies being employed at many places are highly dependent upon power availability, skilled manpower and waste load characteristics. In developing countries, some of these could be critical towards efficient waste treatment. These factors are also responsible

for varying degree of treatment efficiency that may not produce the desirable levels of standards prescribed by the regulatory agencies/authorities.

Thus, it is important to demand of time to develop a sustainable wastewater treatment system overcoming the above-mentioned limitations of the conventional wastewater treatment technologies. One such system is Phytorid Technology based on "re-engineer" wetlands systems to solve the current runoff and wastewater quality problems. Wetlands have always been part of our ecosystem where we live.

Natural wetlands have been used to treat wastewater for hundreds of years. Formal documentation of how these natural wetlands (**Figure 3**) affected wastewater quality began in the 1960s and 1970s. Research found consistent reductions in the pollutant concentrations of wastewater, as it passed through the microbial active wetlands. And by the late 1970s and early 1980s, this research led to the planning, development, and construction of discharges to natural

Figure 3: Natural Wetlands as a Treatment Options

wetlands at many locations in North America, as well as the implementation of wetland technology for both habitat and water quality functions.

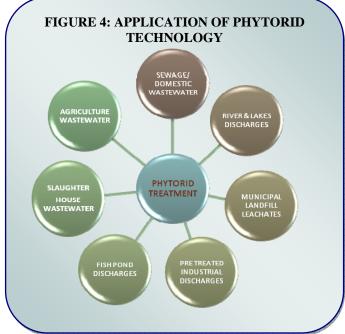
Wetlands can be engineered and constructed for the following reasons:

- 1. To compensate and offset the rate of existing wetland loss (habitat wetlands),
- 2. To improve wastewater quality (treatment),
- 3. Provide flood control

Phytorid Technology was developed by NEERI and patented in Indian, European and Australian Countries. This publication is an overview of purely on the scientific research with respect to Indian climatic conditions only and takes part to assist us by becoming "green infrastructure" to wastewater quality problems.

These are constructed as shallow basins or channels with a subsurface barrier to avoid seepage. The Phytorid Technology is a subsurface flow type wherein water is applied to the cells/ beds filled with porous media such as gravel and stones. The hydraulics is maintained in such a manner that water does not rise to the surface retaining a free board at the top of the filled media. These systems may include a wide variety of foliage in the form of aquatic, marsh, ornamental, herbs, grasses and also terrestrial plants known to grow in water logged conditions.

1.1 Definition


Phytorid Technology is a designed system and constructed to make use of selected vegetation to assist in treating wastewater in a controlled environment than occurs in natural wetlands. The use of Phytorid wetlands for wastewater treatment takes advantage of the same principles in a natural system, within a more controlled environment. It utilizes many of the mechanisms of phytoremediation, though the maturity of wetland suggests that it is a discipline unto itself. They can be designed for a variety of treatment objectives, as influent ranges from raw wastewater to secondary effluent.

They possess a rich microbial community in the sediment to effect the biochemical transformation of pollutants, they are biologically productive, and most importantly, they are self-sustaining. These factors make constructed treatment wetlands a very attractive option for water treatment compared to conventional systems, especially when lifetime operating costs are compared.

The technology is adaptable to a variety of treatment needs (**Figure 4**) through the selective design and combination with other technologies, such as trickling filters, septic tanks, etc. Phytorid Treatment System has significantly lower total lifetime costs and lower capital costs than conventional treatment systems.

Additionally, Phytorid Treatment Systems can:

- Tolerate fluctuations in flow and pollutant concentrations,
- o Provide flood protection,
- o Facilitate water reuse and recycling,
- Can be built to fit harmoniously into the landscape,
- o Enhance aesthetics of open spaces,
- Provide recreational and educational opportunities, and
- Environmentally sensitive approach viewed favorably by the general public.

In treatment systems, flows are fed to a gravel

bed with pore spaces. Within these pores spaces, bacteria and algae do most of the treatment work in aerobic and anaerobic conditions year round. It has been shown that planted gravel beds achieved greater than 90% removal of chemicals. Several designs can be found in the literature for wetlands treatment. Some of these procedures are rules of thumb (as was the case with natural restored wetlands), based on intuition and analogs, and others are based on data analysis and

application of physico-chemical principles. It is necessary for Phytorid treatment, to determine/ define the quantity and quality of water to be treated and the goals of the treatment.

The Phytorid System can be differentiated according to the following criteria:

• Filter media: Origin, composition, grain size distribution, hydraulic properties, etc.

• Flow : Horizontal /vertical /or both

• Operation : Continuously

o Plantation : Stabilized/ acclimatized, selected species for treatment, aesthetic views,

based on the reuse of treated water.

1.2 Treatment Mechanism Involved in Phytorid Technology

• Phytorid Treatment Systems have been found to be effective in treating BOD, TSS, N and P as well as for reducing metals, organic pollutants and pathogens. The principal pollutant removal mechanisms in treatment systems include biological processes such as microbial metabolic activity and plant uptake as well as physico-chemical processes such as sedimentation, adsorption and precipitation at the water-sediment, root-sediment and plant-water interfaces as shown in **Figure 5**.

 Microbial degradation plays a dominant role in the removal of soluble/colloidal biodegradable

organic matter in wastewater.

 Biodegradation occurs when dissolved organic matter is carried into the biofilms that attached on plant root systems and surrounding media by diffusion process.

• In further development after filing of the patent 2003, further

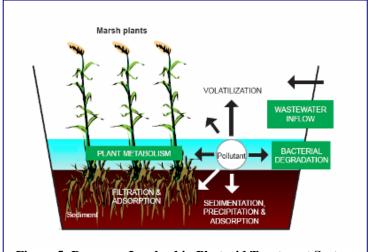
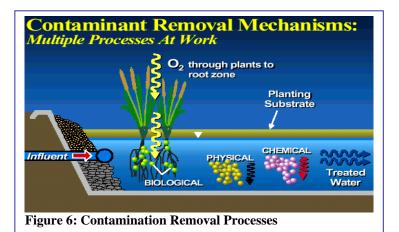
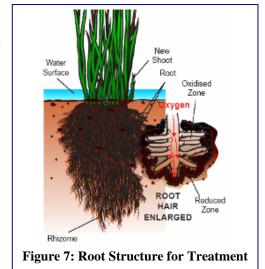


Figure 5: Processes Involved in Phytorid Treatment System

improvement was undertaken to reduce the residence time of the overall system as also to improve the technology. This development involved use of isolated bacterial consortia in the system to mainly reduce the Suspended Solids load. It also leads to reduction in BOD as well. [The requirement of bio-culture is given at the end of the document.]

- Suspended solids are removed by filtration and gravitational settlement. A pollutant may be removed as a result of more than one process at work.
- Conversion of nitrogen compounds (Nitrification / Denitrification) occurs due to planned flow of wastewater through anaerobic and aerobic zones.


- Phosphorus is present in wastewaters as Orthophosphate, Dehydrated Orthophosphate (Polyphosphate) and Organic Phosphorus. The conversion of most Phosphorus to the Orthophosphate forms is caused by biological oxidation.
- Although plant uptake may be substantial, the sorption of Phosphorus (Orthophosphate P) by anaerobic reducing sediments appears to be the most important process. Pathogens are removed mainly by sedimentation, filtration and absorption by biomass and by natural die-off and predation.
- Evapotranspiration slows water flow and increases contact times, whereas rainfall, which has the opposite effect, will cause dilution and increased flow.


vessels in the plant tissues enable oxygen to be transported from the leaves to the root zone and

1.3 Role of Plant Species for Treatment Mechanisms

- The most significant functions of plant species in relation to water purification are the physical effects (as shown in **Figure 6**) brought by the presence of the plants.
- The plants provide a huge surface area for attachment and growth of microbes. The physical components of the plants stabilize the surface of the beds, slow down the water flow thus assist in
 - sediment settling and trapping process and finally increasing water transparency.
- Plants play a vital role in the removal and retention of nutrients and help in preventing the eutrophication of wetlands. A range of plants has shown their ability to assist in the breakdown of wastewater. Cattails (Typha spp.) are good examples of marsh species that can effectively uptake nutrients. These plants have a large biomass both above (leaves) and below (underground stem and roots as shown in the Figure 7) the surface of the substrate.
- The sub-surface plant tissues grow horizontally and vertically, and create an extensive matrix, which binds the particles and creates a large surface area for the uptake of nutrients and ions. Hollow

to the surrounding soil.

- This enables the active microbial aerobic decomposition process and the uptake of pollutants from the water system to take place.
- Macrophytes stabilize the surface of plant beds, provide good conditions for physical filtration, and provide a huge surface area for attached microbial growth. Growth of macrophytes reduces current velocity, allowing for sedimentation and increase in contact time between effluent and plant surface area, thus, to an increase in the removal of Nitrogen.
- Hydraulic conductivity is improved in an emergent plant bed system. Turnover of root mass
 creates macropores in a system allowing for greater percolation of water, thus increasing
 effluent/plant interactions.
- Decomposing plant biomass also provides a durable, readily available carbon source for the
 - microbial populations.
- Plant species provide a large surface area for growth of microbial biofilms (as shown in Figure 8) and responsible for a majority of the microbial processes in a treatment system, including Nitrogen reduction.
- Plant species mediate transfer of oxygen through the hollow plant tissue and leakage from root systems to the rhizosphere where aerobic degradation of organic matter and nitrification will take place. The plant species have additional sitespecific values by providing habitat to make wastewater treatment systems aesthetically pleasing.

1.4 Identification of Potential Sites for Construction of Phytorid Treatment System

Sites identified for treatment systems need to be assessed for:

- Existing infrastructure to determine the ease of access,
- Ownership and availability of the site,
- Engineering feasibility,
- Hydrology,
- Nature of soils on the site,
- Topography,
- Drainage area, and
- Upstream pollutant loading characteristics (including locations/ proximity of combined sewer overflows, if applicable).

1.5 Preliminary Sizing

- Each regulated water quality parameter requires its own particular treatment area for reduction to the desired level.
- Depending on regulations and retention time, the maximum size of the individual treatment areas is selected.

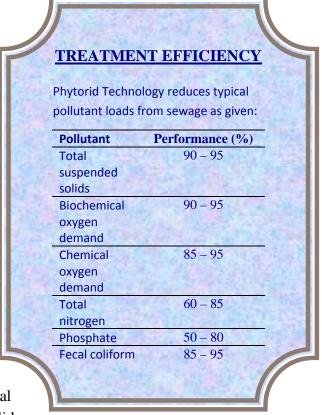
1.6 Preliminary Economics

This includes the

- Basic capital costs,
- Operating and maintenance costs and
- Comparison of costs for potential sites with those of conventional treatment options.

1.7 Engineering Considerations and Designs

The goal is to maximize treatment volume and efficacy.


- Typically, a distribution box needs to distribute water based on the amount of flow and changes its distribution over time.
- The primary tank in which the solids are dropped, and then the flow proceeds to the various buried gravel beds.
- Within these beds is a very coarse stone with pore spaces for bacteria and algae to do their work.
- The treated flow then moves towards the final collection tank and is pumped to the reuse.
- Aquatic species can be planted on top of the gravel beds depending on whether the water levels in the beds and the frequency of flooding can support these species.

1.8 Stream (Hydrological) Flow and Stage Calculations

- To determine the quantity of wastewater that will flow through treatment, it is essential to calculate both baseline and storm discharges.
- The amount and timing of the water to be treated is the first and foremost item to consider in design.
- This information should include the possible seasonality of flows and anticipated progression of flows over the life of the design.
- This is more important for treatment design when compared with conventional water treatment plants because of the implied life cycle of the process and the nature of urban and industrial growth.
- Conventional water treatment plants are traditionally planned for a 20-year life expectancy, but wetlands can function for a far longer period.

1.9 Treatment Potential

- The treatment achieved in SSW systems depends on the volume and frequency of the inflow and also the characteristics of the inflow.
- The treatment potential depends upon the following factors:
 - o Hydraulic loading,
 - o Retention, and
 - o Vegetation.
- To obtain better knowledge of the water quality aspects for the storm water discharge, it is advisable to conduct fairly good data collection with regard to flows and quality.
- Major pollutant sources for the discharge is determined by assaying biological oxygen demand (BOD₃), chemical oxygen demand (COD), total suspended solids (TSS), Total Kjeldahl Nitrogen (TKN), Ammonia (NH₃), total phosphorous, pH, salinity, alkalinity, and fecal coliforms.
- Baseline sampling is done at the storm sewer outflow (inflow) and upstream, however for an event sampling (when there is sever overflow), three samples should be taken at an upstream water sample and a downstream sample.
- HRT can be obtained using the water quality data for the baseline and total maximum daily loads and water quality-based effluent limits defined by state policy for effluent concentration data.
- The presence of macrophytes is important for pollutant removal functions.

1.10 Design and Construction of Phytorid Treatment System

Phytorid to be design for Influent Characteristics as mentioned in the following table.

Sr. No.	Parameters	Influents	Units
1.	pН	5.5-8.5	-
2.	TSS	300	mg/L
3.	BOD	400	mg/L
4.	COD	800	mg/L
5.	O&G	50	mg/L
6.	N (TKN)	20-50	mg/L
7.	P	8-10	mg/L

Phytorid can meet the following characteristics at the effluent as mentioned below.

Sr. No.	Parameters	Effluents	Disinfection	Units
1.	pН	6.8-7.5	6.5-7.3	-
2.	TSS	15-25	10-15	mg/L
3.	BOD	10-30	<5	mg/L
4.	COD	30-80	< 20	mg/L
5.	O&G	<5	<2	mg/L
6.	N (TKN)	5-8	<3	mg/L
7.	P	2-5	<2	mg/L
8.	TC	10×10^6	<10 ³	per 100m

1.10.1 Site Selection

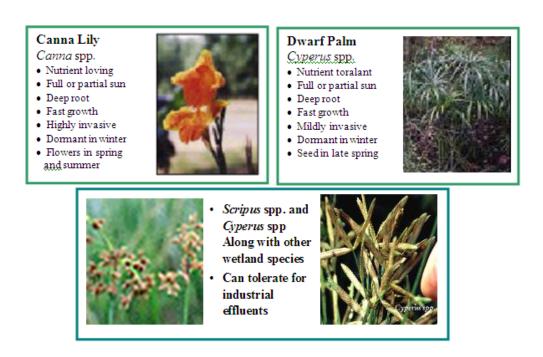
- The suitability of a site for constructing a treatment wetland may depend on the condition of one or more factors such as substrate, soil chemistry, hydrology/geomorphology, vegetation, cultural/socioeconomic impacts including environmental justice issues, the surrounding landscape, land use/zoning considerations and potential impacts to safety and health.
- Project proponents should carefully examine these factors and consult with applicable agencies in determining the most appropriate site(s) for their projects.
- A distance of 5 to 10 m from the residential building in case of domestic sewage is recommended, depending on the type of pretreatment.
- In case of industrial effluents, site-specific plan from residential areas is required. If properly designed and built, treatment systems do not create any odour or nuisance in the vicinity.
- The location is to be selected in such a manner that drinking water sources are not impaired.

- As far as possible, the site must be safe from flooding. Normal water logging does not create a problem as after the water level recedes, plant can start operating.
- The selected site should be protected from unauthorized access.
- It must be possible to dispose of the treated effluent at the selected site as per standards set by the concerned regulatory agency.
- The following precautions shall be taken such as
 - Treatment System has to be marked clearly/labled as wastewater treatment systems.
 - The site should have sufficient space for maintenance.
 - Natural slope should be used, to avoid the need for pumps.
- The application of Phytorid Treatment System and the design depends on the availability of suitable filling material for the filter beds.
- It is basically recommended to use locally available filter material to reduce the construction cost.

1.10.2 Pretreatment System

- Sand settling devices, grease traps, gratings and sieves have to be used according to the characteristics of the raw wastewater.
- In nallas, alternative system should be kept and designed.
- Industrial effluents have to be characterized fully before deciding upon adequacy and type
 of pretreatment.
- All effective pretreatment systems can be combined with Phytorid Treatment System to work effectively.

1.10.3 Filter Media


- The filter media effective for the biological treatment must consist of multiple grade of gravel, and a comparable media.
- Specific design of the correct filter media according to the available material is the most important step in the design process.
- Irregular shapes of the gravel / pebbles should be chosen, if available, for the infiltration area in horizontal system and for the drainage area.

1.10.4 Construction Details

- All the construction for the phytorid system should be waterproof. Inside baffles can be constructed of brickworks.
- Freeboard of at least 20 cm distance from bed surface to the upper edge of the lateral sealing is to be provided.
- Should have free access to all operational points like manholes, pumping stations, maintenance locations and sampling points. The access has to be constructed in a way, that crossing of the filter bed is avoided.
- Treatment System shall be designed in such a way that they are integrated into landscape as much as possible.
- Protective measures against the undesired water inflow are indispensable such as bunding all around.
- Inlet structures should be constructed that they distribute the incoming wastewater uniformly to the filter beds
- Verification is to be carried out to prove the correct function of the inflow structures. Hydraulic calculations of the infiltration section / area have to be done with a safety of one order of magnitude.
- Inlet and outlets can be planned with PVC pipes.
- Perforated PVC pipes should be inserted in the filter beds for filter cleaning or sampling.

1.10.5 Plantation and Stabilization

- Plant selection and placement are determined by the system design. Selection of plant species should be based on the final water quality discharge /reuse.
- Primary benefit of these plants is that they beautify the garden and provide color. Using plants that flower in different seasons will keep the treatment system beautiful all year long.
- Stabilization of plant species should be done for the period of 30-45 days along with root enhancer.
- The following plant species should be stabilized and planted in the Phytorid beds/ system
 - Canna indica (Indian Shot),
 - Colocasia esculenta (Green Taro),
 - Cyperus alternifolius (Umbrella Palm),
 - Iris pseudacorus (Yellow Iris),
 - Juncus bufonius (Toad Rush),
 - Pennisetum purpureum (Purple Fountain Grass),
 - Scirpus validus (Softstem Bulrush),
 - Strelitzia reginae (Bird of Paradise)
 - Zantedeschia aethiopica (Calla Lily)
 - *Lythrum salicaria* (Purple Loosestrife)

TYPICAL DESIGN FEATURES

The general concept design for the Phytorid system is presented in **Figure 9**. However, the design can vary based on land availability as also the level of treatment desired. The schematic also depicts modular concept of combining beds into series or parallel configurations, particularly for higher capacity treatment plants.

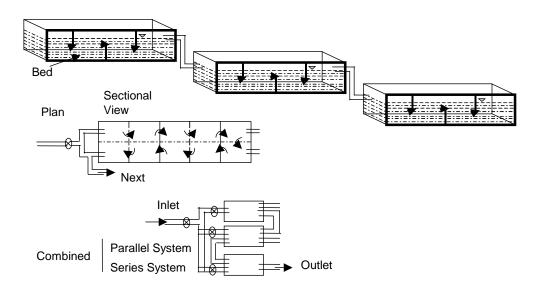


Figure.9: Cross Sectional View of Phytorid System

The sub-surface flow type, Phytorid system is proposed for the treatment of sewage or domestic wastewater which will consists of a basin or a channel with a barrier to prevent seepage, but the systems/ cells/ beds contain a suitable depth of porous media. A primary treatment facility would also be constructed along with basic for effective removal of solids and thus reduces the marginal BOD. The porous media also supports the root structure of emergent vegetation. The design of the Phytorid system assumes that the water level in the cells will remain below the top of the filter media.

The vegetation to be utilized for the said Phytorid system is very important. Various species of aquatic plants have been utilized to attain maximum efficiency in the treatment of domestic wastes. These include species like *Phragmites australis, Phalaris arundinacea, Glyceria maxima, Typha spp., Scirpus spp.*, other common grasses etc.

In a demonstration plant for treatment of nalla water it is proposed to take the sewage to Phytorid system and then treated water is either used for gardening or can be discharge into nalla at the downstream. Alternately it can also be given to nearby users who need water. A novel designing concept of using modular Phytorid systems on both sides of the nalla by drawing a controlled amount of sewage to each bed using an overflow system has been developed. In order to avoid flooding of Phytorid beds an arrangement of automatically openable gates within nalla will be provided. A typical design concept for a Phytorid system for nalla water treatment is depicted in **Figure 10**. The design specific to this project will be modified to include only phytorid bed downstream to the existing collection tank at the site.

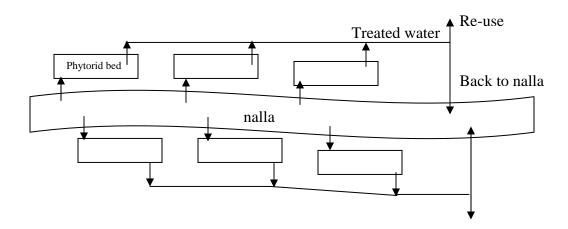


Figure 10: Modular arrangement of Phytorid beds on nalla side

Such arrangement will help in augmenting the plant capacity in future as the need arises and more water demand gets created.

PSRT Based Improved Sanitation Treatment Unit

Introduction

Objective of this technology is to reduce the total suspended solid load and organics of raw sewage. Basic construction of the system consists of a baffled settler chamber as well as three anaerobic baffled chambers.

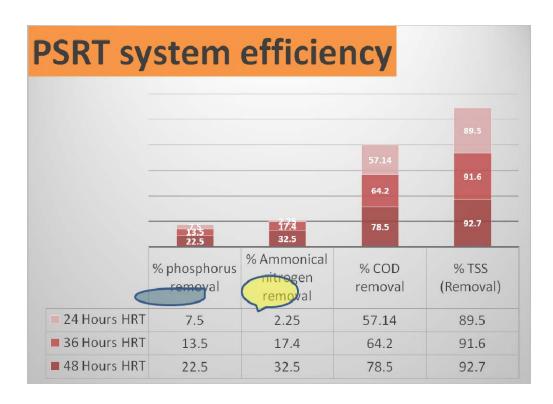
The working principle of the PSRT system is that the waste water enters the tank where large particles will be settled in the first part (as per their terminal velocity and hydrostatic pressure) of the system and further degradation of organics will be completed in the second part of the system.

Removal efficiency of the system is 30-35% higher in comparison to the conventional septic tank in term of organics. Optimum Hydraulic Retention Time of the PSRT system is in the range of 24 hour for achieving removal efficiency of 75-85% TSS removal and 70-75 % BOD removal.

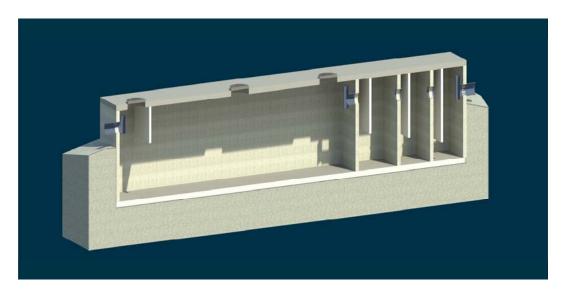
Principle of Technology

PSRT system consists of following units:

- Settler unit
- Anaerobic baffle tank


Anaerobic baffle unit consist of three compartments (A, B and C), outlet of A becomes inlet for B and outlet of B becomes inlet for C. outlet of C is final outlet of PSRT system.

PSRT based system is working on the principle of discrete settling, flocculation hindered settling, that will lead to partial treatment or removal of suspended solid in settler unit. Complete anaerobic treatment of wastewater has been taken place in the anaerobic treatment unit for further removal of organics and suspended solid.


- Settling
 - Discrete, flocculation, Hindered settling & compression settling
- Anaerobic treatment
- Partial treatment in settling zone
- Complete anaerobic treatment

Performance Evaluation

Efficiency of the system is about 90% for total suspended solid, 75% for chemical oxygen demand, around 30% for nitrogen removal and about 20% for phosphorus removal. Efficiency of this system is higher than septic tank or conventional primary removal system.

Cross section view of PSRT based treatment unit

Advantage of the service is as follows

- Low cost treatment
- No energy involved in the treatment
- Can bear shock Load
- Seldom use of bio culture (though it is not mandatory)
- Stops dilution of the problem
- Nearly **90 95%** TSS removal
- Continuous System
- Low cost treatment
- No energy involved in the treatment
- Can bear shock Load
- decentralized treatment
 - Numerous advantages
 - No need to carry stored water frequently
 - Reduces load at STP/ River/ Nalla
 - Reduces silting in drainage system
- Recycle of water
 - Depends on end usage
- Low maintenance
- Water quality of the system falls in compliance with STP standards
- Treated water Can be used
 - In construction site (Labour Camps)
 - In Slum Areas
 - In rural areas
 - In hilly area etc...

Appendix VI

Nitrate Removal from Groundwater

Nitrates are very soluble and do not bind to soils, therefore, they have a high potential to migrate to groundwater sources. When these ground waters are purposed for potable drinking water sources,

the presence of nitrates can pose serious health risks, especially for infants and pregnant women. Likewise, proper treatment of nitrate-containing wastewaters from industrial processes requires treatment prior to discharge to groundwater sources and/or for reuse.

Ion exchange provides effective nitrate removal

Nitrates have no detectable colour, taste or smell at the concentrations involved in drinking water supplies, and can occur both naturally and from man-made sources. Because they do not evaporate, nitrates/nitrites are likely to remain in water until consumed by plants or other organisms. Nitrate contamination originates mainly from agricultural operations including farm runoff and fertilizer usage, septic system failure and improper discharge of industrial and food processing waste and wastewater. Since they are very soluble and do not bind to soils, nitrates have a high potential to migrate to ground water. The primary inorganic nitrates which may contaminate drinking water are potassium nitrate and ammonium nitrate both of which are widely used as fertilizers.

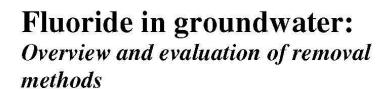
Nitrates can occur in water sources at a level that does not generally cause health problems. The concentration level and length of exposure, however, can cause illness and death. In infants, serious illness is due to the conversion of nitrates by bacteria in the stomach to toxic nitrites. This can interfere with the oxygen-carrying capacity of the child's blood and can cause an acute condition in which health deteriorates rapidly over a period of days. Symptoms include shortness of breath and methemoglobinemia, a condition known as "blue baby" syndrome.

The US Environmental Protection Agency (EPA) has set a Maximum Contaminant Level Goal (MGL) for nitrates at 10 parts per million (ppm). In India Bureau of Indians Standards has set a limit of 45mg/l for nitrates. The EPA- approved treatment methods for removing nitrates/nitrites in waters destined for drinking purposes includes ion exchange and reverse osmosis.

Ion exchange: It is the most frequently used treatment technology for nitrate removal. This technology removes nitrate ions from the aqueous phase by replacing them with the anion present in the ion exchange resin. As contaminated water is passed through the resin, contaminant ions are exchanged for other ions, most often chlorides in the resin. Alternatively, nitrate-selective resins may also be used. The advantages of ion exchange are simple operation; the process is independent of temperature, can be automated, and is essentially unaffected by varying nitrate concentrations.

The system vessels are selected based upon available manpower, space limitations, access limitation and the specific water quality required. Based on the particulars of the contaminant to be removed and inlet quality requirements, generally there is access to a variety of ion exchange resins and other removal medias, such as activated carbon.

Once exhausted, the exchange vessels are removed and replaced with fresh, DOT-compliant vessels and returned to service. For non-potable applications, hazardous/non-hazardous contaminants are removed from the media/resin from the exhausted vessels for reuse.


For waters destined for potable use and drinking water applications, potable ion exchange resin canisters are used for the removal of organic and inorganic contaminants in surface and groundwater sources to meet drinking water standards. Each application is examined to determine the system configuration that best meets current and future needs. Once the treatment media is spent, or reaches the end of its useful life, the potable canisters are removed from the site and delivered to a local regeneration facility for destruction and/or landfill.

Reverse osmosis: Nitrate removal by reverse osmosis uses a semi-permeable membrane to selectively remove various inorganics within the water. Pressure is applied to the water to force it through the membrane. As the water passes through the membrane and effectively leaves the impurities behind. Membranes do not exhibit high selectivity for any given contaminant, and therefore, the RO process results in the removal of many contaminants, including nitrates. Estimates predict that from 85 to 95% of the nitrate can be removed with reverse osmosis. Actual removal rates may vary, depending on the initial quality of the water, the system pressure, and water temperature.

Appendix VI

This Document used as Reference

- L. Feenstra
- L. Vasak
- J. Griffioen

Utrecht September 2007

Table of contents

Sı	umm	nary	. ii
1	Intı	roduction	1
	1.1	Special projects of IGRAC	1
	1.2	Occurrence of fluoride	1
	1.3	Outline of the report	1
2	Ove	erview of removal methods	2
	2.1	Common methods	2
	2.2	New technologies	4
3	Set	up, scale of use and location	7
4	Eva	aluation	8
5	Sele	ection	9
		ences	
A	ppen	ndix 1: Fact sheets fluoride removal technologies	13
F	igur	·es	
	gure gure	1 11	
T	able	es	
	able 1	2003)	-
Та	able 2	2: Differences in characterization of water treatment methods in conventional systems in industrialized and developing countries (Fawell et al., 2006)	7
Ta	able 3	3: General comparison of the most promising defluoridation methods used in developing	Q.

Summary

In this report information is given about methods for the removal of fluoride from groundwater. The methods can be used by domestic well owners and communal water suppliers. Based on available information, a matrix is composed to give an idea about the applicability of the methods for some given situations.

Fluoride removal methods

Methods	domestic + low costs	community + low costs	domestic + high F removal	community + high F removal	domestic + brackish water	community + brackish water
Activated Alumina						
Ion exchange						
Reverse osmosis						
Electrodialysis						
Nalgonda process						
Contact precipitation						
Bone Charcoal						
Calcined Clay						
Water Pyramid/Solar Dew						

The colours in the matrix correspond with the appropriateness of the method for the given situation:

- Green colour means that the method is very suitable
- Orange colour means average suitability
- Red colour means that the method is unattractive or not applicable for the given situation.

The Nalgonda process, Bone charcoal and Calcined clay are low costs methods for domestic use. On a community scale, the Nalgonda process is also a low cost option. If a high fluoride removal is necessary then activated alumina, reverse osmosis and electrodialysis are preferred methods. For brackish water only reverse osmosis, electrodialysis and the Water Pyramid/Solar Dew method can be used.

1 Introduction

Special projects of IGRAC

The International Groundwater Resources Assessment Centre (IGRAC) aims to facilitate and promote world-wide exchange of groundwater knowledge. IGRAC focuses on activities that are prompted by the international groundwater community.

IGRAC's special projects intend to collect, analyse and display information on specific groundwater issues relevant to development of groundwater resources on various scales. Occurrence of hazardous compounds in groundwater is one of these issues. In 2004, IGRAC reviewed available information about groundwater contaminated with fluoride and displayed the probability occurrence of fluoride on continental maps (Brunt et al, 2004).

In this report, an overview is given of fluoride removal methods.

1.2 Occurrence of fluoride

Fluoride is an ion of the chemical element fluorine which belongs to the halogen group. Fluoride has a significant mitigating effect against dental caries if the concentration is approximately 1 mg/l. However, continuing consumption of higher concentrations can cause dental fluorosis and in extreme cases even skeletal fluorosis. The WHO guideline value for fluoride in drinking water is 1,5 mg/l (WMO, 2004). High fluoride concentrations are especially critical in developing countries, largely because of lack of suitable infrastructure for treatment.

In groundwater, the natural concentration of fluoride depends on the geological, chemical and physical characteristics of the aquifer, the porosity and acidity of the soil and rocks, the temperature, the action of other chemical elements, and the depth of the aquifer.

Because of the large number of variables, the fluoride concentrations in groundwater (e.g. in Kenya, South Africa and India) can range from well under 1 mg/l to more than 35 mg/l.

1.3 Outline of the report

In chapter 2 an overview is given of removal methods. The methods are briefly described using fact sheets. Also some new interesting technologies are mentioned. The methods are intercompared in a table according to relevant criteria such as removal efficiency, capacity, costs, required skill and advantages and disadvantages.

Chapter 3 deals with the set-up of a fluoride removal system, the scale of use and the location for application (developing country or industrialized regions).

An evaluation of the methods is given in chapter 4.

Chapter 5 deals with the selection process. To help water users by choosing the most appropriate methods for their situation, process selection decision trees were made for both industrialized regions and developing countries.

The electronic version of this report is available on the IGRAC web-site: www.igrac.nl

2 Overview of removal methods

2.1 Common methods

The common methods used for the removal of fluoride from drinking water are divided in the following four categories:

- precipitation;
- adsorption and ion-exchange;
- membrane filtration processes;
- distillation.

Precipitation

Precipitation processes involve addition of chemicals and formation of fluoride precipitates. Among these are precipitations with calcium and aluminium salts. Precipitation chemicals must be added daily in batches and precipitation techniques produce a certain amount of sludge every day.

Adsorption and ion-exchange

Adsorption processes involve the passage of water through a contact bed where fluoride is removed by ion exchange or surface chemical reaction with the solid bed matrix. After a period of operation, a saturated column must be refilled or regenerated. The different adsorbents used for fluoride removal include activated alumina, carbon, bone charcoal and synthetic ion exchange resins.

Membrane filtration process

Reverse osmosis and electrodialysis are two membrane filtration processes which can be used for removal of fluoride

Distillation

Distillation units can also be used for treating the drinking water. Large scale electrodialysis plants are already used for making drinking water out of brackish water with high fluoride concentrations (Zakia et al., 2001; Werner and von Gottberg, 1998). In many parts of North Africa, water is brackish and contains over 1.5 mg/l fluoride.

In appendix 1, eight fact sheets are presented for the most common fluoride removal technologies. Information is given about the following aspects:

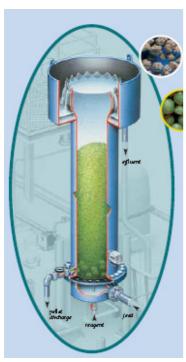
- process and technology used
- equipment required
- removal performance
- scale/flow rate
- experience/state of the art
- advantages and disadvantages
- contact details and additional information.

Reverse osmosis, electro dialysis and distillation are advanced, large scale treatment technologies which are difficult to use in less advanced regions. However reverse osmosis units are nowadays also deliverable for household scale. Small scale point-of-use techniques like Nalgonda technique, Bone Charcoal, Contact Precipitation and Clay are more suitable for developing countries. Activated alumina and reverse osmosis are the most common technologies. Activated alumina can concurrently remove other anions, such as arsenate. Reverse osmosis achieves significant removal of virtually all dissolved contaminants. An overview of the fluoride removal methods is given in table 1.

Table 1: Fluoride removal methods (based on Heidweiller, 1990; Pickard and Bari, 2004 and BGS, 2003)

			(, , , , , , , , , , , , , , , , , , , ,		/				
Techniques	Househole	d Community level	Removal efficiency (%)		Water Loss	Capacity/dose	Working PH	Interferences	Operator skill	Relative costs	Advantages	Disadvantages
Precipitation Alum (aluminumsulphate)	х	х	>90%	yes	1-2%	150 mg/mg F	non-specific	-	low	medium-high	established process	sludge produced treated water is acidic residual Al present
Lime	x	х	>90%	yes	1-2%	30 mg/mg F	non-specific	-	low	medium-high	established process	sludge produced treated water is alkaline
Alum + Lime (Nalgonda)	×	x	70-90%	possible	1-2%	150 mg alum + 7 mg lime/mg F	non-specific optimum pH 6.5	-	low	medium-high	low-tech established process	sludge produced high chemical dose residual Al present
Gypsum + fluorite	х	х	?	no	1-2%	5 mg gypsum + <2 mg fluorite/mg F	non-specific	-	medium	low-medium	simple	requires trained operators low efficiency, high residual CaSO4
Calcium choride	x	х	> 90%	possible	1-2%	3 mg CaCl2/mg F	6.5-8					
Adsorption/ion exchang	ie											
activated carbon	x	x	>90%	yes	1-2%	variable	<3	many	medium	high	-	many interferences large pH changes before and after treatment
plant carbon	x	x	>90%	?	1-2%	300 mg F/kg	;	7 -	medium	low-medium	locally deleverable	requires soaking in potassium hydroxide
zeolites	x	x?	>90%	yes	1-2%	100 mg F/kg	non-specific	-	medium	high	-	poor capacity
defluoron 2	x	x	>90%		1-2%	360 g F/m3	non-specific	alkalinity	medium	medium	-	disposal of chemicals used in resin regeneration
clay pots	x		60-70%	possible	1-2%	80 mg F/kg	non-specific	-	low	low	locally deleverable	low capacity, slow
activated alumina	x	x	85-95%	yes	1-2%	100 mg alumina/mg F (1200 g F/m3)	5.5	alkalinity	low	medium	proven effectiveness will treat current F and As low energy consumption	source water pH adjustment to 6.5 spent regeneration solution contains high F (and As) concentrations
											sludge typically non-hazardous	chemical and sludge handling needed efficiency dependent on source water
bone	х	х	low?	possible	1-2%	900 g F/m3	>7	arsenic	low	low	locally available	may give taste; degenerates not universally accepted
bone char	х	х		possible	1-2%	1000 g F/m3	>7	arsenic	low	low	locally available high capacity	not universally accepted
Other electrodialysis		x	85-95%	yes	20-30%	high	non-specific	turbidity	medium	very high	will treat current F and As and other contaminants possitive public perception	high water loss high energy consumption high (capital) costs
reverse osmosis		x	85-95	yes	40-60%	high	non-specific	turbidity	medium	very high	will treat current F and As and other contaminants possitive public perception	high water loss high energy consumption high (capital) costs

From table 1 it can be seen that majority of low -costtechnology methods rely on precipitation or flocculation or adsorption/ion-exchange processes. The Nalgonda¹ technique is probably the best known and most established method. This method uses a combination of aluminium sulphate and lime. The method can be used at a domestic scale (in buckets) or community scale. It has moderate costs and required materials are easily available. The removal efficiency is however moderate. Activated alumina and bone material are among the most appropriate removal methods (appropriate technology = most effective method). Activated alumina method also removes arsenic, but may not always be available or affordable. Bone products are not readily acceptable in some areas. Other highly efficient methods of removal include electro dialysis and reverse osmosis, but these methods tend to involve higher technology and higher costs and are therefore less suitable for many applications in developing countries.


2.2 New technologies

Besides the methods mentioned in table 1 several new methods have been introduced in recent years. These new technologies include:

- Crystalactor®
- Memstill® technology
- The WaterPyramid® solution
- The Solar Dew Collector system
- Boiling with brushite and calcite
- Use of new absorbents

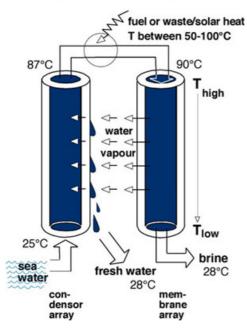
Crystalactor®

In the Netherlands a new type of contact precipitator, named the Crystalactor®, is developed by DHV (Giesen, 1998). The Crystalactor® is a fluidized-bed type crystallizer also called a pellet reactor.

Source: DHV

In the reactor fluoride is removed from the water while calcium fluoride pellets with a diameter of 1 mm are produced. The major advantages of the Crytalactor® are that (1) the installation is compact, (2) calcium fluoride pellets with a high-purity are produced, (3) the produced pelltes have an extremely low water content 95% tot 10% moisture) and (4) the pellets can be reused. Costs comparisons show that the total treatment costs are typically approximately 25% of the costs for conventional precipitation. However the Crystalactor® is more suitable for wastewaters with high fluoride concentrations (> 10 mg/l). For treating drinking water, the Crystalactor® is only advisable in case of high fluoride concentrations (> 10 or 20 mg/l). For reaching a concentration below 1 mg/l fluoride, a second technique must be used afterwards (for example I.E).

4


¹ The Nalgonda technique is named after the Nalgonda District in India where it was first developed.

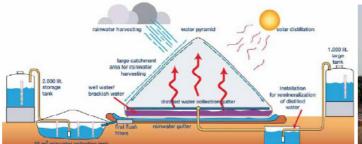
Memstill® technology

The Netherlands Organisation of Applied Scientific Research (TNO) has developed a membrane-based distillation concept which radically improves the economy and ecology of existing desalination technology for seawater and brackish water. This so-called "Memstill® technology" combines multistage flash and multi-effect distillation modes into one membrane module (Hanemaaijer et al., 2007).

Principle of Memstill-process

Cold feed water takes up heat in the condenser channel through condensation of water vapour, after which a small amount of (waste) heat is added, and flows counter currently back via the membrane channel. Driven by the small added heat, water evaporates through the membrane, and is discharged as cold condensate. The cooled brine is disposed, or extra concentrated in a next module.

The Memstill® technology can produce (drinking)water at a cost well below that of existing technologies like reverse osmosis and distillation.

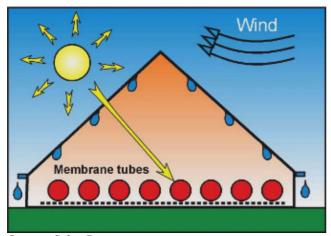

With the Memstill® technology also anions like fluoride and arsenic are removed. It is expected that the Memstill® technology will be also developed for small scale applications using solar heat.

Source: TNO

The WaterPyramid® solution

http://www.aaws.nl/home.htm - #http://www.aaws.nl/home.htm - #Aqua-Aero WaterSystems has developed the WaterPyramid® concept for tropical, rural areas (Aqua-Aero, 2007).
http://www.aaws.nl/home.htm - #http://www.aaws.nl/home.htm - #http://www.aaws.nl/home.htm - #The WaterPyramid® makes use of simple technology to process clean drinking water out of salt, brackish or polluted water. One of the pollutants could be fluoride. Most of the energy needed to clean the water is obtained from the sun.

WaterPyramid® with a total area of 600 m² and situated under favourable tropical conditions, can produce up to 1250 litres of fresh water a day. The production rate is dependant on site specific factors such as climate and temperature, cloudiness and wind activity. Desalination is driven by the sun and the energy needed for pressuring the WaterPyramid® is obtained using solar cells in combination with a battery back-up system. Intermittent peak demands in electricity, related to e.g. (borehole) pumping and maintenance, are covered using a small generator system.


Source: Aqua-Aero WaterSystems

The Solar Dew Collector system

Solar Dew (Solar Dew, 2007) developed a new porous membrane to purify water using solar energy. The technique is similar to the WaterPyramid®.

Water sweats through the membrane, evaporates on the membrane's surface and increases the air humidity in the evaporation chamber.

Based on a temperature difference, pure water condenses on the cooler surfaces of the system.

Source: Solar Dew

The product water quality is very constant and similar to that of distilled water. The quantity depends on the intensity of the solar radiation. To avoid crystallization, the brine has to be drained periodically.

The system is able to process: sea-, brackish or contaminated waste water (e.g. with heavy metals, oil residue, boron, fluoride) with an allowable pH range of 5-11.

Boiling with Brushite and Calcite

Existing methods for defluoridating drinking water involve expensive high technology or are slow, inefficient and/or unhygienic. In Larsen and Pearce (2002), a new method is suggested, using a suspension of the minerals brushite (CaHPO4.2H2O) and calcite (calciumcarbonaat) followed by boiling. On a laboratory scale, this method gave good results. It was concluded that boiling a brushite/calcite suspension rapidly converts the two salts to apatite which incorporates fluoride if present in solution. This process may be exploited to defluoridate drinking water.

New adsorbents for adsorption of fluoride

In recent years, several new adsorbents for adsorption of fluoride have been investigated. For example, lanthanum-impregnated silica-gel, La(II) and Y(III)-impregnated alumina and aluminium-impregnated carbon have been used for adsorption of fluoride successfully by Raichur and Jyoti Basu (2001). The use of waste materials and low-cost materials as adsorbents for fluoride has been examined. Raichur and Jyoti Basu (2001) paid also attention to adsorption of fluoride onto mixed rare earth oxides. The rare earth oxides are naturally occurring in Southern India. The method is simple and has shown great potential for selective removal of fluoride. It was found that the mixture of rare earth elements adsorb fluoride rapidly and effectively. Most of the adsorption took place in the first 5-10 min. The adsorbent was found to load as high as 12.5 mg of fluoride per gram of adsorbent. The optimum pH was found to be about 6.5 for fluoride adsorption which makes it very suitable for use in drinking water treatment. Other ions such as sulphate and nitrate (up to 100 mg/l) did not greatly affect the adsorption of fluoride thereby indicating that the rare earth oxide is a selective adsorbent for fluoride.

3 Setup, scale of use and location

Defluoridation of drinking-water is technically feasible at point-of-use (at the tap), for small communities of users (e.g. wellhead application) and for large drinking-water supplies. Point-of-use systems can produce sufficient quantities of treated water for drinking and cooking requirements of several persons. Numerous plumbed-in, small distillation units are marketed that have been tested and can produce 10 litres per day or much larger volumes. Many certified low pressure reverse osmosis units are available with rated capacities in the range of 30-100 litres per day. Point-of-use defluoridation using activated alumina anion exchange is capable of removing fluoride from small volumes of water, but international performance standards have not been developed to date.

Community-sized, commercially available, package water treatment systems that use activated alumina or reverse osmosis technology also exist. They can be purchased as a complete unit that can be readily shipped and installed on-site.

These can produce hundreds of litres or more of treated, low fluoride water per day. Large defluoridation systems can also be designed and constructed on-site to engineer's specifications.

Conventional water treatment, as carried out in both rural and urban areas in industrialized countries, takes place typically:

- in a water works without direct involvement of the users,
- under the supervision of skilled operators, and
- where the affordability of treatment is taken for granted.

In such cases the method of treatment is well established and well controlled. However, it requires major input of resources and may have serious limitations or disadvantages in less-developed countries, especially in rural areas where the water users are scattered or the supply is entirely local. Here treatment may only be feasible at a decentralized level, e.g. at community village level or at household level (see table 2).

Table 2: Differences in characterization of water treatment methods in conventional systems in industrialized and developing countries (Fawell et al., 2006)

Criteria	Industrialized Countries	Developing countries
Set-up and water	Always continuous, often in columns	Often discontinuous in columns
flow		Fill and draw in batch
Scale and treatment	Always at water works, usually close to	At water works
site	water source	At village community level
		At household level
Treatment	Contact precipitation	Bone charcoal
media/process	Activated alumina	Contact precipitation
	Synthetic resins	Nalgonda
	Reverse osmosis	Activated alumina
	Electrodialysis	Clay
		Other naturally occurring media

4 Evaluation

There is not a universal method which is appropriate under all social, financial, economic, environmental and technical conditions. None of the methods has been implemented successfully at a large scale in many parts of the world. All available defluoridation methods do have disadvantages, such as:

- 1. High Cost-Tech; i.e. either the price and/or the technology is high, demanding imported spare parts, continuous power supply, expensive chemicals, skilled operation or regeneration, etc. Reverse osmosis, ion exchange and activated alumina may thus be categorized as high cost-tech methods.
- 2. Limited efficiency; i.e. the method does not permit sufficient removal of the fluoride, even when appropriate dosage is used. As in the Nalgonda technique, the residual concentration would often be higher than 1 mg/l, unless the raw water concentration itself is relatively low.
- 3. Unobserved breakthrough; i.e. the fluoride concentration in the treated water may rise gradually or suddenly, typically when a medium in a treatment column is exhausted or even when the flow is out of control. As in the case of bone charcoal and other column filters, these techniques necessitate frequent monitoring of fluoride residual, or at least the rate and the volume of treated water, if unobserved breakthrough or the loss of removal capacity is to be avoided.
- 4. Limited capacity; while the removal capacity of bone charcoal or activated alumina may be about 2 mg of fluoride per gram of medium, much higher amounts of calcined clay for example have to be used in order to obtain appropriate removal.
- 5. Deteriorated water quality; this would by nature result in excessively high pH values, normally above 10. The water quality may also deteriorate due to bacterial grow, poorly prepared medium (bone charcoal) or due to medium escaping from the treatment container, e.g. ion exchange, alumina, Nalgonda sludge, etc.
- 6. Taboo limitations; in particular, the bone charcoal method is culturally not acceptable to Hindus. Bone charcoal originating from pigs may be questioned by Muslims. The charring of bones has also been reported to be unacceptable to villagers in North Thailand.

General comparison of the methods is given in table 3.

Table 3: General comparison of the most promising defluoridation methods used in developing countries (Fawell et al., 2006).

Advantages	De	Defluoridation methods					
	BC	CP	Nal	AA	Cl		
No daily dosage of chemicals, i.e. no daily working load	+	-	-	+	+		
Dosage designed for actual F conc. Independent of unit or plant	-	+	+	-	-		
No risk of false treatment due to break point	-	+	+	-	-		
Removal capacity of medium is independent of F concentration		+	-	-	-		
No regeneration or renewal of medium is required		+	+	-	-		
High removal efficiency can be ensured	+	+	-	+	-		
Easy to construct, even by the users	+	+	++	+	+		
Construction materials are cheap and widely available	+	+	++	+	+		
Can be sized for one or several families or a group, e.g. a school		++	+	+	-		
No risk of medium/chemicals unacceptability		-/+	+	+	-		
No risk of deterioration of the original water quality		+	-/+	-/+	-		

BC = bone charcoal; CP = contact precipitation; Nal = Nalgonda technique of aluminium sulfate and lime; AA = activated alumina; Cl = calcined clay; "risk" means in some cases

+ = advantage - = disadvantage

5 Selection

For the selection of an appropriate fluoride removal method in industrial and developing countries two process selection decision trees have been made.

A decision tree for the industrialized countries is shown in figure 1.

Error! Objects cannot be created from editing field codes.

Figure 1: Decision tree for fluoride removal techniques applicable in industrialized countries

Activated Alumina and RO/ED are the favourite techniques for industrial countries when high capacity and proven technology is needed.

For small applications contact precipitation or ion exchange (in case the water contains only high concentrations of fluoride) is recommended.

A decision tree for the developing countries is shown in figure 2.

Error! Objects cannot be created from editing field codes.

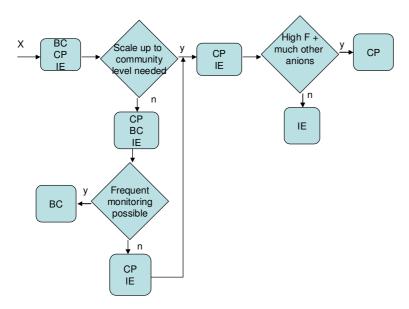


Figure 2: Decision tree for fluoride removal techniques applicable in developing countries.

Activated alumina is the favourable technique for developing countries in case high removal efficiency and high capacity is needed.

For situations where moderate removal efficiency is sufficient, the Nalgonda technique is preferable.

In other situations (high removal efficiency, small scale) contact precipitation or ion exchange (only high F-ions) is advisable. Bone charcoal can also be used if frequent monitoring is possible.

References

Aqua-Aero WaterSystems, 2007.

WaterPyramid. http://www.waterpyramid.nl

British Geological Survey (BGS), 2003.

Water Quality Fact Sheet: Fluoride. WaterAid International site.

http://www.wateraid.org/documents/plugin_documents/fluoride1.pdf.pdf

Brunt, R., Vasak, L. and Griffioen, J., 2004.

Fluoride in groundwater: Probability of occurrence of excessive concentration on global scale. Report SP 2004-2, International Groundwater Resources Assessment Centre (IGRAC).

Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L. and Magara, Y., 2006.

Fluoride in Drinking water, World Health Organisation, IWA Publishing, Alliance House, 12 Caxton Street, London SW1H 0QS, UK.

Giesen, A., 1998.

Fluoride removal at low costs. European Semiconductor 20 (1998), 4. pp 103-105.

Heidweiller, V.M.L., 1992.

Fluoride Removal Methods. In Endemic fluorosis in developing countries: causes, effects and possible solutions (Frencken, J.E., editor). Publication number 91.082, NIPG-TNO, Leiden, The Netherlands, 1992

Larsen, M.J. and Pearce, E.I.F., 2002.

Defluoridation of Drinking Water by Boiling with Brushite and Calcite. Caries Research 2002;36:341-346 (DOI: 10.1159/000065964). Department of Dental Pathology, Endodontology and Operative Dentistry Royal Dental College, Aarhus.

Pickard, B. and Bari, M., 2004.

Feasibility of Water Treatment Technologies for Arsenic and Fluoride removal from groundwater. AWWA Water Quality Technology Conference, San Antonio, Texas; November 2004. https://chppm-

www.apgea.army.mil/dehe/pgm31/newpubs/WQTC2004ArsenicProc(Pickard%20and%20Bari).pdf

Raichur, A.M. and Basu Jyoti M., 2001.

Adsorption of fluoride onto mixed rare earth oxides. Separation and Purification Technology 24(1-2):pp. 121-127.

Solar Dew, 2007.

The Solar Dew Collector Sytem. http://www.solardew.com/index2.html

Hanemaaijer, J.H., van Medevoort, J., Jansen, A., van Sonsbeek, E., Hylkema, H., Biemans, R., Nelemans, B. and Stikker, A., 2007.

Memstill Membrane Distillation: A near future technology for sea water desalination,

Paper presented at the International Desalination Conference, June 2007, Aruba.

Werner, T.E. and von Gottberg, A.J.M., 1998.

Five Billion Gallons later- Operating Experience at City of Suffolk EDR plant. American Desalting Association 1998 North American Biennial Conference and Exhibition, Virginia.

World Health Organisation (WHO), 2004. Guidelines for Drinking-water Quality; Third Edition. WHO, Geneva.

Zakia, A., Bernard, B., Nabil, M., Mohamed T., Stephan, N. and Azzedine, E., 2001. Fluoride removal from brackish water by electrodialysis. Desalination 133 (2001), 215-233, Elsevier Science BV.

Appendix 1: Fact sheets fluoride removal technologies

- 1. Nalgonda process
- 2. Contact precipitation
- 3. Bone Charcoal
- 4. Activated Alumina
- 5. Clay
- 6. Reverse osmosis
- 7. Electrodialysis
- 8. Ion exchange

Technology	Nalgonda		
Process	Aluminum sulphate based Coagulation-flocculation sedimentation		
Technology Description	The Nalgonda process was adapted and developed in India by the National Environmental Engineering Research Institute (NEERI) and developed to be used at both the community or household levels. The process is aluminium sulphate based coagulation-flocculation sedimentation, where the dosage is designed to ensure fluoride removal from the water.		
Equipment	Raw water Raw water Raw water Raw water Raw water Raw water To stand pipes To stand pipes		
	The Nalgonda defluoridation as adopted for community domestic use in the United Republic of Tanzania. The Nalgonda technique for domestic and defluoridation		
Removal performance	The method does not permit sufficient removal of the fluoride, even when appropriate dosage is used. The residual concentration would often be higher than 1 mg/l, unless the raw water concentration itself is relatively low.		
Scale/flow rate	20-60 litre basket (household) 10-100 litre/h (household)		
Experience	Established process in India and Tanzania. The aluminium sulphate and lime process was proposed for defluoridation of water when fluoride in water became a health concern in the USA as the agent behind mottling of teeth. Four decades later the process was adopted by NEERI as the Nalgonda technique and developed for low cost use at all levels in India (household, village community and waterworks levels).		
Costs	Low- costs. See http://www.who.int/water_sanitation_health/publications/fluoride_drinking_water_full.pdf		
Advantages	Widespread knowledge about the possibilities of solving the treatment problems at different levels, even at very low cost. Understanding of the non-stoichiometric co-precipitation mechanisms for removal of fluoride in the flocculation process.		
Disadvantages	 The treatment efficiency is limited to about 70 per cent. Thus the process would be less satisfactory in case of medium to high fluoride contamination in the raw water. A large dose of aluminium sulphate, up to 700–1,200 mg l–1, may be needed. Thus it reaches the threshold where the users start complaining about residual sulphate salinity in the treated water. The large dose also results in a large sludge disposal problem in the case of water works treatment. 		
Contact details/More information	National Environmental Engineering Research Institute (NEERI) http://www.neeri.res.in/ Fluoride in Drinking water WHO-report: http://www.who.int/water_sanitation_health/publications/fluoride_drinking_water_full.pdf		

Technology	Contact precipitation (general)		
Process	Precipitation (general)		
Technology	Contact precipitation is a technique by which fluoride is removed from the water through addition of		
Description	calcium and phosphate compounds and then bringing the water in contact with an already saturated bone		
	charcoal medium.		
Equipment	Manometer Raw water and chemicals Calcium chloride Sodium dihydrogenphosphate stock solution Stock solution Caravel F-saturated bone charooal Defluoridated water Defluoridated water Contact precipitation of fluoride as invented in Ngurdoto		
Removal performance	> 90% removal of F		
Scale/flow rate	Several (household, community)		
Experience	Although it has so far only been implemented at village level in the United Republic of Tanzania and in Kenya, contact precipitation is probably suitable for implementation at any required level. The figures show contact precipitation plant as developed for household use and installed at various schools in the rural areas of the Arusha region, the United Republic of Tanzania.		
Costs	low		
Advantages	The process seems to be promising, because it implies:		
	_relatively low daily working load;		
	_high reliability without the need of surveillance of flow or effluent		
	concentration;		
	_high removal efficiency, even in case of high raw water concentrations;		
	_low operating cost; and _no health risk in the case of misuse or over-dosage of chemicals.		
Disadvantages	_ no health fisk in the ease of fillsuse of over-dosage of chemicals.		
Contact	Fluoride in Drinking water WHO-report:		
details/More	http://www.who.int/water_sanitation_health/publications/fluoride_drinking_water_full.pdf		
information	Household water treatment: http://www.irc.nl/page/8028#fluoride		
miormation	Trousenoid water treatment, http://www.ne.m/page/00/20#Httoride		

Technology	Bone Charcoal			
Process	adsorption			
Technology Description	Bone charcoal is a blackish, porous, granular material. The major components of bone charcoal are calcium phosphate 57–80 per cent, calcium carbonate 6–10 per cent, and activated carbon 7–10 per cent. In contact with water the bone charcoal is able, to a limited extent, to absorb a wide range of pollutants such as colour, taste and odour components. Moreover, bone charcoal has the specific ability to take up fluoride from water.			
Equipment				
	A. Drum B. Double Bucket C. Column Filter			
	Three most common domestic units for sorption defluoridation [WHO]. The figure above illustrates the three most common types of domestic bone charcoal filters. One of the differences concerns the water flow in the filter. Another difference between the various configurations whether the filter allows the filter medium to drain water, if treated water is withdrawn without ensuring an adequate influent, allowing the medium to become dry. "Drying" the medium results in disturbance the sorption process and more contact time would be required to re-establish treatment. Unfortunately this point is overlooked in many household filter designs.			
Removal performance	Fluoride concentration can be reduced to less than or equal to 1 mg/l			
Scale/flow rate	20-60 litre basket (household)			
Experience	Bone charcoal is the oldest known water defluoridation agent. It was used in USA in the 1940s through to the 1960s, when bone charcoal was commercially widely available because of its large scale use in the sugar industry (WHO). The first domestic defluoridators were developed in the early 1960s as column filters similar to the one shown in the figure above. Today bone charcoal defluoridation at waterworks has been replaced by the use of ion-exchange resins and activated alumina. At a domestic level, bone charcoal defluoridation seems to work well in Thailand and Africa, but so far there is no experience of wide scale implementation.			
Costs	low			
Advantages	locally available simple and easy to build			
Disadvantages	may give taste; degenerates not universally accepted			
Contact details/More information	Fluoride in Drinking water WHO-report: http://www.who.int/water_sanitation_health/publications/fluoride_drinking_water_full.pdf			

Technology	Activated alumina		
Process	adsorption		
Technology Description	Activated alumina is aluminium oxide (Al2O3) grains prepared to have a sorptive surface. When the water passes through a packed column of activated alumina, pollutants and other components in the water are adsorbed onto the surface of the grains.		
Equipment	column filter household filter		
	The activated alumina process is carried out in sorption filters as shown in the figure above. In order to avoid the monitoring of the water quality, the unit is supplied with a water meter allowing for direct indication of the cumulative water flow. After treatment of, for example, 2,000 litres equivalent to 250 BV of water containing about 5 mg/l, the unit is opened for renewal of the 8 kg of medium. Alternatively the unit is dismounted for regeneration by the dealer.		
Removal performance	According to WHO the fluoride removal capacity of alumina is between 4 and 15 mg g-1. Experience from the field, however, shows that the removal capacity is often about 1 mg g-1 (Fawell et al., 2006). Thus there seems to be a large difference in the degree of "activation" of alumina products. One of the explanations may be due to variation in pH. The capacity of alumina is highly dependent on pH, the optimum being about pH 5.		
Scale/flow rate	Suitable for both household and community scale		
Experience	Activated alumina was proposed for defluoridation of water and a drum filter was patented for domestic use as early as 1936 (WHO). Since then activated alumina has become the subject of several patents and, due to commercial interests, one of the most advocated defluoridation methods. The activated alumina process was evaluated for fluoride removal from an underground mine water in South Africa in the early 1980s and it was found that potable water could be produced from an underground mine water with a fluoride concentration of approximately 8 mg/l. Two 500 × 103 litres per day defluoridation plants were installed as a result of the investigation (WHO-report).		
Costs	It was previously considered that the activated alumina process, due to high chemical cost and non-availability in markets, was not a consideration for most developing countries. This is no longer the case. Experience, mainly from India, Thailand and China, indicates that activated alumina may under certain conditions be affordable for low income communities.		
Advantages	Proven effectiveness, will treat current F and S		
Disadvantages	Spent regeneration solution contains high F concentrations		
Contact	http://www.thewaterexchange.net/fluoride-water-filters.htm		
details/More	http://www.crystalquest.com/data%20sheet%20fluoride.htm		
information	Fluoride in Drinking water WHO-report:		
	http://www.who.int/water_sanitation_health/publications/fluoride_drinking_water_full.pdf		

Technology	Clay
Process	Adsorption
Technology Description	Clay is an earthy sedimentary material composed mainly of fine particles of hydrous aluminium silicates and other minerals and impurities. Clay is fine-textured, plastic when moist, retains its shape when dried and sinters hard when fired. These properties are utilized in manufacture of pottery, brick and tile. Both clay powder and fired clay are capable of sorption of fluoride as well as other pollutants from water.
Equipment	
	Stratified column of brick chips, pebbles and coconut shells as used in Sri Lanka.
	Domestic clay column filters are normally packed using clay chips found as waste from the manufacture of brick, pottery or tile. The figure beneath illustrates such a column filter. It resembles the filter used in Sri Lanka (WHO-report) The filter is based on up-flow in order to allow for settling of suspended solids within the filter bed. The filter does not have a clean water reservoir and the filtration rate is controlled by slow withdrawal through the tap.
Removal performance	60-70%
Scale/flow rate	Household scale
Experience	According to Fawell et al. (2006) nearly 80 per cent of 600 clay column defluoridators installed in households in Sri Lanka were found in operating condition after being monitored for different periods from two years onwards. The described technology was found to be sustainable, but only if the users were motivated through information and motivation campaigns (Fawell et al., 2006).
Costs	low
Advantages	locally available
Disadvantages	low capacity, slow, low removal efficiency, hygienic aspects because of use of clay
Contact details/More information	Fluoride in Drinking water WHO-report: http://www.who.int/water_sanitation_health/publications/fluoride_drinking_water_full.pdf

Technology	Reverse osmosis	
Process	Membrane technology	
Technology Description	Reverse osmosis is a membrane technology that uses pressure to force water through a semi-permeable membrane, thereby removing dissolved solutes from solution based on particle size, dielectric characteristics, and hydrophilic/hydrophobic tendencies. RO can be used as a stand-alone treatment for most source waters, Beside fluoride molecules also other molecules will be retained. RO is listed as a fluoride removal BAT (Best Available technique).	
Equipment	RO water filter for household A:RO FAUCET B: FEED WATER VALVE C: TANK VALVE D: DRAIN CONNECTOR Reverse Osmosis Water Filter Diagram	
Removal performance	85-95% removal of F-	
Scale/flow rate	Varies, there are RO-filters for household use and RO-units for community level	
Experience	State of the art (small scale and community scale)	
Costs	Very high	
Advantages	RO is EPA-listed BAT for both F and As Familiarity with membrane separation system; Will treat current (F/As) and possible future contaminants of concern; Positive public perception	
Disadvantages	High water loss (20-40%) due to high source water silica concentrations (for RO); High energy consumption; High treatment technology capital costs; Pre- (filtration) and post- (pH/alkalinity adjustment) treatment may be needed; Chemical handling facilities needed; Multiple systems needed to achieve water conservation goals (<5% water loss); Skilled operator required.	
Contact details/More information	www.thewaterexchange.net/fluoride-water-filters.htm www.crystalquest.com	

Technology	Electrodialysis (ED)
Process	Membrane proces
Technology Description	Electrodialysis (ED) is a membrane process similar to RO, except that ED uses an applied d.c. potential (electric current), instead of pressure, to separate ionic contaminants from water. Because water does not physically pass through the membrane in the ED process, particulate matter is not removed. Thus, ED membranes are not technically considered filters. The EDR process product water quality is comparable to RO, and may require post-treatment stabilization. The EDR process is often used in treating brackish water to make it suitable for drinking, and tends to be most economical for source water TDS levels in excess of 4,000 mg/L.
Equipment	
	EDR
Removal performance	85-95% removal of F-
Scale/flow rate	Community scale
Experience	State of the art technique for brackish water
Costs	Very high
Advantages	Familiarity with membrane separation system; Will treat current (F/As) and possible future contaminants of concern; Positive public perception.
Disadvantages	Water loss, high costs, brine discharge, see also disadvantages RO
Contact details/More information	http://www.gewater.com/index.jsp

Technology	Ion exchange	
Process	Ion exchange	
Technology Description	The most common ion-exchange removal methods are activated alumina, activated carbon, bone of granulated bone media, ion exchange resins (defluoron 2) or clay minerals. Ion exchange removal methods using activated alumina, clay and bone charcoal are described separately.	
	The water is filtered down trough a column packed with an ion exchange resin. When the adsorbent becomes saturated with fluoride ions, the filter material has to be back washed with a mild acid or alkali solution tot clear and regenerate it. The effluent form backwashing is rich in accumulated fluoride and must be therefore disposed of carefully tot avoid recontamination nearby groundwater.	
Equipment	column filter	
Removal performance	Medium-high; Depends on quality of water	
Scale/flow rate	Suitable for both community and household use	
Experience	Less experience with strong anion-exchange resins because of low capacity and relative high costs	
Costs	Rel. high	
Advantages		
Disadvantages	High costs, low capacity, sorption of other anions, Fluoride concentration must be less than 10 mg/l.	
Contact	Resins: http://www.dow.com/	
details/More	Filters: http://www.ionindia.com/product_range.html	
information		

International Groundwater Resources Assessment Centre

is an initiative of

United Nations Educational, Scientific and Cultural Organization (UNESCO)

World Meteorological Organization (WMO)

is sponsored by

Partners for Water, Government of The Netherlands

is hosted by

TNO Built Environment and Geosciences - Geological Survey of the Netherlands

For more information contact:

IGRAC

P.O. Box 80015 3508 TA Utrecht The Netherlands

phone: +31 30 256 42 70 fax: +31 30 256 47 55 e-mail: info@igrac.nl internet: http://www.igrac.nl

Annexure I

Water Quality Criteria (CPCB)

Annexure II & IIa

Water Quality Standards for Best Designated Usage (MPCB) and General Standards for Discharge of Environmental Pollutants

Annexure III

Receiving Sea Water Standards for Different Categories, Applicable Parameters and Pertinent Issues

Annexure IV

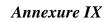
Drinking Water Quality Standards

4		. T
\boldsymbol{A}	nnexure	. v

Water Quality Indices of Rivers of Maharashtra

Annexure VI

Map of Surface and Sea Creek Water Quality Index of Maharashtra State (2007-11)


Annexure VIa

List of Municipal Corporation / Councils Wastewater Discharges into Rivers Stream /Bassin

Annexure	VIII
Annexure	V I I I

Water Quality Indices for Sea Water

Five Years Descriptive Statistics of Ground Water Quality

Annexure X

District wise Water Quality Indices of Maharashtra State (2007-2011)

Annexure XI

Map of Ground Water Quality Index of Maharashtra State (2007-2011)

Appendix I

Measuring, Monitoring and Controlling of Wastewater Treatment Plants using Sensor Network System

Appendix II

Floating Wetland Ecosystem (FWE)

Appendix III

Application of Natural Methods for Sewage Treatment and Polishing of Treated Wastewater

 $Appendix\ V$

Nitrate Removal from Groundwater

Appendix VI

Fluoride in Ground: Overview and Evaluation of Removal Methods -IGRAC

