# CHAPTER 4: PROCESS STUDY, GEOGRAPHICAL DISTRIBUTION & E-WASTE TRADE VALUE CHAIN

# 4.1 Introduction

The major objective of survey findings is to identify and establish dismantling process and their geographical distribution in MMR, Pune and Pimpri Chinchwad region. This will assist in establishment of E-Waste trade value chain and E-waste movement along this chain in geographical context in both regions. The following sections describe each of these steps in both regions.

# 4.2 E-Waste Process Study

There are various processes involved for recycling / reusing of electronic waste. The major process for different types of electronic items in MMR, Pune and Pimpri Chinchwad region are mentioned in **Table 4.1**.

| S. No. | Process name                                        |     | ss Status    |
|--------|-----------------------------------------------------|-----|--------------|
|        |                                                     | MMR | Pune         |
|        |                                                     |     | Chinchwad    |
| 1      | IC's Extraction from PWB                            | Yes | No           |
| 2      | Surface Heating of PWB and Extraction of components | Yes | No           |
| 3      | Dissembling of Monitor and extraction of components | Yes | No           |
| 4      | Yoke core and Copper                                | Yes | No           |
| 5      | Metallic Core of Transformer and Copper             | Yes | No           |
| 6      | Rare Earth Core of Transformer and Copper           | Yes | No           |
| 7      | Rare Earth Core of Static Transformer               | Yes | No           |
| 8      | Wire PVC and Copper                                 | Yes | Yes          |
| 9      | Plastic Shredder                                    | Yes | Yes          |
|        |                                                     | Yes | Yes (limited |
| 10     | Dismantling of Refrigerator and Compressor          |     | extent)      |
| 11     | Gold Extractions from Pins and Comb                 | No  | No           |
| 12     | Acid Bath for PWB                                   | No  | No           |
| 13     | Regunning CRT's                                     | No  | No           |
| 14     | Glass Recovery from CRT                             | Yes | No           |
| 15     | Gold Recovery                                       | Yes | No           |

Table 4.1: Processes involved for E-waste recycling in MMR, Pune & Pimpri Chinchwad

The process details of twelve processes are given in **Table 4.2.** The analysis of this table shows that there is very small amount of dismantling activity occurring in Pune, Pimpri Chinchwad region. The entire amount of e-waste/ WEEE from this region is transported to MMR for dismantling and further supply to Delhi market. Therefore, MMR acts as a hub for supply of e-waste/ WEEE to Delhi and other parts of India. Photo documentation captured in different parts of MMR is given in **Table 4.3**.

| Table 4.2: E-waste | <b>Recycling/reusing</b> | Process | Details |
|--------------------|--------------------------|---------|---------|
|--------------------|--------------------------|---------|---------|

| S. No. | Processing                                                                                                            | Process Details                                                                                                                                                         | MMR            |                                       | Pune, Pimpri Chinchwad |                 |
|--------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|------------------------|-----------------|
|        | Components                                                                                                            |                                                                                                                                                                         | Proce<br>ssing | Remarks                               | Proce<br>ssing         | Remarks         |
|        |                                                                                                                       | Personal C                                                                                                                                                              | Compute        | r                                     | comg                   |                 |
| 1      | Cathode ray tube                                                                                                      | Dissembling of Monitor and extraction of components                                                                                                                     | Yes            | In local market                       | No                     | In local market |
| 2      | (CRT), Computer                                                                                                       | Regunning of CRTs                                                                                                                                                       | No             | Sent to Delhi market                  | No                     | Sent to MMR     |
| 3      | casing, Printed circuit                                                                                               | IC's Extraction from PWB                                                                                                                                                | Yes            | Reselling and reuse in local market   | No                     | Sent to MMR     |
| 4      | boards (PCBs), Printed                                                                                                | Acid Bath for PWB                                                                                                                                                       | No             | Sent to Delhi market                  | No                     | Sent to MMR     |
| 5      | wire boards (PWBs),                                                                                                   | Surface Heating of PWB and Extraction of components                                                                                                                     | Yes            | Reselling and reuse in local market   | No                     | Sent to MMR     |
| 6      | Integrated circuits (ICs),                                                                                            | Wire PVC and Copper                                                                                                                                                     | Yes            | Reselling and reuse in local market   | Yes                    | In local market |
| 7      | Yoke copper and                                                                                                       | Plastic Shredding                                                                                                                                                       | Yes            | In local market                       | Yes                    | In local market |
| 8      | Copper, Computer                                                                                                      | Gold Extractions from pins and Comb                                                                                                                                     | No             | Sent to Delhi market                  | No                     | Sent to MMR     |
| 9      | casing, Rare earth core                                                                                               | Yoke core and copper extraction from wire                                                                                                                               | Yes            | Reselling and reuse in local market   | No                     | Sent to MMR     |
| 10     | and Gold from pin and                                                                                                 | Metallic Core of Transformer and Copper                                                                                                                                 | Yes            | Reselling and reuse in local market   | No                     | Sent to MMR     |
| 11     | comp                                                                                                                  | Rare Earth Core of Transformer and Copper                                                                                                                               | Yes            | Reselling and reuse in local market   | No                     | Sent to MMR     |
| 12     |                                                                                                                       | Rare Earth Core of Static Transformer                                                                                                                                   | Yes            | Reselling and reuse in local market   | No                     | Sent to MMR     |
|        | •                                                                                                                     | Televi                                                                                                                                                                  | sion           |                                       | •                      |                 |
| 13     | TV cabinet, CRT, Yoke                                                                                                 | Dismantling of TV cabinet and CRT                                                                                                                                       | Yes            | In local market                       | No                     | Sent to MMR     |
| 14     | core and PCB                                                                                                          | Regunning of CRTs                                                                                                                                                       | No             | Sent to Delhi market                  | No                     | Sent to MMR     |
| 15     |                                                                                                                       | Yoke core and copper extraction from wire                                                                                                                               | Yes            | In local market                       | No                     | Sent to MMR     |
| 16     |                                                                                                                       | Plastic shredding                                                                                                                                                       | Yes            | Reselling and reuse in local market   | Yes                    | In local market |
|        | •                                                                                                                     | Cellular                                                                                                                                                                | Phone          | · · · · · · · · · · · · · · · · · · · |                        |                 |
| 17     | Aerials, Battery connectors, PCBs,                                                                                    | Separate metals recovery (including precious and semiprecious metals)                                                                                                   | Yes            | Repairing and reuse in local market   | No                     | Sent to MMR     |
| 18     | Gold-coated edge                                                                                                      | Batteries repairing and reselling                                                                                                                                       | Yes            | Repairing and reuse in local market   | No                     | Sent to MMR     |
| 19     | contacts on PCBs, ICs,                                                                                                | Outer body plastic granulation and reuse                                                                                                                                | Yes            | In local market                       | Yes                    | In local market |
| 20     | Keyboards, LCD<br>screens, Lenses,<br>Microphones, Phone<br>housings, Screws, SIM<br>card assemblies and<br>Speakers. | Reuse of valuable components (flash memory devices,<br>PCBs, ICs, keyboards, LCD screens, lenses,<br>microphones, phone housings, and speakers) with<br>minor repairing | Yes            | Repairing and reuse in local market   | No                     | Sent to MMR     |
|        |                                                                                                                       | Refrige                                                                                                                                                                 | rator          |                                       | 1                      |                 |
| 21     | Casing, Cotton<br>insulator, Evaporator,                                                                              | Dismantling of refrigerator and segregation of<br>compressor and cooling box                                                                                            | Yes            | Reselling in local market             | Yes                    | In local market |
| 22     | Heating rod,                                                                                                          | Extraction of steel and copper from heating rod                                                                                                                         | Yes            | Reselling in local market             | No                     | Sent to MMR     |
| 23     | Condenser,<br>Compressor, Fan and<br>Motor                                                                            | Extraction and shredding of ABS plastic from fan                                                                                                                        | Yes            | Reselling and reuse in local market   | No                     | Sent to MMR     |

| S. No. | Process name                                        | Process | Photo-documentation |
|--------|-----------------------------------------------------|---------|---------------------|
|        |                                                     | status  |                     |
| 1      | IC's Extraction from PWB                            | Yes     |                     |
| 2      | Surface Heating of PWB and Extraction of components | Yes     |                     |
| 3      | Dissembling of Monitor and extraction of components | Yes     |                     |

#### Table 4.3: Processes involved for E-waste recycling in Mumbai markets

| S. No. | Process name                              | Process<br>status | Photo-documentation |
|--------|-------------------------------------------|-------------------|---------------------|
| 4      | Yoke core and Copper                      | Yes               |                     |
| 5      | Metallic Core of Transformer and Copper   | Yes               |                     |
| 6      | Rare Earth Core of Transformer and Copper | Yes               |                     |

| S. No. | Process name                          | Process<br>status | Photo-documentation |
|--------|---------------------------------------|-------------------|---------------------|
| 7      | Rare Earth Core of Static Transformer | Yes               |                     |
| 8      | Wire PVC and Copper                   | Yes               |                     |
| 9      | Plastic Shredder                      | Yes               |                     |

| S. No. | Process name                        | Process<br>status | Photo-documentation |
|--------|-------------------------------------|-------------------|---------------------|
| 10     | Dismantling of Monitor              | Yes               |                     |
| 11     | Glass Recovery from CRT             | Yes               |                     |
| 12     | Gold Extractions from Pins and Comb | No                |                     |
| 13     | Acid Bath for PWB                   | No                |                     |
| 14     | Regunning CRT's                     | No                |                     |

# 4.3 Geographical Distribution of E-Waste Business

The second step of this assessment is to identify geographical locations of formal and informal sector of E-waste generation in MMR, Pune and Pimpri Chinchwad region, where the twelve processes identified in section 4.2 are occurring. Formal/ Organized sectors covers IT parks, BPOs, Govt. offices, manufacturer, old system shops, AMC, repair shops, etc. and informal/ unorganized sector comprises of material extractors, recyclers, scrap dealers and resale markets of refurbished materials.

#### Formal/ Organized Sector

The study area has been segregated into 3 broad sub-heads, namely: Commercial Areas, Industrial Areas and IT Parks. In addition to this, a list of mobile phone dealers, computer retailers, software dealers, computer repair and service centres, list of home appliances and consumer electronics goods dealers have been submitted as part of inception report. *Commercial Areas in MMR:* 

- 1. Prabhadevi
- 2. South-Mumbai
- 3. CBD Belapur
- 4. Nariman Point
- 5. Andheri

Andheri is one of the most important commercial hubs in Mumbai. The important commercial centres in Andheri are:

- Andheri (West)
  - Laxmi Industrial Estate
  - Shah Industrial Estate (Veera Desai Road)
- Andheri (East)
  - CEPŻ
  - MIDC (Maharashtra Industrial Development Corp.) Andheri
  - Saki Naka
  - SEEPZ (Santa Cruz Electronic Export Processing Zone)
- 6. Ghatkopar
- 7. Bandra
- 8. Chembur
- 9. Prabhadevi
- 10. Kalbadevi
- 11. Kandivali
- 12. Borivali
- 13. Ville Parle
- 14. Bhandap
- 15. Goregaon
- 16. Santa Cruz

#### Commercial Areas in Pune, Pimpri Chinchwad Region

The sales of computers and other electronic items are mainly scattered all around Pune. However, some of the important commercial areas of Pune are given below:

- 1. Budhwar Pheeth (Electrical Market)
- 2. Naryan Pheeth
- 3. Shaniwar Pheeth
- 4. Ravivaar Pheeth
- 5. Shivaji Nagar

- 6. M.G. Road
- 7. Deccan Gymkhana
- 8. Nigdi

#### IT Parks in MMR:

#### Public IT Parks

| S.No. | Name of IT Park                         | Location                     |
|-------|-----------------------------------------|------------------------------|
| 1.    | Santacruz Electronics Export Processing | MIDC, Andheri (East), Mumbai |
|       | Zone (SEEPZ)                            |                              |
| 2.    | International Infotech Hardware Park    | CIDCO, Navi Mumbai           |
| 3.    | Millennium Business Park                | MIDC, Mahape, Thane          |
| 4.    | Airoli Knowledge Park                   | Airoli Navi Mumbai           |
| 5.    | International Technology Centre         | CBD Belapur, Navi Mumbai     |
| 6.    | International Infotech Park             | Vashi, Navi Mumbai           |

Navi Mumbai is strategically located on the Mumbai Pune 'Knowledge Corridor'. CIDCO has already set up an High Tech. IT Park at Vashi. CIDCO has also planned 2nd IT Park at CBD Belapur. About 100,000 computer professionals are expected to be stationed in Navi Mumbai. CIDCO is also planning to lay optic fibre cable in entire Navi Mumbai.

#### Private IT Parks:

| S.No. | Name of IT Park                        | Location                              |
|-------|----------------------------------------|---------------------------------------|
| 1.    | Technopolis Knowledge Park,            | Nelco Complex, Mahakali Caves Road,   |
|       | Mumbai                                 | Chakala, Andheri (East), Mumbai       |
| 2.    | Ivory Towers, Mumbai                   | Pocket No.10, Road No.7, Marol, MIDC, |
|       |                                        | Andheri (East), Mumbai                |
| 3.    | Spectra IT park (in Zenta Building     | Building No. 5, Hirannandani Business |
|       | Mumbai)                                | park, Powai, Mumbai                   |
| 4.    | Prudential IT Park (in Titus Building, | Building No.4, Hiranandani Business   |
|       | Mumbai)                                | Park, Powai, Mumbai                   |
| 5.    | Enterprise Centre, Mumbai              | Brahmanwada Village, Andheri, Mumbai  |

#### Major IT Parks in Pune, Pimpri Chinchwad region:

| S.No. | Name of IT Park          | Location     |
|-------|--------------------------|--------------|
| 1.    | Pune Infotech Park       | Hingewadi    |
| 2.    | Software Technology Park | Bhosari      |
| 3.    | Magarpatta Cybercity     |              |
| 4.    | Marisoft IT Park         | Kalyaninagar |

#### Informal/ Unorganized Sector

The details of the area with e-waste recycling/reusing practices in informal/ unorganized sector in MMR are given in the Table 4.4.

#### Table 4.4: Recycling and reused of different parts of electronic items in Mumbai

| Major Location | Business area | Type of E-business                                                                |  |
|----------------|---------------|-----------------------------------------------------------------------------------|--|
| Andheri        | Sakinaka      | CRT dismantling, extraction of copper wire and<br>purchasing/reselling of PCB/PWB |  |
|                | Safed pull    | CRT dismantling and extraction of copper wire                                     |  |
|                | Wire lane     | Extraction of copper from wire and open burning of plastic for copper extraction  |  |

| <b>Major Location</b>     | Business area                  | Type of E-business                                                                                                                                                                                                                                                                                           |  |
|---------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                           | Teen no. khadi                 | CRT dismantling, yoke core dismantling, plastic                                                                                                                                                                                                                                                              |  |
|                           |                                | grinding and PCB/PWB surface heating                                                                                                                                                                                                                                                                         |  |
|                           | Dharavi (slum                  | Refrigerator compressor and washing machines                                                                                                                                                                                                                                                                 |  |
| Mahim                     | area)                          | dismantling                                                                                                                                                                                                                                                                                                  |  |
|                           | Shastri Nagar                  | Mobile phone parts repairing and reselling                                                                                                                                                                                                                                                                   |  |
| Grant Road                | Sonapur                        | Computers and spare parts, Mobile phones                                                                                                                                                                                                                                                                     |  |
| Kamathipura               | Don Taki                       | Computer components repairing and reselling and steel from washing machines and refrigerator reselling                                                                                                                                                                                                       |  |
| Kurla                     | Kutubmandal                    | CRT dismantling, surface heating of PCB/PWB,<br>yoke dismantling for copper extraction, dismantling<br>of metallic transformer for yoke core and copper<br>extraction, ST dismantling for copper extraction,<br>reselling of silver solder from circuit boards and<br>plastic casing shredding and reselling |  |
|                           | Masrani lane                   | Reuse of colour picture tube, CRT dismantling,<br>surface heating of PCB/PWB and purchasing &<br>reselling of computer components                                                                                                                                                                            |  |
|                           | Wire lane<br>(Kalpana theater) | Open burning of wire for copper extraction and manual copper extraction from wire                                                                                                                                                                                                                            |  |
|                           | Lamington Road                 | Computer and spare parts, Mobile phones                                                                                                                                                                                                                                                                      |  |
|                           | Proctor Road                   | Computer and spare parts, Mobile phones                                                                                                                                                                                                                                                                      |  |
| Lamington                 | Tara Temple<br>Lane            | Computer and spare parts, Mobile phones                                                                                                                                                                                                                                                                      |  |
| Noau                      | S.V. Road                      | Computer and spare parts, Mobile phones                                                                                                                                                                                                                                                                      |  |
|                           | Chor Bazaar                    | Components of Computer, mobile phone, washing machine and refrigerator                                                                                                                                                                                                                                       |  |
| Mankhurd (Navi<br>Mumbai) | Mankhurd                       | Mother boards and floppy drives                                                                                                                                                                                                                                                                              |  |

Major hubs in unorganized sector in Pune, Pimpri Chinchwad region, where e-waste is collected and transported to MMR are given in Table 4.5.

| Chinchwad Region | Table 4.5: M | lajor hubs | of E-waste | (collection | & | transportation) | in | Pune, | Pimpri |
|------------------|--------------|------------|------------|-------------|---|-----------------|----|-------|--------|
|                  | Chinchwad R  | legion     |            |             |   |                 |    |       |        |

| Major<br>Location         | Business area | Type of E-business                                                            |  |  |  |  |
|---------------------------|---------------|-------------------------------------------------------------------------------|--|--|--|--|
| Pune, Pimpri<br>Chinchwad | Chikhali      | Collection and transportation of TV, PC, Refrigerator, PCB/PWB and wires      |  |  |  |  |
| Region                    | Kuddalwadi    | Collection and transportation of TV, PC and Refrigerator.                     |  |  |  |  |
|                           | Pawarwasti    | Collection and transportation of PWB/ PCB                                     |  |  |  |  |
|                           | Jadhavwadi    | Collection and transportation of PC and refrigerator                          |  |  |  |  |
|                           | Moshi         | Physical extraction of copper wire from cables, collection and transportation |  |  |  |  |

The geographical distribution of organized/ formal and unorganized/ informal sectors in Mumbai, Navi Mumbai, Pune & Pimpri Chinchwad Region is shown in **Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4**. The identification of formal and informal sector in E-waste trade and their geographical distribution has assisted in developing E-waste trade value chain described below.





Organized sector locations: Malad, Andheri and Powai.

**Unorganized** sector locations: Sakinaka, Safed pull, Wire lane and teen number khadi in **Andheri;** Kutubmandal, Masrani lane and Wire lane in **Kurla;** Dharavi slum area in **Mahim; Sonapur;** Don taki in **Kamathipura**; Lamington road, Proctor road, Tara temple road, S.V. road and Chor bazaar in **Lamington road**.



#### Figure 4.2: Geographical Distribution of Organized & Unorganized Sectors in Navi Mumbai

**Organized** sector locations: Airoli knowledge park, **Airoli**; Millenium business park, **Mhape**; International infotech park, **Vashi**; International technology centre, **CBD Belapur** and International IT hardware park, **Dronagiri**.

Unorganized sector location: Mankhurd.



Figure 4.3: Geographical Distribution of Hotspots in Pune Pimpri Chinchwad region

# 4.4 E- Waste Trade Value Chain in MMR

E-waste trade value chain in MMR has been established by studying the conventional trade value chain and then customizing it to MMR, Pune and Pimpri Chinchwad region as per geographical distribution of identified process.

### Conventional E-waste Value chain

Typical Value chain for e-waste as established for current study is shown in **Figure 4.5** and the conceptual version of this chain is also shown in **Figure 4.6**.



Figure 4.5: E-waste value chain



Figure 4.6: Conceptual diagram of E-waste cycle

In Figure 4.6, each number denotes a step in e-waste generation chain as:

- 1. EEE generation: import & manufacturing of EEE
- 2. EEE sales
- 3. EEE consumption (stock)
- 4. WEEE generation
- 5. Re-use / down cycle
- 6. Re-cycle
- 7. Secondary raw material / disposal

As per the scope of work, the present study has focussed on all the 12 core processes with sampling rate more than 10% of estimated total. The twelve core processes studied for MMR, Pune and Pimpri Chinchwad region are given below.

- 1. IC's Extraction from PWB
- 2. Surface Heating of PWB and Extraction of components
- 3. Dissembling of Monitor and extraction of components
- 4. Yoke core
- 5. Metallic Transformer
- 6. Rare Earth Core of Transformer
- 7. Rare Earth Static Transformer
- 8. Wire PVC and Copper
- 9. Plastic Shredder
- 10. Refrigerator breaking
- 11. Recovery of items containing Gold
- 12. Recovery of glass from CRT

In these areas, no evidence of CRT re-gunning and gold and metal extraction using acid bath process has been observed. Therefore, the step of "Refining and Conditioning" in conventional E-waste trade value chain is partly occurring in this region. The conventional E-waste trade value chain has been modified and shown in **Figure 4.7**. It is a five-step value chain covering the following aspects.

# 4.4.1 Generation and Stockpiling

Many different "economic actors" purchase, use, and then stockpile or discard electronic waste. These range from manufacturers such as MNCs to large and small businesses, households, institutions, and non-profit organizations.

# 4.4.2 Collection

There are a wide variety of possible collection alternatives for this e-waste. A variety of entities are providing these services including the electronics industry, private or non-profit recycling services, and the public sector through the solid waste management and recycling infrastructure.

# 4.4.3 Handling & Brokering

The next link in the cycle is the handling and brokering services. Here computers, TVs, monitors and other collected electronics are consolidated and made ready for processing and/or sorted to determine what equipment can be refurbished or reused as whole units and what equipment must be disassembled for commodity processing.

# 4.4.4 Processing

After electronic equipment is dismantled, it is then processed into either feedstock for new production or refurbished into new equipment. Outputs from de-manufacturing activities include scrap commodities such as glass, plastics, and metals – the primary elements from which all electronic hardware is made. For export, and to a lesser extent national processing markets, there are significant issues associated with the environmental and health practices of current service providers in this part of the cycle.

# 4.4.5 Production

The final step in this cycle is to turn the processed commodities or refurbished whole electronics back into new products for sale and consumption by end users. There are many different players and industries involved in this production process. The recycling fraction is miniscule compared with the production of product using virgin materials.

It may be noted that the trade value chain follows three levels of hierarchy of dismantlers. These levels are given below.

- Level 1 Preliminary E-waste generators
- Level 2 Secondary E-waste generator
- Level 3 Tertiary E-waste generator

The input to the first level comes from the formal organized markets like manufacturers, importers, offices, and organized markets, where E-waste from domestic consumers comes either in exchange schemes or as discarded items. Therefore, the major stakeholders are scrap dealers/ dismantlers who purchase E-waste from the first level in bulk quantities. They have limited capacity of dismantling and are involved in trading of Ewaste with next level of dismantlers / scrap dealers. The market between the first and second level is semi-organized (i.e. part formal) while the market between the second and third levels is completely informal. The major stakeholders between the first and second levels are scrap dealers/ dismantlers who purchase E-waste from first level scrap dealers/ traders and are involved in real dismantling of E-waste. The major stakeholders between the second and third levels are electronic item extractors, glass and plastic extractors who sell the product to metal extractors and end users. Preliminary results show that there are no metal extractors in MMR, Pune and Pimpri Chinchwad region. In Pune, Pimpri Chinchwad region, Level 1 and partly Level 2 E-waste generators exist. Very limited dismantling is observed, while the major quantities of e-waste is collected and transported to MMR.



Figure 4.7: Flow chart of E-waste trade cycle

# 4.5 Geographical Mapping of E-waste Trade Value Chain

Using techniques like transect walk, tracer walk and hazardous process walk in MMR, Pune and Pimpri Chinchwad region, the geographical mapping of E-waste trade value chain has been carried out in both regions and shown in **Figure 4.8 and Figure 4.9**.

It has been found that Lamington Road, Chor Bazaar and Bhindi Bazaar in Mumbai, has a strong metal, and electronics scrap market. In these areas, defunct electrical and electronic equipment such as household appliances, pumps, motors, metal components such as ball bearings, bolts, nuts etc. are sold at bargain prices. Together with this the market also sells, components from PCs like mother boards, floppy drives, components from the mother boards (some de-soldered in scrap yards and sent here) printers, monitors etc. These components are bought in bulk from scavengers. The scavengers collect them from the municipal bins or from offices (typically public sector) when the machines are junked. These machines are then taken to crushing areas in the slums of Dharavi and Mahim in Western Mumbai, Mankhurd in Navi Mumbai and Masjid Bunder in Southern Mumbai. The motherboards and floppy drives are removed from the machines and sold by weight / as individual pieces to scrap dealers in Bhindi Bazaar. Sometimes they are junked even by scavengers but picked up by scrap dealers and sold at Bhindi Bazaar. None of these scrap dealers have the ability to identify the condition of these components. They are then typically sold at Rs. 75-200/- per motherboard but the price can be bargained much lower. Floppy drives are sold at Rs. 50-100/- per piece. During the field visit to Lamington Road and Chor Bazaar it was observed that one of the street shops was selling an CPU for Rs. 500/- which could be bargained to a lower price. In addition to these temporary footpath markets, there are a few regular shops, which deal with computers, and peripherals. One such shopkeeper was interviewed. The gist of the interview is given in Box 1.

Box 1: Computers (typically low end e.g., 286, 386) are bought from companies when the used machines are tendered / bid out for disposal. The computers are checked by a hardware expert associated with the shop and then sold typically at Rs.1700-2500/- per machine. Such shops also buy motherboards by weight and sell them sometimes as individual pieces (Rs. 75-200/- per piece) or by weight to customers who assemble machines. Monitors are sometimes dismantled and the picture tubes sold. No de-soldering activity takes place here. The shop owner indicated that the older machines had aluminum and other metal parts, which could be recycled in the scrap market. People who repair electronic equipments buy these motherboards and components. Some of the components are in very good condition and with some minor maintenance they are in working condition made possible at very low costs. Based on the field survey, it is found that the gold recovery, which is possible from the contacts on the motherboards, is not practiced in the market in Mumbai.

**Figure 4.8** shows movement of E-waste towards two major hubs of Andheri and Kurla and sub-major hubs of Dharavi and Malad in MMR. **Figure 4.9** shows that Chikhali in Pimpri Chinchwad area acts as a major hub for collection, transportation and trading of e-waste in Pune and Pimpri Chinchwad region. Kuddalwadi, Pawarwasti, Jadhavwadi and Moshi acts as sub hub for e-waste. E-waste from these sub-hubs is collected at Chikhali and transported to MMR for dismantling.



# CHAPTER 5: RECYCLING/RECOVERY SYSTEMS, TRACER ANALYSIS, E-WASTE INVENTORY AND PROJECTIONS

# 5.1 Introduction

E-waste trade value chain along with processes as described in chapter 4 forms the basis of recycling systems in the study area. The routes described in Figures 4.8 & 4.9 form the basis of tracer analysis. The following sections describe the recycling system along with processes and fundamental basis of tracer analysis. Further, E-waste inventory has been assessed with an approach consisting of material flow methodology, which is based on the market size of items of electrical and electronic equipment (EEE) and confirmation by tracer analysis. An inventory for MMR, Pune and Pimpri Chinchwad region has been prepared separately and cumulatively to give an idea of quantum of e-waste generation and future projections.

# 5.2 Recycling/Recovery System

Most of the activity in MMR, Pune and Pimpri Chinchwad region involves physical dismantling by hammer, chisel, screw driver and bare hand. The most high- tech piece of dismantling equipment witnessed was an electric drill. The immediate objective of most of the operations involves dismantling and rapid separation of primary materials. The following materials were observed being separated for further recycling:

- Material containing copper: Including printer and other motors, wires and cables, CRT yokes, circuit boards, etc
- **Steel:** Including internal computer frames, power supply housings, printer parts, washing machines, refrigerator, etc.
- **Plastic:** Including housings of computers, printers, faxes, phones, monitors, keyboards, etc.
- Copper: Extracted from transformer and CRT after their dismantling
- **Circuit Boards:** These come from many applications including computers, phones, disc drives, printers, monitors, etc.

Each of these processes has been described below.

#### 5.2.1 Printed Circuit Boards (PCBs)

The printed circuit boards contain heavy metals such as antimony, gold, silver, chromium, zinc, lead, tin and Copper. According to some estimates, there is hardly any other product for which the sum of the environmental impacts for raw material, industrial refining and production, use and disposal is as extensive as for printed circuit boards. The methods of salvaging material from circuit boards are highly destructive and harmful as they involve heating and open burning for the extraction of metals. Even after such harmful methods are used, only a few of the materials are recovered. The recycling of circuit boards, drawn from monitors, CPU, disc and floppy drives, printers, etc. involves a number of steps.

#### Extraction of IC/ other components from PCB

IC/other components from PCBs are manually extracted as shown in **Figure 5.1**. This process is common for PC, TV and cell-phone. The E-waste stream from cell-phone joins the E-waste stream of PC and TV.



# **Recovery of Gold**

Gold pins are recovered from PCB manually as shown in **Figure 5.2**. First, there is manual removal of gold-plated pins. The core of each motherboard has a flat laminated gold plate. These laminated parts cut down and sold to gold-smiths for gold recovery.



#### Preheating of PCB and extraction of components

The preheating process is applied to remove resalable components like ICs, condensers, bearings (pulleys) from floppy drive and hard drive. Pre-heating means simply putting the motherboard on a burning stove as shown in **Figure 5.3.** Low heat is maintained

to loosen only the chemical bond between solder and plastic.

Then resalable chips, condensers, etc, are plucked out from these pre-heated plates. Then the pre-heated circuit boards are taken by other dealers for recovery of solder (which consists of lead and mercury). The method of



Figure 5.3

solder recovery is very rudimentary. The lead extracted due to heat application goes into a water tub – it floats due to low density.

# 5.2.2 Monitors

Monitors are much sought after by scrap dealers as they contain good quantity of copper yoke, besides circuit board and picture tube. The different recovery processes observed in MMR are given below.

#### Dissembling of CRT and Extraction of Components

The first step in monitor recycling involves physical removal of plastic casing, picture tube (cathode ray tube), copper yoke and plates as shown in **Figure 5.4**.

The intact and functional CRT is used for the manufacture of colour and black & white televisions for local brands. Re-gunning is possible only for those monitors whose terminal pin (diode pin) of electron gun has not broken in the process of removing yoke from gun. The process of re-gunning of CRT is not done in Mumbai, Pune and Pimpri Chinchwad region E-waste market and it is only done at Delhi.

#### Recovery of Glass from CRT

Defective CRT is broken down to recover iron frames from the glass funnel as shown in **Figure 5.5**. The iron frames are found only in color CRTs and not in black & white monitors. The glasses and iron frames from picture tubes are given to waste traders.





Yoke Core, Metallic Core and Copper from Transformers

The copper and yoke core recovered from yoke coils found around the picture tube end is sold to copper smelters and re-winders as shown in **Figure 5.6 and Figure 5.7**. Apart from the yoke, copper and metallic core is also recovered from transformers mounted on the circuit board of the computer. The circuit tray also contains a number of condensers of different sizes. Depending upon their condition and demand they again enter into the secondary market for reuse. If they are defective, they are sold along with the motherboard.





Rare Earth Core of Transformer and Copper

These small transistors and rare earth transformers are boiled in water with small amount of caustic soda, which results in loosing of joint between the core resulting in core and copper extraction as shown in **Figure 5.8**.



# Copper Extraction from Wires

Two kinds of processes are being followed under this category as listed below:

- 1. Manual drawing of wires for copper
- 2. Extraction of copper by burning the wire

# Manual drawing of Wires for Copper

Under this process with the use of knife the edge of wire is cut and then with the help of pliers the copper is extracted from PVC as shown in **Figure 5.9**. The process is as shown below copper goes for sale to copper smelters and PVC is used for plastic graining.



### Plastic Shredding and Graining

The plastic casings of monitors are made either of PVC (polyvinyl chloride) or ABS (acrylonitrile-butadiene styrene). PVC was used more commonly in the early models of computers. Now computer-manufacturing companies have shifted to ABS plastic in the production of monitors. Though both types of plastics are currently being recycled as shown in **Figure 5.10**, the PVC one cannot be recycled. This is due to the high percentage of silicate being added for making it fire retardant. The silicate plastic often ends up at kilns as an alternate source of energy. The plastic casing is recycled into EBS or High Impact Plastic. These kinds of plastics are frequently used in manufacturing toys.



# Dismantling of compressor & segregation of compressor & cooling box

Refrigerator is dismantled for metal recovery, plastic recovery, insulating material and compressor as shown in **Figure 5.11**.



# Dismantling of cellphone



Cell phone is dismantled for plastic recovery, battery, LCD screen and PWB/ PCB as shown in **Figure 5.12**.

# 5.3 Disposal

Field Investigations reveal that easy and approachable method for disposal of e-waste in Mumbai is throwing in Municipal dust bin which goes for land filling sites. Most of the components get extracted and only thing, which is left for disposal in landfills are ashes and plastic residues from charred IC chips, condensers etc. In Pune, Pimpri Chinchwad region, field investigations reveal that e-waste is transported to Mumbai from where it is supplied to other parts of India. Some part of the e-waste is again sent to Delhi for further processing and dumping to the land fill site.

# 5.4 Approach & Methodology for Inventorization "Market Supply Method"

The market size of MMR, Pune, Pimpri and Chinchwad region has been estimated based on sales data. This sales data have been applied to a number of calculation methodologies to give theoretical waste arising for each of the selected items. Finally, using average weights and an average composition of the waste stream, total WEEE for MMR, Pune, Pimpri and Chinchwad has been extrapolated. Under this approach, the various indicators, which will represent market size, are given below:

- Market Sales data for above mentioned EEE's.
- Penetration Rate of listed EEE's
- Ownership data of listed EEE's

The first step in the material flow model is to acquire sales data for the selected items. The sources of the data include government statistics, market research companies, industry associations etc., which give the authentic data. Next step is to establish penetration rate of EEE so as to calculate the ownership data for EEE's. Sources considered, includes government statistics, market research companies, industry associations. Ownership has been taken as a derivative of penetration rate but certain organization like Registrar General, Census of India and NCAER provided exact figure for ownership of selected EEEs. The Market Supply method was first used in 1991 in Germany for assessment of WEEE (IMS, 1991). It is based on the extrapolation of waste arising by using sales figures together with the typical lifetime of an appliance. As per this method, WEEE generated in a year can be represented by the following simple equation;

#### WEEE Generation in year *x* = Sales *n* years previously

(n = average life time of item)

The method assumes that 100% of units sold in one particular year will become obsolete at the end of the average life. For example, in India **800,000** PC's were sold in 1997. A PC is assumed to have an average lifetime of 7 years, meaning that in the year 2004, 800,000 will become WEEE. This method assumes that the average variance in lifetime of items of EEE does not change very much, whereas in reality average lifetime may become shorter in the future. The variables required by the method Selected are:

#### 5.4.1 Obsolescence Rate/Average lifetime.

Obsolescence rate/average lifetime represents the consumer behavior. It consists of two components:

- Active Lifetime
- Passive Lifetime

Obsolescence rate/average lifetime can be calculated based on depreciation and book value/economic value of the EEE. All fixed assets such as electronic / electrical equipments, building, furniture etc. gradually diminish in value as they get older and become worn out by constant use in business. Depreciation is the term used to describe this decrease in book value of an asset. There are a number of methods of calculating depreciation. However, the most common method, which is also approved by income tax authorities, is the **Diminishing Balance Method.** Here each year's depreciation is calculated on the book value (i.e., depreciated value) of the asset at the beginning of the year rather than original cost. Note that as the book value decreases every year, the amount of depreciation also decreases every year. Therefore, this method is also called Reducing Installment Method or "Written Down Value Method".

If the rate of depreciation is i% per year and the initial value of the asset is P, the

depreciated value at the end of n years is  $P\left(1-\frac{i}{100}\right)^{n}$  and the amount of depreciation is

 $p\left[1-\left(1-\frac{i}{100}\right)^n\right]$ . The number of years, a machine can be effectively used is called its Active life time. After that it is sold as waste or scrap. In this study, the depreciated value is factored by passive lifetime of EEE to arrive at the obsolescence rate of EEE.

The obsolescence rate for electronic items has been taken as shown in **Table 5.1**.

| S.No. | Electronic Item Obsolescence Rate (ye |    |    |
|-------|---------------------------------------|----|----|
| 1.    | Cellular Phone                        | 2  | 4  |
| 2.    | Personal computer                     | 5  | 7  |
| 3.    | Refrigerator                          | 15 | 17 |
| 4.    | Television                            | 15 | 17 |

#### Table 5.1: Obsolescence rate for electronic items

These obsolescence rates consist of both active and passive life of electronic item. Based on these obsolescence rates the E-waste inventory of MMR, Pune and Pimpri Chinchwad region has been estimated in following sections.

#### 5.5 **Obsolescence Rate & E-waste Projections for Cellular Phones**

The data obtained from TRAI, Cellular Operators Association of India (COAI) and Census of India for the comparative time series growth of installed base and yearly additions of cellular phones in Mumbai, Pune and Pimpri Chinchwad region is summarized in Table 5.2 and Table 5.3.

#### Comparative time series growth of cellular phone subscribers in Table 5.2: Mumbai

| Year | Penetration /<br>1000 | Installed<br>Base | Yearly<br>Addition |
|------|-----------------------|-------------------|--------------------|
| 1997 | 12.67578462           | 215002            |                    |
| 1998 | 15.08406713           | 262842            | 47840              |
| 1999 | 16.6883818            | 298744            | 95902              |
| 2000 | 26.11842556           | 480331            | 181587             |
| 2001 | 44.09000152           | 832995            | 352664             |
| 2002 | 77.97102846           | 1512296           | 679301             |
| 2003 | 125.9184015           | 2507229           | 994933             |

| Year                             | Penetration /<br>1000 | Installed<br>Base | Yearly<br>Addition |  |  |  |
|----------------------------------|-----------------------|-------------------|--------------------|--|--|--|
| 2004                             | 175.9750263           | 3597138           | 1089909            |  |  |  |
| 2005                             | 238.5259496           | 5005448           | 1408310            |  |  |  |
| 2006                             | 299.7555275           | 6457669           | 1452221            |  |  |  |
| 2007                             | 366.6010101           | 8107808.78        | 1650139.78         |  |  |  |
| 2008                             | 448.3530354           | 10179611.8        | 2071802.97         |  |  |  |
| 2009                             | 548.3357623           | 12780826.3        | 2601214.52         |  |  |  |
| 2010                             | 670.6146373           | 16046733.8        | 3265907.54         |  |  |  |
| 2011                             | 820.1617014           | 20147184.6        | 4100450.78         |  |  |  |
| 2012                             | 1003.057761           | 25295430.9        | 5148246.34         |  |  |  |
| 2013                             | 1226.739641           | 31759217.9        | 6463787            |  |  |  |
| 2014                             | 1500.302581           | 39874708.1        | 8115490.12         |  |  |  |
| 2015                             | 1834.870057           | 50063964          | 10189255.9         |  |  |  |
| Source: TRAI and Census of India |                       |                   |                    |  |  |  |

Table 5.3: Comparative time series growth of cellular phone subscribers in Pune,Pimpri and Chinchwad region

| Year | Penetration<br>Rate | Installed<br>Base | Yearly<br>Addition |
|------|---------------------|-------------------|--------------------|
| 1997 | 0.34                | 2153.65656        |                    |
| 1998 | 0.92                | 5959.9854         | 3806.32884         |
| 1999 | 1.04                | 6961.95396        | 1001.96856         |
| 2000 | 2.46                | 16998.9149        | 10036.9609         |
| 2001 | 4.446               | 32002.5303        | 15003.6154         |
| 2002 | 8.5727              | 63434.5115        | 31431.9812         |
| 2003 | 20.117              | 149436.873        | 86002.3619         |
| 2004 | 43.49               | 323686.663        | 174249.79          |
| 2005 | 75.08               | 559560.802        | 235874.139         |
| 2006 | 115                 | 857161.789        | 297600.987         |
| 2007 | 140.645             | 1077661.52        | 220499.727         |
| 2008 | 172.008835          | 1323108.36        | 245446.845         |
| 2009 | 210.3668052         | 1621297.5         | 298189.137         |
| 2010 | 257.2786028         | 1985531.55        | 364234.048         |
| 2011 | 314.6517312         | 2428539.61        | 443008.063         |
| 2012 | 384.8190672         | 3053266.85        | 624727.243         |
| 2013 | 470.6337192         | 3748675.11        | 695408.256         |
| 2014 | 575.5850386         | 4593514.6         | 844839.49          |
| 2015 | 703.9405022         | 5625474.75        | 1031960.15         |

Source: TRAI and Census of India

The analysis of table 5.2 indicates that the installed base of cellular phones in Mumbai increased from 215002 in 1997 to 6457669 in 2006. The yearly addition of cellular phones in the market increased from 47840 in 1998 to 1452221 in 2006. It again indicates that the penetration rate increased twenty four times within a period of nine years. The analysis of table 5.3 indicates that the installed base of cellular phones in Pune, Pimpri Chinchwad region increased from 2153 in 1997 to 857161 in 2006. The yearly addition of cellular phones in the market increased from 3806 in 1998 to 297600 in 2006. It again indicates that the penetration rate increased two hundred times within a period of nine years.

The data from secondary sources indicate that obsolescence rate of cellular phones prevailing in India ranges from two to five years. Since the market is growing exponentially, it is important to arrive at exact obsolescence rate. Assuming market additions every year is equivalent to cellular phones coming into market as e-waste, analysis was carried out concerning two scenarios for obsolescence rates.

- 1. Two years obsolescence rate
- 2. Four years obsolescence rate

Considering 2007 as the base year for the calculations, following inferences are drawn:

- 1. Years 2005 and 2003 were taken as years for evaluating obsolescence rate
- 2. The number of cellular phones subscribers added into Mumbai market during 2005 and 2003 was 1408310 and 994933, respectively.
- 3. The number of cellular phones subscribers added into Pune, Pimpri and Chinchwad market during 2005 and 2003 was 235874 and 86002, respectively.

The number of cellular phones introduced into the e-waste market from the installed base in the region was further augmented by considering the external factors. It includes the number of cellular phones brought into Mumbai, Pune Pimpri Chinchwad market from other sources, which could be either imports or cellular phones from other domestic sources existing in the country. The details of cellular phones generation as e-waste in Mumbai, Pune, Pimpri Chinchwad region is given in **Table 5.4 and Table 5.5**.

| Year | Penetration<br>/ 1000 | Installed<br>Base | Yearly<br>Addition | WEEE<br>Obsolescence<br>Rate 1 (in<br>Numbers) | WEEE<br>Generated 1<br>(in Tons) | WEEE<br>Obsolescence<br>Rate 2 (in<br>Numbers) | WEEE<br>Generated 2<br>(in Tons) |
|------|-----------------------|-------------------|--------------------|------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------|
| 2006 | 299.7555275           | 6457669           | 1452221            | 1089909                                        | 111.5412871                      | 679301                                         | 69.51966434                      |
| 2007 | 366.6010101           | 8107808.78        | 1650139.78         | 1408310                                        | 144.1264454                      | 994933                                         | 101.8214432                      |
| 2008 | 448.3530354           | 10179611.8        | 2071802.97         | 1452221                                        | 148.6202971                      | 1089909                                        | 111.5412871                      |
| 2009 | 548.3357623           | 12780826.3        | 2601214.52         | 1650139.783                                    | 168.8753054                      | 1408310                                        | 144.1264454                      |
| 2010 | 670.6146373           | 16046733.8        | 3265907.54         | 2071802.972                                    | 212.0283162                      | 1452221                                        | 148.6202971                      |
| 2011 | 820.1617014           | 20147184.6        | 4100450.78         | 2601214.515                                    | 266.2082935                      | 1650139.783                                    | 168.8753054                      |
| 2012 | 1003.057761           | 25295430.9        | 5148246.34         | 3265907.543                                    | 334.2329779                      | 2071802.972                                    | 212.0283162                      |
| 2013 | 1226.739641           | 31759217.9        | 6463787            | 4100450.776                                    | 419.6401324                      | 2601214.515                                    | 266.2082935                      |
| 2014 | 1500.302581           | 39874708.1        | 8115490.12         | 5148246.343                                    | 526.8715307                      | 3265907.543                                    | 334.2329779                      |
| 2015 | 1834.870057           | 50063964          | 10189255.9         | 6463786.998                                    | 661.5039614                      | 4100450.776                                    | 419.6401324                      |

Table 5.4: Statistics of cellular phone as e-waste generation and handled in Mumbai

# Table 5.5: Statistics of cellular phone as e-waste generation and handled in Pune Pimpri Chinchwad Region

| Year | Penetration<br>Rate | Installed<br>Base | Yearly<br>Addition | WEEE<br>Obsolescence<br>Rate 1 (in<br>Numbers) | WEEE<br>Generated 1<br>(in Tons) | WEEE<br>Obsolescence<br>Rate 2 (in<br>Numbers) | WEEE<br>Generated 2<br>(in Tons) |
|------|---------------------|-------------------|--------------------|------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------|
| 2006 | 115                 | 857161.789        | 297600.987         | 174249.7898                                    | 17.92333338                      | 31431.98119                                    | 3.233093585                      |
| 2007 | 140.645             | 1077661.52        | 220499.727         | 235874.1385                                    | 24.26201389                      | 86002.36186                                    | 8.846202941                      |
| 2008 | 172.008835          | 1323108.36        | 245446.845         | 297600.9875                                    | 30.61123757                      | 174249.7898                                    | 17.92333338                      |
| 2009 | 210.3668052         | 1621297.5         | 298189.137         | 220499.7273                                    | 22.68060195                      | 235874.1385                                    | 24.26201389                      |
| 2010 | 257.2786028         | 1985531.55        | 364234.048         | 245446.8451                                    | 25.24666249                      | 297600.9875                                    | 30.61123757                      |
| 2011 | 314.6517312         | 2428539.61        | 443008.063         | 298189.1366                                    | 30.67173459                      | 220499.7273                                    | 22.68060195                      |
| 2012 | 384.8190672         | 3053266.85        | 624727.243         | 364234.0477                                    | 37.46511414                      | 245446.8451                                    | 25.24666249                      |

| Year | Penetration<br>Rate | Installed<br>Base | Yearly<br>Addition | WEEE<br>Obsolescence<br>Rate 1 (in<br>Numbers) | WEEE<br>Generated 1<br>(in Tons) | WEEE<br>Obsolescence<br>Rate 2 (in<br>Numbers) | WEEE<br>Generated 2<br>(in Tons) |
|------|---------------------|-------------------|--------------------|------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------|
| 2013 | 470.6337192         | 3748675.11        | 695408.256         | 443008.0629                                    | 45.56780935                      | 298189.1366                                    | 30.67173459                      |
| 2014 | 575.5850386         | 4593514.6         | 844839.49          | 624727.2431                                    | 64.25944423                      | 364234.0477                                    | 37.46511414                      |
| 2015 | 703.9405022         | 5625474.75        | 1031960.15         | 695408.2564                                    | 71.52969326                      | 443008.0629                                    | 45.56780935                      |

The following inferences are drawn from Tables 5.4 and 5.5:

- 1. The number of cellular phones entering into Mumbai's e-waste market is 3858 and 2725 per day for 2 and 4 year obsolescence rate, respectively.
- 2. Since the average weight of cellular phones has been taken as 102.86 gm, the total weight of cellular phones entering into Mumbai's e-waste market considering two year obsolescence rate is 144 tons per year.
- 3. The total weight of cellular phones entering into Mumbai's e-waste market considering four year obsolescence rate is 101 tons per year.
- 4. The number of cellular phones entering into Pune, Pimpri Chinchwad e-waste market is 646 and 235 per day for 2 and 4 year obsolescence rate, respectively.
- 5. The total weight of cellular phones entering into Pune, Pimpri Chinchwad e-waste market considering two year obsolescence rate is 24.26 tons per year.
- 6. The total weight of cellular phones entering into Pune, Pimpri Chinchwad e-waste market considering four year obsolescence rate is 8.84 tons per year.

Based on the secondary data review for cellular phones, considering obsolesce of 2 years the amount of e-waste in Mumbai, Pune and Pimpri Chinchwad region by year 2015 is estimated and projected to be 661.5 tons and 71.5 tons respectively.

# 5.6 Obsolescence Rate & E-waste Projections for PCs

The data obtained from MAIT and Census of India for the comparative time series growth of installed base and yearly additions of PCs in Mumbai, Pune, Pimpri Chinchwad region is summarized in **Table 5.6 and Table 5.7**. The installed base of PCs in Mumbai increased from 1963560 in 1999 to 5576080 in 2006. The yearly addition of PCs in Mumbai market increased from 422369 in 2000 to 659942 in 2006. The installed base of PCs in Pune, Pimpri Chinchwad increased from 33901 in 2000 to 75994 in 2006. The yearly addition of PCs in Pune, Pimpri Chinchwad increased from 33901 in 2000 to 75994 in 2006. The yearly addition of PCs in Pune, Pimpri Chinchwad market increased from 725 in 2001 to 15919 in 2006.

| Year | Penetration<br>Rate | Installed<br>Base | Yearly<br>Addition |
|------|---------------------|-------------------|--------------------|
| 1999 | 0.109688            | 1963559.58        |                    |
| 2000 | 0.129737            | 2385928.77        | 422369.194         |
| 2001 | 0.144748            | 2734732.5         | 348803.735         |
| 2002 | 0.170305            | 3303170.11        | 568437.601         |
| 2003 | 0.19858             | 3954033.16        | 650863.054         |
| 2004 | 0.213921            | 4372798.65        | 418765.495         |
| 2005 | 0.23427             | 4916137.24        | 543338.584         |
| 2006 | 0.26050824          | 5576079.5         | 659942.263         |
| 2007 | 0.289685163         | 6365536.38        | 789456.875         |
| 2008 | 0.322129901         | 7266763.92        | 901227.548         |

# Table 5.6: Comparative time series growth of installed base and yearly additions of PCs in Mumbai

| Year                             | Penetration<br>Rate | Installed<br>Base | Yearly<br>Addition |  |  |
|----------------------------------|---------------------|-------------------|--------------------|--|--|
| 2009                             | 0.35820845          | 8295586.55        | 1028822.62         |  |  |
| 2010                             | 0.398327796         | 9470069.05        | 1174482.51         |  |  |
| 2011                             | 0.44294051          | 10810833.9        | 1340764.8          |  |  |
| 2012                             | 0.492549847         | 12341423.1        | 1530589.21         |  |  |
| 2013                             | 0.54771543          | 14088711.9        | 1747288.8          |  |  |
| 2014                             | 0.609059558         | 16083380.4        | 1994668.55         |  |  |
| 2015                             | 0.677274228         | 18360452.6        | 2277072.13         |  |  |
| Source: MAIT and Census of India |                     |                   |                    |  |  |

 Table 5.7: Comparative time series growth of installed base and yearly additions of

 PCs in Pune Pimpri Chinchwad Region

| Year | Penetration /<br>1000<br>population | Installed<br>Base | Yearly<br>Addition |
|------|-------------------------------------|-------------------|--------------------|
| 2000 | 9.15                                | 33901.6802        |                    |
| 2001 | 9.251343542                         | 34626.9           | 725.219816         |
| 2002 | 9.298013032                         | 35254             | 627.1              |
| 2003 | 10.33736495                         | 39704.3           | 4450.3             |
| 2004 | 12.33113889                         | 47977.8           | 8273.5             |
| 2005 | 15.24205692                         | 60074.5           | 12096.7            |
| 2006 | 19.03380253                         | 75994.4           | 15919.9            |
| 2007 | 23.67100004                         | <b>9</b> 5737.5   | 19743.1            |
| 2008 | 29.11919435                         | 119303.8          | 23566.3            |
| 2009 | 35.34483116                         | 146693.3          | 27389.5            |
| 2010 | 42.31523749                         | 177906            | 31212.7            |
| 2011 | 49.99860265                         | 212941.9          | 35035.9            |
| 2012 | 58.36395948                         | 251801            | 38859.1            |
| 2013 | 67.3811661                          | 294483.3          | 42682.3            |
| 2014 | 77.02088785                         | 340988.8          | 46505.5            |
| 2015 | 87.25457972                         | 391317.5          | 50328.7            |

Source: MAIT and Census of India

After assessing the market penetration of PCs, it is important to estimate their obsolescence rate i.e. the total numbers of PCs entering into the market for dismantling. The data from secondary sources indicate that obsolescence rate of PCs prevailing in India ranges from five to seven years. Since the market is growing exponentially, it is important to arrive at exact obsolescence rate. Assuming market additions every year is equivalent to PCs coming into market for dismantling, scenario analysis was carried out concerning two scenarios for obsolescence rates.

- 1. Five years obsolescence rate
- 2. Seven years obsolescence rate

Therefore, as per the assumption, "market additions every year is equivalent to PCs coming into secondary market for dismantling". Considering 2007 as the base year for the calculations, following inferences are drawn:

- 1. Years 2002 and 2000 were taken as years for evaluating obsolescence rate
- 2. The number of PCs added into Mumbai market during 2002 and 2000 was 568437 and 422369, respectively.

3. The number of PCs added into Pune, Pimpri Chinchwad market during 2002 and 2000 was 627 and 410 respectively.

Based on the available secondary market data for PCs, total amount of PCs coming to Mumbai e-waste market is estimated and given in **Table 5.8 and table 5.9**.

| Year | Penetration<br>Rate | Installed<br>Base | Yearly<br>Addition | WEEE<br>Obsolescence<br>Rate 1 (in<br>Numbers) | WEEE<br>Generated 1<br>(in Tons) | WEEE<br>Obsolescence<br>Rate 2 (in<br>Numbers) | WEEE<br>Generated 2<br>(in Tons) |
|------|---------------------|-------------------|--------------------|------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------|
| 2006 | 0.26050824          | 5576079.5         | 659942.263         | 348803.7346                                    | 9487.461581                      |                                                |                                  |
| 2007 | 0.289685163         | 6365536.38        | 789456.875         | 568437.601                                     | 15461.50275                      | 422369.1944                                    | 11488.44209                      |
| 2008 | 0.322129901         | 7266763.92        | 901227.548         | 650863.0536                                    | 17703.47506                      | 348803.7346                                    | 9487.461581                      |
| 2009 | 0.35820845          | 8295586.55        | 1028822.62         | 418765.4952                                    | 11390.42147                      | 568437.601                                     | 15461.50275                      |
| 2010 | 0.398327796         | 9470069.05        | 1174482.51         | 543338.5838                                    | 14778.80948                      | 650863.0536                                    | 17703.47506                      |
| 2011 | 0.44294051          | 10810833.9        | 1340764.8          | 659942.2628                                    | 17950.42955                      | 418765.4952                                    | 11390.42147                      |
| 2012 | 0.492549847         | 12341423.1        | 1530589.21         | 789456.8748                                    | 21473.227                        | 543338.5838                                    | 14778.80948                      |
| 2013 | 0.54771543          | 14088711.9        | 1747288.8          | 901227.5476                                    | 24513.38929                      | 659942.2628                                    | 17950.42955                      |
| 2014 | 0.609059558         | 16083380.4        | 1994668.55         | 1028822.623                                    | 27983.97534                      | 789456.8748                                    | 21473.227                        |
| 2015 | 0.677274228         | 18360452.6        | 2277072.13         | 1174482.507                                    | 31945.92418                      | 901227.5476                                    | 24513.38929                      |

Table 5.8: Statistics of PCs as e-waste generation and handled in Mumbai

# Table 5.9: Statistics of PCs as e-waste generation and handled in Pune, Pimpri Chinchwad region

| Year | Penetration /<br>1000<br>population | Installed<br>Base | Yearly<br>Addition | WEEE<br>Obsolescence<br>Rate 1 (in<br>Numbers) | WEEE Generated<br>1 (in Tons) |
|------|-------------------------------------|-------------------|--------------------|------------------------------------------------|-------------------------------|
| 2006 | 19.03380253                         | 75994.4           | 15919.9            | 725.22                                         | 19.725984                     |
| 2007 | 23.67100004                         | 95737.5           | 19743.1            | 627.1                                          | 17.05712                      |
| 2008 | 29.11919435                         | 119303.8          | 23566.3            | 4450.3                                         | 121.04816                     |
| 2009 | 35.34483116                         | 146693.3          | 27389.5            | 8273.5                                         | 225.0392                      |
| 2010 | 42.31523749                         | 177906            | 31212.7            | 12096.7                                        | 329.03024                     |
| 2011 | 49.99860265                         | 212941.9          | 35035.9            | 15919.9                                        | 433.02128                     |
| 2012 | 58.36395948                         | 251801            | 38859.1            | 19743.1                                        | 537.01232                     |
| 2013 | 67.3811661                          | 294483.3          | 42682.3            | 23566.3                                        | 641.00336                     |
| 2014 | 77.02088785                         | 340988.8          | 46505.5            | 27389.5                                        | 744.9944                      |
| 2015 | 87.25457972                         | 391317.5          | 50328.7            | 31212.7                                        | 848.98544                     |

The following inferences are drawn from Table 5.8 and 5.9.

- 1. The number of PCs entering into Mumbai's e-waste market is 3858 and 2725 per day for 5 and 7 year obsolescence rate, respectively.
- 2. Since the average weight of PC has been taken as 27.2 kg, the total weight of PCs entering into Mumbai's e-waste market considering five year obsolescence rate is 15461.5 tons per year.
- 3. The total weight of PCs entering into Mumbai's e-waste market considering seven year obsolescence rate is 11488 tons per year.
- 4. The number of PCs entering into Pune, Pimpri Chinchwad e-waste market is 2 and 1 per day for 5 and 7 year obsolescence rate, respectively.
- 5. The total weight of PCs entering into Pune, Pimpri Chinchwad e-waste market considering five year obsolescence rate is 17 tons per year.
- 6. The total weight of PCs entering into Pune, Pimpri Chinchwad e-waste market considering seven year obsolescence rate is 11 tons per year.

Based on the secondary data review for PCs, considering obsolesce of 5 years the amount of e-waste generation in Mumbai, Pune, Pimpri Chinchwad region by year 2015 is estimated and projected to be 31945 tons and 848 tons respectively.

#### 5.7 Obsolescence Rate & E-waste Projections for Refrigerator

The historical data from 1986 obtained from TV Vyopaar Journal, India and Census of India for the comparative time series growth of installed base and yearly additions of refrigerator in Mumbai, Pune, Pimpri and Chinchwad region is summarized in **Table 5.10** and **Table 5.11**.

| Year | Penetration<br>Rate /<br>Household | Installed<br>Base | Yearly<br>Addition        |
|------|------------------------------------|-------------------|---------------------------|
| 1985 | 0.1507                             | 339837.934        |                           |
| 1986 | 0.1788809                          | 416699.407        | 76861.4736                |
| 1987 | 0.211079462                        | 507931.57         | 91232.1626                |
| 1988 | 0.246962971                        | 613891.168        | 105959.598                |
| 1989 | 0.2821                             | 724374.18         | 110483.012                |
| 1990 | 0.315952                           | 838071.969        | 113697.789                |
| 1991 | 0.357341712                        | 956121.28         | 118049.311                |
| 1992 | 0.391                              | 1080702.96        | 124581.684                |
| 1993 | 0.434401                           | 1240282.8         | 159579.831                |
| 1994 | 0.484791516                        | 1429832.75        | 189549.958                |
| 1995 | 0.541027332                        | 1648351.22        | 218518.465                |
| 1996 | 0.59621212                         | 1876427.04        | 228075.825                |
| 1997 | 0.623041665                        | 2111607.01        | 235179.963                |
| 1998 | 0.674131082                        | 2348159.08        | 236552.07                 |
| 1999 | 0.728061568                        | 2606652.07        | 258492.997                |
| 2000 | 0.780482001                        | 2870691.41        | 264039.341                |
| 2001 | 0.835115741                        | 3155578.19        | 284886.779                |
| 2002 | 0.889398264                        | 3450085.15        | 294506.957                |
| 2003 | 0.94276216                         | 3754368.86        | 304283.71                 |
| 2004 | 0.997442365                        | 4077780.71        | 323411.846                |
| 2005 | 1.055294023                        | 4429052.15        | 351271.448                |
| 2006 | 1.123888134                        | 4811279.36        | 382227.201                |
| 2007 | 1.191321422                        | 5235614.95        | 424335.5 <mark>9</mark> 4 |
| 2008 | 1.262800708                        | 5697375.25        | 461760.296                |
| 2009 | 1.33856875                         | 6199860.95        | 502485.707                |
| 2010 | 1.418882875                        | 6746663.89        | 546802.937                |
| 2011 | 1.504015847                        | 7341692.66        | 595028.768                |
| 2012 | 1.594256798                        | 7989200.58        | 647507.926                |
| 2013 | 1.689912206                        | 8693816.12        | 704615.535                |
| 2014 | 1.791306939                        | 9460575.93        | 766759.806                |
| 2015 | 1.898785355                        | 10294960.9        | 834384.954                |

Table 5.10: Comparative time series growth of refrigerator in Mumbai

Source: TVVJ and Census of India

# Table 5.11: Comparative time series growth of refrigerator in Pune, Pimpri, and Chinchwad Region

| Year | Penetration<br>Rate | Installed<br>Base | Yearly<br>Addition |
|------|---------------------|-------------------|--------------------|
| 1988 | 0.704               | 790518.643        |                    |
| 1989 | 0.715               | 813163.709        | 22645.0653         |
| 1990 | 0.726               | 836125.488        | 22961.7795         |
| 1991 | 0.737               | 859403.982        | 23278.4937         |
| 1992 | 0.748               | 882999.19         | 23595.2079         |
| 1993 | 0.7502              | 907196.154        | 24196.9649         |
| 1994 | 0.7568              | 931519.805        | 24323.6506         |
| 1995 | 0.7689              | 956375.535        | 24855.7304         |
| 1996 | 0.7843              | 982304.927        | 25929.3916         |
| 1997 | 0.7964              | 1008924.76        | 26619.8285         |
| 1998 | 0.8019              | 1038980.93        | 30056.1776         |
| 1999 | 0.80245             | 1074349.99        | 35369.0583         |
| 2000 | 0.8041              | 1111286.78        | 36936.7936         |
| 2001 | 0.803               | 1156006.83        | 44720.045          |
| 2002 | 0.8118              | 1201398.31        | 45391.4791         |
| 2003 | 0.8173              | 1248243.08        | 46844.7666         |
| 2004 | 0.8206              | 1295894.71        | 47651.6374         |
| 2005 | 0.82181             | 1343747.87        | 47853.1532         |
| 2006 | 0.82203             | 1391823.41        | 48075.5431         |

Source: TVVJ and Census of India

The installed base of refrigerator in Mumbai increased from 838071 in 1990 to 4811279 in 2006. The yearly addition of refrigerator in Mumbai market increased from 113697.7 in 1990 to 382227 in 2006. The installed base of refrigerator in Pune, Pimpri Chinchwad increased from 836125.45 in 1990 to 1391823.4 in 2006. The yearly addition of refrigerator in Pune, Pimpri Chinchwad market increased from 22961.7 in 1990 to 48075.5 in 2006. The data from secondary sources indicate that obsolescence rate of refrigerator prevailing in India ranges from fifteen to seventeen years. Assuming market additions every year is equivalent to refrigerator coming into market as e-waste, analysis was carried out concerning two scenarios for obsolescence rates.

- 1. Fifteen years obsolescence rate
- 2. Seventeen years obsolescence rate

Considering 2007 as the base year for the calculations, following inferences are drawn:

- 1. Years 1992 and 1990 were taken as years for evaluating obsolescence rate
- 2. The number of refrigerators added into Mumbai market during 1992 and 1990 was 124581.68 and 113697.7, respectively.
- 3. The number of refrigerators added into Pune, Pimpri Chinchwad market during 1992 and 1990 was 23595 and 22961 respectively.

The number of refrigerator introduced into the e-waste market from the installed base in the region was further augmented by considering the external factors. It includes the number of refrigerator brought into Mumbai market from other sources, which could be from other domestic sources existing in the country. The details of refrigerator generated as e-waste in Mumbai is given in **Table 5.12 and Table 5.13**.

| Year | WEEE<br>Obsolescence<br>Rate 1 (in<br>Numbers) | WEEE<br>Generated 1<br>(in Tons) | WEEE<br>Obsolescence<br>Rate 2 (in<br>Numbers) | WEEE<br>Generated 2<br>(in Tons) |
|------|------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------|
| 2006 | 118049.3113                                    | 5666.36694                       | 110483.012                                     | 5303.184578                      |
| 2007 | 124581.684                                     | 5 <mark>979.9</mark> 2083        | 113697.7894                                    | 5457.49389                       |
| 2008 | 159579.8311                                    | 7659.831894                      | 118049.3113                                    | 5666.36694                       |
| 2009 | 189549.9579                                    | 9098.397977                      | 124581.684                                     | 5979.92083                       |
| 2010 | 218518.465                                     | 10488.88632                      | 159579.8311                                    | 7659.831894                      |
| 2011 | 228075.8255                                    | 10947.63962                      | 189549.9579                                    | 9098.397977                      |
| 2012 | 235179.9633                                    | 11288.63824                      | 218518.465                                     | 10488.88632                      |
| 2013 | 236552.0696                                    | 11354.49934                      | 228075.8255                                    | 10947.63962                      |
| 2014 | 258492.9973                                    | 12407.66387                      | 235179.9633                                    | 11288.63824                      |
| 2015 | 264039.341                                     | 12673.88837                      | 236552.0696                                    | 11354.49934                      |

# Table 5.12: Statistics of refrigerator as e-waste generation and handled in Mumbai

# Table 5.13: Statistics of refrigerator as e-waste generation and handled in Pune, Pimpri Chinchwad region

| Year | WEEE<br>Obsolescence<br>Rate 1 (in<br>Numbers) | WEEE<br>Generated 1<br>(in Tons) | WEEE<br>Obsolescence<br>Rate 2 (in<br>Numbers) | WEEE<br>Generated 2<br>(in Tons) |
|------|------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------|
| 2006 | 23278.4937                                     | 1117.367698                      | 22645.0653                                     | 1086.963134                      |
| 2007 | 23595.2079                                     | 1132.569979                      | 22961.7795                                     | 1102.165416                      |
| 2008 | 24196.96488                                    | 1161.454314                      | 23278.4937                                     | 1117.367698                      |
| 2009 | 24323.65056                                    | 1167.535227                      | 23595.2079                                     | 1132.569979                      |
| 2010 | 24855.73042                                    | 1193.07506                       | 24196.96488                                    | 1161.454314                      |
| 2011 | 25929.39155                                    | 1244.610795                      | 24323.65056                                    | 1167.535227                      |
| 2012 | 26619.82851                                    | 1277.751768                      | 24855.73042                                    | 1193.07506                       |
| 2013 | 30056.17758                                    | 1442.696524                      | 25929.39155                                    | 1244.610795                      |
| 2014 | 35369.05829                                    | 1697.714798                      | 26619.82851                                    | 1277.751768                      |
| 2015 | 36936.79357                                    | 1772.966092                      | 30056.17758                                    | 1442.696524                      |

The following inferences are drawn from Tables 5.12 and 5.13:

- 1. The number of refrigerators entering into Mumbai's e-waste market is 341 and 311 per day for 15 and 17 year obsolescence rate, respectively.
- 2. Since the average weight of refrigerator has been taken as 48 kg, the total weight of refrigerators entering into Mumbai's e-waste market considering fifteen year obsolescence rate is 5979.9 tons per year.
- 3. The total weight of refrigerators entering into Mumbai's e-waste market considering seventeen years obsolescence rate is 5457 tons per year.
- 4. The number of refrigerators entering into Pune, Pimpri Chinchwad e-waste market is 65 and 63 per day for 15 and 17 year obsolescence rate, respectively.
- 5. The total weight of refrigerators entering into Pune, Pimpri Chinchwad e-waste market considering fifteen year obsolescence rate is 1132.5 tons per year.
- 6. The total weight of refrigerator entering into Pune, Pimpri Chinchwad e-waste market considering seventeen year obsolescence rate is 1102 tons per year.

Based on the secondary data review for refrigerator, considering obsolesce of 15 years the amount of e-waste in Mumbai, Pune, Pimpri and Chinchwad by year 2015 is estimated and projected to be 12673.8 and 1773 respectively.

# 5.8 Obsolescence Rate & E-waste Projections for Television

The historical data obtained from TV Vyopaar Journal, India and Census of India for the comparative time series growth of installed base and yearly additions of television in Mumbai, Pune, Pimpri Chinchwad region is summarized in **Table 5.14 and Table 5.15**.

| Year | Penetration<br>Rate /<br>Household | Installed<br>Base | Yearly<br>Addition |
|------|------------------------------------|-------------------|--------------------|
| 1985 | 0.0404                             | 91104.529         |                    |
| 1986 | 0.053328                           | 124226.488        | 33121.9591         |
| 1987 | 0.067393                           | 162171.307        | 37944.8192         |
| 1988 | 0.081919                           | 203631.137        | 41459.83           |
| 1989 | 0.097653                           | 250752.612        | 47121.4744         |
| 1990 | 0.114012                           | 302420.182        | 51667.5702         |
| 1991 | 0.133813                           | 358036.727        | 55616.5447         |
| 1992 | 0.151081                           | 417579.756        | 59543.0292         |
| 1993 | 0.1692                             | 483092.463        | 65512.707          |
| 1994 | 0.189016                           | 557479.367        | 74386.9045         |
| 1995 | 0.210857                           | 642419.287        | 84939.9196         |
| 1996 | 0.2358                             | 742120.937        | 99701.6499         |
| 1997 | 0.255216                           | 864975.69         | 122854.753         |
| 1998 | 0.289682                           | 1009031.38        | 144055.693         |
| 1999 | 0.325564                           | 1165604.82        | 156573.441         |
| 2000 | 0.363271                           | 1336147.33        | 170542.505         |
| 2001 | 0.399264                           | 1508663.66        | 172516.333         |
| 2002 | 0.458056                           | 1776855.51        | 268191.845         |
| 2003 | 0.515222                           | 2051772.46        | 274916.949         |
| 2004 | 0.578409                           | 2364673.03        | 312900.574         |
| 2005 | 0.65027                            | 2729172.8         | 364499.772         |
| 2006 | 0.72765213                         | 3115023.25        | 385850.451         |
| 2007 | 0.814242733                        | 3578430.93        | 463407.68          |
| 2008 | 0.911137619                        | 4110777.64        | 532346.709         |
| 2009 | 1.019562995                        | 4722319.12        | 611541.48          |
| 2010 | 1.140890992                        | 5424836.82        | 702517.693         |
| 2011 | 1.27665702                         | 6231864.83        | 807028.019         |
| 2012 | 1.428579205                        | 7158950.7         | 927085.865         |
| 2013 | 1.598580131                        | 8223954.86        | 1065004.16         |
| 2014 | 1.788811166                        | 9447394.8         | 1223439.93         |
| 2015 | 2.001679695                        | 10852840.3        | 1405445.47         |

Table 5.14: Comparative time series growth of television in Mumbai

Source: TVVJ and Census of India

Table 5.15: Comparative time series growth of television in Pune, Pimpri Chinchwad

| Year | Penetration<br>Rate | Installed<br>Base | Yearly<br>Addition |
|------|---------------------|-------------------|--------------------|
| 1988 | 0.64                | 729882.27         |                    |
| 1989 | 0.65                | 739239.735        | 9357.465           |
| 1990 | 0.66                | 760114.08         | 20874.345          |
| 1991 | 0.67                | 781276.347        | 21162.267          |

| Year | Penetration<br>Rate | Installed<br>Base | Yearly<br>Addition |
|------|---------------------|-------------------|--------------------|
| 1992 | 0.68                | 802726.536        | 21450.189          |
| 1993 | 0.682               | 824723.7768       | 21997.2408         |
| 1994 | 0.688               | 846836.1864       | 22112.4096         |
| 1995 | 0.699               | 869432.305        | 22596.1186         |
| 1996 | 0.713               | 893004.4791       | 23572.1741         |
| 1997 | 0.724               | 917204.3232       | 24199.8441         |
| 1998 | 0.729               | 944528.121        | 27323.7978         |
| 1999 | 0.7295              | 976681.8104       | 32153.6894         |
| 2000 | 0.731               | 1010260.714       | 33578.9032         |
| 2001 | 0.73                | 1050915.3         | 40654.5864         |
| 2002 | 0.738               | 1092180.281       | 41264.981          |
| 2003 | 0.743               | 1134766.432       | 42586.1514         |
| 2004 | 0.746               | 1178086.103       | 43319.6704         |
| 2005 | 0.7471              | 1221588.969       | 43502.8665         |
| 2006 | 0.7473              | 1265294.009       | 43705.0392         |

Source: TVVJ and Census of India

The installed base of television in Mumbai increased from 302420 in 1990 to 3115023 in 2006. The yearly addition of television in the market increased from 51667 in 1990 to 385850 in 2006. The installed base of television in Pune, Pimpri Chinchwad increased from 760114 in 1990 to 1265294 in 2006. The yearly addition of TV in Pune, Pimpri Chinchwad market increased from 20874 in 1990 to 43705 in 2006. The data from secondary sources indicate that obsolescence rate of television prevailing in India ranges from fifteen to seventeen years. Assuming market additions every year is equivalent to television coming into market as e-waste, analysis was carried out concerning two scenarios for obsolescence rates.

- 1. Fifteen years obsolescence rate
- 2. Seventeen years obsolescence rate

Considering 2007 as the base year for the calculations, following inferences are drawn:

- 1. Years 1992 and 1990 were taken as years for evaluating obsolescence rate.
- 2. The number of TV added into Mumbai market during 1992 and 1990 was 59543 and 51667.57 respectively.
- 3. The number of TV added into Pune, Pimpri Chinchwad market during 1992 and 1990 was 21450 and 20874 respectively

The number of television introduced into the e-waste market from the installed base in the region was further augmented by considering the external factors. The details of e-waste generated from television in Mumbai, Pune and Pimpri Chinchwad Region is given in **Table 5.16 and Table 5.17 respectively**.

| Year | WEEE<br>Obsolescence<br>Rate 1 (in<br>Numbers) | WEEE<br>Generated 1<br>(in Tons) | WEEE<br>Obsolescence<br>Rate 2 (in<br>Numbers) | WEEE<br>Generated 2<br>(in Tons) |
|------|------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------|
| 2006 | 55616.54473                                    | 2013.318919                      | 47121.47443                                    | 1705.797374                      |
| 2007 | 59543.02915                                    | 2155.457655                      | 51667.57025                                    | 1870.366043                      |
| 2008 | 65512.70704                                    | 2371.559995                      | 55616.54473                                    | 2013.318919                      |
| 2009 | 74386.90455                                    | 2692.805945                      | 59543.02915                                    | 2155.457655                      |
| 2010 | 84939.91962                                    | 3074.82509                       | 65512.70704                                    | 2371.559995                      |
| 2011 | 99701.64988                                    | 3609.199726                      | 74386.90455                                    | 2692.805945                      |
| 2012 | 122854.7526                                    | 4447.342045                      | 84939.91962                                    | 3074.82509                       |
| 2013 | 144055.6934                                    | 5214.816103                      | 99701.64988                                    | 3609.199726                      |
| 2014 | 156573.4407                                    | 5667.958553                      | 122854.7526                                    | 4447.342045                      |
| 2015 | 170542.5052                                    | 6173.638688                      | 144055.6934                                    | 5214.816103                      |

# Table 5.16: Statistics of TV as e-waste generation and handled in Mumbai

Table 5.17: Statistics of TV as e-waste generation and handled in Pune, Pimpri region

| Year | WEEE<br>Obsolescence<br>Rate 1 (in<br>Numbers) | WEEE<br>Generated 1<br>(in Tons) | WEEE<br>Obsolescence<br>Rate 2 (in<br>Numbers) | WEEE<br>Generated 2<br>(in Tons) |
|------|------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------|
| 2006 | 21162.267                                      | 766.0740654                      | 9357.465                                       | 338.740233                       |
| 2007 | 21450.189                                      | 776.4968418                      | 20874.345                                      | 755.651289                       |
| 2008 | 21997.2408                                     | 796.300117                       | 21162.267                                      | 766.0740654                      |
| 2009 | 22112.4096                                     | 800.4692275                      | 21450.189                                      | 776.4968418                      |
| 2010 | 22596.11856                                    | 817.9794919                      | 21997.2408                                     | 796.300117                       |
| 2011 | 23572.17414                                    | 853.3127039                      | 22112.4096                                     | 800.4692275                      |
| 2012 | 24199.8441                                     | 876.0343564                      | 22596.11856                                    | 817.9794919                      |
| 2013 | 27323.7978                                     | 989.1214804                      | 23572.17414                                    | 853.3127039                      |
| 2014 | 32153.68935                                    | 1163.963554                      | 24199.8441                                     | 876.0343564                      |
| 2015 | 33578.90325                                    | 1215.556298                      | 27323.7978                                     | 989.1214804                      |

- 1. The number of TVs entering into Mumbai's e-waste market is 142 and 1057 per day for 15 and 17 year obsolescence rate, respectively.
- 2. Since the average weight of TV has been taken as 36.5 kg, the total weight of TVs entering into Mumbai's e-waste market considering fifteen year obsolescence rate is 2013 tons per year.
- 3. The total weight of TVs entering into Mumbai's e-waste market considering seventeen years obsolescence rate is 1705 tons per year.
- 4. The number of TVs entering into Pune, Pimpri Chinchwad e-waste market is 59 and 57 per day for 15 and 17 year obsolescence rate, respectively.
- 5. The total weight of TVs entering into Pune, Pimpri Chinchwad e-waste market considering fifteen year obsolescence rate is 776.49 tons per year.
- 6. The total weight of refrigerator entering into Pune, Pimpri Chinchwad e-waste market considering seventeen year obsolescence rate is 755.65 tons per year.

Based on the secondary data review for television, considering obsolesce of 15 years the amount of e-waste in Mumbai and Pune, Pimpri region by year 2015 is estimated and projected to be 6173.6 tons and 1216 tons respectively.

# 5.9 Tracer Analysis

The objective of tracer analysis is to verify obsolescence rate in Mumbai, Pune, Pimpri and Chinchwad region through primary data collected through tracer walk along the E-waste trade value chain. The obsolescence rate can be verified through identification of WEEE stream and WEEE processes and tracking of tracer item in WEEE stream. The tracer selected for each electronic item in the study area is given in **Table 5.18** and analysis for each item is given in subsequent section.

| S. No. | Electronic Item   | Tracer     |
|--------|-------------------|------------|
| 1.     | Cellular Phone    | LCD screen |
| 2.     | Personal Computer | CRT        |
| 3.     | Television        | CRT        |
| 4.     | Refrigerator      | Compressor |

| Table 5.18: | Tracer for | items of | of study |
|-------------|------------|----------|----------|
|             | 114001101  |          | Ji Olaay |

#### 5.9.1 Tracer Analysis for PCs

An attempt was made to confirm the obsolesce rate and finally establish the numbers of PCs entering into the Mumbai's e-waste market using tracer analysis. The salient feature of this technique is given below:

- One of the component of PCs i.e. CRT was identified as a tracer
- The entire movement of the tracer through the supply chain was tracked down
- Qualitative and quantitative estimations were done with the identified stakeholders across the value chain.

It was identified that two types of stakeholders are involved into CRT handling i.e. CRT receiver & supplier and CRT dismantler. The field survey results of CRT dismantler revealed that the out of the total CRTs received, e-waste industry accepts 70-80% for dismantling of CRTs, while the remaining is rejected. Out of accepted CRTs, 5-10% goes for direct resale with minor repairing and rest of 15-20% goes for CRT breaking for glass recovery.

Using the above data from the field survey, the actual numbers of PCs being dismantled everyday was estimated. The survey indicated that total numbers of dismantling units operating in Mumbai's e-waste market is 17 (seventeen). It was also found during the field survey that each unit is running with dismantling of 50-55 CRTs per day. Therefore, the total number of dismantled CRTs per day from all the units in Mumbai is 680-765. The findings of this analysis are summarized in the **Table 5.19**.

| Description                                                                        | Figure |
|------------------------------------------------------------------------------------|--------|
| Total CRT being accepted for dismantling per day in Mumbai                         | 748    |
| CRT breaking for glass recovery                                                    | 135    |
| % found in working condition returned to market for resale                         | 5      |
| Total number CRT, which found route for resale without dismantling                 | 38     |
| Ratio between breakage and dismantled                                              | 1:5.5  |
| Ratio conveyed during interview with the different stakeholder in e-waste business | 1:5.35 |

Table 5.19: Tracer analysis for personal computer CRTs

Source: Survey finding and stakeholder interview

The inferences drawn from this analysis are as follows:

- 1. The number of CRTs dismantled everyday is 935 for personal computers. This number is very close to the 5 years obsolescence rate, which confirms the assumption made for obsolescence rate.
- 2. Ratio calculation on the basis of our finding and assumption (5 yrs obsolesce) and stakeholders review matches.
- 3. This also indicates that e-waste of PC from Pune is arriving at Mumbai market for dismantling.

# 5.9.2 Tracer Analysis for Televisions

In the similar fashion and using the same tracer technique, tracer analysis was also carried out for television. It was identified that two types of stakeholders are involved into television handling i.e. monitor repairing and resale and monitor dismantler.

The field survey results of TV monitor dismantler revealed that the out of the total monitor received, e-waste industry accepts 80-90% for dismantling and glass recovery, while the remaining 8-9% goes for direct resale with minor repairing.

Using the above data from the field survey, the actual numbers of monitor being dismantled and glass recovered everyday was estimated. The total numbers of monitor operating units in Mumbai's e-waste market is 10. It was found during the field survey that each unit is running with dismantling and glass recovery of 20-25 monitors per day. Therefore, the total number of dismantled monitor for component extraction and glass recovery from all the units in Mumbai is 200-250 per day. The findings of this analysis are summarized in the **Table 5.20**.

| Description                                                                        | Figure |
|------------------------------------------------------------------------------------|--------|
| Total CRT being accepted breaking for dismantling per day in Mumbai                | 250    |
| % found in working condition returned to market for resale                         | 8-9%   |
| Total number CRT, which found route for resale without dismantling                 | 23     |
| Total CRT being dismantled for glass recovery                                      | 228    |
| Ratio between dismantled and resale                                                | 1:98   |
| Ratio conveyed during interview with the different stakeholder in e-waste business | 1:9    |

#### Table 5.20: Tracer analysis for television monitor

Source: Survey finding and stakeholder interview

The inferences drawn from this analysis are as follows:

- 1. The number of monitor dismantled for component extraction and glass recovery is 228 per day for television. This number is close to the 15 years obsolescence rate (210 nos.).
- 2. Ratio calculation on the basis of our finding and assumption (15 yrs obsolesce) and stakeholders review matches.
- 3. Tracer analysis also indicates that e-waste of TV from Pune, Pimpri Chinchwad region is arriving at E-waste Mumbai market for dismantling.

#### 5.9.3 Tracer Analysis for Cellular Phones

The tracer analysis was also carried out for cellular phones in the study area. It was identified that only one type of stakeholder is involved into cellular phones i.e. for

dismantling and repairing of cellular phones. Most of the parts of the mobile phone such as LCD, battery, are not repairable and hence directly disposed into the municipal dustbin. LCD and battery from mobile waste goes to municipal dustbin, while CB and plastic casing goes for recycling.

The field survey results of cellular phone dismantler revealed that the out of the total ewaste received, e-waste industry accepts 75-85%, while 10-20% goes for direct resale with minor repairing and the remaining of 5% goes for reuse with minor repairing of the components.

Using the above data from the field survey, the actual numbers of cellular phones being dismantled and components recovered everyday was estimated. The total numbers of mobile phones operating hubs in Mumbai's e-waste market is 50 (fifty) and each hub is dealing with sixty to seventy number of mobile phones everyday. It was found during the field survey that each unit is involved with dismantling of mobile phones and components recovery. Therefore, the total number of dismantled mobile phones from all the hubs in Mumbai is 3000 to 3500 per day. The findings of this analysis are summarized in the **Table 5.21**.

| Description                                                                        | Figure  |
|------------------------------------------------------------------------------------|---------|
| Total mobile phones being received for dismantled and recovery of                  | 3140    |
| components per day in Mumbal (85%)                                                 |         |
| % found in working condition returned to market for resale with minor              | 10      |
| repairing                                                                          |         |
| Total number of mobile phones, which found route for resale of                     | 185     |
| components with minor repairing                                                    |         |
| Ratio between dismantled and resale                                                | 1:16.97 |
| Ratio conveyed during interview with the different stakeholder in e-waste business | 1:16.97 |
| Source: Survey finding and stakeholder interview                                   | •       |

| Table 5.21: Tracer analysis for cel | Ilular phones |
|-------------------------------------|---------------|
|-------------------------------------|---------------|

, 0

The inferences drawn from this analysis are as follows:

- 1. The number of cellular phone received for dismantled for component extraction and recovery of components is 3140 per day. This number is very close to the 2 years obsolescence rate (3316 nos.) of mobile phones.
- 2. Ratio calculation on the basis of our finding and assumption (2 yrs obsolesce) and stakeholders review approximately matches.
- 3. Tracer analysis also indicates that e-waste of mobile phones from Pune, Pimpri Chinchwad region come to Mumbai e-waste market for dismantling and disposal.

#### 5.9.4 Tracer Analysis for Refrigerator

The tracer analysis was also carried out for refrigerator in Mumbai, Pune, Pimpri, and Chinchwad Region. It was also found that Pune, Pimpri Chinchwad region has also capacity for refrigerator dismantling. It was identified that many stakeholders are involved into refrigerator i.e. for dismantling of refrigerator for compressor, plastic and steel and copper extraction from compressor. The end of life refrigerator is being taken for compressor extraction. The field survey results of refrigerator dismantler revealed that the out of the total refrigerator received, e-waste industry accepts 80-85% for dismantling of refrigerator, extraction of compressor and plastic grinding, while the remaining 15-20% goes for reuse of old compressor with minor repairing.

Using the above data from the field survey, the actual numbers of refrigerator being dismantled and compressor recovered everyday was estimated. The total numbers of units for handling e-waste from refrigerator in MMR and Pune, Pimpri Chinchwad Region e-waste market is 40 spread across in different areas. On an average each unit is dealing with approximately eight to nine number of refrigerators everyday, considering 12 to 14 units in MMR and 4 to 5 in Pune, Pimpri Chinchwad region. Therefore, the total number of dismantled refrigerator from all the units in the study area is about 360 per day. The findings of this analysis are summarized in the **Table 5.22**.

# Table 5.22: Tracer analysis for refrigerator

| Description                                                                                          | Figure |
|------------------------------------------------------------------------------------------------------|--------|
| Total refrigerator being received for dismantling                                                    | 360    |
| Total refrigerator being received for dismantled and recovery of compressors per day in Mumbai (85%) | 306    |
| % found in working condition returned to market for resale with minor repairing                      | 15     |
| Total number of refrigerator, which found route for resale of compressor with minor repairing        | 46     |
| Ratio between dismantled of refrigerator and resale of compressor                                    | 1:6.6  |
| Ratio conveyed during interview with the different stakeholder in e-waste business                   | 1:7    |

Source: Survey finding and stakeholder interview

The inferences drawn from this analysis are as follows:

- 1. The number of refrigerator received for dismantled for compressor extraction is 360 per day. This number is close to the 17 years obsolescence rate of refrigerators.
- 2. Ratio calculation on the basis of our finding and assumption (17 yrs obsolesce) and stakeholders review approximately matches.

Therefore, obsolescence rate of 17 years has been taken to compute e-waste/ WEEE generation for refrigerators in the study area.

# 5.10 WEEE Inventory in MMR, Pune and Pimpri Chinchwad Region

Final inventory giving the quantity of E-waste from the four electronic items in MMR, Pune, Pimpri, Chinchwad region considering a combination of obsolescence rates confirmed through tracer technique is given below. Tracer analysis has indicated that WEEE/E-waste generated from cell-phones, PC and TV in Pune, Pimpri and Chinchwad region comes to MMR for dismantling, while refrigerator gets dismantled in Pune, Pimpri Chinchwad region. This scenario analysis has been described in **Table 5.22**.

| Region | Items              | Obsolescence<br>Rate | Waste in<br>Tonnes/yr |
|--------|--------------------|----------------------|-----------------------|
| MMR    |                    |                      |                       |
| 1      | Cell Phone         | 2                    | 144.1264454           |
|        | Personnel Computer | 5                    | 15461.503             |
|        | Refrigerator       | 17                   | 5457.49389            |
|        | Television         | 15                   | 2155.457655           |

#### Table 5.22: E-Waste Generation in 2007

| Region | Items              | Obsolescence<br>Rate | Waste in<br>Tonnes/yr |
|--------|--------------------|----------------------|-----------------------|
|        | Total              |                      | 23218.58074           |
| Pune   |                    |                      |                       |
|        | Cell Phone         | 4                    | 24.26201389           |
|        | Personnel Computer | 7                    | 17.05712              |
| 2      | Refrigerator       | 17                   | 1102.165416           |
|        | Television         | 15                   | 776.4968418           |
|        | Total              |                      | 1919.981              |

The analysis of above data shows that the E-waste generation exceeds 23, 000 tonnes / year in MMR, while it exceeds 1900 tonnes in Pune, Pimpri Chinchwad region. The E-Waste / WEEE arriving in MMR exceed 24,000 tons. This figure does not include imports.

Tracer analysis indicated that all the imports from JNPT & MPT do not enter MMR and Pune Chinchwad market for dismantling. MMR region acts as a conduit/ transit/ trading point for supply of WEEE/ E-waste to other parts of India.

The WEEE / E-Waste projections till 2015 for MMR, Pune, Pimpri, and Chinchwad Region are shown in **Figure 5.13** and **Figure 5.14**.



Figure 5.13: WEEE / E-Waste projections till 2015 for MMR



Figure 5.14: WEEE / E-Waste projections till 2015 for Pune, Pimpri Chinchwad Region

The analysis of above data shows that WEEE/ E-waste in MMR exceed 50,000 tons and 3500 tons in Pune, Pimpri Chinchwad region by 2015.

# CHAPTER 6: WEEE/ TRADE ECONOMICS & ENVIRONMENTAL IMPACTS

### 6.1 Introduction

The trade economics governs the WEEE/ E-waste along the value chain in the study area. Since the trade starts from organized sector and ends in unorganized sector, a number of factors drive this economics. Similarly, environmental impacts are associated with WEEE/ E-waste trade. The following sections describe economics and impacts in the study area.

# 6.2 Trade Economics

Trade economics has been studied in terms of eleven processes, which occur along the trade value chain. Each stakeholder in the eleven processes studied is linked to the other and the trade between the two takes place based on value added. The fundamental parameters governing this trade are same as that of any other trade. These parameters are described below.

- 1. Total input cost
- 2. Total operating profit
- 3. Total selling price

Input costs have been classified into the following costs.

- 1. Raw material cost
- 2. Labour cost

Selling price is the price at which the products are sold. The difference between the selling price and the input costs gives the operating margin. The total selling price consisting of selling price of each of the eleven processes gives the trade turnover. Operating margin is an indicator of the profit and has been computed in terms of operating margin per kg of raw material and operating margin per day.

The efficiency in the trade has been measured in terms of labour productivity and raw material usage. The labour productivity has been computed in terms of total man hours per day and man hours used per kilogram of raw material. The entire trade economics of each of the eleven processes is summarized in **Table 6.1**. **Table 6.1** does not include capital, depreciation, taxation and transportation cost. Labour refers to workers involved in e-waste extraction industry only and only 300 working days in a year.

#### Table 6.1: Trade economics of Mumbai e-waste market

| Process name                                               | Raw material<br>generated (Kg/day) | Labour cost (Rs/Kg of<br>raw material) | Total labour cost/ per<br>day | Man hours per Kg of<br>raw material | Total man hours per<br>day | Input (Rs/Kg of raw<br>material) | Total input cost per<br>day | Operating margin<br>(Rs/Kg of raw material | Total operating profit<br>per day | Total selling cost per<br>day |
|------------------------------------------------------------|------------------------------------|----------------------------------------|-------------------------------|-------------------------------------|----------------------------|----------------------------------|-----------------------------|--------------------------------------------|-----------------------------------|-------------------------------|
| IC's extraction from<br>PWB*                               | 3763.6                             | 85.0                                   | 319906.0                      | 0.47                                | 1768.9                     | 35.00                            | 131726.0                    | 6.80                                       | 25592.5                           | 477224.5                      |
| Surface heating of PWB<br>and extraction of<br>components* | 3450.9                             | 51.0                                   | 175995.9                      | 0.53                                | 1828.9                     | 40.50                            | 139761.4                    | 8.75                                       | 30195.4                           | 345952.7                      |
| Dissembling of monitor<br>and extraction of<br>components* | 16560.0                            | 0.9                                    | 14904.0                       | 0.09                                | 1646.0                     | 1.25                             | 20700.0                     | 2.25                                       | 37260.0                           | 72864.0                       |

| Process name                   | Raw material<br>generated (Kg/day) | Labour cost (Rs/Kg of<br>raw material) | Total labour cost/ per<br>day | Man hours per Kg of<br>raw material | Total man hours per<br>day | Input (Rs/Kg of raw<br>material) | Total input cost per<br>day | Operating margin<br>(Rs/Kg of raw material | Total operating profit per day | Total selling cost per<br>day |
|--------------------------------|------------------------------------|----------------------------------------|-------------------------------|-------------------------------------|----------------------------|----------------------------------|-----------------------------|--------------------------------------------|--------------------------------|-------------------------------|
| Yoke core                      | 207.0                              | 9.6                                    | 1987.2                        | 0.49                                | 101.4                      | 48.70                            | 10080.9                     | 9.40                                       | 2681.8                         | 19314.8                       |
| Metallic transformer           | 897.0                              | 10.5                                   | 9418.5                        | 0.36                                | 322.9                      | 31.75                            | 28479.7                     | 13.50                                      | 9363.6                         | 38649.1                       |
| Rare earth core of transformer | 276.0                              | 8.2                                    | 2263.2                        | 0.50                                | 138.0                      | 29.50                            | 8142.0                      | 18.30                                      | 6650.2                         | 20335.3                       |
| Rare earth static transformer  | 241.5                              | 6.5                                    | 1569.7                        | 0.38                                | 91.8                       | 18.60                            | 4491.9                      | 2.40                                       | 757.2                          | 8676.2                        |
| Wire PVC and Copper*           | 1380.0                             | 3.9                                    | 5382.0                        | 0.50                                | 690.0                      | 24.50                            | 33810.0                     | 10.50                                      | 18641.7                        | 69051.7                       |
| Plastic shredder*              | 1932.0                             | 2.0                                    | 3864.0                        | 0.44                                | 940.2                      | 24.50                            | 47334.0                     | 12.85                                      | 27457.9                        | 84083.1                       |
| Refrigerator compressor        | 977.5                              | 18.4                                   | 17986.0                       | 0.28                                | 273.7                      | 15.30                            | 14955.7                     | 5.60                                       | 5474.0                         | 38415.7                       |
| Mobile phone                   | 374.2                              | 1.6                                    | 598.7                         | 0.20                                | 74.8                       | 0.90                             | 336.8                       | 1.10                                       | 411.6                          | 1347.1                        |
| Total                          | 30059.7                            | 197.6                                  | 553875.2                      | 4.24                                | 7876.6                     | 270.50                           | 439818.4                    | 91.45                                      | 164485.9                       | 1175914.2                     |

\*includes personal computers and black & white and colour televisions CRT.

Some major observations from **Table 6.1** are as follows:

- 1. The total turnover of the trade per year is Rs.352774260, which is 0.0236% of Mumbai's Gross Domestic Product (GDP).
- 2. The total man hours per year used in this process is 2362980.
- 3. The total labour cost per day in the trade is Rs. 553875. Therefore, the average labour cost per day is Rs. 563. This is much higher than Maharashtra's per capita per day income of Rs.95. Therefore, the labour finds this trade to be lucrative.
- 4. The total man hours per kg of raw material are highest (0.53) for surface heating of PWB and extraction of components and lowest (0.09) for dismantling of monitors and extraction of components. This indicates that surface heating of PWB is very labour intensive process, while dismantling of monitors is mechanized process.
- 5. The number of man hours per day of surface heating of PWB is highest (1828.9), while it is lowest for mobile phone dismantling (74.8). It indicates that surface heating of PWB is a regular operation, while mobile phone dismantling is an intermittent operation. Further, there is a continuous supply of PWBs as a raw material, while mobile phones as a raw material are available intermittently.
- 6. The same trend as that of point 4 has been observed for total input cost per day.
- 7. The total operating profit per day ranges from Rs.37260 to Rs.411.6. Rare earth core of transformer process gives the maximum operating margin of Rs. 18.30 while dismantling of mobile phones gives the minimum operating profit of Rs. 1.10 per day.

#### 6.3 Impacts

E-waste contains a mix of toxic substances such as lead and cadmium in circuit boards, lead oxide and cadmium in monitor cathode ray tubes (CRTs), mercury in switches and flat screen monitors, cadmium in computer batteries, polychlorinated biphenyls (PCBs) in older capacitors and transformers & brominated flame retardants on printed circuit boards, plastic casings, cables and polyvinyl chloride (PVC) cable insulation that release highly toxic dioxins and furans when burned to retrieve copper from the wires. Due to the hazards involved, disposing and recycling e-waste pose serious legal and environmental implications. When computer waste is land filled or incinerated, it poses significant contamination problems. Landfills leach toxins into groundwater and incinerators emit

toxic air pollutants including dioxins. Likewise, the recycling of computers has serious occupational and environmental implications, particularly when the recycling industry is often marginally profitable at best and often cannot afford to take the necessary precautions to protect the environment and worker health. The following section describes impacts due to e-waste trade.

### 6.4 Impacts - Health and Environment

Following are the impacts which may results on workers and environment due to hazardous e-waste recycling processes

| Computer/e-waste components                                                               | Process witnessed                                                                                    | Potential occupational hazard                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Potential environmental<br>hazard                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cathode ray tubes<br>(CRT)                                                                | Regunning,<br>breaking, removal of<br>yoke and dumping                                               | <ul> <li>Silicosis</li> <li>Cuts from CRT glass in case of implosion</li> <li>Inhalation or contact with phosphor containing cadmium or other metals</li> <li>Glass Dust inhaling</li> </ul>                                                                                                                                                                                                                                                                                                  | Lead, barium and other heavy<br>metals leaching into ground<br>water, release of toxic<br>phosphor                                                                                                                                                                                                                                                                                   |
| Printed circuit board<br>(PCB)                                                            | De-soldering and<br>removing computer<br>chips                                                       | <ul> <li>Tin and lead inhalation</li> <li>Possible brominated dioxin,<br/>beryllium cadmium and<br/>mercury inhalation</li> </ul>                                                                                                                                                                                                                                                                                                                                                             | Air emission of same substances                                                                                                                                                                                                                                                                                                                                                      |
| Printed circuit board<br>processing                                                       | Open burning and<br>acid bath of waste<br>boards that had<br>chips removed to<br>remove final metals | <ul> <li>Toxicity to workers and<br/>nearby residents from tin,<br/>lead, brominated dioxin,<br/>beryllium cadmium and<br/>mercury inhalation</li> <li>Respiratory irritation</li> <li>Acid contact with eyes, skin<br/>may result in permanent<br/>injury</li> <li>Inhalation of mists and<br/>fumes of acids, chlorine and<br/>sulphur dioxide gases can<br/>cause respiratory irritation to<br/>severe effects including<br/>pulmonary ederm,<br/>circulatory failure and death</li> </ul> | <ul> <li>Hydrocarbons, heavy metals,<br/>brominated substances etc<br/>discharged directly into river<br/>and banks.</li> <li>Acidifies the river destroying<br/>fish and flora.</li> <li>Tin lead and contamination<br/>of immediate environment<br/>including surface and<br/>groundwater</li> <li>Brominated dioxins, beryllium<br/>cadmium and mercury<br/>emissions.</li> </ul> |
| Chips and other gold<br>plated components                                                 | Chemical stripping<br>using nitric and<br>hydrochloric acid<br>and burning of chips                  | <ul> <li>Toxicity to workers and<br/>nearby residents from tin,<br/>lead, brominated dioxin,<br/>beryllium cadmium and<br/>mercury inhalation</li> <li>Respiratory irritation</li> <li>Acid contact with eyes, skin<br/>may result in permanent<br/>injury</li> <li>Inhalation of mists and<br/>fumes of acids, chlorine and<br/>sulphur dioxide gases can<br/>cause respiratory irritation to<br/>severe effects including<br/>pulmonary ederm,<br/>circulatory failure and death</li> </ul> | <ul> <li>Hydrocarbons, heavy<br/>metals, brominated<br/>substances etc discharged<br/>directly into river and banks.</li> <li>Acidifies the river destroying<br/>fish and flora.</li> <li>Tin lead and contamination<br/>of immediate environment<br/>including surface and<br/>groundwater</li> <li>Brominated dioxins,<br/>beryllium cadmium and<br/>mercury emissions</li> </ul>  |
| Plastics from<br>computer and<br>peripherals e.g.<br>printers, keyboards,<br>monitors etc | Shredding and low<br>temperature melting<br>to be reutilized in<br>low grade plastics                | <ul> <li>Probable Hydrocarbons,<br/>heavy metals, brominated<br/>dioxins exposure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  | Emissions of brominated dioxins and heavy metals and hydrocarbons                                                                                                                                                                                                                                                                                                                    |
| Computer wires                                                                            | Open burning and stripping to remove copper                                                          | Brominated and chlorinated<br>dioxins, Polycyclic Aromatic<br>Hydrocarbons (PAH)                                                                                                                                                                                                                                                                                                                                                                                                              | Hydrocarbons ashes including<br>PAH's discharged to air, water<br>and soil                                                                                                                                                                                                                                                                                                           |

| Computer/e-waste components                                                              | Process witnessed                                                       | Potential occupational hazard                                                                                                                                      | Potential environmental<br>hazard                                          |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                          |                                                                         | <ul><li>(Carcinogenic) exposure to<br/>workers living in the burning<br/>works area</li><li>Cuts from knife in case of<br/>implosion</li></ul>                     |                                                                            |
| Miscellaneous<br>computer parts<br>encased in rubber or<br>plastic e.g. steel<br>rollers | Open burning to<br>recover steel and<br>other metals                    | Polycyclic Aromatic<br>Hydrocarbons (PAH)<br>(Carcinogenic) and potential<br>dioxin exposure                                                                       | Hydrocarbons ashes including<br>PAH's discharged to air, water<br>and soil |
| Toner Cartridges                                                                         | Use of paintbrushes<br>to recover toner<br>without any<br>precaution    | <ul> <li>Respiratory tract irritation</li> <li>Carbon black possible<br/>human carcinogen</li> <li>Cyan, yellow and magenta<br/>toners unknown toxicity</li> </ul> | Cyan, yellow and magenta toners unknown toxicity                           |
| Secondary steel or<br>copper and precious<br>metal smelting                              | Furnace recovers<br>steel or copper from<br>waste including<br>organics | <ul> <li>Exposure to dioxins and<br/>heavy metals</li> </ul>                                                                                                       | Emissions of dioxins and<br>heavy metals                                   |

# 6.5 Macro level Impacts

Looking into the state of affairs in e-waste scenario in Mumbai, the impacts with regard to health, environment and business were tabulated based on the analysis and visual interpretation (based on primary and secondary survey) at following e-waste recycling or handling industries:

- IC's Extraction from PWB (Manual plucking)
- Surface heating of PWB and extraction of components
- Dissembling of monitor and extraction of components
- Yoke core
- Metallic transformer
- Rare earth core of transformer
- Rare earth static transformer
- Wire PVC and copper (Manual Stripping)
- Plastic shredder

Each sector i.e. health, environment and business were assigned with individual score which are based on there negative and positives impacts on the workers, surroundings and economy. In case of environment and heath, three distinct values i.e. -1, 0 and +1 were awarded, wherein -1 -represents negative impact, 0 -represent neutral impact which means can be mitigated with protective equipments and +1 -represents no impacts.

In case of business, the formula used is (Rs./man hours) wherein Rs. represent the turnover of the business concerned and man hours represents total man hours involved to generate this turnover. This has been categorized as -1, 0 and +1 wherein, -1 which has a value from 0-100 represent low value or low business standing, 0 which has a value from 101-200 represent medium business standing, and +1 which has a value >200 means high business sense.

Business like yoke core, plastic shredding etc. which are lucrative streams in e-waste business attach higher business score and represents negative score in environment and health sectors. The level of impacts in relation to health, environment and business due to e-waste trade in Mumbai is as summarized in the **Table 6.2**.

# 6.6 Score of Impacts

Environment & health score: (-1) Negative Impacts, (0) Neutral, (+1) No Impact Business score: (-1) 0-100 Low Value, (0) 101-200 Medium Value, (+1) >200 High Value

#### Table 6.2: Summary of impacts

| Impact                         | Health<br>(score) | Environment<br>(score) | Business<br>(Rs./Man Hours) | Business<br>(score) |
|--------------------------------|-------------------|------------------------|-----------------------------|---------------------|
| C's Extraction from DWD        | 0                 | 0                      | 200                         | . 4                 |
| IC S Extraction from PVVB      | 0                 | 0                      | 269                         | +1                  |
| (manual plucking)              |                   |                        |                             |                     |
| Surface heating of PWB and     | -1                | -1                     | 189                         | 0                   |
| extraction of components       |                   |                        |                             |                     |
| Dissembling of monitor and     | -1                | -1                     | 44                          | -1                  |
| extraction of components       |                   |                        |                             |                     |
| Yoke core                      | +1                | 0                      | 190                         | 0                   |
| Metallic transformer           | +1                | 0                      | 119                         | 0                   |
| Rare earth core of transformer | +1                | -1                     | 147                         | 0                   |
| Rare earth static transformer  | +1                | -1                     | 95                          | -1                  |
| Wire PVC and copper (manual    | +1                | 0                      | 100                         | 0                   |
| stripping)                     |                   |                        |                             |                     |
| Plastic shredder               | -1                | -1                     | 89                          | -1                  |
| Refrigerator Compressor        | -1                | 0                      | 140                         | 0                   |
| Mobile Phone Dismantling       | 0                 | 0                      | 18                          | -1                  |

Each process has its own impact and can lead to areas where further interventions may be carried out. This intervention will depend on the scale of operations and the scale of impact on account of scale of operations.

# CHAPTER 7: RECOMMENDATIONS AND ROADMAP

### 7.1 Introduction

Recommendations have been formulated based on the major findings of the study. These findings define the risks involved in WEEE/ E-waste generation, trade, treatment and disposal. The following section summarizes each of these issues followed by recommendations and action plan.

# 7.2 Major Findings

Some of the major findings of the study are given below, which have been classified into strength, weakness, opportunities and threats as given below.

<u>Strength</u>

- In Pune, Pimpri Chinchwad region, field investigations reveal that e-waste is transported to Mumbai from where it is supplied to other parts of India. Some part of the e-waste is again sent to Delhi for further processing and dumping to the land fill site.
- No acid bath process for extraction of metals has been observed in the study area.
- Tracer tracking shows that obsolescence rate of cellular phones, PC, TV and refrigerator in the region is 2 years, 5 years, 15 years and seventeen years respectively.

#### <u>Weakness</u>

- No clear definition of WEEE/ E-waste exists in the existing regulatory regime in India. It is only partially covered under Hazardous Waste Management Rules 2003.
- Most of the activity in MMR, Pune and Pimpri Chinchwad region involves physical dismantling by hammer, chisel, screw driver and bare hand. The most high- tech piece of dismantling equipment witnessed was an electric drill.
- There is no organized mechanism for collection, transportation and disposal of WEEE/ E-Waste in MMR, Pune, and Pimpri Chinchwad region.
- No mechanism exists in the state to monitor and track its inventory, collection, transportation and disposal.

#### **Opportunities**

- MMR is a major hub for dismantling of WEEE/ E-waste
- There are twelve processes, which are involved in dismantling of WEEE/ E-waste in MMR and Pune, Pimpri Chinchwad region. The trade is scattered in the region and starts from organized sector to unorganized sector. The major dismantling occurs in un-organized sector.
- The analysis of data shows that the E-waste generation exceeds 23, 000 tonnes/ year in MMR, while it exceeds 1900 tonnes in Pune, Pimpri chinchwad region.
- The E-Waste/ WEEE arriving in MMR for dismantling exceed 24,000 tons. This figure does not include imports,
- The analysis of data shows that WEEE/ E-waste in MMR exceed 50,000 tons and 3500 tons in Pune, Pimpri Chinchwad region by 2015.
- The total turnover of the trade per year is Rs.352774260, which is 0.0236% of Mumbai's Gross Domestic Product (GDP).
- The total man hours per year used in this process is 2362980.

- The total labour cost per day in the trade is Rs. 553875. Therefore, the average labor cost per day is Rs. 563. This is much higher than Maharashtra's per capita per day income of Rs.95. Therefore, the labor finds this trade to be lucrative.
- The total operating profit per day ranges from Rs.37260 to Rs.411.6. Rare earth core of transformer process gives the maximum operating margin of Rs. 18.30 while dismantling of mobile phones gives the minimum operating profit of Rs. 1.10 per day.

#### Threats

- The WEEE/E-waste trade poses major environmental risks.
- Field Investigations reveal that easy and approachable method for disposal of ewaste in Mumbai is throwing in Municipal dust bin which goes for land filling sites.
- Tracer analysis indicated that all the imports from JNPT & MPT do not enter MMR and Pune Chinchwad market for dismantling. MMR region acts as a conduit/ transit/ trading point for supply of WEEE/ E-waste to other parts of India.

#### 7.3 Recommendations

Recommendations have been formulated based on findings of SWOT analysis given below:

#### Findings of SWOT analysis:

- 1. WEEE/ E-waste emerging as major problem in the state which will pose major environmental risk due to exponential increase in generation by 2015.
- 2. No mechanism exists in the state to collect, transport, dismantle and dispose WEEE/ E-waste.
- 3. No scientifically designed facility exists in the state for its safe dismantling and disposal.
- 4. Lack of institutional mechanism to track and monitor its collection, transportation, disposal and inventorization.

#### Recommendations

1. Need for a scientifically designed dismantling facility with proven technology in the state. A cumulative risk profile of such facility in the existing scenario in the state is given below

#### **Risk Matrix**

| Factors/ Intensity                                                    |                       | High | Medium       | Low          |
|-----------------------------------------------------------------------|-----------------------|------|--------------|--------------|
| Regulatory Risks                                                      |                       |      |              |              |
| Risks due to lack of o existing regulations                           | definition of WEEE in |      |              |              |
| Risks due to part inclusion of WEEE in existing Hazardous Waste Rules |                       |      | $\checkmark$ |              |
| Risks due to lack of harmonization of WEEE<br>in Export/ Import rules |                       |      | $\checkmark$ |              |
| Market Risks                                                          |                       |      |              |              |
| Risks of availability                                                 | Short term            |      |              | $\checkmark$ |

| of raw material<br>(WEEE)           | Long term  |  | $\checkmark$ |              |  |
|-------------------------------------|------------|--|--------------|--------------|--|
| Risk associated with collection     | Short term |  |              |              |  |
|                                     | Long term  |  |              | $\checkmark$ |  |
| Risk associated with transportation | Short term |  |              | $\checkmark$ |  |
|                                     | Long term  |  |              |              |  |
| Technology Risks                    |            |  |              |              |  |
| Type of raw material/ input to WEEE |            |  | $\checkmark$ |              |  |
| recycling system                    |            |  |              |              |  |
| Scale of operation                  |            |  |              |              |  |
| Environmental Issues                |            |  | $\checkmark$ |              |  |

- 2. The availability of raw material should be ensured initially for viability of any dismantling facility. A model of TSDF facility operation in MMR can be followed to ensure raw material availability to the facility.
- 3. Dumping of WEEE should be banned in landfill site.
- 4. WEEE / E-Waste inventory should be tracked / monitored regularly in MMR, Pune and Pimpri Chinchwad region.
- 5. Capacity building requirement of MPCB in the area of
  - WEEE inventory tracking & monitoring at local level and at ports.
  - authorization procedure for WEEE dismantling facilities
  - monitoring of WEEE dismantling facility
  - WEEE interstate movement and transfer.

# 7.4 Road Map / Action Plan

The following road map / action plan have been formulated and prioritized to define the road map for future interventions.

- 1. MPCB to initiate and formulate an institutional mechanism for tracking and monitoring WEEE/ E-waste inventory, generation, collection and transportation in association with other stakeholders like Municipal Corporation of greater Mumbai, Pune Municipal Corporation, Pimpri and Chinchwad Municipal Corporation, industry associations and MIDC.
- 2. MPCB should initiate a multi stakeholder study tour in countries where collection, transportation, dismantling and disposal of WEEE/E-waste is working efficiently. This tour should study the best practices adopted in these countries with respect to each of the element in WEEE/E-waste management.
- MPCB should catalyze development of collection and transportation mechanism of WEEE/ E-waste in MMR, Pune, Pimpri Chinchwad region. Informal/ unorganized sector should be made a part of collection and transportation system to facilitate their integration into the system.
- 4. MPCB should catalyze development of WEEE/ E-waste dismantling facility in MMR, Pune, Pimpri Chinchwad region. It could be promoted by bringing it under infrastructure development project and subsequently taken by state infrastructure development agency or MPCB. Further, it could also be promoted under public private partnership.
- 5. Capacity building of all the stakeholders including MPCB officials, local municipalities, existing dismantlers, customs and port authorities and NGOs.