District Environment Plan

Prepared By

Environment Department, Government of Maharashtra

Maharashtra Pollution Control Board

Washim

1.0 Preamble

Hon'ble National Green Tribunal vide order dated 26/09/2019 in O.A. No. 360 of 2018 filed by Shree Nath Sharma Vs Union of India and Others directed that CPCB shall facilitate the District Magistrates in preparation of District Environmental Plan by placing Model plan on its website. This model plan may be adopted as per local requirements by all Districts under supervision of District Magistrate.

The said Order also directs that Department of Environment in respective States / UTs should collect district plans to prepare State Environment Plan, which shall be monitored by respective Chief Secretaries of State/UT by 15/12/2019.

Based on State Environmental plans, CPCB and Ministry of Environment, Forest & Climate Change shall prepare National Environmental Plan, under the supervision of Secretary, MoEF&CC and Chairman, CPCB by 31/01/2020. The National Action Plan needs to be submitted before Hon'ble NGT 15/02/2020.

In compliance to above directions, CPCB has prepared a model District Environment Plan (DEP) that covers following thematic areas;

In compliance to above directions and as per the model DEP prepared by CPCB, Environment Action plan for Washim District is prepared.

2.0 Introduction

Washim is located in the eastern region of Vidharbha. Akola lies to its north, Amravati lies to its north-east, Hingoli lies to its south, Buldhana lies to its west, Yavatmal lies to its east. Washim was known earlier as Vatsagulma and it was the seat of power of the Vakataka dynasty. The antiquity of the town has given rise to a number of objects and places of interest in the town.

General district profile is presented in the **Table 1** and location is shown in **Figure 1**.

	Table 1 District Profile
Description	Details
Average	The average annual temperature is 26.2°C
Climate	
Geographical	Washim is located in the western region of Vidharbha. Akola lies to its
Location	north, Amravati lies to its north-east, Hingoli lies to its south, Buldhana lies
	to its west, Yavatmal lies to its east. River Penganga is the main river of
	the district. It flows through the Tehsil of Risod. Later it flows through the
	boundary of Washim and Hingoli districts.
Area	4901.19 Sq. km.
Boundaries	Akola district on North, Amravati district on the North - East, Hingoli district
	on South, Buldhana district on the West and Yavatmal district on the East.
Languages	Marathi, Hindi, English are major languages but all Indian languages are
Spoken	spoken
Population	Total: 1,197,160 Male: 620,302 Female: 576,858
	[According to 2011 Census Report]
Population	244 Per Sq. km.
Density	
Literacy Rate	83.25
Rivers	Penganga, Kas, Arunavati, Katepurna
ULBs	6
Municipal	3 Numbers
Corporations	1. Municipal Council Washim
	2. Municipal Council Mangrulpir
	3. Municipal Council Karanja
Sub districts	3 Numbers
Villages	789 Numbers
Statutory	4 Numbers
Towns	
Tahsils	6 Numbers
	Washim, Karanja, Risod, Malegaon, Manora and Mangrulpir
Pin code	444105

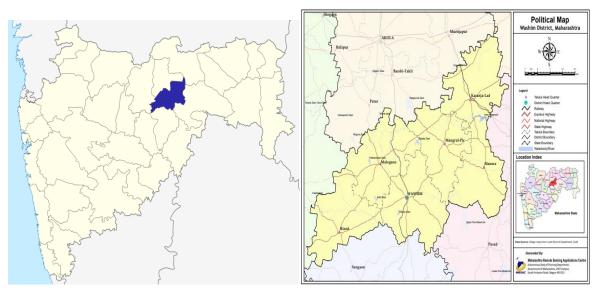
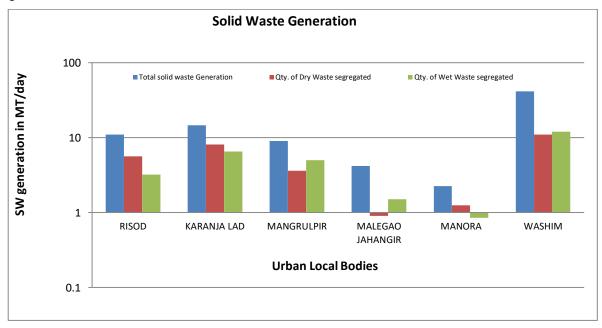


Figure 1 Location of Washim District

3.0 Waste Management Plan

Urban India is facing an ever increasing challenge of providing for the incremental infrastructural needs of a growing urban population. According to the 2011 census, the population of India was 1.21 billion; of this 31% live in cities. It is further projected that by 2050 half of India's population will live in cities. With this increasing population, management of Municipal Solid Waste (MSW) in the country has emerged as a severe problem not only because of the environmental and aesthetic concerns but also because of the sheer quantities generated every day.


Solid waste management is among the basic essential services provided by municipal authorities in the country to keep cities clean. Primary sources of solid waste are local households, commercial establishments, hospitals, hotels, restaurants, and markets. Local Bodies are responsible for collection, storage, segregation, transportation and disposal of all solid waste generated in the city. There are 6 Urban Local Bodies [ULBs] in the district. **Table 2** represents the list of ULBs along with population. Following section gives insight about waste management of entire district.

Sr. No.	Urban Local Bodies	Population
1.	Risod	34,136
2.	Karanja Lad	74,002
3.	Mangrulpir	30,983
4.	Malegaon Jahangir	21,290
5.	Manora	9,339
6.	Washim	78,387

Table 2Washim District Profile

3.1 Domestic Solid Waste Management Plan

Washim district is having 6 ULBs with 81 Wards. Municipal Solid Waste [Dry & Wet] generated from each ULBs is given in the **Figure 2** and details of Other Types of Waste is presented in **Figure 3** due to its less quantity and for easy representation. As per collected data, total solid waste generation of Washim district is 82.49MTD wherein, Dry Waste generation is 30.46MTD and Wet waste is 29.05MTD.

Figure 2 Details of Domestic Solid Waste Generation

It seems that Wet waste comprises of approximately 36% of total waste generated of the district and Dry waste contributes 37%. Washim Municipal Corporation stands on top with the highest quantity i.e. 41.43MTD out of which dry waste is 11MTD and wet waste is 12MTD. Malegao Jahangir Municipal Council generates lowest quantity i.e. 4.2MTD out of

which dry waste is 0.9MTD and wet waste is 1.5MTD. It is observed that quantity of solid waste generation is in line with the respective population of ULBs.

As per the data presented in the **Figure 3**, details of other types of waste generation is presented as below;

Washim district generates 10.7MTD of Street Sweeping Waste. Maximum quantity of Street Sweeping Waste is generated by Washim Corporation with total quantity of 6MTD followed by Karanjalad with 2MTD and Manora stands lowest with 0.05MTD.

Total quantity of Drain Silt Waste generated is 12.05MTD. It seems that maximum quantity of Drain Silt Waste is generated by Karanjalad with total quantity of 4.5MTD followed by Mangrulpir with 2.5MTD. Manora stands lowest with 0.05MTD.

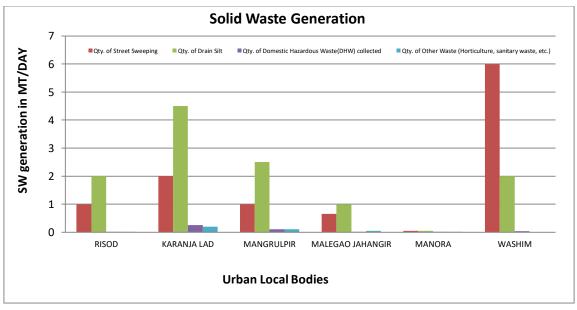


Figure 3

Other Waste Generation of Washim District

Total DHW quantity generated is 0.41MTD. Maximum quantity of DHW is generated by Karanjalad with total quantity of 0.25MTD and 3 ULBs stands lowest with 0.001MTD each.

Total Quantity of Horticulture, Sanitary and other waste is 0.37MTD. Maximum quantity of Other Waste is generated by Karanjalad with total quantity of 0.2MTD. It is observed that Washim does not generate any waste.

Washim district is having total 5 bulk Waste Generator one in each Corporation except in Manora. These 4 ULBs also have on site facilities for Wet Waste.

3.1.1 Compliance in Segregated Waste Collection

Total Waste generation from Washim district is 82.49MTD and almost all waste is being segregated.

A] Waste Management Operations

Door to Door Collection

Out of 6 ULBs, 5 of them have provided 100% door to door collection facility. Only Manora has provided 80% door to door collection facility respectively.

Mechanical Road Sweeping

Mechanical sweeping is not carried out in any of the ULB. 6 ULBs have implemented Manual Road Sweeping is provided at all the facility.

Segregated Waste Transport

Almost 100% of waste is being transport through segregated waste transport system

Composting Operation

Washim district generates approximately 29.05MTD of wet waste and 2 ULBs compost the entire generated waste whereas the other compost a particular quantity of waste.

MRF Operation

Out of 6 ULBs, 3 ULBs is using Multi Re Use Facility to separate and prepare recyclable material whereas 3 ULBs have not installed URF facility.

Use of Sanitary Landfill

Only one ULB has started using the facility in which only 20% activity is carried out.

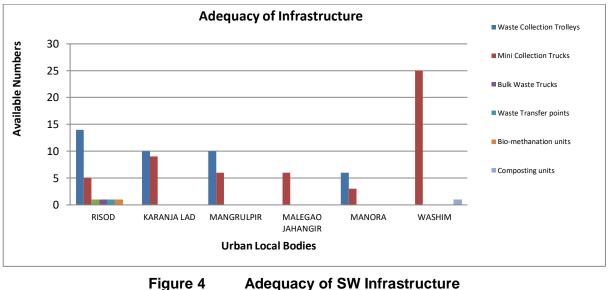
Reclamation of old dumpsites

Reclamation of old dump site using through bio mining process is done at 2 ULBs

Linkage with Recyclers

3 ULBs have linkage with recycler whereas 3 ULBs have not started the process yet.

Authorization of waste pickers


4 ULBs have issued authorization to the waste pickers

Linkage with TSDF / CBMWTF

3 ULBs have linkage with TSDF/ CBMWTF

3.1.2 Adequacy of Infrastructure

Availability of infrastructure to handle the waste generated from the Washim district is presented in Figure 4.

Adequacy of SW Infrastructure

It is observed that there is 1 waste Transfer points in Washim district with waste trolley of 48, Mini collection trucks 54 numbers. Composting units available to treat wet waste are 66. # sanitary landfill fills are provided in the entire district.

3.2 C&D Waste Management Plan

The Construction and Demolition Waste [C&D Waste] generated by Washim district is about 850.2Kg/Day. C&D Waste generated by each ULBs is presented in **Figure 5.** Washim and Karanjalad contribute maximum share of C&D waste to the tune of 300MTD. Least C&D waste is generated by Mangrulpir with the quantity of 0.2MTD.

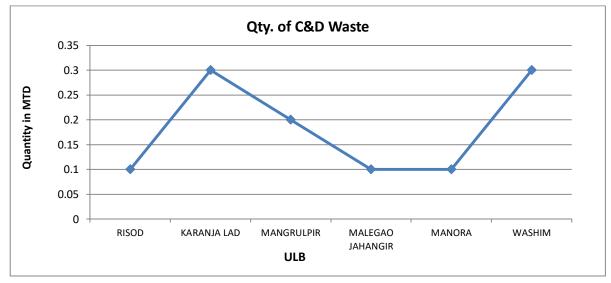


Figure 5 C&D Waste Generation of Washim District

3.3 Plastic Waste Management

Total Plastic waste generated by Washim district is 0.64MTD. With 0.5MTD quantity, Washim Municipal Council is the highest plastic waste generator.

In almost all ULBs, 97% door to door collection system and 79% of segregation system is implemented with 6 Plastic Waste Collection Centre. There are 47 Plastic Waste Pickers with the authorization for waste collection. District has 2 Plastic Waste recyclers. PW Management Rules, 2016 is implemented in all the ULBs.

3.4 Biomedical Waste Management

450 hospitals present in the Washim district. Bedded hospital are 234 numbers, out of which only 117 HCF have taken authorization. 216 are non-bedded hospitals and HCFs. 325

Clinics and 6 Veterinary hospitals. Total BMW generation from all above mentioned sources are to the tune of 726kg/day.

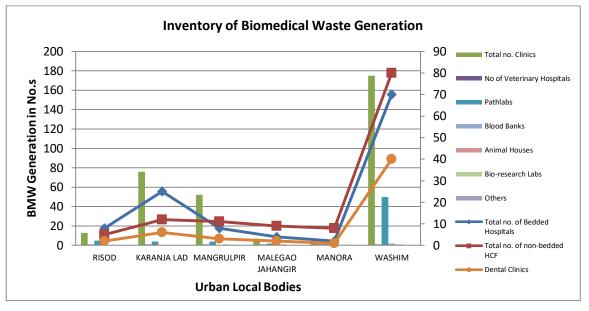


Figure 6

Details of Bio-Medical Waste Generation

There are no Common Facility available for treatment and disposal of BMW. There is requirement of at least one CBWTF in each ULB. Inventory of BMW generating units are mentioned in the Figure 7. 144Kg/Day of waste is generated for which no disposal site is provided.

3.5 **Hazardous Waste Management**

3 industries are present, generating 13.3MT/Annually out of which 6MT is sent for land filling and 7.3MT is sent for recovery of HW materials. All industries are authorized. HW generated is sent to the Common Treatment Storage Disposal Facility, present in other district for further disposal.

3.6 **E** Waste Management

Collection Centres are established by ULBs and 6 are established by Producer under EPR scheme. There are no number of authorized E-Waste recyclers / Dismantler and neither numbers are Authorized E-Waste collectors.

3.7 **Action Plan**

As per the above mentioned observation, it seems that almost all ULBs are handling solid waste generated as per the Municipal Solid Waste Management Rules, however there are certain issues that needs to be addressed for 100% implementation of the rules as mentioned in Table 3

Sectors	Gaps	Action Points	Priority
Domestic Solid	Waste		
Quantification	 Methodology for solid waste quantification should be ascertained Quantification based on Income group, 	 Mechanism for graded weighing system either through intermediate transfer station or at the common receiving station to be created. Usually one weigh bridge at any treatment / 	Immediate
	culture affluence and technology to be considered	 disposal location required Quadrate sampling methodology to be adopted in order to reduce quantity as well as quality 	
Collection System &	 Some of the places, efficiency of the 	 Ideally most proven method of SWM is 3 Tier System with door 	Short to Mid Term
Transport System	collection system is not up to the mark	 to door, community and transfer station approach 100% efficiency to be achieved Intermediate Approximately 17 Ghanta Gadi would be required 	
Infrastructure	 Mostly composting is the main treatment methodology with about 80% coverage MRF facility is also available but limited to few Sanitary landfill are limited to 2-3 ULBs 	 Intermediate / Transfer station based decentralized waste treatment facility to be evaluated Additional 20% alternative treatment such as bio- Methanation can be explored 	High
Plastic Waste	 Lack of SOP for not only quantification 	 Strengthening surveillance of life cycle assessment for type and 	High & Immediate

Table 3	Action Plan for Solid Waste Management
---------	--

10 | P a g e

Sectors	Gaps	Action Points	Priority
	but also life cycle	quantity of Plastic Waste	
	analysis [LCA]	 Effective EPR Policy 	
	Limited	• Initiation of 100% compliance to	
	understanding /	PW Rules at the earliest	
	interpretation of EPR		
	/ PRO		
	 Segregation is Only 		
	70%		
C&D Waste	• 2-3 of the ULB need	Minimum 1 such facility at each	High
	to establish C&D	of the ULB to be established	
	Waste management	• System for utilization of	
	system	recovered material and	
		processed C&D waste to be	
		effectively implemented and	
		monitored	
Biomedical	 Rooting and effective 	 Regular Inventorization through 	Very High
Waste	collection within	automatic / digital platform to be	&
	48hrs from the time	developed	Immediate
	of generation to be	Up-gradation of existing facility	
	effectively handled	to meet 2016 CPCB norms	
	Treatment facility	 Additional facilities to cover the 	
	lacks implementation	of umbrella zone along with	
	of 2016 Notification in	increasing burden on the	
	line with CPCB	existing coverage area to be	
	audited report	planned	
	 Limited 	Collection mechanism to be	
	Inventorization	strengthen with additional	
		vehicles to cover vast area and	
		scattered HCF [miniscule	
		quantity]	

Sectors	Gaps	Action Points	Priority
Hazardous	Domestic HW being	• Either decentralized 4 - 5 step	Very High
Waste	mixed with solid	segregation practices to be	&
	waste posing threat	initiated or at least advisory for	Immediate
	No separate handling	intermittent storage and	
	of domestic HW	collection of domestic HW to be	
	Not effective	initiated	
	segregation of DHW	 Inventory to be initiated and 	
	at source	maintained	
E Waste	Lack of inventory	 Detailed inventory for domestic e 	Very High
	Limited	waste under 26 different	&
	understanding of E	categories	Immediate
	waste rule and	 Mass awareness campaign 	
	management	 Every ULB to have at least one 	
	Neither segregation	E waste management centre	
	nor separate transfer	and minimum one collection /	
	/ handling facility	drop centre in a radius of 25-	
		30km	
		• Atleast one e waste processing	
		unit in a district	

4.0 Water Quality Management Plan

The 6 ULBs generate about 12MLD of sewage with no STP. Total number of bore-well estimated are 854. Permission details of these bore-wells operation from ULBs is not available. Domestic sewage treatment facility details not available currently.

Industrial effluent is much more regulated with 0.388MLD of effluent is generated from 4 numbers and currently all industries are meeting effluent discharge standards. Presently no CETP system is operational in the region.

It is essential as part of the ULBs to map HFL, demarcate and protect flood plains especially in light of the erratic precipitation witness in the recent years in some of the ULBS have already included this features as their regulatory mandate though the irrigation department seems to be directly responsible for the same. A detailed Issue based management action plan is provided in **Table 4**.

Sectors	Gaps	Action Points	Priority
Water	Limited information	 Thorough Mapping of resources 	High
Resources	available on mapping of	to be taken up	
	surface water resources	 Extensive assessment of quality 	
	in terms of quantity	to be done	
	 Limited Inventorization of 	Criticality indicators to be	
	quantity, usage,	established for each water	
	availability exploitation	body/resource	
	etc.	 Extend water quality monitoring 	
	• Limited Rejuvenation /	network to include	
	remediation of water	representativeness	
	bodies	 Based on the criticality initiate 	
	• Solid waste dumping in	Rejuvenation / remediation	
	the river bodies	 Online Monitoring system for 	
		surface water bodies to be	
		established	
		 Protection methods to be 	
		developed for creative stoppage	
		of dumping of solid waste in the	
		surface water bodies	
Domestic	Correlation between	Digital Platform to	Very high &
	generation and treatment	accommodate water budgeting /	Immediate
	often misleading	reuse potential	
	 Water budgeting exercise 	In situ treatment for River	
	often missing	stretches to be developed	
	Computation of water	• Strengthen the sewage	
	footprint missing	collection network to cover	
	 Surveillance 	100% Population	
	/Inventorization in cradle	 Policy for reuse / recycle of 	
	to grave approach	treated wastewater	
	absolutely never applied		
	 Limited collection system 		
	and treatment facility		

Table 4 Action Plan for Water Quality Management

	especially in remote area		
	 Often polluting water 		
	resources		
	No established reuse		
	options / reuse network		
Industrial	Limited information of	 CETP performance to be more 	High
	industries discharging	effective in line with various	
	wastewater in to the river	orders of regulatory bodies /	
	Performance of CETP is	courts	
	questionable	 Digital compliance methodology 	
	Almost 66 number of	to be developed	
	industries Non-	 Disposal system to be under 	
	compliance of in terms of	constant surveillance	
	meeting discharge		
	standards		

5.0 Air Quality Management

As it is Washim district being one of the most vibrant and outgrowing areas in Maharashtra, Air quality assessment and sectoral management needs are ought to be essentially planned and executed. Both CPCB & MPCB through their NAMP & SAMP programme has set up no manual & neither CAAQM stations across the district.

It seems that PM10 is Ambient Air is one of the prime reason of the concern and historically Washim has been in the centre of controversy with regards its air quality management. An exceedance factor reveals as per the monitored data that needs immediate attention as is the case in most of the areas of India. In view of the same the priamafece of every ULB shall be to establish at least one such Ambient Air Monitoring Station and coordinate / collaborate with other monitoring organisation to provide for advisory to general public towards health associations and risk of exposure.

Inventory and policy formulation action plan is stated in Table 5.

Sectors	Gaps	Action Points	Priority
Air	 Most of the places 	 Emission inventory and source apportionment 	High
	PM ₁₀ seems to	supported with dispersion and health based	
	exceed by a factor	iterative process for science based AQM	
	of around 2 - 4	strategy to be established	
	Limited CAAQMS	 Each ULB to have at least one urban and one 	
	to establish /	rural CAAQMS or three manual stations at least	
	corroborate	to include criteria pollutants with minimum one	
	inferences	location to include parameters of 2009 CPCB	
	 Sectoral action 	notification and meteorological data including	
	plans not	cloud cover	
	effectively	• Fugitive emission control system for hot spot	
	established	emission control to be installed	
		Green barriers / Photo catalyst options to be	
		evaluated	
		 Capacity building to be enhanced 	

Table 5 Action Plan for Air Quality Management

6.0 Mining Activity Management plan

Being directly under the promissory control of District Collector, the total lease land and the mining in Washim district is 0.7505Hectares. It is important to mention that sand mining is carried out in Washim with due permission from respective authorities of MPCB and State Environment Department.

7.0 Noise Action Plan

Other than event base monitoring and special projects related / orders monitoring, MPCB carries out annual noise monitoring at 8 locations. Noise quality reveals mainly source specific non-compliance such as traffic related in most of the kerb side analysis. Though zoning categories and regulations therein are particularly specified, in limitation of noise regulations has always been challenge to the regulatory authority **Table 6** spells potential management plan that could be taken up on priority by each of the ULBs.

Sectors	Gaps	Action Points	Priority
Noise	 Most of the source related 	Noise mapping to be carried out for	High
	noise areas show	zonation purposes	
	exposure beyond	 At source control using 	
	compliance	 physical or natural attenuation methods 	
	• Excessive exposure	to be adopted	
	during noise generating	In the path noise control methodologies	
	potential events/ festivals	using noise absorbers creating zone of	
	•	inhibition / silence zone to be done	
		 End of the pipe measures such as PEs 	
		acoustic enclosures etc. to be adopted	
		 Event based noise control policy to be 	
		effectively implemented	

Table 6Noise Action Plan