District Environment Plan

Prepared By

Environment Department, Government of Maharashtra

Parbhani

Maharashtra Pollution Control Board

1.0 Preamble

Hon'ble National Green Tribunal vide order dated 26/09/2019 in O.A. No. 360 of 2018 filed by Shree Nath Sharma Vs Union of India and Others directed that CPCB shall facilitate the District Magistrates in preparation of District Environmental Plan by placing Model plan on its website. This model plan may be adopted as per local requirements by all Districts under supervision of District Magistrate.

The said Order also directs that Department of Environment in respective States / UTs should collect district plans to prepare State Environment Plan, which shall be monitored by respective Chief Secretaries of State/UT by 15/12/2019.

Based on State Environmental plans, CPCB and Ministry of Environment, Forest & Climate Change shall prepare National Environmental Plan, under the supervision of Secretary, MoEF&CC and Chairman, CPCB by 31/01/2020. The National Action Plan needs to be submitted before Hon'ble NGT 15/02/2020.

In compliance to above directions, CPCB has prepared a model District Environment Plan (DEP) that covers following thematic areas;

In compliance to above directions and as per the model DEP prepared by CPCB, Environment Action plan for Parbhani District is prepared.

2.0 Introduction

Parbhani is a city in Maharashtra state of India. It is the administrative headquarters of Parbhani District. Parbhani is the fourth largest city in Marathwada region of Maharashtra after Aurangabad, Nanded and Latur. Parbhani is around 200 kilometres (120 mi) away from regional headquarters of Aurangabad while it is 491 km (305 mi) away from the state capital Mumbai.

Along with the entire Marathwada region, Parbhani was a part of the erstwhile Nizam State; later a part of Hyderabad State; after reorganization of states in 1956 it became a part of the then-Bombay state; since 1960, it has been part of the present Maharashtra state.

General Parbhani district profile is presented in the **Table 1** and location is shown in **Figure 1**.

Table 1 **Parbhani District Profile**

Description	Details
Average Climate	Summer: 26.9 °C. Rainfall: 918 mm.
Geographical	Parbhani district lies between 18.45 and 20.10 North Latitudes and 76.13
Location	and 77.39 East Longitude.
Area	6214 Sq. km.
Boundaries	The district is bounded on the north by Hingoli district. On the east by
	Nanded district, on the South by Latur and on the West by Beed and
	Jalna districts.
Languages	Marathi, Hindi, English are major languages but all Indian languages are
Spoken	spoken
Population	Total: 1,836,086 ; Male: 942,870 Female: 893,216
	[According to 2011 Census Report]
Population	295 Per Sq. km.
Density	
Literacy Rate	73.34
Rivers	Godavari, Purna and Dudhana
ULBs	9 Numbers + 1 Municipal Corporations
Municipal	1 Numbers
Corporations	1. Municipal Corporation, Parbhani
Sub districts	2 Numbers
Villages	843 Numbers
Statutory Towns	8 Numbers
Tahsils	9 Numbers
	Sailu, Jintur, Parbhani, Manwath, Pathri, Sonpeth, Gangakhed, Palam
	and Purna.
Pin code	431401

Figure 1 Location of Parbhani District

3.1 Domestic Solid Waste Management Plan

Parbhani district is having 9 ULBs with 114 wards. Municipal Solid Waste [Dry & Wet] generated from each ULBs and details of Other Types of Waste is presented in **Figure 2** due to its less quantity and for easy representation. As per collected data, total solid waste generation of Parbhani district is 251.6MTD [Need to review as the waste represented is same for all the 9 ULBs, the waste written is addition of wet and dry waste] wherein, Dry Waste generation is 73.88MTD and Wet waste is 95.62MTD.

It seems that Wet waste comprises of approximately 56.41% of total waste generated of the district and Dry waste contributes 43.58 The highest quantity of wet and dry waste is generated at Parbhani Municipal Corporation which is 113.22MT/Day and 138.38MT/Day. It is observed that quantity of solid waste generation is in line with the respective population of ULBs.

- A] Street Sweeping Waste: Parbhani district generates 2.95MTD of Street Sweeping Waste which is only of 3 ULBs from which M.C. Gangakhed generates large amount of street sweeping waste i.e 1MT/Day. The street sweeping data for 6 ULBs is not estimated. Parbhani Municipal Corporation having largest population generates second highest street sewing waste
- **B]** Drain Silt Waste: Total quantity of Drain Silt Waste generated is 2.6MTD. It seems that maximum quantity of Drain Silt Waste is generated by M.C. Gangakhed with total quantity of 1.5MTD followed by Nagar Panchayat Palam with 0.9MTD. However, it is observed that quantity of Drain Silt waste is not estimated by other 6 ULBs

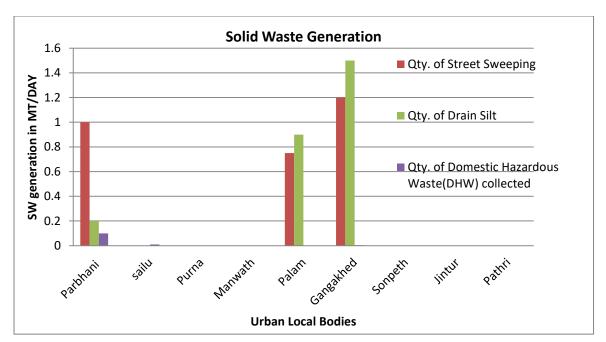


Figure 2 Other Waste Generation of Pune District

- C] Domestic Hazardous Waste (DHW): Total DHW quantity generated is 0.115MTD from 4 ULBs. Other ULBs like M C Purna, M.C. Manwath, M C Sonpeth, M C Jintur and Pathri have not provided facility for collection of domestic Hazardous waste.
- **D]** Other Waste (Horticulture, sanitary waste, etc.): Quantity of data is not estimated for any of the ULBs
- **E] Bulk Waste Generator:** Raigad district is having total 17 bulk Waste Generator and total number of onsite facility provided for treatment of wet waste is 8

3.1.1 Compliance in Segregated Waste Collection

Total Waste generation from Parbhani district is 215.6MTD and almost all waste is being segregated. [Need to verify the exact quantity of solid waste generated as there are two different quantities and the summation does not match the same]

A] Waste Management Operations

Out of 9 ULBs, 6 of them have provided 100% door to door collection facility and other 3 ULBs have provided 80% and 90% door to door collection facility respectively. Mechanical Sweeping is not provided at any ULBs. 100% Manual Sweeping is carried out at 4 ULBs and other 5 ULBs carry 80-90% of manual sweeping.

16 ULBs have implemented Mechanical Road Sweeping and rest of other ULBs have not provided Mechanical Road Sweeping facility. All the waste transported to various facilities is

first segregated on site. The generated wet waste is composted. Nearly all the ULBs carry out composting activity for which 43 composting units are provided. But it observed that only 50% of the generated wet waste is treated.

Multi Re Use Facility is to separate and prepare recyclable material wherein 3 ULBs have installed MRF facility and 1 ULB namely M. C. Gangakhed is under process. Reclamation of old site is initiated at only 2 locations. 7 ULBs have initiated linkage with waste to energy boiler / cement plant. All the ULBs are having linkage with recyclers and have authorization for the same. Data is not available for linkage with waste pickers. 9 ULBs have linkage with TSDF/ CBMWTF

3.1.2 Adequacy of Infrastructure

Availability of infrastructure to handle the waste generated from the Parbhani district is presented in **Figure 3**.

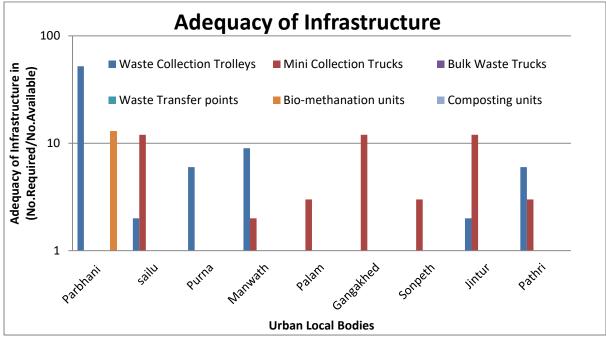


Figure 3 Adequacy of SW Infrastructure

It is observed that Total Number of waste trolley are 78, Mini collection trucks 47 numbers and Bulk transport trucks 14. There is no Bio - Methanation units but 2 Bio-Methanation units are required. Composting units available to treat wet waste are 43. There are 8 Material Recovery units.

3.2 C&D Waste Management Plan

The Construction and Demolition Waste [C&D Waste] generated by Parbhani district is about 2634Kg/Day. C&D Waste generated by each ULBs is presented in **Figure 4.** Sailu generates maximum number of waste accounting to 1400Kg/Day and lowest generation at Nagar Panchyat Palam and M.C.Gangakhe. The C&D waste values are not estimated at 5 ULBs. Non availability of data will not help in preparing ingenuous and executable plan for waste management of the district hence local bodies must ensure proper sampling and factual measurement of the various types of waste being generated.

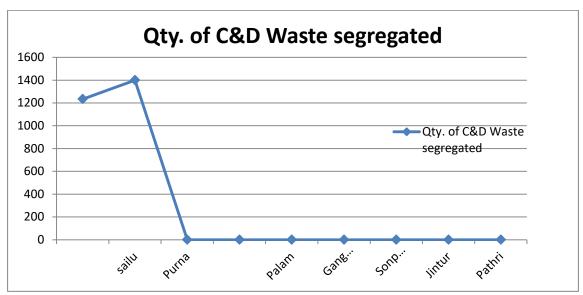


Figure 4 C&D Waste Generation of Parbhani District

3.3 Plastic Waste Management

Total Plastic waste generated by Parbhani district is 2.625MTD. With 0.5MTD quantity of the waste generated at 4 different ULBs.

Almost 7 ULBs have provided 100% door to door collection and segregation system with 3 Plastic Waste Collection Centre.

There are 24 Plastic Waste Pickers with the authorization for waste collection. District has no Plastic Manufacturer nor Waste recyclers [Data needs to be checked]. Treatment and recycling of generated plastic waste, is done by either making use of plastic in Road Making or Co-processing in cement kiln. Stringent application of Plastic Waste and Management Rule 2016, is done in all the ULBs.

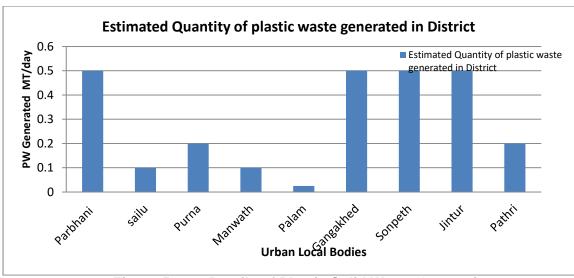


Figure 5 Details of Plastic Solid Waste Generation

3.4 Biomedical Waste Management

656 hospitals present in the Parbhani district. Bedded hospital are 471 numbers, out of which only 226 HCF have taken authorization. 185 are non-bedded hospitals, out of which 88 have taken authorization .73 Clinics and 7 Veterinary hospitals. Total BMW generation from all above mentioned sources are to the tune of 395 Kg/Day

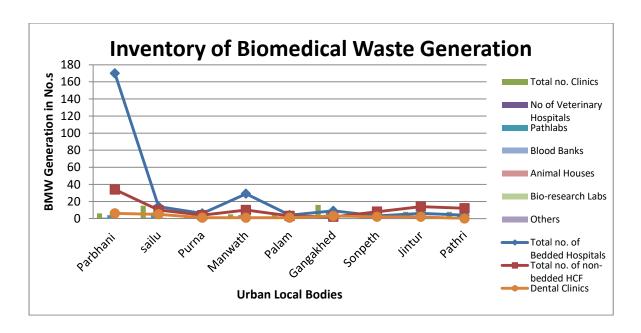


Figure 6 Details of Plastic Solid Waste Generation

There are Common Facility available for treatment and disposal of BMW and average BW taken by these facilities are 395 kg/day. Inventory of BMW generating units are mentioned in the **Figure 7.** Barcode system is partly utilized at 5 ULBs.

3.5 Hazardous Waste Management

The entire district is having 6 Hazardous waste generating industries which generates about 2.6MT/Annum of waste [Need to cross check as the quantity seems to be very less]. The waste is sent to common TSDF of other district within the state. Details of Hazardous waste treated are not provided.

3.6 E Waste Management

1 Collection Centres is established at Sailu. District does not have authorized recycler/dismantler. The district has linkage with authorized E-waste recycler/Dismantler.

3.7 Action Plan

As per the above mentioned observation, it seems that almost all ULBs are handling solid waste generated as per the Municipal Solid Waste Management Rules, however there are certain issues that needs to be addressed for 100% implementation of the rules as mentioned in **Table 3**

 Table 3
 Action Plan for Solid Waste Management

Sectors	Gaps	Action Points	Priority
Domestic Solid Waste			
Quantification	■ Methodology for solid	■ Mechanism for graded weighing	Immediate
	waste quantification	system either through intermediate	
	should be ascertained	transfer station or at the common	
	Quantification based	receiving station to be created.	
	on Income group,	Usually one weigh bridge at any	
	culture affluence and	treatment / disposal location	
	technology to be	required	
	considered	Quadrate sampling methodology	
		to be adopted in order to reduce	
		quantity as well as quality	
Collection	■ Some of the places,	■ Ideally most proven method of	Short to
System &	efficiency of the	SWM is 3 Tier System with door to	Mid Term
Transport	collection system is	door, community and transfer	
System	not up to the mark	station approach	
		■ 100% efficiency to be achieved	
		■ Intermediate	
		■ Approximately 34 Ghanta Gadi	
		would be required	

Sectors	Gaps	Action Points	Priority
Infrastructure	 Mostly composting is the main treatment methodology with about 80% coverage MRF facility is also available but limited to few 	 Intermediate / Transfer station based decentralized waste treatment facility to be evaluated Additional 20% alternative treatment such as bio-Methanation can be explored 	High
Plastic Waste	 Lack of SOP for not only quantification but also life cycle analysis [LCA] Limited understanding / interpretation of EPR / PRO Only two ULBs lacking implementation of PW notification 	 Strengthening surveillance of life cycle assessment for type and quantity of Plastic Waste Effective EPR Policy Initiation of 100% compliance to PW Rules at the earliest 	High & Immediate
C&D Waste	 2-3 of the ULB need to establish C&D Waste management system 	 Minimum 1 such facility at each of the ULB to be established System for utilization of recovered material and processed C&D waste to be effectively implemented and monitored 	High
Biomedical Waste	 Rooting and effective collection within 48hrs from the time of generation to be effectively handled Treatment facility lacks implementation of 2016 Notification in line with CPCB audited report Limited Inventorization 	 Regular Inventorization through automatic / digital platform to be developed Up-gradation of existing facility to meet 2016 CPCB norms Additional facilities to cover the of umbrella zone along with increasing burden on the existing coverage area to be planned Collection mechanism to be strengthen with additional vehicles to cover vast area and scattered HCF [miniscule quantity] 	Very High & Immediate

Sectors	Gaps	Action Points	Priority
Hazardous	■ Domestic HW being	■ Either decentralized 4 - 5 step	Very High
Waste	mixed with solid waste	segregation practices to be	&
	posing threat	initiated or at least advisory for	Immediate
	■ No separate handling	intermittent storage and collection	
	of domestic HW	of domestic HW to be initiated	
	■ Not effective	■ Inventory to be initiated and	
	segregation at source	maintained	
	■ Treatment facility to be	■ The generated waste can be	
	provided	either sent to incinerated, land fill	
	■ No Common TSDF	or recycled. Units for the same	
		need to be established.	
		■ There shall be at least 1 TSDF in	
		the entire district	
E Waste	Lack of inventory	■ Detailed inventory for domestic e	Very High
	Limited understanding	waste under 26 different	&
	of E waste rule and	categories	Immediate
	management	Mass awareness campaign	
	Neither segregation	■ Every ULB to have at least one E	
	nor separate transfer /	waste management centre and	
	handling facility	minimum one collection / drop	
	■ No campaign	centre in a radius of 25-30km	
	arranged for creating	■ Atleast one e waste processing	
	awareness	unit in a district	
		■ District Administrator should	
		organize the campaign for creating	
		awareness among the people	

4.0 Water Quality Management Plan

The 9 ULBs generate about 22.25MLD of sewage and there is no STP for treating the same. All the generated sewage discharged directly into the river thus polluting the river.

Absence of planned and well connected sewage conveyance system (Sewer Networks) adds up to the problem of STP system setup. Even though MPCB has been eying to formulate policy w.r.t. reuse treated sewage as a regulation, lack of basic STP setup infrastructure limits the implementation programs.

It is also quintessential as part of the ULBs to map HFL, demarcate and protect flood plains especially in light of the erratic precipitation witness in the recent year some of the ULBS have already included this features as their regulatory mandate though the irrigation department seems to be directly responsible for the same.

Detailed Issue based management action plan is provided in **Table 4**.

 Table 4
 Action Plan for Water Quality Management

Sectors	Gaps	Action Points	Priority
Water	■ Limited information available	■ Thorough Mapping of	High
Resources	on mapping of surface water	resources to be taken up	
	resources in terms of	■ Extensive assessment of	
	quantity	quality to be done	
	■ Limited Inventorization of	■ Criticality indicators to be	
	quantity, usage, availability	established for each water	
	exploitation etc.	body/resource	
	Limited Rejuvenation /	■ Extend water quality	
	remediation of water bodies	monitoring network to	
	■ Partly Solid waste dumping	include representativeness	
	in the river bodies	■ Based on the criticality	
		initiate Rejuvenation /	
		remediation	
		Online Monitoring system	
		for surface water bodies to	
		be established	
		■ Protection methods to be	
		developed for creative	
		stoppage of dumping of	
		solid waste in the surface	
		water bodies	
Domestic	■ Correlation between	■ Digital Platform to	Very high
	generation and treatment	accommodate water	&
	often misleading	budgeting / reuse potential	Immediate
	■ Water budgeting exercise	■ Approximately 25MLD of	
	often missing	STP needed	
	■ Computation of water	■ In situ treatment for River	
	footprint missing	stretches to be developed	
	Surveillance /Inventorization	Strengthen the sewage	

	in cradle to grave approach	collection network to cover	
	absolutely never applied	100% Population	
	■ Limited collection system	Policy for reuse / recycle of	
	and treatment facility	treated wastewater	
	especially in remote area		
	■ Often polluting water		
	resources		
	■ No established reuse options		
	/ reuse network		
Industrial	■ No information of industries	■ Digital compliance	High
	provided	methodology to be	
		developed	
		■ Disposal system to be	
		under constant surveillance	

5.0 Air Quality Management

As it is Pune district being one of the most vibrant and outgrowing areas in Maharashtra, Air quality assessment and sectoral management needs are ought to be essentially planned and executed. Manual and CAAQM stations are not set up across the district.

It seems that PM10 in Ambient Air is one of the prime reason of the concern and historically Parbhani has been in the centre of controversy with regards its air quality management. An exceedance factor that reveals as per the monitored data that needs immediate attention as is the case in most of the areas of India. In view of the same the prima facia of every ULB shall be to establish at least one such Ambient Air Monitoring Station and coordinate / collaborate with other monitoring organisation to provide for advisory to general public towards health associations and risk of exposure.

Inventory and policy formulation action plan is stated in **Table 5.**

Table 5 Action Plan for Air Quality Management

Sectors	Gaps	Action Points	Priority
Air	■ Most of the places	■ Emission inventory and source	High
	PM10 seems to	apportionment supported with	
	exceed by a factor of	dispersion and health based	
	around 2 - 4	iterative process for science based	
	■ Manual and CAAOMS	AQM strategy to be established	
	stations are not set up	■ Each ULB to have atleast one	

	across the	district	urban and one rural CAAQMS or
-	Sectoral a	action plans	three manual stations at least to
	not	effectively	include criteria pollutants with
	established	b	minimum one location to include
			parameters of 2009 CPCB
			notification and meteorological
			data including cloud cover
			■ Fugitive emission control system
			for hot spot emission control to be
			installed
			■ Green barriers / Photo catalyst
			options to be evaluated
			■ Capacity building to be enhanced

6.0 Mining Activity Management plan

Being directly under the promissory control of District Collector, the total lease land and the mining in Parbhani district is 0. 2783.sqkm.

7.0 Noise Action Plan

Other than event base monitoring and special projects related / orders monitoring, MPCB carries out annual noise monitoring at 2 locations. Noise quality reveals mainly source specific non-compliance such as traffic related in most of the kerb side analysis. Though zoning categories and regulations therein are particularly specified, in limitation of noise regulations has always been challenge to the regulatory authority. **Table 7** spells potential management plan that could be taken up on priority by each of the ULBs.

Table 7 Noise Action Plan

Sectors	Gaps	Action Points	Priority
Noise	■ Most of the source	■ Noise mapping to be carried out	High
	related noise areas	for zonation purposes	
	show exposure	At source control using	
	beyond compliance	■ physical or natural attenuation	
	■ Excessive exposure	methods to be adopted	
	during noise	■ In the path noise control	
	generating potential	methodologies using noise	
	events/ festivals	absorbers creating zone of	
		inhibition / silence zone to be done	

	■ End of the pipe measures such as	
	PEs acoustic enclosures etc. to be	
	adopted	
	■ Event based noise control policy to	
	be effectively implemented	

8.0 Conclusion

There seems to be vast data gaps and a detailed exercise to collate and validate data gathered through this process needs to be urgently taken up in addition to the adopting a holistic & inclusive consultative process of gathering information, collating & converging it in order to be able to device strategies of future. Also, it is equally important that projection for at least next 20 years be done in order to evaluate management plans for futuristic view to meet the objective of such vast exercise. Digital data availability needs to be one of the prime tasks of government & methods of its validation be created with scope for improvement in near future. The practise needs to be a continual one to be updated regularly in order to monitor progress and effectiveness of this process & shall be linked with financial allocations being designed to be promoted by government of the day. With regards to action plans, the priorities shall be aligned based on sustainability objectives.