Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting, for certification about "No Increase in Pollution Load" for getting exemption from going through the entire EIA process i.e for assessment of application of under change in Product-Mix.

Date 26th April, 2023

Venue: Hybrid Mode, 4th Floor, Conference Hall, Kalpataru Point, Sion, Mumbai.

Technical Committee Members present for the meeting:

1.	Dr.J.B.Sangewar, Assistant Secretary (Tech), MPCB	
2.	Dr. V. M. Motghare, Joint Director (APC)	Chairman
3.	Mr. M.P.Patil, Chief Scientist & Head(HWMD)	Member
4.	Representative nominated by director NEERI Mr. Anurag Garg, Associate Prof IIT, Mumbai	Member
5.	Shri.S.V.Patil, Head & Technical Advisor	Member
	Dept of Alcohol Tech & Biofuel.	
	Vasantdada Sugar Institute, Pune	Invite 16
6.	Dr.B R. Naidu, Ex Zonal Officer, CPCB	Invitee Member
7.	Shri. N. N. Gurav, RO(BMW)	Member Member convener

At the outset, the request received from the members 1) Shri. A.M.Pimparkar Scientist-1, Environment department, GoM, 2) Shri.Bharat Kumar Sharma, Regional Director, CPCB and 3) Representative nominated by director NCL Pune for leave of absence from attending the meeting were placed before the committee meeting. The committee considered the same.

Shri.N.N Gurav , RO(BMW)MPCB, Member convener of the Committee, welcomed all the members of the Committee and requested, Dr.J.B.Sangewar, Assistant Secretary (Tech), MPCB & Chairman of the committee to permit proceedings of the meeting to

On the basis of request made by the industries, the members thereafter deliberated on the agenda items placed before the committee and following decisions were taken.

MAHARASHTRA POLLUTION CONTROL BOARD

Agenda item No	Item No. 1
Proposal No.	MPCB-CONSENT-0000156973
Project Details	M/s. Lupin Ltd. Survey no 30/10 to 30/13 & 64/7 Plot No. T-142, MIDC Tarapur, Tal & Dist.Palghar.
NIPL Certificate	NIPL certificate issued by Goldfinch Engineering Systems Pvt. Ltd.

Introduction:

This has reference to the online proposal submitted. UAN No. MPCB-CONSENT-0000156973 along with the copies of documents seeking amendment in existing consent to operate under change in product mix under the provision of EIA Notification 2006 amendments thereto.

The case was included in agenda of 4th Technical Committee Meeting (2022-2023) 1st sitting for certification about "No Increase in Pollution Load" dtd. 10th March 2023, However, Due to paucity of time, it was decided to defer the case.

Now the industry, appeared for before the 4th Technical Committee Meeting (2022-2023) 2nd sitting and considered the same.

Exiting Clearances:

- 1. Environmental Clearance is granted to the industry for expansion ref no. EC (Lupin)-2009/153/CR.167/TC.1 dated 16.11.2010.
- 2. Environmental Clearance is granted to the industry for expansion ref no. EC (Lupin)-2009/153/CR.167/TC.1 dated 04.1.2011.
- The unit has valid consent to operate vide No: Format 1.0 /CAC/UAN No. MPCB-CONSENT-AMMENDMENT-0000009361/2303000035 dated 17.03.2023.
- Amendment in consent Format 1.0 /CAC/UAN No. 0000008284/2208000009 dated 10.08.2022.
- Industry has submitted proposal on PARIVESH portal on 09.12.2022. Single Window No SW/2352/2022

Project details:

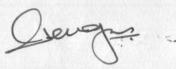
A. Products with change in product mix as below:

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Janum

Dangs.

Sr	Name of Product under API &			Production	
no	Intermediates	As per EC (TPA)	As per CTO (TPA)	Proposed (+)Addition & (
1	Rifa S,Rifa O & Rifampicin	404	359	Deletion (TPA)	(TPA)
2	Rifaximin	5		45	404
3	Lovastatin	150	45	-25	20
4	Simvastatin		14	-4	10
5	Sertraline	72	30	0	30
6		36	80	-8	72
	Losartan potassium	10	65	0	
7	Valsartan	0	15		65
8	Duloxetine	8	25	5	20
9	Irbesartan	0	5	0	25
10	Quetiapine Fumerate	0		-4.5	0.5
11	Pyrazinamide	225	60	20	80
12	Levetiracetam	60	139	33	172
13	Abacavir (Hydrochloride/ Sulphate)		425	39	464
14		0	16	-4	12
	Amlodipine Besilate	4	21	4	
15	Escitalopram Oxalate	0	1.6		25
16	Cysteamine Bitartrate	0	60	-1.1	0.5
7	Tolterodine Tartarate	0.5	0.03	-40	20
8	Celecoxib	0	18	0	0.03
9	Ethambutol	10		0	18
ATS N		10	15	3	18



Sr	Name of Product under API &	Production								
no	Intermediates	As per EC (TPA)	As per CTO (TPA)	Proposed (+)Addition & (-) Deletion (TPA)	Total (TPA)					
20	Fenofibrate/Choline Fenofibrate	15	37	-17	20					
21	Rifabutin	3	1 .	0	1					
22	Zolpidem Tartarate	1	0.8	0	0.8					
23	Imipramine pamoate/Imipramine Hcl	3	0.5	0	0.5					
24	Lansoprazole	7	2.5	0	2.5					
25	Rabeprazole	0	1	0	1					
26	Risperidone	0.25	0.5	0.5	1					
27	Azythromycin	20	2	0	2					
28	Gatifloxacin	0	0.02	0	0.02					
29	Ziprasidone	3	2	0	2					
30	Desloratadine	0.5	0.6	0.4	1					
31	Memantine	1	1.5	0	1.5					
32	Eszopiclone	0.5	0.1	0	0.1					
33	Tenofovir	0	6	0	6					
34	Emticitabine	0	6.5	0	6.5					
35	Ezetimibe	0	6	6	12					
36	R & D batches	5	13	0	13					
37	Ranolazine	0	25	-5	20					
38	Armodafinil	0	0.8	0	0.8					

Junin

Sr	Name of Product under API &	Anti-Borthan		Production	
no	Intermediates	As per EC (TPA)	As per CTO (TPA)	Proposed (+)Addition	& (-) Tota
39	Capreomycin Sulfate	0	0.5	Deletion (TPA)	(TPA
40	Calcium L-5- Methyltetrahydrofolate	0		0.5	1
41	Rifapentine		0.1	0	0.1
42	Oseltamivir	0	20	22	42
43	Sodium Rifamycin SV	0	3	0	
44	Dalbavancin Intermediate (A-40926)	0	4.5	0	3
45		0	0	0.2	4.5
46	Demeclocycline/DMCTC	0	0	0.5	0.2
	Tacrolimus	0	0		0.5
47	Venlafaxin	18	0	0.1	0.1
48	Pentaprazole	6	0	0	0
49	Carvediol & Carvediol phospate	3		0	0
50	Quina	0	0	0	0
51	Rami 8		0	0	0
52	Levomepromazine Malcate	0	0	0	0
53		0	0	0	
54	Topiramate	15	0	0	0
55	Lamotrigine	10	0		0
	Nabumatone	60	0	0	0
56	Diacereine	3	0	0	0
57	Omeprazole mg	15		0	0
58	sevelamer HCl	45	0	0	0
nutae - C	th Technical Committee Meeting (2022-2023) 2nd Sit	43	0	0	0

Page 5 of 46

Sr	Name of Product under API &	EDWARD SU	Production								
no	Intermediates	As per EC (TPA)	As per CTO (TPA)	Proposed (+)Addition & (-) Deletion (TPA)	Total (TPA)						
59	Atorvastain	15	0	0	0						
60	Levofloxacine	30	0	0	0						
61	Lamivudine	3	0	0	0						
62	Clinadamycin	2	0	0	0						
63	Esomeprazole	20	0	0	0						
64	Sevelmar carbonate	45	0	0	0						
65	Pregramblin	20	0	0	0						
66	Mesalamine	30	0	0	0						
67	Lisinopril	65	0	0	0						
	Total	1449.75	1528.55	70.6	1599.11						

- > The proposed activity is in such a way that the total production will increased i.e. 70.6 MT/A, keeping the pollution load within the consent limit.
- B. Pollution load Details:
- (i) Water & Wastewater Aspect

Before Product Mix

Sr. No.	Particulars	Quantity in CMD					
1	Water Consumption	2259.8					

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Junin

Dong

MAHARASHTRA POLLÚTION CONTROL BOARD

Sr. No.	Particulars)ma=4:4						
2				Kuma ya		Quantity	y in C	MD				
		Tr	ade Effl	uent Ge	enerat	ion	KREX					
Sr. No	o Particular	Total Flow,	Flow, CMD			(COD		TDS			
		CMD	Strong	Weak		trong		Weak		rong		Weak
a	Process & Washing Activity				Mg/I	Kg/Da	y Mg/I	Kg/Day	Mg/L	Kg/Da		
	Cooling Tower & Boiler	1022.8	0	822.8				_				-
	Total (Trade)	1000.0	0	200			-	-				
c	Domestic Effluent Generation,	1022.8		1022.8		-	13046	13343.8		1	7908	8089
	CMD	95	0	95		-	500	47.5	_		700	
		Total	-	1117.8		-	11980	13301 2				
160	r Product Mix	Total	-	1117.8		-	11980	13391.3	-	_	729	

After Product Mix

Sr. No.	Particulars					Quantit	v in C	MD				m
1	Water Consumption		dus estr					MID				
2	Trade Effluent Generati	on				22	58.3					
Sr. No	Particular	Total Flow,	Flow, CMD			C	OD		TDS			
	1 ai ucular	CMD		g Weak	Strong		Weak		G. I		Veak	
	Process & Washing			, cak	Mg/L	Kg/Day	Mg/I	Kg/Day	Mg/L	Kg/Day	Mg/I	Ko/De
a	Process & Washing	1022.8										

Sr. No.	Particulars				Q	uanti	ty in CN	MD				
b	Cooling Tower & Boiler		-	200	-	-	-	-	-	-	-	-
	Total (Trade)	1022.8	-	1020.7	1020.7		12633	12894.9	-	-	7572	7729.1
c	Domestic Effluent Generation, CMD	95	-	95	-		500	47.5	-	-	700	66.5
	Grand Total	1115.7	-	1115.7	-	-	11600	12942.4		- 1	6987	7795.6

PP herewith request to maintain the quantities of water consumption and effluent generation as per existing CTO i.e. 2259.8 CMD and 1122.4 CMD respectively

- Water Consumption will reduce by: 1.5 CMD
- Effluent generation will reduce by: 2.1 CMD
- Average COD Load will reduce by: 448.9 Kg/Day
- > It is seen from above figures that, after change in product mix the COD, BOD & TDS values of effluent are reducing by about 3.4%, 3.2% & 4.6% respectively
- The existing ETP is treating the waste water generated from the existing products to the consented standards. Since the waste water generated from the proposed product mix will be reduced by 2.1 CMD and has the reduction pollution parameters viz. COD, BOD and TDS than the existing production profile, it is clear that the existing ETP is adequate to treat the waste water generated after the change in the product mix. However, the adequacy analysis is based on the values of existing waste water parameters as they are the same as the parameters of the waste water generated from the proposed product mix.
- Pollution load of all parameters are calculated on the basis of worst case scenario.

Treatment System

a) Trade Effluent:

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Julin

Dange.

- Effluent (Industrial effluent: 1027.4 CMD & Domestic effluent: 95 CMD) generating from plant is treated in Full-fledge Effluent treatment plant (ETP) of capacity 1200 CMD Comprising of Primary (Equalization Tank cum Neutralization Tank, Flash Mixers, Clariflocculator), secondary (Anaerobic System, Activated Sludge Process) and tertiary advance treatment.(RO plant, MEE With ATFD plant). It is adequate to treat wastewater to the permitted standard.
- Treated effluent from ETP is fed to Advance treatment that is Reverse Osmosis (Capacity 1307 CMD), RO Reject is further fed to MEE of 360 capacity followed by ATFD (Capacity - 35 CMD).
- RO permeate and MEE/ATFD condensate are 100% recycled for process, cooling tower and utility purposes to achieve Zero
- The adequacy analysis is based on the existing wastewater parameters as they are higher than the parameters of the wastewater
- Solid waste generated from ATFD salt is sent to CHWTSDF (MWML, Taloja).
- b) Domestic Effluent generation 95 CMD treated in ETP.

(ii) Air Emission Load:

Stack No.	Stack Attached to	Fuel Consumption as per EC	Existing Fuel Consumption	Fuel Consumption after CIPM	APC system	Stack Height	
S-1	Boiler-(12 TPH &10 TPH)	Furnace Oil: 1351 MT/M Agro Waste: 1903 MT/M	Natural Gas: 1679 SCM/Hr or LSHS: 895 Kg/Hr	No Change	Stack	m	
S-2	Boiler-(12 TPH & 12 TPH)	1351 MT/M	IT/M	No Change		57	
S-3	Boiler-(10 TPH)	1903 MT/M HSD:157 MT/M	Natural Gas :763 SCM/Hr Or LSHS :407 Kg/Hr	No Change	Stack Stack	31	

Stack No.	Stack Attached to	Fuel Consumption as per EC	Existing Fuel Consumption	Fuel Consumption after CIPM	APC system	Stack Height, m
S-4 to S12	DG Set-(2x2.5 MW, 4x1.2 MW,3x1.6 MW)		HSD:157 MT/M	No Change	Acoustic Enclosure	30 each
S-13 to S-14	Power Generator (2x2.5 MW)		HSD:414 MT/M	No Change	stack	48 each

Flue Gas Parameter:-

Sr. No.	Parameters:	Fuel	Before change in product- mix	After change in product- mix	MPCB Norms	
1	Total Particulate Matter from Boiler-(12 TPH &10 TPH)	Natural gas / LSHS	40-48 mg/Nm ³	No Change	50 mg/Nm ³	
2	SO ₂ from Boiler-(12 TPH &10 TPH)	Natural gas / LSHS	410-420 Kg/Day	No Change	429.6 Kg/Day	
3	NOx Boiler-(12 TPH &10 TPH)	Natural gas / LSHS	40-45 mg/Nm ³	No Change	50 mg/Nm ³	
4	Total Particulate Matter from Boiler-(12 TPH &12 TPH)	Natural gas	40-48 mg/Nm ³	No Change	50 mg/Nm ³	
5	NOx Boiler-(12 TPH &12 TPH)	Natural gas	40-45 mg/Nm ³	No Change	50 mg/Nm ³	

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Dengs

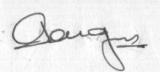
Sr. No.	Parameters:	Fuel	Before change in product- mix	After change in product- mix	MPCB Norms	
6	Total Particulate Matter from Boiler-(10 TPH)	Natural gas / LSHS	40-48 mg/Nm ³	No Change	50 mg/Nm ³	
7	SO ₂ from Boiler (10 TPH)	Natural gas / LSHS	180-190 Kg/Day	No Change	195.36 Kg/Day	
8	NOx from Boiler-(10 TPH)	Natural gas / LSHS	40-45 mg/Nm ³	No Change	50 mg/Nm ³	
9	Total Particulate Matter from DG Set-(2x2.5 MW, 4x1.2 MW,3x1.6 MW)	HSD	30 – 45 mg/Nm ³	No Change	50 mg/Nm ³	
10	SO2 from DG Set- (2x2.5 MW, 4x1.2 MW, 3x1.6 MW)	HSD	0.5 – 30 Kg/Day	No Change	105 Kg/Day	
11	Total Particulate Matter from Power Generator (2x2.5 MW)	HSD	30 – 45 mg/Nm ³	No Change	50 mg/Nm ³	
12	SO2 from Power Generator (2x2.5 MW)	HSD	0.5 – 30 Kg/Day	No Change	276 Kg/Day	

Process stack

Sr.No.	Stack Attached to	APC system	Stack Height
1	Process Vent (27 Nos)	Scrubber	5 m each*

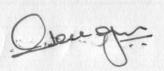
Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Suur

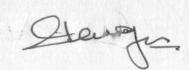


(iii) Hazardous waste Load;

Conditions under Hazardous & Other Wastes (M & T M) Rules 2016 for treatment and disposal of hazardous waste:


Sr. No	Type of Waste	Cat. No.	UOM	As Per EC	As Per CTO.	Existing Qty.	After Change in Product Mix Qty.	Disposal
1.	Used/Spent Oil	5.1	MT/A	9	10.8	10.8	10.8	Sale to authorized party / CHWTSDF
2.	Water or residues containing oil	5.2	MT/A	7.2	7.2	7.2	7.2	Sale to authorized party / CHWTSDF
3.	Spent catalyst	28.2	MT/A	132.12	36	34.92	36.72	Sale to authorized party / Coprocessor through MPCB/CPCB Authorized Preprocessor /CHWTSDF/Manufacture for recycle
4.	Spent carbon	28.3	MT/A	183.6	342	342	238.68	Coprocessor through MPCB/CPCB Authorized Preprocessor /CHWTSDF
5.	Off specification products	28.4	MT/A	As & when generated	720	720	720	Coprocessor through MPCB/CPCB Authorized Preprocessor /CHWTSDF
6.	Date-expired products	28.5	MT/A	As & when generated	720	720	720	Coprocessor through MPCB/CPCB Authorized Preprocessor /CHWTSDF
7.	Spent organic solvents	28.6	MT/A	134791.2	95666.4	95623.2	95176.44	Sale to authorized party / Coprocessor through MPCB/CPCB Authorized Preprocessor /CHWTSDF/onsite recovery
8.	Spent organic solvents	28.6	MT/A	Not Mentioned	96.94	96.9	116.32	Sale to authorized party /Coprocessor through MPCB/CPCB Authorized

Sr. No		Cat. No.	UOM	As Per EC	As Per CTO.	Existing Qty.	After Change in Product Mix Qty.	Disposal
	Empty barrels							Preprocessor / CHWTSDF- Recovered IPA
9.	/containers /liners contaminated with hazardous chemicals /wastes	33.1	MT/A	As & when generated	4320	4320	4320	(PPE/Cartridge Filter/Liner Bags)-Sale to authorized party decontamination / Coprocessor through MPCB/CPCB Authorized Preprocessor
10.	Chemical containing residue arising from decontamination	34.1	MT/A	As & when generated	180	180	180	Coprocessor through MPCB/CPCB Authorized Preprocessor /CHWTSDF
11.	Any process or distillation residue	36.1	MT/A	864	676.8	675.72	981	Coprocessor through MPCB/CPCB Authorized
12.	Concentration or evaporation residue	37.3	MT/A	1440	4140	4140	4140	Preprocessor /CHWTSDF CHWTSDF (on dry basis)
13.	Process waste- trans sertaline		MT/A	Not Mentioned	256.64	256.6	230.98	Coprocessor through MPCB/CPCB Authorized
14.	Process waste- piperazine di acetate	28.1	MT/A	Not Mentioned	71.27	70.2	79.05	Preprocessor / CHWTSDF Coprocessor through MPCB/CPCB Authorized
15.	Process waste - 2Amino 4 Methyl pyridine		MT/A	Not Mentioned	9.98	10	4.44	Preprocessor / CHWTSDF Coprocessor through MPCB/CPCB Authorized
6.	Process waste- tributyl tin chloride of 4th Technical Committee Meet			Not Mentioned	20.09	20.1	26.78	Preprocessor / CHWTSDF Coprocessor through MPCB/CPCB Authorized



Sr. No	Type of Waste	Cat. No.	UOM	As Per EC	As Per CTO.	Existing Qty.	After Change in Product Mix Qty.	Disposal
17.	Process waste-Di methyl Butanoic Acid	28.1	MT/A	Not Mentioned	27.93	27.9	27.93	Coprocessor through MPCB/CPCB Authorized Preprocessor / CHWTSDF
18.	B. Process waste-R-R Mandelate salt 28.1 MT/A		Not Mentioned	101.86	101.9	91.67	Coprocessor through MPCB/CPCB Authorized Preprocessor / CHWTSDF	
19.	Process waste- Immidazole 28.1 MT/A Hydrochloride		Not Mentioned	22.26	22.3	22.26	Coprocessor through MPCB/CPCB Authorized Preprocessor / CHWTSDF	
20.	Process waste-Tri Ethyl Amine 28.1 MT/A		MT/A	Not Mentioned	58.40	58.4	58.40	Coprocessor through MPCB/CPCB Authorized Preprocessor / CHWTSDF
21.	Process waste- Mandelic Acid 28.1		MT/A	Not Mentioned	42.23	42.2	38.01	Coprocessor through MPCB/CPCB Authorized Preprocessor / CHWTSDF
22.	Process waste-Di iso propyl Ethyl Amine 28.1 MT/A		MT/A	Not Mentioned	25.19	25.2	33.58	Coprocessor through MPCB/CPCB Authorized Preprocessor /CHWTSDF
23.	3. Process waste-D2 1Butanol (D2AB) 28.1 MT/A		MT/A	Not Mentioned	5.53	5.5	6.63	Coprocessor through MPCB/CPCB Authorized Preprocessor / CHWTSDF
24.	Process Residue and wastes	28.1	MT/A	1332	2029.32	2021.76	2216.52	Coprocessor through MPCB/CPCB Authorized Preprocessor /CHWTSDF
	Total	an Scho		138759.12 MT/A	109586.84MT/A	109532.80 MT/A	109483.41 MT/A	

• After Change in product mix the Total Haz. Waste from Process will reduce by 50.4 MT/A.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Lung

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents - NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of wastewater, Air emissions & Hazardous waste generation were discussed. Existing consent to operate, Environmental Clearance, NIPL Certificate issued by Goldfinch Engineering Systems Pvt. Ltd and product mix Proforma

Committee after due deliberations noticed that;

- The proposed activity is in such a way that the total production will increased i.e. 70.6 MT/A, keeping the pollution load
- Water consumption and effluent generation as per existing CTO i.e. 2259.8 CMD and 1122.4 CMD respectively Water Consumption will reduce by: 1.5 CMD

 - Effluent generation will reduce by: 2.1 CMD
 - Average COD Load will reduce by: 448.9 Kg/Day
 - It is seen from above figures that, after change in product mix the COD, BOD & TDS values of effluent are reducing
- No change in domestic water consumption and sewage generation quantity. iv.
- No Change in fuel, and no increase in air emission load.
- After Change in product mix the Total Haz. Waste from Process will reduce by 50.4 MT/A. V.

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of sixmonthly compliance monitoring report on their official website.
- (ii) Industry shall dispose the by-products as per the provision of H&OW Rule
- (iii) Industry should not manufacture any other product for which permission is not granted by the Board.
- (iv) Industry shall ensure connectivity of OCEMS to Board server.

Agenda Item No.	Item No. 2
Proposal No.	MPCB-CONSENT-0000143371
Project Details	M/s. Sahkar Maharshi Shankarrao Kolhe Sahkari Sakhar Karkhana Ltd. 20/1, 21 & 20/2 At Sahajanandnagar, Post Shingnapur Kopargaon, Ahmednagar.
NIPL Certificate	NIPL certificate issued by M/s. Goldfinch Engineering Systems Pvt. Ltd

Introduction:

This has reference to the online proposal submitted. UAN no. MPCB-CONSENT-0000143371 along with the copies of documents seeking amendment in existing consent to operate and is applied for CTO under change in product mix under the provision of EIA Notification 2006 on 09-07-2022.

Existing Clearance:

- 1. Environmental Clearance is granted to the industry vide ENV (NOC) 1092/1597/CR-234/D-I dated 31st March 1993.
- 2. The unit has valid consent to operate vide No. Format 1.0/CAC/UAN No. 0000092706/CR-2012001403 dated 31.12.2020

Technical Committee Deliberations:

The project proposal was discussed on the basis of presentation made by Consultant and documents- NIPL Certificate submitted by the proponent. Product wise load calculation in terms of wastewater, Air Emissions & Hazardous Waste generations were discussed. Existing Consent to Operate, Environmental Clearance, and No Increase in Pollution Load certificate issued by M/s. Goldfinch Engineering Systems Pvt. Ltd is taken on record.

Committee after due deliberations noticed that:

M/s. Sahkar Maharshi Shankarrao Kolhe Sahkari Sakhar Karkhana Ltd. had obtained Environmental Clearance is granted to the industry vide ENV (NOC) 1092/1597/CR-234/D-I dated 31st March 1993. From Sate government. ie before the 1st EIA notification issued by MoEF in 1994. The committee is constituted as per the Principal notification published in the gazette of India, extraordinary, Part section 3, sub section (ii) vide number SO 1533 (E) dated 14th September 2006 and amendments there to and hence it was unanimously decided that not to deal with the same.

Technical Committee Decision:

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Dongin

Technical Committee decided that, not to recommend the case for change in product under product mix. The industry may approach to the concern ministry for clarification including its EC validity and applicability of NILPL or apply for fresh/renewal of environmental Clearance.

Agenda Item No.	Item No. 3
Proposal No.	MPCB-CONSENT-0000143507
Project Details	M/s. Varuneshwar Organic
NUDY C 45	B-48, MIDC Taswade, Karad
NIPL Certificate	NIPL certificate issued by M/s. Shrikrishna Environment consultant Pvt Ltd

Technical committee deliberations and observations:

The case was included in agenda item of Minutes of 4th Technical Committee Meeting (2022-2023) 1st Sitting, for certification about "No Increase in Pollution Load" for getting exemption from going through the entire EIA process i.e for assessment of application of under change in Product-Mix. In the said committee meeting it was informed that, M/s. Varuneshwar Organic had expressed their inability to attend the said meeting. The committee considered the same and it was decided to defer the case. The case was again included in agenda item of Minutes of 4th Technical Committee Meeting (2022-2023) 1st Sitting, for certification about "No Increase in Pollution Load" for getting exemption from going through the entire EIA process i.e for assessment of application of under change in Product-Mix. Communicated accordingly, however, the industry failed to attend the technical committee meeting.

Technical committee decision: it was recommended that the Board may reject the proposal with liberty to apply afresh along with requisite information.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

June

Darg

Agenda Item No.	Item No. 4
Proposal No.	MPCB-CONSENT-0000137807
Project Details	Maharashtra Aldehydes & Chemicals Plot No, A-17, MIDC, Mahad, Taluka- Mahad Dist. Raigad, Maharashtra
NIPL Certificate	Revised NIPL Certificate issued by M/s. Aditya Environmental Services Private Limited dated 08.02.23.

Introduction:

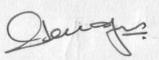
This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000137807 along with the copies of documents seeking CTE under change in product-mix with expansion under the provisions of EIA Notification 2006 amended on 23-Nov-16. Existing Environment Clearances (EC):

- 1. EC granted to Maharashtra Aldehydes & Chemicals, vide SEIAA EC 0000002254 dt. 24/04/2020
- MPCB granted Consent to Establish for part expansion to MACL, CONSENT NO FORMAT Format 1.0/CC/UAN NO0000092765/CE2011000757dt. 12/11/2020
- 3. Consent to Operate FORMAT 1.0/AS(T)/UAN No.0000104788/CO, dt.17/08/2021, valid up to 28/02/2024 granted by MPCB
- 4. Industry has submitted proposal on PARIVESH portal on 21.04.2022. Single Window No SW/2053/2022

Project Details:

A. Products with change in product mix (CIPM) as below:

No	Product	As per EC (*)	As Per CTO (#)	Proposed change	After product mix	Remarks
			Quantity in	MTPM		
1	Alkyl Esters of Phthalic acids	1600	1200	0	1200	No change
2	Ethyl Benzoate	30	30	0	30	No change


Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Jam

Dougla

	o Product	As per EC (*)	As Per CTO (#)	Proposed change	After	Remarks
3			Quantity in	MTDM	product mix	
4	Ethyl Butyrate	100	50			
	Ethyl Propionate	50	50	0	50	No change
5	Ethyl Laurate	5		0	50	No change
6	Ethyl Caprate		0	0	0	No change
7	Ethyl Caproate	5	0	0	0	
8	Ethyl Heptanoate	5	0	0		No change
9	Ethyl 2-Methyl Butyrate	5	0	0	0	No change
10	Ethyl Valerate	5	0	0	0	No change
11	Ethyl Cinnamate	5	0	0	0	No Change
12	Triethyl Citrate	4	0	0	0	No Change
13	Tributyl Citrate Tributyl Citrate	100	50	0	0	No Change
	A cotal Table	15	0	0	50	No Change
14	AcetylTributyl Citrate	35	35		0	No Change
15	Syringaldehyde	1.5		0	35	No Change
16	Trimethyl Hydroquinone		1.5	0	1.5	No Change
	(TMHQ)	20	20	-7		Decrease in Quantit
17	Anisole	500			13	Decrease in Quantii
18	Anethole		0	0	0	No Char
19	4-Methyoxyl	300	0	0	0	No Change
	Acetophenone	260	0		0	No Change
20	1-Piperidino 1-		0	0	0	No Change
	cyclohexene	40				
21		40	0	0	0	No Change
21	Di hydra Anethole	20	0			
22	Cis Anethole	10		0	0	No Change
23	2-Methoxy Acetophenone		0	0	0	No Change
de la	(2 MAP)	1	0	0		No Change
24	2,4-Diacetyl Anisole	1		0	0	No Change
25	Cyclopentanone	100	0	0	0	No Ch
th Tech	nnical Committee Meeting (2022-2023	100	0	0	100	No Change No Change

No	Product	As per EC (*)	As Per CTO (#)	Proposed change	After product mix	Remarks
			Quantity in	МТРМ		
26	Anhydrous Alcohol	1200	500	0	500	No Change
27	Distillation of solvents	400	365	0	365	Non- EC product
28	Maxvit Vitamin Formulation	100	100	0	100	Non- EC product
29	Sodium Sulphate	500	500	0	50	No Change
30	Acetic Acid	105	105	0	0	No Change
31	Propionic acid	180	180	0	0	No Change
32	Sanitizers	0	200	0	200	Non- EC product
33	Acetonitrile	0	0	+300	300	New Plant
34	Diethyl Ketone	0	0	+100	100	New Plant
	TOTAL	5442.5	2752	+ 393	3145	Capacity increase by 11.5% against CTO, but within EC quantity

Industry has proposed increase in production capacity from 2752 MT/M to 3145 MT/M. Industry has proposed to reduce the production quantity of 2 products and proposed additional 2 new products and their plants namely Acetonitrile and Diethyl Ketone with proposed capacities 300 MT/M & 100 MT/M respectively.

Lund

Danges.

B. Pollution load Details:

- (i) Water & Wastewater Aspect
 - a) Water consumption aspect:

Purpose/Category		Quantity (cr	nd)
Industrial Cooling	as per EC		Post change of product mix
	295	125.5	298.5
Domestic Purpose Processing whereby water gets polluted and	15	11.5	11.5
pollutants are easily biodegradable.	75	82	53
5) Gardening	25	6	
Total Water			7
Recycled water	410	225	370
Fresh water requirement		35.5	22
The Additional water requirement is mainly	352	190	348

- The Additional water requirement is mainly due to the new proposed new cooling tower
 Process water will be reduced due to (a) reduction in TMHQ production quantity and (b) reduction in plant/equipment washing.
- It is submitted by PP that the water quantity post product mix change is within the EC sanctioned limit and hence permissible.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Dongs

b) Waste water aspect

Category		Quant	ity (cmd)		Remarks	
		As per**Existing EC (*) Consented				
Trade effluent	Process Effluent		43.2	39.5	Reduction due Change of product mi (TMHQ production reduced)	
	Plant washings	95	39	25	Optimization of number of production of change-overs eliminating equipments	
	Cooling & utilities		17.6	29.32	New proposed cooling tower	
Total Trade effluent		95	100	94		
Dom. Sewage		12	8	8	No change	
Total Effluent		107	108	102		
Condensate recycled			4.5	12	Back to process	
Effluent to ETP		100.5	103	89.8		
Treated Eff recycled		33	35.5	22.32	to process	
Effluent discharge		67.5	67.5	67.5	to CETP	

- o Reduction in 8 cmd process effluent is due to reduction of TMHQ production from 20 MTPM to 13 MTPM.
- o 10 cmd washing effluent reduction is due plant washing optimization (Some reactors dedicated for making DEP only, thus avoiding their washings)
- o Thus, overall effluent generation will be reduced from existing 108 cmd to 102 cmd.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Rout

Dougla

Treatment System

a) Trade Effluent:

Industry has segregated trade effluent into strong & weak stream and provided treatment system as below.

- Strong Stream: High COD/TDS stream is treated in Primary, Multiple Effect Evaporator (MEE) and ATFD.
- Weak Stream: ETP of capacity 110 CMD comprising of primary, secondary and tertiary treatment system.

b) Domestic Effluent:

The domestic effluent connected to septic tank and soak pit.

i) Air Emission Load: -

			Air Pol	lution Lo	ads (Proposed-	EC vs CTC))							
Sr No	As per EC	As per application	APC system provided	Stack height	Fuel (as per EC)	Fuel (CTO)	Sulfur %		As per EC norms	As per CTC norms				
1	Boiler (existing) - 2	Boiler 2 TPH	Dust Collector and bag filter	32 m	Coal 7 TPD	Coal 7 TPD	0.5	SO2	70 kg/day	70 kg/day				
	ТРН						anni.	TPM	150 mg/nm ³	150 mg/nm ²				
	Boiler (Proposed) - 6 Boiler 6TPH	Dust Collector and bag filter	A PART OF A LABOR TO A LABOR TO THE RESERVE AND A SECOND S						Coal	Coal	0.5	SO2	260kg/day	260kg/day
	ГРН				26 TPD	26 TPD			150 ng/nm3	150 mg/nm3				
, h	TFH (Existing)	Thermic Fluid		20m	Coal 2.8 TPD		1%&	SO2 2	28 kg/day	16.1 kg/day				
	Park to the first hand acres to be control to the con-	heater 4Lkcal/hr	Dust Collector			3.21 TPD	0.5	TPM 1	50 mg/nm ³	150 mg/nm ³				
					* FO 1.2	*FO 1.2	4.5%	SO2 1	08 kg/day	108 kg/day				

					KL/d		kl/day				
4		H (Proposed) Thermic Fluid	Dust Collector	st Collector 20M Co		Coal -7.2TPD		1 % and	SO2	72 kg/day	50 kg/day
	- 8 lakh	heater 7Lkcal/hr	20000000	20112	Cour /		5 TPD	0.5%	TPM	150 mg/nm ³	150 mg/nm ³
	(Existing) – 62		Acoustic 2 m Enclosure above t	2 m H above the li	HSD lit/day		HSD 1% 500 lit/day	V. 100 100 100 100 100 100 100 100 100 10	SO2	9 kg/day	9 kg/day
	KVA			roof				The state of the s	ТРМ	150 mg.nm ³	150 mg.nm ³
	DG set (Proposed)			TO RESIDENCE AND A SAME	HSD lit/day	1200	HSD 1200	1%	SO2	24 kg/day	NA
U	250 KVA	Not existing		The second secon	lit/day	D 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TPM	150 mg.nm3		
	TOTAL SO₂ EN	AISSION KG /DA	Y								405.1
									KG/DAY	KG/DAY	

Note: *Coal is used as fuel * FO will not be used as fuel (Amendment application filed)

** SO2 emission reduction by 108 kg/day due to stoppage of FO as fuel – SO2 level is well within EC stipulated quantity Process Emissions:

SR NO	AS PER EC	STACK NO	New stack proposed	APC system provided	Pollutant
1	Process reactor	1 No. (S7)	Proposed new Process stack (acetonitrile)	Wet scrubber	Ammonia Gas will be absorbed in water & scrubber liquid will be Re-used in process.

• PP has proposed a new process scrubber for the reactor vent in proposed new plant for manufacture of Acetonitrile.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

July

Dongs

The case was discussed in 1st sitting of 2nd meeting of technical committee(2022-23) dated 18/08/2022 as well as in the 3rd Technical Committee Meeting dated 12/12/2022, wherein during deliberations, it was noticed that:

1st sitting of 2nd meeting of technical committee (2022-23) dated 18/08/2022

- · PP has not switched to cleaner fuel
- PP was unable to submit the details of liquor Ammonia generation either in By-Products or in Hazardous waste category and disposal of the same
- The waste water consumption and steam requirement will be increased
- PP was unable submit the details of the process emission from the existing product as well as from proposed products and details of comparison of the pollution load.
- Technical Committee Decision: Technical Committee decided to defer the case and asked PP to reassess their
 pollution load along with the NIPL certificate and was advised the PP to furnish above details.
- 3rd Technical Committee Meeting dated 12/12/2022:- Accordingly, he PP has taken steps and resubmitted the proposal, the same was again discussed in the 3rd Technical Committee Meeting dated 12/12/2022, after due deliberation, the committee noticed that,
 - 1.PP unable to produce adequacy of ammonia stripper used for recovery of ammonia.

 Technical Committee Decision: Technical Committee decided to refuse the case due to concern about Ammonia emissions from the process.
- 4th Technical Committee Meeting (2022-2023) 2nd Sitting: Resubmitted proposal before the said committee for consideration; Thereafter, proponent MACL has submitted Clarification reply letter dt 27.01.23 by modifying the process so that there will be no ammonia emission from the process. Consultant AESPL also submitted a revised Certificate of No Increase in Pollution Load vide their letter dt 08.02.23 giving details as below:

Query No. 1: PP unable to produce adequacy of ammonia stripper used for recovery of ammonia.

PP clarified in the presentation that, the existing operations there are no process vents. MACL has proposed a process scrubber for the reactor vent in proposed new plant for manufacture of Acetonitrile.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Page 25 of 46

Luir

Danges

MAHARASHTRA POLLUTION CONTROL BOARD

The Acetonitrile process uses Ammonia as a reactant and MACL have modified the acetonitrile process so that there will be no chance of any excess ammonia emission to be vented out and it will be fully recycled back to process. The principal modifications proposed are as follows:

- (i) Use of minimum quantity of excess ammonia by installing Ratio controllers on feed line in the process to control Ammonia feed to reactor to near equimolar ratio
- (ii) Use of first stage scrubber using water
- (iii) Second stage chemisorption process which will use mild sulfuric acid for scrubbing which will ensure nil ammonia in vent
- (iv) To further ensure no ammonia content in the vent, PP will install ammonia sensor in final vent, which will shut down the ammonia addition to the reactor and stop the process
- (v) Modified PFD for ammonia destruction as given above in Annexure V of the NIPL Certificate and also part of PPs letter dt 27.01.23.
- (vi) Stage wise analysis of gases as per modified PFD presented in **Annexure V** (of the NIPL Certificate and also part of PPs letter dt 27.01.23) is as below which shows there is NIL ammonia concentration in the vent.

Details of Process Vent

Sr No	As per EC	Stack No	New stack proposed	APC system provided	Stack height	Gas flow rate m³/hr
1	Process reactor	1 No. (S7)	Proposed Process vent (Acetonitrile)	Wet scrubber	15 m	0.13 M ³ /hr

(vii) It is to be mentioned that EC granted to the unit vide EC (SEIAA-EC-0000002254 dated 24 april 2020) vide sr no 31 on page 8, has provided for one reactor vent and the present CTO does not have any vent. Thus, the process vent is as per provided in the EC.

Observation- The post expansion emissions from process will be as provided in EC.

Also a query was raised about quantity of hazardous waste generation after Change of Product Mix due to generation of Ammonium sulfate in ammonia scrubber.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Jum

-11-4

The PP has clarified as under:

The hazardous waste Post Change of Product Mix will be as given below:

Sr. No.	Waste category	Category (as per HWM Rules, 2016)	UOM	*AS PER EC	**AS PER CTO	Estimated Quantity – from Material Balance	* Permission requested by PP after CIPM	Remark
1		Process wastes, residue and sludges	KL/M	420	125	59.82	80	30% excess over qt on Material balance
2	28.6	Spent Solvents	KL/M	270	270	14.5	21.75	30% excess over qt on Material balance
3		Chemical sludge from water treatment	MT/M	210	20	NA	20	no change
4		Process waste sludge/residues containing acid/toxic metals/organic compounds	KL/M	210	60	168 (from TMHQ) + 0.55 carbon sludge =168.55	210	30% excess over qty on Material balance
5		Evaporation residue (ammonium sulfate from scrubber)	MTPM		-	5.25 (dry basis)	7.50 (dry basis)	30% excess over qty on Material balance

^{*} EC no. SEIAA-EC-0000002254 dated 24 th April 2020

* The committee take note of the 30% excess over quantity in haz waste category after CIPM as claimed/requested by PP and opined that this may not be allowed.

**MPCB CONSENT NO -FORMAT 1.0/AS(T)/UAN No.0000104788/CO dt 17/08/2021, valid up to 28/02/ 24 In proposed operations, there will be generation of Ammonium sulfate salt (5.25 MTPM (dry basis)) from process scrubber which will be sold to authorized party having permission under Rule 9.

Thus, Hazardous waste generation as per CTO is 475 KL/M, whereas proposed hazardous waste generation post expansion is 248.12 KL/M from Material Balances

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Page 27 of 46

PP has requested for total hazardous waste quantity 339.25 MTPM post expansion to have 30 % margin over the quantity worked out from material balances, which is yet within the CTO granted quantity.

Technical Committee Deliberations (4th Technical Committee Meeting (2022-2023) 2nd Sitting):

The industry has requested to the committee to reconsider the earlier decision and come out with modified proposal. Accordingly, the proposal was discussed in the committee meeting held on 26/04/2023 based on the documents, revised NIPL Certificate dt 08.02.23 and presentation made by PP and their Consultant. The committee is of the opinion that the decision of 3rd Technical Committee Meeting dated 12/12/2022 be reconsidered. Product wise load calculation in terms of wastewater. Air emissions & Hazardous waste generation were discussed. Existing consent to operate. Environmental Clearance, aforesaid NIPL Certificate issued by Aditya Environmental Services Pvt Ltd. and product mix Proforma are taken on the record.

After due deliberations, Committee noticed that,

- (i) The committee take note of the 30% excess over quantity in haz waste category after CIPM as claimed/requested by PP and opined that this may not be allowed.
- (ii) PP has failed to justify on Proposed Process vent (Acetonitrile), control measures and emissions thereof.
- (iii)The discrepancy in between EC and Consent to operate granted, therefore the committee is of the opinion that, The PP has to rectify the anomaly and obtain the consent from the Board first, thereafter they may approach to the committee with the fresh application and modified / revised NIPL.

Technical Committee Decision:

Technical Committee has decided that, the decision of 3rd Technical Committee Meeting dated 12/12/2022 is to be reconsidered, and it was further decided that, the PP has to rectify the anomaly and obtain the consent from the Board first, thereafter PP may approach to the committee with the fresh application and modified / revised NIPL.

July

Dongs

MAHARASHTRA POLLUTION CONTROL BOARD

Item No.5
MPCB-CONSENT-0000138688
M/s. Atul Bioscience ltd. Address: Plot no N-37, MIDC Anandnagar Additional A. I.
Ambarnath, Dist. Thane Maharashtra. NIPL certificate issued by Institute of Chemical Technology, Matunga, Mumbai- 400019

This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000138688 along with the copies of documents seeking amendment in existing consent to operate under change in product-mix under the provision of EIA Notification 2006 amended on **Exiting Clearances:**

- 1. Environmental Clearance is granted to the industry by SEIAA vide No. SIA/MH/IND2/152225/2020 dated 26.06.2020.
- 2. 1st Consent to Operate (Expansion) granted with change in product mix with renewal of existing consent to operate obtained vide no. Format 1.0/CC/UAN No. 0000099414/CO-2107000147, Date: 02.07.2021 valid upto 31.12.2025
- 3. Industry has submitted proposal on PARIVESH portal on 14.01.2023. Single Window No SW/2398/2023

This case of Change of Product Mix with No Increase in Pollution Load was considered in 4th Technical meeting dt 10th March 2023 where the project was deferred by Committee. The Minutes of 4th Technical Committee meeting 1st sitting are as below:

- Industry has applied for Change in Product Mix with no increase in the pollution load. The total production quantity will increase 4189.0 TPA to 5662 TPA (35.16% above existing capacity) ii.
- The water consumption decreased from 275 KLD to 272 KLD and effluent generation decreased from 114 KLD to 111 iii.
- COD load for process effluent will decrease from 449.76 Kg/day to 419.74 Kg/day and TDS load will decrease from
- Committee noticed that, industry is ZLD unit. iv.
- The overall hazardous waste quantity after product mix will decrease from 40856.6 MTA to 40466 MTA V.
- Hazardous waste details showing specific hazardous waste quantities are increasing for vi.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Page 29 of 46

Any Process or distillation residue: 1137.6 MTA to 1340 MTA

Spent Carbon: 97 MTA to 120 MTA

Process Residue and waste: 185 MTA to 285 MTA

Technical Committee Decision:

Technical Committee decided that, the **hazardous waste quantity to be reviewed** and resubmit the case in the next meeting. The PP had carried out reassessment and accordingly made changes in the proposal and reappeared before the 4th Technical Committee Meeting (2022-2023) 2nd sitting and presented their revised proposal for Change of Product –Mix as under;.

Project details:

A. Production Details:

S.No	Product Name	Existing Quantity, MTA	Difference	Proposed Quantity, MTA	Remarks
1	(1R)-2-{[2-(4-aminophenyl)ethyl]amino}-1- phenylethanol Hydrochloride	22	0	22	No change
2	(1R)-2-{[2-(4-nitrophenyl)ethyl]amino}-1- phenylethanol Hydrochloride	25.74	0	25.74	No change
3	(2R)-2-hydroxy-N-[2-(4-nitrophenyl)ethyl]-2- phenylethanamide	26.51	0	26.51	No change
4	(S) - Metoprolol Succinate	10	-5	5	Reduced
5	(S)-1-(2-Chloroacetyl)pyrrolidine-2-carbonitrile (CACP)	62.62	-12.62	50	Reduced
6	(S)-Metoprolol Base	9.61	0	9.61	No change
7	1-(4-methoxyphenyl)-propan-2-one	36.72	0	36.72	No change
8	2-(acetylamino)-9-{[2-(acetyloxy)ethoxy]methyl}- 9H-purin-6-yl acetate	238.5	-138.5	100	Reduced
9	3,4-dimethoxy-benzoic acid	31.02	-6.02	25	Reduced
10	3,4-dimethoxy-benzoic acid-4-bromo-butulylester	51.75	0	51.75	No change

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Jour

Daugu

11	Acyclovir	150	-100	50	
12	Atazanavir	50	-50		Reduced
13	Benzyl chloride	250	-250	0	Reduced
14	Carvidilol	25	-25	0	Reduced
15	CBZ-L-Valine	157.95	-132.95	0	Reduced
16	CBZ-Valacyclovir	202.5	-152.5	25	Reduced
17	Chlorobutanol	50		50	Reduced
18	CLVM	360	-25	25	Reduced
19	Dapsone	40	-360	0	Reduced
20	DCHU		-40	0	Reduced
21	Desvenlafaxine	150	0	150	No change
22	Ethyl-[2-(-methoxy-phenyl)-1-methylethyl]amine	25	10	35	Incresed
23	Fluconazole pure	31.5	0	31.5	No change
24	Fluconazole Crude (FCZ-III)	75	25	100	Incresed
25	Guanine diacetate	86.47	35.53	122	Incresed
26	L-PBE. HCl.	200.34	. 0	200.34	No change
27	L-Prolinamide	200	-170	30	Reduced
28	Losartan Potassium	62.62	-12.62	50	Reduced
29	Losartan-I	60	40	100	Incresed
30	Losartan-II	60	0	60	No change
31		60	0	60	No change
32	Mebeverine	75	0	75	No change
33	Metoprolol Base*	112.94	0	112.94	No change
34	Metoprolol Epoxide	96.78	0	96.78	No change
35	Metoprolol Succinate	50	0	50	No change
36	Metoprolol Tartrate	80	-30	50	Reduced
7	Mirabegron	25	-15	10	Reduced
8	Nebivolol HCL	25	-25	0	Reduced
	Quetiapine Fumerate	75	-75	0	
19	Ritonavir hnical Committee Meeting (2022-2023) 2nd Sitting for certification ab	50	-20	30	Reduced Reduced

Jui .

Opinofor

MAHARASHTRA POLLUTION CONTROL BOARD

40	Sodium veratroate	39.17	0	39.17	No change
41	Tert.butyl N[(1S,3S,4S)-1-benzyl-4-amino-3 hydroxy-5- phenyl pentyl]carbamate	35	0	35	No change
	Thiazol-5-yl-methyl N[(1S,3S,4S)-1-benzyl-4-	wa eu daye in			Tro change
42	amino-2 hydroxy-5- phenyl pentyl]carbamate	35	0	35	No change
43	TMSI	70	-20	50	Reduced
44	Topiramate HCL	50	-50	0	Reduced
45	Valacyclovir hydrochloride	150	-25	125	Reduced
46	Venlafaxine Acetate	154.5	0	154.5	No change
47	Venlafaxine Hydrochloride	150	-50	100	Reduced
48	Veratraldehyde	29.53	-4.53	25	Reduced
49	Vildagliptin	75	-55	20	Reduced
50	1-BOC PIPERAZINE	0	10	10	Newly added
51	1-Chloroethyl methyl carbonate (1-CEMC)	0	100	100	Newly added
52	10-Methoxy Iminostilbene	0	70	70	Newly added
53	2,2'-DITHIOBISBENZOTHIAZOLE DISULPHIDE	0	25	25	Newly added
54	ATAA.HCI	0	10	10	Newly added
55	BDH Salt	0	10	10	Newly added
56	Boc-L-Proline	0	5	5	Newly added
57	Boc-L-Valine	0	5	5	Newly added
58	BPBH	0	5	5	Newly added
59	CLBL Anhydrous*	0	1	1	Newly added
60	CLVM HCI	0	120	120	Newly added
61	CLVM Oxalate	0	120	120	Newly added
62	DFTA	0	75	75	Newly added
63	EDP	0	100	100	Newly added
64	FCZ-III aqueous layer	0	600	600	Newly added
65	ITVM	. 0	22	22	Newly added
66	MAEM	0	60	60	Newly added

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

July

Page 32 of 46

	Total	4188.77	1090.79	5279.56	
90	Venla free base	0	25	25	Newly added
89	VALSARTAN Stage-2	0	120	120	Newly added
88	VALSARTAN Stage-1	0	120	120	Newly added
87	VALSARTAN	0	105	105	Newly added
86	TMU	0	5	5	Newly added
85	TBC	0	25	25	Newly added
84	SUCCINATE SALT STAGE 5	0	10	10	Newly added
83	SMIA -stage 2	0	45	45	Newly added
82	SMIA -stage 1	0	45	45	Newly added
81	SMIA	0	60	60	Newly added
80	NPTC	0	10	10	Newly added
79	NPEA HCL	0	10	10	Newly adde
78	NEED	0	80	80	Newly adde
77	N-BOC-4-Piperidone	0	10	10	Newly adde
76	Moc-L-Valine	0	5	5	Newly adde
75	MICA ESTER- Step-3	0	100	100	Newly adde
74	MICA ESTER- Step-2	0	60	60	Newly adde
73	MICA ESTER- Step-1	0	45	45	Newly adde
72	MICA ESTER	0	75	75	Newly adde
71	METHOXYAMINE. HYDROCHLORIDE (MA. HCI)	0	25	25	Newly adde
70	MAEM ESTER Stage-3	0	98	98	Newly adde
69	MAEM ESTER Stage-2	0	188	188	Newly adde
68	MAEM ESTER Stage-1	0	158	158	Newly adde
67	MAEM ESTER	0	68	68	Newly adde

- The overall production quantity will increase from 4189 MTA to 5279.56 MTA.
- Based on the market demand expansion is proposed to produced 5279.56 TPA (26.04 % above existing capacity)

Jum

Osavojs

B. Pollution load Details:

(i) Water & Wastewater Aspect

Before Product Mix

Sr. No.	Particular	Quantity in CMD	Effluent Segregation in CMD		COD (Strong)		(Weak)		TDS (Strong)		TDS (Weak)	
			Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day
1	Water Consumption	275	Not applicable									
2	Trade Effluent Generation											
A	Process Activity	60	10	67	15000	150	4474	299.75	2710	181.57	2850	190
В	Cooling Tower & Boiler	185	0	15	-	-	300	4.5	-	-	700	10.5
C	Total	245	10	82	-	150	-	304.25	-	200.5	-	181.57
3	Domestic Effluent Generation, CMD	30	0	22	-	-	700	15.4	-	-	500	11

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

July

Dan of

After Product Mix:

Sr. No.	Particular	Quantity in CMD	Effluent Segregation in CMD		COD (Strong)		COD (Weak)		TDS (Strong)			TDS Weak)
			Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day
1	Water Consumption	272				1	Not applie	cable				
2	Trade Effluent Generation											
A	Process Activity	57	9.2	67.8	14500	133.4	4348.67	279.93	15000	138	3425	216.07
В	Cooling Tower & Boiler	185	-	15			300	4.5	_		700	10.5
C	Total	242	9.2	82.8	-	133.4	-	284.43		138	-	226.57
)	Domestic Effluent Generation, CMD	30	0	22	_		700	15.4			500	11

- Water Consumption will reduce from 275 CMD to 272 CMD
- Effluent generation will reduce from 114 CMD to 111 CMD
- COD load for trade effluent will reduce from 445.56 Kg/day to 428.24 Kg/day
- TDS load for trade effluent will reduce from 371.76 Kg/day to 370.26 Kg/day

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Donging

July 1

Treatment System

a) Trade Effluent:

Industry has segregated trade effluent into weak stream & strong stream and provided Effluent Treatment Plant (ETP) comprising of:

- Strong COD/TDS stream of 9.2 CMD: Treatment system comprising of collection tank neutralization, stripper, In-Plant Evaporation System, Multiple Effect Evaporator, ATFD. The distillate is recycled to process.
- Weak COD/TDS stream of 67.8 CMD: Treatment system comprising of collection tank and psychometric evaporator.

b) Domestic Effluent:

The domestic effluent is treated in sewage treatment plant of capacity 22 CMD.

(ii) Air Emission Load;

Sr. No.	Source	Fuel	Before Product Mix	After Product Mix	Remark
1	Boiler-1 (3TPH)	Coal	400 kg/hr	400 kg/hr	No change
	Boiler-2 (0.85 TPH)	FO	40 kg/hr		Dismantled
	Boiler-3 (0.85 TPH)	FO	40 kg/hr		Dismantled
2	Boiler-4 (0.65 TPH)	FO	30 kg/hr	editor to FT is 1	Dismantled
3	DG set (500 KVA)	HSD	70 Lits/hr	70 Lits/hr	No change
4	DG set (125 KVA)	HSD	40 Lits/hr	40 Lits/hr	No change
5	Process Vent-1		100		No change
6	Process Vent-2	-	distribution of the large		No change
7	Process Vent-3	4 1 1 :-			No change

Note: *Coal and HSD will be used as fuel * FO fired boilers dismantled.

Jang Dang

(iii) Hazardous Waste Load;

Sr. No.	Description	Category No.	UOM	Before	After Product	1000
1	Any Process or distillation residue	36.1		oddet MIA	mix	Remark
2	Spent Carbon		MT/A	1137.6	1137	No change
3	Spent Catalyst	28.3	MT/A	97	94	Decreased
4		28.2	MT/A	83	58	CONTROL MINE
5	Process Residue and waste	28.1	MT/A	185	184	Decreased
	Chemical sludge from wastewater treatment	35.3	MT/A		and the second	Decreased
6	Used or spent oil	5.1		408	408	No change
7	Date expired products		MT/A	5	5	No change
	Empty barrels/ containers/ liners/ contaminated	28.5	MT/A	5	5	No change
8	with hazardous chemicals/ wastes			US DELYTHERE	0.000	110 Change
9		33.1	MT/A	12	12	No change
0	Spent solvents	28.6	MT/A	38912	38221	CALL SALE
	Waste or residues containing oil	5.2	MT/A	12	12	Decreased
						No change
				40856.6	40136	

Overall hazardous waste quantity after product mix will decrease from 40856.6 MTA to 40136 MTA

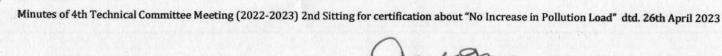
Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of Wastewater, Air emissions & Hazardous waste generation was discussed. Existing Consent to Operate, Environmental Clearance, NIPL Certificate issued by Institute of Chemical Technology, Matunga, Mumbai- 400019 and Product – Mix Proforma are taken on the record.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

uiC

Dangus


After due deliberations, Committee noticed that:

- Industry has applied for Change in Product Mix with no increase in the pollution load. The total production quantity will increase 4189.0 TPA to 5792.56 TPA (26.04% above existing capacity)
- The water consumption decreased from 275 KLD to 272 KLD and effluent generation decreased from 114 KLD to 111 KLD after product mix.
- COD load for process effluent will decrease from 445.56 Kg/day to 428.24 Kg/day and TDS load will decrease from from 371.76 Kg/day to 370.26 Kg/day
- iv. Committee noticed that, industry is havening a ZLD unit.
- v. Utility & Process Emissions will not change after proposed product mix change
- vi. Total Hazardous waste generation shall be reduced from 40856.6 MTA to 40136 TPA
 - Any Process or distillation residue (36.1) will reduce from 1137.6 TPA to 1137 TPA
 - Spent Carbon (28.3) will reduce from 97 TPA to 94 TPA
 - Process residue and waste (28.1) will reduce from 185 TPA to 184 TPA

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions;

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of sixmonthly compliance monitoring report on their official website.
- (ii) Industry shall dispose the by-products as per the provision of H&OW Rule
- (iii)Industry should not manufacture any other product for which permission is not granted by the Board.
- (iv) Industry shall ensure connectivity of OCEMS to Board server.

Dough.

Agenda item No	Item no 6
Proposal No.	MPCB-CONSENT-0000155539
Project Details	M/s. Sarex Overseas Ltd.
NIPL Certificate	Plot No. N 129,130,131 & N 132 MIDC Tarapur Tol & Dist D 14
THE Certificate	NIPL certificate issued by M/s. Sadekar Enviro Engineers Pvt. Ltd.

Introduction:

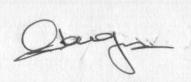
This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000155539 along with the copies of documents seeking amendment in existing consent to operate under change in product-mix under the provision of EIA Notification 2006 amended

The case was included in agenda of 4th Technical Committee Meeting (2022-2023) 1st sitting for certification about "No Increase in Pollution Load" dtd. 10th March 2023, However, The committee was informed that, M/s. Sarex Overseas Ltd had expressed their inability to attend the said meeting. The committee considered the same and it was decided to defer the case.

Now the industry, appeared for before the 4th Technical Committee Meeting (2022-2023) 2nd sitting, PP made power point presentation, and the committee go through the following.

Exiting Clearances:

- 1. Environmental Clearance is granted to the industry vide No. EC (SO)-2469/136/CR.38/TC.1 dated 03.01.2010.
- 2. Consent to Operate granted vide no. Format 1.0/CC/UAN No.0000127910/CO/2211000817 dated 10.11.2022. The validity of the
- 3. Company has applied for change in product mix along with the renewal of CTO to MPCB vide MPCB-CONSENT-0000155539
- 4. Industry has submitted proposal on PARIVESH portal on 06.03.2023. Single Window SW/2474/2023


Project details:

A. Production Details:

Sr. No.	Product Name	Existing Quantity (MT/A)	Proposed Quantity (MT/A)	Total Quantity (MT/A)	Remarks
1	VEN-2 (CG35-1597) :(2,4-Bis- (Biphenyl)-6-(2,4-dihydroxy phenyl)1,3,5-Triazine)	120.00	(+) 120	240.00	Increased
2	TDA	6.00	(-) 5.5	0.50	Reduced
3	Ketoprofen Nitrile	36.00	(-) 35.5	0.50	Reduced
4	Alpha Chlorolose	2.40	(+) 3.6	6.00	Increased
5	Methyl 4 Bromocrotonate	6.00	0	6.00	No change
6	2,5 Dibromopyridine	6.00	(-) 5.5	0.50	Reduced
7	ST-222	12.00	0	12.00	No change
8	5-Chloro-2 Nitro Diphenyl Amine	3.00	(-) 2.5	0.50	Reduced
9	Diphenic Acid	6.00	(-) 5.5	0.50	Reduced
10	3,5-Dinitro Aniline	12.00	(-) -4	8.00	Reduced
11	Benzophenone Imine	6.00	(-) 4	2.00	Reduced
12	4-Bromo 2- Fluoro Biphenyl	18.00	(-) 17.5	0.50	Reduced
13	Pyridinium -p-toluene sulphonate (PPTS)	6.00	(-) 5	1.00	Reduced
14	5-Ethyl Pyridine-2-ethanol (PIO-1)	48.00	(+) 22	70.00	Increased
15	NCHQ (6-Nitro-7-chloro-4- hydroxy quinazoline)	6.00	(-) 5	1.00	Reduced
16	Mercaptan Thiol	60.00	(-) 55	5.00	Reduced
17	Anthranilamide	6.00	0	6.00	No change
18	DPDS	2.40	(-) 1.9	0.50	Reduced
19	2,4-Thiazolidinedione	21.60	(+) 3.4	25.00	Increased
20	Glycenate (N, N Diphenyl Methylene Glycene Ethyl Ester)	2.40	(-) 2.15	0.25	Reduced
21	Diphenyl Methane	3.00	(-) 2.75	0.25	Reduced

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

June June

	Total (A+B)	2450.40	(-) 718.80	1731.60	
	Total (B)	1560.00	(-) 712.00	848.00	-
	Other textile chemicals	696	(-) 196	500	Reduced
	Fixano Con	108	0	108	No change
	Sarady FN	240	0	240	No change
	Sarasoft- 485	96	(-) 96	0	Reduced
	Polybounce	60	(-) 60	0	Reduced
	NFO-CNX	60	(-) 60	0	Reduced
2	B. Macrosoft	60	(-) 60	0	Reduced
	Sarasoft- 1	240	(-) 240	0	Reduced
	Textile Chemicals		()0.00	003.00	
	Total (A)	890.40	(-) 6.80	883.60	Reduced
31	Amino Diphenyl Methane	24.00	(-) 19	5.00	Dadasad
	Other Organic carboxylic Acid compounds	60.00	0	60.00	No change
30	Homophthalic Acid	6.00	(-) 5	1.00	Reduced
29	1-P1-C (1-Phenyl-1-cyclopentane carboxylic acid)	12.00	(-) 9	3.00	Reduced
28	Other Amino Compounds	93.00	(-) 90	3.00	Reduced
27	3- Iodoaniline	12.00	(-) 11.5	0.50	Reduced
26	Oxalyl Chloride	36.00	(-) -35.5	0.50	Reduced
24 25	Other Trizene Products	24.00	(+) j166	190.00	Increased
23	Other organic Hydrocarbons	174.60	0	174.60	No change
22	DDH	60.00	0	60.00	No change

The overall production quantity will be reduced at tune of 2450.4 MT/A to 1731.60 MT/A. Maximum 39 nos. of products shall be manufactured at any given point of time. The overall total production quantity will not exceed 1731.60 MT/A.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Juni ?

Dange.

B. Pollution load Details:

(i) Water & Wastewater Aspect

Before Product Mix

Sr. No.	Particular	Quantity in CMD	Effluent Segregation in CMD		COD (Strong)		COD (Weak)		TDS (Strong)		TDS (Weak)		
			Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	
1	Water Consumption	150	Part of the Control	Not applicable									
2	Trade Effluent Generation												
Α	Process Activity	47.7	4	43.7	12282	49.13	1788	78.13	52030	208.12	1028	44.92	
В	Cooling Tower & Boiler	3.3	0	3.3	0	0	154	0.51	0	0	1345	4.4	
C	Total	51	4	47	12282	49.13	1673	78.64	52030	208.12	1050	49.36	
3	Domestic Effluent Generation, CMD	12.8	0	12.8	0	0	610	7.8	0	0	523	6.7	

After Product Mix:

Sr.	Particular	Quartity in CMD	Effluent Segregation in CMD		COD (\$ (ong)		COD (Weak)		TDS (Streng)		TDS (Weak)	
			Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day
1	Water Consumption	106.18	Not applicable									
2		gar street.	Trade Effluent Generation									
Α	Process Activity	36.69	3.98	32.71	8281	32.96	1751	57.29	39922	158.89	1025	33.54
В	Cooling Tower & Boiler	3.3	0	3.3	0	0	154	0.51	0	0	1345	4.4
C	Total	39.99	3.98	36.01	8281	32.96	1605	57.8	39922	158.89	1049	37.98

MAHARASHTRA POLLUTION CONTROL BOARD

3 Domestic Effluent Generation, CMD	12.8	0	12.8	0	0	610	7.8	0	0	523	6.7
 Water Consumption will re 	educe to			43.82 C	MD						
• Hydraulic Load will reduc	Hydraulic Load will reduce to				CMD						
 COD load for trade effluer 	COD load for trade effluent will reduce by				g/day						
• TDS load for trade effluen	TDS load for trade effluent will reduce by										

Treatment System

a) Trade Effluent:

Industry has segregated trade effluent into weak stream & strong stream and provided Effluent Treatment Plant (ETP) comprising of;

- Strong COD/TDS stream of 4.0 CMD: Treatment system comprising of Primary (Collection tank, Neutralization tank, Equalization tank, Flash mixer, Primary Clarifier/Primary Settling Tank, Followed by Stripper and) Further send to to MEE facility developed in JV of TIMA & M/s. SEE..
- Weak COD/TDS stream of 47.0 CMD: Treatment system comprising of collection tank and Treatment system comprising of Primary (Collection tank, Neutralization tank, Equalization tank, Flash mixer, Primary Clarifier/Primary Settling Tank), Secondary (Activated sludge process), Tertiary (Pressure sand filter, Activated carbon filter) with design capacity of 130.

The partly treated strong stream effluent 4.0 CMD shall be sent to MEE facility developed in JV by TIMA & M/s. SEE for further treatment and disposal & out off 47.0 CMD of partly treated weak stream effluent 22.0 CMD shall be recycled in the utilities and partly treated weak stream effluent 25.0 CMD shall be disposed to CETP for further treatment and disposal after confirming above standards

b) Domestic Effluent: Domestic effluent is treated in Septic Tank followed by Soak pit for the treatment of 12.8 CMD of sewage.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Leurs Deurs

Page 43 of 46

(ii) Air Emission Load;

Sr. No.	Source	Fuel	Before Product Mix	After Product Mix	Stack Height (Meter)	Remark
1	Boiler- 2 TPH	PNG	3210 SCM/Day	3210 SCM/Day	32	No change
2	Boiler- 6 TPH	PNG	3210 SCM/Day	3210 SCM/Day	32	No change
3	DG Set- 500 KVA	HSD	50 Lit/Hr	50 Lit/Hr	3	No change
4	DG Set- 380 KVA	HSD	30 Lit/Hr	30 Lit/Hr	3	No change
5	Process Reactor Vent				20	No change
6	Process Reactor Vent	-			20	No change
7	Process Reactor Vent		epining - Siriki	- 8 F (1) (1) - 1 (1) (1) (2)	20	No change
8	Process Reactor Vent	-			20	No change
9	Storage Area of Thieol			V 1940 - 1948 -	20	No change

(iii) Hazardous Waste Load

Sr. No.	Description	Category No.	UOM	Before Product Mix	After Product mix	Remark
1	Spent Solvents	20.2	MT/A	4200	3091	Reduced
2	Distillation Residues	20.3	MT/A	120	101.16	Reduced
3	Process Sludge	20.4	MT/A	36	29.29	Reduced
4	Chemical sludge from waste water treatment	35.3	MT/A	408	394	Reduced
5	Empty barrels / containers / liners contaminated with hazardous chemicals/wastes	33.1	Nos./Y	3600	3600	No change
6	Discarded Containers / Barrels / liners / cotton rags	33.2	MT/A	12	12	No change

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

100/

Dengis.

	Total	-	-	270008.40 & 3600 Nos./Y	20709.45 & 3600 Nos./Y	-
8	Spent Solvents	20.2	MT/A	21600	16695	Reduced
7	Other Halogen Organic Compound [Poly Aluminium Chloride (100% Basis) equivalent to the 52.7 MT/M (10% to 11% Poly Aluminium Chloride]	28.1	MT/A	632.4	387	Reduced

 Out of 8 nos. of category of Hazardous wastes, 2 nos. of category of HW remains unchanged and quantity of 6 category waste will be reduced.

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of Wastewater, Air emissions & Hazardous waste generation was discussed. Existing Consent to Operate, Environmental Clearance, NIPL Certificate issued by M/s. Sadekar Enviro Engineers Pvt. Ltd. and Product – Mix Proforma are taken on the record.

After due deliberations, Committee noticed that:

- Industry has applied for Change in Product Mix. The overall production quantity will be reduced at tune of 2450.4 M/A
 to 1731.60 MT/A. Maximum 39 Nos. of products shall be manufactured at any given point of time. The overall total
 production quantity will not exceed 1731.60 MT/A.
- ii. The water consumption, trade effluent generation will be reduced after product mix.
- iii. COD load will reduce by 37.01 Kg/day and TDS load will reduce by 60.61 Kg/day.
- iv. No Change in fuel, and no increase in emission load.
- v. Out of 8 nos. of category of Hazardous wastes, 2 nos. of category of HW remains unchanged and quantity of 6 category waste will be reduced. The overall hazardous waste quantity after product mix will be reduced.
- vi. The overall pollution load is not increased after change in product mix.

Minutes of 4th Technical Committee Meeting (2022-2023) 2nd Sitting for certification about "No Increase in Pollution Load" dtd. 26th April 2023

Page 45 of 46

Lus

Danste.

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions;

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of sixmonthly compliance monitoring report on their official website.
- (ii) Industry shall dispose the by-products as per the provision of H&OW Rule
- (iii)Industry should not manufacture any other product for which permission is not granted by the Board.
- (iv) Industry shall ensure connectivity of OCEMS to Board server.

The meeting ended with vote of thanks to Chair.

(Shri. N. N. Gurav) RO (BMW)

and Member-Convenor of Committee

(Dr. J.B.Sangewar)

Asst. Secretary (Tech.) and Chairman of the Committee