Minutes of 4th Technical Committee Meeting (2022-2023) 1st Sitting, for certification about "No Increase in Pollution Load" for getting exemption from going through the entire EIA process i.e for assessment of application of under change in Product-Mix.

Date 10th March, 2023

Venue: Hybrid Mode, 4th Floor, Conference Hall, Kalpataru Point, Sion, Mumbai.

Technical Committee Members present for the meeting:

1. Dr.J.B. Sangewar Assistant Co.	
 Dr. J.B.Sangewar, Assistant Secretary (Tech), MPCB Dr. V. M. Motghare, Joint Director (APC) 	Chairman
3. Dr. Y.B. Sontakke, Joint Director (WPC)	Member
4. Dr.B R. Naidu, Ex Zonal Officer, CPCB	Member
5. Shri. N. N. Gurav, RO(BMW)	Member
outer, RO(DIVIW)	Member convener

At the outset, the request received from the members 1) Scientist-1, Environment department, GoM, 2) Regional Director, CPCB, 3) Representative nominated by director NEERI. 4) Mr. Anurag Garg, Associate Prof IIT, Mumbai and 5) Representative nominated by director NCL Pune for leave of absence from attending the meeting were placed before the committee meeting. The committee considered the same.

Shri.N.N Gurav , RO(BMW)MPCB, Member convener of the Committee, welcomed all the members of the Committee and requested , Dr.J.B.Sangewar, Assistant Secretary (Tech), MPCB & Chairman of the committee to permit proceedings of the meeting to start.

On the basis of request made by the industries, the members thereafter deliberated on the agenda items placed before the committee and following decisions were taken.

Introduction: This has reference to the online proposal submitted vide No. IA/MH/IND2/70618/2017along with the copies of documents seeking amendment in existing consent to operate under change in product-mix under the provision of EIA Notification 2006 amended on 06.10.2022.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd, 10th March 2023

Page 1 of 94

- 1. Environmental Clearance is granted to the industry vide IA-J-11011/526/2017-IA-II(I); dated 05.04.2019.
- 2. Consent to Operate granted vide no. Format1.0/BO/AST/UAN NO. 0000076963/O/CC-1911000582; dated 15/11/2019. The validity of the existing consent is up to 31/10/2024.
- 3. Company has applied for amendment in existing CTO for hazardous waste vides UAN No. MPCB-CONSENT_AMMENDMENT-0000008897; dated 02.07.2022.

Project details:

A. Production Details;

Production Details: Sr. No.	Product Name	Existing Quantity (MT/A)	Proposed Quantity (MT/A)	Total Quantity (MT/A)	Remarks
A	FUNGICIDE				
1	Metiram Technical	850	-350	500	Reduced
2	Cymoxanil Technical	105	-105	0	Reduced
3	Propiconazole Technical	50	+150	200	Increased
4	Hexaconazole Technical	315	-265	50	Reduced
5	Tricyclazole Technical	420	-270	150	Reduced
6	Tebuconazole Technical	300	-100	200	Reduced
7 Azoxystrobin Technical		125	+75	200	Increased
8 Pyraclostrobin Technical		5	+15	20	Increased
9	9 Picoxystrobin Technical		-5	100	Reduced
10	Mandipropamid Technical	100	-50	50	Reduced
11	Epoxyconazole Technical	330	-280	50	Reduced
12	Bixafen Technical	30	-5	25	Reduced
13	Fluopyram Technical	50	-25	25	Reduced
14	Fluoxastrobin Technical	30	-30	0	Reduced
15	Fluxapyroxad Technical	50	0	50	No change
16	Prothiaconazole Technical	0	+200	200	Newly added
17 Difenoconazole Technical		0	+50	50	Newly added
В		1	NSECTICIDE		
18	Clothianidine	50	0	50	No change
19	Flonicamide Technical	105	+95	200	Increased
20	Imidacloprid Technical	400	-350	50	Reduced
21	Thiamethoxam Technical	480	+1020	1500	Increased

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Je

Page 2 of 94

22	Acetamiprid Technical	180	-130	50	Reduced
23	Pyridaben Technical	50	+50	100	Increased
24	Chlorantraniliprole Technical	100	0	100	No change
25	Spirotetramat Technical	30	-30	0	Reduced
26	Sulfoxaflor Technical	50	-50	0	Reduced
27	Dinetofuron	100	-70	30	Reduced
28	Flubendamide	100	-100	0	Reduced
29	Lambda Cyhalothrin Technical	400	-350	50	Reduced
30	Cypermethrin Technical	250	-230	20	Reduced
31	Bifenthrin Technical	250	-200	50	Reduced
32	Thiachloprid Technical	0	+20	20	Newly added
33	Pymetrozine Technical	0	+200	200	Newly added
34 Chlorpyrifos 98% Technical		0	+50	50	Newly added
С			HERBICIDE		<u>i</u>
35	Pyrazosulfuron Technical	20	+30	50	Increased
36	Tembotrione Technical	50	-50	0	Reduced
37	Penoxsulam Technical	30	-10	20	Reduced
38	Quizalofop Ethyl Technical	80	+20	100	Increased
39	Oxadiazon Technical	25	-25	0	Reduced
40	Clodinofop Propargyl Technical	100	0	100	No change
41	Metamifop Technical	50	-50	0	Reduced
42	Saflufenacil Technical	30	-30	0	Reduced
43	Bentazone Technical	360	-260	100	Reduced
44	Clomazone Technical	450	-350	100	Reduced
45	Sulfentrazone Technical	135	-135	0	Reduced
46	Propaquizafop Technical	100	-20	80	Reduced
47	Topramezone Technical	0	50	50	Newly added
48	Clethodim Technical	0	100	100	Newly added
D			INTERMEDIATE	100	Tioniy added
49.	Sodium Cyno Dithio formate Technical	0	+1250	1250	Newly added

Lever Dergy

Page 4 of 94

MAHARASHTRA POLLUTION CONTROL BOARD

		- 45/0 I	LA AND NEWLY SEE	ned product quar	ntity = 2470 TPA
	Note: Old Product ge	rantity = 4370 T	'PA and Nawhand	4070	
	Total	6840	0	6840	
<i>J</i> 1.	Dimethomorph (TCMSC) Technical	0	+500	500	Newly added
50. 51.	Cloquintocet-Mexyl Technical	0	+50	50	Newly added

There is no change in annual production capacity as per existing EC (6870 TPA) and CTO (6840 TPA). MPCB has not granted CTO for the manufacturing of BENZOVINDIFLUPYR TECHNICAL (30 MT/A) pesticide product. Thus, overall production capacities of existing plant will remain unchanged before and after the proposed change. The overall total production quantity will not exceed 6840 TPA.

B. Pollution load Details:

(i) Water & Wastewater Aspect;

Before Product Mix:

Sr. No.	Particular	Quantity in CMB	Effluent Segregation in CMD Strong Weak		Quantity in in CMD	,		COD		OD Veak)		DS rong)		TDS Veak)
					mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/da		
1	Water Consumption	229.50		l		No	t applic	able		<u> </u>	<u> </u>			
2			T	rade Efflue	nt Gene	ration								
A	Process Activity	25	16.4	8.6	18100	296.84	1340	11.52	13200	216.48				
В	Cooling Tower & Boiler	16	_	16			980	15.68			2220	35.52		
C	Total	41	16.4	24.6	18100	296.84	2320	27.2	13200	216.48	2220	35.52		
3	Domestic Effluent Generation, CMD	15		15			700	10.5			500	7.5		

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Derg

Jui

After Product Mix:

Particular	Quantity in CMD	Effluent Segregation in CMD			OD rong)		OD /eak)		DS rong)		TDS /eak)
		Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day
Water Consumption	229.5		l	<u> </u>	No	t applic	able	<u> </u>	l	i	
	<u> </u>	T	rade Efflue	nt Gene	ration						
Process Activity	25	16.1	8.9	18500	297	1310	11.65	13180	212.19		
Cooling Tower & Boiler	16		16			980	15.68			2220	35.52
Total	41	16.1	24.9	18500	297	2290	27.33	13200	212.19	2220	35.52
Domestic Effluent Generation, CMD	15		15			700	10.5			500	7.5
	Water Consumption Process Activity Cooling Tower & Boiler Total Domestic Effluent	Water Consumption 229.5 Process Activity 25 Cooling Tower & Boiler 16 Total 41 Domestic Effluent 15	Particular Quantity in CMD in Classical Strong	Particular Quantity in CMD in CMD Strong Weak Water Consumption 229.5 Trade Efflue Process Activity 25 16.1 8.9 Cooling Tower & Boiler 16 16 Total 41 16.1 24.9 Domestic Effluent 15 15	Particular Quantity in CMD Strong Weak mg/l	Particular Quantity in CMD Strong Weak mg/l Kg/day	Particular Quantity in CMD (Strong) (Work Mater Consumption 229.5 Strong Weak Mg/l Kg/day Mg/l	Particular Quantity in CMD (Strong) (Weak)	Particular Quantity in CMD (Strong) (Weak) (Strong) (Str	Particular Quantity in CMD (Strong) (Weak) (Strong)	Particular Quantity in CMD (Strong) (Weak) (Strong) (Wak) (Wak) (Strong) (Wak) (Wak) (Strong) (Wak) (Wak) (Strong) (Wak) (Wak

Water Consumption will remain same

229.5 CMD

• Hydraulic Load will remain same

41 CMD

COD load of trade effluent will remain same

297 Kg/day

• TDS load for trade effluent will remain same

213 Kg/day

There is no change in process & technology before and after proposed changes. Therefore, No additional wastewater will be generated before and after proposed change in product mix. Thus, the trade effluent generations as per valid CTO issued is 41 CMD, remains unchanged before and after the change in product mix. Zero Liquid Discharge (ZLD) is being/will be maintained by reuse the recycle water in process and cooling tower.

Treatment System

a) Trade Effluent:

Provided ETP (Capacity_100 KLD)

b) **Domestic Effluent: Provided STP** (Capacity_15 KLD)

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

(ii) Air Emission Load;

Sl. No.	Stack attached to	APC System	Height in Meters	Stack Diameter In MM	Type of Fuel	Quantity & UoM Before Product Mix	Quantity & UoM After Product Mix	Any change after desired product quantity
1	Boiler 5 TPH	Cyclone Separator for Dust collection, Bag Filter	30	800	Biomass Briquette	6000 Kg/hr	6000 Kg/hr	No Change
2	Thermopack	stack	30	450	LDO	15 lit/hr	15 lit /hr	No Change
2	DG Set 180 kVA	Acoustic enclosure	3	120	HSD	28 Kg/hr	28 Kg/hr	No Change
3	DG Set 750 kVA	Acoustic enclosure	6	200	HSD	80 Kg/hr	80 Kg/hr	No Change
Proc	ess Reactor				<u> </u>			
4	Process Stack	Packed column Scrubber	12	150	-	-		No Change

(iii) Hazardous Waste Load

SI. No.	Hazardous Waste Type	Category (As per schedule under hazardous & other waste management Rules, 2016)	Maximum Quantity Before Change in product mix. (MT/D)	Maximum Quantity After Change in product mix. (MT/D)
1.	ETP Sludge	35.3	0.3	0.3

SI. No.	Hazardous Waste Type	Source of Generation	Mode of Storage	Mode of Treatment Method	Mode of Disposal method	Action
1.	ETP Sludge	ETP	Stored in dedicated area	Landfill	CHWTSDF	No change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Swi

Dag-

- As per existing EC number IA-J-11011/526/2017-IA-II(I); dated 05.04.2019, Condition No. 10 (XII)- Process organic residue and spent carbon, if any, shall be sent to cement industries, ETP sludge, process inorganic & evaporation salt shall be disposed off to TSDF.
- EIA report page no. 48 following hazardous categories given to add but not added in CTO hence separate application was done on CTO Amendment Application dated 02.07.2022 vide application UAN number MPCB-CONSENT_AMMENDMENT-0000008897; dtd. 02.07.2022.

Sr.No	Haz.waste	Cat	Haz.waste	Before product Mix MT/day	After Product mix	
1.	Process wastes or residues	29.1	Process wastes or residues	-	1.0	TSDF/pre- processing/co- processing
2.	Residue from Distillation	29.1	Residue from Distillation	•	0.5	TSDF/pre- processing/co- processing
3.	Sludge from ATFD ETP	35.3	Sludge from ATFD ETP	-	0.5	TSDF/pre- processing/co- processing
4.	Sludge from STP	35.3	Sludge from STP	-	0.05	TSDF/pre- processing/co- processing

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of Wastewater, Air emissions & Hazardous waste generation was discussed. Existing Consent to Operate, Environmental Clearance, NIPL Certificate issued by M/s. Anacon laboratories Pvt ltd and Product – Mix Proforma are taken on the record.

After due deliberations, Committee noticed that:

- i. Industry has applied for Change in Product Mix with no increase in the pollution load.
- ii. There is no change in annual production capacity as per existing EC (6870 TPA) and CTO (6840 TPA). MPCB has not granted CTO for the manufacturing of BENZOVINDIFLUPYR TECHNICAL (30 MT/A) pesticide product. Thus, overall production capacities of existing plant will remain unchanged before and after the proposed change. The overall total production quantity will not exceed 6840 TPA.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum Derey.

Page 7 of 94

- There is no change in process & technology before and after proposed changes. Therefore, No additional wastewater will be generated before and after proposed change in product mix. Thus, the trade effluent generations as per valid CTO issued is 41 by reuse the recycle water in process and cooling tower.
- iv. As per existing EC number IA-J-11011/526/2017-IA-II(I); dated 05.04.2019, Condition No. 10 (XII)- Process organic residue and spent carbon, if any, shall be sent to cement industries, ETP studge, process inorganic & evaporation salt shall be disposed off to TSDF.
- The PP has presented the EIA report submitted to SEIAA wherein, on page no. 48 hazardous quantities and categories were mentioned however in the EC the hazardous waste quantity has not mentioned. While applying for CTE & CTO inadvertently it was not mentioned therefore it was not reflected in the consent, now they have applied with the corrected categories and quantities. Hence it seems that, there is no increase in hazardous waste.

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions.

- Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/apload of six-monthly compliance monitoring report on their official website.
- (ii) Industry should not manufacture any other product for which permission is not granted by the Board.
- (iii) Industry shall ensure connectivity of OCEMS to Board server.

Simulation of 4th Tanhairal Committees Martin (2002 2004) Committees of the Committe

A. a.

Agenda Item No.	Item No.2
Proposal No.	MPCB-CONSENT-0000138247
Project Details	M/s. Astec Lifesciences Ltd. Address: Plot No. K-2/1/1, Additional MIDC Area, Mahad, Dist Raigad, Maharashtra.
NIPL Certificate	NIPL certificate issued by M/s. Sadekar Enviro Engineers Pvt. Ltd.

Introduction:

This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000138247 along with the copies of documents seeking amendment in existing consent to operate under change in product-mix under the provision of EIA Notification 2006 as amended on 23/11/2016 & 02/03/2021.

Exiting Clearances:

- 1. Environmental Clearance is granted to the industry vide J-11011/111/2011-IA-11(I) dated 22.03.2013.
- 2. Consent to Operate granted vide no. 1.0/BO/AST/UAN No. 0000074199/0/CC-1908000498 dated 19/08/2019. The validity of the existing consent is up to 31/7/2022.
- 3. Company has applied for change in product mix along with the renewal of CTO to the Board vide no MPCB-CONSENT-0000138247 dated 03.05.2022.

Project details:

A. Production Details:

Sr. No.	Product Name	Existing Quantity (MT/M)	Proposed Quantity (MT/M)	Total Quantity (MT/M)	Remarks
1	4-BAT	0	2	2	Newly added
2	Diniconazole	0	2	2	Newly added
3	Uniconazole	0	2	2	Newly added
4	Mapiquat	0	1	1	Newly added
5	Silthiofam	0	2	2	Newly added
6	MXL-M	0	5	5	Newly added
7	Transfluthrin	25	16	41	Increased
8	Tebuconazole	120	40	160	Increased
9	Propiconazole	120	-70	50	Reduced
10	Dichlorophenyl oxirane	18	0	18	No change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

www

Deray

Page 9 of 94

	production quantity will remain same Marie	503	0	503	- +
	Total			_	
	triazol-1-yl)-3-(trimethylsilyl) propan 2-ol)		ľ	5	No change
21	F69 (2-(2,4-diflurophenyl)-1-(1H-1,2,4		0	40	No change
20	Difenoconazole (CCPV)	40	0		No change
19	Imibenconazole	10	0	10	No change
18	DTX, Dextrinol	5	0	5	
17	Imazethapyr (IMZPR)	35	0	35	No change
	Cyproconazole	20	0	20	No change
16		20	0	20	No change
15	Simeconazole	20	0	20	No change
14	Metalaxyl	25	0	25	No change
13	2-Ethyl 2-methyl butanoic acid		0	20	No change
12	Siduron	20	0	20	No change
11	3 -Aminotriazole	20		T .:	

The overall production quantity will remain same. Maximum 21 Nos. of products shall be manufactured at any given point of time. The overall total production quantity will not exceed 503 MT/M.

B. Pollution load Details:

(i) Water & Wastewater Aspect;

Before Product Mix:

Sr. No.	Particular	Quantity CMD	in Effluent Segregat CMD		COI (Stro		COI (We		TDS (Strong)		TDS (Weak)	
			Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/i	Kg/day	mg/l	Kg/day
1	Water Consumption	307	Not appli	cable	L		<u> </u>	1 .] -	-8,		L.E.uay
2	Trade Effluent Gene	ration						-		. <u> </u>		
A	Process Activity	53	76.5		11320	866.5	F	Ţ	101580	7771.1		
B	Cooling Tower &	234	- [33.5	<u> </u>	 	2800	93.8	-	ļ	900	30.15

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 10 of 94

Jung .

С	Total	287	76.5	33.5	-	866.5	<u>-</u>	93.8	-	7771.1	1	30.15
3	Domestic	Effluent20		15	ļ <u></u>		700	10.5	<u> </u>		500	7.5
	Generation, Ch	MD					1.00	10.5	[T		Poo	J ^{7.3}

After Product Mix;

Sr. No.	Particular	Quantity CMD	inEffluent Segregation in CMD		COD (Strong)		COD (Weak)		TDS (Strong)		TDS (Weak)	
			Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day
1	Water Consumption	307	Not appl	icable	-		<u> </u>	1 .	1-8-	3	L8.	1-8-4-1
2	Trade Effluent Gene	ration		 .					 -			<u> </u>
Α	Process Activity	53	76.1		11300	866	 -	-	97000	7386		<u></u>
В	Cooling Tower & Boiler	234	-	33.5	-		2800	93.8	-		900	30.15
C	Total	287	76.1	33.5		866	<u> </u>	93.8	-	7386	 	30.15
3	Domestic Effluen Generation, CMD	20		15			700	10.5	-		500	7.5

- Water Consumption will remain same 307 CMD
- Hydraulic Load will reduce to 109.6 CMD
- COD load for trade effluent will reduce by 0.5 Kg/day
- TDS load for trade effluent will reduce by 385 Kg/day

Treatment System

Trade Effluent:

Industry has segregated trade effluent into weak stream & strong stream and provided Effluent Treatment Plant (ETP) comprising of;

- i) Strong COD/TDS stream of 76.1 CMD: Treatment system comprising of collection tank neutralization, stripper, In-plant evaporation system, Multiple effect Evaporator, ATFD. The distillate is recycled to process.
- ii) Weak COD/TDS stream of 33.5 CMD: Treatment system comprising of collection tank and psychometric evaporator.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page **11** of **94**

Jum

Donato

Domestic Effluent: The domestic effluent is treated in sewage treatment plant of capacity 20 CMD.

(ii) Air Emission Load;

Sr. No.	Source	Fuel	Before Product Mix	AG: D	ı
1	Boiler- 6 TPH		Delote I toduct MIX	After Product Mix	Remark
		Coal	22 MT/D	22 MT/D	No change
2	Thermic Fluid Heater 15 Lac				
	Kcal/Hr				
3	DG Set- 500 KVA & 250 KVA	LICID	1000 71 77		
'	- 550 SOURTA OC 250 RVA	HSD	1000 Lit/Hr	1000 Lit/Hr	No change
			j	'	

(iii) Hazardous Waste Load;

Sr. No.	Description	Category No.	UOM	Before	After	Remark
1	Used or spent oil	5 1	 	Product Mix	Product mix	
2	Residue & Wastes	5.1	Lit/M	50	50	No change
	 	29.1	MT/M	50	50	No change
-	Chemical sludge residue containing pesticide	29.2	MT/M	18	15	Reduced
	Discarded containers	33.1	Nos./M	1245	1245	
5	Filter & filter material having organic liquid	36.2	Kg/M	 		No change
	Spent carbon	36.2		 	50	No change
7	Concentration or evaporation residues	 	MT/M	2.5	2.5	No change
		37.3	MT/M	5	5	No change
	Inorganic Salts K/Na/Zn of Sulphate, Phosphate, Chloride, Bromide	29.1	MT/M	146	146	No change
٠ ا	Mg Salts (Sulphate/Chloride/Carbonate)	29.1	MT/M	142.5	142.2	Reduced
	Alinhatia Uvdeanala	29.1	A FORM &			
	Usedno ob lania and 1		MT/M	20 2	20	No change
	of category of Hazardous wastes, 9 nos. of cate	29.1	MT/M	6	5	No change

Out of 11 nos. of category of Hazardous wastes, 9 nos. of category of HW remains unchanged and quantity of 2 category waste will be reduced.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

buop-

Jun

4

Page 12 of 94

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and power point presentation made by the industry. Product wise load calculation in terms of Wastewater, Air emissions & Hazardous waste generation was discussed. Existing Consent to Operate, Environmental Clearance, NIPL Certificate issued by M/s. Sadekar Enviro Engineers Pvt. Ltd. and Product – Mix Proforma are taken on the record.

After due deliberations, Committee noticed that:

- i. Industry has applied for Change in Product Mix with no increase in the production quantity. The total production quantity will be remaining same after product mix i.e. 503 MT/M.
- ii. The water consumption, trade effluent generation will remain same after product mix.
- iii. COD load will reduce by 0.5 Kg/day and TDS load will reduce by 385 Kg/day
- iv. Committee noticed that, industry have segregated effluent into strong and weak stream and not provided separate treatment for segregated trade effluent.
- v. The overall hazardous waste quantity after product mix will remain same.
- vi. The by-products generated which shall be shifted to Hazardous Waste and dispose as per the provision of H&OW Rule and PP agreed for the same.
- vii. The overall pollution load is not increased after change in product mix.

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions.

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of six-monthly compliance monitoring report on their official website.
- (ii) Industry should not manufacture any other product for which permission is not granted by the Board.
- (iii) Industry shall ensure connectivity of OCEMS to Board server.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Junio Jacque

Agenda Item No.	Item No.3
Proposal No.	MPCB-CONSENT-0000138688
Project Details	M/s. Atul Bioscience ltd. Address: Plot no N-37, MHDC Anandnagar, Additional Ambarnath, Industrial Area, Tal Ambarnath, Dist. Thane Maharashtra.
NIPL Certificate	NIPL certificate issued by Institute of Chemical Technology, Matunga, Munibai-400019

Introduction:

This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000138688 along with the copies of documents seeking amendment in existing consent to operate under change in product-mix under the provision of EIA Notification 2006 amended on 102.03.2021.

Exiting Clearances:

- 1. Environmental Clearance is granted to the industry by SEIAA vide No. SIA/MH/IND2/152225/2020 dated 26.06.2020.
- 2. 1st Consent to Operate (Expansion) granted with change in product mix with renewal of existing consent to operate obtained wide no. Format 1.0/CC/UAN No. 0000099414/CO-2107000147, Date: 02.07.2021 valid upto 31.12.2025

Project details:

A. Production Details:

S. No	Name of the products, Unit	Existing, MTA	Proposed,	Total, MTA	D
	(1R)-2-{[2-(4-aminophenyl)ethyl]amino}-1- phenylethanol Hydrochloride	22	0	22	Remarks
2	(1R)-2-{[2-(4-nitrophenyl)ethyl]amino}-1- phenylethanol Hydrochloride	25.74	0	25.74	No change
3	(2R)-2-hydroxy-N-[2-(4-nitrophenyl)ethyl]-2- phenylethanamide	26.51	6	26.51	No change
4	(S) - Metoprolol Succinate	10	-5	5	No change Reduced
5	(S)-1-(2-Chloroacetyl)pyrrolidine-2-carbonitrile (CACP)	62.62	0	62.62	No change
6	(S)-Metoprolol Base	9.61	0	9.61	No change
7]	1-(4-methoxyphenyl)-propan-2-one	36.72	0	36.72	No change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

S.		Existing,	Proposed,	T-4-1	
No	Name of the products, Unit	MTA	MTA	Total, MTA	Remarks
	2-(acetylamino)-9-{[2-(acetyloxy)ethoxy]methyl}-	1,2212		MILA	Remarks
8	9H-purin-6-yl acetate	238.5	0	238.5	No change
9	3,4-dimethoxy-benzoic acid	31.02	0	31.02	No change
10	3,4-dimethoxy-benzoic acid-4-bromo-butulylester	51.75	0	51.75	No change
11	Acyclovir	150	-100	50	Reduced
12	Atazanavir	50	-50	0	Reduced
13	Benzyl chloride	250	-250	0	Reduced
14	Carvidilol	25	-25	0	Reduced
15	CBZ-L-Valine	157.95	-132.95	25	Reduced
16	CBZ-Valacyclovir	202.5	-152.5	50	Reduced
17	Chlorobutanol	50	-25	25	Reduced
18	CLVM	360	-360	0	Reduced
19	Dapsone	40	-40	0	Reduced
20	DCHU	150	0	150	No change
21	Desvenlafaxine	25	10	35	Increased
22	Ethyl-[2-(-methoxy-phenyl)-1-methylethyl]amine	31.5	0	31.5	No change
23	Fluconazole	75	25	100	Increased
24	Fluconazole Crude (FCZ-III)	86.47	35.53	122	Increased
25	Guanine diacetate	200.34	0	200.34	No change
26	L-PBE. HCl.	200	-140	60	Reduced
27	L-Prolinamide	62.62	0	62.62	No change
28	Losartan Potassium	60	40	100	Increased
29	Losartan-I	60	0	60	No change
30	Losartan-II	60	0	60	No change
31	Mebeverine	75	0	75	No change
32	Metoprolol Base	112.94	0	112.94	No change
33	Metoprolol Epoxide	96.78	0	96.78	No change

Jum

Donda

S. No	Name of the products, Unit	Existing,	Proposed,	Total, MTA	Remarks
34	Metoprolol Succinate	50	0	50	No change
35	Metoprolol Tartrate	80	-30	50	Reduced
36	Mirabegron Mirabegron	25	-15	10	Reduced
37	Nebivolol HCL	25	-25	0	
38	Quetiapine Fumerate	75	-75	0	Reduced
39	Ritonavir	50	10	60	Reduced
40	Sodium veratroate	39.17	0		Increased
	Tert.butyl N[(1S,3S,4S)-1-benzyl-4-amino-3	39.17	U	39.17	No change
41	hydroxy-5- phenyl pentyllcarbamate	35	0	35	No change
42	Thiazol-5-yl-methyl N[(1S,3S,4S)-1-benzyl-4-amino-2 hydroxy-5- phenyl pentyl]carbamate	35	0	35	No change
43	TMSI	70	-20	50	Reduced
44	Topiramate HCL	50	-50	0	Reduced
45	Valacyclovir hydrochloride	150	-25	125	Reduced
46	Venlafaxine Acetate	154.5	0	154.5	No change
47	Venlafaxine Hydrochloride	150	-50	100	Reduced
48	Veratraldehyde	29.53	0	29.53	No change
49	Vildagliptin	75	-55	20	Reduced
50	1-BOC PIPERAZINE	0	10	10	Newly added
51	1-Chloroethyl methyl carbonate (1-CEMC)	0	100	100	
52	10-Methoxy Iminostilbene	0	100	100	Newly added
53	2,2'-DITHIOBISBENZOTHIAZOLE DISULPHIDE	0	25	25	Newly added
54	ATAA.HCI	0	10	10	Newly added
55	BDH Salt	0	10	10	Newly added
6	Boc-L-Proline	0	5	5	Newly added
7	Boc-L-Valine	0	5	5	Newly added
8	ВРВН	0	5		Newly added
44.5				_ 5	Newly added

Juny 1

Dong

S. No	Name of the products, Unit	Existing, MTA	Proposed, MTA	Total, MTA	Remarks
59	CLBL Anhydrous	0	1	1	Newly added
60	CLVM HCI	0	120	120	Newly added
61	CLVM Oxalate	0	120	120	Newly added
62	DFTA	0	75	75	Newly added
63	EDP	0	100	100	Newly added
64	FCZ-III aqueous layer	0	600	600	Newly added
65	ITVM	0	25	25	Newly added
66	MAEM	0	100	100	Newly added
67	MAEM ESTER	0	68	68	Newly added
68	MAEM ESTER Stage-1	0	158	158	Newly added
69	MAEM ESTER Stage-2	0	188	188	Newly added
70	MAEM ESTER Stage-3	0	98	98	Newly added
71	METHOXYAMINE. HYDROCHLORIDE (MA. HCI)	0	25	25	Newly added
72	MICA ESTER	0	75	75	Newly added
73	MICA ESTER- Step-1	0	45	45	Newly added
74	MICA ESTER- Step-2	0	60	60	Newly added
75	MICA ESTER- Step-3	0	100	100	Newly added
76	Moc-L-Valine	0	5	5	Newly added
77	N-BOC-4-Piperidone	0	10	10	Newly added
78	NEED	0	100	100	Newly added
79	NPEA HCL	0	10	10	Newly added
80	NPTC	0	10	10	Newly added
81	SMIA	0	100	100	Newly added
82	SMIA -stage 1	0	45	45	Newly added
83	SMIA -stage 2	0	45	45	Newly added
84	SUCCINATE SALT STAGE 5	0	10	10	Newly added
85	TBC	0	25	25	Newly added

Jum .

Dary

S. No 86	Name of the products, Unit	Existing, MTA	Proposed, MTA	Total, MTA	Remarks
	TMU	0	5	5	
87	VALSARTAN	0	120	1 30	Newly added
88	VALSARTAN Stage-1			120	Newly added
89	VALSARTAN Stage-2	- •	120	120	Newly added
90	Venla free base	- 0 -	120	120	Newly added
	veina free base		25	25	Newly added
		4188.77	1473.08	5661.85	

The overall production quantity will increase from 4189 MTA to 5662 MTA.

- B. Pollution load Details:
- i) Water & Wastewater Aspect

Before Product Mix

Sr. No.	Particular Quantity in CMD		Effluent Seg CM		1	OD rong)	i	COD Veak)		TDS trong)]	TDS Weak)
			Strong	Weak	mg/t	Kg/day	mg/l	Kg/day	mg/l	Kg/day	1	Kg/day
1	Water Consumption	275	╂────		L				•		, mg/	Lugary)
		272				Not:	applica	ble		·	<u> </u>	1
2			Trac	de Effluent (Cuerat	ion						
A												
^	Process Activity	60	10	67	15000	150	4474	299.75	2710	121 57	7950	100
B					15000	150	4474	299.75	2710	181.57	2850	190
	Cooling Tower & Boiler	60 185	0	67	15000	150	4474 300	299.75	2710	181.57		
	Cooling Tower & Boiler	185	0	15		150			2710		2850 700	190
В						150		4.5	2710		700	10.5
В	Cooling Tower & Boiler	185	0	15			300					

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

After Product Mix:

Sr. No.	Particular	Quantity in CMD				Segrega	uent ation in AD		OD ong)		OD /eak)		DS rong)		TDS (Weak)
			Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/i	Kg/day	mg/l	Kg/day			
1	Water Consumption	272			<u>. </u>	L , ,	No	t applica	able	J		<u> </u>			
2		ļ		Trade Effluent Generation											
A	Process Activity	57	9.5	64.5	14800	139.65	4340	279.93	2400	154.8	3350	216.07			
В	Cooling Tower & Boiler	185		15			300	4.5			700	10.5			
С	Total	242	9.5	79.5		139.65		284.43		154.8		226.57			
3	Domestic Effluent Generation, CMD	30	0	22			700	15.4			500	11			

- Water Consumption will reduce from 275 CMD to 272 CMD
- Effluent generation will reduce from 114 CMD to 111 CMD
- COD load for trade effluent will reduce from 454.25 Kg/day to 424.08 Kg/day
- TDS load for trade effluent will reduce from 382.07 Kg/day to 381.37 Kg/day

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Jarg

Treatment System

a) Trade Effluent:

Industry has segregated trade effluent into weak stream & strong stream and provided Effluent Treatment Plant (ETP) comprising of:

- Strong COD/TDS stream of 9 CMD: Treatment system comprising of collection tank neutralization, stripper, In-Plant Evaporation System, Multiple Effect Evaporator, ATFD. The distillate is recycled to process.
- Weak COD/TDS stream of 65 CMD: Treatment system comprising of collection tank and psychometric evaporator.

b) Domestic Effluent:

The domestic effluent is treated in sewage treatment plant of capacity 22 CMD.

Air Emission Load

Sr. No.	Source	Fuel	Before Product Mix	1.6	
1	Boiler-1 (3TPH)	Coal		After Product Mix	Remark
	Boiler-2 (0.85 TPH)		400 kg/hr	400 kg/hr	No change
 		FO	40 kg/hr	40 kg/hr	
<u> </u>	Boiler-3 (0.85 TPH)	FO	40 kg/hr		No change
2	Boiler-4 (0.65 TPH)	FO		40 kg/hr	No change
3	DG set (500 KVA)		30 kg/hr	30 kg/hr	No change
4		HSD	70 Lits/hr	70 Lits/hr	No change
-	DG set (125 KVA)	HSD	40 Lits/hr	40 Lits/hr	
	Process Vent-1			40 Lits/III	No change
6	Process Vent-2				No change
7	Process Vent-3				No change
U o o o o o	lous Waste Load				No change

iii) Hazardous Waste Load

Sr. No.	Description	Category No.	UOM	Before Product Mix	After Product mix	D
-	Any Process or distillation residue	36.1	MT/A	1137.6		
2	Spent Carbon	28.3			1340	Increase
3	Spent Catalyst		MT/A	97	120	Increase
4		28.2	MT/A	83	58	Decreas
	Process Residue and waste	28.1	MT/A	185	285	
5	Chemical sludge from wastewater treatment	35.3	MT/A	408		Increase
6	Used or spent oil	5.1	MT/A	700		No chan
7	Date expired products	20.5		5	5	No chang
Fechnical Co	ommittee Meeting (2023-2024), for certification	28.5	MT/A] 5	5	No chang

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 20 of 94

	Aca Dalilla di			40856.6	40466	"
10	Waste or residues containing oil	5.2	MT/A	12	12	No change
10	•	20.0	MII/A	36912	38221	Decreased
_9	Spent solvents	28.6	MT/A	38912	2000:	1 <u> </u>
8	wastes	33.1	MT/A	12	12	No chang
_	Empty barrels/ containers/ liners/ contaminated with hazardous chemicals/					

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of Wastewater, Air emissions & Hazardous waste generation was discussed. Existing Consent to Operate, Environmental Clearance, NIPL Certificate issued by Institute of Chemical Technology, Matunga, Mumbai- 400019 and Product – Mix Proforma are taken on the record.

After due deliberations, Committee noticed that:

- i. Industry has applied for Change in Product Mix with no increase in the pollution load. The total production quantity will increase ... 4189.0 TPA to 5662 TPA (35.16% above existing capacity)
- ii. The water consumption decreased from 275 KLD to 272 KLD and effluent generation decreased from 114 KLD to 111 KLD after product mix.
- iii. COD load for process effluent will decrease from 449.76 Kg/day to 419.74 Kg/day and TDS load will decrease from 371.76 Kg/day to 370.94 Kg/day
- iv. Committee noticed that, industry is ZLD unit.
- v. The overall hazardous waste quantity after product mix will decrease from 40856.6 MTA to 40466 MTA
- vi. Hazardous waste details showing specific hazardous waste quantities are increasing for
 - Any Process or distillation residue: 1137.6 MTA to 1340 MTA
 - Spent Carbon: 97 MTA to 120 MTA
 - Process Residue and waste: 185 MTA to 285 MTA

Technical Committee Decision:

Technical Committee decided that, the hazardous waste quantity to be reviewed and resubmit the case in the next meeting.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Durgo

Same .

Agenda Item No.	Item No.4
Proposal No.	MPCB-CONSENT-0000132386.
Project Details	M/s. Aarti Pharmalab Ltd. (APL)-(SPACK Division), (formerly known as Aarti Industries limited)-(SPACK Division), Plot No. D-18 MIDC Tarapur, Tal & Dist. Palghar.
NIPL Certificate	NIPL Certificate issued by M/s. Aditya Environmental Services Private Limited vide No. AESPL/22-23/Arti/R-01 letter dated 04/03/2023

Introduction:

This has reference to the ordine proposal submitted the aforesaid industry vide No. MPCB-CONSENT-0000132386 along with the copies of documents seeking amendment in existing consent to operate under change in product-mix under the provision of EIA Notification 2006 as amended on 23/11/2016 & 02/03/2021.

Exiting Clearances:

- 1. EC was granted to M/s.Aarti Industries Ltd by SEIAA-EC-0000000258 dt 26-04-2018 valid upto April 25, 2025
- 2. Consent to operate granted to M/s.Aarti Industries Ltd by MPCB wide No. Format 1.0/AS(T) /UAN No. 0000124079/CR/2204001256 19/04/2022 valid upto 31.12.2024
- 3. Amendment for Consent to Operate by MPCB vide No. Format 1.0//AS(T)/UAN No. 0000009443 /AMEND/2211000021 dt 10/11/2022 valid up to 31.12.2024 transferred on Arti Pharmalabs Ltd (unit VI).

The existing product quantities as per EC and as per CTO granted by MPCB are as below:

Product	EC Quantity (MTPM) (*)	Existing CTO(#) quantity (MTPM)
Sulphuric acid/ Oleum 25%/ Oleum 65%/ Liquid SO3		
(Sulphuric anhydride)	6000	6000
Di Methyl Sulphate (DMS)	2000	2500
Di Ethyl Sulphate (DES)	1200	700
Di Methyl Urea (DMU)	600	600
	Product Sulphuric acid/ Oleum 25%/ Oleum 65%/ Liquid SO3 (Sulphuric anhydride) Di Methyl Sulphate (DMS) Di Ethyl Sulphate (DES)	Product EC Quantity (MTPM) (*) Sulphuric acid/ Oleum 25%/ Oleum 65%/ Liquid SO3 (Sulphuric anhydride) 6000 Di Methyl Sulphate (DMS) 2000 Di Ethyl Sulphate (DES) 1200

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Den of

Page 22 of 94

٨
Λ
A.
Н
4
₹,
٩S
H
T
₹,
Į.
P
C
)L
L
ι
J
ί
)
Ν
ı
C
ě
h
Ų.
T
R
C
)
В
C
),
Δ
R
1
١

5	Monomethyl Urea (MMU)	100	100
6	Sodium Vinyl Sulphonate (SVS)	300	300
7	Cyano Acetic Acid (CAA)	500	250
8	Cyano Acetyl Methyl Urea (CAMU)	300	50
9	Nitrosourasil	300	300
10	Di Methyl Aniline	18	518
	Total	11318	11318
11	Captive power plant (KW)	500	500

Thus, it is seen that overall production is within the EC sanctioned limit. Aforesaid industry had opted for Change in Product Mix earlier which was approved by Committee on 31.07.21 and CTO granted on 25th Nov 21- thus some product quantities differ from EC quantities.

This case of Change of Product Mix with No Increase in Pollution Load was considered in 2nd Technical meeting dt 25.08.22 where the project was deferred by Committee. The Minutes of 2nd Technical Committee meeting are as below:

- PP has proposed to switch the manufacturing process of product CAA from distillation of crude to manufacturing from raw material. However, the presentation was lacking in the proposed new plant and machinery along with the proposed pollution control system
- The industry has proposed to manufacture CAA from an increase in quantity instead of the existing process of distillation of crude and there will be an increase in pollution load. The presentation and NIPL certificate is lacking with respect to the same.
- The NIPL is calculated for the manufacturing CAA from 250 MT/M to 500 MT/M. However, the PP has proposed to change the manufacturing process of CAA from distillation of crude to manufacturing using raw material. Therefore, the NIPL should be in accordance with the manufacture of CAA for a total 500 MT/M and presentation is lacking for this.
- The presentation was lacking with respect to present effluent characteristics and proposed effluent characteristics due to change in manufacturing process
- The presentation was lacking with respect to the present emissions and proposed emissions along with comparison in pollution load due to changing manufacturing process.
- Proposal was deferred on above account

Changes in Proposal by aforesaid industry:

Originally, the unit had proposed: Manufacturing of CAA from starting raw material (instead of distillation of impure CAA)+ new product PHE (25 TPM) with reduction of Nitroso uracil from 300 TPM to 25 TPM.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 23 of 94

Jum

The aforesaid industry now intends to propose the following changes in their proposal for Change of Product Mix:

Existing Qty (MTPM)	Earlier Proposal for product mix (as submitted to MPCB) (MTPM)	Proposed Qty now (MTPM)	Remarks
300	25	0	Product to be discontinued
0	25	0	Not to be taken up at this site
	(МТРМ)	(MTPM) submitted to MPCB) (MTPM) 300 25	(MTPM) submitted to MPCB) (MTPM) (MTPM)

Hence, industry re-submitted computations based on above and have submitted Fresh NIPL Certificate

Project Details:

Aforesaid industry manufactures Etophylline, Theophylline at its neighbouring unit. CAA is vital raw material for both these lifesaving drugs. Currently, APL is importing crude CAA & purifying to desired concentration. Due to pandemic situation, supply from China is very irregular and of varying grade. Since, the above drugs are vital (life saving) and in great demand during current pandemic situation, APL has decided to start manufacture of CAA from basic raw materials.

A) Products with change in product mix as below:

APL (Unit 'VI), proposes Change of Product Mix as per below:

Sr. No.	Product	EC Quantity (MTPM) (*)	Quantity MTPM	Remarks
			Existing CTO(*) Proposed	

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 24 of 94

Jum

1	Sulphuric acid/ Oleum 25%/ Oleum 65%/ Liquid SO3 (Sulphuric anhydride)	6000	6000	6000	
2	Di Methyl Sulphate (DMS)	2000	2500	2500	<u> </u>
3	Di Ethyl Sulphate (DES)	1200	700	700	 :
4	Di Methyl Urea (DMU)	600	600	600	<u> </u>
5	Monomethyl Urea (MMU)	100	100	100	
6	Sodium Vinyl Sulphonate (SVS)	300	300	300	
7	Cyano Acetic Acid (CAA)- Purification	500	250	0	-250
	Cyano Acetic Acid (CAA)- New Process	0	0	500	500
8	Cyano Acetyl Methyl Urea (CAMU)	300	50	50	·
9	Nitroso Urasil	300	300	0	-300
10	Di Methyl Aniline	18	518	518	
	Total (A)	11318	11318	11268	-50
11	Captive Power (KW)	500	500	500	

Note:- (*) CTO No. Format 1.0/AS(T)/UAN No. 0000124079/CR/2204001256 Dt 19-04-2022 The highlights of the proposal are as below;

- a) Manufacture of 500 MT/M of 70% CAA from starting raw materials mono chloro acetic acid & sodium cyanide (reaction + distillation)
- b) Discontinuing distillation/purification of CAA 250 MT/M
- c) Total Product quantity reduced by 50 MT/M
- d) Reduction in Nitrosourasil & CAA (Distillation) Production Capacity.
- e) Thus, there is no increase in overall product quantity and product range (existing and proposed) covered under Synthetic Organic Chemicals Manufacturing category 5(f) as per EIA Notification 14.09.2006. Thus, the proposal qualifies for consideration under Change of Product Mix as per Amendment dated 23rd November 2016 of the said Notification.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page **25** of **94**

Jum

Donago

Summary of proposed changes:

Product	Proposed change	Remark
Cyano Acetic Acid (CAA)	Increase in capacity with process change	Process change-
I.		Existing processCurrently crude CAA is bought and distilled Proposed process — To manufacture from starting RM Month Chloro Acetic Acid
Nitroso urasil	Discontinuation of manufacturing	
By Product - Sodium Chloride	New by-product	From CAA

B. Pollution load Details:

i) Water and waste water Aspect

(a) Water Consumption aspect

- Water requirement is for Domestic, Process, Cooling / Boiler & Green belt. Total water requirement for the existing facility is 1234 cmd.
- The water requirement after change in product mix has been calculated from the material balances and is found to be 1144 cmd.

The detailed breakup of water requirement is as below:

Sr. No.	Purpose	Existing Water Consumption (cmd)	After Change in product Mix (cmd)	Remark
1	Domestic	9	9	
2	Industrial			
2.1	Processing	80	90	Preparation of Soda Ash solution in CAA- This will be me primarily by use of recycle water.
2.2	Boiler feed	407	402	Installation of RO will reduce DM regeneration
2.2	Cooling	738	642	Proposed replacement of Cooling tower natural to induce draft
	Total	1234	1144	Overall Water consumption will be reduced by 90 cmd

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 26 of 94

The total water requirement as per Environmental clearance no. SEIAA-EC-0000000258 dated 26/04/2018 is 1281 cmd. Thus, the water requirement is within the EC quantity. Total water consumption in process is increasing from 80 cmd to 90 cmd, however this will be met from recycled water (post change in product mix, fresh water consumption is reduced by 2 cmd, from existing 63.8 cmd to 62.4 cmd whereas Recycled water consumption is increased by 12 cmd, existing 16.3 cmd, to proposed 27.9 cmd). Thus, there is Overall Water consumption will be reduced by 90 cmd from existing Consented quantity.

(b) Effluent Generation & Its disposal

Total Effluent generation in existing facility from Domestic, Process, Cooling / Boiler & proposed effluent generation is tabulated below:

No	Purpose	Existing Effluent Generation, m ³ /day	After Change in product Mix, m³/day	Mode of treatment
1	Domestic	7	7	STP
2	Industrial			
2.1	Processing	8	8	MEE
2.2	Boiler & DM Plant	42	36	33 RO + 3 MEE
2.3	Cooling Tower BLD	78	78	72 RO + 6 ETP
	RO reject	17	13	MEE
	Grand Total	145	135	

Overall reduction by 10 m³/day in effluent generation

To reduce DM regeneration & backwash RO will be installed as pretreatment for treating MIDC raw water.

To increase treated effluent recycle planned to install 3rd stage RO.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

www.

Page **27** of **94**

(c) Effluent Quality:

Product wise pollution load in existing and proposed operations due to effluent generation in process is presented is as below;

Pollution Load Existing and Proposed (Effluents)

Sr.	1	Existin	g Efflu	ent load	Total L	oad	Proposed I	Effluent le	oad	Total L	oad
No.	Stream	Efflue nt Qty.	COD	TDS	COD	TDS	Effluent Qty.	COD	TDS	COD	TDS
	Unit	cmd	ppm	ppm	kg/day	kg/day	cmd	ppm	ppm	kg/day	ko/day
<u> </u>	Cooling tower blowdown	72	250	1100	18	79	72	250	1100	18	79
2	Boiler blowdown	31	250	250	8	8	31	250	250	8	8
3	DM Plant	5	300	3500	2	18	2	300	3500	1	7
4	DM Plant regeneration	6	2500	50000	15	300	3	2500	50000	8	150
5	RO reject	17	3014	11000	51	187	13	3813		50	156
	Total -A (Utilities)	131			93	591	121		-	83	400
5	Cyano Acetyl Methyl Urea (CAMU)	1	7000	50000	7	48	1	7000	50000	7	48
7	Di Methyl Aniline	1	15000	55479	14	52	1	+	55479	14	52
3	Cyno Acetic Acid (CAA)										ï
1	Cyno Acetic Acid (CAA) (Purification)	0	0	0	0	0	0	0	0	0	0
)	Cyno Acetic Acid (CAA) (New Process)	0	0	0	0	0	2		60000		96
)	Nitroso Urasil	2	5500	90000	11	179	0	0	0		0
0	Acid Plant / CAMU / Nitroso Scrubber	4		50000	14		4	<u> </u>		14	200
1	DMS / DES Ejector cooling tower	6		5500	24		6				33
	Total -B (Process)	14			81		14	1000	2300	78	49 8
-	Total A+B	145			163		135	 			829

From the same it can be seen that the effluent hydraulic load will reduce from 145cmd to 135cmd, COD load from 163 kg/d to 150 kg/d and TDS load from 1103 kg/d to 829 kg/d.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Day.

Thus, there is reduction in effluent generation and pollution load post proposal.

The company has a fully functional effluent treatment plant consisting of primary, secondary & tertiary treatment of capacity 159 cmd with RO and Evaporator. Treated effluent is fully recycled within the site, thereby achieving Zero Liquid discharge.

Domestic sewage (8cmd) is treated in STP plant and treated sewage water used for gardening.

ii) Air emissions Load:-

Details of Fuel Burning emissions

Major heat requirement for process is met by way of steam. The product wise steam requirement in existing and proposed operations is presented, it can be seen that the existing steam requirement is 13.3TPH whereas it is 12.5TPH in proposed operations. Most of the plant steam requirement fulfilled from Waste Heat Recovery (from sulfuric acid plant). No additional Steam is required after proposal. Heat recovery proposed in DMS (for use of waste heat from distillation system + pre- heating of Raw materials), Flash steam recovery system, MVR proposed for steam conservation / recovery in CAA plant. There will not be any additional fuel burning sources installed for proposed change in product mix.

		Steam	Steam requirement TPH			
Sr. No.	Product	Existing	After product mix			
1	Sulphuric acid/ Oleum 25%/ Oleum 65%/ Liquid SO3 (Sulphuric anhydride)	1.2	1.2			
2	Di Methyl Sulphate (DMS)	5.5	4.1			
3	Di Ethyl Sulphate (DES)	1.0	1.0			
4	Di Methyl Urea (DMU)	1.2	1.2			
5	Monomethyl Urea (MMU)	0.5	0.5			
6	Sodium Vinyl Sulphonate (SVS)	0.5	0.5			
7	Cyno Acetic Acid (CAA)					
7a	Cyno Acetic Acid (CAA) (Purification)	0.4	0.0			
7b	Cyno Acetic Acid (CAA) (RM)	0.0	2.0			

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Donoth

8	Cyano Acetyl Methyl Urea (CAMU)		
9			0.0
	Nitroso Urasil	1.0	0.0
10	Di Methyl Aniline	1.0	
11	MEE		
	Total	1.0	1.0
	IVIAI	13.3	12.5

Fuel burning sources in existing & proposed facility is unchanged as tabulated below:

S. N.	Source	Fuel	Fuel Consumption	APC	Stuck Height	After Proposal
1.	6 TPH Boiler	Coal	1200 Kg/hr	Bag Filter	34	No change envisaged
2.	4 Lakh Kcal/Hr Thermic fluid heater	LDO	21 kg/hr	Scrubber	22	No change envisaged
3.	500 KVA DG set	HSD	30 Lit/Hr	Acoustic Enclosure Stack	5 m above building	No change envisaged
4.	1500 KVA DG set	HSD	60 Lit/Hr	Acoustic Enclosure Stack		No change envisaged

Thus, post proposal the emissions from utilities will be reduced on account of reduce steam requirement & will be within consented limits. Continuous online emission monitoring installed & connected to MPCB, CPCB The industry is self-monitoring the emissions from stacks from MOEF & OC approves laboratory & the emissions are within the limits stipulated in CFO. There is no change in overall fuel burning sources/ fuel consumption/ Air emissions due to proposed change in product mix.

Details of Process Emission Load;

The process emissions are controlled by adequate size scrubbers. There will be one additional scrubber added in CAA plant due to change in process for the proposed change in product mix. Details of existing plus proposed one new (sr no 7) process scrubbers are as belowMinutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Darge

Page 30 of 94

Details of Existing Process Vents and APCM;

C	C414411-4	Stock beight ()	APCM	Parameter	Permissible Limit
Sr no	Stack attached to	Stack height (m)	APCM		Existing
1	Process reactor (H2SO4 plant)	45	Wet scrubber	Acid Mist	20 mg/Nm ³
2 Sulphonation Reactor (D	Sulphonation Reactor (DMS Plant)	9	Wet scrubber	Acid Mist	20 mg/Nm ³
	Surphonation Reactor (Divis Flant)		VCL SCLUDDE	SO2	50 ppm
	DD0 D		G1-b	Acid Mist	20 mg/Nm ³
3	DES Reactor	9	Scrubber	SO2	50 ppm
	GVG DIA	0	Camabban	Acid Mist	20 mg/Nm ³
4	SVS Plant	9	Scrubber	SO2	50 ppm
_	DIGIA O ALI Disert	0	Camabban	Acid Mist	20 mg/Nm ³
3	DMU/MMU Plant	9	Scrubber	SO2	50 ppm
6	Ammonium Sulphate Plant	9	Scrubber	NH3	50 ppm

DES/SVS has same first stage reaction and hence APL will carry out reaction in one reactor and connect to scrubber, thereby reducing one process vent.

Process vents (post change in product mix):

Sr. no	Stack attached to	Stack height (m)	APCM	Parameter	Permissible Limit		
OI. HO				After change in product mix			
1	Process reactor (H2SO4 plant)	45	Wet scrubber	Acid Mist	20 mg/Nm3		
2	Sulphonation Reactor (DMS Plant)	9	Wet scrubber	Acid Mist	20 mg/Nm3		
				SO2	50 ppm		
3	DES Reactor/ SVS reactor	9	Scrubber	Acid Mist	20 mg/Nm3		

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jums

Jenste

				SO2	50 ppm
4	DMU/MMU Plant	9	Scrubber	Acid Mist	20 mg/Nm3
				SO2	50 ppm
5	Ammonium Sulphate Plant	9	Scrubber	NH3	50 ppm
6	CAA	9	Alkali Scrubber	HCI	35 mg/Nm3
				HCN	10 ppm

will be one additional scrubber added in CAA plant for the proposed change in product mix. Continuous online emission monitoring installed & connected to MPCB, CPCB

The pollution load from process vents in existing and proposed operations is computed and presented below:

Pollution Load from Process (Existing and Proposed)

Product	Parameter	Limi	t Unit	Gas How m³/Hr	Existing		Proposed		
					mg/Nm³	kg/d	mg/Nm³	kg/d	
Di Methyl Sulphate (DMS)	SO ₂	50	ppm	150	143	0.5	143	0.55	
Di Ethyl Sulphate (DES)	SO ₂	50	ppm	150	143	0.5	143	0.5	
Di-Methyl Urea (DMU)/ Monomethyl urea (MMU)	Ammonia	20	mg/Nm³	200	20	0.1	20	0.1	
Sodium Vinyl Sulphonate (SVS)	SO ₂	50	ppm	150	142	0.5		-	
Cyano Acetic Acid (CAA)	- 32		Ppiii	130	143	0.5	0	0.0	
Cyano Acetic Acid (CAA)-Purification						0.0			

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 32 of 94

Cyno Acetic Acid (CAA)-Process	HCN	10	ppm	150			12	0.04
	HCl	35	mg/Nm³	150	0	0.0	35	0.13
Ammonium Sulphate	Ammonia	20	mg/Nm³	150	20	0.1	20	0.1
		_			_	1.7		1.4

From the above it can be seen that the load in existing operations is 1.7kg/d which reduces to 1.4kg/d in proposed operations.

iii) Hazardous Waste Generation and its Disposal:

The existing & proposed hazardous waste generation is tabulated below:

Sr. No Type of Waste Ca	Type of Waste	Category	Generation			Source Of Generation	Disposal	
		Existing	Proposed	Remarks	Treatment			
1	Distillation	17.1	6 MT/A	6 MT/A	From Acid Plant	_	Sale to authorized party/ CHWTSDF	
2	Residue	17.2	255 Lit/A	255 Lit/A	From DMS / DES	Recycle	Sale to authorized party/ CHWTSDF	
3	Discarded containers/barrels/	33.1	1 MT/A	1 MT/A	From Plant	Recycle	CHWTSDF/ Sale to authorized party after decontamination	
4	Chemical sludge from waste water treatment	35.3	100 KG/M	100 KG/M	From ETP	Landfill after treatment	CHWTSDF	
5	Spent carbon	28.3	25 MT/A	25 MT/A	From Plant/ETP		Sale to authorized party/ CHWTSDF	

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jumi

Donato

6	Studge from concentration technique (MEE)		330 MT/A	250 MT/A	From MEE	Landfill after	Sale to authorized party/
7	Distillation	20.3	14.4 MT/A	14.4 MT/A		Preprocessing / Co- processing / Incineration	Sale to authorized party/ CHWTSDF
Thus, th	nere is reduction in sludge	from ME	Dost change	in product -			<u> </u>

Thus, there is reduction in sludge from MEE post change in product mix due to reduction in effluent quantity and TDS load to ETP. Thus the Hazardous waste generation post product mix change and generation will be as per the limits of CTO.

During grant of CTO, MPCB has transferred some of the byproducts to HW schedule and asked industry to obtain permission under Rafie 9:0f HOWM Rules 2016. From the material balance, the byproduct generation was computed in post project scenario and same is presented below.

Byproduct (Hazardous Waste) Generation

Sr No.	Product	Catagory	Existing MT/M	Proposed MT/M	Remarks	Source Of Generation	Disposai
1	Spent acid (from DMS)	26.3	53	53	0	 	•
2	Spent acid (from DES)	26.3	1199			DMS	Sale to Authorisect party /CHWTSDF
3	Liquor Ammonia (20 %)		1199	1199	0	DES	Sale to Authorised party /CHWTSDF
		28.1	1305	1305	0	DMU/MMU	Sale to Authorised
*	Ammonium sulphate	28.1	1488	1119	-369	Rxn of Spent +	party /CHWTSDF Sale to Authorised
5	Sodium sulphate	28.1	110	110		Ammonia	party /CHWTSDF
6	Acetic Acid (95%)	26.3				SVS	Sale to Authorised party /CHWTSDF
		 	138	45	-93	Nitroso / CAMU	Sale to Authorised party /CHWTSDF
	Acetic Acid (35%)	26.3	64	14	-50	Nitroso / CAMU	Sale to Authorised
6	Sodium Chloride		0	457	457	CAA	party /CHWTSDF Sale to Authorised
	Total (B)		4357	4302		CAA	party /CHWTSDF
	Total (ALD)	 		7302	-55		
	Total (A+B)	1 1	16175	16070	-105		

Technical Committee Deliberations:

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 84 of 94

The project proposal was discussed on the basis of presentation made by Consultant and documents- NIPL Certificate submitted by the proponent. Product wise load calculation in terms of wastewater, Air Emissions & Hazardous Waste generations were discussed. Existing Consent to Operate, Environmental Clearance, No Increase in Pollution Load certificate issued by M/s. Aditya Environmental Services Private Limited vide letter dated 17th Aug. 2022 are taken on record.

Committee after due deliberations noticed that:

- i. It is seen that there is reduction in water consumption post expansion project.
- ii. There is reduction in pollution load in respect of effluent quantity, effluent quality (organic load and TDS), air pollution load due to fuel burning, process emission load and hazardous waste generation

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions.

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of six-monthly compliance monitoring report on their official website.
- (ii) Industry should not manufacture any other product for which permission is not granted by the Board.
- (iii) Industry shall ensure connectivity of OCEMS to Board server.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page **35** of **94**

Jum

Dang

Agenda Item No.	Item No. 5
Proposal No.	MPCB-CONSENT-0000139385
Project Details	M/s. Curia India Private Limited Plot no. G-1/1, 1/2, MIDC Waluj, Aurangabad
NIPL Certificate	NIPL certificate issued by M/s. SD Engineering services pvt. ltd., Aurangabad

Introduction:

This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000139385 along with the copies of documents seeking amendment in existing consent to operate under change in product-mix under the provision of EIA Notification 2006 as amended on 23/11/2016 & 02/03/2021.

Exiting Clearances:

- Environmental Clearance is granted to the industry for expansion vide SEAC-2015/CR-152/TC-2 dated 18/7/2016 and amended vide No. SEAC/CR-152/TC-2 dated 02/03/2017.
- 2. Change in Name in Environmental clearance issues by SEAC vide dtd. 14/05/2019.
- 3. Consent to Operate accorded by the Board vide Consent Order No. BO/AST/ UAN No. MPCB-CONSENT-0000033034/A/CC-1808000034, Dated 01/08/2018 valid up to 30/04/2020.
- Corrigendum in the Consent to Operate issued vide no. BO/AST/RO-AD/ MPCB-CONSENT_Ammend-00000001122/R/CC-1811000044, dated 27/11/2018.
- Change in name in Company of M/s Amri India Pvt. Ltd. to M/s. Albany Molecular Research Hyderabad Research Centre Pvt. Ltd. vide MPCB/AS(T)/Amendment/TB-1905000030, Date 17/05/2019.
- 6. Minutes of 4th meeting of Technical Committee (2020-21) & Minutes of 6th meeting of Technical Committee (2020-21) for assessment of application of under change In product-mix held on dated 20/06/2020 & 31/10/2020 respectively.
- 7. Minutes of 6th Consent Committee Meeting of 2019 2020, held on dated 02/07/2020.
- 8. Industry's Request letter vide dtd. 22/07/2020 for resubmission of revised Presentation before Technical Committee under Change in Product- Mix dtd 31.10,2020.
- 9. Minutes of 13th Consent Committee Meeting of 202G-21, held on 01/0212021, 12/02/2021 & 25/02/2021
- 10. Amendment in consent to operate for change in name from M/s Albany Molecular Research Hyderabad Research Centre Pvt. Ltd. to M/s. Curia India Private Limited. Vide dated 15.06.2022

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

94

Page 36 of 94

Saw .

Project details:

A. Production Details:

Sr. No.	New Product Name	Existing Quantity (MT/M)	Proposed Quantity (MT/M)	Total Quantity (MT/M)	Remarks
1.	Furosemide	15	-	15	No change
2.	Isosorbide-5-mononitrate	6	-	6	No change
3.	Dilute Isosorbide-5-mononitrate (10% to 90%)	10	-	10	No change
4.	4-isothiocyanato-2-(trifluoromethyl) benzonitrile (MDV3100-6) [MDV-6]	4.5	-	4.5	No change
5.	Diatrizoate Sodium	6	-	6	No change
6.	Diatrizoate Meglumine	6	-	6	No change
7.	Propranolol Hydrochloride	2	-	2	No change
8.	7-acetyl-1,2,4,6,7,8,12,13,14,15,16,17-dodecahydrospiro [cyclopenta[a]phenanthrene-3,2'-[1,3]dioxolan]-17-yl acetate (Ketal Acetate)	3	-	3	No change
9.	Anecortave (5HC) Hydrocortisone Base (HC) or Tetraene Acetate (2TR)	3	-	3	No change
10.	(R)-2,7,8-trimethyl-2-((4R,8R)-4,8,12- trimethyltridecyl) chroman-6-01 or D-α- Tocopheryl polyethylene glycol succinate Vitamin- E TPGS	3	-	3	No change
11.	Solifenacin Succinate	2	-	2	No change
12.	Fesoterodine	1	-	1	No change
13.	Deferasirox	2	-	2	No change
14.	Fluticasone Furoate	2	-	2	No change
15.	Indacaterol	2	-	2	No change
16.	2-Acetate	6	-	6	No change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Donay

17.	Ethyl 2,4-dihydroxy-6-pentylbenzoate (Ethyl Olivetolate)	2	-	2	No change
1.0					110 change
18.	(1S,4R)-1-methyl-4-(prop-1-en-2-yl)cyclohex-2-enol (Menthadienol)	2	-	2	No change
19.	2-(4-chloro-3-(chlorosulfonyl)benzoyl)benzoic acid (Chlorthalidone Intermediate-1/ intermediates	15	-	15	No change
20.	(4S-trans)-4-(N-acetyl-N-ethylamino)-5,6-dihydro-6-methyl-4H-thien-(2,3-b)-thiopyran-7,7-dioxide (Chiral Acetamide)	5	-	5	No change
21.	2-(Formamido-1,3-thiazol-4-yl) glyoxylic acid AZTH3 intermediate	3	-	3	No change
22.	2-Mercapto-N-methylbenzamide	3	_	3	No change
23.	Citarabine intermediate	5		5	No change
24.	2-3((3-Fluoro-4-(methylcarbamoyl) phenyl) amino)-2-methylpropanoic acid (MDV 4)	6	-	6	No change
25.	4-Bromo-2-fluro-N-methyl benzamide MDV-2	8		8	No change
26.	6-Chloro 3 methyl Uracil (CMU)	2.5	-	2.5	No change
27	5-Bromo-2-(2-methyl-2H-tetrazol-5-yl)pyridine (DA-3)	3	-	3	No change
28.	Acetyl Benzyl Amine	15		15	No change
299.	Sodium benzofuran-6-carboxylate (Synthon A)	4		4	No change
30.	2-(tert-Butoxycarbonyl)-5,7-dichloro-1,2,3,4- tetrahydroisoquinoline-6-carboxylic acid (Synthon B)	4	-	4	No change
31.	Benzyl 2-amino-3-(3-methylsulfonyl)phenyl) propanoate Hydrochloride (Synthon C)	4	-	4	No change
32.	(S)-methyl 2-methylpyrrolidine-2-carboxylate Neuren-4	3	*	3	No change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" atd. 10th March 2023

) www

Diange

33.	(S)-dibenzyl 2-((S)-1-(2-(benzyloxy) carbonyl)		-		
	amino) acetyl)-2-methylpyrrolidine-2-	3		3	No change
	carboxamido) pentanedioate Neuren-7				
34.	Propionyl Chloride	15	-	15	No change
35.	2-Amino-5-bromo Benzoxazole [ML 737] OR tert-		-		
	butyl (5-bromobenzo[d]oxazol-2-yl) carbamate or (4		4	No change
	BOC-ML737)				
36.	4-Amino pyrazolopyrimidine [ML739]	6	-	6	No change
37.	Bromofluro methane (BFM)	0.5	-	0.5	No change
38.	Benzyl 2-bromo ethyl ether (BBEE)	0.75	-	0.75	No change
39.	1,6-Di Bromo hexane	5.40	-	5.40	No change
40.	5-bromo-3-methyl-6-oxo-1,6-dihydropyridine-2-		-		
	carboxamide (Methyl analogue of pyridine der)			.	
	(eFT000776) OR N-(6-aminopyrimidin-4-yl)	1	İ	1	No change
	cyclopropanecarboxamide (eFT000775)				
41.	1-(benzyloxy)-4-bromo-2,5 dimethoxybenzene	2			
	Compound 4 (SGL Chemistry)	*	0	0	Deleted
42.	N,N-bis(2.4-dichlorobenzyl) hydroxylamine	6.5	-	6.5	
	(Compound 1534 Water villie)	0.5		6.5	No change
43.	tert-butyl((1s,4s)-4-aminocyclohexyl)carbamate	3	-	2	N 1
	[BOC - CIS -Diamine]	3	ŀ	3	No change
44.	2-(4-(benzyloxy)-3-nitrophenyl)oxirane	3	-		
	[Borregaard NSO]	٥	i	3	No change
45.	6-((2-(3,4- dihydroxyphentl1)-4-oxo-4H-chromen-	3	-		
	3-yl)oxy)-6-oxohexanoic acid [NP-202]	•		3	No change
46.	Miconazole Nitrate	1	-	1	No change
47.	Timolol Maleate (Timolol)	1	-	1	No change
48.	Warfarin Sodium Clathrate [Warfarin]	1	0	0	Deleted
49.	1,2-Di-P-tolylethane-1,2-dione dioxime	3		3	No change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Sonofr

50.	Ethyl 2,4,6-tri-O-benzoyl-β-D-thiogalactopyranoside (PF-06460245)	3	-	3	No change
51.	Amine HCl salt 090602	3	0		
52.	N-(3,5-dichloro-4-((6-oxo-1,6-dihydropyridazine-	 -	- +	0	Deleted
	3-yl) oxy) phenyl) benzamide (Intermediate-C)	2	-	2	No change
53.	N-cyanoacetylurethane (NCAU)	2		2	No shares
54.	4-acetyle-4'-(benzyloxy)-2',5'-dimethoxy-[1,1'-	 			No change
	biphenyl]-2-carboxylic acid Compound 7 (SGL Chemistry)	2		2	No change
55.	(R)-2-(2-(3-		-		
	(((benzyloxy)carbonyl)amino)propyl)phenoxy) propyl 4-methylbenzenesulfonate (LP101-9c)	1		1	No change
56.	Adrenalone HCl	5		5	
5 7 .	Dibenzyl Artereone	5		5	No change
58.	2-(5-((3-Methyloxetan-3-yl)methoxy)-1H-				No change
	benzo[d] imidazol-1-yl) quinolin-8-ol (ASP-187)	3	ļ -	3	No change
59.	Apalutamide	1	_		No change
60.	Ziprasidone Nucleus	2.5		2.5	No change
61.	BG-4 (5-amino-3-(4-phenoxyphenyl)-1H-		- 		No change
	pyrazole-4-carbonitrile)	2.5		2.5	No change
62.	BG-8 (tert-butyl (E)-4-(3-(dimethyl amino) acryloyl) piperidine-1 -carboxylate)	2	-	2	No change
63.	PF -06850062 ((((1R,5S,6r)-3-benzyl-3-azabicyclo[3.1.0]hexan-6-yl)methanol)	1.5	-	1.5	No change
64.	1H-Pyrrolo[2,3-D] Pyrimidine -2, 4(3H, 7H)-Dione	2.5	-	2.5	No change
65.	2,4-Dichloro Pyrimidine	2.5	<u> </u>	2.5	No change
66.	3-Cyano-5-Hydroxy Pyridine	2.5		2.5	No change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Deng

67.	Bay-28288113 (N-((R)-chroman-4-yl)-7-fluoro-4-		-		
	(3-fluoroazetidin-1-yl)-8-(2,3,5-trifluorophenyl)	1.5		1.5	No change
	quinoline-3 -carboxamide)				
68.	R & D Products	0.5	-	0.5	No change
69.	Distillation of spent solvent	20	-	20	No change
70.	Tolazoline HCl	2	-	2	No change
71.	Potassium 6-(4-amino-2,6-dichlorophenoxy)-4-	1	-	1	No shansa
	isopropylpyridazin-3-olate [Intermediate F]	1		1	No change
72.	Pravibismane- API	1	-	1	No change
73.	SNDX-5613-5 OR (N-Ethyl-5-fluoro-N-	0	1.5	1.5	N. 1 11 1
	isopropyl-2-(pyrimidin-5-yloxy) benzamide)	"	1.5	1.5	Newly added
74.	SNDX-5613-8 OR (Tert-butyl 2- (5- (2- (ethyl				
	(isopropyl) carbamoyl) -4-fluorophenoxy) -		1.5	1.5	Names added
	pyrimidin-4-yl) -2,7-diazaspiro [3.5] nonane-7-	10	1.3	1.5	Newly added
	carboxylate)				
75.	SNDX-5613-10A OR (trans-4-				
	((ethylsulfonamido)cyclohexyl) methyl-4-	0	1.5	1.5	Newly added
	methylbenzene sulfonate)				
76.	Ligand OR (TBUPDI)	0	1.5	1.5	Newly added

The overall production quantity will remain same. Total Production capacity of above mentioned products shall not exceed 65 MT/M

B. Pollution load Details:

(i) Water & Wastewater Aspect

Before Product Mix

Sr.	Particular	Quantity in	Effluent Segregation	COD	COD	TDS	TDS
No.		CMD	in CMD	(Strong)	(Weak)	(Strong)	(Weak)
						((

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page **41** of **94**

Juni

			Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day
1	Water Consumption	80.40	Not applic	cable	L	<u> </u>		<u></u>		<u> </u>	⊥	<u> </u>
2	Trade Effluent Genera	tion					<u> </u>			-		
A	Process Activity	39.40	14.73	19.70	50000	736.5	5000	98.5	60000	883.8	2800	41.24
В	Cooling Tower & Boiler	26		2.3		<u> </u>	5000	11.5	<u> </u> -		2800	6.44
C	Total	65.40		36.73		736.5		110	<u> </u> -	883.8	<u> </u>	47.68
3	Domestic Effluent Generation, CMD	10		7			500	3.5	-		<u> </u>	6.3
4	Other (Gardening)	5	-	 -	-	-			ļ <u> </u>			

After Product Mix:

r Consumption e Effluent Genera	79.95	Strong Not applic	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day
		Not applic	able	<u>.l</u>		<u> </u>	<u> </u>	<u>l</u>			
e Effluent Genera	<u> </u>	ŀ									<u> </u>
· Distuent Genera	ition						-				
ss Activity	38.95	14.16	19.70	50000	708	5000	98.5	60000	849.6	2800	41.24
ng Tower & Boiler	26	-	2.3	-	 	5000	11.5	-	<u> </u>		6.44
	64.95		36.16		700						47.68
ī		g Tower & Boiler26 64.95	g Tower & Boiler26	g Tower & Boiler26 - 2.3	ng Tower & Boiler26 - 2.3	ng Tower & Boiler26 - 2.3	In Tower & Boiler 26 - 2.3 - 5000	g Tower & Boiler26 - 2.3 5000 11.5	ray Tower & Boiler 26 - 2.3 - 5000 11.5 -	In Tower & Boiler 26 - 2.3 - 5000 11.5	g Tower & Boiler 26 - 2.3 - 5000 11.5 - 2800

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 42 of 94

Jum

Dange

3	Domestic Effluent	10		7			500	3.5	 	900	6.3
	Generation, CMD					İ					
							1				
4	Other (Gardening)	5			-	ļ-		_	 -		
<u> </u>											

Water Consumption will reduce by

0.45 CMD

• Effluent Generation will reduce by

0.57 CMD

COD load for trade effluent will reduce by

28.5 Kg/day

TDS load for trade effluent will reduce by

34.2 Kg/day

Treatment System

a) Trade Effluent:

Industry has segregated trade effluent into weak stream & strong stream and provided Effluent Treatment Plant (ETP) comprising of;

- Strong COD/TDS stream of 14.16 CMD: Treatment scheme comprising of primary (Equalization tank, primary clarifier/ primary settling tank) stripper, Multi-effect evaporator with design capacity of 15 CMD followed by centrifuge.
- Weak COD/TDS stream of 22.0 CMD: Treatment system comprising of primary (equalization tank), Secondary (Activated sludge process), Tertiary (Pressure Sand filter. Activated carbon filter) with design capacity of 25 CMD. Followed by Reverse Osmosis of 50 CMD capacity.

b) Domestic Effluent:

The domestic effluent is treated in sewage treatment plant of capacity 15 CMD.

(ii) Air Emission Load;

Sr. No.	Stack attached to	Fuel	Before product Mix	After Product Mix	Remark
1	Boiler –I	Briquette	7 MT/ Day	7 MT/ Day	No change
2	Boiler- II /	LDO	0.5 MT/Day	0.5 MT/Day	No change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page **43** of **94**

Jum

	Thermo-pack				
3	D.G. Set 500 KVA	HSD	0.3 TPD	0.3 TPD	No change
4	D.G. Set 1100 KVA	HSD	1.0 TPD	1.0 TPD	No change
5	Fire D.G. Set	HSD	1.0 TPD	1.0 TPD	No change

(iii) Hazardous Waste Load

Sr. No.	Type of Waste	Category	Generation per Y	'ear	Remark
		(As per Schedule)	Before product Mix	After Product Mix	-
1	Used / spent Oil	5.1/5.2	200 kg/M	200 kg/M	No Change
2	Spent Solvent	20.2	190000 kg/M	190000 kg/M	No Change
3	Process Waste & Residue	28.1	34666 kg/M	34666 kg/M	No Change
4	Spent Catalyst/ Spent Carbon	28.2	6845 kg/M	6845 kg/M	No Change
5	Spent Catalyst/ Spent Carbon	28.2	2000 Kg/M	2000 Kg/M	No Change
6 	Off Specification/ Discarded Drug, medicine product	28.4	1000 kg/M	1000 kg/M	No Change
7	Spent Mother Liquor (Dilute Caustic Lye)	28.6	10 MT/M	10 MT/M	No Change
8	Spent Mother Liquor	28.6	17600 kg/M	17600 Kg/M	No Change
9	Spent organic Solvent	28.6	81300 kg/M	91200 V - 24	N. 61
10	Discarded Containers/Barrel/liner	33.1	100 Nos./M	81300 Kg/M	No Change
		55.1	100 1402/141	100 Nos./M	No Change
l 1 	Chemical Sludge from Waste Water treatment	35.3	5823 kg/M	5823 kg/M	No Change
12	Chemical Sludge, Oil & grease skimming residue	35.4	100 kg/M	100 kg/M	No Change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page **44 of 94**

Jum

lange

1 12	Cotton race and other cleaning meterial	1 22 2	100 Kg/M	100 17 - /8 4	NI- Ottorio
10	Cotton rags and other cleaning material	33.2	100 1/5/101	100 Kg/M	l No Change I
					1 10 Change
					! I

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of Wastewater, Air emissions & Hazardous waste generation was discussed. Existing Consent to Operate, Environmental Clearance, NIPL Certificate issued by M/s. SD Engineering Services Pvt. Ltd. and Product – Mix Proforma are taken on the record.

After due deliberations, Committee noticed that:

- i. Industry has applied for Change in Product Mix with no increase in the production quantity. The total production quantity will be remaining same after product mix i.e. 65 MT/ M.
- ii. The water consumption, trade effluent generation will be reduced by 0.45 CMD & 0.57 CMD respectively after product mix change.
- iii. COD load will reduce by 28.5 Kg/day and TDS load will reduce by 34.2 Kg/day
- iv. Committee noticed that, industry have segregated effluent into strong and weak stream
- v. The overall hazardous waste quantity after product mix will remain same.
- vi. The overall pollution load is not increased after change in product mix.

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions.

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of six-monthly compliance monitoring report on their official website.
- (ii) Industry should not manufacture any other product for which permission is not granted by the Board.
- (iii) Industry shall ensure connectivity of OCEMS to Board server.

ow ?

Jongs

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 45 of 94

Agenda Item No.	Item No. 6	
Proposal No.	MPCB-CONSENT-0000143507	
Project Details	M/s. Varuneshwar Organic	
	B-48, MIDC Taswade, Karad	
NIPL Certificate	NIPL certificate issued by M/s.	

The committee was informed that, M/s. Varuneshwar Organic had expressed their inability to attend the said meeting. The committee considered the same and it was decided to defer the case.

Agenda Item No.	Item No. 7
Proposal No.	MPCB-CONSENT-0000143371
Project Details	M/s. Sahkar Maharshi Shankarrao Kolhe Sahkari Sakhar Karkhana Ltd. 20/2 At Sahajanandnagar, Post Shingnapur Kopargaon
NIPL Certificate	NIPL certificate issued by M/s.

The committee was informed that, M/s. Sahkar Maharshi Shankarrao Kolhe Sahkari Sakhar Karkhana Ltd. had expressed their inability to attend the said meeting. The committee considered the same and it was decided to defer the case.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Suu

Olang

Agenda Item No.	Item No.8
Proposal No.	MPCB-CONSENT-0000147687.
Project Details	Addition of De- Aromatized Solvent (DAS) products at existing refinery of M/s.Bharat Petroleum Corporation (BPCL), Mahul Village ,Chembur,Mumbai
NIPL Certificate	NIPL Certificate issued by M/s. Aditya Environmental Services Private Limited vide letter ref: AESPL/22-23/NIPL04 dated 05/01/2023

Introduction:

This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000147687 along with the copies of documents seeking amendment in existing CTE under change in product-mix under the provisions of EIA Notification 2006 as amended on 23/11/2016 & 02/03/2021. Existing Environment Clearances (EC):

- 1. EC was granted to BPCL by MoEF& CC for PRFCCU project (under implementation) (Petro Resid Fluidized Catalytic Cracking Unit F. No. J-11011/145/2018-IA II (I) dt 05.08.19 valid upto 4th Aug-2024) which gives complete product mix for BPCL and shows total production of refinery as 42000 MTPD
- Refinery has Consent to operate for existing products RED/L.S.I (R56) No. Format 1.0/CAC/UAN No.-0000148651/CO-221200459 dated 7th December 2022 valid upto 31st August 2023 and is sanctioned for total production of 40836 MTPD

The existing product quantities as per EC and as per CTO granted by MPCB are as below:

Product Name	UOM Products Quantity as per			Remark
		EC dt 05/08/2019	CTO dt 07/ 12/2022 (*)	
LPG, poly Propylene Feed Stock	MT/D	1860	1764	
Benzene, Toluene, Xytol	MT/D	180	180	

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jums

Dange

SBP 55/1150C), Hexane (FGH 64-69 C) MS, MTBE, NAPTHA.	MT/D	9429	9122	
KSO,MTO, ATF	MT/D	3450	3450	
HSD, LDO	MT/D	19500	19500	Consented product quantities are within EC
FO, LSHS, Bitumen Sulphur	MT/D	6681	5587	sanctioned limits
Lube Oil Base Stock (LOBS) (*)	MT/D	900	1233	
Total	MT/D	42000	40836	

(*) Thus, it is seen that overall production is within the EC sanctioned limit. Earlier BPCL was granted CTO in August 22 under change in product-mix cleared in 2nd meeting of Technical Committee (2020-21) held on 15/4/2020 for Revamp of LOBS Unit and Reconfiguration of Hydrocracker Unit – whereby product mix different than EC was approved

Project Details:

A. Products with change in product mix as below:

BPCL Mumbai Refinery is proposing to establish De-Aromatized Solvent (DAS) unit to manufacture De-Aromatized Solvent products of various grades i.e. D40, D80, D110, D130, and MBL so as to meet increasing market demand of Eco-friendly Solvent products. DAS solvents will be produced by decreasing production of High-speed diesel (HSD), Light Diesel Oil (LDO) as mentioned in table below:

Sr. No	Products	As per CTO MT/day	Changes in Product Mix MT/day	Total MT/day	Remark
1	LPG, Poly Propylene feed stock	1764	-	1764	No change
2	Benzene, Toluene, Xytol	180	-	180	No change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Q Jan

Page 48 of 94

3	Special Naphtha (SBP 55/115 DEG C), Hexane (FGH 64-69 DEG C) Motor Spirit (MS), MTBE, NAPHTHA.	9122	-	9122	No change
4	Superior Kerosene (SK, LABFS), mineral Turpentine (MTO), Aviation Turbine Fuel (ATF)	3450	-	3450	No change
5	HS Furnace Oil (FO), low Sulphur heavy Stock (LSHS), Bitumen (VG40, VG30 & VG10), Sulphur	5587	-	5587	No change
6	Lube Oil Base Stock (LOBS) and White Oils (HLPO, LLPO)	1233		1233	No change
7	High speed diesel (HSD BSVI, Navy Grade HSD), light Diesel Oil (LDO)	19500	Reduced by 634.5	18866	
8	De-Aromatized Solvent products (D40, D80, D110, D130, MBL)	0	634.5	634.5	Addition of De- Aromatized Solvent products
	Total	40836	634.5	40836	

The highlights of the proposal are

- a) No change in overall product quantity which remains unchanged at 40,836 MTPD by decreasing the decreasing production of Highspeed diesel (HSD), Light Diesel Oil (LDO) by 634.5 MT/D and producing equivalent quantity of DAS.
- b) DAS products will find use in Paint, Pesticide, Pharma and Petroleum industry (as Drilling Fluid) applications where the reduced aromatic content (from 10 % to 0.1 %) will ensure number of benefits like lower toxicity, elimination of odour, lower carcinogenicity, reduced VOC content etc.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

www

Slengt

B. Pollution load Details:

- i) Water & waste water aspects
 - a) Resource Requirements
 - During this process there is no requirement of furnace as hydro dearomatization reaction is exothermic which is used for energy integration (for pre-heating feedstock). Hence there is no additional fuel requirement consequently no increase in emissions.
 - Since Feed is hydrotreated in upstream HCU unit (sulfur < 5 ppm), there is no acid gas generation in DAS unit.
 - Process water is not required for this process hence there is no effluent generation.
 - CHPS gas and Stripper overhead gas (OVHD) will be diverted to existing refinery fuel gas system for internal consumption.
 - Recycled gas (RGC) will be reused back in DAS reactor.

Comparison of resource requirements in Existing scenario and Post Product Mix Change is given below:

Sr. No	Particulars	Details		Difference	Remark
No		As per Valid CTO	After Product Mix		
1	Raw Material MT/D				
	Crude oil	43500	43500	0	No Change
	RLNG Feed	420	420	0	No Change
	Methanol	33	33	0	No Change
2	Process Water Input (CMD)	20405	20405	0	No Change
3	Power Requirement (MW)	100	99.914	0	Increase in power requirement 0.551 MW will be offset by Encon Schemes for reducing power consumption by 0.637 MW. Hence no additional power requirement.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

4	Steam Requirement (MT)	12000	11910	0	Increase in steam 166 MTPD will be offset by Encon Schemes for reducing steam consumption by 256 MTPD. Hence no additional steam requirement.
5	Fuel (MT/day)				roquitonone.
	LSHS	637.1	637.1	0	No Change
	Fue Gas	1277.4	1277.4	0	No Change
	NAPTHA	25.4	25.4	0	No Change
6	Number of stacks	33	33	0	No Change

The above illustrates that there will be no change in resource requirement after implementation of DAS project.

b) Water aspect

- Process water is not required for this process.
- No additional water requirement for steam generation as there is reduction in steam consumption by 90 MTPD due to EnCON scheme under implementation
- As this is exothermic process, Reactor outlet stream heat will be utilized for reactor feed preheating. The sea cooling water requirement is 136 m³/hr which can be met from existing sea cooling water requirement (which is well within consented value)
- Thus, water requirement for process (as per CTO vs actual) is presented below:

Sr. No.	Use /Purpose	Qty of Water Required (cmd)				Remarks	
110.		as per CTO	Actual	L	Final Desired Qty		
1	Raw Water to DM plant	20405	8500	Nil	20405	No process water requirement	
2	Service Water		811	Nil	-	Steam requirement reduction by 90 MTPD	

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Diene

3	Cooling Tower Makeup		3500	Nil		
4	Industrial Cooling (*)	154486	65,520	Nil	154486	Even with 3264 cmd for cooling of DAS process, sea water required is lower than CTO value
5	Domestic Water	1408	800	Nil	1408	No additional manpower
6	Unaccounted/Loss	0	77	Nil	0	
	Total	176299	79,208	Nil	176299	

Thus, there is no change in water requirement from existing Consented quantity.

c) Effluent Generation & Its disposal

No process effluent generation. Steam requirement is reduced. Slight increase in Sea Cooling Tower blowdown quantity. However, BPCL has implemented recirculating Cooling water system, even for sea water use thereby reducing the sea cooling water blowdown quantity substantially from the consented quantity. The summary of quantity as per CTO, Actual quantity of effluent, addition due to Product Mix change and final desired quantity is presented below:

	Qty of Efflu	ent (cmd)		Mode of Disposal & Ultimate Receiving		
Source of Effluent Generation	as per Actual		The state of the s	Final Desired Qty	Body		
Trade Effluent	5760	2500	Nil	5760	BPCL is ZLD – entire quantity of Treated effluent is recycled back to Cooling Tower		
Cooling (Sea water Blow Down)	1,46,649.24	48000	Nil	1,46,649.24	Even with additional 163 cmd, no net addition in requirement for cooling as due to installation of recirculating Sea water Cooling Water system actual BD is much lower than CTO		
Domestic	235		Nil	235	Entire quantity of Treated effluent is recycled back to Cooling Tower		

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Dough

		24			
Total Effluent	1,52,644.24	50,524	Nil	1,52,644.24	No Change

d) Effluent Quality:

There is no effluent generation from DAS. Hence, there is no change in untreated or treated effluent quality. BPCL has well designed ETP comprising Primary- Secondary and Tertiary Treatment units and entire quantity of treated effluent is recycled for cooling tower, and there is no discharge outside premises. Results of On line Effluent Monitoring system and MoEFCC recognized laboratories are well within MPCB norms.

ii) Process / Air Emission Load:

No addition of Boiler/ process furnace (reduction in steam requirement by 90 TPD), No addition of fuels, No addition of stacks and hence, No change in emissions. Thus, existing stack details remain unchanged.

Thus, there is no change in air emissions due fuel burning from the Consented quantities

Also, since the feed is hydro treated and the off gases are recycled by using Recycle Gas Compressor, there is no process vent in proposed process.

iii) Hazardous Waste Generation and its Disposal:

Hazardous Waste Generation in proposed operations is only due to use of catalyst in proposed DAS unit. HW scenario in existing and proposed operations is presented below:

Sr. No.	Type of Waste	Category	Generatio	n (MT/A)	Mode of		
		(As per Sch)	As per CTO	Actual	Net Addition Due Product Mix change	Final Desired Qty	Treatment & Disposal
1	Spent Catalyst (*)	4.2	2538.75	508.73	Nil	2538.75	Sale to authorised party/ CHWTSDF
2	Oil Sludge or emulsion	4.1	8100	339	Nil	8100	Bioremediation + landfill
3	Spent carbon	28.3	100	59.6	Nil	100	CHWTSDF

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

June

Page 53 of 94

Jum'

4	Contaminated Cotton rags or other cleaning Material	33.2	50	0	Nil	50	CHWTSDF
5	Empty Barrels / containers/ liners contaminated with hazardous chemicals /waste	33.1	10000 Nos /Y	2662	Nil	10000 Nos /Y	Sale to authorised party/CHWTSDF
6	Used oil/Slop Oil	4.3	270000	109714 MT	Nil	270000	Recycle and reprocessing along with Crude inside refinery

Technical Committee Deliberations:

The project proposal was discussed on the basis of presentation made and documents-NIPL Certificate, NIPL proforma submitted by the proponent. Product wise load calculation in terms of wastewater, Air Emissions & Hazardous Waste generations were discussed. Existing Consent to Operate, Environmental Clearance, No Increase in Pollution Load certificate issued by M/s. Aditya Environmental Services Private Limited vide letter dated 05th Jan. 2023 and product-mix proforma are taken on the record.

Committee after due deliberations noticed that:

- i. The PP has proposed change of product mix by reducing quantity of Diesel (HSD and LDO) by 634.5 MT/D, while adding DAS solvent at same quantity that is 634.5 MT/D. Thus, there is no change in production quantity which remains same at 40,836 MTPD. Unit has earlier EC and also production is in same category viz Refinery, thus it is permissible to grant consent to establish based on NIPL.
- ii. Post change of product mix, there is no change in net water consumption & effluent generation
- iii. No addition of Boiler/process furnace (reduction in steam requirement by 90 TPD), No addition of fuels, No addition of stacks and hence, No change in emissions. Thus, existing stack details remain unchanged. Thus, there is no change in air emissions due fuel burning from the Consented quantities.
- iv. Hazardous Waste Generation in proposed DAS unit is only periodic due to use of catalyst (HW cat 4.2) (17 MT once in 8 years) & will be accommodated within existing Consent quantity since existing generation is 508.73 MTPA while consented quantity is 2538.75 MTPA. Thus, there is no change in hazardous waste generation quantities also

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions.

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of six-monthly compliance monitoring report on their official website.
- (ii) Industry should not manufacture any other product for which permission is not granted by the Board.
- (iii) Industry shall ensure connectivity of OCEMS to Board server.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jun

Dunge

Agenda item No	item No. 9
Proposal No.	MPCB- Consent - MPCB-CONSENT-0000147892
Project Details	M/s. Kunjir Bioenergy India LLP, S.NO. 47/1,47/2,48,49,50,51,52 &53 (P), Village Mirwadi, Post Dahitane, Tal Daud, Dist Pune
NIPL Certificate	NIPL Certificate issued by Ultratech on 7th September 2022

Introduction:

This has reference to the online proposal submitted vide No MPCB consent - MPCB-CONSENT-0000147892 along with the copies of documents seeking amendment in existing consent to operate under change in product mix under the provision of EIA Notification 2006 amended on 02.03.2021.

Exiting Clearances:

- 1. Environmental Clearance is granted to the industry vide FF. No. J-11011/305/2016-IA II (I) Dated 15th November 2018.
- 2. The unit has valid consent to operate vide No. Format1.0/CAC/UAN No. MPCB CONSENT-0000115463/CR/21100001011, Dated 21/10/2021

Project details:

A. Products with change in product mix as below:

Industry is having existing 60 KLPD distillery utilizes C- heavy molasses as raw material to produce rectified spirit (RS), Extra Neutral Alcohol (ENA) and ethanol. Industry has proposed increase ethanol production by 30 KLPD to use raw material namely heavy molasses and syrup.

Production details

Particulars	Existing	After product Mix
Capacity	60 KLPD	90 KLPD
Raw Material	C Molasses 230MT/day	B- heavy Molasses 290 MT/day
Production	1) ENA; 60 KLPD or Rectified spirit: 60KLPD or Ethanol: 60KLPD 2) Power; 2 MW	1) ENA; 60 KLPD or Rectified spirit: 90 KLPD or Ethanol: 90 KLPD 2) Power; 2 MW
Co products	CO2:45 TPD	CO2:68 TPD

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Dane

Suur

Page **55** of **94**

B. Pollution load Details:

Water & Wastewater Aspect

Sr. No.	Particulars	Existing (60 KLPD)			After Product Mix (90 KLPD)		
		C- Molasses			B- heavy Molasses	 _	
	W G	Quantity in CMD	COD in mg/l	COD in kg/day	Quantity in CMD	COD in mg/l	COD in
I 	Water Consumption in CMD	1125 (Fresh water 485+Recycle 640)	NA	NA	1059 (Fresh water 453+ Recycle 606	NA	NA
2	Industrial Effluent generation				433 Recycle 606		
A	Spent Wash In CMD	514	140000	71960	436	130000	56680
В	Other in CMD	294	1500	441	324	1500	406
	Total	808 kg/day using R. heavy N	· · · · · · · · · · · · · · · · · · ·	72401	321	1500	486 57166

COD will reduce by 152358 kg/day using B- heavy Molasses.

Treatment System

- a) Trade Effluent: Spent wash directly treated through multi-effect evaporator Followed Incineration Boiler. Condensate from MEE treated and other effluent treated in CPU.
- b) Other effluent: Industry has provided Effluent Treatment Plant and treated effluent is recycled in the process

ii) Air Emission Load:

a) Flue Gas Emissions

Sr. No.	Stack Attached to	Fuel	Fuel Consumption after Change in Product Mix	Remark
1	Incineration Boiler 22.5 TPH	Conc. Spent wash + Coal	Conc. 100 MT/day + Coal: 20 MT/day	Reduced

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 56 of 94

iii) Solid and Hazardous Waste Load: No hazardous waste generation Solid Waste;

Sr. No.	Particulars	Existing	After products Mix	Remark
1	Yeast Sludge	6 MT/day	6 MT/day	No change

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of wastewater, Air emissions & Hazardous waste generation were discussed. Existing consent to operate, Environmental Clearance, NIPL Certificate issued by Techno green Environmental Solutions and product mix Pro-forma are taken on the record.

Committee after due deliberations noticed that;

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions.

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of six-monthly compliance monitoring report on their official website.
- (ii) Industry should not manufacture any other product for which permission is not granted by the Board.
- (iii) Industry shall ensure connectivity of OCEMS to Board server.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Julis

Dauge

Agenda item No	item No .10
Proposal No.	MPCB-CONSENT-0000148145
Project Details	M/s. Ramdev Chemicals Pvt. Ltd. Plot No. E-41/129 & 128/2, MIDC Tarapur, Tal & Dist:- Palghar.
NIPL Certificate	NIPL certificate issued by Goldfinch Engineering Systems Pvt. Ltd.

Introduction:

This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000148145 along with the copies of documents seeking Renewal with Amendment in Consent to operate based on change in product mix under the provision of EIA Notification 2006 amended on 02.03.2021.

Exiting Clearances:

- 1. Environmental Clearance is granted to the industry for expansion ref no. SEIAA-EC-0000000097 dated 12.05.2017.
- 2. The unit has valid consent to operate vide No: Format 1.0/CC/UAN No. 0000102914/CO/2108000987 dated 18.08.2021.

Project details:

A. Products with change in product mix as below:

Sr. No.	Name of product	As Per CTO, MT/M	Existing Qty., MT/M	Qty. After product Mix, MT/M	Remark
1	Intermediate-A	0.5	0.0	0.50	No change
2	2-Amino Pyridine	0.5	0	0.5	No change
3	Other Bulk Products	0.5	0	0.5	No change
4	Premaquine Phosphate IP/BP	0.1	0	0.1	No change
5	Benzocaine I.P.	10	1	11	Existing Product Increase by 1 MT/M.
6	Piroxicam USP	10	1	11	Existing Product Increase by 1 MT/M.
7	Enalaprilmateate EP/BP/USP	0.75	0	0.75	No change
8	Mesalamine	10	-10	0	Existing Product Deleted
9	Carbamezapin	5	-5	0	Existing Product Deleted

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Dange

Sr. No.	Name of product	As Per CTO, MT/M	Existing Qty., MT/M	Qty. After product Mix, MT/M	Remark
10	Pregabalin-INT	2	0	2	No change
11	Entacapone	1	2	3	Existing Product Increase by 2 MT/M.
12	Meloxicam	10.79	0	10.79	No change
13	Metaxalone	3	2	5	Existing Product Increase by 2 MT/M.
14	Fenofibrate-INT	3	0	3	No change
15	Metaformin-INT	13.1	-13.1	0	Existing Product Deleted
16	Levetiracetam-INT	1	0	1	No change
17	Mirtazapine	1	1	2	Existing Product Increase by 1 MT/M.
18	Quitipine Fumarate-INT	1	0	1	No change
19	Ziprasidone	3	0	3	No change
20	Baclofen	0.1	0	0.1	No change
21	Meta Chloropropiophenone	2	-2	0	Existing Product Deleted
22	2-Amino-5-Methyl Thiazole	2.5	1.7	4.2	Existing Product Increase by 1.7 MT/M.
23	Methyl Benzothiazine Isopropyl Ester	8	2	10	Existing Product Increase by 2 MT/M.
24	6-Chloro 2-Oxindole	2	0	2	No change
25	1,3-Benzisothiazole Piperazine	2	0	2	No change
26	Celecoxib-INT(4-HBS)	10	0	10	No change
27	Clopidogrel Bisulphate	1	0	1	No change
28	Metoprolol	5	-5	0	Existing Product Deleted
29	Pentaprazole	2	0	2	No change
30	Etodolac-INT	5	-5	0	Existing Product Deleted

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Saray

Jun 1

Sr. No.	Name of product	As Per CTO, MT/M	Existing Qty., MT/M	Qty. After product Mix, MT/M	Remark
31	Ciprofloxacin	5	0	5	No change
32	Zonisamide	1	0	 	No change
33	Montelukast	0.05	0	0.05	No change
34	Rabeprazole	2	0	2	No change
35	Sodium Barbital	3	0	3	
36	HCQS	3	0	3	No change
37	Propranol HCl	5	0	5	No change
38	Carbediliol (CV3)	3	0	3	No change
39	Glimepridel (GP4)	3	0	3	No change
40	PIP Acid	0.5	0		No change
41	Hydroxizine Pamoate	0.5	0	0.5	No change
42	Imipiramine HCI	0.5	0	0.5	No change
43	RBX	0.3	0	0.5	No change
44	4-TBD	5		0.3	No change
45	5 Nitro vaniline	2	0	5	No change
	3,4 Dihydroxy 5 Nitro	2	0	2	No change
16	benzaldehyde	2	0	2	No change
17	5 - CEO	0.6	0.4	1	Existing Product Increase by
18	3-Piperazinyl -1,2 BenzisothiazoleHCL(ZP)	1	0	1	0.4 MT/M. No change
	Piroxicam Beta Cyclodextrine	1	0	1	
$\overline{}$	Celecoxib Final	0	5		No change
1	Aripriprazole	0	5	<u> </u>	Added New Product
	Pregabalin	0	5		Added New Product
	<u> </u>	<u> </u>	3	5	Added New Product

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Joseph

Sr. No.	Name of product	As Per CTO, MT/M	Existing Qty., MT/M	Qty. After product Mix, MT/M	Remark
53	Sacubitril Valsartan	0	5	5	Added New Product
54	Retanilic Acid	0	2	2	Added New Product
55	Terbinafine	0	5	5	Added New Product
56	Dexritalinic acid	0	2	2	Added New Product
Total Q	uantity .	154.29	0.00	154,29	

Note: After Change in product mix total production capacity will be remains same i.e. 154.29 MT/M

Change in the product mix in its existing facility will be achieved by

- I) Increasing production capacity of 8 existing products,
- II) Addition of 7 new products
- III) No Change in 35 Existing Products
- IV) 6 Existing Products Deleted

B. Pollution load Details:

i) Water & Wastewater Aspect;

Before Product Mix

Sr. No.	Particulars	Quantity in CMD											
1	Water Consumption	183.44			<u></u>								
2	Trade Effluent Generation		<u> </u>					<u> </u>					
		Total Flow, CMD	Total Flow, CMD Flow, CMD COD							TDS			
			Strong	trong Weak	ngWeakStrong		Weak		Strong		Weak		
					Mg/L	Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Day	
a	Process & Washing Activi	ty 32.50	15	17.5	ļ <u>-</u>	ļ	_	-		<u> </u>			

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Juin

Dong

Page **61** of **94**

Sr. No.	Particulars	Quantity in CMD								·		
b	Cooling Tower & Boiler	32.64	0	32.64	F -	_ -	Ţ	Ţ <u>.</u>	T	L		1
Fotal (Trade)	65.14	15	50.14	60739	910.81	340	17.0	24954	374.19	860	43.14
c	Domestic Effluent Generation, CMD	5.67	5.67		0	0	┿	3.40	0	0	600	3.40

Domestic -5.67 CMD + Industrial - 65.14 CMD total effluent 70.81 CMD

After Product Mix

Sr. Na	. Particulars				Q	uantity	in CM	ID	- ,			
1	Water Consumption	182.53										
2		Trade Effluent Generation										
			Flow, CMD COD						TDS			
Sr. No	Particular Particular	Total Flow, CMD	MD Strong Weak	Strong Weak		Strong		Weak				
						Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Da
a ——	Process & Washing Activity	32.40	14.9	17.5			 				<u>-</u>	-
b	Cooling Tower & Boiler	32.64	0	32.64			 			 	<u> </u>	
	Total (Trade)	65.04	14.9	50.14	59215	882.3	340	17	24735	368.5	860	43.1
С	Domestic Effluent Generation, CMD	5.67	5.6	67	0	0	600	3.40	0	0	600	3.40

Domestic - 5.67 CMD + Industrial - 65.04 CMD; Total effluent 70.71 CMD

• Water Consumption will reduce by

0.91 CMD

• Effluent generation will reduce by

0.1 CMD

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 62 of 94

Average COD Load will reduce by

28.5 Kg/Day

It is seen from above figures that, after change in product mix the COD & TDS values of effluent are decreased. The existing ETP is treating the waste water generated from the existing products to the consented standards. Since the waste water generated from the proposed product mix will have reduction in pollution load in terms of COD, BOD & TDS, existing ETP is adequate to treat the waste water generated after change in product mix. However, the adequacy study based on the values of existing waste water is also carried out and presented in upcoming slide.

Treatment System

a) Trade Effluent:

- Generated effluent is segregated into Strong stream & lean stream. High COD/TDS stream of 15 CMD from process is treated in Primary treatment, Stripper, MEE (design capacity of 20 CMD) followed by centrifuge. Condensate from MEE & lean stream (50.17 CMD) is treated in conventional ETP (design capacity of 100 CMD) consisting of primary (Collection tank, Neutralization tank, Equalization tank, primary clarifier/primary Settling tank), Secondary (Activated sludge process followed by Secondary clarifier), Tertiary treatment (Pressure Sand Filter, Activated Carbon Filter). After tertiary treatment effluent is pass through RO (design capacity of 100 CMD). RO permeate is recycled into the cooling tower & scrubbing and RO reject is fed to MEE to achieve Zero Liquid Discharge.
- Salts from MEE sent to CHWTSDF & solvents recovered from the stripper Sale to authorized Party/CHWTSDF
- Domestic sewage 5.67 CMD is being treated separately in STP having capacity 6 CMD. Treated domestic sewage after meeting the MPCB norms mentioned in the consent is being used for gardening.
- This existing effluent treatment facility is adequate even after proposed change in product mix.

ii) Air Emission load:

Sr. No.	Stack Attached to	Fuel	As per CTO	Existing Fuel Consumption	Fuel Consumption after Change in Product Mix	Stack Height	Remark
1	Boiler -1 (2 - TPH)	Coal	Coal: 84 Kg/Hr	Coal: 84 Kg/Hr	Coal: 84 Kg/Hr	30 m	No Change
2	Boiler -2 (0.65 - TPH)	LDO*	FO*: 25 Kg/Hr	LDO: 25.Kg/Hr	LDO-25 Kg/Hr	11 m	Switched over to cleaner fuel LDO in place of Furnace oil

Page 63 of 94

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Gerej

3	Thermopack (3 Lakh Kcal/Hr)	LDO*	FO*: 4 Kg/Hr	LDO: 4 Kg/Hr	LDO: 4 Kg/Hr	11 m	Switched over to cleaner fuel LDO in place of Furnace oil
4	DS Set-1 (250 KVA)	HSD	HSD: 40 Ltr/Hr	HSD:40 Ltr/Hr	HSD:40 Ltr/Hr	3.5 m Above the Roof	No Change

Note: * Switched over to cleaner fuel LDO in place of Furnace oil

(i) Process Emissions:

Sr. No.	Stack Attached to	Scrubbing Media	Stack Height	Remark
S-1	Process Stack-I	Alkali Scrubber	7 m	No Change
S-2	Process Stack-II	Alkali Scrubber	7 m	No Change
S-3	Process Stack-III	Alkali Scrubber	7 m	No Change
S-4	Process Stack-IV	Alkali Scrubber	7 m	No Change
S-5	Process Stack-V	Alkali Scrubber	7 m	No Change
S-6	Process Stack-VI	Alkali Scrubber	7 m	No Change
S-7	Process Stack-VII	Alkali Scrubber	7 m	No Change
S-8	Process Stack-VIII	Alkali Scrubber	7 m	No Change
S-9	Process Stack-IX	Alkali Scrubber	7 m	No Change
S-10	Process Stack-X	Alkali Scrubber	7 m	No Change
S-11	Process Stack-XI	Alkali Scrubber	7 m	No Change
S-12	Process Stack-XII	Alkali Scrubber	7 m	No Change
S-13	Process Stack-XIII	Alkali Scrubber	7 m	No Change
S-14	Process Stack-XIV	Alkali Scrubber	7 m	No Change
S-15	Process Stack-XV	Alkali Scrubber	7 m	No Change
S-16	Process Stack-XVI	Alkali Scrubber	7 m	No Change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Douge

Juni

Note: There is no change in the process stacks, existing process scrubbers with heights are adequate to control the process air emission.

Flue Gas Emission and process emissions:

Stack No.	Source	APC System Provided/Proposed	Fuel Type	of	Sulphur Content (in %)	Pollutant	Standard
S-1	Boiler -1 (2 - TPH)	Dust Collector & Wet	Coal: Kg/Hr	84	0.5	TPM	150 ug/Nm³
		Scrubber				SO ₂	20.16 Kg/Day
S-2	Boiler -2 (0.65 - TPH)	Stack with Adequate	LDO*: Kg/Hr	25	1.8	TPM	150 ug/Nm³
		Height	115/111	i		SO ₂	21.6 Kg/Day
S-3	Thermopack (3 Lakh	Stack with Adequate	LDO*: Kg/Hr	4	1.8	ТРМ	150 ug/Nm ³
	Kcal/Hr)	Height	Kg/III			SO ₂	3.45 Kg/Day
S-4	DS Set-1 (250 KVA)	Acoustic Enclosure	HSD:40 Ltr/Hr		1.0	ТРМ	150 ug/Nm³
			Da7111			SO ₂	19.2 Kg/Day
S-5	Process Stack-I	Alkali Scrubber				Acid Mist	35 mg/Nm ³
S-6	Process Stack-II	Alkali Scrubber		_		Acid Mist	35 mg/Nm ³
S-7	Process Stack-III	Alkali Scrubber				Acid Mist	35 mg/Nm ³
S-8	Process Stack-IV	Alkali Scrubber				Acid Mist	35 mg/Nm ³
S-9	Process Stack-V	Alkali Scrubber				Acid Mist	35 mg/Nm ³

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Sange

S-10	Process	All-all Co. 11		T	<u> </u>	
	Stack-VI	Alkali Scrubber			Acid Mist	35 mg/Nm ³
S-11	Process	Alkali Scrubber			 	
	Stack-VII	Alkali Scrubber			Acid Mist	35 mg/Nm ³
S-12	Process	Alkali Scrubber				
	Stack-VIII	Aikan Scrubber			Acid Mist	35 mg/Nm ³
S-13	Process	Alkali Scrubber				
	Stack-IX	Aikaii Scrubber			Acid Mist	35 mg/Nm ³
S-14	Process	Alkali Scrubber				
	Stack-X	Alkali Scrubber			Acid Mist	35 mg/Nm ³
S-15	Process	Allroti Complete			 	
	Stack-XI	Alkali Scrubber			Acid Mist	35 mg/Nm ³
S-16	Process	Alkali Scrubber				
	Stack-XII	Alkali Scrubber			Acid Mist	35 mg/Nm ³
S-17	Process	Alkali Scrubber				
	Stack-XIII	Aikali Scrubber			Acid Mist	35 mg/Nm ³
S-18	Process	Alkali Scrubber				
	Stack-XIV	Aikan Scrubber			Acid Mist	35 mg/Nm ³
S-19	Process	Alkali Scrubber			- 	
	Stack-XV	Aikaii scrubber		-	Acid Mist	35 mg/Nm ³
S-20	Process	Alkali Scrubber				
	Stack-XVI	Aikan Scrubber			Acid Mist	35 g/Nm ³

^{*} Switched over to cleaner fuel LDO in place of Furnace oil

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

iii) Hazardous Waste Load:

Sr. No	Type of Waste	Cat. No.	UOM	As Per CTO.	Existing Qty.	After CIPM Qty.	Disposal
1	Distillation Residue	20.3	MT/M	2.896	2.896	3.023	Sale to Auth. Party/ Pre-processing, Co-processing -Cement Plant / CHWTSDF
2	Chemical-containing residue arising from decontamination	34.1	Lit/M	500	500	500	CHWTSDF
3	Empty Barrels/ Containers /Liners contaminated with hazardous Chemicals/ Wastes	33.1	MT/M	4.85	4.85	4.85	Sale to Authorized reconditioner
4	Exhaust Air or Gas cleaning Residue	35.1	MT/M	1	1	1	CHWTSDF
5	Spent ion exchange resin containing toxic metals	35.2	Kg/M	4	4	4	CHWTSDF
6	Oil & Grease Skimming	35.4	Ltr/M	100	100	100	CHWTSDF
7	Used or Spent oil	5.1	Lit/M	9	9	9	Sale to authorized recycler
8	Contaminated cotton rags	33.2	Kg/M	150	150	150	CHWTSDF
9	Spent Carbon or Filter Medium	36.2	Kg/M	600	600	600	Pre-processing, Co-processing - Cement Plant /CHWTSDF
10	Sludge from Wet Scrubber	37.1	MT/M	4.5	4.5	4.5	Pre-processing, Co-processing & Cement /CHWTSDF
11	Off Specification products	28.4	МТ/М	1	1	1	CHWTSDF
12	Spent Carbon from process of 4th Technical Committee Meeting (2023-2024)	28.3	MT/M	0.454	0.454	0.369	Pre-processing, Co-processing - Cement /CHWTSDF

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Dever

Sr. No	Type of Waste	Cat. No.	UOM	As. Per CTO.	Existing Qty.	After CIPM Qty.	Disposal
13	Spent Catalyst	28.2	MT/M	0.03	0.03	0.03	CHWTSDF
14	Spent Solvent	28.6	MT/M	19.93	19.93	19.93	Sale to Auth. Party/CHWTSDF
15	Empty Barrels/Containers/ Liners	33.1	No/M	550	550	550	Sale to authorized reconditioner
16	Process Residue & Waste	28.1	МТ/М	4.92	4.92	4.87	Pre-processing, Co-processing - Cement /CHWTSDF
17	Chemical Sludge from waste water treatment	35.3	MT/M		2.3	2.3	CHWTSDF
18	Concentration or evaporation residues (MEE Salts)*	37.3	МТ/М	14.8	12.5	12.5	CHWTSDF

^{*} In the existing CTO, chemical sludge from waste water treatment is mentioned as 14.8 MT/M which is including MEE salts. Now, PP have bifurcated it i.e. 12.5 MT/M MEE salts and 2.5 MT/M is ETP sludge.

Batte	ry Waste				
1	Battery W	aste	1 MT/A	Sale to Authorized Battery Recycler	
E-Wa	iste				
1	E-Waste		l MT/A	Sale to Authorized E-Waste Recycler	
Biom	edical Waste				
1	Yellow	a) Solid Waste	1 Kg/M	CBMWTSDF	

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page **68** of **94**

Jum

Quio 1

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of wastewater, Air emissions & Hazardous waste generation were discussed. Existing consent to operate, Environmental Clearance, NIPL Certificate issued by Goldfinch Engineering Systems Pvt. Ltd and product mix Performa are taken on the record.

After due deliberations, Committee noticed that:

- 1. Industry has applied for Change in Product Mix with no increase in the production quantity. The total production quantity will be remaining same after product mix.
- 2. The water consumption, trade effluent generation will remain same after product mix.
- 3. Even after change in product mix the COD & TDS values of effluent are decreased. The existing ETP is treating the waste water generated from the existing products to the consented standards. Since the waste water generated from the proposed product mix will have reduction in pollution load in terms of COD, BOD & TDS, existing ETP is adequate to treat the waste water generated after change in product mix
- 4. There is no change in the process stacks, existing process scrubbers with heights are adequate to control the process air emission.
- 5. In the existing CTO, chemical sludge from waste water treatment is mentioned as 14.8 MT/M which is including MEE salts. Now, PP have bifurcated it i.e. 12.5 MT/M MEE salts and 2.5 MT/M is ETP sludge
- 6. The overall hazardous waste quantity after product mix will remain same.
- 7. The overall pollution load is not increased after change in product mix

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions;

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of six-monthly compliance monitoring report on their official website.
- (ii) Industry should not manufacture any other product for which permission is not granted by the MPCB.
- (iii) Industry shall ensure connectivity of OCEMS data to Boards server and transmit the data continuously for wastewater treatment facility.

Page **69** of **94**

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Deng

Jum J

Agenda Item No.	Item No.11
Proposal No.	MPCB-CONSENT-0000154116
Project Details	M/s. Sumitomo Chemical India Ltd. Address: Plot No. T-113, 137, 138, 251, MIDC Tarapur, Taluka & District – Palghar, Maharashtra - 401506
NIPL Certificate	NIPL certificate issued by M/s. Enviro Resources.

Introduction:

This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000154116 along with the copies of documents seeking amendment in existing consent to operate under change in product-mix under the provision of EIA Notification 2006 amended on 02.03.2021.

Exiting Clearances:

- 1. Environmental Clearance is granted to the industry vide J-11011/71/2001-IA II dated 14.06.2002.
- 2. Consent to Operate granted vide no. 1.0/ AS(T)/ UAN No. MPCB CONSENT-0000120558/ CR/ 2202001628 dated 25/02/2022. The validity of the existing consent is up to 31/8/2025.

Project details:

A. Production Details:

Sr. No.	Product Name	Existing Quantity (MT/M)	Proposed Quantity (MT/M)	Total Quantity (MT/M)	Remarks
1	Cypermethrin Technical (CPM)	150	-99.6	50.4	Production capacity decreased by 99.6 MT/A
2	Fenvalerate Technical (FNV)	150	-99.6	50.4	Production capacity decreased by 99.6 MT/A
3	Meta Phenoxy Benzaldehyde (MPB)	300	-300	0	Product to be removed
4	d-Allethrin (Pynamin Forte / PPY)	150	-150	0	Product to be removed
5	Prallethrin Technical (ETOC) 4th Technical Committee Meeting (2023-2024)	300	-170.4	129.6	Production capacity decreased by 170.4 MT/A

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Dage

Juni

Page **70** of **94**

6	d-Phenothrin (98 Transphenothrin	288	0	288	No Change
<u> </u>	Technical) (98 Sum)	•			
7	Fenpropathrin Technical (DTL)	1170	499.2	1669.2	Production capacity increase by 499.2 MT/A
8	Cyphenothrin Technical (GKL)	0	60	60	New Product
9	Pyriproxyfen Technical (SLV)	0	200.4	200.4	New Product
10	Dimefluthrin (PWL)	0	60	60	New Product
100	Total	2508 Mainte		2508	april de la company de la company

The overall production quantity will remain same. Maximum 8 Nos. of products shall be manufactured at any given point of time. The overall total production quantity will not exceed 2508 MT/M.

B. Pollution load Details:

(i) Water & Wastewater Aspect

Before Product Mix

Sr. No.	Particular	in CMD	Effluent Segregation in CMD		(Stro		COD (Weak)		TDS (Strong)		TDS (Weak)	
			Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day
1	Water Consumption	127	Not app	licable			1	. <u>.</u>	<u> </u>	1		_l
2	Trade Effluent	ade Effluent Generation										
A	Process Activity	24	16		92155	344.33	-	-	6616 77	2509.2	-	-
В	Cooling Tower & Boiler	56	-	24		-	350	19.6	-	-	900	50.4
С	Gardening	37			-	-	-	-	-			-
D	Total	117	16	24	92155	344.33	350	19.6	6616 77	2509.2	900	50.4

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Don To

Page 71 of 94

3	Domestic	10		8	1	Ţ <u> </u>	300	В	 T	Τ	T
	Effluent			1	ļ		Γ**			[
	Generation,								İ		
	CMD		J	1		İ					

After Product Mix:

Sr. No.	Particular	Quantity CMD		Effluent in Segregation in CMD		COD (Strong)		COD (Weak)		TDS (Strong)		S eak)
			Strong	Weak	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day	mg/l	Kg/day
1	Water Consumption	125	Not app	licable	<u> </u>	<u> </u>	J	1		<u> </u>	<u> </u>	
2	Trade Effluent Gen	eration		<u></u>	<u> </u>				_	<u>_</u> .	17 -1 -1	
A	Process Activity	22	16	_	114662	330.37		-	55408 6.1	2495.6		
В	Cooling Tower & Boiler	56	_	24			350	19.6			900	50.4
C	Gardening	37	- 		-		 	<u> </u> -	-	 		
D		115	16	24	114662	330.37	350	19.6	55408 6.1	2495.6	900	50.4
3	Domestic Effluent Generation, CMD	10		8			300	3	-			

• Water Consumption will decrease

127 CMD to 125 CMD

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

fun

Durge

Page 72 of 94

COD load for trade effluent will reduce by

13.96 Kg/day

• TDS load for trade effluent will reduce by

13.6 Kg/day

Treatment System

a) Trade Effluent:

Industry has segregated trade effluent into weak stream & strong stream and provided Effluent Treatment Plant (ETP) comprising of;

- Strong COD/TDS stream of 16 CMD: Treatment system comprising of Primary (Collection tank, Neutralization tank, Equalization tank, Flash mixer, Primary Clarifier/Primary Settling Tank), Multi effect evaporator (3 stage) with design capacity of 20 CMD followed by ATFD. The MEE condensate is treated in weak stream ETP.
- Weak COD/TDS stream of 24 CMD: Treatment system comprising of Primary (Collection tank, Neutralization tank, Equalization tank, Flash mixer, Primary Clarifier/Primary Settling Tank), Secondary (Activated sludge process), Tertiary (Pressure sand filter, Activated carbon filter) with design capacity of 40 CMD

b) Domestic Effluent:

The domestic effluent is treated in sewage treatment plant of capacity 12 CMD.

(ii) Air Emission Load:

Sr. No.	Source	Fuel	Before Product Mix	After Product Mix	Remark
1	Boiler No.1 (1.5 TPH)	Briquettes (Solid) / LDO	4 MT/Day	4 MT/Day	No Change
2	Boiler -2 (1.5 TPH) (Sta	andby)			<u> </u>
3	(S4) DG Set – 1	750 kVA	110 Lit/day	110 Lit/day	No Change
	(S5) DG Set – 2	750 kVA			

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Dang

Jum

(iii) Hazardous Waste Load:

Sr.	Description	Category	UOM	Before Product	After Product	Remark
No.		No.		Mix	mix	
1	Used or spent oil	5.1	MT/A	1	1	No change
2	Wastes or residues containing oil	5.2	MT/A	0.5	0.5	No change
3	Contaminated aromatic, aliphatic or napthenic solvents may or may not be fit for reuse.	20.1	MT/A	1	1	No change
4	Spent solvents	20.2	MT/A	1	1	No change
5	Process wastes, residues and sludges	21.1	MT/A	0.2	0.2	No change
6	Process wastes or By – Products (HCL Solution, Sodium Sulphite Solution, Aluminium Chloride Solution, Phenolic Solution, Potassium Bromide Solution)	29.1	MT/A	2844	2844	No change
7	Sludge containing residual pesticides	29.2	MT/A	15	15	No change
8	Date-expired and off-specification Pesticides	29.3	MT/A	0.3	0.3	No change
9	Discarded Liners used for Haz. Chemicals	33.1	MT/A	0.5	0.5	No change
10	Empty barrels /containers /liners contaminated with hazardous chemicals /wastes	33.1	Nos./A	1700	1700	No change
11	Spent ion exchange resin containing toxic metals	35.2	MT/A	0.4	0.4	No change
12	MEE Salts	38.3	MT/A	922	922	No change
13	Oil and grease skimming	35.4	MT/A	0.4	0.4	No change
14	ETP Sludge	35.3	MT/A	360	360	No change
15	Spent catalysts	29.5	MT/A	0.3	0.3	No change
16	Spent carbon or filter medium	36.2	MT/A	1.2	1.2	No change
	Miscellaneous Wastes contaminated glass, wool, rock wool, asbestos, Teflon, used gaskets, Teflon impregnated/graphite rope glands, waste lumina separated from dryer, thermocol, used safety items.		MT/A	4	4	No change

All 17 nos. of category of Hazardous wastes remain unchanged.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jun

Dange

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of Wastewater, Air emissions & Hazardous waste generation was discussed. Existing Consent to Operate, Environmental Clearance, NIPL Certificate issued by M/s. Enviro Resources and Product – Mix Proforma are taken on the record.

After due deliberations, Committee noticed that:

- i. Industry has applied for Change in Product Mix with no increase in the production quantity. The total production quantity will be remaining same after product mix i.e., 2508 MT/ M.
- ii. The water consumption will decrease by 2 CMD whereas trade effluent generation will remain same after product mix.
- iii. COD load will reduce by 13.96 Kg/day and TDS load will reduce by 13.6 Kg/day
- iv. Committee noticed that, industry have segregated effluent into strong and weak stream and has provided separate treatment for segregated trade effluent.
- v. There is no change in the process stacks, existing process scrubbers with heights are adequate to control the process air emission
- vi. The overall hazardous waste quantity after product mix will remain same.
- vii. The overall pollution load is not increased after change in product mix.

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions.

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of six-monthly compliance monitoring report on their official website.
- (ii) Industry should not manufacture any other product for which permission is not granted by the Board.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

(iii) Industry shall ensure connectivity of OCEMS to Board server.

Jum

Donay

Agenda item No	item No.12
Proposal No.	MPCB-CONSENT-0000150853
Project Details	M/s. Clean Science & Technology Limited. Plot No-28,MIDC Kurkumbh, Tq-Daund Dist Pune 413802
NIPL Certificate	NIPL Certificate issued by Goldfinch Engineering Systems Pvt. Ltd.

Introduction:

This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000150853 along with the copies of documents seeking amendment in existing consent to operate under change in product mix under the provision of EIA Notification 2006 amended on 02.03.2021.

Exiting Clearances:

- 1. Environmental Clearance is granted to the industry for expansion ref no. SEAC-2014/CR-85/TC-2 dated 04.06.2016. The unit has valid consent to operate vide No: Format1.0/CC/UAN No. 0000103840/CR/2106000635 dated 14.06.2021.
- 2. Industry has submitted proposal on PARIVESH portal on 09.12.2022. Single Window No (SW/2350/2022)

Project details:

A. Products with change in product mix as below:

Sr. No	Name of Product under API & Intermediates	MT/A	Addition (+)/ Deletion (-) (TPA)	Proposed Production Quantity, MT/A
1	Hydroquinone/Catechol/Mono Methyl Ether of Hydroquinone (MEHQ)/Guaiacol & Derivatives	8400	(-) 1200	7200
2	4-Methoxy Acetophenone / 4- Methoxy Propiophenone	3000	0	3000
3	Butylated Hydroxy Anisole (BHA) & Derivatives (Route 1- Without Using Tolene / Route 2- By Using Tolene)	1800	0	1800
	Using Tolene / Route 2- By Using Tolene) es of 4th Technical Committee Meeting (2023-2024) for cortiferation about #No. In		0	1800

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page **76** of **94**

	Total	14550	-460	14090
9	TBT (Tertiary Butyl Toluene)	0	(+) 540	540
8	Guethol	0	(+) 200	200
7	Veratrole & Derivatives	0	(+) 1200	1200
6	Zeolite/Zirconium Catalyst	50	0	50
5	Anisole & Derivatives	1200	(-) 1100	100
4	4- Methyl Catechol	100	(-) 100	0

- i. Change in the product mix in its existing facility is achieved by Addition of 3 new products, No Change in 3 Existing Products, decrease in production capacity of 2 existing products & Deletion of 1 Existing Products.
- ii. The proposed activity is in such a way that the total production will decreased i.e. 460 MT/A, keeping the pollution load within the consent limit.
- B. Pollution load Details:
- i) Water & Wastewater Aspect

Before Product Mix

Sr. No.	Particulars	Quantity in CMD	
1	Water Consumption	568.4	
2	Trade Effluent Generation		
Sr. No	Particular	Total Flow, CMD Flow, CMD COD	TDS

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Ouw)

Doney

Page 77 of 94

Sr. No.	Particulars	Quantity in CMD										
			Strone	ongWeak	Strong		Weak		Strong		Weak	
			Strong	, vv ca	Mg/L	Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Da
a	Process & Washing Activity	42.8	0	42.8	ļ							
b	Cooling Tower & Boiler	114.4	0	114.4	-				 -			
	Total (Trade)	157.2	0	157.2			9652	1516.9			7155	1124.5
c	Domestic Effluent Generation, CMD	19	0	19	-		600	11.4	-		600	11.4
Frand '	Total	176.2	0	176.2	-		8676	1528.3	-	_	6448.2	1135.9

After Product Mix

Sr. No.	Particulars	Quantity	y in CMD										
1	Water Consumption	568.4				· · · · · · · · · · · · · · · · · · ·					<u> </u>		
2	Trade Effluent Gene	ration									<u> </u>		
	Particular	Total Flow, CMD			COD	COD				TDS			
Sr. No		Flow, CMD Str	Strong	Strong Weak	Strong		Weak		Strong		Weak		
			Crong		Mg/L	Kg/Day	Mari	Va/Dan	3.5 (7	-	 	<u></u>	
				-	TVIE/IL	ixg/Day	MAIR\T	Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Day	

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jun

Davoja

Sr. No.	Particulars	Quantity	in CM	D						 		
b	Cooling Tower & Boiler	114.4	0	114.4	-	-	Ţ-			-	-	-
,	Total (Trade)	154.1	0	154.1	0	0	9524	1467.5	0	0	6180	952.5
c	Domestic Effluent Generation, CMD	19	0	19			-	-	-		-	-
	Grand Total	173.1	0	173.1	-	-	8544	1479.1	-	-	5568	963.9

- No Change in Water Consumption
- Effluent generation will reduce by: 3.1 CMD
- Average COD Load will reduce by: 49.2 Kg/Day
- It is seen from above figures that, after change in product mix the COD, BOD & TDS values of effluent are reducing by about 3.21%, 20.57 % & 15.14 % respectively
- The existing ETP is treating the waste water generated from the existing products to the consented standards. Since the waste water generated from the proposed product mix will be reduced by 3.1 CMD and has the reduction pollution parameters viz. COD, BOD and TDS than the existing production profile, it is clear that the existing ETP is adequate to treat the waste water generated after the change in the product mix. However, the adequacy analysis is based on the values of existing waste water parameters as they are the same as the parameters of the waste water generated from the proposed product mix.
- Pollution load of all parameters are calculated on the basis of worst case scenario.

Treatment System

Trade Effluent:

Effluent Treatment Plant (ETP) of Design capacity of 192.00 CMD

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page **79** of **94**

Jum

- Consisting of Primary (Collection tank, Neutralization tank, Equalization tank, Flash mixer, Primary Clarifier/Primary Settling tank),
 Secondary /(Activated sludge process), Tertiary Treatment (Pressure sand filter, Activated carbon filter).
- Advance treatment (Reverse Osmosis, Multi effect evaporator) for treatment of 173.1 CMD of trade and Domestic effluent.
- The Effluent plant shall operate to treat the trade effluent and recycle the entire treated effluent into the process for various purpose such
 as for cooling, process and scrubbing with metering system so as to achieve Zero Liquid Discharge.
- · There shall be no discharge on land or outside factory premises.
- Sewage is being treated in secondary treatment of ETP as combined treatment.
- MEE salts are dispose to CHWTSDF.
- This existing effluent treatment facility is adequate even after proposed change in product mix.

ii) Air Emission Load:

Sr. No.	Stack Attached to	Fuel	Existing Fuel Consumption	Fuel Consumption after Change in Product Mix	APC system	Stack Height	
0.1	Boiler-1 (5 TPH)		16 MT/Day	16 MT/Day	Fabric Bag Filter/ Multi Cyclone	30m	
	Thermopack (8 Lacs Kcal/Hr)	Coal	2.5 MT/ Day	2.5 MT/Day	Fabric Bag Filter /Multi Cyclone		
S-2	Boiler (12 TPH)	Coal	25 MT/Day	25 MT/Day	Fabric Bag Filter/ multi Cyclone	35 m	
	Thermopack (4Lacs Kcal/Hr)	Coal	1.5 MT/ Day	1.5 MT/Day	Fabric Bag Filter/ multi Cyclone		
S-3	Thermopack (10 Lacs Kcal/Hr)	Coal	03 MT/Day	3 MT/Day	Fabric Bag Filter/ multi Cyclone	30 m	
S-4	DG Set (750 KVA)	HSD	50 Ltr/Hr	50 Ltr/Hr	Acoustic Enclosure Stack	22 m	

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Page 80 of 94

Jun

Sr. No.	Stack Attached to	Fuel	Existing Fuel Consumption	ADC			Stack Height
	DG Set (1010 KVA)	HSD	70 Ltr/Hr	70 Lit/Hr	Acoustic Stack	Enclosure	

Flue Gas Emissions:-

Sr. No.	Source	Parameters:	Before change in product-mix	After change in product- mix	MPCB Norms
	Boiler-1	TPM (From Coal)	40-60 mg/Nm ³	No Change	150 mg/Nm ³
S-1	Boller-1	SO ₂ (Coal)	9-25 kg/day	No Change	160 Kg/day
Thermopac	Thermopack	TPM (From Coal)	40-60 mg/Nm ³	No Change	150 mg/Nm ³
		SO ₂ (Coal)	9-25 kg/day	No Change	25 kg/day
S-2 Boiler	TPM (From Coal)	40-60 mg/Nm ³	No Change	150 mg/Nm ³	
5-2	Boilet	SO ₂ (Coal)	9-25 kg/day	No Change	250 Kg/day
	T11	TPM (From Coal)	40-60 mg/Nm ³	No Change	150 mg/Nm ³
S-3	Thermopack	SO ₂ (Coal)	9-25 kg/day	No Change	15 Kg/day
J-J	Thermopack	TPM (From Coal)	40-60 mg/Nm ³	No Change	150 mg/Nm ³
		SO ₂ (Coal)	9-25 kg/day	No Change	30 Kg/day
S-4	DG Set-1	TPM (From HSD)	40-70 mg/Nm ³	No Change	150 mg/Nm ³

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Jeng

	SO ₂ (From HSD)	1-3 kg/day	No Change	24 Kg/day
DC C + O	TPM (From HSD)	40-70 mg/Nm ³	No Change	150 mg/Nm ³
DG Set-2	SO ₂ (From HSD)	1-3 kg/day	No Change	34 Kg/day

iii) Hazardous Waste Load

Sr. No	Type of Waste	Cat. No.	As Per EC	As Per CTO.	Existing Qty.	After Change in Product Mix Qty.	UOM	Disposal
1	Process residue & Waste	28.1	1.305	1.305	1.305	1.305	MT/M	CHWTSDF
2	Chemical Sludge from waste water treatment	35.3	5*	5*	60	60	MT/M	CHWTSDF
3	Empty barrels/ containers/ liners contaminated with hazardous chemicals	33.1	15	15	15	15	No/M	Sale to Authorized Party/ CHWTSDF
4	Process residue (DMC)	28.1	650	650	650	53.6	MT/A	Sale to Authorized Party
5	Process residue (Acetic Acid/Propionic Acid)	28.1	1250	1250	1248.3	1248.3	MT/A	Sale to Authorized Party
6	Process residue (10% phenol)	28.1	100	100	100	8.2	MT/A	Sale to Authorized Party
7	Process residue (Sodium Sulphate 100%)	28.1	-	419.75*	0	480	MT/A	Sale to Authorized Party
10	Process Residue 4-Ethoxy phenol	28.1	-	-	0	200	MT/A	Sale to Authorized Party

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Juns

Davez

* MPCB had put a condition in current valid CTO for amendment in EC for Sodium sulphate and ETP sludge. Sodium Sulphate was used as dehydrating agent in manufacturing process of some products. As PP have removed the dehydrating step from the manufacturing process, there will not be any generation of Sodium suphate from existing activity. Hence, while applying for EC amendment, PP applied for amendment in EC, for ETP sludge i.e. from 5 MT/M to 60 MT/M only and have omitted the plan of amendment in EC for Sodium sulphate 419.75 MT/M.

Note: After Change in Product Mix, Hazardous waste is decreased from 2004.8 to 1998.2 MT/A i.e. 6.6 MT/A. While calculating total hazardous waste from existing production profile, Sodium Sulphate is not considered as PP is not applied it for amendment in EC

Non-Hazar	'dous	Waste
-----------	-------	-------

Sr. No	Type of Waste	As Per EC	As Per CTO	Existing Qty.	After Change in Product Mix Qty.	UOM	Disposal
1	Plastic waste	150 - 200	400	400	400	Kg/M	Sale to Recycler
2	Packing Material	Kg/M	2	2	2	MT/A	Sale to Recycler
3	Boiler Ash	3	6	6	6	MT/Day	Sale to Brick Manufacturer

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of wastewater, Air emissions & Hazardous waste generation were discussed. Existing consent to operate, Environmental Clearance, NIPL Certificate issued by Goldfinch Engineering Systems Pvt. Ltd and product mix Proforma are taken on the record.

Committee after due deliberations noticed that;

- i. Change in the product mix in its existing facility is achieved by Addition of 3 new products, No Change in 3 Existing Products, decrease in production capacity of 2 existing products & Deletion of 1 Existing Products.
- ii. The proposed activity is in such a way that the total production will decreased i.e. 460 MT/A, keeping the pollution load within the consent limit.

Page 83 of 94

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Denog

Jum J

- iii. It is seen from above figures that, after change in product mix the COD, BOD & TDS values of effluent are reducing by about 3.21%, 20.57 % & 15.14 % respectively.
- iv. The existing ETP is treating the waste water generated from the existing products to the consented standards. Since the waste water generated from the proposed product mix will be reduced by 3.1 CMD and has the reduction pollution parameters viz. COD, BOD and TDS than the existing production profile, it is clear that the existing ETP is adequate to treat the waste water generated after the change in the product mix. However, the adequacy analysis is based on the values of existing waste water parameters as they are the same as the parameters of the waste water generated from the proposed product mix.
- v. Pollution load of all parameters are calculated on the basis of worst case scenario
- vi. There is no change in the process stacks, existing process scrubbers with heights are adequate to control the process air emission.
- vii. After Change in Product Mix, Hazardous waste is decreased from 2004.8 to 1998.2 MT/A i.e. 6.6 MT/A. While calculating total hazardous waste from existing production profile, Sodium Sulphate is not considered as PP is not applied it for amendment in EC.
- viii. The overall pollution load is not increased after change in product mix.

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions.

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of six-monthly compliance monitoring report on their official website.
- (ii) Industry should not manufacture any other product for which permission is not granted by the Board.
- (iii) Industry shall ensure connectivity of OCEMS to Board server.

Agenda item No	item no 13	
Proposal No.	MPCB-CONSENT-0000155539	, , , , , , , , , , , , , , , , , , ,
Project Details	M/s. Sarex Overseas Ltd. Plot No. N 129,130,131 & N 132 MIDC Tarapur	
NIPL Certificate	NIPL certificate issued by M/s.	

The committee was informed that, M/s. Sarex Overseas Ltd had expressed their inability to attend the said meeting. The committee considered the same and it was decided to defer the case.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum Shung

Agenda item No	item No. 14	
Proposal No.	MPCB-CONSENT-0000156815	,
Project Details	M/s. Emcure Pharmaceuticals Ltd.	
1 Toject Details	Plot No. 12/1, 12/2, F II Block, MIDC Pimpri, Haveli, Pune-Pune	
NIPL Certificate	NIPL certificate issued by Goldfinch Engineering Systems Pvt. Ltd.	

Introduction:

This has reference to the online proposal submitted vide No. MPCB-CONSENT-0000156815 along with the copies of documents seeking amendment in existing consent to operate under change in product mix under the provision of EIA Notification 2006 amended on 02.03.2021.

Exiting Clearances:

- 1. Environmental Clearance is granted to the industry for expansion ref no. SEAC-2511/CR-741/TC2 dated 12.05.2014. The unit has valid consent to operate vide No: Format1.0/AS(T)/UAN No. 0000124193/CR/2207000763 dated 15.07.2022.
- 2. Industry has submitted proposal on PARIVESH portal on 14.01.2023. Single Window No (SW/2362/2022)

Project details:

A. Products with change in product mix as below:

Sr. No	Name Of Product	Existing Production Quantity as per CTO, MT/M	Proposed Production Quantity, MT/M
	S- Amlodipine Besilate		
1	API and Pharmaceutical Intermediates (#)	2.0	2.0
	R & D Products (Max. 100 Kg/M)		

(#) List of Products under API and Pharmaceutical Intermediates is as below;

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jun

Saraj

	T		
1	Acetozolamide	Desvenlafaxine	Cidofovir
2	Dexrabeprazole sodium	Dexmedetomidine Hydrochloride	Milrinone
3	Ferric Carboxy Maltose	S (-) Pantoprazole Sodium	Dydrogesterone
4	Metoprolol Succinate	Pentamidine Isethionate	Progesterone
5	Sevelamer Hydrochloride	Nefopam Hydrochloride	R & D Products (Max. 100 Kg/M)
6	Mefloquine Hydrochloride	Adenosine	
7	Tenofovir Disoproxil Fumarate	S (-) Amlodipine Besilate	
8	Lisdexaphetamine Dimesylate	Atenolol	
9	Seratrodast	Dexketoprofen Trometamol	
10	Tolperisone Hydrochloride	Febuxostat	
11	Cilnidipine	Iron Sucrose Complex	
12	Calcium Citrate Malate	Isosulfan Blue	
13	Amlexanox	Metoclopramide Hydrochloride	
14	Canrenone	Prochlorperazine Edisylate	
15	Emtricitabine	Etodolac	
16	Lafutidine	Zoledronic Acid	
17	Lumefantrine	Triamterene	
18	Carprofen	Neostigmine Methylsulphate	
19	Levosulpiride	Ritonavir	
20	(S)- Pregabalin		
21	Troxipide	†	
22	Cobicistat	-	

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jun 2

Devap

23	Esomeprazole (ESP09)	
24	Ferrous Ascorbate	
25	Maraviroc	
26	Sucroferric Oxyhydroxide	
27	Dexmethylphenidate Hydrochloride	
28	Levocarnitine	
29	Lamivudine	
30	Nevirapine	
31	Topiramate	

Note:

- i. In EC and in the current valid CTO combined capacity of the product is mentioned under API and Pharmaceutical intermediates without mentioning the names of individual products. However, while in the application of the CTO available on the MPCB portal manufacturing process of 50 number of products with names were uploaded.
- ii. Calculation of pollution load is done on the basis of list of products mentioned under API and Pharmaceutical Intermediates uploaded by PP on the MPCB portal. Detailed list of product before & after change in product mix is as mentioned above;
- i. After the change in product mix, the total combined production capacity of the plant will be remained same i.e., 2.0 MT/M.
- ii. Change in the product mix in its existing facility will be achieved by Addition of 4 new products and inclusion of R & D product.

 No Change in 19 Existing Products, Deletion of 31 Existing Products.
- iii. The proposed activity is in such a way that the total production will remains same i.e. 2.0 MT/M, keeping the pollution load within the consent limit.
- iv. Pollution load is calculated on the basis of worst case scenario i.e. considering manufacturing of each product to the tune of 2 MT/M. Emcure can manufacture combination of products or each product to the tune of 2 MT/M (as per CTO).

Jum

Drawy

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

B. Pollution load Details:

i) Water & Wastewater Aspect

Before Product Mix

Sr. No.	Particulars	Quantity	Quantity in CMD												
1	Water Consumption	80.8					<u>-</u>								
2	Trade Effluent Generation	l													
				Flow, C	CMD	COD	COD				TDS				
Sr. No	Particular	Total Flow,		Strong Weak-	Strong		Weak		Strong		Weak				
						Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Day			
a	Process & Washing Activity	16		0	16	-	-		-		-	<u> </u>			
b	Cooling Tower & Boiler	3.0		0	3.0								<u></u>		
	Total (Trade)	19.0	<u> </u>	0	19.0	0	0	8453	160.6	0	0	2721	51.7		
С	Domestic Effluent Generation, CMD	5		5.0	L				3.0		 		3.0		
d	Total Effluent	24.0		24.0		0	0	6816	163.6	0	0	2279	54.7		

Domestic -5 CMD + Industrial - 19 CMD total effluent 24 CMD

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Janet David

Page **88** of **94**

After Product Mix

Sr. No.	Particulars	Quantity	Quantity in CMD									
1	Water Consumption	80.8	80.8									
2	Trade Effluent Generation											
		Total	Flow, Cl	MD	COD				TDS			
Sr. No	Particular	Flow,	~.	Weak	Strong		Weak		Strong		Weak	
		CMD	Strong		Mg/L	Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Day	Mg/L	Kg/Day
a	Process & Washing Activity	16	0	16	-	-						
b	Cooling Tower & Boiler	3.0	0	3.0	-							
	Total (Trade)	19.0	0	19.0	0	0	8453	160.6	0	0	2721	51.7
c	Domestic Effluent Generation, CMD	9	5.0				600	3.0			600	3.0
d	Total Effluent	24.0	24.0		0	0	6816	163.6	0	0	2279	54.7

Domestic -5 CMD + Industrial - 19 CMD total effluent 24 CMD

- No change in Water Consumption, Effluent generation and its quality.
- It is seen from the above figures that, after a change in product mix there is no change in the COD, BOD & TDS values of effluent coming from process and utility.
- The existing ETP is treating the waste water generated from the existing products to the consented standards. Since the waste water generated from the proposed product mix has the same parameters as the existing it is clear that the existing ETP is adequate to treat the waste water generated after the change in the product mix. However, the adequacy analysis is based on the values of existing waste water parameters as they are the same as the parameters of the waste water generated from the proposed product mix.
- Pollution load of all parameters are calculated on the basis of worst case scenario i.e. considering manufacturing of each product to the tune of 2 MT/M.

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum J

Deng

Treatment System

a) Trade Effluent:

- The generated waste water is being treated in full-fledged Effluent Treatment Plant (ETP) of designed capacity of 25.00 CMD. Existing
 ETP is consisting of Primary (Collection tank, Neutralization tank, Equalization tank, Flash mixer, Primary Clarifier/Primary Settling
 Tank), Secondary (Activated sludge process), Tertiary (Pressure sand filter, activated carbon filter), Sludge treatment (Sludge drying bed)
 for the treatment of 19 CMD of trade effluent from process.
- Further primary treated sewage effluent 5 CMD combine to Effluent Treatment plant at Secondary stage (Aeration Tank). Total 24 CMD trade effluent is being treated in the existing ETP having designed capacity of 25.00 CMD. As per the existing CTO treated effluent 9.5 CMD is being recycled/reused for utility purposes. Remaining is being discharged on land for gardening within premise after confirming MPCB standards.
- This existing effluent treatment facility is adequate even after proposed change in product mix.

ii) Air Emission:

Sr. No.	Stack Attached to	As per CTO	Existing Fuel Consumption	Fuel Consumption after Change in Product Mix	Stack Height	Remark
	Boiler-1 (0.6 TPH stand By)	LDO: 432 Lit/Day): 432 I DO: 433 I it/D I DO: 433 I it/D			No Change
1	Boiler-2 (1.5 TPH)	FO: 78* Kg/Hr	LDO*-78 Kg/Hr	LDO-78 Kg/Hr Or LSHS-78 Kg/Hr	30 m (Combined stack)	Switched over to cleaner fuel LDO/LSHS in place of Furnace oil
2	DS Set-1 (500 KVA)	HSD- 22			3 m (from above the roof)	
3	DS Set-1 (500 KVA)	Lit/Hr	HSD- 22 Lit/Hr	HSD- 22 Lit/Hr	3 m (from above the roof)	No Change

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jenes Jenes

Page **90** of **94**

4	Process Vent-1	 	-	10 m	No Change
5	Process Vent-2	 		5 m	No Change
6	Process Vent-3	 		5 m	No Change

Note: * Switched over to cleaner fuel LDO/LSHS in place of Furnace oil

Fuel Gas Emission & Process Emission

Stack No.	Source	APC System provided/proposed	Fuel of Type	Sulphur Content (in %)	Pollutant	Standard
	Boiler-1 St	Stack	LDO 432	1.8	ТРМ	50 Mg/Nm3
S-1			Lit/Day		SO ₂	15.55 Kg/Day
	Boiler-2	Stack	LDO-78 Kg/Hr or LSHS-78 kg/Hr	1.8	ТРМ	50 Mg/Nm3
					SO ₂	67.4 Kg/Day
S-2	DS Set-1 (500 KVA)	Acoustic Enclosure	HSD: 22 Lit/Hr	1.0	ТРМ	50 Mg/Nm3
S-3	DS Set-2 (500 KVA)	Acoustic Enclosure	A LIVIN	1.0	SO ₂	3.52 Kg/Day
S-4	Process Vent-1	Scrubber	_		Acid Mist	35 mg/Nm ³
S-5	Process Vent-2	Scrubber			Acid Mist	35 mg/Nm ³
S-6	Process Vent-3	Scrubber			Acid Mist	35 mg/Nm³

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Jum

Dioney

iii) Hazardous Waste Load;

Sr. No	Type of Waste	Cat. No.	As Per CTO. MT/M	Existing Qty. MT/M	After CIPM Qty. MT/M	Disposal
1	Used/Spent Oil	5.1	0.21	0.21	0.21	Sale to authorized party / CHWTSDF
2	Process Residue and wastes	28.1	1.1	1.1	1.5	CHWTSDF
3	Off specification products	28.4	1	1	1	CHWTSTF
4	Date-expired products	28.5	3	3	3	CHWTSTF
5	Spent solvents	20.2	7.5	7.5	10.0	Sale to authorized party / CHWTSDF
6	Chemical sludge from waste water	35.3	5	5	2.5	Co-Processing/ Pre- Processing/ CHWTSTF
7	Spent catalyst	28.2	0.5	0.5	0.1	Authorized recycler/ CHWTSDF
8	Empty barrels /containers /liners contaminated with hazardous chemicals/wastes	33.1	0.5	0.5	0.5	Sale to authorized party / CHWTSDF
	Total Hazardous Waste Quantity	(MT/M)	18.81	18.81	18.81	

Note: There is no change in the Overall total hazardous waste quantity even after proposed Change in product mix.

E – Waste

Sr. No	Type of Waste	Qty.	Disposal Path
1	E - Waste	100 Kg/Annum	Authorized re-processor

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

June Daney

There is no change in E-waste quantity after proposed Change in product mix. Biomedical Waste;

Sr. No	Type of Waste	Qty.	Disposal Path
1	Yellow- (Biomedical Waste-Yellow colored non- chlorinated plastic bags)	50 Kg/M	Common BMW Treatment Facility
2	Red - (Biomedical Waste- Autoclave safe plastic bags or containers)	50 Kg/M	Common BMW Treatment Facility

There is no change in Biomedical waste quantity after proposed Change in product mix.

Technical Committee Deliberations:

The proposed project was discussed on the basis of documents – NIPL Certificate and presentation made by the industry. Product wise load calculation in terms of wastewater, Air emissions & Hazardous waste generation were discussed. Existing consent to operate, Environmental Clearance, NIPL Certificate issued by Goldfinch Engineering Systems Pvt. Ltd and product mix Performa are taken on the record.

Committee after due deliberations noticed that;

- i. In EC and in the current valid CTO combined capacity of the product is mentioned under API and Pharmaceutical intermediates without mentioning the names of individual products. However, while in the application of the CTO available on the MPCB portal manufacturing process of 50 number of products with names were uploaded.
- ii. Calculation of pollution load is done on the basis of list of products mentioned under API and Pharmaceutical Intermediates uploaded by PP on the MPCB portal. Detailed list of product before & after change in product mix is as mentioned above;
- iii. After the change in product mix, the total combined production capacity of the plant will be remained same i.e., 2.0 MT/M.
- iv. Change in the product mix in its existing facility will be achieved by Addition of 4 new products and inclusion of R & D product. No Change in 19 Existing Products, Deletion of 31 Existing Products.
- v. The proposed activity is in such a way that the total production will remains same i.e. 2.0 MT/M, keeping the pollution load within the consent limit.
- vi. Pollution load is calculated on the basis of worst case scenario i.e. considering manufacturing of each product to the tune of 2 MT/M. Emcure can manufacture combination of products or each product to the tune of 2 MT/M (as per CTO).
- vii. No change in Water Consumption, Effluent generation and its quality.
- viii. Switched over to cleaner fuel LDO/LSHS in place of Furnace oil
- ix. There is no change in the Overall total hazardous waste quantity even after proposed Change in product mix

Minutes of 4th Technical Committee Meeting (2023-2024), for certification about "No Increase in Pollution Load" dtd. 10th March 2023

Dave

fun ,

Page **93** of **94**

Technical Committee Decision:

Technical Committee decided to recommend the case for change in product under product mix with a compliance of the following conditions;

- (i) Industry shall comply with all the conditions stipulated in Environmental Clearance and ensure display/upload of six-monthly compliance monitoring report on their official website.
- (ii) Industry should not manufacture any other product for which permission is not granted by the MPCB.
- (iii) Industry shall ensure connectivity of OCEMS data to Boards server and transmit the data continuously for wastewater treatment facility.

Agenda item No	Item No. 15
Proposal No.	MPCB-CONSENT-0000156973
Project Details	M/s. Lupin Ltd.
	Plot No. 30/10 to 30/13 & 64/7 T-142, MIDC Tarapur, Palghar.
NIPL Certificate	NIPL certificate issued by Goldfinch Engineering Systems Pvt. Ltd.

Due to paucity of time, it was decided to defer the case.

The meeting ended with vote of thanks to Chair.

(Safi. N. N. Gurav) RO (BMW)

and Member-Convenor of Committee

(Dr. J.B.Sangewar)

Asst. Secretary (Tech.) and Chairman of the Committee